
Cryptography and Security in 
Computing
Edited by Jaydip Sen

Edited by Jaydip Sen

The purpose of this book is to present some of the critical security challenges in today’s 
computing world and to discuss mechanisms for defending against those attacks by 

using classical and modern approaches of cryptography and other defence mechanisms. 
It contains eleven chapters which are divided into two parts. The chapters in Part 1 of 
the book mostly deal with theoretical and fundamental aspects of cryptography. The 
chapters in Part 2, on the other hand, discuss various applications of cryptographic 

protocols and techniques in designing computing and network security solutions. The 
book will be useful for researchers, engineers, graduate and doctoral students working 
in cryptography and security related areas. It will also be useful for faculty members 

of graduate schools and universities.

Photo by AmazingDream / iStock

ISBN 978-953-51-0179-6

Cryptography and Security in C
om

puting



CRYPTOGRAPHY AND 
SECURITY IN COMPUTING 

 
Edited by Jaydip Sen 

 
  

INTECHOPEN.COM



CRYPTOGRAPHY AND 
SECURITY IN COMPUTING 

 
Edited by Jaydip Sen 

 
  

INTECHOPEN.COM



Cryptography and Security in Computing
http://dx.doi.org/10.5772/2213
Edited by Jaydip Sen

Contributors

Hailiza Kamarulhaili, José Antonio Álvarez-Cubero, Eric Filiol, Cristina-Elena Vintila, Abdulah Abdulah Zadeh, Nelson 
Rangel-Valdez, Jose Torres-Jimenez, Himer Avila-George, Loreto Gonzalez-Hernandez, Saman Shojae Chaeikar, Azizah 
Bt Abdul Manaf, Mazdak Zamani, Nozomu Togawa, Masao Yanagisawa, Hilal Mohammed Yousif Al-Bayatti, Abdul 
Monem S Rahma, Hala Bahjat Abdul Wahab, Sergey Igorevich Nikolenko, Jaydip Sen

© The Editor(s) and the Author(s) 2012
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2012 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Cryptography and Security in Computing
Edited by Jaydip Sen

p. cm.

ISBN 978-953-51-0179-6

eBook (PDF) ISBN 978-953-51-5615-4



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

4,100+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

120M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editor

Jaydip Sen has 18 years of experience in the field of net-
working, security and communication. He has worked 
in reputed organizations like Tata Consultancy Servic-
es, India, Oil and Natural Gas Corporation Ltd., India, 
Oracle India Pvt. Ltd., and Akamai Technology Pvt. Ltd, 
India. His research areas include security in wired and 
wireless networks, intrusion detection systems, secure 

routing protocols in wireless ad hoc and sensor networks, secure multicast 
and broadcast communication in next generation broadband wireless net-
works, trust and reputation based systems, quality of service in multimedia 
communication in wireless networks and cross layer optimization based 
resource allocation algorithms in next generation wireless networks, sensor 
networks, and privacy issues in ubiquitous and pervasive communication. 
He has more than 90 publications in reputed international books, journals 
and referred conference proceedings. He is a member of ACM and IEEE. 



 
 

 

 
 

 
 
Contents 
 

Preface IX 

Part 1 Theoretical and Fundamental Aspects of Cryptography 1 

Chapter 1 Provably Secure Cryptographic Constructions 3 
Sergey I. Nikolenko 

Chapter 2 Malicious Cryptology and Mathematics 23 
Eric Filiol 

Chapter 3 Cryptographic Criteria on Vector Boolean Functions 51 
José Antonio Álvarez-Cubero and Pedro J. Zufiria 

Chapter 4 Construction of Orthogonal Arrays of  
Index Unity Using Logarithm Tables for Galois Fields 71 
Jose Torres-Jimenez, Himer Avila-George,  
Nelson Rangel-Valdez and Loreto Gonzalez-Hernandez 

Chapter 5 Elliptic Curve Cryptography and  
Point Counting Algorithms 91 
Hailiza Kamarulhaili and Liew Khang Jie 

Chapter 6 Division and Inversion Over Finite Fields 117 
Abdulah Abdulah Zadeh 

Part 2 Applications of Cryptographic  
Algorithms and Protocols 131 

Chapter 7 Secure and Privacy-Preserving Data  
Aggregation Protocols for Wireless Sensor Networks 133 
Jaydip Sen 

Chapter 8 Scan-Based Side-Channel  
Attack on the RSA Cryptosystem 165 
Ryuta Nara, Masao Yanagisawa and Nozomu Togawa 



Contents 

Preface XI 

Part 1 Theoretical and Fundamental Aspects of Cryptography 1 

Chapter 1 Provably Secure Cryptographic Constructions 3 
Sergey I. Nikolenko 

Chapter 2 Malicious Cryptology and Mathematics 23 
Eric Filiol 

Chapter 3 Cryptographic Criteria on Vector Boolean Functions 51 
José Antonio Álvarez-Cubero and Pedro J. Zufiria 

Chapter 4 Construction of Orthogonal Arrays of  
Index Unity Using Logarithm Tables for Galois Fields 71 
Jose Torres-Jimenez, Himer Avila-George,  
Nelson Rangel-Valdez and Loreto Gonzalez-Hernandez 

Chapter 5 Elliptic Curve Cryptography and  
Point Counting Algorithms 91 
Hailiza Kamarulhaili and Liew Khang Jie 

Chapter 6 Division and Inversion Over Finite Fields 117 
Abdulah Abdulah Zadeh 

Part 2 Applications of Cryptographic  
Algorithms and Protocols 131 

Chapter 7 Secure and Privacy-Preserving Data  
Aggregation Protocols for Wireless Sensor Networks 133 
Jaydip Sen 

Chapter 8 Scan-Based Side-Channel  
Attack on the RSA Cryptosystem 165 
Ryuta Nara, Masao Yanagisawa and Nozomu Togawa 



X Contents

Chapter 9 PGP Protocol and Its Applications 181 
Hilal M. Yousif Al-Bayatti, 
Abdul Monem S. Rahma and Hala Bhjat Abdul Wahab 

Chapter 10 Comparative Analysis of Master-Key and 
Interpretative Key Management (IKM) Frameworks 203 
Saman Shojae Chaeikar,  
Azizah Bt Abdul Manaf and Mazdak Zamani 

Chapter 11 Potential Applications of IPsec in 
Next Generation Networks 219 
Cristina-Elena Vintilă 



Preface 

During the last three decades, public academic research in cryptography has exploded. 
While classical cryptography has been long used by ordinary people, computer 
cryptography was the exclusive domain of the world’s militaries since the World War 
II. Today, state-of the-art computer cryptography is practiced outside the secured
walls of the military agencies. The laypersons can now employ security practices that
can protect against the most powerful adversaries. Since we live in an era of connected
world with convergence of computer and networks, the need of information security
and assurance is more than it had ever has been before. With the advent of rapidly
advancing and amazing technologies that enable instantaneous flow of information
the purview of cryptography information security has also changed dramatically.

The computer security as it was understood in the 1960s and even later was how to 
create in a computer system a group of access controls that would implement or 
emulate processes of the prior paper world, plus the associated issues of protecting 
such software against unauthorized changes, subversion and illicit use, and of 
embedding the entire system in a secure physical environment with appropriate 
management and operational doctrines and procedures. The poorly understood aspect 
of security, the risk that it might malfunction- or be penetrated- and subvert the proper 
behaviour of software. For the aspects of communications, personnel, and physical 
security, there were a plethora of rules, regulations, operating procedures and 
experience to cover them. It was largely a matter of merging all of it with the 
hardware/software aspects to yield an overall secure system and operating 
environment. 

However, the world has changed. We now live in an era of rapidly advancing and 
amazing communication and computing technologies that enable instantaneous flow 
of information – anytime, anywhere. Networking of computers is now a rule and not 
the exception. Many commercial transactions are now web-based and many 
commercial communities – the financial one in particular – have moved into a web 
posture. The net effect of all these transformation has been to expose the computer-
based information system – its hardware, its software processes, its databases, its 
communication- to an environment over which no one – not the end user, not the 
network administrator or system owner, not even the government – has full control. 
What must, therefore, be done is to provide appropriate technical, procedural, 
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operational and environmental safeguards against threats as they might appear or be 
imagined, embedded in an acceptable legal framework. With this rapid transformation 
of computing and communication world, information-system security has moved 
from a largely self-contained bounded environment interacting with a generally 
known and disciplined user community to one of worldwide scope with a body of 
users that may not be known and are not necessarily trusted. Importantly, security 
control now must deal with circumstances over which there is a largely no control or 
expectation of avoiding their impact. Computer security, as it has evolve, shares a 
similarity with liability assurance; they each face a threat environment that is known 
in a very general way and can face attacks over a broad spectrum of sources; however, 
the exact details or even time or certainty of an attack is unknown until an incident 
actually occurs. 

In this scenario of uncertainty and threats, cryptography will play a crucial role in 
developing new security solutions. New cryptographic algorithms, protocols and tools 
must follow up in order to adapt to the new communication and computing 
technologies. In addition to classical cryptographic algorithms, new approaches like 
chaos-based cryptography, DNA-based cryptography and quantum cryptography will 
be play important roles. 

The purpose of this book is to present some of the critical security challenges in 
today’s computing world and to discuss mechanisms for defending against those 
attacks by using classical and modern approaches of cryptography and other security 
solutions. With this objective, the book provides a collection of research work in the 
field of cryptography and its applications in network security by some experts in these 
areas. 

The book contains 11 chapters which are divided into two parts. The chapters in Part 1 
of the book mostly deal with theoretical and fundamental aspects of cryptography. 
The chapters in Part 2, on the other hand, discuss various applications of 
cryptographic protocols and techniques in designing computing and network security 
solutions.  

The Part 1 of the book contains six chapters. In Chapter 1: Provably secure cryptographic 
constructions, Nikolenko presents a survey of some of the existing methods for proving 
security in cryptosystems and also discusses feebly secure cryptographic primitives. In 
Chapter 2: Malicious cryptology and mathematics, Filiol discusses existing research work 
on malicious cryptology, malware-based operational cryptanalysis and other key 
issues in the emerging field of malicious cryptographic algorithm designs. In Chapter 
3: Cryptographic criteria on vector boolean functions, Álvarez-Cubero and Zufiria present 
cryptographic criteria like nonlinearity, linearity distance, balancedness, algebraic 
degree, correlation immunity, resiliency and propagation criterion for construction of 
Vector Boolean functions such as composition, addition or coordinate function etc. In 
Chapter 4: Construction of orthogonal arrays of index unity Using logarithm tables for Galois 
fields, Torres-Jimenez et al. present a discussion on orthogonal arrays and their 
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importance in development of algorithms in cryptography and propose an efficient 
implementation of Bush’s construction of orthogonal arrays of index unity based on 
the use of logarithm tables for Galois Fields. In Chapter 5: Elliptic curve cryptography
and the point counting algorithms, Kamarulhaili and Jie present mathematical 
discussion on elliptic curves, group operations of points on an elliptic curve, the
addition algorithm, doubling operations over real numbers as well as over a finite 
field. In Chapter 6: Division and inversion over finite fields, Abdallah presents algorithms 
for division and inversion operations over finite fields based on Fermat’s little theorem 
and Euclidean dividers.  

The Part 2 contains five chapters. In Chapter 7: Secure and privacy-preserving data 
aggregation protocols for wireless sensor networks, Sen discusses the requirement of secure 
and privacy preserving data aggregation in wireless sensor networks and presents a 
couple of algorithms to achieve these requirements. In Chapter 8: Scan-based side-
channel attack on the RSA cryptosystem, Nara et al. present a scan-based attack wherein,
by checking a bit sequence or scan signature it is possible to retrieve the secret key in 
an n RSA cryptosystem. In Chapter 9: PGP protocols with applications, Al-Bayatti et al. 
discuss methods to combine graphical curve security methods with classical
cryptographic algorithm to enhance the level of security in a system.

In Chapter 10: Comparative analysis between master key and interpretative key management
(IKM) frameworks, Chaeikar et al. have presented a comparative analysis of the 
efficiency and effectiveness of master key and interpretative key management 
frameworks. In Chapter 11: Potential applications of IPSec in next-generation networks, 
Vintilă discusses how IPSec could be utilized to implement security in next generation 
broadband wireless networks.

The book can be very useful for researchers, engineers, graduate and doctoral students 
working in cryptography and security related areas. It can also be very useful for 
faculty members of graduate schools and universities. However, it is not a basic
tutorial on cryptography and network security. Hence, it does not have any detailed 
introductory information on these topics. The readers need to have at least some basic 
knowledge on theoretical cryptography and fundamentals on network security. The 
book should also not be taken as a detailed research report. While some chapters 
simply present some specific problems and their solutions that might be helpful for
graduate students, some talk about fundamental information that might be useful for 
general readers. Some of the chapters present in-depth cryptography and security 
related theories and latest updates in a particular research area that might be useful to
advanced readers and researchers in identifying their research directions and 
formulating problems to solve.

My sincere thanks to the authors of different chapters of the book without whose 
invaluable contributions, this project would never have been possible. All the authors
have been extremely cooperative on different occasions during the submission,
review, and editing process of the book. I would like to express my special gratitude to
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Provably Secure Cryptographic Constructions

Sergey I. Nikolenko
Steklov Mathematical Institute, St. Petersburg

Russia

1. Introduction

1.1 Cryptography: treading uncertain paths

Modern cryptography has virtually no provably secure constructions. Starting from the first
Diffie–Hellman key agreement protocol (Diffie & Hellman, 1976) and the first public key
cryptosystem RSA (Rivest et al., 1978), not a single public key cryptographic protocol has been
proven secure. Note, however, that there exist secure secret key protocols, e.g., the one-time
pad scheme (Shannon, 1949; Vernam, 1926); they can even achieve information–theoretic
security, but only if the secret key carries at least as much information as the message.

An unconditional proof of security for a public key protocol would be indeed hard to find,
since it would necessarily imply that P �= NP. Consider, for instance, a one-way function,
i.e., a function such that it is easy to compute but hard to invert. One-way functions are
basic cryptographic primitives; if there are no one-way functions, there is no public key
cryptography. The usual cryptographic definition requires that a one-way function can be
computed in polynomial time. Therefore, if we are given a preimage y ∈ f −1(x), we can, by
definition, verify in polynomial time that f (y) = x, so the inversion problem is actually in NP.
This means that in order to prove that a function is one-way, we have to prove that P �=NP,
a rather daring feat to accomplish. A similar argument can be made for cryptosystems and
other cryptographic primitives; for example, the definition of a trapdoor function (Goldreich,
2001) explicitly requires an inversion witness to exist.

But the situation is worse: there are also no conditional proofs that might establish a connection
between natural structural assumptions (like P �=NP or BPP �=NP) and cryptographic
security. Recent developments in lattice-based cryptosystems relate cryptographic security
to worst-case complexity, but they deal with problems unlikely to be NP-complete (Ajtai &
Dwork, 1997; Dwork, 1997; Regev, 2005; 2006).

An excellent summary of the state of our knowledge regarding these matters was given by
Impagliazzo (1995); although this paper is now more than 15 years old, we have not advanced
much in these basic questions. Impagliazzo describes five possible worlds – we live in exactly
one of them but do not know which one. He shows, in particular, that it may happen that
NP problems are hard even on average, but cryptography does not exist (Pessiland) or that
one-way functions exist but not public key cryptosystems (Minicrypt). 1

1 To learn the current state of affairs, we recommend to watch Impagliazzo’s lecture at the 2009 workshop
“Complexity and Cryptography: Status of Impagliazzo’s Worlds”; video is available on the web.

1
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Another angle that might yield an approach to cryptography relates to complete cryptographic
primitives. In regular complexity theory, much can be learned about complexity classes by
studying their complete representatives; for instance, one can study any of the numerous
well-defined combinatorial NP-complete problems, and any insight such as a fast algorithm
for solving any of them is likely to be easily transferrable to all other problems from the
class NP. In cryptography, however, the situation is worse. There exist known complete
cryptographic constructions, both one-way functions (Kojevnikov & Nikolenko, 2008; 2009;
Levin, 1986) and public key cryptosystems (Grigoriev et al., 2009; Harnik et al., 2005).
However, they are still mostly useless in that they are not really combinatorial (their hardness
relies on enumerating Turing machines) and they do not let us relate cryptographic security to
key assumptions of classical complexity theory. In short, it seems that modern cryptography
still has a very long way to go to provably secure constructions.

1.2 Asymptotics and hard bounds

Moreover, the asymptotic nature of cryptographic definitions (and definitions of complexity
theory in general) does not let us say anything about how hard it is to break a given
cryptographic protocol for keys of a certain fixed length. And this is exactly what
cryptography means in practice. For real life, it makes little sense to say that something is
asymptotically hard. Such a result may (and does) provide some intuition towards the fact
that an adversary will not be able to solve the problem, but no real guarantees are made:
why is RSA secure for 2048-bit numbers? Why cannot someone come up with a device that
breaks into all credit cards that use the same protocol with keys of the same length? There are
no theoretical obstacles here. In essence, asymptotic complexity is not something one really
wants to get out of cryptographic constructions. Ultimately, I do not care whether my credit
card’s protocol can or cannot be broken in the limit; I would be very happy if breaking my
specific issue of credit cards required constant time, but this constant was larger than the size
of the known Universe.

The proper computational model to prove this kind of properties is general circuit complexity
(see Section 2). This is the only computational model that can deal with specific bounds for
specific key lengths; for instance, different implementations of Turing machines may differ by
as much as a quadratic factor. Basic results in classical circuit complexity came in the 1980s
and earlier, many of them provided by Soviet mathematicians (Blum, 1984; Khrapchenko,
1971; Lupanov, 1965; Markov, 1964; Nechiporuk, 1966; Paul, 1977; Razborov, 1985; 1990;
Sholomov, 1969; Stockmeyer, 1977; 1987; Subbotovskaya, 1961; 1963; Yablonskii, 1957). Over
the last two decades, efforts in circuit complexity have been relocated mostly towards results
related to circuits with bounded depth and/or restricted set of functions computed in a node
(Ajtai, 1983; Cai, 1989; Furst et al., 1984; Håstad, 1987; Immerman, 1987; Razborov, 1987; 1995;
Smolensky, 1987; Yao, 1985; 1990). However, we need classical results for cryptographic
purposes because the bounds we want to prove in cryptography should hold in the most
general B2,1 basis. It would be a very bold move to advertise a credit card as “secure against
adversaries who cannot use circuits of depth more than 3”.

1.3 Feebly secure cryptographic primitives

We cannot, at present, hope to prove security either in the “hard” sense of circuit complexity
or in the sense of classical cryptographic definitions (Goldreich, 2001; 2004; Goldwasser &
Bellare, 2001). However, if we are unable to prove a superpolynomial gap between the
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complexities of honest parties and adversaries, maybe we can prove at least some gap? Alain
Hiltgen (1992) managed to present a function that is twice (2− o(1) times) harder to invert than
to compute. His example is a linear function over GF(2) with a matrix that has few non-zero
entries while the inverse matrix has many non-zero entries; the complexity gap follows
by a simple argument of Lamagna and Savage (Lamagna & Savage, 1973; Savage, 1976):
every bit of the output depends non-idly on many variables and all these bits correspond
to different functions, hence a lower bound on the complexity of computing them all together
(see Section 3.2). The model of computation here is the most general one: the number of gates
in a Boolean circuit that uses arbitrary binary Boolean gates. We have already noted that little
more could be expected for this model at present. For example, the best known lower bound
for general circuit complexity of a specific Boolean function is 3n − o(n) (Blum, 1984) even
though a simple counting argument proves that there exist plenty of Boolean functions with
circuit complexity ≥ 1

n 2n (Wegener, 1987).

In this chapter, we briefly recount feebly one-way functions but primarily deal with another
feebly secure cryptographic primitive: namely, we present constructions of feebly trapdoor
functions. Of course, in order to obtain the result, we have to prove a lower bound on the circuit
complexity of a certain function. To do so, we use the gate elimination technique which dates
back to the 1970s and which has been used in proving virtually every single known bound in
general circuit complexity (Blum, 1984; Paul, 1977; Stockmeyer, 1977). New methods would
be of great interest; alas, there has been little progress in general circuit complexity since
Blum’s result of 3n − o(n). A much simpler proof has been recently presented by Demenkov
& Kulikov (2011), but no improvement has been found yet.

We begin with linear constructions; in the linear case, we can actually nail gate elimination
down to several well-defined techniques that we present in Section 3.3. These techniques let
us present linear feebly trapdoor functions; the linear part of this chapter is based mostly on
(Davydow & Nikolenko, 2011; Hirsch & Nikolenko, 2008; 2009). For the nonlinear case, we
make use of a specific nonlinear feebly one-way function presented in (Hirsch et al., 2011;
Melanich, 2009).

2. Basic definitions

2.1 Boolean circuits

Boolean circuits (see, e.g., (Wegener, 1987)) represent one of the few computational models
that allow for proving specific rather than asymptotic lower bounds on the complexity. In
this model, a function’s complexity is defined as the minimal size of a circuit computing this
function. Circuits consist of gates, and gates can implement various Boolean functions.

We denote by Bn,m the set of all 2m2n
functions f : Bn → Bm, where B = {0, 1} is the field

with two elements.

Definition 1. Let Ω be a set of Boolean functions f : Bm → B (m may differ for different f ). Then
an Ω-circuit is a directed acyclic labeled graph with vertices of two kinds:

• vertices of indegree 0 (vertices that no edges enter) labeled by one of the variables x1, . . . , xn,

• and vertices labeled by a function f ∈ Ω with indegree equal to the arity of f .

Vertices of the first kind are called inputs or input variables; vertices of the second kind, gates. The
size of a circuit is the number of gates in it.
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Fig. 1. Simple circuits: (a) y = x1 ⊕ x2; (b) y = x1 ⊕ x2 ⊕ x3; (c) a suboptimal circuit for
y = x2 ∧ (x1 ∨ x3); (d) an optimal one.

We usually speak of outputs of a circuit and draw them on pictures, but in theory, every gate
of an Ω-circuit computes some Boolean function and can be considered as an output of the
circuit. The circuit complexity of a function f : Bn → Bm in the basis Ω is denoted by CΩ( f )
and is defined as the minimal size of an Ω-circuit that computes f (that has m gates which
compute the result of applying function f to input bits).

In order to get rid of unary gates, we will assume that a gate computes both its corresponding
function and its negation (the same applies to the inputs, too). Our model of computation
is given by Boolean circuits with arbitrary binary gates (this is known as general circuit
complexity); in other words, each gate of a circuit is labeled by one of 16 Boolean functions
from B2,1. Several simple examples of such circuits are shown on Fig. 1.

In what follows, we denote by C( f ) the circuit complexity of f in the B2,1 basis that consists of
all binary Boolean functions. We assume that each gate in this circuit depends of both inputs,
i.e., there are no gates marked by constants and unary functions Id and ¬. This can be done
without loss of generality because such gates are easy to exclude from a nontrivial circuit
without any increase in its size.

2.2 Feebly secure one-way functions

We want the size of circuits breaking our family of trapdoor functions to be larger than the
size of circuits that perform encoding. Following Hiltgen (1992; 1994; 1998), for every injective
function of n variables fn ∈ Bn,m we can define its measure of one-wayness as

MF( fn) =
C( f−1

n )

C( fn)
. (1)

The problem now becomes to find sequences of functions f = { fn}∞
n=1 with a large asymptotic

constant lim infn→∞ MF( fn), which Hiltgen calls f ’s order of one-wayness.

Hiltgen (1992; 1994; 1998) presented several constructions of feebly secure one-way functions.
To give a flavour of his results, we recall a sample one-way function. Consider a function
f : Bn → Bn given by the following matrix:

f (x1, . . . , xn) =

⎛
⎜⎝

1 1 0 ··· 0 ··· 0 0
0 1 1 ··· 0 ··· 0 0
...

...
...

...
...

...
1 0 0 ··· 0 ··· 1 1
1 0 0 ··· 1 ··· 0 1

⎞
⎟⎠

⎛
⎜⎝

x1
x2

...
xn−1
xn

⎞
⎟⎠ , (2)
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Fig. 2. Hiltgen’s feebly one-way function of order 3
2 : a circuit for f .

that is (we assume for simplicity that n is even),

f j(x1, . . . , xn) =

�
xj ⊕ xj+1, j = 1, . . . , n − 1,
x1 ⊕ x n

2
⊕ xn, j = n.

(3)

Straighforward computations show that f is invertible, and its inverse is given by

f−1(y1, . . . , yn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1 1 ... 1 1
1 0 ... 0 1 1 ... 1 1
1 1 ... 0 1 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 0 1 1 ... 1 1
1 1 ... 1 1 1 ... 1 1
1 1 ... 1 0 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 1 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3

...
y� n

2 �
y n

2 +1
y n

2 +2

...
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

that is,

f −1
j (y1, . . . , yn) =

⎧⎨
⎩

�
y1 ⊕ . . . ⊕ yj−1

�
⊕

�
y n

2 +1 ⊕ . . . ⊕ yn

�
, j = 1, . . . , n

2 ,�
y1 ⊕ . . . ⊕ y n

2

�
⊕

�
yj−1 ⊕ . . . ⊕ yn

�
, j = n

2 + 1, . . . , n.
(5)

It remains to invoke Proposition 6 (see below) to show that f−1 requires at least � 3n
2 � − 1

gates to compute, while f can be obviously computed in n + 1 gates. Fig. 2 shows a circuit
that computes f in n + 1 gates; Fig. 3, one of the optimal circuits for f −1. Therefore, f is
a feebly one-way function with order of security 3

2 . For this particular function, inversion
becomes strictly harder than evaluation at n = 7 (eight gates to compute, nine to invert).

2.3 Feebly trapdoor candidates

In the context of feebly secure primitives, we have to give a more detailed definition of a
trapdoor function than the regular cryptographic definition (Goldreich, 2001): since we are
interested in constants here, we must pay attention to all the details. The following definition
does not say anything about the complexity and hardness of inversion, but merely sets up the
dimensions.

Definition 2. For given functions pi, ti, m, c : N → N, a feebly trapdoor candidate is a sequence
of triples of circuits

C = {(Seedn, Evaln, Invn)}∞
n=1 , where: (6)

7Provably Secure Cryptographic Constructions



4 Will-be-set-by-IN-TECH

x1 x2

⊕

y = x1 ⊕ x2

x1 x2 x3

⊕

⊕

y = x1 ⊕ x2 ⊕ x3

x1 x2 x3

∧ ∧

∨

y = x2 ∧ (x1 ∨ x3)

x1x2 x3

∨

∧

y = x2 ∧ (x1 ∨ x3)

(a) (b) (c) (d)

Fig. 1. Simple circuits: (a) y = x1 ⊕ x2; (b) y = x1 ⊕ x2 ⊕ x3; (c) a suboptimal circuit for
y = x2 ∧ (x1 ∨ x3); (d) an optimal one.

We usually speak of outputs of a circuit and draw them on pictures, but in theory, every gate
of an Ω-circuit computes some Boolean function and can be considered as an output of the
circuit. The circuit complexity of a function f : Bn → Bm in the basis Ω is denoted by CΩ( f )
and is defined as the minimal size of an Ω-circuit that computes f (that has m gates which
compute the result of applying function f to input bits).

In order to get rid of unary gates, we will assume that a gate computes both its corresponding
function and its negation (the same applies to the inputs, too). Our model of computation
is given by Boolean circuits with arbitrary binary gates (this is known as general circuit
complexity); in other words, each gate of a circuit is labeled by one of 16 Boolean functions
from B2,1. Several simple examples of such circuits are shown on Fig. 1.

In what follows, we denote by C( f ) the circuit complexity of f in the B2,1 basis that consists of
all binary Boolean functions. We assume that each gate in this circuit depends of both inputs,
i.e., there are no gates marked by constants and unary functions Id and ¬. This can be done
without loss of generality because such gates are easy to exclude from a nontrivial circuit
without any increase in its size.

2.2 Feebly secure one-way functions

We want the size of circuits breaking our family of trapdoor functions to be larger than the
size of circuits that perform encoding. Following Hiltgen (1992; 1994; 1998), for every injective
function of n variables fn ∈ Bn,m we can define its measure of one-wayness as

MF( fn) =
C( f−1

n )

C( fn)
. (1)

The problem now becomes to find sequences of functions f = { fn}∞
n=1 with a large asymptotic

constant lim infn→∞ MF( fn), which Hiltgen calls f ’s order of one-wayness.

Hiltgen (1992; 1994; 1998) presented several constructions of feebly secure one-way functions.
To give a flavour of his results, we recall a sample one-way function. Consider a function
f : Bn → Bn given by the following matrix:

f (x1, . . . , xn) =

⎛
⎜⎝

1 1 0 ··· 0 ··· 0 0
0 1 1 ··· 0 ··· 0 0
...

...
...

...
...

...
1 0 0 ··· 0 ··· 1 1
1 0 0 ··· 1 ··· 0 1

⎞
⎟⎠

⎛
⎜⎝

x1
x2

...
xn−1
xn

⎞
⎟⎠ , (2)

6 Cryptography and Security in Computing Provably Secure Cryptographic Constructions 5

x1 x2 x3 . . . x n
2

. . . xn−2 xn−1 xn

⊕

y1

⊕

y2

⊕

y3

⊕

y n
2 −1

⊕

y n
2

⊕

yn−3

⊕

yn−2

⊕

yn−1

⊕ ⊕
yn. . . . . .

Fig. 2. Hiltgen’s feebly one-way function of order 3
2 : a circuit for f .

that is (we assume for simplicity that n is even),

f j(x1, . . . , xn) =

�
xj ⊕ xj+1, j = 1, . . . , n − 1,
x1 ⊕ x n

2
⊕ xn, j = n.

(3)

Straighforward computations show that f is invertible, and its inverse is given by

f−1(y1, . . . , yn) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 ... 0 1 1 ... 1 1
1 0 ... 0 1 1 ... 1 1
1 1 ... 0 1 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 0 1 1 ... 1 1
1 1 ... 1 1 1 ... 1 1
1 1 ... 1 0 1 ... 1 1
...

...
...

...
...

...
...

1 1 ... 1 0 0 ... 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
y2
y3

...
y� n

2 �
y n

2 +1
y n

2 +2

...
yn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

that is,

f −1
j (y1, . . . , yn) =

⎧⎨
⎩

�
y1 ⊕ . . . ⊕ yj−1

�
⊕

�
y n

2 +1 ⊕ . . . ⊕ yn

�
, j = 1, . . . , n

2 ,�
y1 ⊕ . . . ⊕ y n

2

�
⊕

�
yj−1 ⊕ . . . ⊕ yn

�
, j = n

2 + 1, . . . , n.
(5)

It remains to invoke Proposition 6 (see below) to show that f−1 requires at least � 3n
2 � − 1

gates to compute, while f can be obviously computed in n + 1 gates. Fig. 2 shows a circuit
that computes f in n + 1 gates; Fig. 3, one of the optimal circuits for f −1. Therefore, f is
a feebly one-way function with order of security 3

2 . For this particular function, inversion
becomes strictly harder than evaluation at n = 7 (eight gates to compute, nine to invert).

2.3 Feebly trapdoor candidates

In the context of feebly secure primitives, we have to give a more detailed definition of a
trapdoor function than the regular cryptographic definition (Goldreich, 2001): since we are
interested in constants here, we must pay attention to all the details. The following definition
does not say anything about the complexity and hardness of inversion, but merely sets up the
dimensions.

Definition 2. For given functions pi, ti, m, c : N → N, a feebly trapdoor candidate is a sequence
of triples of circuits

C = {(Seedn, Evaln, Invn)}∞
n=1 , where: (6)

7Provably Secure Cryptographic Constructions



6 Will-be-set-by-IN-TECH

y1 y2 y3 . . . y n
2 −1 y n

2
y n

2 +1 y n
2 +2 . . . yn−1 yn

⊕
⊕

⊕
. . .

⊕

⊕
⊕

⊕

⊕
. . .

⊕
⊕

⊕

⊕
. . .

x1x2 x3 x4 . . . x n
2

x n
2 +1 x n

2 +2 x n
2 +3 . . . xn

Fig. 3. Hiltgen’s feebly one-way function of order 3
2 : a circuit for f−1.

• {Seedn}∞
n=1 is a family of sampling circuits Seedn : Bn → Bpi(n) × Bti(n),

• {Evaln}∞
n=1 is a family of evaluation circuits Evaln : Bpi(n) × Bm(n) → Bc(n), and

• {Invn}∞
n=1 is a family of inversion circuits Invn : Bti(n) × Bc(n) → Bm(n)

such that for every security parameter n, every seed s ∈ Bn, and every input m ∈ Bm(n),

Invn(Seedn,2(s), Evaln(Seedn,1(s), m)) = m, (7)

where Seedn,1(s) and Seedn,2(s) are the first pi(n) bits (“public information”) and the last ti(n) bits
(“trapdoor information”) of Seedn(s), respectively.

Informally speaking, n is the security parameter (the length of the random seed), m(n) is
the length of the input to the function, c(n) is the length of the function’s output, and pi(n)
and ti(n) are lengths of the public and trapdoor information, respectively. We call these
functions “candidates” because Definition 2 does not imply any security, it merely sets up
the dimensions and provides correct inversion. In our constructions, m(n) = c(n) and
pi(n) = ti(n).

To find how secure a function is, one needs to know the size of the minimal circuit that could
invert the function without knowing the trapdoor information. In addition to the worst-case
complexity C( f ), we introduce a stronger notion that we will use in this case.

Definition 3. We denote by Cα( f ) the minimal size of a circuit that correctly computes a function
f ∈ Bn,m on more than α fraction of its inputs (of length n). Obviously, Cα( f ) ≤ C( f ) for all f and
0 ≤ α ≤ 1.

Definition 4. A circuit N breaks a feebly trapdoor candidate C = {Seedn, Evaln, Invn} on seed
length n with probability α if, for uniformly chosen seeds s ∈ Bn and inputs m ∈ Bm(n),

Pr
(s,m)∈U

[
N(Seedn,1(s), Evaln(Seedn,1(s), m)) = m

]
> α. (8)

8 Cryptography and Security in Computing Provably Secure Cryptographic Constructions 7

A size s circuit that breaks a feebly trapdoor candidate C = {Seedn, Evaln, Invn} on seed
length n in the sense of Definition 4 provides a counterexample for the statement Cα(Invn) >
s.

In fact, in what follows we prove a stronger result: we prove that no circuit (of a certain size)
can break our candidate for any random seed s, that is, for every seed s, every adversary fails.
For a trapdoor function to be secure, circuits that break the function should be larger than the
circuits computing it. In fact, in our results we can require that every such adversary fails with
probability at least 1

4 .

Definition 5. We say that a feebly trapdoor candidate C = {(Seedn, Evaln, Invn)}∞
n=1 has order of

security k with probability α if

lim inf
n→∞

min

{
Cα( fpi(n)+c(n))

C(Seedn)
,

Cα( fpi(n)+c(n))

C(Evaln)
,

Cα( fpi(n)+c(n))

C(Invn)

}
≥ k, (9)

where the function fpi(n)+c(n) ∈ Bpi(n)+c(n),m(n) maps

(Seedn,1(s), Evaln(Seedn,1(s), m)) �→ m. (10)

We say that a feebly trapdoor candidate has order of security k if it has order of security k with
probability α = 3

4 .

Let us first give a few simple examples. If there is no secret key at all, that is, pi(n) = 0, then
each feebly trapdoor candidate {(Seedn, Evaln, Invn)}∞

n=1 has order of security 1, since the
sequence of circuits {Invn}∞

n=1 successfully inverts it. If {(Seedn, Evaln, Invn)}∞
n=1 implement

a trapdoor function in the usual cryptographic sense then k = ∞. Moreover, k = ∞
even if the bounds on the size of adversary are merely superlinear, e.g., if every adversary
requires Ω(n log n) gates. Our definitions are not designed to distinguish between these
(very different) cases, because, unfortunately, any nonlinear lower bound on general circuit
complexity of a specific function appears very far away from the current state of knowledge.

One could also consider key generation as a separate process and omit its complexity from
the definition of the order of security. However, we prove our results for the definition stated
above as it makes them stronger.

In closing, let us note explicitly that we are talking about one-time security. An adversary
can amortize his circuit complexity on inverting a feebly trapdoor candidate for the second
time for the same seed, for example, by computing the trapdoor information and successfully
reusing it. Thus, in our setting one has to pick a new seed for every input.

3. Gate elimination techniques

3.1 Classical gate elimination

In this section, we first briefly cover classical gate elimination and then introduce a few new
ideas related to gate elimination that have recently been presented by Davydow & Nikolenko
(2011). Gate elimination is the primary (and, to be honest, virtually the only) technique we
have to prove lower bounds in general circuit complexity; so far, it has been used for every
single lower bound (Blum, 1984; Paul, 1977; Stockmeyer, 1977; Wegener, 1987). The basic idea
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• {Seedn}∞
n=1 is a family of sampling circuits Seedn : Bn → Bpi(n) × Bti(n),

• {Evaln}∞
n=1 is a family of evaluation circuits Evaln : Bpi(n) × Bm(n) → Bc(n), and
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Pr
(s,m)∈U

[
N(Seedn,1(s), Evaln(Seedn,1(s), m)) = m

]
> α. (8)
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A size s circuit that breaks a feebly trapdoor candidate C = {Seedn, Evaln, Invn} on seed
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s.
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For a trapdoor function to be secure, circuits that break the function should be larger than the
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4 .
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lim inf
n→∞

min

{
Cα( fpi(n)+c(n))

C(Seedn)
,

Cα( fpi(n)+c(n))

C(Evaln)
,

Cα( fpi(n)+c(n))

C(Invn)

}
≥ k, (9)

where the function fpi(n)+c(n) ∈ Bpi(n)+c(n),m(n) maps

(Seedn,1(s), Evaln(Seedn,1(s), m)) �→ m. (10)
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4 .

Let us first give a few simple examples. If there is no secret key at all, that is, pi(n) = 0, then
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n=1 has order of security 1, since the
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n=1 successfully inverts it. If {(Seedn, Evaln, Invn)}∞
n=1 implement

a trapdoor function in the usual cryptographic sense then k = ∞. Moreover, k = ∞
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One could also consider key generation as a separate process and omit its complexity from
the definition of the order of security. However, we prove our results for the definition stated
above as it makes them stronger.
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reusing it. Thus, in our setting one has to pick a new seed for every input.

3. Gate elimination techniques

3.1 Classical gate elimination

In this section, we first briefly cover classical gate elimination and then introduce a few new
ideas related to gate elimination that have recently been presented by Davydow & Nikolenko
(2011). Gate elimination is the primary (and, to be honest, virtually the only) technique we
have to prove lower bounds in general circuit complexity; so far, it has been used for every
single lower bound (Blum, 1984; Paul, 1977; Stockmeyer, 1977; Wegener, 1987). The basic idea
of this method lies in the following inductive argument. Consider a function f and a circuit
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of minimal size C that computes it. Now substitute some value c for some variable x thus
obtaining a circuit for the function f |x=c. The original circuit C can now be simplified, because
the gates that had this variable as inputs become either unary (recall that negation can be
embedded into subsequent gates) or constant (in this case we can even proceed to eliminating
subsequent gates). After figuring out how many gates one can eliminate on every step, one
proceeds by induction as long as it is possible to find a suitable variable that eliminates enough
gates. Evidently, the number of eliminated gates is a lower bound on the complexity of f .

Usually, the important case here is when a gate is nonlinear, such as an AND or an OR gate.
In that case, it is always possible to choose a value for an input of such a gate so that this
gate becomes a constant and, therefore, its immediate descendants can also be eliminated.
However, for linear functions this kind of reasoning also works, and in Section 3.3 we distill it
to two relatively simple ideas.

To give the reader a flavour of classical gate elimination, we briefly recall the proof of the

2n − 3 lower bound for the functions of the form f (n)
3,c : Bn → B defined by

f (n)
3,c (x1, . . . , xn) = ((x1 + . . . + xn + c) mod 3) mod 2) . (11)

This proof can be found in many sources, including (Wegener, 1987). Note that every function

f (n)
3,c has the following property: for every pair of variables xj and xk, f (n)

3,c has at least three
different restrictions out of four possible assignments of values to xj and xk; this is easy to
see since different assignments of xj and xk give three different values of xj + xk, resulting

in functions with three different constants: f (n−2)
3,0 , f (n−2)

3,1 , and f (n−2)
3,2 . Now consider the

topmost gate in some topological order on the optimal circuit computing f (n)
3,c . Since it is

topmost, there are two variables, say xj and xk, that come to this gate as inputs. At least one

of these variables enters at least one other gate because otherwise, f (n)
3,c would depend only on

xj ⊕ xk and not on xj and xk separately, giving rise to only two possible subfunctions among
four restrictions. Therefore, there exists a variable that enters at least two gates; therefore, by
setting this variable to a constant we eliminate at least two gates from the circuit. It remains

to note that setting a variable to a constant transforms f (n)
3,c into f (n−1)

3,c� , and we can invoke the
induction hypothesis.

3.2 Gate elimination for feebly secure one-way functions

The following very simple argument is due to Lamagna and Savage; this argument actually
suffices for all Hiltgen’s linear examples.

Proposition 6 ((Lamagna & Savage, 1973; Savage, 1976); (Hiltgen, 1992, Theorems 3 and 4)).

1. Suppose that f : Bn → B depends non-idly on each of its n variables, that is, for every i there exist
values a1, . . . , ai−1, ai+1, . . . , an ∈ B such that

f (a1, . . . , ai−1, 0, ai+1, . . . , an) �= f (a1, . . . , ai−1, 1, ai+1, . . . , an). (12)

Then C( f ) ≥ n − 1.

2. Let f = ( f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f . If the m component
functions f (i) are pairwise different and each of them satisfies C( f (i)) ≥ c ≥ 1 then C( f ) ≥
c + m − 1.
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Proof. 1. Consider the minimal circuit of size s computing f . Since f depends (here and in
what follows we say “depends” meaning “depends nontrivially”) on all n of its variables,
each input gate must have at least one outgoing edge. Since the circuit is minimal, each
of the other gates, except possibly the output, also must have at least one outgoing edge.
Therefore, the circuit has at least s + n − 1 edges. On the other hand, a circuit with s binary
gates cannot have more than 2s edges. Therefore, 2s ≥ s + n − 1.

2. Consider a circuit computing f . Note that it has at least c− 1 gates that do not compute any
function of circuit complexity c or more (they are the first c − 1 gates in some topological
order). However, to compute any component function f (i) we have to add at least one
more gate, and we have to add at least one gate for each component, since every new gate
adds only one new function. Thus, we get the necessary bound of c + m − 1 gates.

Hiltgen counted the minimal complexity of computing one bit of the input (e.g., since each
row of A−1 has at least n

2 nonzero entries, the minimal complexity of each component of
A−1�y is n

2 ) and thus produced lower bounds on the complexity of inverting the function (e.g.
the complexity of computing A−1�y is n

2 + n − 2 = 3n
2 − 2).

Besides, in cryptography it is generally desirable to prove not only worst-case bounds, but
also that an adversary is unable to invert the function on a substantial fraction of inputs.
In Hiltgen’s works, this fact followed from a very simple observation (which was not even
explicitly stated).

Lemma 7. Consider a function f =
⊕n

i=1 xi. For any g that depends on only m < n of these variables,

Prx1,...,xn

[
f (x1, . . . , xn) = g(xi1 , . . . , xim)

]
=

1
2

. (13)

Proof. Since m < n, there exists an index j ∈ 1..n such that g does not depend on xj. This
means that for every set of values of the other variables, whatever the value of g is, for one of
the values of xj f coincides with g, and on the other value f differs from g. This means that f
differs from g on precisely 1

2 of the inputs.

This argument suffices for Hiltgen’s feebly one-wayness result for the square matrix A−1: first
we apply the first part of Proposition 6 and see that every output has complexity at least n

2 − 1,
and then the second part of Proposition 6 yields the necessary bound of 3n

2 − 1. Moreover, if
a circuit has less than the necessary number of gates, one of its outputs inevitably depends on
less than the necessary number of input variables, which, by Lemma 7, gives the necessary 1

2
error rate.

3.3 Gate elimination for linear functions

In this section, we deal with gate elimination for linear functions. We do not know how to
prove that one cannot, in general, produce a smaller circuit for a linear function with nonlinear
gates, but it is evident that we cannot assume any gates to be nonlinear in this setting. Thus,
gate elimination distills to two very simple ideas. Idea 1 is trivial and has been noted many
times before, while Idea 2 will allow us to devise feebly secure constructions in Section 4.
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to note that setting a variable to a constant transforms f (n)
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3.2 Gate elimination for feebly secure one-way functions

The following very simple argument is due to Lamagna and Savage; this argument actually
suffices for all Hiltgen’s linear examples.
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Then C( f ) ≥ n − 1.

2. Let f = ( f (1), . . . , f (m)) : Bn → Bm, where f (k) is the kth component of f . If the m component
functions f (i) are pairwise different and each of them satisfies C( f (i)) ≥ c ≥ 1 then C( f ) ≥
c + m − 1.
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Proof. 1. Consider the minimal circuit of size s computing f . Since f depends (here and in
what follows we say “depends” meaning “depends nontrivially”) on all n of its variables,
each input gate must have at least one outgoing edge. Since the circuit is minimal, each
of the other gates, except possibly the output, also must have at least one outgoing edge.
Therefore, the circuit has at least s + n − 1 edges. On the other hand, a circuit with s binary
gates cannot have more than 2s edges. Therefore, 2s ≥ s + n − 1.

2. Consider a circuit computing f . Note that it has at least c− 1 gates that do not compute any
function of circuit complexity c or more (they are the first c − 1 gates in some topological
order). However, to compute any component function f (i) we have to add at least one
more gate, and we have to add at least one gate for each component, since every new gate
adds only one new function. Thus, we get the necessary bound of c + m − 1 gates.

Hiltgen counted the minimal complexity of computing one bit of the input (e.g., since each
row of A−1 has at least n
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A−1�y is n

2 ) and thus produced lower bounds on the complexity of inverting the function (e.g.
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2 − 2).

Besides, in cryptography it is generally desirable to prove not only worst-case bounds, but
also that an adversary is unable to invert the function on a substantial fraction of inputs.
In Hiltgen’s works, this fact followed from a very simple observation (which was not even
explicitly stated).
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i=1 xi. For any g that depends on only m < n of these variables,

Prx1,...,xn

[
f (x1, . . . , xn) = g(xi1 , . . . , xim)

]
=

1
2

. (13)

Proof. Since m < n, there exists an index j ∈ 1..n such that g does not depend on xj. This
means that for every set of values of the other variables, whatever the value of g is, for one of
the values of xj f coincides with g, and on the other value f differs from g. This means that f
differs from g on precisely 1

2 of the inputs.

This argument suffices for Hiltgen’s feebly one-wayness result for the square matrix A−1: first
we apply the first part of Proposition 6 and see that every output has complexity at least n

2 − 1,
and then the second part of Proposition 6 yields the necessary bound of 3n

2 − 1. Moreover, if
a circuit has less than the necessary number of gates, one of its outputs inevitably depends on
less than the necessary number of input variables, which, by Lemma 7, gives the necessary 1

2
error rate.

3.3 Gate elimination for linear functions

In this section, we deal with gate elimination for linear functions. We do not know how to
prove that one cannot, in general, produce a smaller circuit for a linear function with nonlinear
gates, but it is evident that we cannot assume any gates to be nonlinear in this setting. Thus,
gate elimination distills to two very simple ideas. Idea 1 is trivial and has been noted many
times before, while Idea 2 will allow us to devise feebly secure constructions in Section 4.
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Since we are dealing with linear functions, we will, for convenience, state our results in terms
of matrices over F2; the circuit complexity of a matrix Cα(A) is the circuit complexity of the
corresponding linear function. By A−i we denote the matrix A without its ith column; note
that if A corresponds to f then A−i corresponds to f |xi=0. If a matrix A has a zero column Ai,
it means that the corresponding function does not depend on the input xi; in what follows, we
will always assume that functions depend nontrivially on all their inputs and thus the matrices
do not have zero columns; we call such matrices nontrivial. Note that if A is a submatrix of B
then Cα(A) ≤ Cα(B) for all α ∈ [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then C( f ) ≥ n.

Theorem 8. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞
n=1 is a series of predicates defined

on matrices over F2 with the following properties:

• if P1(A) holds then Cα(A) ≥ 1;

• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;

• if Pn(A) holds then, for every index i, Pn−1(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns, if Pn(A) holds then Cα(A) ≥ n.

Proof. The proof goes by straightforward induction on the index of Pi; the first property of
P provides the base, and other properties takes care of the induction step. For the induction
step, consider the first gate of an optimal circuit C implementing A. By the monotonicity
property of P and the induction base, the circuit is nontrivial, so there is a first gate. Consider
a variable xi entering that gate. Note that if C computes f on fraction α of its inputs then for
some c, C |xi=c computes f |xi=c on fraction α of its inputs. If we substitute this value into this
variable, we get a circuit C |xi=c that has at most (size(C)− 1) gates and implements A−i on
at least α fraction of inputs.

Note that the first statement of Proposition 6 is a special case of Theorem 8 for Pn(A) =
“A has a row with n + 1 ones”. We also derive another corollary.

Corollary 9. If A is a matrix of rank n, and each column of A has at least two ones, then C(A) ≥
n − 2.

Proof. Take Pn(A) =“rank(A) ≥ n + 2 and each column of A has at least 2 ones”.

Idea 2. Suppose that for n steps, there exists an input in the circuit with two outgoing edges, and,
moreover, in m of these cases both of these edges go to a gate (rather than a gate and an output). Then
C( f ) ≥ n + m.

Theorem 10. We call a nonzero entry unique if it is the only nonzero entry in its row. Fix a real
number α ∈ [0, 1]. Suppose that P = {Pn}∞

n=1 is a series of predicates defined on matrices over F2
with the following properties:

• if P1(A) holds then C(A) ≥ 1;

• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;

• if Pn(A) holds then, for every index i, if the ith column has no unique entries then Pn−2(A−i)
holds, otherwise Pn−1(A−i) holds.
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Then, for every matrix A with ≥ n + 1 different columns, if Pn(A) holds for some n then C(A) ≥ n
and, moreover, C 3

4
(A) ≥ n.

Proof. We argue by induction on n; for n = 1 the statement is obvious.

Consider the first gate g in the optimal circuit implementing A. Since g is first, its incoming
edges come from the inputs of the circuit; we denote them by xi and xj. There are three
possible cases.

1. One of the input variables of g, say xi, goes directly to an output yk. Then by setting xi to
a constant we can eliminate one gate. however, in this case yk corresponds to a row with only
one nonzero element, so ith colum has a unique element, so Pn−1(A−i) hold. Therefore, we
invoke the induction hypothesis as C(A−i) ≥ n − 1 and get the necessary bound.

2. One of the input variables of g, say xi , goes to another gate. Then by setting xi to a
constant we can eliminate two gates, and by properties of Pn Pn−2(A−i) holds, so we invoke
the induction hypothesis as C(A−i) ≥ n − 2.

3. Neither xi nor xj enters any other gate or output. In this case, A is a function of neither
xi nor xj but only g(xi, xj); we show that this cannot be the case for a function computing
A on more than 3

4 of the inputs. A itself depends on xi and xj separately because all of its
columns are different; in particular, for one of these variables, say xi, there exists an output yk
that depends only on xi: yk = xi ⊕

⊕
x∈X x, where xj /∈ X. On the other hand, since every

gate in an optimal circuit nontrivially depends on both inputs, there exist values a and b such
that g(0, a) = g(1, b). Thus, for every assignment of the remaining variables, either on input
strings with (xi = 0, xj = a) or on input strings with (xi = 1, xj = b) the circuit makes a
mistake, which makes it wrong on at least 1

4 of all inputs.

Note that Theorem 10 directly generalizes and strengthens Theorem 8.

Corollary 11. Fix a real number α ∈ [0, 1]. Suppose that R = {Rn}∞
n=1 and Q = {Qm}∞

m=1 are
two series of predicates defined on matrices over F2 with the following properties:

• if R1(A) holds then C(A) ≥ 1;

• if Rn(A) holds then Rk(A) holds for every 1 ≤ k ≤ n;

• if Rn(A) holds then, for every i, Rn−1(A−i) holds;

• if Q1(A) holds then C(A) ≥ 1;

• if Qm(A) holds then Qk(A) holds for every 1 ≤ k ≤ n;

• if Qm(A) holds then, for every i, Qm−1(A−i) holds;

• if Qm(A) holds and A−i has more zero rows than A (i.e., removing the ith column has removed the
last nonzero element from at least one row) then Qm(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns all of which are different, if Rn(A) and Qm(A) hold
for some n ≥ m then C(A) ≥ n + m and, moreover, C 3

4
(A) ≥ n + m.

Proof. Immediately follows from Theorem 10 for Pn(A) = ∃kRk(A) ∧ Qn−k(A).
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Since we are dealing with linear functions, we will, for convenience, state our results in terms
of matrices over F2; the circuit complexity of a matrix Cα(A) is the circuit complexity of the
corresponding linear function. By A−i we denote the matrix A without its ith column; note
that if A corresponds to f then A−i corresponds to f |xi=0. If a matrix A has a zero column Ai,
it means that the corresponding function does not depend on the input xi; in what follows, we
will always assume that functions depend nontrivially on all their inputs and thus the matrices
do not have zero columns; we call such matrices nontrivial. Note that if A is a submatrix of B
then Cα(A) ≤ Cα(B) for all α ∈ [0, 1].

Idea 1. Suppose that for n steps, there is at least one gate to eliminate. Then C( f ) ≥ n.

Theorem 8. Fix a real number α ∈ [0, 1]. Suppose that P = {Pn}∞
n=1 is a series of predicates defined

on matrices over F2 with the following properties:

• if P1(A) holds then Cα(A) ≥ 1;

• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;

• if Pn(A) holds then, for every index i, Pn−1(A−i) holds.

Then, for every matrix A with ≥ n + 1 columns, if Pn(A) holds then Cα(A) ≥ n.

Proof. The proof goes by straightforward induction on the index of Pi; the first property of
P provides the base, and other properties takes care of the induction step. For the induction
step, consider the first gate of an optimal circuit C implementing A. By the monotonicity
property of P and the induction base, the circuit is nontrivial, so there is a first gate. Consider
a variable xi entering that gate. Note that if C computes f on fraction α of its inputs then for
some c, C |xi=c computes f |xi=c on fraction α of its inputs. If we substitute this value into this
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“A has a row with n + 1 ones”. We also derive another corollary.
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Proof. Take Pn(A) =“rank(A) ≥ n + 2 and each column of A has at least 2 ones”.
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moreover, in m of these cases both of these edges go to a gate (rather than a gate and an output). Then
C( f ) ≥ n + m.
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• if Pn(A) holds then Pm(A) holds for every 1 ≤ m ≤ n;
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4
(A) ≥ n.
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4
(A) ≥ n + m.
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Theorem 10 and Corollary 11 generalize several results that have been proven independently.
For example, here is the “master lemma” of the original paper on feebly trapdoor functions.

Corollary 12 ( (Hirsch & Nikolenko, 2009, Lemma 5) ). Let t, u ≥ 1. Assume that χ is a linear
function with matrix A over F2. Assume also that all columns of A are different, every row of A has
at least u nonzero entries, and after removing any t columns of A, the matrix still has at least one row
containing at least two nonzero entries. Then C(χ) ≥ u + t and, moreover, C3/4(χ) ≥ u + t.

Proof. Take Pn(A) =“After removing any n columns of A, it still has at least one nonzero
row”, Q0(A) =“true”, and Qm(A) =“Every row of A has at least m + 1 ones” for m > 0. Then
Pt+1(A) and Qu−1(A) hold, and P and Q satisfy the conditions of Corollary 11, which gives
the desired bound. Note that in this case, Qm for m > 0 cannot hold for a matrix where a row
has only a single one, so in the gate elimination proof, for the first u − 1 steps two gates will
be eliminated, and then for t − u + 2 steps, one gate will be eliminated.

We also derive another, even stronger corollary that will be important for new feebly secure
constructions.

Corollary 13. Let t ≥ u ≥ 2. Assume that A is a u × t matrix with different columns, and each
column of A has at least two nonzero elements (ones). Then C(A) ≥ 2t − u and, moreover, C 3

4
(A) ≥

2t − u.

Proof. Take Pn(A) =“twice the number of nonzero columns in A less the number of nonzero
rows in A is at least n”. Then P2t−u(A) holds, and Pn satisfy the conditions of Theorem 10.

Naturally, we could prove Corollaries 9 and 13 directly. We have chosen the path of
generalization for two reasons: one, to make Theorem 14 more precise and more general,
and two, to show the limits of gate elimination for linear functions. As we have already
mentioned, for linear functions we cannot count on nonlinear gates that could eliminate their
descendants. In Theorems 8 and 10, we have considered two basic cases: when there is only
one edge outgoing from a variable and when there are two edges (going either to two gates
or to a gate and an output). It appears that we can hardly expect anything more from classical
gate elimination in the linear case.

3.4 Extension to block diagonal matrices

We finish this section with an extension of these results to block diagonal matrices. In general,
we cannot prove that the direct sum of several functions has circuit complexity equal to the
sum of the circuit complexities of these functions; counterexamples are known as “mass
production” (Wegener, 1987). However, for linear functions and gate elimination in the
flavours of Theorems 8 and 10, we can. The following theorem generalizes Lemma 6 of (Hirsch
& Nikolenko, 2009).

Theorem 14. Suppose that a linear function χ is given by a block diagonal matrix
⎛
⎜⎝

A1 0 ··· 0
0 A2 ··· 0
...

...
...

0 0 ··· Ak

⎞
⎟⎠ , (14)
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every Aj satisfies the conditions of Theorem 10 with predicates P j = {Pj
n}∞

n=1, and Pj
nj (Aj) hold for

every j. Then C(χ) ≥ k
∑

j=1
nj.

Proof. We invoke Theorem 10 with the predicate composed of original predicates:

Pn =
�

i1+...+ik=n

P1
i1
∧ P2

i2
∧ . . . ∧ Pk

ik
. (15)

It is now straightforward to check that P = {Pn}∞
n=1 satisfies the conditions of Theorem 10

(since every deleted column affects only one block), and the block diagonal matrix satisfies
Pn1+...+nk .

4. Feebly secure trapdoor functions

4.1 Idea of the construction

Over this section, we will present two constructions of feebly secure trapdoor functions, a
linear construction and a nonlinear one. Both of them have the same rather peculiar structure.
It turns out that when we directly construct a feebly secure candidate trapdoor function such
that an adversary has to spend more time inverting it than honest participants, we will not be
able to make encoding (i.e., function evaluation) faster than inversion. In fact, evaluation will
take more time than even an adversary requires to invert our candidates.

To achieve a feebly secure trapdoor function, we will add another block as a direct sum to that
candidate. This block will represent a feebly secure one-way function, one of the constructions
presented by Hiltgen (1992; 1994; 1998). In this construction, honest inversion and break are
exactly the same since there is no secret key at all; nevertheless, both of them are harder than
evaluating the function. Thus, in the resulting block diagonal construction break remains
harder than honest inversion but they both gain in complexity over function evaluation. This
idea was first presented by Hirsch & Nikolenko (2009) and has been used since in every feebly
secure trapdoor function.

4.2 Linear feebly secure trapdoor functions

This section is based on (Davydow & Nikolenko, 2011). Let us first introduce some notation.
By Un we denote an upper triangular matrix of size n × n which is inverse to a bidiagonal
matrix:

Un =

⎛
⎝

1 1 ··· 1
0 1 ··· 1
...

...
...

0 0 ··· 1

⎞
⎠ , U−1

n =

⎛
⎝

1 1 0 ··· 0
0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

⎞
⎠ ;

note that U2
n is an upper triangular matrix with zeros and ones chequered above the main

diagonal. We will often use matrices composed of smaller matrices as blocks; for instance,
( Un Un ) is a matrix of size n × 2n composed of two upper triangular blocks.

Lemma 15. 1. C 3
4
(Un) = n − 1.

2. C 3
4
(U2

n) = n − 2.

3. C 3
4
(U−1

n ) = n − 1.
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4. C 3
4
((Un Un )) = 2n − 1.

5. 3n − 6 ≤ C 3
4
(( U2

n Un )) ≤ C((U2
n Un )) ≤ 3n − 3.

6. 3n − 4 ≤ C 3
4
(( Un U−1

n )) ≤ C((Un U−1
n )) ≤ 3n − 2.

Proof. Lower bounds in items 1–3 are obvious: the matrices have no identical rows, and
not a single input except one (two for item 2) is linked directly to an output. The lower
bound in item 4 follows by simple counting: the first row of the matrix contains 2n nonzero
elements, so at least 2n − 1 gates are needed to compute it. The lower bound from item 5
(respectively, 6) follows from Corollary 13: the matrix ( U2

n Un ) (respectively, (Un U−1
n )) satisfies

the assumptions of Corollary 13 for all except three (respectively, two) columns, and we can
use Corollary 13 for t = 2n − 3 (respectively, t = 2n − 2) and u = n.

To prove upper bounds, we give direct constructions. To compute the matrix from item 1,
note that each row differs from the previous one in only one position, so we can compute
the outputs as outi = outi+1 ⊕ ini. Moreover, outn = inn, so we do not need more gates to
compute it. The same idea works for item 2, but in this case, outn and outn−1 are computed
immediately, and outi = outi−2 ⊕ ini. To compute the matrix from item 3, we compute each
row directly. To compute item 4, we note that ( Un Un ) · ( a

b ) = Un · a ⊕ Un · b = Un · (a ⊕ b).
Thus, we can use n gates to compute a ⊕ b and then get the result with n − 1 more gates. To
compute 5 and 6 note that ( A B ) · ( a

b ) = A · a ⊕ B · b. Thus, we have divided the computation
in two parts that can be done independently with previously shown circuits, and then we can
use n gates to XOR the results of these subcircuits.

We use the general idea outlined in Section 4.1. In the first construction, we assume that the
lengths of the public key pi, secret key ti, message m, and ciphertext c are the same and equal
n. Let ti = Un · pi, c = (U−1

n Un ) ·
( m

pi
)
. In this case, an adversary will have to compute the

matrix ( Un Un ) · ( c
ti ) = ( Un U2

n ) ·
( c

pi
)
. Thus, breaking this trapdoor function is harder than

honest inversion, but the evaluation complexity is approximately equal to the complexity of
the break, so we cannot yet call this function a feebly secure trapdoor function.

To augment this construction, consider a weakly one-way linear function A and use it in the
following protocol (by In we denote the unit matrix of size n):

Seedn =
(

Un 0
0 In

)
· ( s s ) =

(
ti
pi

)
,

Evaln =
(

U−1
n Un 0
0 0 A

)
·
(

m1
pi
m2

)
= ( c1

c2 ) ,

Invn =
(

Un Un 0
0 0 A−1

)
·
( c1

ti
c2

)
= ( m1

m2 ) .

An adversary is now supposed to compute

Advn =
(

Un U2
n 0

0 0 A−1

)
·
(

c1
pi
c2

)
= ( m1

m2 ) .

As a feebly one-way function A we take one of Hiltgen’s functions with order of security 2− �
that have been constructed for every � > 0 Hiltgen (1992); we take the matrix of this function
to have order λn, where λ will be chosen below. For such a matrix, C 3

4
(A) = λn + o(n), and
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C 3
4
(A−1) = (2− �)λn+ o(n). Now Lemma 15 and Theorem 14 yield the following complexity

bounds:

C 3
4
(Seedn) = n − 1,

C 3
4
(Evaln) = 3n + λn + o(n) = (3 + λ)n + o(n),

C 3
4
(Invn) = 2n + (2 − �)λn + o(n) = (2 + (2 − �)λ)n + o(n),

C 3
4
(Advn) = 3n + (2 − �)λn + o(n) = (3 + (2 − �)λ)n + o(n).

The order of security for this protocol is

lim
n→∞

(
min

(
C3/4(Advn)

C(Evaln)
,

C3/4(Advn)

C(Invn)
,

C3/4(Advn)

C(Seedn)

))
=

= min
(

3 + (2 − �)λ

3 + λ
,

3 + (2 − �)λ

2 + (2 − �)λ

)
.

This expression reaches maximum for λ = 1
1−� , and this maximum equals 5−4�

4−� , which tends
to 5

4 as � → 0. Thus, we have proven the following theorem.

Theorem 16. For every � > 0, there exists a linear feebly secure trapdoor function with seed length
pi(n) = ti(n) = n, input and output length c(n) = m(n) = 2n, and order of security 5

4 − �.

4.3 Nonlinear feebly secure trapdoor functions

Over the previous two sections, we have discussed linear feebly secure one-way functions.
However, a nonlinear approach can yield better constants. This section is based on (Hirsch
et al., 2011; Melanich, 2009).

Our nonlinear feebly trapdoor constructions are based on a feebly one-way function
resulting from uniting Hiltgen’s linear feebly one-way function with the first computationally
asymmetric function of four variables (Massey, 1996). Consider a sequence of functions
{ fn}∞

n=1 given by the following relations (we denote yj = f j(x1, . . . , xn)):

y1 = (x1 ⊕ x2)xn ⊕ xn−1,

y2 = (x1 ⊕ x2)xn ⊕ x2,

y3 = x1 ⊕ x3,

y4 = x3 ⊕ x4,

· · ·
yn−1 = xn−2 ⊕ xn−1,

yn = xn.

(16)

In order to get f −1
n , we sum up all rows except the last one:

y1 ⊕ . . . ⊕ yn−1 = x1 ⊕ x2. (17)
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Further, substituting yn instead of xn , we find x2 and xn−1. The other xk can be expressed via
xn−1 in turn, so the inverse function is given by

xn = yn,
x2 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y2,

xn−1 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y1,

xn−2 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y1 ⊕ yn−1,
xn−3 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ yn−2,

· · ·
x3 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ . . . ⊕ y4,

x1 = (y1 ⊕ . . . ⊕ yn−1)yn ⊕ y1 ⊕ yn−1 ⊕ . . . ⊕ y3.

(18)

Lemma 17. The family of functions { fn}∞
n=1 is feebly one-way of order 2.

Proof. It is easy to see that fn can be computed in n+ 1 gates. Each component function of f−1
n ,

except for the last one, depends non-trivially of all n variables, and all component functions
are different. Therefore, to compute f −1

n we need at least (n − 1) + (n − 2) = 2n − 3 gates
(since fn is invertible, Proposition 6 is applicable to fn and f−1

n ). Therefore,

MF( fn) ≥ 2n − 3
n + 1

. (19)

On the other hand, fn cannot be computed faster than in n − 1 gates because all component
functions fn are different, and only one of them is trivial (depends on only one variable). At
the same time, f−1

n can be computed in 2n − 2 gates: one computes (y1 ⊕ . . . ⊕ yn−1)yn in
n − 1 gates and spends one gate to compute each component function except the last one. We
get

2n − 3
n + 1

≤ MF( fn) ≤ 2n − 2
n − 1

, (20)

which is exactly what we need.

For the proof of the following theorem, we refer to (Hirsch et al., 2011; Melanich, 2009).

Theorem 18. C3/4( f−1
n ) ≥ 2n − 4.

We can now apply the same direct sum idea to this nonlinear feebly one-way function. The
direct sum consists of two blocks. First, for f as above, we have:

Keyn(s) = ( fn(s), s),
Evaln(pi, m) = f−1

n (pi)⊕ m,
Invn(ti, c) = f−1

n (pi)⊕ c = ti ⊕ c,
Advn(pi, c) = f−1

n (pi)⊕ c.

(21)

In this construction, evaluation is no easier than inversion without trapdoor.

For the second block we have
Evaln(m) = f (m),

Invn(c) = f−1(c),
Advn(c) = f−1(c).

(22)

18 Cryptography and Security in Computing Provably Secure Cryptographic Constructions 17

Again, as above, it is not a trapdoor function at all because inversion is implemented with no
regard for the trapdoor. For a message m of length |m| = n the evaluation circuit has n + 1
gates, while inversion, by Theorem 18, can be performed only by circuits with at least 2n − 4
gates. Thus, in this construction evaluation is easy and inversion is hard, both for an honest
participant of the protocol and for an adversary.

We can now unite these two trapdoor candidates and get the following construction:

Keyn(s) = ( fn(s), s),
Evaln(pi, m1, m2) = ( f−1

n (pi)⊕ m1, fαn(m2)),
Invn(ti, c1, c2) = ( f−1

n (pi)⊕ c1, f−1
αn (c2)) = (ti ⊕ c1, f−1

αn (c2)),
Advn(pi, c1, c2) = ( f−1

n (pi)⊕ c1, f−1
αn (c2)),

(23)

The proofs of lower bounds on these constructions are rather involved; we refer to (Hirsch
et al., 2011; Melanich, 2009) for detailed proofs and simply give the results here.

Lemma 19. The following upper and lower bounds hold for the components of our nonlinear trapdoor
construction:

C(Keyn) ≤ n + 1,
C(Evaln) ≤ 2n − 2 + n + αn + 1 = 3n + αn − 1,
C(Invn) ≤ n + 2αn − 2,

C3/4(Advn) ≥ 3n + 2αn − 8.

(24)

To maximize the order of security of this trapdoor function (Definition 5), we have to find α
that maximizes

lim inf
i→∞

min
{

C3/4(Advn)

C(Keyn)
,

C3/4(Advn)

C(Evaln)
,

C3/4(Advn)

C(Invn)

}
=

= min
{

3 + 2α

1
,

3 + 2α

3 + α
,

3 + 2α

1 + 2α

}
= min

{
3 + 2α

3 + α
,

3 + 2α

1 + 2α

}
. (25)

It is easy to see that this expression is maximized for α = 2, and the optimal value of the order
of security is 7

5 . We summarize this in the following theorem.

Theorem 20. There exists a nonlinear feebly trapdoor function with seed length pi(n) = ti(n) = n,
input and output length c(n) = m(n) = 3n, and order of security 7

5 .

5. Conclusion

In this chapter, we have discussed recent developments in the field of feebly secure
cryptographic primitives. While these primitives can hardly be put to any practical use at
present, they are still important from the theoretical point of view. As sad as it sounds, this is
actually the frontier of provable, mathematically sound results on security; we do not know
how to prove anything stronger.

Further work in this direction is twofold. One can further develop the notions of feebly
secure primitives. Constants in the orders of security can probably be improved; perhaps,
other primitives (key agreement protocols, zero knowledge proofs etc.) can find their feebly
secure counterparts. This work can widen the scope of feebly secure methods, but the real
breakthrough can only come from one place.
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It becomes clear that cryptographic needs call for further advances in general circuit
complexity. General circuit complexity has not had a breakthrough since the 1980s;
nonconstructive lower bounds are easy to prove by counting, but constructive lower bounds
remain elusive. The best bound we know is Blum’s lower bound of 3n − o(n) proven in 1984.
At present, we do not know how to rise to this challenge; none of the known methods seem to
work, so a general breakthrough is required for nonlinear lower bounds on circuit complexity.
The importance of such a breakthrough can hardly be overstated; in this chapter, we have seen
only one possible use of circuit lower bounds.
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1. Introduction

Malicious cryptology and malicious mathematics is an emerging domain initiated in Filiol &
Josse (2007); Filiol & Raynal (2008;b). It draws its inspiration from crypto virology Young &
Yung (2004). However this latter domain has a very limited approach of how cryptography
can be perverted by malware. Indeed, their authors consider the case of extortion malware
in which asymmetric cryptography is only used inside a malware payload to extort money
in exchange of the secret key necessary to recover the file encrypted by the malware (e.g. a
computer virus).

Malicious cryptology and malicious mathematics make in fact explode Young and Yung’s
narrow vision. This results in an unlimited, fascinating yet disturbing field of research and
experimentation. This new domain covers several fields and topics (non-exhaustive list):

• Use of cryptography and mathematics to develop “super malware” (über-malware) which
evade any kind of detection by implementing:
– Optimized propagation and attack techniques (e.g. by using biased or specific random

number generator) Filiol et al. (2007).
– Sophisticated self-protection techniques. The malware code protects itself and its own

functional activity by using strong cryptography-based tools Filiol (2005b).
– Sophisticated auto-protection and code armouring techniques. Malware protect their

own code and activity by using strong cryptography.
– Partial or total invisibility features. The programmer intends to make his code to

become invisible by using statistical simulability Filiol & Josse (2007).

• Use of complexity theory or computability theory to design undetectable malware.

• Use of malware to perform cryptanalysis operations (steal secret keys or passwords),
manipulate encryption algorithms to weaken them on the fly in the target computer
memory. The resulting encryption process will be easier to be broken Filiol (2011).

• Design and implementation of encryption systems with hidden mathematical trapdoors.
The knowledge of the trap (by the system designer only) enables to break the system
very efficiently. Despite the fact that the system is open and public, the trapdoor must
remain undetectable. This can also apply to the keys themselves in the case of asymmetric
cryptography Erra & Grenier (2009).
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2 Will-be-set-by-IN-TECH

One could define malicious cryptology/mathematics as the interconnection of computer
virology with cryptology and mathematics for their mutual benefit. The number of potential
applications is almost infinite. In the context of this chapter, we could also define it – or a part
of it – as the different mathematical techniques enabling to modify or manipulate reality and
to reflect a suitable but false image of reality to the observer (may it be a human being or an
automated system).

In this chapter we intend to present in more details a few of these techniques that are very
illustrative of what malicious cryptography and malicious mathematics are. Section 2 first
recalls a few definition and basic concepts in computer virology and in cryptology to make
this chaper self-contained. In Section 3, we expose a detailed state-of-the-art of malicious
cryptology and malicious mathematics. We then detail two of the most illustrative techniques
in the two next sections. Section 4 addresses how mathematical reality can be perverted to
design processor-dependent malware. Section 5 then exposes how malicious cryptosystems
can be used to protect malware code against detection and analysis.

2. Basic definitions and concepts

2.1 Computer virology

A rather large definition of what malware (shortened for of Malicious Software) are, here
follows.

Definition 1. A malware is a malicious code or unwated piece of software like a virus, a worm, a
spyware, a Trojan horse... whose aim is to undermine systems’ confidentiality, integrity or availability.

In a more formal approach, malware are programs that take data from the environment
(computer, system, users..) as input argument and output one or more malicious actions:
file erasing, data eavesdropping, denial of services... A detailed and technical presentation of
what malware are, is availble in Filiol (2005).

We will address the problematic of anti-antiviral techniques that are used by malware. Indeed,
most of the malicious cryptology and malicious mathematics techniques aims at providing
such capabilities to malware. It is logical that the latter enforce techniques to prevent or disable
functionalities installed by antiviral software or firewalls. Two main techniques can be put
forward:

• Stealth techniques.- a set of techniques aiming at convincing the user, the operating system
and security programs that there is no malicious code. Malware then aim to escape
monitoring and detection

• Polymorphism/metamorphism.- As antiviral programs are mainly based on the search for
viral signatures (scanning techniques), polymorphic techniques aim at making the analysis
of files – only by their appearance as sequence of bytes – far more difficult. The basic
principle is to keep the code vary constantly from viral copy to viral copy in order to avoid
any fixed components that could be exploited by antiviral programs to identify the virus
(a set of instructions, specific character strings).
Polymorphic techniques are rather difficult to implement and manage and this is precisely
where lies the critical aspect of designing powerful malicious techniques drawn from
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both mathematics and cryptology. Two following main techniques (a number of complex
variants exist however) are to be considered:
– Code rewriting into an equivalent code. From a formal point of view any rewriting

technique lies on one or more formal grammar. According to the class of the grammar
considered, then the malware protection is more or less stronger.

– Applying encryption techniques to all or part of malware code. Generally, those
encryption techniques consist in masking every code byte with a constant byte value
(by means of XOR). Any valid encryption technique implies the use of a static key
that eventually constitutes a true signature (or infection marker) when ill-implemented.
Moreover any skilled reverse-engineer will always succeed in extracting this static key
and hence will easily unprotect the malware source code.

• Code armouring Filiol (2005b) consists in writing a code so as to delay, complicate or even
prevent its analysis. While polymorphism/metamorphism aims at limited/preventing
automated (e.g. by an antivirus software) analysis, code armouring techniques’s purposes
is to limit or bar the reverse engineer (a human being) analysis.

2.2 Cryptology

2.2.1 Cryptosystems

Fig. 1. General structure of a cryptosystem

A cryptosystem S (symmetric case) is defined as the set of an encryption/decryption
algorithm E, a secret K, a plaintext message P and a ciphertext C. Let us recall that in the case
of asymmetric cryptography (also well-known as public-key cryptography), the decryption
and encryption algorithms are different, as well as the encryption and decryption keys.
Asymmetric cryptography is mainly used for authentication and digital signature purposes
but it can also be used to encrypt small quantities of information (a few dozen bytes). On
the contrary, in the symmetric case, the key K and the algorithm E are the same. Symmetric
cryptography is considered for encryption purposes. The plaintext is supposed to be secret
while the cipher text is supposed to be accessed by any one. So with those notations, we have

C = E(K, P) and P = E(K, C)

From a technical point of view, the internal operations (especially with respect to the key)
may slightly differ according to the different classes of cryptosystems. But to summarize, any
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cryptosystem can be defined as a complex combination of substitutions and transpositions of
bytes or string of bytes.

Cryptanalysis is the art of breaking cryptosystems; in other words, the attacker wants to access
the plaintext P without the a priori knowledge of the key. This access can be performed directly
through plaintext recovery or indirectly through key recovery which then enables the attacker
to decipher the cipher text.

2.2.2 Entropy profile

Most of the problem regarding the use of cryptography for malicious purposes lies in the
fact that code armouring and code mutation involve random data. These must be generated
on-the-fly. In the context of metamorphism, the generator itself must be random too. For sake
of simplicity, we shall speak of Pseudo-Random Number Generator (PRNG) to describe both a
random number generator and an encryption system. The difference lies in the fact that in
the latter case either random data produced from the expansion of the key are combined with
the plaintext (stream ciphers) or they are the result of the combination of the key with the
plaintext (block ciphers).

The whole issue lies in the generation of a so-called “good” randomness. Except that in
the context of malicious cryptography Filiol (2007), the term “good” does not necessarily
correspond to what cryptographers usually mean. In fact, it is better – yet a simplified but
sufficient reduction as a first approximation – to use the concept of entropy Filiol & Raynal
(2008). In the same way, the term of random data will indifferently describe the random data
themselves or the result of encryption.

Consider a (malicious) code as an information source X. When parsed, the source outputs
characters taking the possible values xi (i = 0, . . . , 255), each with a probability pi = P[X =
xi]. Then the entropy H(X) of the source is the following sum1:

H(X) =
255

∑
i=0

−pi log2(pi)

Random data, by nature will exhibit a high entropy value thus meaning that the uncertainty
is maximal whenever trying to predict the next value output by the source X. On the contrary,
non random data exhibit a low entropy profile (they are easier or less difficult to predict).

From the attacker’s point of view the presence of random data means that something is hidden
but he has to make the difference between legitimate data (e.g. use of packers to protect code
against piracy) and illegitimate data (e.g. malware code). In the NATO terminology – at the
present time it is the most precise and accurate one as far as InfoSec is concerned– random
data relate to a COMSEC (COMmunication SECurity) aspect only.

For the attacker (automated software or human expert), the problem is twofold: first detect
random data parts inside a code and then decrypt them. In this respect, any code area
exhibiting a high entropy profile must be considered as suspicious. To prevent attention to be

1 Let us note that here the entropy considers single characters or 1-grams only. A more accurate value
would consider all the possible n-grams and would compute entropy when n → ∞.
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focused on those random parts, is it possible to add some TRANSEC (TRANSmission SECurity)
aspect. The most famous one is steganography but for malware or program protection
purposes it is not directly usable (data cannot be directly executed) and we have to find
different ways. The other solution is to use malicious statistics as defined and exposed in Filiol
& Raynal (2008). It is also possible to break randomness by using noisy encoding techniques
like in Perseus technology.

Breaking randomness applies well on any data used for code mutation (e.g. junk code
insertion), including specific subsets of code as CFGs (Comtrol Flow Graphs): randomly
mutated CFG must exhibit the same profile as any normal CFG would. Otherwise,
considering the COMSEC aspect only is bound to make the code detection very easy.

2.2.3 Key management

Encrypting a code or a piece of code implies its preliminary deciphering whenever it is
executed. But in all of the cases – except those involving money extortion introduced Young
and Yung Young & Yung (2004) – the key must be accessible to the code itself to decipher.
Consequently in a way or another it is contained in a more or less obfuscated form inside the
code. Therefore is it accessible to the analyst who will always succeed in finding and accessing
it. Instead of performing cryptanalysis, a simple decoding/deciphering operation is sufficient.

It is therefore necessary to consider keys that are external to the encrypted code. Two cases
are possible Filiol (2007):

• Environmental key management. The code gathers information in its execution
environment and calculates the key repeatedly. The correct key will be computed when
and only when the suitable conditions will be realized in the code environment – which
is usually under the control of the code designer. The security model should prohibit
dictionary attacks or environment reduction attacks (enabling reduced exhaustive search)
by the code analyst. Consequently the analyst must examine the code in an controlled
dynamic area (sandbox or virtual machine) and wait until suitable conditions are met
without knowing when they will be. However it is possible to build more operational
scenarii for this case and to detect that the code is being analyzed and controlled.

• Use of k-ary codes (Filiol (2007c)) in which a program is no longer a single monolithic
binary entity but a set of binaries and non executable files (working in a serial mode or in a
parallel mode) to produce a desired final (malicious or not) action. Then the analyst has a
reduced view on the whole code only since generally he can access a limited subset of this
k-set. In the context of (legitimate) code protection, one of the files will be a kernel-land
module communicating with a userland code to protect. The code without the appropriate
operating environment – with a user-specific configuration by the administrator – will
never work. This solution has the great advantage of hiding (by outsourcing it), the
encryption system itself. It is one particular instance with respect to this last solution that
we present in this paper.

3. The state-of-the-art of malicious cryptology and malicious mathematics

As any recently emerging field, the history of malicious cryptology and malicious
mathematics is rather short. Young and Yung seminal work Young & Yung (2004) has stirred
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up almost no further research in this area. The main reason is that this new field relates
to techniques generally considered by the “bad guys”, in other word the attackers (which
include militaries, spies...).

Publishing such results is never easy since it addresses the critical issues of result
reproducibility at least to enable the process of peer-review: any result whose reality must be
verified and confirmed is likely to leak enough data and information allowing thus a misuse
by the attacker. This situation hence does not ease the emergence of such a new research field.
The first consequence is that the actual corpus of knowledge regarding malicious mathematics
and malicious cryptography is likely to be far more extended that has been already published.
Most of those techniques are known and used by the military and the intelligence domains.
As a result, only a very few seminal papers (both theoretical and technical) are know at
the present time. The second consequence is that most of the results are published in the
most famous international hacking conferences which are far more reluctant at publishing
theoretical and practical results in this area. In this respect, academics are losing interesting
opportunities.

3.1 From mathematics and cryptology to computer virology

3.1.1 The origins

The mid 1930s could be reasonably considered as the starting point of the history of malicious
mathematics. Indeed, the masterpiece Kleene’s recursion theorem in essence contains much
of the computer virology concepts Filiol (2005). Of course neither Kleene nor followers in
recursion theory, calculability, complexity theory have ever imagined that their results could
be used and interpreted in a malicous way.

During World War II then many studies have been performed that could be considered as
first premises of malicious mathematics. Von Neuman’s work, for exemple, dedicated to
Self-reproducing automata – in other words viruses – is undoubtly the best case. As many such
studies were at that time – due to the war2 and then due to cold war era – it is very likely
that many results were classified and still are nowadays. For instance, NSA released in 2010
only research works performed in computer virology. The case of cryptology – a subfield
of mathematics and computer science – is probably even more emblematic since it has been
considered as weapons, strictly controlled by governments and military until the early 2000s
and is still under a strict control regarding for instance exports and knowledge dissemination
(see the different national regulations and the Wassenaar Agreement Wassenaar Agreement
(1996)). This the reason why seminal research works in the field of malicious mathematics and
malicious cryptology are still very limited at least in the public domain.

Another famous case is the research work of Kraus (1980) which can be considered as the
founding work of computer virology in 1980. The German government made suitable and
efficient pressures to forbid the publication of this thesis. In this work, Kraus exposes
theoretical and practical results in mathematics (recursive functions, computability and
calculability theory) that actually has given birth to the modern computer virology Filiol

2 von Neuman’s results which were established in 1948-1949, have been published in 1966 only, by his
student R. Burk.
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(2005). The last copy of Krause’s manuscript has been by chance discovered in a wet cellar of
the University of Dortmund, translated into English and published in 2009 only Kraus (1980).

3.1.2 Early stages of modern malicious cryptology

From an academic point of view, malicious cryptology begins with Young & Yung (2004) but
with a very narrow vision. In their approach, a malware encrypts user’s data with asymmetric
cryptology public keys and extort money from the user who wants the key to access his data
again. In this approach the malware itself does not deploy any malicious mathematics or
malicious cryptology techniques. Only the payload uses cryptology for money extorsion.
Young & Yung contribution, while having the merit to initiate the issue does not propose
more than a cryptography book.

In 2005, the first academic description of the use of cryptology in the viral mechanism
itself is described in Filiol (2005b). In this case the symmetric cryptology combined with
environmental key management enables, for specific operational conditions, to protect
malware code against reverse engineering. The concept of total code armouring is defined
and experimented.

3.1.3 Formalization results

3.1.3.1 Testing simulability

When dealing with malicious attacks, the main problem that any has to face is detection by
security software. The issue is then first to understand how security software are working
in order to infer or to identify ways to bypass detection efficiently. In Filiol & Josse (2007),
a theoretical study – backed by numerous experiments – describes in a unified way any
detection technique by means of statistical testing. From this model, the concept of statitical
simulability is defined. Here the aim is to reverse the use of statistics to design powerful attack
that mimic normal behaviour. In this respect, we can speak of malicious statistics.

Definition 2. Simulating a statistical testing consists for an adversary, to introduce, in a given
population P , a statistical bias that cannot be detected by an analyst by means of this test.

There exist two different kinds of simulability:

• the first one does not depend on the testings (and their parameters) the defender usually
considers. It is called strong testing simulability.

• on the contrary, the second one does depend on those testings that the attackers aims at
simulating. It is called weak testing simulability.

Here we call “tester” the one who uses statistical testing in order to decide whether there is
an attack or not, or whether a code is malicious or not...

Definition 3. (Strong Testing Simulability) Let P be a property and T a (statistical) testing whose role
is to decide whether P holds for given population P or not. Strongly simulating this testing consists in
modifying or building a biased population P in such a way that T systematically decides that P holds
on P , up to the statistical risks. But there exists a statistical testing T� which is able to detect that bias
in P . In the same way, we say that t testings (T1, T2, . . . , Tt) are strongly simulated, if applying them
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results in deciding that P holds on P but does no longer hold when considering a (t + 1)-th testing
Tt+1.

In terms of security, strong simulability is a critical aspect in security analysis. In an antiviral
context, strong simulability exists when the malware writer, who has identified any of the
techniques used by one or more antivirus, writes malware that cannot be detected by the
target antivirus but only by the malware writer. As a typical example, a viral database which
contains t signatures is equivalent to t testings (see previous section) and any new malware
corresponds to the testing Tt+1.

Definition 4. (Weak Testing Simulability) Let P be a property and T a testing whose role is to decide
whether P is valid for a given population P or not. To weakly simulate this testing means introducing
in P a new property P� which partially modifies the property P, in such a way that T systematically
decides that P holds on P , up to the error risks.

Weak simulability differs from strong simulability since the attacker considers the same
testings as the tester does. The attacker thus introduces a bias that the tester is not be able
to detect.

The property P� of Definition 4 is generally opposite to the property P. It precisely represents
a flaw that the attacker aims at exploiting. Bringing weak simulability into play is somehow
tricky. It requires to get a deep knowledge of the testings to be simulated.

The central approach consists in introducing the property P� in such a way that the estimators
Ei in use remain in the acceptance region of the testing (generally that of the null hypothesis).
Let us recall that during the decision step, the tester checks whether E < S or not. Thus weak
simulability consists in changing the value S − E while keeping it positive. For that purpose,
we use the intrinsic properties of the relevant sampling distribution.

3.1.3.2 Reversing calculability and complexity theory

There are two key issues as far as computer science is concerned:

• Calculability. Here the central concept is Turing machines. The aim is to decide whether
there exists a Turing machine (e.g. a program) which can compute a given problem or
not. Some problems are not computable (the corresponding Turing machine never stops).
Consequently the problem has no solution! So calculability theory aims at determining
which problems are computable and which are not (undecidable problems).

• Complexity. When dealing with computable programs, another issue arises: how efficiently
a problem can be computed. Here the central tool is the number of operations to solve
a problem. From that number, problems are split into complexity classes. To describe
things simply Papadimitriou (1993), the Polynomial class (P) corresponds to problems
that are “computationally easy”Âăto solve, Non deterministic polynomial class (NP) to
“computationally hard” to solve problems while NP-complete class contains the hardest
problems from the NP class (“computationally very hard” problems). In practice, only the
P class is computable (from seconds to a few hours however!).

So, as exposed in Filiol (2008c), a clever attacker will consider problems that are either
impossible to solve (undecidable problems) or computationally hard to solve in order to
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design his attack or his malware. In other words, he opposes these problems to the defender
which must solve them (whenever possible).

In Filiol (2007b); Zbitskiy (2009) the formalization based on formal grammars is considered.
Code mutation (polymorphism, metamorphism) is formally described and the authors
demonstrate that the choice of formal grammar class (according to the Chomsky classification)
can yield powerful attacks. This work has been later extended by Gueguen (2011) by using
van Wijngaarden grammars.

Another field of mathematics provides a lot of complex problems: combinatorics and discrete
mathematics. Powerful approaches also considers those parts of mathematics to design or
model powerful attacks based on malicious mathematics. For instance, the concept of cover
set from the graph theory has enabled to understand worms or botnets spreading mechanisms
and hence to design powerful versions of those malicious codes Filiol et al. (2007).

The concept of k-ary malware Filiol (2007c) is directly inspired from combinatorics.

Definition 5. A k-ary malware is a family of k files (some of them may be not executable) whose
union constitues a computer malware and performs an offensive action that is equivalent to that of a
true malware. Such a code is said sequential (serial mode) if the k constituent parts are acting strictly
one after the another. It is said parallel if the k parts executes simultaneously (parallel mode).

Detecting such codes becomes almost impossible due to the number of combinations that
should be explored. It has been proved Filiol (2007c) that, provided that the program
interactions are determistic, the detection of k-ary malware is NP-complete.

3.1.4 Miscellanous

Other techniques have been recently considered which cannot clearly be related to the
previous approaches. They can be considered as exotic approaches and we have chosen to
expose them in a detailed way. For instance, the attacker can exploit to his own benefit
the difference that exists between theorerical reality and practical reality in mathematics.
This different is a critical issue in computer science. In Section 4 we explain how
processor-dependent malware can be designed.

Other approaches can also rely on malicious cryptanalysis techniques. These techniques have
been initiated in Filiol (2006) with the concept of Zero-knowledge-like proof of cryptanalysis.

Definition 6. (Zero-knowledge-like proof of cryptanalysis) Let be a cryptosystem SK and a property
P about the output sequence of length n produced by S denoted σn

K. No known method other than
exhaustive search or random search can obtain property P for σn

K. Then, a zero-knowledge-like
proof of cryptanalysis of S consists in exhibiting secret keys K1, K2, . . . , ...Km such that the output
sequences (σn

Ki
)1≤i≤m verify P and such that, checking it requires polynomial time complexity.

Moreover, the property P does not give any information on the way it was obtained.

It worth considering that the reader/verifier can bring up against the author/prover that some
random keys has been taken, the keystream has been computed and afterwards been claimed
that the keystreams properties have been desired. In other words, the author/prover tries to
fool the verifier/reader by using exhaustive search to produce the properties that have been
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considered for the zero-knowledge-like proof protocol. Thus the relevant properties must be
carefully chosen such that:

• the probability to obtain them by random search over the key space makes such a search
untractable. On the contrary the verifier/reader would be able to himself exhibit secret
keys producing keystream having the same properties by a simple exhaustive search;

• the known attacks cannot be applied to retrieve secret keys from a fixed keystream having
the properties considered by the author/prover.

• to really convince the reader/verifier, a large number of secret keys must be produced by
the author/prover, showing that “he was not lucky”.

Since there do not exist any known method other than exhaustive search or random search
to produce output sequences σn

K having property P , and since the complexity of a successful
search is too high in practice, anybody who is effectively able to exhibit a secret K producing
such output sequences obviously has found some unknown weaknesses he used to obtain this
result. The probability of realizing property P through an exhaustive search gives directly the
upper bound complexity of the zero-knowledge-like proved cryptanalysis.

This technique has been used to design an efficient code armouring technique. We will detail
it in Section 5.

3.2 From computer virology to cryptology: malware-based operationel cryptanalysis

While in the previous section we have exposed how cryptography and mathematics can
be used for malicious purposes, the present section deals with the opposite view: how
malware can help to solve difficult (in other words computationally hard) problems. As far
as cryptology is concerned, it mainly relates to “how get secret quantities (e.g. cryptographic
keys) in illegitimate way?”

In this respect, malware can help to solve this problem very efficiently in a technical field
called Applied cryptanalysis. As an example, let us consider the case of the AES (Advanced
Encryption Standard). Let us assume that we use a Deep-crack-like computer that can perform
an exhaustive key search of 256 keys per second (in real life, this computer does not exist; the
best cryptanalysis allows exhaustive key search of 56-bit keys in roughly 3 hours). Then, any
brute force attack on the different AES versions will require with such a machine:

• 1.5 × 1012 centuries for a 128-bit key,

• 2.76 × 1031 centuries for a 192-bit key,

• 5.1 × 1050 centuries for a 256 bit-key.

It is obvious that this approach which has been used for a long time, is no longer
valid for modern systems. Moreover, the mathematical analysis of AES did not revealed
exploitable weaknesses. Consequently, other techniques, called “applied cryptanalysis” must
be considered. The purpose of these techniques is not to attack the system directly (via the
algorithm) but rather to act at implementation or management levels. By way of illustration, it
is as if you wanted to go into a room by making a hole in the bombproof door, when you need
only walk through the paper-thin walls. One of these approaches consists in using computer
viruses or other malware.

32 Cryptography and Security in Computing Malicious Cryptology and Mathematics 11

3.2.1 Circumventing IPSec-like network encryption

IPSec-based protocols are often presented by IT-experts as an efficient solution to prevent
attacks against data exchange. More generally, the use of encryption to protect communication
channels or to seclude sensitive networks is seen as the ultimate defence. Unfortunately,
this confidence is illusory since such “armoured” protocols can be manipulated or corrupted
by an attacker to leak information as soon as an access is managed with simple userâĂŹs
permission. In Delaunay et al. (2008), the authors demonstrate how an attacker and/or a
malware can subvert and bypass IPsec-like protocols (IPSec, WiFi, IP encryptors...) to make
data evade from the accessed system illegitimately. By using a covert channel, they show how
a malware can encode the information to be stolen, can insert it into the legitimate encrypted
traffic and finally collect/decode the information on the attackerâĂŹs side. This attack is
summarized in Figure 2 The malware uses efficient techniques from the error-correcting

Fig. 2. General Scheme of IPSec-like protocol attacks by malware

theory to perform its attack. Moreover it adapts its behaviour to the encrypted traffic load
in order to make its own activity totally invisible.

3.2.2 Dynamic cryptographic backdoors

A more efficient approach consists in exploiting implementation weaknesses in the
environment (by means of a malware) or to change this latter as exposed in Filiol (2011). The
first technique exploits the fact that many encryption algorithms rely on the operating system
primitives to generate secret keys (e.g. Microsoft cryptographic API). The second solution
is to modify the cryptographic algorithm on-the-fly in memory, and especially its mode of
operation and/or its mathematical design. In fact the malware installs a dynamic trapdoor.
The algorithm is not modified on the hard disk (no static forensics evidence). The trapdoor has
a limited period of time and can be replayed more than once. In both cases, the encryption
has been weakened in such a way that the attacker has just to intercept the ciphertext and
perform the cryptanalysis. This technique has been efficiently applied to take control over the
anonimity TOR network Filiol (2011b).

3.2.3 Anti-forensics cryptography

In the field of forensic analysis, encrypted data are particularly interesting when discovered
on a hard disk. They are supposed to be a clear proof that a person has intended to protect
data against analysis. When the forensics expert succeeds in one way or another to decrypt
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operation and/or its mathematical design. In fact the malware installs a dynamic trapdoor.
The algorithm is not modified on the hard disk (no static forensics evidence). The trapdoor has
a limited period of time and can be replayed more than once. In both cases, the encryption
has been weakened in such a way that the attacker has just to intercept the ciphertext and
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those encrypted data, the underlying plaintext clearly becomes very strong evidence for the
judge. This means that in the process of digital proof, cryptography has a status of extremely
high confidence.

In Filiol (2010a) it demonstrated how an attacker can use (malicious) cryptography in order
to manipulate both the forensic analyst and the judge and thus fool them to incriminate an
innocent people wrongly. The approach mainly lies in malicious cryptography techniques.
The aim is to undermine a judgeâĂŹs blind faith in the value of cryptographic evidence and
fool all those who rely heavily upon it. The paper shows with a fictional scenario how such an
attack and manipulation can be performed. Hence it shows that the concept of (cryptographic)
proof must be considered very cautiously and has no absolute value.

When coming back to the definition of a cryptosystem given in Section 2.2.1, the key point lies
in the fact that any arbitrary cipher text C is defined relatively to a 3-tuple (P, K, E) only. In
other words, you can do the following:

• Technique 1. Choose an arbitrary plaintext P, an arbitrary cipher text C and design
accordingly a suitable pair (K, E) such that we obtain C = E(K, P) and P = E(K, C). This
means that if we find random data on a hard disk and we do not have the algorithm E,
we can assert almost anything. But worse, using malware we can replace any original pair
(K, E) with a “malicious” one (K, E).

• Technique 2. Choose an arbitrary 3-tuple (E, C, P) and compute the key K such that we
obtain C = E(K, P). This approach has been partially addressed in Filiol (2006).

• Technique 3. Consider an arbitrary set of cipher texts C1, C2...Ci... and an arbitrary
encryption/decryption algorithm E thus relating to (legitimate) plaintexts P1, P2...Pi... Thus
we have for all i, for a key K i (possibly different for any i):

Ci = E(K, Pi) and Pi = E(K, Ci)

For any additional arbitrary triplet (P, C, K), it is then possible to modify the cryptosystem
E into the system E so that we obtain

C = E(K, P) and P = E(K, C)

while we still have Ci = E(K, Pi) and Pi = E(K, Ci).

From a technical point of view, either the attacker modifies the system E on-the-fly or he
simply replaces it with the modified one (e.g. with a virus). This technique is obviously the
trickiest one but also the most convincing one.

Technically speaking, the difficulty depends on the kind of encryption system you intend to
consider. While it is relatively easy for stream ciphers, the task becomes far more complex, yet
not impossible, with block ciphers. Another aspect to take into consideration is the length (in
bits) of the values C and P. The longer they are, the more difficult it will be to perform such
rogue manipulation. However in the context of anti-forensics âĂŞ e.g. fooling an forensics
expert âĂŞ those lengths can be relatively limited. The attacker will just have to build his
attacking scenario carefully.
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4. Processor-dependant malware

From the beginning of malware history (circa 1996), malware are:

• either operating system specific (Windows *.*, Unices, Mac, . . . );

• or application specific (e.g. macro viruses);

• or protocol dependent (e.g. Conficker versus Slammer).

At the present time, there are almost no hardware specific malware, even if some operating
system are themselves hardware dependent (e.g. Nokia cell phones with Symbian). Recently,
GPGPU malware Ioannidis (Polykronakis & Vasiliadis) have been proposed but they just
exploit the fact that graphic cards are just distinct devices with almost the same features and
capability as the system they are connected to. They do not really condition their action on
new computing features. GPGPU malware strongly depend on the graphic card type (CUDA
or OpenCL enabled).

We propose here to investigate the following critical issue: is it possible to design malware –
or more generally, any program – that operate beyond operating system and application types and
varieties? More precisely, we want:

• to operate beyond operating system and application types/varieties . . . ;

• while exploiting hardware specificities.

If such an approach would be possible, this would:

• enable far more precise and targeted attacks, at a finer level (surgical strikes) in a large
network of heterogeneous machines but with generic malware;

• and represent a significant advantage in a context of cyberwarfare.

The recent case of theStuxNet worm shows that targeted attacks towards PLC components
are nowadays a major concern in cyberattacks. However, while it can be very difficult to
forecast and envisage which kind of applications is likely to be present on the target system
(it can be a secret information), the variety in terms of hardware – and especially as far as
processors are concerned – is far more reduced due to the very limited number of hardware
manufacturers. We propose to consider processor-dependent malware and to rely on the onboard
processor, which seems a good candidate to design hardware dependent software (a malware
is nothing more than a software).

To design such processor-dependent malware, we need to identify the processor as precisely as
possible. This is possible thanks to a different ways:

• by reversing existing binaries (but this provides a limited information since a given binary
can indifferently execute on several processors like Intel x86s or AMDs chips),

• classical intelligence gathering...

There is a large spectrum of possibilities to collect this technical intelligence. But there is a
bad news: deriving knowledge about processor internals is tricky and require a lot of work.
Instead of analyzing processor logic gates architecture, we propose to work at the higher level:
to exploit mathematical perfection versus processor reality.
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4.1 Exploiting mathematical processor limitations

In order to use processors to discriminate programs’ action and execution, we exploit the fact
that first there is a huge difference between the mathematical reality and their implementation
in computing systems and second that this difference is managed in various ways according
to the processor brand, model and type.

4.1.1 Mathematical perfection versus processor reality

Let us begin with a very classical example: the algorithm given in Table 1. what does this code
(really) compute?

Algorithm 1 : The √ problem
Input: — a real A;
Output: — a boolean B
Begin:

B =
√

A ∗ √A;
Return[A==B];

End.

Table 1. The Square-root problem

Let us suppose we choose A = 2.0 as input for this Square-root algorithm, we then have two
possible answers, that are opposite:

1. Mathematically: True is returned;

2. Practically: False is returned!

Let us now explain why we have these different outputs. This comes from the fact that
processors:

• have an increasing (architecture) complexity and size,

• have bugs, known and unknown (not published),

• use floating point arithmetic,

• use generally “secret” algorithms for usual arithmetic functions like 1/x,
√

x, 1/
√

x . . . that
can be computed:
1. at the hardware level;
2. and/or at the software level.

As an example of a “secret algorithm”, let us cite the famous Pentium Bugs case in 1994:
Intel has never published neither the correct algorithm nor its bugged version used for the
division but some researchers have tried reverse engineering techniques to understand which
algorithm was programmed actually Coe et al. (1995).

Let us now consider the following problem: can we define a set of (simple) tests to know on which
processor we are? As a practical example: is it possible to know whether we are on a mobile phone or
on a computer?
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The Intel Assembly Language instruction CPUID can be used both on Intel and AMD
processors, but it has at least two severe drawbacks:

• it is easy to “find” it whenever scanning the file (malware detection issue);

• some other processors cannot recognize and process this instruction.

4.1.2 Processor bugs

Known or unknown bugs are good candidates to design such a set of tests and hence to
discriminate processors:

• as an instance of such bug/test, it is easy determine whether we use a 1994 bugged
Pentium or not: just use the numerical value that makes appear the Pentium Division Bug;

• but a lot of bugs will freeze the computer only (this can be used for processor-dependent
denial of service [DoS] however);

• and it is not so simple to find a list of bugs, even if there are supposed to be “known”.

The most interesting bugs to consider involve a floating point arithmetic operator. However
it is worth keeping in mind that the knowledge of some other bugs (by the manufacturer, a
Nation State...) can be efficiently used to target processors specifically and hence it represents
a critical knowledge not to say a strategic one. Worse, hiding such bugs or managing floating
arithmetics in a very specific way is more than interesting.

More generally let us consider some differences that exist event within the same type of
processors but produced in two different versions: a national and an “export” version. As
an example, we can consider the POPCOUNT function which compute the Hamming weight
of an integer (the number of 1s in its binary form). Since it is a critical function in the context
of cryptanalysis, the national version of a few processors have this function implemented
in hardware while the export version just emulate it at the software level. Consequently
a good way to discriminate national version from export version consists in computing
Hamming weight a large number of times and then to record the computation time: it will
be significantly higher for the export version which hence can be specifically targeted by a
malware attack.

4.1.3 Using floating point arithmetics: the IEEE P754 standard

The IEEE P754 standard Overton (2011) has been approved as a norm by the IEEE ANSI in
1985. A lot of processors follow and comply to it but some processors do not (e.g. the CRAY 1
or the DEC VAX 780). Moreover, not all microcontrollers follow this standard either.

This norm does not impose algorithms to compute usual functions like 1/x,
√

x, 1/
√

x or ex.
It just gives a specification for the four basic operations: addition, substraction, multiplication
and division. So, for all other functions, there is very likely to exist differences as far as their
implementation as algorithms are concerned. But we have to find them!

For 32-bit, environments, we have (see Table 2):

• 1 bit for the sign;

• 23 bits for the mantissa;
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sign(x) mantissa(x) exponent(x)
1 bit 23 bits 8 bits

Table 2. Structure of 32-bit float “numbers” in the IEEE P754 Standard

• 8 bits for the exponent (integer).

The floating point arithmetic has a lot of curiosities, let us see some of them. One can find in
Kulisch & Miranker (1983) the following questions due to Rump:

• Evaluate the expression

F(X, Y) =
(1682XY4 + 3X3 + 29XY2 − 2X5 + 832)

107751

with X = 192119201 and Y = 35675640. The “exact” result is 1783 but numerically we can
have a very different value like −7.18056 1020 (on a 32-bit IEEE P754 compliant processor).

• Evaluate the expression

P(X) = 8118X4 − 11482X3 + X2 + 5741X − 2030

with X = 1/
√

2 and X = 0.707. The “exact” result is 0 but numerically we can have a very
different value like −2.74822 10−8 (on a 32-bit IEEE P754 compliant processor).

Let us recall that the numerical value of an algebraic expression depends (generally) on the
compiler because a non basic numerical expression result depends strongly on the order of
the intermediate computations.

If we want to know on which processor we are working, we need to find, before anything else,
some critical information:

1. first the base value used to represent numbers;

2. second the word length, i.e. the number of bits the processor is used to work (with floating
point numbers for example).

For the base value, it is easy to conjecture that the base is 2, at least for modern processors.
As far as the the word length is concerned, we have not found any numerical algorithm
that is able to answer this question but we have found something very close. The algorithm
given in Table 3 called the Gentleman Code Gentleman & Marovitch (1974) is surprisingly very
interesting for both problems. First we can again ask: what does this code (really) compute? Well,
again, we have two possible answers:

1. Mathematically: the two loops are theoretically infinite loops so they are looping forever;

2. Practically (see Erra & Grenier (2009)):
• log2(A) gives the number of bits used by the mantissa of floating point numbers;
• B is the base used by the floating point arithmetic of the environment (generally it is

equal to 2).

Both values are of course processor-dependent constants. So, with a small program, which has a
polynomial time complexity, we can compute the number of bits used to represent the mantissa
of any floating point number and so, we can deduce the word length.
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Algorithm 2 : The Gentleman Code
Input: — A=1.0 ; B=1.0;
Output: — A, B
Begin:

A=1.0;
B=1.0;
While ((A+1.0)-A)-1.0==0 ;

A=2*A;
While ((A+B)-A)-B==0 ;

B=B+1.0;
Return[A,B];

End.

Table 3. The Gentleman code

4.2 Implementation and experimental results

Let us present a few tests that enables to discriminate processors operationally (for more
details refer to Erra & Grenier (2009)). Table 4 summarizes a first set of tests. So these

Processor Tests

1.2-0.8 == 0.4 0.1+0.1 == 0.2 0.1+0.1+0.1 == 0.3 0.1+. . . 0.1 == 1.0

VAX 750 Yes Yes No No

AMD 32 No Yes No No

AMD 64 No Yes No No

ATOM No Yes No No

INTEL DC No Yes No No

MIPS 12000 No Yes No No

dsPIC33FJ21 No Yes Yes No

IPHONE 3G No Yes No No

Table 4. A few easy computations

tests are interesting but not completely useful, this shows that we can simply know whether
the processor follows the IEEE P754 arithmetic norm or not. For these simple expression, all
processors that are IEEE P754 compliant will give the same answers..

With the following constant definitions in our test program in C, we obtain the results given
in Tables 5 and 6.

• #define Pi1 3.141592653

• #define Pi2 3.141592653589
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• #define Pi3 3.141592653589793

• #define Pi4 3.1415926535897932385

These results are more interesting, especially those in the third column (the numerical
computation of sin(1037π1)) in Table 5: a simple computation gives four subclasses of the
set of processors (emphasized by a double horizontal lign between the subclasses). To

Processor sin(1010π1) sin(1017π1) sin(1037π1) sin(1017π1) == sin(1017π2)

IPHONE 3G 0.375... 0.423... -0.837... No

AMD 32 0.375... 0.424... -0.837... No

AMD 64 0.375.. 0.424.. 0.837... No

ATOM 0.375.. 0.423.. -0.832.. No

INTEL DC 0.375... 0.423... -0.832... No

MIPS 12000 0.375... 0.423... -0.832... No

dsPIC33 0.81... 0.62... -0.44... Yes

Table 5. Computation of sin(1010π) for various numerical values of the constant π

Processor sin(1037π1) sin(1037π2) sin(1037π3) sin(1037π4)

IPHONE 3G 47257756 9d94ef4d 99f9067 99f9067

AMD 64 af545000 af545000 af545000 af545000

ATOM 47257756 9d94ef4d 99f9067 99f9067

INTEL DC 47257756 9d94ef4d 99f9067 99f9067

MIPS 12000 47257756 9d94ef4d 99f9067 99f9067

dsPIC33 bee5 bee5 bee5 bee5

Table 6. sin(1037π) in hex for various numerical values of the constant π

conclude with this part, it is important to stress on the Influence of the Compiler. To illustrate
this, let us give a last example. We want to compute the generalized sum

s(N) :=
N

∑
i=1

10N (1)

The “exact” value is of course N ∗ 10N , but let us have a look at the Table 7 to see some values
we can have when computing s(N)− N ∗ 10N . However we have to point out that the results
of the Table 7) heavily depend of course of the processor but also of the compiler used, of the
options used and so on . . . .
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N 10 21 22 25 30 100

s − N ∗ 10N 0.0 0.0 −8.05 108 −6.71 107 −4.50 1015 4.97 1086

Table 7. Computation of s(N)− ∑N
i=1 10N for different values of N

4.3 Open problems

More work has to be done to understand these aspects more deeply. Nonetheless, we have
here new insights on how design more specific attacks when considering the processor type
AND the compiler version/type as the same time.

Floating Point Arithmetic (FPA) looks promising to define a set of tests enabling to identify
the processor or, more precisely, a subset of possible processors. In the context of the malicious
use of mathematics, a lot of open problems are arising. Let us mention a few of them.

The first open problem relates to the following question: can we find an numerical algorithm,
with a linear complexity in time and space which computes a floating point expression to distinguish
a given processor more precisely? Beyond the examples presented here, a promising algorithm
could be based on a variant of the famous logistic equation, thoroughly studied in the chaos
theory, which is defined by:

xn+1 = r xn (1 − xn) (2)

with r ∈ [0, 4].

The sequence defined by Equation 2, for a chosen and fixed x0, can exhibit very different
behaviors:

• a periodic behavior for example for values of r less than 3.0;

• or a chaotic behavior for values of r slightly larger than 3.57.

Another open problem goes deeper into the misuse of mathematics by attackers: find
processor-dependent hash functions. Generally, hash functions are defined as independent from
the processor. But, in some cases (export control of the cryptography, countermeasures...), one
can desire to get rid of this view. The aim then consists in taking the opposite idea. We consider a
hash function that heavily depends of the processor used to compute it. For example, it can be
interesting to design a specific hash function for a smartphone or a specific processor. The best
way to design such a hash function seems to use the properties of the floating point arithmetic
operators of the processor; more specifically some of the arithmetic functions implemented on
the processor. Consequently, this second open problem evolves slightly towards the following
question: can we define, for a specific processor, hash functions that use the floating point arithmetic
of the concerned processor that respect the classical requirements for such functions?

5. Evading detection and analysis

Fighting against computer malware require a mandatory step of reverse engineering. As soon
as the code has been disassemblied/decompiled (including a dynamic analysis step), there is a
hope to understand what the malware actually does and to implement a detection algorithm.
This also applies to protection of software whenever one wishes to analyze them.
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In this section, we show how the techniques of malicious cryptography enable to implement
total amoring of programs, thus prohibiting any reverse engineering operation. The
main interest of that approach lies in the fact that TRANSEC properties are achieved at
the same time. In other words, the protected binaries have the same entropy as any
legitimate, unprotected code. This same technique can also achieve a certain level of
polymorphism/metamorphism at the same time. For instance, a suitable 59-bit key stream
cipher is sufficient to generate up to 2140 variants very simply. More interestingly, the old
fashioned concept of decryptor which usually constitutes a potential signature and hence a
weakness, is totally revisited.

To illustrate this approach, let us consider the case study presented in Filiol (2010b) (among
many other similar approaches) in which only a very few instructions are protected against
any disassembly attempt. Let us consider a piece of x86 assembly instructions to protect from
analysis. These instructions are translated into an intermediate representation (IR) derived
from the REIL language before a final translation into bytecode.

To evade analysis and detection, we intend to protect this final bytecode by using a malicious
PRNG, e.g. the last line in the following extract of code:

[X86 ASM] MOV EAX, 0x3 [B803000000]
[REIL IR] STR (0x3, B4, 1, 0), (EAX, B4, 0, 0)
[BYTECODES] 0xF1010000 0x40004 0x3 0x0 0x6A

Let us now explore the different possible malicious PRNG we can use depending on the
various operational conditions.

5.1 Malicious PRNG & protection scenarii

Sophisticated polymorphic/metamorphic or obfuscation techniques must rely on PRNG
(Pseudo-Random Number Generator). In our context, the aim is to generate sequences of
random numbers (here bytecode values) on-the-fly while hiding the code behavior.

Sequences are precomputed and we have to design a generator (the malicious PRNG) which
will afterwards output those data. The idea is that any data produced by the resulting
generator will be first used by the code as a valid address, and then will itself seed the PNRG
to produce the next random data.

Three cases are to be considered:

1. the code is built from any arbitrary random sequence;

2. the sequence is given by a (non yet protected) instance of bytecode and we have to design
an instance of PNRG accordingly;

3. a more interesting problem lies in producing random data that can be somehow interpreted
by a PRNG as meaningful instructions like jump 0x89 directly.

This relates to interesting problems of PRNG cryptanalysis. We are going to address these
three cases.
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From a general point of view it is necessary to recall that for both three cases the
malware author needs reproducible random sequences. By reproducible (hence the term of
pseudo-random), we mean that the malware will replay this sequence to operate its course of
execution. The reproducibility condition implies to consider a deterministic Finite-State Machine
(dFSM). The general scheme of how this dFSM is working is illustrated as follows. Without the
dFSM, any instruction data whenever executed produced a data used by the next instruction
and so on (e.g. an address, an operand...).

I0 → D0 → I1 → D1 . . . → Di → I(i + 1) → . . .

The problem lies in the fact that any analysis of the code easily reveals to the malware analyst
all the malware internals since all instructions are hardcoded and unprotected. But if a few
data/instructions are kept under an encrypted form, and are deciphered at execution only, the
analysis is likely to be far more difficult (up to decryptor and the secret key protection issue).
It is denied of a priori analysis capabilities. So to summarize, so we intend to have

I0 → D�
0 → I1 → D1 . . . → D�

i → I(i + 1) → . . .

where dFSM(D�
i) = Di for all i. Upon execution, we just have to input data D�

i into the dFSM
which will then output the data Di.

A few critical points are worth stressing on

1. no key is neither required nor used;

2. instructions can similarly be protected as well.

Of course to be useful as a prevention tool against (static and dynamic) analysis, the dFSM
must itself be obfuscated and protected against analysis. But this last point is supposed to be
fulfilled Filiol (2010b).

5.2 (Malware) code built from an arbitrary sequence

In this case, the sequence is arbitrary chosen before the design of the code and hence the code
is written directly from this arbitrary sequence. This case is the most simple to manage. We
just have to choose carefully the dFSM we need. One of the best choice is to take a congruential
generator since it implies a very reduced algorithm with simple instructions.

Let us consider X0 an initial value and the corresponding equation

x(i + 1) = a ∗ Xi + b mod(N)

where a is the multiplier, b is the increment and N is the modulus. Since the length of the
sequence involved in the malware design is rather very short (up to a few tens of bytes),
the choice of those parameters is not as critical as it would be for practical cryptographic
applications. In this respect, one can refer to Knuth’s reference book to get the best sets of
parameters Knuth (1998).

Here are a few such examples among many others:

Standard minimal generator a = 16, 807 − b = 0 − N = 231 − 1.
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VAX-Marsaglia generator a = 16, 645 − b = 0 − N = 232.

Lavaux & Jenssens generator a = 31, 167, 285 − b = 0 − N = 248.

Haynes generator a = 6, 364, 136, 223, 846, 793, 005 − b = 0 − N = 264.

Kuth’s generator a = 22 695 477 − b = 1 − N = 232 and Xn+1 >>= 16.

Of course the choice of the modulus is directly depending on the data type used in the
malware.

Another interesting approach is to consider hash functions and S/key. The principle is almost
the same. We take a (m, n) hash function H which produces a n-bit output from a m-bit input
with m > n. In our case we can build m in the following way

m = <data to protect><padding of random data><size of data>

or equivalently

m = D_i <random data> |D_i|

Then we choose a m-bit initialization vector (IV) and we compute the random sequence as
follows

IV → Di = H(IV) → x = H|Di |(Di) → y = H|x|(x) → H|y|(y) →
The iteration value |Di| can be used to get one or more required arbitrary value thus
anticipating the next case. Of course the nature of the hash function is also a key parameter:
you can either use existing hash function (e.g MD5, SHA-1, RIPEMD 160, SHA-2...) and keep
only a subset of the output bit; or you can design your own hash function as explained in
Knuth (1998).

5.3 Random sequence coming from an arbitrary (malware) code

In this slightly different case, the sequence is determined by a (non yet protected) instance of
a code. This issue is then to design or use an instance of PRNG accordingly. This is of course a
far more difficult issue which implies cryptanalytic techniques. To formalize the problem we
have a sequence

X0, X1, X2 . . . xi . . . Xn

which represents critical data (addresses, ASM instructions, operands...) of a particular
instance of a (malware) code. As for example let us consider three series of 32-bit integers
describing bytecode values:

0x2F010000 0x040004 0x3 0x0 0x89 (1)
0x3D010000 0x040004 0x3 0x0 0x50 (2)
0x5010000 0x040004 0x3 0x0 0x8D (3)

They are just different instances of the same instruction Filiol (2010b). The aim is to have these
data in the code under a non hardcoded but an obfuscated form, e.g.

K0, K1, K2, . . . Ki, . . . Kn . . .
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We then have to find a dFSM such that

X0 = dFSM(K0), X1 = dFSM(K1) . . . Xi = dFSM(Ki) . . .

The notation Ki directly suggests that the quantity input to the dFSM is a key in a
cryptographic context but these keys have to exhibit local low entropy profile at the same
time. So the malicious PRNG must take this into account as well. In this case, we have to face
a two-fold cryptanalytic issue:

• either fix the output value Xi and find out the key Ki which outputs Xi for an arbitrary
dFSM,

• or for an arbitrary set of pairs (Xi, Ki) design a unique suitable dFSM for those pairs.

The first case directly relates to a cryptanalytic problem while the second refers more to
the problem of designing cryptographic dFSMs with trapdoors. In our context of malicious
cryptography, the trapdoors here are precisely the arbitrary pairs of values (Xi, Ki) while the
dFSM behaves for any other pair as a strong cryptosystem Filiol (2010a). This second issue is
far more complex to address and still is an open problem.

Let us focus on the first case which has been partially addressed for real-life cryptosystem like
Bluetooth E0 Filiol (2007) in the context of zero knowledge-like proof of cryptanalysis. But in
the present case we do not need to consider such systems and much simpler dFSM can be
built conveniently for our purposes: sequences of data we use are rather short.

To fullfil all operational constraints Filiol (2010b) those dFSM have to exhibit additional
features in order to

• be used for code mutation purposes,

• exhibit TRANSEC properties. In other words, if we have Y = dFSM(X), then X and Y
must have the same entropy profile. Replacing X with a Y having a higher entropy profile
would focus the analyst’s attention (or trigger security software alert by considering local
entropy tests).

In Filiol (2010b) a 59-key bit stream cipher has been considered. This encryption system is a
combination generator which ismade of three linear feedback shift register and a combining
Boolean function. The value Ki initializes the content of registers R1, R2 and R3 at time instant
t = 0, and the stream cipher (our dFSM) outputs bits st which represent the binary version of
values Xi.

To describe the general principle of this technique, we will use this dFSM in a procedure
whose prototype is given by

void sco(unsigned long long int * X, unsigned long long int K)
{
/* K obfuscated value (input), X unobfuscated value (output) */
/* (array of 8 unsigned char) by SCO */
...

}
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Now according to the level of obfuscation we need, different ways exist to protect critical data
inside a code (series of integers (1), (2) and (3) above). We are going to detail two of them.

5.3.1 Concatenated bytecodes

The dFSM outputs critical data under a concatenated form to produce chunks of code
corresponding to the exact entropy of the input value (Ki). This enables to prevent any local
increase of the code entropy. For the dFSM considered, it means that we output series (1), (2)
and (3) under the following form

1)--> 0x2F01000000040004000000030000000000000089
2)--> 0x3D01000000040004000000030000000000000050
3)--> 0x050100000004000400000003000000000000008D

Let us detail the first output sequence (1). It will be encoded as three 59-bit outputs M1, M2
and M3

M_1 = 0x0BC04000000LL;
M_2 = 0x080008000000060LL;
M_3 = 0x000000000000089LL;

To transform M1, M2 and M3 back into five 32-bit values X1, X2, X3, X4 and X5, we use the
following piece of code:

/* Generate the M_i values */
sco(&M_1, K_1);
sco(&M_2, K_2);
sco(&M_3, K_3);

X_1 = M_1 >> 10; /* X_1 = 0x2F010000L */
X_2 = ((M_2 >> 37) | (M_1 << 22)) & 0xFFFFFFFFL

/* X_2 = 0x00040004L */
X_3 = (M_2 >> 5) & 0xFFFFFFFFL; /* X_3 = 0x3 */
X_4 = ((M_3 >> 32) | (M_2 << 27)) & 0xFFFFFFFFL;

/* X_4 = 0x0 */
X_5 = M_3 & 0xFFFFFFFFL; /* X_5 = 0x89 */

Values M1, M2 and M3 will be stored in the code as the values K1, K2 and K3 with dFSM(Ki) =
Mi:

K_1 = 0x6AA006000000099LL;
K_2 = 0x500403000015DC8LL;
K_3 = 0x0E045100001EB8ALL;

Similarly we have for sequence (2)
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M_1 = 0x0F404000000LL; K_1 = 0x7514360000053C0LL;
M_2 = 0x080008000000060LL; K_2 = 0x4C07A200000A414LL;
M_3 = 0x000000000000050LL; K_3 = 0x60409500001884ALL;

and for sequence (3)

M_1 = 0x01404000000LL; K_1 = 0x76050E00001F0B1LL;
M_2 = 0x080008000000060LL; K_2 = 0x00000010C80C460LL;
M_3 = 0x00000000000008DLL; K_3 = 0x000000075098031LL;

The main interest of that method is that the interpretation of code is not straightforward.
Code/data alignment does not follow any logic (that is precisely why a 59-bit dFSM has been
considered compared to a seemingly more obvious 64-bit dFSM ; any prime value is optimal).

Moreover, as we can notice, the Ki values are themselves sparse as unobfuscated opcodes are
(structural aspect). Additionally, their entropy profile (quantitative aspect) is very similar to
the Mi values (and hence the Xi ones). This implies that any detection techniques based on
local entropy picks is bound to fail.

Due to the careful design of the 59-bit dFSM, the unicity distance obtained is greater than 59
bits (the unicity distance is the minimal size for a dFSM output to be produced by a single
secret key). In the present case, a large number of different 59-bit keys can output an arbitrary
output sequence. Here are the results for the three series (1), (2) and (3) (Table 8): This implies

Serie Mi values Number of Ki Mi values Number of Ki Mi values Number of Ki

(1) M1 314 M2 2,755 M3 8,177

(2) M1 319 M2 2,755 M3 26,511

(3) M1 9,863 M2 2,755 M3 3,009

Table 8. Number of possible keys for a given output value Filiol (2010b)

that the 9 Mi values can be randomly selected and thus we have

314 × (2, 755)3 × 8, 177 × 319 × 26, 511 × 9, 863 × 3, 009

= 13, 475, 238, 762, 538, 894, 122, 655, 502, 879, 250

different possible code variants. It is approximatively equal to 2103 variants. Details of
implementation are described in Filiol (2010b).

5.3.2 Non concatenated bytecodes

In this second case, the dFSM outputs 59-bit chunks of data whose only the 32 least significant
bits are useful. Then here five 59-bit chunks of data M1, M2, M3, M4 and M5 are output. For
sequence (1) we have

M_1 = 0x*******2F010000LL;
M_2 = 0x*******00040004LL;
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M_3 = 0x*******00000003LL;
M_4 = 0x*******00000000LL;
M_5 = 0x*******00000089LL;

where the symbol * describes any random nibble.

The main interest of that method lies in the fact that it naturally and very simply provides
increased polymorphism properties compared to the previous approach. Indeed about
2140 5-tuples (K1, K2, K3, K4, K5) whenever they are input in the dFSM, produces 5-tuples
(X1, X2, X3, X4, X5). Then a huge number of different instances of the same code can be
produced by randomly choosing any possible 5-tuples. By increasing size of the memory
of the FSM we even can arbitrarily increase the number of possible polymorphic instances.

6. Conclusion

The rise of malicious mathematics and malicious cryptography results in a number of critical
issues.

For the first time, the advantage goes definitively to the attacker as soon as he uses malicious
mathematics and malicious cryptology techniques. He has just to use most of the results of
calculability theory and complexity theory for his own benefit. This shed a new light on the
importance to answer to the famous question: “does P = NP or not?” But a positive solution
would solve only the problem partly. Let us recall that modern cryptology for the first time
in Mankind History was giving the advantage to the defender. Unfortunately this period of
peace was short. The threat has just evolved, adapted and changed. We now have to face a
very unsecure world again.

From that it follows that science can no be neutral and the question of science’s dual use – and
it corollary the control of knowledge – is more than ever into question.

Aside those society issues, malicious mathematics and malicious cryptology propose a new,
stimulating, exciting research universe from a purely academic point of view. A huge number
of open problems, both theoretical and practical have been identified. More are likely to come.
in this respect, we can hope that meny good things can also arise from the research that will
consider those problems.
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1. Introduction

Most modern block and stream ciphers can be expressed as certain arrangement of Vector
Boolean Functions. Thus, in the context of block and stream ciphers’ design (mainly in S-boxes
and combining functions respectively), it is essential to define criteria which measure the
cryptographic strength of Boolean Functions and Vector Boolean Functions. Ideally, some
of the following requirements must be fulfilled by this criteria:

1. The principles of confusion and diffusion must be enforced by the criterion Shannon (1949).
Confusion obscures the relationship between the plaintext and the ciphertext Schneier
(1995). Difussion dissipates the redundancy of the plaintext by spreading it over the
ciphertext. Both techniques make more difficult for a cryptanalyst to find out redundancy
and statistical patterns in the ciphertext.

2. The criterion must be expressed in terms of a distance to an appropriate set S of
cryptographically weak functions Meier & Staffelbach (1990). Functions that exhibit
properties common to cryptographically weak functions are also considered to be
cryptographically weak.

3. The criterion should remain invariant under a certain group of transformations Meier
& Staffelbach (1990). This symmetry group should contain the group of affine
transformations.

A function is considered to be cryptographically weak if it is easily breakable or it can be
turned into a weak function by means of simple (e.g. linear or affine) transformations.
This definition is congruent with the notion of similar secrecy introduced by Shannon in
Shannon (1949), so that two functions R and S are said to be "similar" if there exists a fixed
transformation A, with an inverse A−1, such that R = AS. Hereunder are described the best
known cryptographically weak functions.

• Linear and affine functions. These functions are easily breakable because the simultaneous
complementation of a subset of the input variables causes the value of a linear or an affine
function to always change (from the original value before complementation) or to never
change.

• Functions with non-zero linear structures. The cryptanalytic value of linear structures
lies in their potential to map a nonlinear function to a degenerate function via a linear
transformation, which may reduce the size of the keyspace.
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lies in their potential to map a nonlinear function to a degenerate function via a linear
transformation, which may reduce the size of the keyspace.
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2 Cryptography

• Functions not balanced. The output of these kind of functions are not uniformly
distributed, avoiding statistical dependence between the input and the output (which can
be used in attacks).

• Functions with low algebraic degree can be approximated by low complex functions
easing their attack.

• m-th order correlation-immune functions are those whose output distribution probability
are unaltered when any m (or, equivalently, at most m) of the inputs are kept constant.

• Functions with low degree of Propagation Criterion has little diffusion property and
their output distribution probability are altered when some coordinates of the input are
complemented.

The main objective of this chapter is to characterize the more relevant cryptographic criteria
(nonlinearity, linear distance, balancedness, algebraic degree, correlation immunity, resiliency
and propagation criterion) for constructions of Vector Boolean Functions such as composition,
addition of coordinate functions, direct sum and bricklayering, from the knowledge of their
components. The study of these functions are relevant in cryptology due to the strong
connection between cryptographic attacks on the one hand and cryptographic properties of
these building blocks on the other hand. In most cases, the security against a particular class
of attack can be expressed by the existence of a certain property of the Vector Boolean function,
which results in a measure of security against that class of attacks:

• Linear cryptanalysis is based on the idea of finding high probable linear or affine relations
between the inputs and outputs of S-boxes present in the cipher, that is, finding S-boxes
with low nonlinearity Matsui (1994).

• Differential cryptanalysis is a chosen-plaintext attack based on the idea of finding high
probable differentials pairs between the inputs and outputs of S-boxes present in the
cipher, that is, finding S-boxes with low linearity distance. Differential cryptanalysis Biham
& Shamir (1991) can be seen as an extension of the ideas of attacks based on the presence
of linear structures Nyberg (1991).

• Distinguishing attacks are able to distinguish the pseudorandom sequence from a random
sequence by observing that the distribution of the sequences is not uniform for not
balanced functions.

• Jakobsen and Knudsen identified interpolation attacks on block ciphers with S-boxes
having small algebraic degree Jakobsen & Knudsen (1997). Later Canteaut and Videau
provided Higher order differential attacks which exploit the fact that the algebraic degree
of the S-box is low. In the case of combining functions, the sequence produced by n
combined LSFRs can be obtained by a single LSFR.

• For the pseudo-random generators, the best known cryptanalytic technique is the
correlation attack, which is based on the idea of finding correlation between the outputs
and the inputs, that is, finding S-boxes with low resiliency.

• Propagation Characteristic (PC) is an important cryptographic property for S-boxes to
resist differential cryptanalysis. To get uniform output distribution, S-boxes in block
ciphers should have PC(l) of higher order for l ≥ 1.
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2. Preliminaries

2.1 Definitions

Let < GF(2),+, · > be the finite field of order 2, where GF(2) = Z2 = {0, 1}, ’+’ the ’integer
addition modulo 2’ and ’·’ the ’integer multiplication modulo 2’. Vn is the vector space of
n-tuples of elements from GF(2). The direct sum of x ∈ Vn1 and y ∈ Vn2 is defined as
x ⊕ y = (x1, . . . , xn1 , y1, . . . , yn2 ) ∈ Vn1+n2 . The inner product of x, y ∈ Vn is denoted by x · y,
and of real vectors x, y ∈ Rn is denoted by �x, y�. Let x, y ∈ Rn, the pointwise product is
defined as x � y = (x1 · y1, . . . , xn · yn).

f : Vn → GF(2) is called a Boolean function and Fn is the set of all Boolean functions on Vn.
Ln is the set of all linear Boolean functions on Vn: Ln = {lu ∀ u ∈ Vn | lu(x) = u · x} and
An is the set of all affine Boolean functions on Vn. The directional derivative of f ∈ Fn in the
direction of u ∈ Vn is defined by Δu f (x) = f (x + u) + f (x), x ∈ Vn. If the following equality
is satisfied: Δu f (x) = c, c ∈ GF(2) ∀ x ∈ Vn then u ∈ Vn is called a linear structure of f .

The real-valued mapping χu(x) = (−1)∑i=n
i=1 ui xi = (−1)u·x for x, u ∈ Vn is called a character.

The character form of f ∈ Fn is defined as χ f (x) = (−1) f (x). The truth table of χ f is called
as the (1,−1)-sequence vector or sequence vector of f and is denoted by ξ f ∈ R2n

. In other
words: ξ f = TØf = ((−1) f (α0), (−1) f (α1), . . . , (−1) f (α2n−1)).

Let two real functions ϕ, ψ : Vn → R , the circular convolution or cross-correlation (ϕ ∗ ψ) :
Vn → R is defined by: (ϕ ∗ ψ)(x) = ∑u∈Vn

ϕ(u)ψ(x + u).

F : Vn → Vm, F(x) = ( f1(x), . . . , fm(x)) is called a Vector Boolean function and Fn,m is the
set of all Vector Boolean functions F : Vn → Vm. Each fi : Vn → GF(2) ∀ i ∈ {1, . . . , m} is a
coordinate function of F. The indicator function of F ∈ Fn,m, denoted by θF : Vn × Vm → R,
is defined in Chabaud & Vaudenay (1994) as θF(x, y) = 1 if y = F(x) and θF(x, y) = 0 if
y �= F(x). The character form of (u, v) ∈ Vn × Vm can be defined as follows: χ(u,v)(x, y) =

(−1)u·x+v·y.

Let F ∈ Fn,m and u ∈ Vn, then the difference Vector Boolean function of F in the direction of
u ∈ Vn, denoted by ΔuF ∈ Fn,m is defined as follows: ΔuF(x) = F(x + u) + F(x), x ∈ Vn. If
the following equality is satisfied: ΔuF(x) = c, c ∈ Vn ∀ x ∈ Vn then u ∈ Vn is called a linear
structure of F.

We define the simplifying notation for the maximum of the absolute values of a set of real
numbers {auv}u,v, characterized by vectors u and v, as: max (auv) = max(u,v) {|auv|}.

Using the same simplifying notation, we define the
∗

max (·) operator on a set of real numbers

{auv}u,v, as:
∗

max (auv) = max(u,v) �=(0,0){|auv|}.

2.2 Constructions of Vector Boolean Functions

In this chapter, some secondary contructions are studied, which build (n, m) variable Vector
Boolean Functions from (n�, m�) variable ones (with n� ≤ n, m� ≤ m). The direct sum
construction has been used to construct resilient and bent Boolean functions Carlet (2004),
Maitra & Pasalic (2002), Pasalic et al. (2001), Sarkar & Maitra (2000a), Sarkar & Maitra (2000b).
Adding coordinate functions and bricklayering are operations used to build modern ciphers
such as CAST Adams & Tavares (1993), DES Des (1977) and AES Daemen & Rijmen (2002).
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4 Cryptography

2.2.1 Direct sum

Definition 1. Let n = n1 + n2, n1, n2 ≥ 1, m ≥ 1, F1 ∈ Fn1,m and F2 ∈ Fn2,m. The direct sum of
F1 and F2 is the function:

(F1 ⊕ F2) : Vn1 × Vn2 → Vm
(x, y) → (F1 ⊕ F2)(x, y) = F1(x) + F2(y)

(1)

This is a generalization for Vector Boolean functions of the construction of Boolean functions
first introduced in Rothaus (1976).

2.2.2 Adding coordinate functions

Definition 2. Let n ≥ 1, m = m1 + m2, m1, m2 ≥ 1 and F ∈ Fn,m1 and G ∈ Fn,m2 . The result of
adding coordinate functions of F and G is the function:

(F, G) : Vn → Vm1 × Vm2

x → (F, G)(x) = ( f1(x), . . . , fm1 (x), g1(x), . . . , gm2 (x))
(2)

This is a generalization for Vector Boolean functions of the method used in the CAST
algorithm and studied in Nyberg (1995) by adding more than one coordinate function at the
same time.

2.2.3 Bricklayer

Definition 3. Let n = n1 + n2, n1, n2 ≥ 1, m = m1 + m2, m1, m2 ≥ 1, F ∈ Fn1,m1 and G ∈ Fn2,m2 .
The Bricklayer of F and G is the function F|G ∈ Fn,m:

F|G : Vn1 × Vn2 → Vm1 × Vm2

(x, y) → F|G(x, y) = ( f1(x), . . . , fm1 (x), g1(y), . . . , gm2 (y))
(3)

This construction corresponds to the bricklayer function Daemen & Rijmen (2002) as a parallel
application of a number of Vector Boolean functions operating on smaller inputs.

Another interesting operation is the restriction o projection of a Vector Boolean Function,
which can be found in ciphers such as MacGuffin Blaze & Schneier (1995).

2.2.4 Projection

Definition 4. Let F ∈ Fn,m and ordered set A = {i1, . . . , ip} ⊆ {1, . . . , m}. The result of projecting
F onto A is the function:

F|A : Vn → Vp
x → F|A(x) = ( fi1 (x), . . . , fip (x))

(4)

2.3 Walsh spectrum, autocorrelation spectrum and differential profile

The Walsh and Autocorrelation Spectrum together with the Differential Profile of the Vector
Boolean Functions conforming a cipher play an important role. The cryptograhic criteria
nonlinearity, resiliency, balancedness, linearity distance and propagation criteria can be
obtained from these three matrices.
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Definition 5. Let a Boolean function f ∈ Fn, the Walsh Transform of f at u ∈ Vn is the
n-dimensional Discrete Fourier Transform and can be calculated as follows:

W f (u) = χ̂ f (u) =
〈

ξ f , ξlu

〉
= ∑

x∈Vn

χ f (x)χu(x) = ∑
x∈Vn

(−1) f (x)+ux (5)

The Walsh Spectrum of f can be represented by a matrix whose rows are characteristiced
by u ∈ Vn in lexicographic order, denoted by WS( f ) ∈ M2n×1(R) and defined as WS( f ) =(

χ̂ f (ff0) . . . χ̂ f (u) . . . χ̂ f (ff2n−1)
)T where χ̂ f (u) = WS( f )(u) and satisfying that −2n ≤

χ̂ f (u) ≤ 2n.

The following fundamental result can be seen as an extension of the usual Fourier Transform
properties:

Theorem 1. ∀ f , g ∈ Fn it holds that:

ξ f � ξg
W←→ 1

2n WS( f ) ∗WS(g) (6)

Proof.

W {ξ f � ξg}(u) = ∑x∈Vn
(ξ f � ξg)(x)χu(x) = ∑x∈Vn

χ f (x)χg(x)χu(x)

= ∑x∈Vn

(
1
2n ∑v∈Vn

χ̂ f (v)χv(x)
)

χg(x)χu(x)

= 1
2n ∑v∈Vn

χ̂ f (v)∑x∈Vn
χv(x)χg(x)χu(x)

= 1
2n ∑v∈Vn

χ̂ f (v)∑x∈Vn
χg(x)χu+v(x)

= 1
2n ∑v∈Vn

χ̂ f (v)χ̂g(u + v) = 1
2n (WS( f ) ∗WS(g))(u)

Theorem 2. Let u ∈ Vn, u1 ∈ Vn1 , u2 ∈ Vn2 , n = n1 + n2 so that u = u1 ⊕ u2. Let f1 ∈ Fn1 and
f2 ∈ Fn2 , their direct sum f1 ⊕ f2 ∈ Fn, and it satisfies: χ̂ f1⊕ f2 (u) = χ̂ f1

(u1) · χ̂ f2 (u2) Sarkar &
Maitra (2000a).

Definition 6. Let the Vector Boolean function F ∈ Fn,m, its Walsh Transform is the two-dimensional
Walsh Transform defined by:

WF(u, v) = θ̂F(u, v) = ∑
x∈Vn

∑
y∈Vm

θF(x, y)χ(u,v)(x, y) = ∑
x∈Vn

(−1)ux+vF(x) (7)

Corollary 1. The value of the Walsh transform of Vector Boolean function F ∈ Fn,m at (u, v)
coincides with the value of the Walsh transform of the Boolean function v · F at u: θ̂F(u, v) =
χ̂v·F(u) ∀ (u, v) ∈ Vn × Vm.

The Walsh Spectrum of F can be represented by a matrix whose rows are characteristiced by
u ∈ Vn and whose columns are characteristiced by v ∈ Vm in lexicographic order, denoted
by WS(F) ∈ M2n×2m (R). It holds that θ̂F(u, v) = WS(F)(u, v), WS(F)u is the row of the
Walsh Spectrum characteristiced by u and WS(F)v is the column of the Walsh Sprectrum
characteristiced by v.
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Theorem 3. Let LA,b ∈ Fn,m an affine Vector Boolean function where LA,b(x) = Ax + b with
A ∈ Mn×m(GF(2)) and b ∈ Vm, its spectrum holds that Pommerening (2005):

θ̂LA,b (u, v) =

⎧
⎨
⎩

2n if vTA = uT , vTb = 0
−2n if vTA = uT , vTb = 1

0 if vTA �= uT

Theorem 4. If F ∈ Fn,n is bijective then it holds that: θ̂F(u, v) = θ̂F−1 (v, u).

Definition 7. The autocorrelation of f ∈ Fn with respect to the shift u ∈ Vn is the cross-correlation
of f with itself, denoted by r f (u) : Vn → R and defined by:

r f (u) =
1

2n ∑
x∈Vn

χ f (x)χ f (x + u) =
1

2n ∑
x∈Vn

(−1) f (x)+ f (u+x) (8)

Definition 8. The autocorrelation of F ∈ Fn,m with respect to the shift (u, v) ∈ Vn × Vm is the
cross-correlation of F with itself, denoted by rF(u, v) : Vn × Vm → R, so that Nyberg (1995):

rF(u, v) = 1
2n ∑x∈Vn

χvF(x + u)χvF(x) = 1
2n ∑x∈Vn

(−1)vF(x+u)+vF(x) (9)

Let F ∈ Fn,m, if we denote by DF(u, v) the set of vectors where the difference Vector
Boolean function of F in the direction of u ∈ Vn coincides with v ∈ Vm by: DF(u, v) =
{x ∈ Vn | ΔuF(x) = v}.

Let F ∈ Fn,m where n ≥ m. The matrix containing all posible values of #DF(u, v) is referred
to as its XOR or Differential Distribution Table. Let DU(F) be the largest value in differential
distribution table of F (not counting the first element in the first row), namely,

DU(F) = max
(u,v) �=(0,0)

#DF(u, v) = max
(u,v) �=(0,0)

# {x ∈ Vn | ΔuF(x) = v} (10)

Then F is said to be differentially DU(F)-uniform, and accordingly, DU(F) is called the
differential uniformity of F J. Seberry & Zheng (1994). By normalizing the elements of the
differential distribution table we obtain the Differential profile:

Definition 9. Let the function δF : Vn × Vm → Q δF(u, v) = 1
2n #DF(u, v), then the Differential

Profile of F can be represented by a matrix whose rows are characterized by u ∈ Vn and whose
columns are characterized by v ∈ Vm in lexicographic order, denoted by DP(F) ∈ M2n×2m (R) where
δF(ffi, ffj) with i ∈ {1, . . . , 2n − 1} and j ∈ {1, . . . , 2m − 1}.

Definition 10. The maximum value of δF(u, v) is called the differential potential of F: dp(F) =
max {δF(u, v) | ∀ u ∈ Vn, v ∈ Vm, (u, v) �= (0, 0)}.

Let F ∈ Fn,m then 1
2m ≤ dp(F) ≤ 1 and the lower bound holds if and only if F is bent and

the upper bound is reached when F is linear or affine. The differential uniformity of F ∈ Fn,m
and its differential potential are related as follows: dp(F) = 1

2n DU(F). The differential profile
at (u, v) is related with the autocorrelation in the same point in the following way Nyberg
(1995): δF(u, v) = 1

2n+m ∑w∈Vm
rF(u, w)χv(w).
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3. Characteristics

The resistance of the cryptosystems to the known attacks can be quantified through some
fundamental characteristics of the Vector Boolean functions used in them. In this chapter,
we consider the characteristics most commonly employed for the design of cryptographic
functions present in modern block and stream ciphers.

3.1 Nonlinearity

Definition 11. The nonlinearity of the Boolean function f ∈ Fn is a characteristic defined as
the distance to the nearest affine function as follows: NL( f ) = minau∈An d( f , au) = 2n−1 −
1
2 maxu∈Vn |χ̂ f (u)| Meier & Staffelbach (1990).

Definition 12. The nonlinearity of a Vector Boolean function F ∈ Fn,m is defined as the minimum
among the nonlinearities of all nonzero linear combinations of the coordinate functions of F Nyberg
(1993):

NL(F) = min
v �=0∈Vm

NL(v · F) = 2n−1 − 1
2

∗
max (WS(F)(u, v)) (11)

Alternatively, and also associated with the cardinality of the sets of values for which F ∈ Fn,m
satisfies any given linear relation parametrized by (u, v) we can define the linear potential of

F ∈ Fn,m as lp(F) = 1
22n · ∗

max (WS(F)(u, v)2) which is also exploited as a measure of linearity
in linear cryptanalysis, and satisfies Chabaud & Vaudenay (1994) 1

2n ≤ lp(F) ≤ 1 so that the
lower bound holds if and only if F has maximum nonlinearity (F is bent) and the upper bound
is reached when F is linear or affine.

3.2 Linearity distance

Definition 13. The linearity distance of the Vector Boolean function F ∈ Fn,m is defined as the
minimum among the linearity distances of all nonzero linear combinations of the coordinate functions
of F:

LD(F) = min
v �=0∈Vm

LD(v · F) = 2n−1 · min
u �=0∈Vn,v �=0∈Vm

{δF(u, v)} (12)

Definition 14. The linearity distance can be expressed in terms of the differential potential as follows:
LD(F) = 2n−1 · (1 − dp(F)) = 2n−1 ·

(
1− ∗

max (DP(F))
)

Pommerening (2005).

3.3 Balancedness

Definition 15. f ∈ Fn is balanced if its output is uniformly distributed over GF(2) satisfying
χ̂ f (0) = 0.

Definition 16. F ∈ Fn,m is balanced (or to have balanced output) if each possible output m-tuple
occurs with equal probability 1

2m , that is, its output is uniformly distributed in Vm. This is equivalent
to say that for every y ∈ Vm:

#{x ∈ Vn | F(x) = y} = 2n−m ←→ θ̂F(0, v) = 0, ∀ v �= 0 ∈ Vm (13)
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⎨
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3.4 Correlation immunity

Definition 17. f ∈ Fn is called correlation-immune of order t (t-CI) if for every subset
{i1, i2, . . . , it} ⊆ {1, 2, . . . , n}, f is statistically independent of (xi1 , xi2 , . . . , xit ), satisfying Xiao &
Massey (1988): χ̂ f (u) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ t. f can also be denoted as (n, 1, t)-CI function.

Definition 18. F ∈ Fn,m is an (n, m, t)-CI function if and only if every nonzero linear combination
f (x) = ∑m

i=1 vi fi(x) of coordinate functions of F is an (n, 1, t)-CI function, where x ∈ Vn, vi ∈
GF(2) i = 1, . . . , m and not all zeroes. This is equivalent to say Chen et al. (2004):

θ̂F(u, v) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ t, ∀ v �= 0 ∈ Vm (14)

3.5 Resiliency

Definition 19. f ∈ Fn is a t-resilient function if if it is balanced and t-CI, satisfying: χ̂ f (u) =
0, ∀ u ∈ Vn, 0 ≤ wt(u) ≤ t. A balanced Boolean function f can be considered as a 0-resilient
function.

Definition 20. F ∈ Fn,m is said to be t-resilient if it is balanced and t-CI, satisfying:

θ̂F(u, v) = 0, ∀ u ∈ Vn, 0 ≤ wt(u) ≤ t, ∀ v �= 0 ∈ Vm (15)

F can also be denoted as an (n, m, t)-resilient. A balanced Vector Boolean function F can be considered
as a 0-resilient function.

3.6 Propagation

Definition 21. Let f ∈ Fn, then f satisfies the propagation criterion of degree l, PC(l)(1 ≤ l ≤ n),
if f (x) changes with a probability of 1/2 whenever i(1 ≤ i ≤ t) bits of x are complemented Preneel
et al. (2006).

Definition 22. F ∈ Fn,m satisfies the PC(l) if any nonzero linear combination of the component
boolean functions satisfies the PC(l):

rF(u, v) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ v �= 0 ∈ Vm (16)

4. Criteria for constructions with Vector Boolean functions

In this Section, we address the behavior of Walsh Spectra, Differential Profiles, Autocorrelation
Spectra and the cited characteristics under several operations of Vector Boolean functions. We
present the known properties without a proof and the new to the best of our knowledge results
appear with their respective proofs.

4.1 Composition of Vector Boolean functions

Let F ∈ Fn,p, G ∈ Fp,m and the composition function G ◦ F ∈ Fn,m.

Theorem 5. The Walsh Spectrum for the composition of two Vector Boolean function can be calculated
from the product of their respective Walsh Spectra in the following way Pommerening (2005):

WS(G ◦ F) =
1

2p WS(F) ·WS(G) (17)
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Theorem 6. Let F ∈ Fn,m and let LA,b ∈ Fn,n an affine bijection. The Differential Profile for their
composition can be calculated from the product of their respective Differential Profiles in the following
way:

DP(F ◦ LA,b) =
1

2n DP(LA,b) ·DP(F) (18)

Proof. Taking into account the equality rF◦LA,b (u, v) = rF(Au, v) described in Millan (1998), it
holds that:

δF◦LA,b (u, w) = 1
2n+m ∑w∈Vm

rF◦LA,b (u, w)χv(w)

= 1
2n+m ∑w∈Vm

rF(Au, w)χv(w) = δF(Au, w)

Theorem 7. If F is a t-resilient function and G is balanced, then G ◦ F is also a t-resilient function.

Corollary 2. If F is a balanced function, then G ◦ F is also a balanced function.

4.2 Affine bijections of Vector Boolean functions

Let F ∈ Fn,m and let LA,b ∈ Fm,m and LC,d ∈ Fn,n be linear (or affine) bijections.

Lemma 1. From Theorem 5 and Theorem 3 we can conclude that the effect of applying an invertible
linear function before (or after) a function is only a permutation of its columns (or rows). In case it is
an affine bijection, the sign of all the elements of some of its columns (or rows) are changed.

Corollary 3. As a corollary of Lemma 1, we get the following:

∗
max (WS(LA,b ◦ F ◦ LC,d)) =

∗
max (WS(F))

∗
max (DP(LA,b ◦ F ◦ LC,d)) =

∗
max (DP(F))

Corollary 4. The nonlinearity and the linearity distance are invariant under linear (or affine)
bijections of the input space and of the output space, so that Nyberg (1995):

NL(LA,b ◦ F ◦ LC,d) = NL(F) LD(LA,b ◦ F ◦ LC,d) = LD(F)

Here we give alternative proofs as those given by Nyberg in Nyberg (1995) by using corollary
3:

Proof.

NL(LA,b ◦ F ◦ LC,d) = 2n−1 − 1
2

∗
max (WS(LA,b ◦ F ◦ LC,d))

= 2n−1 − 1
2

∗
max (WS(F)) = NL(F)

LD(LA,b ◦ F ◦ LC,d) = 2n−1 ·
(

1− ∗
max (DP(LA,b ◦ F ◦ LC,d))

)

= 2n−1 ·
(

1− ∗
max (DP(F))

)
= LD(F)
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Theorem 8. Let F ∈ Fn,m and let LA,b ∈ Fn,n an affine bijection, then F ◦ LA,b satisfies the PC(l) if
and only if F satisfies the PC(l).

Proof. If we use the equality rF◦LA,b (u, v) = rF(Au, v) described in Millan (1998), we can
obtain the following:

F ◦ LA,b satisfies the PC(l)

←→ rF◦LA,b = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ v ∈ Vm

←→ rF(Au, v) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ v ∈ Vm

←→ rF(u, v) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ v ∈ Vm

4.3 Adding coordinate functions

Let F = ( f1, . . . , fm1 ) ∈ Fn,m1 , G = (g1, . . . , gm2 ) ∈ Fn,m2 and the function conformed
by adding the coordinate functions (F, G) = ( f1, . . . , fm1 , g1, . . . , gm2 ) ∈ Fn,m1+m2 . Let
v ∈ Vm1+m2 ,vF ∈ Vm1 and vG ∈ Vm2 so that v = vF ⊕ vG.

Theorem 9. The columns of the Walsh Spectrum of the Vector Boolean function constructed by
adding the coordinate functions of two Vector Boolean functions are calculated by the correlation of
their respective columns in the following way:

WS((F, G))v =
1

2n WS(F)vF ∗WS(G)vG

where WS((F, G))v is the column of the Walsh Spectrum characteristiced by v.

Proof.

θ̂(F,G)(u, v) = χ̂vF⊕vG ·(F,G)(u) = W {ξvF ·F � ξvG ·G}(u)
= 1

2n ∑x∈Vn
χ̂vF ·F(u + x)χ̂vG ·G(x)

Corollary 5. The exact value of the nonlinearity of (F, G) cannot be easily obtained from the knowledge
of the nonlinearities of F and G.

Corollary 6. The columns of both WS(F) and WS(G) are contained in the matrix WS((F, G)).

Corollary 7. From corollary 6 it can be deduced that:

NL((F, G)) ≤ min{NL(F), NL(G)} (19)

The corollary 7 is a generalization of the Theorem 16 in Nyberg (1995). It can be useful, for
instance, to find upper bounds of nonlinearity in S-boxes whose number of output bits is high
by calculating the nonlinearities of shorter S-boxes (see Example 2).
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Example 1. The F-function of the MacGuffin block cipher algorithm consists of the 8 S-boxes of the
DES, but the two middle output bits of each S-box are neglected so that Si(MacG) ∈ F6,2. Let define
the 4-th S-box of DES as S4(DES) = ( f1, f2, f3, f4), then it holds that S4(MacG) = ( f1, f4). If
we denote MacDES the S-box which uses the second and third component functions of DES, then
S4(MacDES) = ( f2, f3). The S-box S4(DES) can be obtained by adding the coordinate functions
which constitute MacDES and aplying a permutation to reorder the coordinate functions. If we want
to obtain the last column of the Walsh Spectrum of S4(DES) from the last columns of the Walsh Spectra
of S4(MacG) and S4(MacDES), then the effect of the permutation can be omitted and the results are
the following:

WS (S4(DES))(1111) = 1
26 WS (S4(MacG))(11) ∗WS (S4(MacDES))(11) (20)

Example 2. The first substitution function of the CAST algorithm Adams & Tavares (1993) , Adams
(1994) denoted by S1 ∈ F8,32 has a nonlinearity of 74 Youssef et al. (1997). If we decompose this Vector
Boolean function into two, taking the first 16 output bits (S1a ∈ F8,16) and the second 16 output bits
(S1b ∈ F8,16) respectively, we can see that the corollary 7 is satisfied:

74 = NL(S1) ≤ min{NL(S1a), NL(S1b)} = min{86, 82} (21)

Theorem 10. If F, G ∈ Fn,n are bijective, F−1 is a t1-resilient function and G−1 is a t2-resilient
function, then the inverse of the Vector Boolean function obtained by adding the coordinates functions
of F and G, denoted by (F, G)−1 ∈ F2n,n is a 2 · min{t1, t2}-resilient function.

Proof.

F−1 is a t1-resilient function ∧ G−1 is a t2-resilient function
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1

2n WS(F)vF ∗WS(G)vG
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2n ∑x∈Vn
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Corollary 9. If u is a linear structure of G, then the autocorrelation of (F, G) is proportional to the
autocorrelation of F:

r(F,G)(u, v) = (−1)cvG G · rF(u, vF)

where ΔuvGG(x) = cvGG ∀ x ∈ Vn, ∀ vG ∈ Vm2 .

Corollary 10. Let F ∈ Fn,m1 satisfy the PC(l) and let all the vectors in Vn with weight at most l be
linear structures of G ∈ Fn,m2 , then (F, G) ∈ Fn,m1+m2 satisfies PC(l).

Proof. By applying corollary 10:

rF(u, vF) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ vF �= 0 ∈ Vm1

r(F,G)(u, v) = 0, ∀ u ∈ Vn, 1 ≤ wt(u) ≤ l, ∀ v �= 0 ∈ Vm

Corollary 11. If we add coordinates of a Vector Boolean function which satisfies the PC(l) and a Linear
(or Affine) Vector Boolean function then the resulting Vector Boolean function satisfies the PC(l).

Corollary 12. If u is a linear structure of G, then the coefficients of the Differential Profile of (F, G)
is proportional to the coefficients of the Differential Profile of F:

δ(F,G)(u, v) = (−1)cvG G · δF(u, vF)

Proof.

δ(F,G)(u, v) = 1
2n+m ∑w∈Vm

r(F,G)(u, w)χv(w)

= 1
2n+m1+m2 ∑wF∈Vm1

∑wG∈Vm2
(−1)cvG G rF(u, wF)χvF (wF)χvG (wG)

= (−1)
cvG G

2n+m1+m2 ∑wG∈Vm2
χvG (wG)∑wF∈Vm1

rF(u, wF)χvF (wF)

= (−1)
cvG G

2n+m1 ∑wF∈Vm1
rF(u, wF)χvF (wF)

4.4 Projection of a Vector Boolean function

Let F = ( f1, . . . , fm) ∈ Fn,m, A = {i1, . . . , im1} ⊆ {1, . . . , m}, B = {j1, . . . , jm2} ⊆
{1, . . . , m},A ∩ B = ∅ so that m = m1 + m2 then F|A = ( fi1 , . . . , fim1

) ∈ Fn,m1 and
F|B = ( f j1 , . . . , f jm2

) ∈ Fn,m2 .

Corollary 13. By Theorem 9, it can be demonstrated that the Walsh spectrum of the projection F|A
is obtained by extracting the columns of WS(F) characteristiced by v = (v1, . . . , vm) so that if i ∈ A
then vi = 1 and if i /∈ A then vi = 0.

Theorem 12. The set of vectors where the difference Vector Boolean function of F in the direction of
u ∈ Vn coincides with v ∈ Vm is a subset of the respective set of vectors of F|A.
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Proof. Let v = v|A ⊕ v|B:

DF(u, v) = {x ∈ Vn | F(x + u) + F(x) = v} = {x ∈ Vn | F|A(x + u) + F|A(x) = v|A}
∩ {x ∈ Vn | F|B(x + u) + F|B(x) = v|B} ⊆ DF|A (u, v)

Corollary 14.
∗

max (WS(F|A) ≤ ∗
max (WS(F)),

∗
max (DP(F|A) ≥ ∗

max (DP(F)).

Corollary 15. NL(F|A) ≥ NL(F), LD(F|A) ≤ LD(F).

Example 3. The F-function of the DES block cipher algorithm consists of 8 S-boxes Si(DES) ∈ F6,4
whose respective nonlinearities and linearity distances are the following:

i 1 2 3 4 5 6 7 8
NL (Si(DES)) 14 16 16 16 16 18 14 16
∗

max (WS (Si(DES))) 36 32 32 32 32 28 36 32

LD (Si(DES)) = 24, dp (Si(DES)) = 1
4 ∀ i = 1, . . . , 8

MacGuffin’s S-boxes result from restriction of DES S-Boxes, and its characteristics satisfy Corollary
15:

i 1 2 3 4 5 6 7 8
NL (Si(MG)) 18 18 18 16 20 20 18 20
∗

max (WS (Si(MG))) 28 28 28 32 24 24 28 24

and

LD (S1(MG)) = 15, dp (S1(MG)) = 0.53125
LD (S2(MG)) = 14, dp (S2(MG)) = 0.5625
LD (S3(MG)) = 15, dp (S3(MG)) = 0.53125
LD (S4(MG)) = 16, dp (S4(MG)) = 0.5
LD (S5(MG)) = 16, dp (S5(MG)) = 0.5
LD (S6(MG)) = 18, dp (S6(MG)) = 0.4375
LD (S7(MG)) = 15, dp (S7(MG)) = 0.53125
LD (S8(MG)) = 16, dp (S8(MG)) = 0.5

Corollary 16. By Theorem 9, it can be demonstrated that if F is t-resilient, then F|A is at least
t-resilient.

4.5 Direct sum of Vector Boolean functions

Let n1, n2 ≥ 1, F1 ∈ Fn1,m, F2 ∈ Fn2,m and their direct sum F1 ⊕ F2 ∈ Fn1+n2,m. Let u1 ∈ Vn1 ,
u2 ∈ Vn2 , v ∈ Vm and u = u1 ⊕ u2.

Theorem 13. The elements which conform a row in the Walsh Spectrum of the direct sum of two
Vector Boolean functions are equal to the product of the respective components of the rows in both
Walsh Spectra . The rows of the Differential Profile of the direct sum of two Vector Boolean functions
are obtained by the correlation of the rows of the Differential Profiles of each Vector Boolean function.

θ̂F1⊕F2 (u, v) = θ̂F1 (u1, v) · θ̂F2 (u2, v)

DP(F1 ⊕ F2)u =
1

2m DP(F1)u1 ∗DP(F2)u2
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The first result was already known for Boolean functions Sarkar & Maitra (2000a), here we
give a proof for Vector Boolean functions.

Proof.

θ̂F1⊕F2 (u, v) = χ̂v·(F1⊕F2)(u1 ⊕ u2) = χ̂v·F1⊕v·F2 (u1 ⊕ u2) = χ̂v·F1 (u1) · χ̂v·F2 (u2)

The second result is new and the proof is given below:

Proof.

(DP(F1)u1 ∗DP(F2)u2 )(v) = ∑w∈Vm
δF1 (u1, w + v) · δF2 (u2, w)

= ∑w∈Vm
1

2n1+m ∑s∈Vm
rF1 (u1, s)χw+v(s) 1

2n2+m ∑t∈Vm
rF2 (u2, t)χw(t)

= 1
2n1+n2+2m ∑z∈Vm

rF1 (u1, z)rF2 (u2, z)χv(z)

= 1
2n+2m ∑z∈Vm

rF1⊕F2 (u, z)χv(z) = 1
2m DP(F1 ⊕ F2)u(v)

Corollary 17.

∗
max (WS(F1 ⊕ F2)) = max

v∈Vm
{ ∗

max (WS(v · F1))· ∗
max (WS(v · F2)} (22)

Corollary 18.

NL(F1 ⊕ F2) = 2n1+n2−1 − 1
2 maxv∈Vm{(2n1 − 2NL(v · F1)) (2n2 − 2NL(v · F2))}

Proof.

NL(F1 ⊕ F2) = 2n−1 − 1
2

∗
max (θ̂F1⊕F2 (u, v))

= 2n−1 − 1
2 maxv∈Vm{

∗
max (θ̂F1 (u1, v))· ∗

max (θ̂F2 (u2, v))}
= 2n1+n2−1 − 1

2 maxv∈Vm{(2n1 − 2NL(v · F1)) (2n2 − 2NL(v · F2))}

This result is a generalization of what is obtained for Boolean functions. Let f ∈ Fn1 , g ∈ Fn2

then f ⊕ g ∈ Fn1+n2 holds that:

NL( f ⊕ g) = 2n1+n2−1 − 1
2 (2n1 − 2NL( f )) (2n2 − 2NL(g))

Corollary 19. Let F1 ⊕ · · · ⊕ Fi ∈ Fni ,m

NL(F1 ⊕ · · · ⊕ Fi) =

= 2n−1 − 1
2 maxv∈Vm{

∗
max (WS(v · F1)) · · · ∗

max (WS(v · Fi))}
(23)
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Example 4. The full substitution function of the CAST algorithm S(CAST) ∈ F32,32 is constructed
by forming the direct sum of 4 S-boxes Si(CAST) ∈ F8,32 satisfying:

maxv∈V32{
∗

max (WS (v · S1(CAST)))· ∗
max (WS (v · S2(CAST)))·

∗
max (WS (v · S3(CAST)))· ∗

max (WS (v · S4(CAST)))} = 29417472
(24)

For the exact calculation of the S(CAST) nonlinearity we need to find out the maximum value from
all the elements of a 232 × 232 matrix representing its Walsh Spectrum, or alternatively, to determine
the Walsh Spectra of the 232 linear combinations of its coordinate functions which are 232 × 1 matrices.
Nevertheless, by 19, the nonlinearity is obtained by calculating the maximum value of the product of
the maxima values of four Walsh Spectra (28 × 1 matrices) for each of the 232 linear combinations of its
coordinate functions.

NL (S(CAST)) = 232−1 − 1
2 29417472 = 2132774912

lp (S(CAST)) = 4.69127 · 10−5

This result coincides with the estimation of nonlinearity done in Youssef et al. (1997).

Theorem 14. Let F1 be an (n1, m, t1) resilient function and F2 be an (n2, m, t2)-resilient function,
then F1 ⊕ F2 is an (n1 + n2, m, t1 + t2 + 1)-resilient function.

Here we give alternative proof as those given in Zhang & Zheng (1997):

Proof. For all u ∈ Vn1+n2 satisfying wt(u) = t1 + t2 + 1, exists either u1 ∈ Vn1 with wt(u1) =
t1 + 1 and u2 ∈ Vn2 with wt(u2) = t2 so that u = u1 ⊕ u2 or u1 ∈ Vn1 with wt(u1) = t1 and
u2 ∈ Vn2 with wt(u2) = t2 + 1 so that u = u1 ⊕ u2. In both scenarios, it holds that:

θ̂F1 (u1, v) · θ̂F2 (u2, v) = 0, ∀ u ∈ Vn1+n2 , 0 ≤ wt(u) ≤ t1 + t2 + 1, ∀ v �= 0 ∈ Vm
−→ θ̂F1⊕F2 (u, v) = 0, ∀ u ∈ Vn1+n2 , 0 ≤ wt(u) ≤ t1 + t2 + 1, ∀ v �= 0 ∈ Vm

Corollary 20. Let F1 anf F2 balanced functions, then F1 ⊕ F2 is an (n1 + n2, m, 1)-resilient function.
This result is an extension of what was obtained in Seberry & Zhang (1993) for Boolean functions.

Theorem 15. The elements which conform a row in the Autocorrelation Spectrum of the direct sum
of two Boolean functions are obtained by the product of the respective components of the rows in both
Autocorrelation Spectra. Let f1 ∈ Fn1 , f2 ∈ Fn2 , then:

r f1⊕ f2 (u) = r f1
(u1) · r f2 (u2)

Proof.

r f1⊕ f2 (u) =
1
2n ∑x∈Vn

χ f1⊕ f2 (x + u)χ f1⊕ f2 (x)
= 1

2n1+n2 ∑x1∈Vn1
∑x2∈Vn2

χ f1
(x1)χ f2 (x2)χ f1

(x1 + u1)χ f2 (x2 + u2)

=
(

1
2n1 ∑x1∈Vn1

χ f1
(x1 + u1)χ f1

(x1)
) (

1
2n2 ∑x2∈Vn2

χ f2 (x2 + u2)χ f2 (x2)
)

= r f1
(u1) · r f2 (u2)
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δF1 (u1, w + v) · δF2 (u2, w)

= ∑w∈Vm
1

2n1+m ∑s∈Vm
rF1 (u1, s)χw+v(s) 1

2n2+m ∑t∈Vm
rF2 (u2, t)χw(t)

= 1
2n1+n2+2m ∑z∈Vm

rF1 (u1, z)rF2 (u2, z)χv(z)

= 1
2n+2m ∑z∈Vm

rF1⊕F2 (u, z)χv(z) = 1
2m DP(F1 ⊕ F2)u(v)

Corollary 17.

∗
max (WS(F1 ⊕ F2)) = max

v∈Vm
{ ∗

max (WS(v · F1))· ∗
max (WS(v · F2)} (22)

Corollary 18.

NL(F1 ⊕ F2) = 2n1+n2−1 − 1
2 maxv∈Vm{(2n1 − 2NL(v · F1)) (2n2 − 2NL(v · F2))}

Proof.

NL(F1 ⊕ F2) = 2n−1 − 1
2

∗
max (θ̂F1⊕F2 (u, v))

= 2n−1 − 1
2 maxv∈Vm{

∗
max (θ̂F1 (u1, v))· ∗

max (θ̂F2 (u2, v))}
= 2n1+n2−1 − 1

2 maxv∈Vm{(2n1 − 2NL(v · F1)) (2n2 − 2NL(v · F2))}

This result is a generalization of what is obtained for Boolean functions. Let f ∈ Fn1 , g ∈ Fn2

then f ⊕ g ∈ Fn1+n2 holds that:

NL( f ⊕ g) = 2n1+n2−1 − 1
2 (2n1 − 2NL( f )) (2n2 − 2NL(g))

Corollary 19. Let F1 ⊕ · · · ⊕ Fi ∈ Fni ,m

NL(F1 ⊕ · · · ⊕ Fi) =

= 2n−1 − 1
2 maxv∈Vm{

∗
max (WS(v · F1)) · · · ∗

max (WS(v · Fi))}
(23)

64 Cryptography and Security in Computing Cryptographic Criteria on Vector Boolean Functions 15

Example 4. The full substitution function of the CAST algorithm S(CAST) ∈ F32,32 is constructed
by forming the direct sum of 4 S-boxes Si(CAST) ∈ F8,32 satisfying:

maxv∈V32{
∗

max (WS (v · S1(CAST)))· ∗
max (WS (v · S2(CAST)))·

∗
max (WS (v · S3(CAST)))· ∗

max (WS (v · S4(CAST)))} = 29417472
(24)

For the exact calculation of the S(CAST) nonlinearity we need to find out the maximum value from
all the elements of a 232 × 232 matrix representing its Walsh Spectrum, or alternatively, to determine
the Walsh Spectra of the 232 linear combinations of its coordinate functions which are 232 × 1 matrices.
Nevertheless, by 19, the nonlinearity is obtained by calculating the maximum value of the product of
the maxima values of four Walsh Spectra (28 × 1 matrices) for each of the 232 linear combinations of its
coordinate functions.

NL (S(CAST)) = 232−1 − 1
2 29417472 = 2132774912

lp (S(CAST)) = 4.69127 · 10−5

This result coincides with the estimation of nonlinearity done in Youssef et al. (1997).

Theorem 14. Let F1 be an (n1, m, t1) resilient function and F2 be an (n2, m, t2)-resilient function,
then F1 ⊕ F2 is an (n1 + n2, m, t1 + t2 + 1)-resilient function.

Here we give alternative proof as those given in Zhang & Zheng (1997):

Proof. For all u ∈ Vn1+n2 satisfying wt(u) = t1 + t2 + 1, exists either u1 ∈ Vn1 with wt(u1) =
t1 + 1 and u2 ∈ Vn2 with wt(u2) = t2 so that u = u1 ⊕ u2 or u1 ∈ Vn1 with wt(u1) = t1 and
u2 ∈ Vn2 with wt(u2) = t2 + 1 so that u = u1 ⊕ u2. In both scenarios, it holds that:

θ̂F1 (u1, v) · θ̂F2 (u2, v) = 0, ∀ u ∈ Vn1+n2 , 0 ≤ wt(u) ≤ t1 + t2 + 1, ∀ v �= 0 ∈ Vm
−→ θ̂F1⊕F2 (u, v) = 0, ∀ u ∈ Vn1+n2 , 0 ≤ wt(u) ≤ t1 + t2 + 1, ∀ v �= 0 ∈ Vm

Corollary 20. Let F1 anf F2 balanced functions, then F1 ⊕ F2 is an (n1 + n2, m, 1)-resilient function.
This result is an extension of what was obtained in Seberry & Zhang (1993) for Boolean functions.

Theorem 15. The elements which conform a row in the Autocorrelation Spectrum of the direct sum
of two Boolean functions are obtained by the product of the respective components of the rows in both
Autocorrelation Spectra. Let f1 ∈ Fn1 , f2 ∈ Fn2 , then:

r f1⊕ f2 (u) = r f1
(u1) · r f2 (u2)

Proof.

r f1⊕ f2 (u) =
1
2n ∑x∈Vn

χ f1⊕ f2 (x + u)χ f1⊕ f2 (x)
= 1

2n1+n2 ∑x1∈Vn1
∑x2∈Vn2

χ f1
(x1)χ f2 (x2)χ f1

(x1 + u1)χ f2 (x2 + u2)

=
(

1
2n1 ∑x1∈Vn1

χ f1
(x1 + u1)χ f1

(x1)
) (

1
2n2 ∑x2∈Vn2

χ f2 (x2 + u2)χ f2 (x2)
)

= r f1
(u1) · r f2 (u2)
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Theorem 16. Let f1 satisfies the PC(l1) and f2 satisfies the PC(l2), then f1 ⊕ f2 satisfies the PC(l)
with l = min{l1, l2}. Moreover, it holds that r f1⊕ f2 (u) = 0 for all u = u1 ⊕ u2 with wt(u) =
l1 + l2 + 1 except those which satisfies u1 = 0 or u2 = 0.

Proof. By Theorem 15 we can show:

f1 satisfies the PC(l1) and f2 satisfies the PC(l2)
r f1

(u1) = 0, ∀ u1 ∈ Vn1 , 1 ≤ wt(u1) ≤ l1 and
r f2 (u2) = 0, ∀ u2 ∈ Vn2 , 1 ≤ wt(u2) ≤ l2
r f1

(u1) · r f2 (u2) = 0, ∀ u = u1 ⊕ u2 ∈ Vn1+n2 , 1 ≤ wt(u) ≤ min{l1, l2}
−→ r f1⊕ f2 (u) = 0, ∀ u ∈ Vn1+n2 , 1 ≤ wt(u) ≤ min{l1, l2}

Besides, for all u ∈ Vn1+n2 satisfying wt(u) = l1 + l2 + 1, exists either u1 ∈ Vn1 with wt(u1) =
l1 + 1 and u2 ∈ Vn2 with wt(u2) = l2 so that u = u1 ⊕ u2 or u1 ∈ Vn1 with wt(u1) = l1 and
u2 ∈ Vn2 with wt(u2) = l2 + 1 so that u = u1 ⊕ u2. In both scenarios, it holds that:

r f1
(u1) · r f2 (u2) = 0, ∀ u = u1 ⊕ u2 ∈ Vn1+n2 , 1 ≤ wt(u) ≤ l1 + l2 + 1

except those where u1 = 0 because r f1
(0) = 1 and r f2 (u2) could be non-zero or where u2 = 0

because r f2 (0) = 1 and r f1
(u1) could be non-zero.

Example 5. Let f1, f2 ∈ F5 which both satisfy PC(2) where f1(x) = x1x2x3x4 + x1x2x3x5 +
x1x2x4x5 + x1x3x4x5 + x2x3x4x5 + x1x4 + x1x5 + x2x3 + x2x5 + x3x4 and f2(x) = x1x2x3x4 +
x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5 + x1x4 + x1x5 + x2x3 + x2x5 + x3x4 + x1 + x2 +
x3 + x4 + x5. By Theorem 16 then f1 ⊕ f2 satisfies PC(2).

4.6 Bricklayer of Vector Boolean functions

Let n1, n2, m1, m2 ≥ 1 and F1 ∈ Fn1,m1 , F2 ∈ Fn2,m2 and the Bricklayer function F1|F2 ∈
Fn1+n2,m1+m2 . Let u1 ∈ Vn1 , u2 ∈ Vn2 and u = u1 ⊕ u2, v1 ∈ Vm1 , v2 ∈ Vm2 and v = v1 ⊕ v2.

Theorem 17. The elements which conform the Walsh Spectrum (respect. Differential Profile) of the
Bricklayer of two Vector Boolean functions are obtained by the product of the respective components in
both Walsh Spectra (respect. Differential Profiles).

θ̂F1|F2
(u, v) = θ̂F1 (u1, v1) · θ̂F2 (u2, v2)

δF1|F2
(u, v) = δF1 (u1, v1) · δF2 (u2, v2)

Proof.

θ̂F1|F2
(u, v) = χ̂(v1 ,v2)·(F1|F2)((u1, u2)) = χ̂v1 ·F1 (u1) · χ̂v2 ·F2 (u2)

Proof.

δF1|F2
(u, v) = 1

2n+m ∑w∈Vm
rF1|F2

(u, w)χv(w)

= 1
2n+m ∑w∈Vm

rF1|F2
(u1, w)rF1|F2

(u2, w)χv1 (w)χv2 (w)

=
(

1
2n1+m1 ∑w∈Vm

rF1|F2
(u1, w)χv1 (w)

) (
1

2n2+m2 ∑w∈Vm
rF1|F2

(u2, w)χv2 (w)
)

= δF1 (u1, v1) · δF2 (u2, v2)
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Corollary 21. The Walsh Spectrum (respectively Differential Profile) of the Bricklayer of i Vector
Boolean functions F1| · · · |Fi is equal to the Kronecker products of their Walsh Spectra (respectively
Differential Profiles):

WS(F1| · · · |Fi) = WS(F1)� · · ·�WS(Fi)
DP(F1| · · · |Fi) = DP(F1)� · · ·�DP(Fi)

(25)

Corollary 22.

NL(F1|F2) = 2n1+n2−1 − 1
2 max{2n1 (2n2 − 2NL(F2)), 2n2 (2n1 − 2NL(F1))}

LD(F1|F2) = 2n1+n2−1 · (1 − max{1 − LD(F1)
2n1−1 , 1 − LD(F2)

2n2−1 })

Proof. On one hand

NL(F1|F2) = 2n−1 − 1
2

∗
max (θ̂F1|F2

(u, v))
= 2n−1 − 1

2 max{θ̂F1 (u1, v1) · max(θ̂F2 (u2, v2)} where ((u1, u2) �= 0) ∧ ((v1, v2) �= 0)
= 2n−1 − 1

2 max{2n1 · ∗
max (θ̂F2 (u2, v2)), 2n2 · ∗

max (θ̂F1 (u1, v1))}
= 2n1+n2−1 − 1

2 max{2n1 · (2n2 − 2NL(F2)), 2n2 · (2n1 − 2NL(F1))}
On the other hand

LD(F1|F2) = 2n−1 ·
(

1− ∗
max (δF1|F2

(u, v))
)

= 2n−1 · (1 − max{δF1 (u1, v1) · δF2 (u2, v2)}) where ((u1, u2) �= 0) ∧ ((v1, v2) �= 0)
= 2n−1 · (1 − max{ ∗

max (δF1 (u1, v1)),
∗

max (δF2 (u2, v2))})
= 2n1+n2−1 ·

(
1 − max

{
1 − LD(F1)

2n1−1 , 1 − LD(F2)
2n2−1

})

Corollary 23. Let F1| · · · |Fi ∈ Fn,m

dp(F1| · · · |Fi) = max {dp(F1), . . . , dp(Fi)} (26)

The following theorem and corollary are presented without proofs as they are very similar to
the analogous in the previous subsection.

Theorem 18. Let F1 be an (n1, m1, t1)-resilient function and F2 be an (n2, m2, t2)-resilient function,
then F1|F2 is an (n1 + n2, m1 + m2, t1 + t2)-resilient function.

Corollary 24. F1|F2 is an (n1 + n2, m, 1)-resilient function if and only if F1 or F2 are balanced
functions.

Example 6. Let denote S the result of bricklayering all DES S-boxes Si ∈ F6,4 ∀ i = 1, . . . , 8, so that
S = S1| · · · |S8. Thanks to the corollary 22, it is possible to calculate the nonlinearity and linearity
distance of S by calculating the maximum values of the Walsh Spectra and Differential Profiles of the 8
S-boxes. This algorithm deals with eight 26 × 24 matrices instead of one 248 × 232 matrix.

NL(S) = 248−1 − 1
2 36 · 242 = 61572651155456

lp(S) = 0.31640625 dp(S) = 1
4

LD(S) = 248−1 ·
(

1 − 1
4

)
= 3 · 245

As all Si ∈ F6,4 ∀ i = 1, . . . , 8 are balanced S-boxes, then by Theorem 18 it holds that S is an
(48, 32, 7)- resilient function.
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Theorem 16. Let f1 satisfies the PC(l1) and f2 satisfies the PC(l2), then f1 ⊕ f2 satisfies the PC(l)
with l = min{l1, l2}. Moreover, it holds that r f1⊕ f2 (u) = 0 for all u = u1 ⊕ u2 with wt(u) =
l1 + l2 + 1 except those which satisfies u1 = 0 or u2 = 0.

Proof. By Theorem 15 we can show:

f1 satisfies the PC(l1) and f2 satisfies the PC(l2)
r f1

(u1) = 0, ∀ u1 ∈ Vn1 , 1 ≤ wt(u1) ≤ l1 and
r f2 (u2) = 0, ∀ u2 ∈ Vn2 , 1 ≤ wt(u2) ≤ l2
r f1

(u1) · r f2 (u2) = 0, ∀ u = u1 ⊕ u2 ∈ Vn1+n2 , 1 ≤ wt(u) ≤ min{l1, l2}
−→ r f1⊕ f2 (u) = 0, ∀ u ∈ Vn1+n2 , 1 ≤ wt(u) ≤ min{l1, l2}

Besides, for all u ∈ Vn1+n2 satisfying wt(u) = l1 + l2 + 1, exists either u1 ∈ Vn1 with wt(u1) =
l1 + 1 and u2 ∈ Vn2 with wt(u2) = l2 so that u = u1 ⊕ u2 or u1 ∈ Vn1 with wt(u1) = l1 and
u2 ∈ Vn2 with wt(u2) = l2 + 1 so that u = u1 ⊕ u2. In both scenarios, it holds that:

r f1
(u1) · r f2 (u2) = 0, ∀ u = u1 ⊕ u2 ∈ Vn1+n2 , 1 ≤ wt(u) ≤ l1 + l2 + 1

except those where u1 = 0 because r f1
(0) = 1 and r f2 (u2) could be non-zero or where u2 = 0

because r f2 (0) = 1 and r f1
(u1) could be non-zero.

Example 5. Let f1, f2 ∈ F5 which both satisfy PC(2) where f1(x) = x1x2x3x4 + x1x2x3x5 +
x1x2x4x5 + x1x3x4x5 + x2x3x4x5 + x1x4 + x1x5 + x2x3 + x2x5 + x3x4 and f2(x) = x1x2x3x4 +
x1x2x3x5 + x1x2x4x5 + x1x3x4x5 + x2x3x4x5 + x1x4 + x1x5 + x2x3 + x2x5 + x3x4 + x1 + x2 +
x3 + x4 + x5. By Theorem 16 then f1 ⊕ f2 satisfies PC(2).

4.6 Bricklayer of Vector Boolean functions

Let n1, n2, m1, m2 ≥ 1 and F1 ∈ Fn1,m1 , F2 ∈ Fn2,m2 and the Bricklayer function F1|F2 ∈
Fn1+n2,m1+m2 . Let u1 ∈ Vn1 , u2 ∈ Vn2 and u = u1 ⊕ u2, v1 ∈ Vm1 , v2 ∈ Vm2 and v = v1 ⊕ v2.

Theorem 17. The elements which conform the Walsh Spectrum (respect. Differential Profile) of the
Bricklayer of two Vector Boolean functions are obtained by the product of the respective components in
both Walsh Spectra (respect. Differential Profiles).

θ̂F1|F2
(u, v) = θ̂F1 (u1, v1) · θ̂F2 (u2, v2)

δF1|F2
(u, v) = δF1 (u1, v1) · δF2 (u2, v2)

Proof.

θ̂F1|F2
(u, v) = χ̂(v1 ,v2)·(F1|F2)((u1, u2)) = χ̂v1 ·F1 (u1) · χ̂v2 ·F2 (u2)

Proof.

δF1|F2
(u, v) = 1

2n+m ∑w∈Vm
rF1|F2

(u, w)χv(w)

= 1
2n+m ∑w∈Vm

rF1|F2
(u1, w)rF1|F2

(u2, w)χv1 (w)χv2 (w)

=
(

1
2n1+m1 ∑w∈Vm

rF1|F2
(u1, w)χv1 (w)

) (
1

2n2+m2 ∑w∈Vm
rF1|F2

(u2, w)χv2 (w)
)

= δF1 (u1, v1) · δF2 (u2, v2)
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Corollary 21. The Walsh Spectrum (respectively Differential Profile) of the Bricklayer of i Vector
Boolean functions F1| · · · |Fi is equal to the Kronecker products of their Walsh Spectra (respectively
Differential Profiles):

WS(F1| · · · |Fi) = WS(F1)� · · ·�WS(Fi)
DP(F1| · · · |Fi) = DP(F1)� · · ·�DP(Fi)

(25)

Corollary 22.

NL(F1|F2) = 2n1+n2−1 − 1
2 max{2n1 (2n2 − 2NL(F2)), 2n2 (2n1 − 2NL(F1))}

LD(F1|F2) = 2n1+n2−1 · (1 − max{1 − LD(F1)
2n1−1 , 1 − LD(F2)

2n2−1 })

Proof. On one hand

NL(F1|F2) = 2n−1 − 1
2

∗
max (θ̂F1|F2

(u, v))
= 2n−1 − 1

2 max{θ̂F1 (u1, v1) · max(θ̂F2 (u2, v2)} where ((u1, u2) �= 0) ∧ ((v1, v2) �= 0)
= 2n−1 − 1

2 max{2n1 · ∗
max (θ̂F2 (u2, v2)), 2n2 · ∗

max (θ̂F1 (u1, v1))}
= 2n1+n2−1 − 1

2 max{2n1 · (2n2 − 2NL(F2)), 2n2 · (2n1 − 2NL(F1))}
On the other hand

LD(F1|F2) = 2n−1 ·
(

1− ∗
max (δF1|F2

(u, v))
)

= 2n−1 · (1 − max{δF1 (u1, v1) · δF2 (u2, v2)}) where ((u1, u2) �= 0) ∧ ((v1, v2) �= 0)
= 2n−1 · (1 − max{ ∗

max (δF1 (u1, v1)),
∗

max (δF2 (u2, v2))})
= 2n1+n2−1 ·

(
1 − max

{
1 − LD(F1)

2n1−1 , 1 − LD(F2)
2n2−1

})

Corollary 23. Let F1| · · · |Fi ∈ Fn,m

dp(F1| · · · |Fi) = max {dp(F1), . . . , dp(Fi)} (26)

The following theorem and corollary are presented without proofs as they are very similar to
the analogous in the previous subsection.

Theorem 18. Let F1 be an (n1, m1, t1)-resilient function and F2 be an (n2, m2, t2)-resilient function,
then F1|F2 is an (n1 + n2, m1 + m2, t1 + t2)-resilient function.

Corollary 24. F1|F2 is an (n1 + n2, m, 1)-resilient function if and only if F1 or F2 are balanced
functions.

Example 6. Let denote S the result of bricklayering all DES S-boxes Si ∈ F6,4 ∀ i = 1, . . . , 8, so that
S = S1| · · · |S8. Thanks to the corollary 22, it is possible to calculate the nonlinearity and linearity
distance of S by calculating the maximum values of the Walsh Spectra and Differential Profiles of the 8
S-boxes. This algorithm deals with eight 26 × 24 matrices instead of one 248 × 232 matrix.

NL(S) = 248−1 − 1
2 36 · 242 = 61572651155456

lp(S) = 0.31640625 dp(S) = 1
4

LD(S) = 248−1 ·
(

1 − 1
4

)
= 3 · 245

As all Si ∈ F6,4 ∀ i = 1, . . . , 8 are balanced S-boxes, then by Theorem 18 it holds that S is an
(48, 32, 7)- resilient function.
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5. Conclusions

In this chapter, several characteristics have been obtained for Vector Boolean Functions which
are constructed using simpler functions combined in different ways. Precisely, the Walsh
Spectrum of the overall function is obtained from the spectra of the functions when they
are combined via composition, addition of coordinate functions, direct sum or bricklayer
construction. In addition, when affine bijections or projection are employed, the maximum
value of the overall Walsh Spectrum is obtained from the maximum values of the involved
elements spectra. These results allow for the computation of nonlinearity, balancedness and
resiliency of the mentioned constructions.

Alternatively, the Differential Profile of the system resulting from the composition with an
affine function, direct sum, or bricklayer is also derived from the Differential Profiles of the
involved elements. Moreover, when affine bijections or projections are employed, bounds on
the maximum value of the Differential Profile for the resulting Function are also obtained.
Therefore, the linearity distance for the cited constructions is computed.

Finally, the Autocorrelation Spectrum of a Vector Boolean Function constructed via affine
bijections of Vector Boolean Functions and direct sum of Boolean functions is provided
from the knowledge of the respective elements Autocorrelation Spectra. Moreover, the
autocorrelation coefficients resulting from adding coordinate functions with linear structures
are obtained. As a consequence, the propagation criterion resulting from the cited
constructions is also provided.
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5. Conclusions

In this chapter, several characteristics have been obtained for Vector Boolean Functions which
are constructed using simpler functions combined in different ways. Precisely, the Walsh
Spectrum of the overall function is obtained from the spectra of the functions when they
are combined via composition, addition of coordinate functions, direct sum or bricklayer
construction. In addition, when affine bijections or projection are employed, the maximum
value of the overall Walsh Spectrum is obtained from the maximum values of the involved
elements spectra. These results allow for the computation of nonlinearity, balancedness and
resiliency of the mentioned constructions.

Alternatively, the Differential Profile of the system resulting from the composition with an
affine function, direct sum, or bricklayer is also derived from the Differential Profiles of the
involved elements. Moreover, when affine bijections or projections are employed, bounds on
the maximum value of the Differential Profile for the resulting Function are also obtained.
Therefore, the linearity distance for the cited constructions is computed.

Finally, the Autocorrelation Spectrum of a Vector Boolean Function constructed via affine
bijections of Vector Boolean Functions and direct sum of Boolean functions is provided
from the knowledge of the respective elements Autocorrelation Spectra. Moreover, the
autocorrelation coefficients resulting from adding coordinate functions with linear structures
are obtained. As a consequence, the propagation criterion resulting from the cited
constructions is also provided.
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70 Cryptography and Security in Computing

1. Introduction

A wide variety of problems found in computer science deals with combinatorial objects.
Combinatorics is the branch of mathematics that deals with finite countable objects called
combinatorial structures. These structures find many applications in different areas such as
hardware and software testing, cryptography, pattern recognition, computer vision, among
others.

Of particular interest in this chapter are the combinatorial objects called Orthogonal Arrays
(OAs). These objects have been studied given of their wide range of applications in the
industry, Gopalakrishnan & Stinson (2008) present their applications in computer science;
among them are in the generation of error correcting codes presented by (Hedayat et al., 1999;
Stinson, 2004), or in the design of experiments for software testing as shown by Taguchi (1994).

To motivate the study of the OAs, it is pointed out their importance in the development
of algorithms for the cryptography area. There, OAs have been used for the generation
of authentication codes, error correcting codes, and in the construction of universal hash
functions (Gopalakrishnan & Stinson, 2008).

This chapter proposes an efficient implementation for the Bush’s construction (Bush, 1952)
of OAs of index unity, based on the use of logarithm tables for Galois Fields. This is an
application of the algorithm of Torres-Jimenez et al. (2011). The motivation of this research
work born from the applications of OAs in cryptography as shown by Hedayat et al. (1999).
Also, it is discussed an alternative use of the logarithm table algorithm for the construction of
cyclotomic matrices to construct CAs (Colbourn, 2010).

The remaining of the chapter is organized as follows. Section 2 presents a formal definition
of OAs and the basic notation to be used through this chapter. Section 3 shows the relevance
of OAs for cryptography by showing three of their applications, one in the authentication
without secrecy, other in the generation of universal hash functions, and a last one in the
construction of difference schemes. Section 4 shows the construction methods, reported in
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the literature, for the construction of OAs. Section 5 presents the algorithm described in
Torres-Jimenez et al. (2011) for the construction of the logarithm table of a Galois Field,
this algorithm served as basis for a more efficient construction of OAs using the Bush’s
construction. Section 6 contains the efficient implementation, proposed in this chapter, for
the Bush’s construction of OAs, based on discrete logarithms. Section 7 presents an extension
of the use of the algorithm presented by Torres-Jimenez et al. (2011), in the construction
of cyclotomic matrices for CAs. Section 8 shows as results from the proposed approach, a
set of bounds obtained for CAs using the constructions of cyclotomic matrices aided by the
algorithm described in this chapter. Finally, Section 9 presents the main conclusions derived
from the research proposed in this chapter.

2. Orthogonal arrays

The Orthogonal Arrays (OAs) were introduced by Rao (1946; 1947) under the name of
hypercubes and for use in factorial designs. Figure 1 shows an example of an Orthogonal
Array OA3(12; 2, 11, 2). The definition of an OA involves that any pair of columns of this

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 1 1 0 1 0 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 0 1 0
0 0 0 1 1 1 0 1 1 0 1
1 0 0 0 1 1 1 0 1 1 0
0 1 0 0 0 1 1 1 0 1 1
1 0 1 0 0 0 1 1 1 0 1
1 1 0 1 0 0 0 1 1 1 0
0 1 1 0 1 0 0 0 1 1 1
1 0 1 1 0 1 0 0 0 1 1
1 1 0 1 1 0 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 1. Example of an OA3(12; 2, 11, 2). The interaction, or strength, is 2; also, it has 11
parameters and 12 runs (or test cases) and the combinations {(0, 0), (0, 1), (1, 0), (1, 1)} in
each pair of columns extracted from it.

matrix should contain the symbol combinations shown in Figure 2.
⎛
⎜⎜⎝

0 0
0 1
1 0
1 1

⎞
⎟⎟⎠

Fig. 2. Symbol combinations expected in any pair of columns in an OA of strength 2 and
alphabet 2.

Formally, an orthogonal array (OA), denoted by OAλ(N; t, k, v), can be defined as follows:

Definition 1. An OA, denoted by OA(N; t, k, v), is an N × k array on v symbols such that every
N × t sub-array contains all the ordered subsets of size t from v symbols exactly λ times. Orthogonal
arrays have the property that λ = N

vt . When λ = 1 it can be omitted from the notation and the OA is
optimal.
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Figure 3 shows another example of an OA(9; 2, 4, 3); note that this time the alphabet is v =
3 and the combination of symbols {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}
appears only once in each pair of columns of the OA.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
1 1 1 0
2 2 2 0
0 1 2 1
1 2 0 1
2 0 1 1
0 2 1 2
1 0 2 2
2 1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. Example of an OA(9; 2, 4, 3).

The OAs have some interesting properties, among them are the following ones:

1. The parameters of the OA satisfy λ = N/vt;

2. An OA of strength t is also an OA of strength t�, where 1 ≤ t� ≤ t. The index λ� of an OA
of strength t� is λ� = λ · vt−t� ;

3. Let Ai = {0, 1, ..., r} be a set of OA(Ni; ti, k, v), the juxtaposed array A =

⎡
⎣

A0
...
Ar

⎤
⎦ is an

OA(N; t, k, v) where N = N1 + N2 + ... + Nr and t ≥ min{t0, t1, ..., tr};

4. Any permutation of rows or columns in an OA, results in another OA with the same
parameters;

5. Any subarray of size N × k� of an OA(N; t, k, v), is an OA(N; t�, k�, v) of strength t� =
min{k�, t};

6. Select the rows of an OA(N; t, k, v) that starts with the symbol 0, and eliminate the first
column; the resulting matrix is an OA(N/v; t − 1, k − 1, v).

The following section presents some applications of OAs in the area of cryptography. These
applications are related with the construction of difference schemes, universal hash functions,
and in the authentication without secrecy.

3. Relevance of orthogonal arrays in cryptography

The purpose of this section is to present three applications that motivate the study of OAs
in the area of cryptography. These applications have been described in (Gopalakrishnan &
Stinson, 2008; Stinson, 1992a).

3.1 Authentication without secrecy

The use of authentication codes dates back to 1974, the time when they were invented
by Gilbert et al. (1974). Most of the time, the transmission of information between two parts
that are interested on keeping the integration of their information, is done through the use of
secrecy, i.e. the practice of hiding information from certain group of individuals. However,
sometimes it is important to transmit the information in areas that are insecure and where it is
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not necessary the secrecy. This part corresponds to the area of Authentication Without Secrecy
(or AWS). An authentication code without secrecy is a code where an observed message can
correspond to a unique source state.

Jones & Seberry (1986) described a situation in which two countries want to set transmission
devices to monitor the activities of the other, such that possible compliance can be avoided.

The general model to define the use of the AWS can be described with three participants:
a transmitter, a receiver, and an opponent. Let’s call these participants Alice, Bob and
Gabriel, respectively. Suppose that Alice wants to transmit a message to Bob in a public
communication channel; however, they expect that the message must be transmitted
integrally, i.e. without any changes in its composition. To do so, Alice encrypted the message
and sent it through the channel. An encoding rule (based on a key scheme) ciphers the
message; each encoding rule will be a one-to-one function from the source space to the
message space. The key used to cipher the message has been sent to Bob (the receiver) through
a secure channel, before the message has been encoded. Now, the third party member, Gabriel,
has malicious intention of deforming the message. What is the chance of Gabriel to access the
message of Alice and Bob and modify it conveniently to affect the final result?

Let’s consider the following protocol of communication between Alice and Bob: a) Firstly,
Alice and Bob choose the encoding code previously; b) Alice encode the message with a
previously chosen key K; c) the message m = (s, a) is sent over the communication channel;
d) when Bob receives the message he verifies that a = eK(s) so that he ensures that it comes
from Alice.

Let S be a set of k source states; let M be a set of v messages; and let E be a set of b encoding
rules. Since each encoding rule is a one-to-one function from S to M, the code can be
represented by a b × k matrix, where the rows are indexed by encoding rules, the columns
are indexed by source states, and the entry in row e and column s is e(s). This matrix is called
the encoding matrix. For any encoding rule e ∈ E , define M(e) = {e(s) : s ∈ S}, i.e. the set
of valid messages under encoding rule e. For an encoding rule e, and a message m ∈ M(e),
define e−1(m) = s if e(s) = m.

The types of damage that Gabriel can do to the message of Alice and Bob are impersonation,
i.e. sending a message to one of them without the message even existed; and substitution, i.e.
changing a message sent.

The application of OAs in authentication without secrecy is described by the following theorem:

Theorem 1. Suppose that there is an authentication code without secrecy for k source states and
having l authenticators, in which Pd0 = Pd1

= 1/l. Then

1. |E | ≥ l2, and equality occurs if and only if the authentication matrix is an OA(2, k, l) (with λ = 1)
and the authentication rules are used with equal probability;

2. |E | ≥ k(l − 1) + 1, and equality occurs if and only if the authentication matrix is an OAλ(2, k, l)
where

λ =
k(l − 1) + 1

l2 , (1)

and the authentication rules are used with equal probability.

This theorem has been proven by Stinson (1992a). It also show that this is the minimum
probability expected for this case.
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3.2 Universal hash function

Assume it is wanted to map keys from some universe U into m bins (labeled). The algorithm
will have to handle some data set of |S| = n keys, which is not known in advance. Usually, the
goal of hashing is to obtain a low number of collisions (keys from S that land in the same bin).
A deterministic hash function cannot offer any guarantee in an adversarial setting if the size
of U is greater than m2, since the adversary may choose S to be precisely the preimage of a
bin. This means that all data keys land in the same bin, making hashing useless. Furthermore,
a deterministic hash function does not allow for rehashing: sometimes the input data turns
out to be bad for the hash function (e.g. there are too many collisions), so one would like to
change the hash function.

The solution to these problems is to pick a function randomly from a family of hash functions.
A universal hash function is a family of functions indexed by a parameter called the key with
the following property: for all distinct inputs, the probability over all keys that they collide is
small.

A family of functions H = {h : U → [m]} is called a universal family if Equation 2 holds.

∀x, y ∈ U, x �= y : Pr[h(x) = h(y)] ≤ 1
m

(2)

Any two keys of the universe collide with probability at most 1
m when the hash function h

is drawn randomly from H. This is exactly the probability of collision we would expect if
the hash function assigned truly random hash codes to every key. Sometimes, the definition
is relaxed to allow collision probability O(1/m). This concept was introduced by (Carter &
Wegman, 1979; Wegman & Carter, 1981), and has found numerous applications in computer
science.

A finite set H of hash functions is strongly − universal2 (or SU2 ) if Equation 3 holds.

{h ∈ H : h(x1) = y1, h(x2) = y2}| = |H|/|B|2, ∀x1, x2 ∈ A(x1 �= x2), y1, y2 ∈ B (3)

For practical applications, it is also important that |H| is small. This is because log2|H| bits
are needed to specify a hash function from the family. It is fairly straightforward to show that
strongly universal hash functions are equivalent to orthogonal arrays. The following theorem
can be found in (Stinson, 1994).

Theorem 2. If there exists an OAλ(2, k, n), then there exists an SU2 class H of hash functions from
A to B, where |A| = k, |B| = n and |H| = λn2 . Conversely, if there exists an SU2 class H of
hash functions from A to B, where a = |A| and b = |B|, then there exists an OAλ(2, k, n), where
n = b,k = a and λ = |H|/n2.

This theorem helps in establishing lower bounds on the number of hash functions and in
constructing classes of hash functions which meet these bounds. It is straightforward to
extend the definition and the theorem to SUt class of universal hash functions.

3.3 Thresholds schemes

In a bank, there is a vault which must be opened every day. The bank employs three senior
tellers; but it is not desirable to entrust the combination to any one person. Hence, we want
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The application of OAs in authentication without secrecy is described by the following theorem:
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where

λ =
k(l − 1) + 1

l2 , (1)
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This theorem has been proven by Stinson (1992a). It also show that this is the minimum
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to design a system whereby any two of the three senior tellers can gain access to the vault but
no individual can do so. This problem can be solved by means of a threshold scheme.

Threshold schemes are actually a special case of secret sharing schemes. Stinson (1992b)
presents a survey in this topic. Informally a (t, w)-threshold scheme is a method of sharing a
secret key K among a finite set P of w participants, in such a way that any t participants can
compute the value of K, but no group of t − 1 (or fewer) participants can do so. The value
of K is chosen by a special participant called the dealer. The dealer is denoted by D and we
assume D /∈ P . When D wants to share the key K among the participants in P , he gives each
participant some partial information called a share. The shares should be distributed secretly,
so no participant knows the share given to another participant.

At a later time, a subset of participants B ⊆ P will pool their shares in an attempt to compute
the secret key K. If |B| ≥ t, then they should be able to compute the value of K as a function
of the shares they collectively hold; if |B| < t, then they should not be able to compute K. In
the example described above, we desire a (2, 3)-threshold scheme.

Often, we desire not only that an unauthorized subset of participants should be unable to
compute the value of K by pooling their shares, but also they should be unable to determine
anything about the value of K. Such a threshold scheme is called a perfect threshold scheme.
Here, we will be concerned only about perfect threshold schemes.

We will use the following notation. Let P = {Pi : 1 ≤ i ≤ w} be the set of participants. K is
the key set (i.e., the set of all possible keys); and S is the share threshold schemes.

Orthogonal arrays come into picture once again by means of the following theorem due
to Dawson & Mahmoodian (1993).

Theorem 3. An ideal (t, w) threshold scheme with |K| = v exists if and only if an OA(t, w + 1, v)
exists.

The construction of the threshold scheme starting from the orthogonal array proceeds as
follows. The first column of the OA corresponds to the dealer and the remaining w columns
correspond to the w participants. To distribute a specific key K, the dealer selects a random
row of the OA such that K appears in the first column and gives out the remaining w elements
of the row as the shares. When t participants later pool their shares, the collective information
will determine a unique row of the OA (as λ = 1) and hence they can compute K as the value
of the first element in the row.

Can a group of t − 1 participants compute K? Any possible value of the secret along with the
actual shares of these t − 1 participants determine a unique row of the OA. Hence, no value
of the secret can be ruled out. Moreover, it is clear that the t − 1 participants can obtain no
information about the secret.

4. Algorithms to construct OAs

This section presents some of the state-of-art algorithms for the construction of OAs. Special
reference is done to the Bush’s construction, which is benefited from the approach presented
in this chapter because the efficient way of constructing the OAs using logarithm tables.
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4.1 Rao-Hamming construction

The Rao-Hamming construction derived from the geniality of two scientists who
independently elaborate procedures for the construction of OAs Hedayat et al. (1999). The
following theorem describes the purpose of this construction.

Theorem 4. If there is a prime power then an OA(sn, (sn − 1)/(s − 1), 2) exists whenever n ≥ 2.

A simple way to obtain an orthogonal array with these parameters is the following. This
construction always produces linear arrays. Form an sn × n array whose rows are all possible
n-tuples from GF(s). Let C1, ..., Cn denote the columns of this array. The columns of the full
orthogonal array then consist of all columns of the form shown in Equation 4.

z1C1 + ... + znCn = [C1, ..., Cn]z (4)

where z = (z1, ..., zn)T is an n-tuple from GF(s), not all the zi are zero, and the first nonzero zi
is 1. There are (sn − 1)/(s − 1) such columns, as required.

An alternative way to construct an OA using the Rao-Hamming Construction is by forming
an n× (sn − 1)/(s− 1) matrix whose columns are all nonzero n-tuples (z1, ..., zn)T from GF(s)
in which the first nonzero zi is 1. The OA is then formed by taking all the linear combinations
of the rows of this generator matrix.

An example of the construction of an OA, taken from Hedayat et al. (1999), is shown in
Figure 4.

(a)⎛
⎝

1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠

(b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0
1 0 0 1 1 0 1
0 1 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 1 0
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 1 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Example of the construction of an OA(8; 2, 7, 2) using the Rao-Hamming construction.
Figure 4(a) contains the generator matrix. Figure 4(b) shows the OA constructed from it.

4.2 Difference scheme algorithm

Difference schemes (DS), denoted by D(r, c, s) are tables of r rows and c columns with
s symbols such that the difference between each pair of columns yields all the symbols
{0, 1, 2, ..., s − 1}.

If you have a difference scheme, you easily generate an orthogonal array by simply replicating
the difference scheme s times and adding to each replication all symbols in turn modulo (s):
if the sum exceeds s, you divide by s and keep the remainder.

So the problem becomes finding difference schemes. For instance, the multiplicative group of
a Galois field is a difference scheme.
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to design a system whereby any two of the three senior tellers can gain access to the vault but
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of the first element in the row.

Can a group of t − 1 participants compute K? Any possible value of the secret along with the
actual shares of these t − 1 participants determine a unique row of the OA. Hence, no value
of the secret can be ruled out. Moreover, it is clear that the t − 1 participants can obtain no
information about the secret.

4. Algorithms to construct OAs

This section presents some of the state-of-art algorithms for the construction of OAs. Special
reference is done to the Bush’s construction, which is benefited from the approach presented
in this chapter because the efficient way of constructing the OAs using logarithm tables.
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orthogonal array then consist of all columns of the form shown in Equation 4.
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1 0 0 1 1 0 1
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⎞
⎠
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 4. Example of the construction of an OA(8; 2, 7, 2) using the Rao-Hamming construction.
Figure 4(a) contains the generator matrix. Figure 4(b) shows the OA constructed from it.

4.2 Difference scheme algorithm

Difference schemes (DS), denoted by D(r, c, s) are tables of r rows and c columns with
s symbols such that the difference between each pair of columns yields all the symbols
{0, 1, 2, ..., s − 1}.

If you have a difference scheme, you easily generate an orthogonal array by simply replicating
the difference scheme s times and adding to each replication all symbols in turn modulo (s):
if the sum exceeds s, you divide by s and keep the remainder.

So the problem becomes finding difference schemes. For instance, the multiplicative group of
a Galois field is a difference scheme.
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⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 5. Example of a difference scheme D(6, 6, 3).

An example is shown in Figure 5, as the multiplication table of GF(22).

Given that the DS D(r, c, s) is an array of size r × c based on the s elements of a group G so that
for any two columns the element-wise differences contain every element of G equally often;
clearly r = λs for some λ called the index.

If D = D(r, c, s), then

⎡
⎢⎢⎣

D + 0
D + 1

...
D + (s − 1)

⎤
⎥⎥⎦ is an OA(rs; 2, c, s). Figure 6 shows the construction of

the OA(16; 2, 4, 4) from a D(4, 4, 4).

(a)⎛
⎜⎜⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

⎞
⎟⎟⎠

(b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2
1 1 1 1
1 2 3 0
1 3 0 2
1 0 2 3
2 2 2 2
2 3 0 1
2 0 1 3
2 1 3 0
3 3 3 3
3 0 1 2
3 1 2 0
3 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6. Generated orthogonal array OA(16; 2, 4, 4) using the D(4, 4, 4). Figure 6(a) presents
the different scheme D = (4, 4, 4). Figure 6(b) the OA constructed.

4.3 Hadamard matrix algorithms

Hadamard matrix is a DS with only two symbols: {−1,+1}. The interest in Hadamard
matrices lies in the Hadamard conjecture which states that all multiples of 4 have a
corresponding Hadamard matrix. Hadamard matrices are square matrices with a fixed
column of just 1’s. The smallest one is shown in Figure 7(a).
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(a)

H2 =

⎛
⎝

1 1

1 −1

⎞
⎠

(b)

H4 =

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

Fig. 7. Example of two Hadamard matrices H2, H4 of orders 2 and 4, respectively.

The Hadamard matrix H4, that is shown in Figure 7(b), does not differ from the Rao-Hamming
OA(4; 2, 3, 2) .

Figure 8 shows another example of a Hadamard matrix. This time it is shown its
corresponding OA resulting after the removal of the first column and a symbol recoding.

(a)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8. Figure 8(a) shows a Hadamard matrix of order 8; Figure 8(b) presents its equivalent
OA2(2, 7, 2).

Not all Hadamard matrices can be generated by the Rao Hamming algorithm just by the
addition of a column of 1’s. Rao Hamming works if the number of levels is a power of a prime
number. And this happens in a Hadamard matrix, where the number of levels is 2 (prime
number). But not all Rao Hamming arrays are square after the addition of a single column of
1’s. Moreover, the number of rows in a Rao Hamming OA is a power of the number of levels.

Remember the general form OA(sn; 2, (sn− 1)/(s− 1), s), Hadamard matrices are square and
the number of rows in the array need only to be a multiple of 4. For instance, 12 is a multiple
of 4, it is not a prime power being the product 3. No Rao Hamming construction would yield
a H12 matrix.

4.4 The Bush’s construction

The Bush’s construction is used to construct OA(vt; t, v+ 1, v), where v = pn is a prime power.
This construction considers all the elements of the Galois Field GF(v), and all the polynomials
yj(x) = at−1xt−1 + at−2xt−2 + . . . + a1x + a0, where ai ∈ GF(v). The number of polynomials
yj(x) are vt, due to the fact that there are v different coefficients per each of the t terms.

Let’s denote each element of GF(v) as ei, for 0 ≤ i ≤ v − 1. The construction of an OA
following the Bush’s construction is done as follow:

1. Generate a matrix M formed by vt rows and v + 1 columns;

2. Label the first v columns of M with an element ei ∈ GF(v);
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⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 2 1 2 0
0 2 1 1 0 2
0 2 2 0 1 1
0 0 1 2 2 1
0 1 0 2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

Fig. 5. Example of a difference scheme D(6, 6, 3).

An example is shown in Figure 5, as the multiplication table of GF(22).

Given that the DS D(r, c, s) is an array of size r × c based on the s elements of a group G so that
for any two columns the element-wise differences contain every element of G equally often;
clearly r = λs for some λ called the index.

If D = D(r, c, s), then

⎡
⎢⎢⎣

D + 0
D + 1

...
D + (s − 1)

⎤
⎥⎥⎦ is an OA(rs; 2, c, s). Figure 6 shows the construction of

the OA(16; 2, 4, 4) from a D(4, 4, 4).

(a)⎛
⎜⎜⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2

⎞
⎟⎟⎠

(b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 1 2 3
0 2 3 1
0 3 1 2
1 1 1 1
1 2 3 0
1 3 0 2
1 0 2 3
2 2 2 2
2 3 0 1
2 0 1 3
2 1 3 0
3 3 3 3
3 0 1 2
3 1 2 0
3 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 6. Generated orthogonal array OA(16; 2, 4, 4) using the D(4, 4, 4). Figure 6(a) presents
the different scheme D = (4, 4, 4). Figure 6(b) the OA constructed.

4.3 Hadamard matrix algorithms

Hadamard matrix is a DS with only two symbols: {−1,+1}. The interest in Hadamard
matrices lies in the Hadamard conjecture which states that all multiples of 4 have a
corresponding Hadamard matrix. Hadamard matrices are square matrices with a fixed
column of just 1’s. The smallest one is shown in Figure 7(a).
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(a)

H2 =

⎛
⎝

1 1

1 −1

⎞
⎠

(b)

H4 =

⎛
⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎠

Fig. 7. Example of two Hadamard matrices H2, H4 of orders 2 and 4, respectively.

The Hadamard matrix H4, that is shown in Figure 7(b), does not differ from the Rao-Hamming
OA(4; 2, 3, 2) .

Figure 8 shows another example of a Hadamard matrix. This time it is shown its
corresponding OA resulting after the removal of the first column and a symbol recoding.

(a)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(b)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 8. Figure 8(a) shows a Hadamard matrix of order 8; Figure 8(b) presents its equivalent
OA2(2, 7, 2).

Not all Hadamard matrices can be generated by the Rao Hamming algorithm just by the
addition of a column of 1’s. Rao Hamming works if the number of levels is a power of a prime
number. And this happens in a Hadamard matrix, where the number of levels is 2 (prime
number). But not all Rao Hamming arrays are square after the addition of a single column of
1’s. Moreover, the number of rows in a Rao Hamming OA is a power of the number of levels.

Remember the general form OA(sn; 2, (sn− 1)/(s− 1), s), Hadamard matrices are square and
the number of rows in the array need only to be a multiple of 4. For instance, 12 is a multiple
of 4, it is not a prime power being the product 3. No Rao Hamming construction would yield
a H12 matrix.

4.4 The Bush’s construction

The Bush’s construction is used to construct OA(vt; t, v+ 1, v), where v = pn is a prime power.
This construction considers all the elements of the Galois Field GF(v), and all the polynomials
yj(x) = at−1xt−1 + at−2xt−2 + . . . + a1x + a0, where ai ∈ GF(v). The number of polynomials
yj(x) are vt, due to the fact that there are v different coefficients per each of the t terms.

Let’s denote each element of GF(v) as ei, for 0 ≤ i ≤ v − 1. The construction of an OA
following the Bush’s construction is done as follow:

1. Generate a matrix M formed by vt rows and v + 1 columns;

2. Label the first v columns of M with an element ei ∈ GF(v);
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3. Label each row of M with a polynomial yj(x);

4. For each cell mj,i ∈ M, 0 ≤ j ≤ vt − 1, 0 ≤ i ≤ v − 1, assign the value u whenever
yj(ei) = eu (i.e. evaluates the polynomial yj(x) with x = ei and determines the result in
the domain of GF(v)); and

5. Assign value u in cell mj,i, for 0 ≤ j ≤ vt − 1, i = v, if eu is the leading coefficient of yj(x),
i.e. eu = at−1 in the term at−1xt−1 of the polynomial yj(x).

The constructed matrix M following the previous steps is an OA. We point out in this moment
that the construction requires the evaluation of the polynomials yj(x) to construct the OA. The
following subsection describes the general idea of the algorithm that does this construction
with an efficient evaluation of these polynomials.

This section presented a survey of some construction reported in the scientific literature that
are used to generate OAs. The following section will present an algorithm for the generation
of logarithm tables of finite fields.

5. Algorithm for the construction of logarithm tables of Galois fields

In Barker (1986) a more efficient method to multiply two polynomials in GF(pn) is presented.
The method is based on the definition of logarithms and antilogarithms in GF(pn). According
with Niederreiter (1990), given a primitive element ρ of a finite field GF(pn), the discrete
logarithm of a nonzero element u ∈ GF(pn) is that integer k, 1 ≤ k ≤ pn − 1, for which
u = ρk. The antilogarithm for an integer k given a primitive element ρ in GF(pn) is the element
u ∈ GF(pn) such that u = ρk. Table 1 shows the table of logarithms and antilogarithms for the
elements u ∈ GF(32) using the primitive element x2 = 2x + 1; column 1 shows the elements
in GF(32) (the antilogarithm) and column 2 the logarithm.

Using the definition of logarithms and antilogarithms in GF(pn), the multiplication between
two polynomials P1(x)P2(x) ∈ GF(pn) can be done using their logarithms l1 =
log(P1(x)), l2 = log(P2(x)). First, the addition of logarithms l1 + l2 is done and then the
antilogarithm of the result is computed.

Element u ∈ GF(pn) log2x+1(u)

1 0
x 1

2x + 1 2
2x + 2 3

2 4
2x 5

x + 2 6
x + 1 7

Table 1. Logarithm table of GF(32) using the primitive element 2x + 1.

Torres-Jimenez et al. (2011) proposed an algorithm for the construction of logarithm tables
for Galois Fields GF(pn). The pseudocode is shown in Algorithm 5.1. The algorithm
simultaneously finds a primitive element and constructs the logarithm table for a given
GF(pn).
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Algorithm 5.1: BUILDLOGARITHMTABLE(p, n)

for each ρ ∈ GF(pn)− 0

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L ← ∅
P(x) ← 1
k ← 0
while (P(x), k) �∈ L and k < pn − 1

do

⎧
⎨
⎩
L ← L�

(P(x), k)
k ← k + 1
P(x) ← p ∗ P(x)

if k = pn − 1
then

�
return (ρ)

return (L)

Now, it follows the presentation of the core of this chapter, the efficient implementation of the
Bush construction for OAs, based on a modification of the algorithm presented in this section.

6. Efficient construction of OAs

The idea that leads to an efficient construction of OAs through the Bush’s construction relies
on the algorithm proposed in (Torres-Jimenez et al., 2011). This algorithm computes the
logarithm tables and the primitive element of a given Galois Field GF(v). In this chapter,
it is proposed an extension of this algorithm such that it can be used in combination with the
Bush’s construction to efficiently construct OAs of index unity. The result is an algorithm that
uses only additions and modulus operations to evaluate the polynomials yj(x).

Let’s show an example of this contribution. Suppose that it is wanted to construct the
OA(43; 3, 5, 4). This array has an alphabet v = pn = 22 = 4 and size 64 × 5. To construct
it, it is required the polynomial x + 1 as the primitive element of GF(22), and the logarithm
table shown in Table 2(a) (both computed using the algorithm in (Torres-Jimenez et al.,
2011)). Table 2(b) is a modified version of the logarithm table that contains all the elements
ei ∈ GF(22) (this includes e0, the only one which can not be generated by powers of the
primitive element).

(a)

Power Polynomial in GF(22)

0 1
1 x
2 x + 1

(b)

Element ei ∈ GF(22) Polynomial in GF(22)

e0 0
e1 1
e2 x
e3 x + 1

Table 2. Logarithm table for GF(22), with primitive element x + 1.

The following step in the construction of the OA is the construction of the matrix M. For this
purpose, firstly it is labeled its first v columns with the elements ei ∈ GF(22); after that, the
rows are labeled with all the polynomials of maximum degree 2 and coefficients ej ∈ GF(22).
Next, it is defined the integer value u for each cell mj,i ∈ M, where 0 ≤ j ≤ vt − 1 and
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3. Label each row of M with a polynomial yj(x);

4. For each cell mj,i ∈ M, 0 ≤ j ≤ vt − 1, 0 ≤ i ≤ v − 1, assign the value u whenever
yj(ei) = eu (i.e. evaluates the polynomial yj(x) with x = ei and determines the result in
the domain of GF(v)); and

5. Assign value u in cell mj,i, for 0 ≤ j ≤ vt − 1, i = v, if eu is the leading coefficient of yj(x),
i.e. eu = at−1 in the term at−1xt−1 of the polynomial yj(x).

The constructed matrix M following the previous steps is an OA. We point out in this moment
that the construction requires the evaluation of the polynomials yj(x) to construct the OA. The
following subsection describes the general idea of the algorithm that does this construction
with an efficient evaluation of these polynomials.

This section presented a survey of some construction reported in the scientific literature that
are used to generate OAs. The following section will present an algorithm for the generation
of logarithm tables of finite fields.

5. Algorithm for the construction of logarithm tables of Galois fields

In Barker (1986) a more efficient method to multiply two polynomials in GF(pn) is presented.
The method is based on the definition of logarithms and antilogarithms in GF(pn). According
with Niederreiter (1990), given a primitive element ρ of a finite field GF(pn), the discrete
logarithm of a nonzero element u ∈ GF(pn) is that integer k, 1 ≤ k ≤ pn − 1, for which
u = ρk. The antilogarithm for an integer k given a primitive element ρ in GF(pn) is the element
u ∈ GF(pn) such that u = ρk. Table 1 shows the table of logarithms and antilogarithms for the
elements u ∈ GF(32) using the primitive element x2 = 2x + 1; column 1 shows the elements
in GF(32) (the antilogarithm) and column 2 the logarithm.

Using the definition of logarithms and antilogarithms in GF(pn), the multiplication between
two polynomials P1(x)P2(x) ∈ GF(pn) can be done using their logarithms l1 =
log(P1(x)), l2 = log(P2(x)). First, the addition of logarithms l1 + l2 is done and then the
antilogarithm of the result is computed.

Element u ∈ GF(pn) log2x+1(u)

1 0
x 1

2x + 1 2
2x + 2 3

2 4
2x 5

x + 2 6
x + 1 7

Table 1. Logarithm table of GF(32) using the primitive element 2x + 1.

Torres-Jimenez et al. (2011) proposed an algorithm for the construction of logarithm tables
for Galois Fields GF(pn). The pseudocode is shown in Algorithm 5.1. The algorithm
simultaneously finds a primitive element and constructs the logarithm table for a given
GF(pn).
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Algorithm 5.1: BUILDLOGARITHMTABLE(p, n)

for each ρ ∈ GF(pn)− 0

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L ← ∅
P(x) ← 1
k ← 0
while (P(x), k) �∈ L and k < pn − 1

do

⎧
⎨
⎩
L ← L�

(P(x), k)
k ← k + 1
P(x) ← p ∗ P(x)

if k = pn − 1
then

�
return (ρ)

return (L)

Now, it follows the presentation of the core of this chapter, the efficient implementation of the
Bush construction for OAs, based on a modification of the algorithm presented in this section.

6. Efficient construction of OAs

The idea that leads to an efficient construction of OAs through the Bush’s construction relies
on the algorithm proposed in (Torres-Jimenez et al., 2011). This algorithm computes the
logarithm tables and the primitive element of a given Galois Field GF(v). In this chapter,
it is proposed an extension of this algorithm such that it can be used in combination with the
Bush’s construction to efficiently construct OAs of index unity. The result is an algorithm that
uses only additions and modulus operations to evaluate the polynomials yj(x).

Let’s show an example of this contribution. Suppose that it is wanted to construct the
OA(43; 3, 5, 4). This array has an alphabet v = pn = 22 = 4 and size 64 × 5. To construct
it, it is required the polynomial x + 1 as the primitive element of GF(22), and the logarithm
table shown in Table 2(a) (both computed using the algorithm in (Torres-Jimenez et al.,
2011)). Table 2(b) is a modified version of the logarithm table that contains all the elements
ei ∈ GF(22) (this includes e0, the only one which can not be generated by powers of the
primitive element).

(a)

Power Polynomial in GF(22)

0 1
1 x
2 x + 1

(b)

Element ei ∈ GF(22) Polynomial in GF(22)

e0 0
e1 1
e2 x
e3 x + 1

Table 2. Logarithm table for GF(22), with primitive element x + 1.

The following step in the construction of the OA is the construction of the matrix M. For this
purpose, firstly it is labeled its first v columns with the elements ei ∈ GF(22); after that, the
rows are labeled with all the polynomials of maximum degree 2 and coefficients ej ∈ GF(22).
Next, it is defined the integer value u for each cell mj,i ∈ M, where 0 ≤ j ≤ vt − 1 and
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0 ≤ i ≤ v − 1, as the one satisfying yj(ei) = eu. Finally, it is generated the values of cell mj,i,
where the column i = v, using the value of the leading coefficient of the polynomial yj(x), for
each 0 ≤ j ≤ vt − 1. Table 3 shows part of the construction of the OA(43; 3, 5, 4) through this
method.

M Elements of GF(22)

e0 e1 e2 e3

yj(x) Polynomial 0 1 x x + 1
0 e0 {u|y0(e0) = eu} {u|y0(e1) = eu} {u|y0(e2) = eu} {u|y0(e3) = eu} e0

1 e1 {u|y1(e0) = eu} {u|y1(e1) = eu} {u|y1(e2) = eu} {u|y1(e3) = eu} e0

2 e2 {u|y2(e0) = eu} {u|y2(e1) = eu} {u|y2(e2) = eu} {u|y2(e3) = eu} e0

3 e3 {u|y3(e0) = eu} {u|y3(e1) = eu} {u|y3(e2) = eu} {u|y3(e3) = eu} e0

4 e1x {u|y4(e0) = eu} {u|y4(e1) = eu} {u|y4(e2) = eu} {u|y4(e3) = eu} e0

5 e1x + e1 {u|y5(e0) = eu} {u|y5(e1) = eu} {u|y5(e2) = eu} {u|y5(e3) = eu} e0

6 e1x + e2 {u|y6(e0) = eu} {u|y6(e1) = eu} {u|y6(e2) = eu} {u|y6(e3) = eu} e0

7 e1x + e3 {u|y7(e0) = eu} {u|y7(e1) = eu} {u|y7(e2) = eu} {u|y7(e3) = eu} e0

8 e2x {u|y8(e0) = eu} {u|y8(e1) = eu} {u|y8(e2) = eu} {u|y8(e3) = eu} e0

9 e2x + e1 {u|y9(e0) = eu} {u|y9(e1) = eu} {u|y9(e2) = eu} {u|y9(e3) = eu} e0

10 e2x + e2 {u|y10(e0) = eu} {u|y10(e1) = eu} {u|y10(e2) = eu} {u|y10(e3) = eu} e0

11 e2x + e3 {u|y11(e0) = eu} {u|y11(e1) = eu} {u|y11(e2) = eu} {u|y11(e3) = eu} e0

12 e3x {u|y12(e0) = eu} {u|y12(e1) = eu} {u|y12(e2) = eu} {u|y12(e3) = eu} e0

13 e3x + e1 {u|y13(e0) = eu} {u|y13(e1) = eu} {u|y13(e2) = eu} {u|y13(e3) = eu} e0

14 e3x + e2 {u|y14(e0) = eu} {u|y14(e1) = eu} {u|y14(e2) = eu} {u|y14(e3) = eu} e0

15 e3x + e3 {u|y15(e0) = eu} {u|y15(e1) = eu} {u|y15(e2) = eu} {u|y15(e3) = eu} e0

16 e1x2 {u|y16(e0) = eu} {u|y16(e1) = eu} {u|y16(e2) = eu} {u|y16(e3) = eu} e1

17 e1x2 + e1 {u|y17(e0) = eu} {u|y17(e1) = eu} {u|y17(e2) = eu} {u|y17(e3) = eu} e1

18 e1x2 + e2 {u|y18(e0) = eu} {u|y18(e1) = eu} {u|y18(e2) = eu} {u|y18(e3) = eu} e1

19 e1x2 + e3 {u|y19(e0) = eu} {u|y19(e1) = eu} {u|y19(e2) = eu} {u|y19(e3) = eu} e1

20 e1x2 + e1x {u|y20(e0) = eu} {u|y20(e1) = eu} {u|y20(e2) = eu} {u|y20(e3) = eu} e1

21 e1x2 + e1x + e1 {u|y21(e0) = eu} {u|y21(e1) = eu} {u|y21(e2) = eu} {u|y21(e3) = eu} e1

22 e1x2 + e1x + e2 {u|y22(e0) = eu} {u|y22(e1) = eu} {u|y22(e2) = eu} {u|y22(e3) = eu} e1

23 e1x2 + e1x + e3 {u|y23(e0) = eu} {u|y23(e1) = eu} {u|y23(e2) = eu} {u|y23(e3) = eu} e1

24 e1x2 + e2x {u|y24(e0) = eu} {u|y24(e1) = eu} {u|y24(e2) = eu} {u|y24(e3) = eu} e1

25 e1x2 + e2x + e1 {u|y25(e0) = eu} {u|y25(e1) = eu} {u|y25(e2) = eu} {u|y25(e3) = eu} e1

26 e1x2 + e2x + e2 {u|y26(e0) = eu} {u|y26(e1) = eu} {u|y26(e2) = eu} {u|y26(e3) = eu} e1

27 e1x2 + e2x + e3 {u|y27(e0) = eu} {u|y27(e1) = eu} {u|y27(e2) = eu} {u|y27(e3) = eu} e1

28 e1x2 + e3x {u|y28(e0) = eu} {u|y28(e1) = eu} {u|y28(e2) = eu} {u|y28(e3) = eu} e1

29 e1x2 + e3x + e1 {u|y29(e0) = eu} {u|y29(e1) = eu} {u|y29(e2) = eu} {u|y29(e3) = eu} e1

30 e1x2 + e3x + e2 {u|y30(e0) = eu} {u|y30(e1) = eu} {u|y30(e2) = eu} {u|y30(e3) = eu} e1

31 e1x2 + e3x + e3 {u|y31(e0) = eu} {u|y31(e1) = eu} {u|y31(e2) = eu} {u|y31(e3) = eu} e1
...

...
...

...
...

Table 3. Example of a partial construction of the OA(43; 3, 4, 5), using the Bush’s construction.
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During the definition of values eu, the polynomials yj(ei) must be evaluated. For example,
the evaluation of the polynomial y14 = e3x + e1 at value x = e2 yields y14(e2) = e3x + e1 =
e3 · e2 + e1 = e0. To obtain the result e0 it is necessary to multiply the polynomials e3 and e2,
and to add the result to e1. Here is where lies the main contribution shown in this chapter, it is
proposed to use the primitive element and the logarithm table constructed by the algorithm
in (Torres-Jimenez et al., 2011) to do the multiplication through additions. To do that they
are used equivalent powers of the primitive element of the elements ei ∈ GF(22) involved in
the operation, e.g. instead of multiplying (x + 1) · (x) we multiply x2 · x1. Then, the sum of
indices does the multiplication, and the antilogarithm obtains the correct result in GF(22). For
the case of x2 · x1 the result is x3 = x0 = e1. Finally, we add this result to e1 to complete the
operation (this yield the expected value e0). Note that whenever and operation yields a result
outside of the field, a modulus operations is required.

The pseudocode for the construction of OAs using the Bush’s construction and the logarithm
tables is shown in Algorithm 6.1. The logarithm and antilogarithm table Li,j is obtained
through the algorithm reported by Torres-Jimenez et al. (2011). After that, each element ei
and each polynomial yj(x) in GF(pn) are considered as the columns and rows of M, the
OA that is being constructed. Given that the value of each cell mi,j ∈ M is the index u of
the element eu ∈ GF(pn) such that yj(ei) = eu, the following step in the pseudocode is the
evaluation of the polynomial yj(x). This evaluation is done by determining the coefficient
of each term ak ∈ yj(x) and its index, i.e. the value of the element el ∈ GF(pn) that is the
coefficient of ak, and then adding it to i · d (the index of ei raised to the degree of the term ak).
A modulus operation is applied to the result to obtained v, and then the antilogarithm is used
over v such that the index it is able to get the value u of the element eu. Remember that the
algorithm BuildLogarithmTable simultaneously find the primitive element and computes
the logarithm and antilogarithm tables.

Algorithm 6.1: BUILDORTHOGONALARRAY(p, n)

L ← BuildLogarithmTable(p, n)
M ← ∅
for each element ei ∈ GF(pn)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ← i
for each polynomial yj(x) ∈ GF(pn)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ← j
for each term ak ∈ yj(x)

do

⎧⎪⎪⎨
⎪⎪⎩

d ← GetDegree(ak)
l ← GetIndexCoefficient(ak)
v ← (i · d + l)mod(pn − 1)
s ← Lv,1

mr,c ← s
return (M)

Note that in the pseudocode the more complex operation is the module between integers,
which can be reduced to shifts when GF(pn) involves powers of two. This fact makes the
algorithm easy and efficient for the construction of OAs, requiring only additions to operate,
and modulus operations when the field is over powers of primes different of two. After the
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0 ≤ i ≤ v − 1, as the one satisfying yj(ei) = eu. Finally, it is generated the values of cell mj,i,
where the column i = v, using the value of the leading coefficient of the polynomial yj(x), for
each 0 ≤ j ≤ vt − 1. Table 3 shows part of the construction of the OA(43; 3, 5, 4) through this
method.

M Elements of GF(22)

e0 e1 e2 e3

yj(x) Polynomial 0 1 x x + 1
0 e0 {u|y0(e0) = eu} {u|y0(e1) = eu} {u|y0(e2) = eu} {u|y0(e3) = eu} e0

1 e1 {u|y1(e0) = eu} {u|y1(e1) = eu} {u|y1(e2) = eu} {u|y1(e3) = eu} e0

2 e2 {u|y2(e0) = eu} {u|y2(e1) = eu} {u|y2(e2) = eu} {u|y2(e3) = eu} e0

3 e3 {u|y3(e0) = eu} {u|y3(e1) = eu} {u|y3(e2) = eu} {u|y3(e3) = eu} e0

4 e1x {u|y4(e0) = eu} {u|y4(e1) = eu} {u|y4(e2) = eu} {u|y4(e3) = eu} e0

5 e1x + e1 {u|y5(e0) = eu} {u|y5(e1) = eu} {u|y5(e2) = eu} {u|y5(e3) = eu} e0

6 e1x + e2 {u|y6(e0) = eu} {u|y6(e1) = eu} {u|y6(e2) = eu} {u|y6(e3) = eu} e0

7 e1x + e3 {u|y7(e0) = eu} {u|y7(e1) = eu} {u|y7(e2) = eu} {u|y7(e3) = eu} e0

8 e2x {u|y8(e0) = eu} {u|y8(e1) = eu} {u|y8(e2) = eu} {u|y8(e3) = eu} e0

9 e2x + e1 {u|y9(e0) = eu} {u|y9(e1) = eu} {u|y9(e2) = eu} {u|y9(e3) = eu} e0

10 e2x + e2 {u|y10(e0) = eu} {u|y10(e1) = eu} {u|y10(e2) = eu} {u|y10(e3) = eu} e0

11 e2x + e3 {u|y11(e0) = eu} {u|y11(e1) = eu} {u|y11(e2) = eu} {u|y11(e3) = eu} e0

12 e3x {u|y12(e0) = eu} {u|y12(e1) = eu} {u|y12(e2) = eu} {u|y12(e3) = eu} e0

13 e3x + e1 {u|y13(e0) = eu} {u|y13(e1) = eu} {u|y13(e2) = eu} {u|y13(e3) = eu} e0

14 e3x + e2 {u|y14(e0) = eu} {u|y14(e1) = eu} {u|y14(e2) = eu} {u|y14(e3) = eu} e0

15 e3x + e3 {u|y15(e0) = eu} {u|y15(e1) = eu} {u|y15(e2) = eu} {u|y15(e3) = eu} e0

16 e1x2 {u|y16(e0) = eu} {u|y16(e1) = eu} {u|y16(e2) = eu} {u|y16(e3) = eu} e1

17 e1x2 + e1 {u|y17(e0) = eu} {u|y17(e1) = eu} {u|y17(e2) = eu} {u|y17(e3) = eu} e1

18 e1x2 + e2 {u|y18(e0) = eu} {u|y18(e1) = eu} {u|y18(e2) = eu} {u|y18(e3) = eu} e1

19 e1x2 + e3 {u|y19(e0) = eu} {u|y19(e1) = eu} {u|y19(e2) = eu} {u|y19(e3) = eu} e1

20 e1x2 + e1x {u|y20(e0) = eu} {u|y20(e1) = eu} {u|y20(e2) = eu} {u|y20(e3) = eu} e1

21 e1x2 + e1x + e1 {u|y21(e0) = eu} {u|y21(e1) = eu} {u|y21(e2) = eu} {u|y21(e3) = eu} e1

22 e1x2 + e1x + e2 {u|y22(e0) = eu} {u|y22(e1) = eu} {u|y22(e2) = eu} {u|y22(e3) = eu} e1

23 e1x2 + e1x + e3 {u|y23(e0) = eu} {u|y23(e1) = eu} {u|y23(e2) = eu} {u|y23(e3) = eu} e1

24 e1x2 + e2x {u|y24(e0) = eu} {u|y24(e1) = eu} {u|y24(e2) = eu} {u|y24(e3) = eu} e1

25 e1x2 + e2x + e1 {u|y25(e0) = eu} {u|y25(e1) = eu} {u|y25(e2) = eu} {u|y25(e3) = eu} e1

26 e1x2 + e2x + e2 {u|y26(e0) = eu} {u|y26(e1) = eu} {u|y26(e2) = eu} {u|y26(e3) = eu} e1

27 e1x2 + e2x + e3 {u|y27(e0) = eu} {u|y27(e1) = eu} {u|y27(e2) = eu} {u|y27(e3) = eu} e1

28 e1x2 + e3x {u|y28(e0) = eu} {u|y28(e1) = eu} {u|y28(e2) = eu} {u|y28(e3) = eu} e1

29 e1x2 + e3x + e1 {u|y29(e0) = eu} {u|y29(e1) = eu} {u|y29(e2) = eu} {u|y29(e3) = eu} e1

30 e1x2 + e3x + e2 {u|y30(e0) = eu} {u|y30(e1) = eu} {u|y30(e2) = eu} {u|y30(e3) = eu} e1

31 e1x2 + e3x + e3 {u|y31(e0) = eu} {u|y31(e1) = eu} {u|y31(e2) = eu} {u|y31(e3) = eu} e1
...

...
...

...
...

Table 3. Example of a partial construction of the OA(43; 3, 4, 5), using the Bush’s construction.
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During the definition of values eu, the polynomials yj(ei) must be evaluated. For example,
the evaluation of the polynomial y14 = e3x + e1 at value x = e2 yields y14(e2) = e3x + e1 =
e3 · e2 + e1 = e0. To obtain the result e0 it is necessary to multiply the polynomials e3 and e2,
and to add the result to e1. Here is where lies the main contribution shown in this chapter, it is
proposed to use the primitive element and the logarithm table constructed by the algorithm
in (Torres-Jimenez et al., 2011) to do the multiplication through additions. To do that they
are used equivalent powers of the primitive element of the elements ei ∈ GF(22) involved in
the operation, e.g. instead of multiplying (x + 1) · (x) we multiply x2 · x1. Then, the sum of
indices does the multiplication, and the antilogarithm obtains the correct result in GF(22). For
the case of x2 · x1 the result is x3 = x0 = e1. Finally, we add this result to e1 to complete the
operation (this yield the expected value e0). Note that whenever and operation yields a result
outside of the field, a modulus operations is required.

The pseudocode for the construction of OAs using the Bush’s construction and the logarithm
tables is shown in Algorithm 6.1. The logarithm and antilogarithm table Li,j is obtained
through the algorithm reported by Torres-Jimenez et al. (2011). After that, each element ei
and each polynomial yj(x) in GF(pn) are considered as the columns and rows of M, the
OA that is being constructed. Given that the value of each cell mi,j ∈ M is the index u of
the element eu ∈ GF(pn) such that yj(ei) = eu, the following step in the pseudocode is the
evaluation of the polynomial yj(x). This evaluation is done by determining the coefficient
of each term ak ∈ yj(x) and its index, i.e. the value of the element el ∈ GF(pn) that is the
coefficient of ak, and then adding it to i · d (the index of ei raised to the degree of the term ak).
A modulus operation is applied to the result to obtained v, and then the antilogarithm is used
over v such that the index it is able to get the value u of the element eu. Remember that the
algorithm BuildLogarithmTable simultaneously find the primitive element and computes
the logarithm and antilogarithm tables.

Algorithm 6.1: BUILDORTHOGONALARRAY(p, n)

L ← BuildLogarithmTable(p, n)
M ← ∅
for each element ei ∈ GF(pn)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c ← i
for each polynomial yj(x) ∈ GF(pn)

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ← j
for each term ak ∈ yj(x)

do

⎧⎪⎪⎨
⎪⎪⎩

d ← GetDegree(ak)
l ← GetIndexCoefficient(ak)
v ← (i · d + l)mod(pn − 1)
s ← Lv,1

mr,c ← s
return (M)

Note that in the pseudocode the more complex operation is the module between integers,
which can be reduced to shifts when GF(pn) involves powers of two. This fact makes the
algorithm easy and efficient for the construction of OAs, requiring only additions to operate,
and modulus operations when the field is over powers of primes different of two. After the
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construction of the OA, the number of operations required by the algorithm are bounded by
O(N · t2), due to it requires t operations for the construction of an OA matrix of size N × (t +
1).

7. Efficient constructions of CAs

This section analyzes the case when Covering Arrays can be constructed from cyclotomy
by rotating a vector created from an OA(Colbourn, 2010). It is another process that can be
benefited from the previously constructed logarithm tables. The cyclotomy process requires
the test of different cyclotomic vectors for the construction of CAs. This vectors can be
constructed using the logarithm table. The rest of the section details a bit more about CAs
and this process of construction.

Definition 2 (Covering Array). Let N, t, k, v be positive integers with t ≤ N. A covering array
CA(N; t, k, v), with strength t and alphabet size v is an N × k array with entries from {0, 1, ..., k − 1}
and the property that any N × t sub-array has all vt possible t-tuples occurring at least once.

Figure 9 shows the corresponding CA(9; 2, 4, 3). The strength of this CA is t = 2 and the
alphabet is v = 3, hence the combinations {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0},
{2, 1}, {2, 2} appear at least once in each subset of size N × 2 of the CA. The CAs are
commonly used instead of full experimental designs (FED) when constructing test sets, it is
so because the relaxation produced by the use of a small interaction in a CA t = 2 (pair-wise)
significantly reduce the number of test cases in a test set, implying in some cases savings of
more than 90 percent in costs (time or other resources); the confidence level of the testing
using combinatorial objects as CA increases with the interaction level involved (Kuhn et al.,
2008).

When a CA contains the minimum possible number of rows, it is optimal and its size is called
the Covering Array Number (CAN). The CAN is defined according to Equation 5.

CAN(t, k, v) = min
N∈N

{N : ∃ CA(N; t, k, v)}. (5)

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v), however, this
number is rarely achieved. Therefore determining achievable lower bounds is one of the main
research lines for CAs; this problem has been overcome with the reduction of the known upper
bounds. The construction of cyclotomic matrices can help to accomplish this purpose.

According to Colbourn (2010), a cyclotomic matrix (CM) is an array O of size k × k that is
formed by k rotations of a vector of size k (called starter vector). Table 4 gives an example of a
CM.

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1

Table 4. CM of size 7 × 7 formed from the starter vector {0, 0, 0, 1, 0, 1, 1}. This matrix is a
CA(7; 2, 7, 2).

84 Cryptography and Security in Computing Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 15

The strategy to construct a cyclotomic matrix involves the identification of a good vector
starter. This task can be facilitated using the logarithm table derived from a Galois field.
The construction is simple. The first step is the generation of the logarithm table for a certain
GF(pn). After that, the table is transposed in order to transform it into a vector starter v.
Then, by using all the possible rotations of it, the cyclotomic matrix is constructed. Finally, the
validation of the matrix is done such that a CA can be identified.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 9. Covering array where N = 9, t = 2, k = 4 and v = 3.

Figure 10 shows an example of a cyclotomic matrix.

(a) Vector Starter

0 0 1 1 0 0 0 0 0 0 1 1 0

(b) Cyclotomic matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 1 1 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 10. Example of a cyclotomic vector V, or a vector starter, and the cyclotomic matrix
formed with it. The matrix constitutes a CA(13; 2, 13, 2).
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construction of the OA, the number of operations required by the algorithm are bounded by
O(N · t2), due to it requires t operations for the construction of an OA matrix of size N × (t +
1).

7. Efficient constructions of CAs

This section analyzes the case when Covering Arrays can be constructed from cyclotomy
by rotating a vector created from an OA(Colbourn, 2010). It is another process that can be
benefited from the previously constructed logarithm tables. The cyclotomy process requires
the test of different cyclotomic vectors for the construction of CAs. This vectors can be
constructed using the logarithm table. The rest of the section details a bit more about CAs
and this process of construction.

Definition 2 (Covering Array). Let N, t, k, v be positive integers with t ≤ N. A covering array
CA(N; t, k, v), with strength t and alphabet size v is an N × k array with entries from {0, 1, ..., k − 1}
and the property that any N × t sub-array has all vt possible t-tuples occurring at least once.

Figure 9 shows the corresponding CA(9; 2, 4, 3). The strength of this CA is t = 2 and the
alphabet is v = 3, hence the combinations {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0},
{2, 1}, {2, 2} appear at least once in each subset of size N × 2 of the CA. The CAs are
commonly used instead of full experimental designs (FED) when constructing test sets, it is
so because the relaxation produced by the use of a small interaction in a CA t = 2 (pair-wise)
significantly reduce the number of test cases in a test set, implying in some cases savings of
more than 90 percent in costs (time or other resources); the confidence level of the testing
using combinatorial objects as CA increases with the interaction level involved (Kuhn et al.,
2008).

When a CA contains the minimum possible number of rows, it is optimal and its size is called
the Covering Array Number (CAN). The CAN is defined according to Equation 5.

CAN(t, k, v) = min
N∈N

{N : ∃ CA(N; t, k, v)}. (5)

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v), however, this
number is rarely achieved. Therefore determining achievable lower bounds is one of the main
research lines for CAs; this problem has been overcome with the reduction of the known upper
bounds. The construction of cyclotomic matrices can help to accomplish this purpose.

According to Colbourn (2010), a cyclotomic matrix (CM) is an array O of size k × k that is
formed by k rotations of a vector of size k (called starter vector). Table 4 gives an example of a
CM.

0 0 0 1 0 1 1
0 0 1 0 1 1 0
0 1 0 1 1 0 0
1 0 1 1 0 0 0
0 1 1 0 0 0 1
1 1 0 0 0 1 0
1 0 0 0 1 0 1

Table 4. CM of size 7 × 7 formed from the starter vector {0, 0, 0, 1, 0, 1, 1}. This matrix is a
CA(7; 2, 7, 2).

84 Cryptography and Security in Computing Construction of Orthogonal Arrays of Index Unity Using Logarithm Tables for Galois Fields 15

The strategy to construct a cyclotomic matrix involves the identification of a good vector
starter. This task can be facilitated using the logarithm table derived from a Galois field.
The construction is simple. The first step is the generation of the logarithm table for a certain
GF(pn). After that, the table is transposed in order to transform it into a vector starter v.
Then, by using all the possible rotations of it, the cyclotomic matrix is constructed. Finally, the
validation of the matrix is done such that a CA can be identified.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 9. Covering array where N = 9, t = 2, k = 4 and v = 3.

Figure 10 shows an example of a cyclotomic matrix.

(a) Vector Starter

0 0 1 1 0 0 0 0 0 0 1 1 0

(b) Cyclotomic matrix
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 0 0 0 0 0 1 1 0

0 1 1 0 0 0 0 0 0 1 1 0 0

1 1 0 0 0 0 0 0 1 1 0 0 0

1 0 0 0 0 0 0 1 1 0 0 0 1

0 0 0 0 0 0 1 1 0 0 0 1 1

0 0 0 0 0 1 1 0 0 0 1 1 0

0 0 0 0 1 1 0 0 0 1 1 0 0

0 0 0 1 1 0 0 0 1 1 0 0 0

0 0 1 1 0 0 0 1 1 0 0 0 0

0 1 1 0 0 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 10. Example of a cyclotomic vector V, or a vector starter, and the cyclotomic matrix
formed with it. The matrix constitutes a CA(13; 2, 13, 2).
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The pseudocode to generate the cyclotomic vector and construct the CA is presented in
Algorithm 7.1. There, the algorithm BuildLogarithmTable(p,n) is used to construct the
table of logarithm and antilogarithms L, where the ith row indicate the element ei ∈ GF(pn),
and the column 0 its logarithm, and the column 1 its antilogarithm. The first step is the
construction of the vector starter V , which is done by transposing the logarithm table L∗,0,
i.e. the first column of L. After that, the cyclotomic matrix M is constructed by rotating the
vector starter pn times, each time the vector rotated will constituted a row of M. Finally, the
cyclotomic matrix M must be validated as a CA to finally return it; one strategy to do so is
the parallel algorithm reported by Avila-George et al. (2010).

Algorithm 7.1: BUILDCOVERINGARRAY(p, n)

L ← BuildLogarithmTable(p, n)
for each ei ∈ GF(pn)

do
�Vi ← Li,0

for each ei ∈ GF(pn)

do

⎧⎨
⎩

for each ej ∈ GF(pn)

do
�

k ← (i + j)mod(pn)
mi,j ← Vk

if IsACoveringArray(M)
then

�
returnM

else
�

return∅

The following section presents some results derived from the research presented so far in this
chapter.

8. Results

An example of one of the best known upper bounds for CAs constructed through the use of
cyclotomic matrices is shown in Figure 11; the construction of such table was done with aid
of the implementation proposed in this chapter.

The results from the experiment are found in the repository of CAs of Torres-Jimenez 1. Some
of the CAs matrices presented there are derived from the use of cyclotomic vectors constructed
through the process described in the previous section, benefiting from the construction of the
logarithm tables. Table 5 shows new upper bounds derived from this process.

1 http://www.tamps.cinvestav.mx/~jtj/CA.php
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1
0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0
1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0
1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1
1 0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0
0 1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1
1 1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0
1 0 0 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 1
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Fig. 11. CA(67; 4, 67, 2) generated through a cyclotomic matrix. This CA is the best known
upper bound so far.
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The pseudocode to generate the cyclotomic vector and construct the CA is presented in
Algorithm 7.1. There, the algorithm BuildLogarithmTable(p,n) is used to construct the
table of logarithm and antilogarithms L, where the ith row indicate the element ei ∈ GF(pn),
and the column 0 its logarithm, and the column 1 its antilogarithm. The first step is the
construction of the vector starter V , which is done by transposing the logarithm table L∗,0,
i.e. the first column of L. After that, the cyclotomic matrix M is constructed by rotating the
vector starter pn times, each time the vector rotated will constituted a row of M. Finally, the
cyclotomic matrix M must be validated as a CA to finally return it; one strategy to do so is
the parallel algorithm reported by Avila-George et al. (2010).

Algorithm 7.1: BUILDCOVERINGARRAY(p, n)

L ← BuildLogarithmTable(p, n)
for each ei ∈ GF(pn)

do
�Vi ← Li,0

for each ei ∈ GF(pn)

do

⎧⎨
⎩

for each ej ∈ GF(pn)

do
�

k ← (i + j)mod(pn)
mi,j ← Vk

if IsACoveringArray(M)
then

�
returnM

else
�

return∅

The following section presents some results derived from the research presented so far in this
chapter.

8. Results

An example of one of the best known upper bounds for CAs constructed through the use of
cyclotomic matrices is shown in Figure 11; the construction of such table was done with aid
of the implementation proposed in this chapter.

The results from the experiment are found in the repository of CAs of Torres-Jimenez 1. Some
of the CAs matrices presented there are derived from the use of cyclotomic vectors constructed
through the process described in the previous section, benefiting from the construction of the
logarithm tables. Table 5 shows new upper bounds derived from this process.

1 http://www.tamps.cinvestav.mx/~jtj/CA.php
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Fig. 11. CA(67; 4, 67, 2) generated through a cyclotomic matrix. This CA is the best known
upper bound so far.
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k N Algorithm

1231 1231 Cyclotomy
1283 1283 Cyclotomy
1319 1319 Cyclotomy
1361 1361 Cyclotomy
1367 1367 Cyclotomy
1373 1373 Cyclotomy
1381 1381 Cyclotomy
1423 1423 Cyclotomy
1427 1427 Cyclotomy
1429 1429 Cyclotomy
1439 1439 Cyclotomy
1447 1447 Cyclotomy
1459 1459 Cyclotomy
1483 1483 Cyclotomy
1487 1487 Cyclotomy
1493 1493 Cyclotomy
1499 1499 Cyclotomy
1511 1511 Cyclotomy
1523 1523 Cyclotomy
1549 1549 Cyclotomy
1559 1559 Cyclotomy
1567 1567 Cyclotomy
1571 1571 Cyclotomy
1579 1579 Cyclotomy
1583 1583 Cyclotomy
1597 1597 Cyclotomy
1601 1601 Cyclotomy
1607 1607 Cyclotomy
1609 1609 Cyclotomy
1613 1613 Cyclotomy
1619 1619 Cyclotomy
1621 1621 Cyclotomy
1627 1627 Cyclotomy
1997 1997 Cyclotomy
1999 1999 Cyclotomy
2003 2003 Cyclotomy
2503 2503 Cyclotomy

Table 5. New upper bounds for CAs obtained through cyclotomic matrices.

9. Conclusions

The main objective of this chapter was the presentation of a efficient implementation of the
Bush’s construction for Orthogonal Arrays (OAs). Also, it was presented a brief summary of
the applications of OAs in cryptography, which could be benefited from the implementation.
In addition, the algorithm was also applied for the construction of cyclotomy matrices that
yielded new upper bounds of CAs.

Hence, the main contribution of this chapter consisted precisely in an algorithm that requires
only additions and modulus operations over finite fields for the construction of OAs. To do so,
it relies on a logarithm table constructed through a simple method reported in the literature. It
is also presented the details for this construction through the code required to be implemented.

Additionally, the algorithm to construct logarithm table was also slightly modified to
construct cyclotomy matrices for the construction of CAs. Here, it is presented the matrix
of the CA(67; 4, 67, 2) constructed from a cyclotomic matrix; it represents the best upper
bound known so far for these parameters of the CA. Also, it is reported a set of 37 upper
bounds of CAs obtained by the construction of the cyclotomy matrices constructed with
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support of the algorithm reported here. These matrices are available on request in http:
//www.tamps.cinvestav.mx/~jtj/CA.php.

In addition to the efficient implementation of the Bush’s construction through logarithm tables
of finite fields, this chapter also presents a brief summary of the combinatorial structures
called Orthogonal Arrays. The summary included formal definition, and basic notation
used in the scientific literature. Additionally, several applications of OAs in cryptography
were presented; and also, different methodologies to construct the combinatorial objects were
described; among them was the Bush’s construction.
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1. Introduction 
Elliptic curves cryptography was introduced independently by Victor Miller (Miller, 1986) 
and Neal Koblitz (Koblitz, 1987) in 1985. At that time elliptic curve cryptography was not 
actually seen as a promising cryptographic technique. As time progress and further research 
and intensive development done especially on the implementation side, elliptic curve 
cryptography is now being implemented widely. Elliptic curves cryptography offers smaller 
key size, bandwidth savings and faster in implementations when compared to the RSA 
(Rivest-Shamir-Adleman) cryptography which based its security on the integer factorization 
problem. The most interesting feature of the elliptic curves is the group structure of the 
points generated by the curves, where points on the elliptic curves form a group. The 
security of elliptic curves cryptography relies on the elliptic curves discrete logarithm 
problem. The elliptic curve discrete logarithm problem is analogous to the ordinary 
algebraic discrete logarithm problem, l = gx, where given the l and g, it is infeasible to 
compute the x.  Elliptic curve discrete logarithm problem deals with solving for n the 
relation P = nG. Given the point P and the point G, then it is very hard to find the integer n. 
To implement the discrete logarithm problem in elliptic curve cryptography, the main task 
is to compute the order of group of the curves or in other words the number of points on the 
curve. Computation to find the number of points on a curve, has given rise to several point 
counting algorithms. The Schoof and the SEA (Schoof-Elkies-Atkin) point counting 
algorithms will be part of the discussion in this chapter. This chapter is organized as follows: 
Section 2, gives some preliminaries on elliptic curves, and in section 3, elliptic curve discrete 
logarithm problem is discussed. Some relevant issues on elliptic curve cryptography is 
discussed in section 4, in which the Diffie-Hellman key exchange scheme, ElGamal elliptic 
curve cryptosystem and elliptic curve digital signature scheme are discussed here 
accompanied with some examples. Section 5 discussed the two point counting algorithms, 
Schoof algorithm and the SEA (Schoof-Elkies-Atkin) algorithm. Following the discussion in 
section 5, section 6 summaries some similarities and the differences between these two 
algorithms. Section 7 gives some brief literature on these two point counting algorithms.  
Finally, section 8 is the concluding remarks for this chapter. 

2. Elliptic curves 
Elliptic curves obtained their name from their relation to elliptic integrals that arise from the 
computation of the arc length of ellipses (Lawrence & Wade, 2006). Elliptic curves are 
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different from ellipses and have much more interesting properties when compared to 
ellipses. An elliptic curve is simply the collection of points in x-y plane that satisfy an 
equation 2 3 2

1 3 2 4 6y a xy a y x a x a x a      , and this equation could either be defined on 
real, rational, complex or finite field. This equation is called the Weierstrass equation.  

Definition 2.1: An elliptic curve E, defined over a field K is given by the Weierstrass equation:  

 2 3 2
1 3 2 4 6:E y a xy a y x a x a x a      ,  where  1 2 3 4 6, , , ,a a a a a K   (1) 

In other words, let K be any field, then we assume 1 2 3 4 6, , , ,a a a a a K  and the set of K-
rational points: 

2 3 2
1 3 2 4 6( ) {( , )| , , }.E K x y x y K y a xy a y x a x a x a         

If one is working with characteristic, char (K) 2,3 , then admissible changes of variables 
will transform the above equation (1) into the following form: 

 2 3y x ax b    where ,a b K   (2) 

But when one works with ( ) 2 or 3char K  , then the general form of equation is given by (3) 
and (4) respectively.  

 2 3 2
2 6y xy x a x a      (3) 

 2 3 2
2 6y x a x a     (4) 

2.1 Case for real numbers 

This case allows us to work with graphs of E.  The graph of E has two possible forms, whether 
the cubic polynomial has only one real root or three real roots. Now, we consider the following 
examples. Take the equations 2 ( 1)( 1)y x x x    and 2 3 73y x  . The graphs are as follows: 
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Fig. 1.1. 2 ( 1)( 1)y x x x    
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Fig. 1.2. 2 3 73y x  . 

Looking at the curves, how do you create an algebraic structure from something like this. 
Basically, one needs to figure out how to find a way to define addition of two points that lie 
on the curve such that the sum is another point which is also on the curve. If this could be 
done, together with an identity element, O , group structure can be constructed from points 
on the curves. The following are some formulas for points operations on the curves which is 
defined by the equation (2). 

1. P + O  = P, for all points P. 

2. ( )P O P    
3. The opposite point, ( , )P x y    
4. 1 1 2 2( , ) & ( , )P x y Q x y   , then 3 3( , )P Q R x y   , with 
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It can be shown that the addition law is associative, that is  

( ) ( )P Q R P Q R     . 

It is also commutative, 

P Q Q P   . 
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When several points are added, it does not matter in what order the points are added or 
how they are grouped together. Technically speaking, the points on the curve, E form an 
abelian group. The point O  is the identity element of this group. 

 
Fig. 1.3. Addition of elliptic curve points over a real number curve 

 
Fig. 1.4. Arbitrary points P and –P 

 
Fig. 1.5. Addition of a point to itself (point doubling) 
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2.2 Case for integer mod p (prime field) 

The operations of points on elliptic curves indicated in the previous section are fascinating 
and it is applicable to the area of cryptography. It so happen that similar formulas work if 
real numbers are replaced with finite field. An elliptic curve defined over prime field is 
cryptographically good if the curve is non-singular. This happens when the discriminant, 

3 216(4 27 ) 0a b   . That means, the polynomial 3x ax b   has no multiple roots. 

Now define an elliptic curve mod p, where p is a prime. For the rest of this section several 
examples are shown to exhibit its cryptographic use. 

Example 2.1: Let E be given by 2 3 2 1 (mod5)y x x   . First of all, compute and list all the 
points on the curve by letting x run through the values 0, 1, 2, 3, 4 and solve for y. Substitute 
each of these into the equation and find the values of y that solve the equation. 

2

2

2

2

2

0 1 4      2,3 (mod5)

1 2               no solution

2 11 1 16 1,4 (mod5)

3 32 2       no solution

4 71 1 16 1,4 (mod5)

x y y

x y

x y y

x y

x y y

      

   

      

    

      

 

Therefore, yield the following points along with point at infinity, the identity element: 

(0,2), (0,3), (2,1), (2,4), (4,1), (4,4), ( , )   
Elliptic curves mod p generates finite sets of points and it is these elliptic curves that are useful 
in cryptography. For cryptographic purposes, the polynomial 3x ax b   is assumed not to 
have multiple roots, as it will lead to weak curves and vulnerable to attack. Computation of 
points on elliptic curve can also be obtained by using the Mathematica software. Now we 
demonstrate how it can be done. First we need to choose the base point G, and the coefficient a. 
Then choose the coefficient b, so that G lies on the curve 2 3 (mod5)y x ax b   . Now say the 
point G = (1, 3 ) and choose  a = 2. Then substitute this into the equation, give the value of b = 1. 
Thus we have 2 3 2 1 (mod5)y x x   . The following points are generated using the 
Mathematica programming software. The command multsell is used to generate points from 
the curve and was fully written by Lawrence Washington (Lawrence & Wade, 2006). The 
following are the points generated using the multsell command. Thus the following points are 
generated.  

 (1,3),(3,2),(0,4),(0,1),(3,3),(1,2),( , ) 

2.2.1 Points addition and doubling on elliptic curves 

As it was shown earlier in the formulations of points on an elliptic curve, adding points on 
elliptic curve is not the same as adding points in the plane. Scalar multiplication of a point 
on the curve for which we have say, mP with m = 2185, will be evaluated as 
2(2(2(2(2(2(2(2(2(2(2(2(2P))) + P))))+ P ))) + P. This is called doubling operation. The 
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the curve and was fully written by Lawrence Washington (Lawrence & Wade, 2006). The 
following are the points generated using the multsell command. Thus the following points are 
generated.  

 (1,3),(3,2),(0,4),(0,1),(3,3),(1,2),( , ) 

2.2.1 Points addition and doubling on elliptic curves 

As it was shown earlier in the formulations of points on an elliptic curve, adding points on 
elliptic curve is not the same as adding points in the plane. Scalar multiplication of a point 
on the curve for which we have say, mP with m = 2185, will be evaluated as 
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following examples show us how addition and doubling operation exactly works using the 
formulation in section 2.1. 

Example 2.2 (point addition) : Suppose E is defined by 2 3 2 1 (mod5)y x x   . Now add 

the point (1, 2) and the point (3, 2). The slope m 2 2 0(mod5)
3 2


 


. Then, we have the 

following formulas to obtain the third point on the curve. 

3

3

1 3 4 1(mod5)
2 3(mod5)

x
y

     
  

 

This means that (1, 2) + (3, 2) = (1, 3), which is also on the curve. This can be verified using 
the Mathematica function, addell which was also developed by Lawrence C. Washington 
(Lawrence & Wade, 2006).  

Example 2.3 (point doubling):   Using the same E as in example 1.2, compute 2P P P  , 
where  P= ( 1, 3).  This operation is called doubling. 

 

3(1) 2 5 5 6 0(mod5)
2(3) 6
0 mod5)

m

m


    

 
 

3

3

1 1 2 3(mod5)
3 2(mod5)

x
y

     
  

 

Thus we have 3 33, 2x y  . Hence (1,3) (1,3) (3,2)  . This also can be verified using the 
Mathematica command, addell. For the ordinary scalar multiplication, say, 3P, is evaluated 
as 2P + P. 

3. Elliptic curve discrete logarithm problem 
The term, elliptic curve discrete logarithm problem (ECDLP) comes from the classical 
discrete logarithm problem, kx g (mod p), where we want to find k. In the context of elliptic 
curve, suppose that the points ,P Q  on an elliptic curve are made known and Q kP  for 
some k, then find the k. The difficulty of finding the k is what makes the elliptic curves an 
area which is cryptographically worth exploring for. In other words, elliptic curves 
cryptosystem rely its security on the difficulty of the discrete logarithm problem and the 
available efficient algorithms that can solve the discrete logarithm problem.  

Solving the elliptic curve discrete logarithm problem is very hard and until now there is no 
good and efficient algorithm available to solve the problem. Nevertheless there are a few 
algorithms being widely discussed, which is popular amongst the cryptanalysts. They are 
analog of Pohlig-Hellman attack, index calculus attack and baby step-giant step attack. The 
baby-step giant-step attack on discrete logarithm problem works for elliptic curves although 
it requires too much memory to be practical. Generally speaking, there is no algorithm 
available to solve the discrete logarithm problem in sub-exponential time.   
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4. Elliptic curve cryptography 
More than twenty years ago, when elliptic curve cryptography was first introduced 
independently by  

Neal Koblitz and Victor Miller, researchers never thought that elliptic curve cryptography 
could be implemented efficiently and securely. During those times the arithmetic operations 
on elliptic curves were difficult to perform. The arithmetic on the elliptic curves was not 
very efficient and it was only meant for academic interest. Since then, a great deal of effort 
has been put on the study of elliptic curve and its implementation in cryptography. By the 
late 1990s the implementations were ten times more efficient and this has made the elliptic 
curves cryptography as a challenge to the RSA (Rivest- Shamir-Adleman) cryptography.  

In recent years, the bit length for secure RSA use has increased and this has increased the 
processing load on applications using RSA. This is due to the development of the integer 
factorization algorithms which runs in sub-exponential time and as a result, RSA had to 
choose a very large key for it to sustain the intractability of the system, where as the elliptic 
curves cryptosystem require fewer bits or shorter key lengths for the same security level, 
since the security of the elliptic curve cryptography relies on the discrete logarithm problem 
and the best known algorithm to solve those problems is fully exponential time. Thus 
reduction in the time, cost as well as the size or bandwidth and memory requirements, 
which is crucial factor in some applications such as designs of smart cards, where both 
memory and processing power are limited but requiring high security. For an example, 160 
bits in elliptic curve cryptosystem is around 1024 bits in RSA cryptosystem. Nowadays, 
elliptic curve cryptosystem is one of the important components in Microsoft Windows, 
email applications, bank cards and in mobile phones.  

As it was mentioned earlier that elliptic curves cryptosystem based its security on the hardness 
of the discrete logarithm problem. One of the most important aspects in elliptic curve 
cryptosystem is choosing the right curve that preserved the hardness of discrete logarithm 
problem. One way to ensure this is to avoid singular curves as the discrete logarithm problem 
for these types of curves can reduce the hardness of the discrete logarithm problem.  The 
arithmetic on these curves can be much faster over these curves and this is due to the fact that 
several terms vanished and these types of curves are considered weak and the system will no 
longer be intractable. Therefore, as mentioned earlier in the previous section, elliptic curves 
suitable for cryptographic use are of type non-singular curves. 

4.1 Embedding plaintext on an elliptic curve 

Before messages can be encrypted, those messages need to be embedded on the points of the 
elliptic curve (Lawrence & Wade, 2006). The embedding process encoded the message m, 
which is already in a number form, as a point on the curve. Let K be a large positive integer 
so that a failure rate of 1 2 K is acceptable in the decoding process, where K Z . Assume 
now that m satisfies ( 1) .m K p   The message m is presented by a number ,x mK j   

where K is an integer and 0 j K  . For 0,1,2,...., 1j K  , compute 3x ax b  (mod p) and 
calculate the square root of it. If there is a square root y, then embedded point, ( , )mP x y . 
Otherwise, increase the j by one and again compute the new x.  
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cryptosystem is choosing the right curve that preserved the hardness of discrete logarithm 
problem. One way to ensure this is to avoid singular curves as the discrete logarithm problem 
for these types of curves can reduce the hardness of the discrete logarithm problem.  The 
arithmetic on these curves can be much faster over these curves and this is due to the fact that 
several terms vanished and these types of curves are considered weak and the system will no 
longer be intractable. Therefore, as mentioned earlier in the previous section, elliptic curves 
suitable for cryptographic use are of type non-singular curves. 

4.1 Embedding plaintext on an elliptic curve 

Before messages can be encrypted, those messages need to be embedded on the points of the 
elliptic curve (Lawrence & Wade, 2006). The embedding process encoded the message m, 
which is already in a number form, as a point on the curve. Let K be a large positive integer 
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where K is an integer and 0 j K  . For 0,1,2,...., 1j K  , compute 3x ax b  (mod p) and 
calculate the square root of it. If there is a square root y, then embedded point, ( , )mP x y . 
Otherwise, increase the j by one and again compute the new x.  
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Repeat this step until either the square root is found or j K . For the case where j equals K, 
the mapping of the message to a point failed.  In order to recover the message from the 
embedded point, ( , )mP x y . m can be recovered by computing /x K   . Once the messages 
have been encoded as points on an elliptic curve, then those points can be manipulated 
arithmetically to hide away those messages. This process is called encryption process. The 
reverse of the encryption process is called decryption process. There are three versions of 
classical algorithms, where arithmetic of elliptic curves is being adopted. They are the 
elliptic curve Diffie-Hellman key exchange, ElGamal elliptic curve cryptosystem and 
ElGamal elliptic curve digital signature algorithm. 

4.2 Elliptic curve diffie-hellman key exchange 

Elliptic curve Diffie-Hellman key exchange was first introduced by Diffie and Hellman 
in the year 1976 (Hellman, 1976). Now we exhibit the implementation of elliptic curve 
Diffie-Hellman key exchange. Alice and Bob want to exchange a key. Thus, they agreed 
on a public point generator or the base point G on an elliptic curve 

2 3 (mod ).y x ax b p    Now choose p = 7211 and a = 1 and the point G = (3, 5). This gives 
b = 7206. Alice chooses a random integer Ak = 12 and Bob chooses random integer Bk = 
23. Alice and Bob keep these private to themselves but publish the Ak G  and Bk G . In this 
case we have  

(1794,6375)Ak G   and  Bk G  = (3861,1242) . 

Alice now takes Bk G  and multiples by Ak  to get the: 

( ) 12(3861,1242) (1472,2098).A Bk k G    
Similarly, Bob takes Ak G  and multiples by Bk  to get the key: 

( ) 23(1794,6375) (1472,2098).B Ak k G    
Notice that Alice and Bob have the same key. 

4.3 Elliptic curve Elgamal cryptosystem 

Assuming we have a situation where there are two parties communicating through an 
insecure channel. The communication is between Alice and Bob. The following example 
exhibits the use of elliptic curves to encrypt and decrypt messages. 

Example 4.1: Firstly, we must generate a curve. Choose the prime p = 8831, the point  

G = ( , )x y  = (3,7)  and a = 1. To make G lie on the curve 2 3 (mod ),y x ax b p    we then 
obtain b = 19. Alice has a message, represented as a point (5,1743)mP   and she wants to send 
it to Bob.  Bob has chosen a random number 5ba   and published the point ba G  (7335,7164) . 
Alice then chooses a random number k = 4. She sends Bob (254,2386)kG   
and ( ) (269,1803)m bP k a G  . Bob then first calculate 5(254,2386) (4217,7788)ba kG   . Bob 
then subtract this from (269,1803) : 
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(269,1803) (4217,7788) (269,1803) (4217, 7788) (5,1743)      
Now Bob recovered the message (5,1743)mP   that Alice sent. 

4.4 ElGamal elliptic curve digital signature algorithm 

A digital signature is an electronic analogue of a hand written signature that allows a 
receiver to convince a third party that the message is in fact originated from the sender. 
ElGamal elliptic curve digital signature algorithm is an analogue to the digital signature 
algorithm proposed earlier by ElGamal in 1985 where some modifications were done to deal 
with points on an elliptic curve. 

Now suppose that Alice wants to sign a message m. assuming that m is an integer, Alice 
fixes an elliptic curve (mod )E p , where p is a large prime and a point A on E. We assume that 
the number of points n on E has been calculated and 0 m n  . Alice also has to choose a 
private integer a and compute B = aA. The prime p, the curve E, the integer n, and the points 
A and B are made public. To sign the message m, Alice does the following procedure: 

1. Alice chooses a random integer k with 1 k n   and gcd ( k, n) = 1, and computes R = 
kA = ( x, y ), 

2. Now, Alice computes 1( )(mod )s k m ax n   and 
3. Sends the signed message (m, R, s) to Bob. 

Note that R is a point on E, and m and s are integers. Next, Bob verifies the signature as 
follows: 

1. Bob now downloads Alice’s public information p, E, n, A, B, and 
2. Computes 1V xB sR   and 2V mA . 
3. Declares the signature valid if 1 2V V . 

We can verify that the verification procedure works because we have the following: 

1
1 2( )( ) ( )V xB sR xaA k m ax kA xaA m ax A mA V           

5. Point counting for E (mod p) 

Let 2 3: (mod )E y x bx c p    be an elliptic curve. Then the number of points on E denoted 
as #E(Fp), satisfies Hasse’s theorem (Jacobson & Hammer, 2009),(Lawrence & Wade,2006).  
According to Hasse’s theorem, the number of points on E, #E(Fp) , satisfy the following 
inequality. 

 1 2 # 1 2pp p E F p p       

Number of points on the curve E is called the order of the curve. The order of a point is 
defined by the number of times the point added to itself until the infinity is obtained. 
The order of any point on the curve E, will divide the order of the curve E. If the order of 
the curve has many factors or smooth, then this curve is not cryptographically good. For 
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defined by the number of times the point added to itself until the infinity is obtained. 
The order of any point on the curve E, will divide the order of the curve E. If the order of 
the curve has many factors or smooth, then this curve is not cryptographically good. For 
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cryptography, it is best if the order of the curve is a large prime number. Generally 
finding order of a curve is not trivial. In a situation where 5p   is a prime, for small p, 

points can be listed by letting 0,1,2,..., 1x p   and seeing when 3x ax b  is a square 
mod p. When p is large, it is infeasible to count the points on the curve by listing them. 
There are several algorithms that can deal with this problem, They are Schoof’s 
algorithm and Schoof-Elkies-Atkin (SEA) algorithm (Lawrence &Wade, 2006). In 
principal, there are approximately p points on the curve E and inclusive of the point at 
infinity, a total of p + 1 points is expected to be on the curve. The order of a curve is 
called ‘smooth’ if the order of the curve is divisible by many small factors, where this can 
brings point multiplications to identity (point at infinity). The type of curve which is 
desirable is of type ‘non-smooth’ order, where the order of the curve is divisible by a 
large prime number. The Schoof-Elkies-Atkin point counting method has become 
sufficiently efficient to find cryptographic curves of prime order over pF  with heuristic 

time 6(log )O p . In the next section, we will discuss the two counting point algorithms, 
the Schoof counting point algorithm and the Schoof-Elkies-Atkins counting point 
algorithm.  

5.1 Schoof and Schoof-Elkies-Atkin (SEA) point counting algorithms  

To determine the #E(Fp), one needs to compute 2 3z y x ax b     for each x in Fp and 
then test if z has a square root in Fp. If there exists y   Fp such that y2 = z, then we have 
2p + (a point of infinity) that is 2p + 1 elements in the group because each x value will 
produce two values of y. However, according to the theorem of finite fields, there is 
around ½ of the non-zero elements of Fp are quadratic residues. So, there is 
approximately p + 1 number of points. There are a few point counting algorithms and in 
this section, we focus only on two point counting methods. They are Schoof and Schoof-
Elkies-Atkin (SEA) point counting algorithms. In this chapter, we will describe the two 
algorithms in a brief manner. Readers are required to have some backgrounds in number 
theory and algebraic geometry. For more details on arithmetic of elliptic curves, one 
needs to refer to (Silverman, 1986) and for the introduction on Schoof algorithm, refer to 
(Schoof, 1985). 

5.1.1 Schoof’s algorithm 

René Schoof (Schoof, 1985) had introduced a deterministic polynomial time algorithm to 
compute the number of Fp-points of elliptic curve defined over a finite field Fp which was 
given by Weierstrass form in (2). Schoof algorithm has managed to compute the group order 
of over 200 digits. In the Schoof algorithm, the characteristic polynomial of Frobenius 
endomorphism is critical to the development of Schoof’s algorithm. Another crucial part in 
this algorithm is to compute the division polynomials in order to carry out the computation 
of the order of the group of elliptic curve. If the division polynomials have low degree, then 
the division polynomials is said to be efficiently computable.  

Let E be an elliptic curve defined over pF  denoted as / pE F , where pF is a prime field of 
characteristic p > 3. Define the Frobenius endomorphism p  as the following: 
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: ( ) ( )

( , ) ( , )
p p p

p p

E F E F

x y x y

 


 

The Frobenius map or endomorphism p satisfies the characteristic equation (5) 

 2 0, ( )p p pt p P F       (5) 

where pF  is the algebraic closure of the prime field pF . Let t is the trace of Frobenius 
endomorphism, then  the number of points,  # pE F is given in (6) as follows: 

  # 1 – , 2pE F p t t p    (6) 

Obviously from equation (5), we have for all points, ( , ) ( )pP x y E F   satisfying the 

following equation (7): 

  
2 2

( , ) ( , ) ( , )p p p px y p x y t x y    (7) 

where scalar multiplication by p or t signifies adding a point to itself p or t times 
respectively. For ( , ) [ ]x y E l , where [ ] { ( , ) ( )|[ ] }pE l P x y E F l P O    , here each P [ ]E l is 

called l–torsion point. If ( , ) ( , )p p p pt x y t x y where t  is t mod l and  p  known as p mod l 
where l is a prime. Now, the equation of (7) is reduced as following: 

2 2
( , ) ( , ) ( , )p p p px y p x y t x y   

To determine t (mod l) for primes l > 2, we need to compute the division polynomials. 

Definition 5.1.1 (Division Polynomial )  

Division polynomial (McGee, 2006) is a sequence of polynomials in [ , , , ]m x y a b   and 
goes to zero on points of particular order. Let E be the elliptic curve given by (2). The 
division polynomials m (x, y) = 0 if and only if (x, y) ∈ E[n]. These polynomials are defined 
recursively as follows (Schoof, 1985): 

Ψ-1 = -1 

Ψ0 = 0 

Ψ1 = 1 

Ψ2 = 2y 

Ψ3 = 3x4 + 6ax2 + 12bx- a2 

Ψ4 = 4y (x6 + 5xa4 + -20bx3-5a2x2 - 4abx -8b2 – a3) 

Ψ2m = Ψm (Ψm+2 Ψ 2m-1 – Ψm-2 Ψ 2m+1) / 2y         m  , m ≥ 3 

Ψ 2m + 1 = Ψm+2 Ψ 3m – Ψ 3m+1 Ψm-1                         m   , m ≥ 2 
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For simplicity, the polynomials are suppressed to Ψn. which is called the nth division 
polynomial. 

Let us derive the Ψ3 = 3x4 + 6ax2 + 12bx- a2. In division polynomial Ψ3, we must have a 
point ( , ) [3]P x y E   which is a point with order 3 such that [3]P   . Therefore, we have 
2P = -P and we know the x- coordinate for point 2P and P is the same. The formula for the x-
coordinate in 2P is given in the earlier section. 

2
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We can replace 2y  by 3( )x ax b  to eliminate the y term. The polynomial ( ) [ ]n pf x F x is 
defined as follows: 

( ) ( , )n nf x x y  if n is odd     

 ( , )( ) n
n

x yf x
y


   if n is even 

If n is odd, then the degree of ( )nf x  is
2 1
2

n  whereas if n is even, then the degree of ( )nf x  is 

2 4
2

n  . 

The following proposition shows point additions relates to the division polynomials. 

Proposition 5.1.1   

Let (x, y) ∈ E ( pF ), with pF  , the algebraic closure of pF . Let n ∈ ℤ, then for [n]P = P + P + P 

+…+ P is given by 

2 2
1 1 2 1 2 1

2 3[ ] ( , )
4

n n n n n n

n n
n P x

y
     

 
     

   
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5.1.1.1 Computation of number of points, #E(Fp) using Schoof’s algorithm 

Here, we present briefly the Schoof’s algorithm. For E as defined in (2) over Fp and the 
Hasse’s theorem,  

#E (Fp) = p + 1 – t where | t | ≤ 2 p . 

Input   : Elliptic curve 2 3y x ax b    over prime field PF . 

Output: Number of points,  # ( ).pE F  

1. Create a set of small primes not equal to the char (Fp) = p,   

S = {l1, l2,..., lL}, = {2, 3, 5, 7, 11,… lL } such that 1 4L
ii l p


    .  

a. For case when the prime l = 2:  
2. gcd (x3 + ax + b, xp – x) ≠ 1, then t ≡ 0 (mod 2), else t ≡ 1 (mod 2). 

This is to test whether E has point of order 2, (x, 0) ∈ E[2] or precisely roots of E.  

If gcd (x3 + ax + b, xp – x) = gcd(x3 + ax + b, xp – x) = 1, then x3 + ax + b has no root in Fp, else it 
has at least one such root.  

3. To test whether which case is to be used, we have to compute the following relation: 

 2 2
1 1gcd ( ) (mod , ),

l l l

p
p p p l lx x p      

 
If the gcd 1 , proceed to (B), else proceed to (C) . 

b. For the case when 
2 2

( , ) ( , )p p
lx y p x y   

4. For each l ∈ S, compute pl≡ p (mod l) 

5. For case 
2 2

( , ) ( , )p p
lx y p x y   

6. Compute 
2 2

( ', ') ( , ) ( , )p p
lx y x y p x y     

7. For each 1≤ τ ≤ 1
2

l  , compute the x-coordinate, x  of ( , ) ( , )x y x y    

8.  If ' 0(mod )lx x   then try next τ, else compute 'y and y .  

9. If ' 0(mod )l
y y

y
 


 , then (mod )t l , else (mod )t l   

10. If all values 1≤ τ ≤ 1
2

l    fail, then proceed to case (C).     

c. For the case  when 
2 2

( , ) ( , )p p
lx y p x y   

11. Compute w such that w2 ≡ p (mod l)  
12. If w2  does not exist, then t ≡ 0 (mod l), else 
13. Compute ( , ) ( , ) ( , ) ( , )p p

w w w wx y w x y x y x y       
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For simplicity, the polynomials are suppressed to Ψn. which is called the nth division 
polynomial. 

Let us derive the Ψ3 = 3x4 + 6ax2 + 12bx- a2. In division polynomial Ψ3, we must have a 
point ( , ) [3]P x y E   which is a point with order 3 such that [3]P   . Therefore, we have 
2P = -P and we know the x- coordinate for point 2P and P is the same. The formula for the x-
coordinate in 2P is given in the earlier section. 

2

22

4 2 2

2

2

3 2
2

9 6 2
4

x x

x a x
y

x ax a x
y

 

 
   
 
  

   
 

 

2 4 2 2

2 4 2 2

3 4 2 2

4 2 4 2 2
3

4 2 2
3

3 (4 ) 9 6

12 9 6

12 ( ) 9 6

12 12 12 9 6 0

3 6 12

x y x ax a

xy x ax a

x x ax b x ax a

x ax bx x ax a

x ax bx a





  

  

    

      

    

 

We can replace 2y  by 3( )x ax b  to eliminate the y term. The polynomial ( ) [ ]n pf x F x is 
defined as follows: 

( ) ( , )n nf x x y  if n is odd     

 ( , )( ) n
n

x yf x
y


   if n is even 

If n is odd, then the degree of ( )nf x  is
2 1
2

n  whereas if n is even, then the degree of ( )nf x  is 

2 4
2

n  . 

The following proposition shows point additions relates to the division polynomials. 

Proposition 5.1.1   

Let (x, y) ∈ E ( pF ), with pF  , the algebraic closure of pF . Let n ∈ ℤ, then for [n]P = P + P + P 

+…+ P is given by 

2 2
1 1 2 1 2 1

2 3[ ] ( , )
4

n n n n n n

n n
n P x

y
     

 
     

   
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5.1.1.1 Computation of number of points, #E(Fp) using Schoof’s algorithm 

Here, we present briefly the Schoof’s algorithm. For E as defined in (2) over Fp and the 
Hasse’s theorem,  

#E (Fp) = p + 1 – t where | t | ≤ 2 p . 

Input   : Elliptic curve 2 3y x ax b    over prime field PF . 

Output: Number of points,  # ( ).pE F  

1. Create a set of small primes not equal to the char (Fp) = p,   

S = {l1, l2,..., lL}, = {2, 3, 5, 7, 11,… lL } such that 1 4L
ii l p


    .  

a. For case when the prime l = 2:  
2. gcd (x3 + ax + b, xp – x) ≠ 1, then t ≡ 0 (mod 2), else t ≡ 1 (mod 2). 

This is to test whether E has point of order 2, (x, 0) ∈ E[2] or precisely roots of E.  

If gcd (x3 + ax + b, xp – x) = gcd(x3 + ax + b, xp – x) = 1, then x3 + ax + b has no root in Fp, else it 
has at least one such root.  

3. To test whether which case is to be used, we have to compute the following relation: 

 2 2
1 1gcd ( ) (mod , ),

l l l

p
p p p l lx x p      

 
If the gcd 1 , proceed to (B), else proceed to (C) . 

b. For the case when 
2 2

( , ) ( , )p p
lx y p x y   

4. For each l ∈ S, compute pl≡ p (mod l) 

5. For case 
2 2

( , ) ( , )p p
lx y p x y   

6. Compute 
2 2

( ', ') ( , ) ( , )p p
lx y x y p x y     

7. For each 1≤ τ ≤ 1
2

l  , compute the x-coordinate, x  of ( , ) ( , )x y x y    

8.  If ' 0(mod )lx x   then try next τ, else compute 'y and y .  

9. If ' 0(mod )l
y y

y
 


 , then (mod )t l , else (mod )t l   

10. If all values 1≤ τ ≤ 1
2

l    fail, then proceed to case (C).     

c. For the case  when 
2 2

( , ) ( , )p p
lx y p x y   

11. Compute w such that w2 ≡ p (mod l)  
12. If w2  does not exist, then t ≡ 0 (mod l), else 
13. Compute ( , ) ( , ) ( , ) ( , )p p

w w w wx y w x y x y x y       
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14. If gcd(numerator( ( )p
wx x , l ) = 1, then 0(mod )t l  

15. Else compute gcd(numerator( ( )p
wy y / y), l )  

16. If gcd(numerator( ( )p
wy y / y), l ) = 1, then 2 (mod )t w l  , else 2 (mod )t w l  

Recover t via Chinese Remainder Theorem (CRT) 

17. At this point we have computed t (mod l) for any l ∈ S. 

18.  T ≡ t (mod N) where N = 1
L

ii l
 . 

19. If T is in Hasse’s bounds, then t = T, else t ≡ - T (mod N) 
20. #E (Fp) = p + 1 – t. 

5.1.2 Schoof-Elkies-Atkin (SEA) algorithm 

Schoof’s algorithm is not practical because of the exponential growth in the degree of the 
division polynomial and hence it is not suitable for cryptographic purposes. Atkin and 
Elkies has improved the Schoof’s algorithm by analyzing the method to restrict the 
characteristic polynomial of elliptic curve such that 

 2( )  p p pt p       (8) 

where the Frobenius splits over Fl. The discussion will follow the literature found in (Cohen 
et al., 2006). In 1988, Atkin devised an algorithm to the order of p  in projective general 

linear group dimension 2 of Fl, whereas Elkies in 1991 introduced a mean to replace the 
division polynomial which has degree 2( 1) / 2l   by a kernel polynomial with degree 
( 1) / 2l  in Elkies prime procedures. To differentiate between the Elkies prime and Atkin 

prime, one can calculate the discriminant from (8), so we get 2 4t p   . If   is a square 
then the prime l is Elkies prime, else it is Atkin prime. However, we need to classify the 
primes at the beginning stage and there is no information of t. Therefore this method is not 
suitable. However, Atkin proved that l-modular polynomial, ( , ) [ , ]l x y x y   can be used 
to differentiate the prime at the early stage of SEA algorithm. SEA algorithm is one of the 
fastest algorithms for counting the number of points on E over a large prime field. The 
following part of this section follows the text from (Chen, 2008), (Cohen et al., 2006), and 
(Galin, 2007). 

5.1.2.1 Modular polynomial 

Modular polynomial comes from the theory of modular form and the interpretation of 
elliptic curves over the complex field as lattices. A moderately comprehensive development 
of the theory can be found in (Silverman, 1986). Before we proceed with the SEA algorithm, 
we know the modular polynomial. The detail proof of this theorem can be obtained in (Cox, 
1989). These polynomials will be used in Elkies and Atkin procedures. 

Theorem 5.1.2.1 (modular polynomial) 

Let m be a positive integer. 

 
Elliptic Curve Cryptography and Point Counting Algorithms 

 

105 

i. ( , ) [ , ]m x y x y   
ii. ( , )m x y  is irreducible when regarded as polynomial in x. 
iii. ( , ) ( , )m mx y y x    if m > 1.  

iv. If m is a prime, l then,   ( , ) ( )( )mod [ , ]l l
l x y x y x y l x y      

Let l be the prime different from characteristic p, then the classical modular polynomial has 
2( 3 4) / 2l l   coefficients. Here are examples of the classical modular polynomials taken 

from (Galin, 2007). 

For l = 3, we have the modular polynomial as follows: 

4 3 3 4 3 2 2 3 3 3 3 3
3

2 2 2 2 2 2

( , ) 2232( ) 1069956( ) 36864000( )

2587918086 8900222976000( ) 452984832000000( )
770845966336000000 1855425871872000000000( )

x y x x y y x y x y x y xy x y

x y x y xy x y
xy x y

         

    
  

 

For l = 5, we have the following modular polynomial: 

6 5 5 6 5 4 4 5 5 3 3 5 5 2 2 5
5

5 5 5 5 4 4

4 3 3 4 4 2 2 4

( , ) 3720( ) 4550940( ) 2028551200( )

246683410950( ) 1963211489280( ) 1665999364600

107878928185336800( ) 383083609779811215375( )

x y x x y y x y x y x y x y x y x y

x y xy x y x y

x y x y x y x y

         

    

   

 4 4 4 4

3 3 3 2 2 3

3 3

128541798906828816384000( ) 1284733132841424456253440( )

441206965512914835246100 26898488858380731577417728000( )

19245793461892828299655108231168000( )

280244777828439527

x y xy x y

x y x y x y

x y xy

  

  

 

 3 3

2 2

2 2

2 2

804321565297868800( )

5110941777552418083110765199360000

36554736583949629295706472332656640000( )

6692500042627997708487149415015068467200( )
264073457076620596259715790247978782949

x y

x y

x y xy

x y





 

 
 376

53274330803424425450420160273356509151232000( )
141359947154721358697753474691071362751004672000.

xy
x y 



 

We now give some backgrounds needed for SEA algorithm. These information might have 
some gaps and readers are suggested to refer to (Silverman, 1986) and (Cox, 1989) for 
further details. 

5.1.2.2 Elliptic curve over complex field 

The theory of elliptic curves over complex field is corresponding to the lattice and thus 
equivalently to the torus that is the mapping of ( ) /E     and / ( )E  . Lattice, 

1 2w w     where 1 2,w w  are ℝ-linearly independent, then an elliptic function f (z) 
defined on  except for isolated singularities, satisfies two conditions: f (z) is meromorphic 
on   and 1 2( ) ( ) ( )f z w f z w f z    . This indicates a doubly periodic meromorphic 
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14. If gcd(numerator( ( )p
wx x , l ) = 1, then 0(mod )t l  

15. Else compute gcd(numerator( ( )p
wy y / y), l )  

16. If gcd(numerator( ( )p
wy y / y), l ) = 1, then 2 (mod )t w l  , else 2 (mod )t w l  

Recover t via Chinese Remainder Theorem (CRT) 

17. At this point we have computed t (mod l) for any l ∈ S. 

18.  T ≡ t (mod N) where N = 1
L

ii l
 . 

19. If T is in Hasse’s bounds, then t = T, else t ≡ - T (mod N) 
20. #E (Fp) = p + 1 – t. 

5.1.2 Schoof-Elkies-Atkin (SEA) algorithm 

Schoof’s algorithm is not practical because of the exponential growth in the degree of the 
division polynomial and hence it is not suitable for cryptographic purposes. Atkin and 
Elkies has improved the Schoof’s algorithm by analyzing the method to restrict the 
characteristic polynomial of elliptic curve such that 

 2( )  p p pt p       (8) 

where the Frobenius splits over Fl. The discussion will follow the literature found in (Cohen 
et al., 2006). In 1988, Atkin devised an algorithm to the order of p  in projective general 

linear group dimension 2 of Fl, whereas Elkies in 1991 introduced a mean to replace the 
division polynomial which has degree 2( 1) / 2l   by a kernel polynomial with degree 
( 1) / 2l  in Elkies prime procedures. To differentiate between the Elkies prime and Atkin 

prime, one can calculate the discriminant from (8), so we get 2 4t p   . If   is a square 
then the prime l is Elkies prime, else it is Atkin prime. However, we need to classify the 
primes at the beginning stage and there is no information of t. Therefore this method is not 
suitable. However, Atkin proved that l-modular polynomial, ( , ) [ , ]l x y x y   can be used 
to differentiate the prime at the early stage of SEA algorithm. SEA algorithm is one of the 
fastest algorithms for counting the number of points on E over a large prime field. The 
following part of this section follows the text from (Chen, 2008), (Cohen et al., 2006), and 
(Galin, 2007). 

5.1.2.1 Modular polynomial 

Modular polynomial comes from the theory of modular form and the interpretation of 
elliptic curves over the complex field as lattices. A moderately comprehensive development 
of the theory can be found in (Silverman, 1986). Before we proceed with the SEA algorithm, 
we know the modular polynomial. The detail proof of this theorem can be obtained in (Cox, 
1989). These polynomials will be used in Elkies and Atkin procedures. 

Theorem 5.1.2.1 (modular polynomial) 

Let m be a positive integer. 
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i. ( , ) [ , ]m x y x y   
ii. ( , )m x y  is irreducible when regarded as polynomial in x. 
iii. ( , ) ( , )m mx y y x    if m > 1.  

iv. If m is a prime, l then,   ( , ) ( )( )mod [ , ]l l
l x y x y x y l x y      

Let l be the prime different from characteristic p, then the classical modular polynomial has 
2( 3 4) / 2l l   coefficients. Here are examples of the classical modular polynomials taken 

from (Galin, 2007). 

For l = 3, we have the modular polynomial as follows: 

4 3 3 4 3 2 2 3 3 3 3 3
3

2 2 2 2 2 2

( , ) 2232( ) 1069956( ) 36864000( )

2587918086 8900222976000( ) 452984832000000( )
770845966336000000 1855425871872000000000( )

x y x x y y x y x y x y xy x y

x y x y xy x y
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    
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For l = 5, we have the following modular polynomial: 

6 5 5 6 5 4 4 5 5 3 3 5 5 2 2 5
5

5 5 5 5 4 4

4 3 3 4 4 2 2 4

( , ) 3720( ) 4550940( ) 2028551200( )
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  

 
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2 2
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5110941777552418083110765199360000

36554736583949629295706472332656640000( )

6692500042627997708487149415015068467200( )
264073457076620596259715790247978782949

x y
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



 

 
 376

53274330803424425450420160273356509151232000( )
141359947154721358697753474691071362751004672000.

xy
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

 

We now give some backgrounds needed for SEA algorithm. These information might have 
some gaps and readers are suggested to refer to (Silverman, 1986) and (Cox, 1989) for 
further details. 

5.1.2.2 Elliptic curve over complex field 

The theory of elliptic curves over complex field is corresponding to the lattice and thus 
equivalently to the torus that is the mapping of ( ) /E     and / ( )E  . Lattice, 

1 2w w     where 1 2,w w  are ℝ-linearly independent, then an elliptic function f (z) 
defined on  except for isolated singularities, satisfies two conditions: f (z) is meromorphic 
on   and 1 2( ) ( ) ( )f z w f z w f z    . This indicates a doubly periodic meromorphic 
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function  (Cox, 1989). An example of elliptic function is the Weierstrass  function defined 
in the following theorem. Proofs for all the theorems, lemma and propositions are omitted. 

Theorem 5.1.2.2 

Let     be a lattice. The Weierstrass  function relative to  is given by 

2 2 2
\{0}

1 1 1( ) ( , )
( ) ( )w

z z
z z w w

 
        

  

Then, 

i. The sum defining ( )z  converges absolutely and uniformly on compact set not 
containing elements of  . 

ii. ( )z  is meromorphic in  and has a double pole at each w . 
iii. ( ) ( )z z   , z   which is an even function. 
iv. ( ) ( ),z w z w      

Therefore, the Weierstrass  function relative to  is a doubly periodic function with 
periods w1 and w2 which is known as the basis of  . 

Theorem 5.1.2.3. 

The relation between Weierstrass  function and its first derivative is given 
by 2 3

2 3'( ) 4 ( ) ( )z z g z g      . Then there is lattice,   such that 2 4( ) 60g G   

and 3 6( ) 140g G  where 4 4
\{0}

1

w
G

w
   and 6 6

\{0}

1

w
G

w
   . Hence, there is an 

isomorphism between points on elliptic curve over the complex field and points on the 
complex modulo a suitable lattice   that is ( ) /E     

5.1.2.3  j-invariant, ( )j    

Elliptic function depends on the lattice being used. Let 1 2w w     and 1

2

w
w

  . Since 

1 2,w w  are  

 -linearly independent, therefore the   is not in  . Now,   belongs to Poincaré upper 
half plane,  

ℋ = { x iy  | y > 0}.  

By restricting to  , we have 2 2( ) ( )g g    , 3 3( ) ( )g g     and  3 2
2 327D g g   which is 

closely related to the discriminant of the polynomial 3
2 34x g x g  . Then,  

3
2

3 2
2 3

( )( ) 1728
( ) 27 ( )

gj
g g




 



. 
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If lattice  , there exists a nonzero λ      such that      for some    F where F  is 
the standard fundamental region.  

Two lattices,  and '   is homothetic, then there exist nonzero λ ∈   such that '    . 

Theorem 5.1.2.4. 

If   and '  are lattices in  , then ( ) ( ')j j   if and only if  and '  are homothetic. 

( )j   is a holomorphic function on the Poincaré upper half plane,   = { x iy  | y > 0}. 
The properties of ( )j   are related to the action on the special linear group, SL (2,  ) with 

determinant one on   . This is defined as such that z  ℋ and (2, )
a b

SL
c d


 

  
 

  then 

a b
c d







, .  If  and '  in  , then ( ) ( ')j j   if and only if '   for some 

(2, )SL    

For classical modular polynomial and any n > 0. 

* { | , , ,0 , ,gcd( , , ) 1}
0n
a b

S a b d b d ad n a b d
d

 
      

 
  

For  *

0 n
a b

S
d


 

  
 

, define the map 

( ) ( )a bj j
d

  
  

Hence, the n-th modular polynomial can also defined as  

*
( , ) ( ( )).

n
n

S
x j x j


 


      

5.1.2.4 Computation of modular polynomial 

Let l be a prime, we now discuss the method to compute modular polynomial, ( , )l x y . 
According to previous theorem, we have ( , ) ( , )l lx y y x    and 

( , ) ( )( )mod [ , ]l l
l x y x y x y l x y     . Besides,  ( , )l x y  is a monic polynomial with degree l 

+1 as polynomial in x and therefore we can write  

0 0
( , ) ( )( ) ( )j jl l i i i i

l ii ij
i l i j l

x y x y x y l c x y l c x y x y
    

         

where the coefficient ijc  which can found by q-expansion of   j –function. We also have 

the identity  

( ( ), ( )) 0p j l j   . 
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function  (Cox, 1989). An example of elliptic function is the Weierstrass  function defined 
in the following theorem. Proofs for all the theorems, lemma and propositions are omitted. 

Theorem 5.1.2.2 

Let     be a lattice. The Weierstrass  function relative to  is given by 

2 2 2
\{0}

1 1 1( ) ( , )
( ) ( )w

z z
z z w w

 
        

  

Then, 

i. The sum defining ( )z  converges absolutely and uniformly on compact set not 
containing elements of  . 

ii. ( )z  is meromorphic in  and has a double pole at each w . 
iii. ( ) ( )z z   , z   which is an even function. 
iv. ( ) ( ),z w z w      

Therefore, the Weierstrass  function relative to  is a doubly periodic function with 
periods w1 and w2 which is known as the basis of  . 

Theorem 5.1.2.3. 

The relation between Weierstrass  function and its first derivative is given 
by 2 3

2 3'( ) 4 ( ) ( )z z g z g      . Then there is lattice,   such that 2 4( ) 60g G   

and 3 6( ) 140g G  where 4 4
\{0}

1

w
G

w
   and 6 6

\{0}

1

w
G

w
   . Hence, there is an 

isomorphism between points on elliptic curve over the complex field and points on the 
complex modulo a suitable lattice   that is ( ) /E     

5.1.2.3  j-invariant, ( )j    

Elliptic function depends on the lattice being used. Let 1 2w w     and 1

2

w
w

  . Since 

1 2,w w  are  

 -linearly independent, therefore the   is not in  . Now,   belongs to Poincaré upper 
half plane,  

ℋ = { x iy  | y > 0}.  

By restricting to  , we have 2 2( ) ( )g g    , 3 3( ) ( )g g     and  3 2
2 327D g g   which is 

closely related to the discriminant of the polynomial 3
2 34x g x g  . Then,  

3
2

3 2
2 3

( )( ) 1728
( ) 27 ( )

gj
g g




 



. 
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If lattice  , there exists a nonzero λ      such that      for some    F where F  is 
the standard fundamental region.  

Two lattices,  and '   is homothetic, then there exist nonzero λ ∈   such that '    . 

Theorem 5.1.2.4. 

If   and '  are lattices in  , then ( ) ( ')j j   if and only if  and '  are homothetic. 

( )j   is a holomorphic function on the Poincaré upper half plane,   = { x iy  | y > 0}. 
The properties of ( )j   are related to the action on the special linear group, SL (2,  ) with 

determinant one on   . This is defined as such that z  ℋ and (2, )
a b

SL
c d


 

  
 

  then 

a b
c d







, .  If  and '  in  , then ( ) ( ')j j   if and only if '   for some 

(2, )SL    

For classical modular polynomial and any n > 0. 

* { | , , ,0 , ,gcd( , , ) 1}
0n
a b

S a b d b d ad n a b d
d

 
      

 
  

For  *

0 n
a b

S
d


 

  
 

, define the map 

( ) ( )a bj j
d

  
  

Hence, the n-th modular polynomial can also defined as  

*
( , ) ( ( )).

n
n

S
x j x j


 


      

5.1.2.4 Computation of modular polynomial 

Let l be a prime, we now discuss the method to compute modular polynomial, ( , )l x y . 
According to previous theorem, we have ( , ) ( , )l lx y y x    and 

( , ) ( )( )mod [ , ]l l
l x y x y x y l x y     . Besides,  ( , )l x y  is a monic polynomial with degree l 

+1 as polynomial in x and therefore we can write  

0 0
( , ) ( )( ) ( )j jl l i i i i

l ii ij
i l i j l

x y x y x y l c x y l c x y x y
    

         

where the coefficient ijc  which can found by q-expansion of   j –function. We also have 

the identity  

( ( ), ( )) 0p j l j   . 
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 Substituting the q-expansion for ( )j  and ( )j l  into ( , )l x y , we have the following:  

 
0 0

(( ( ) ( ))( ( ) ( ) ) ( ) ( ) ( ( ) ( ) ( ) ( ) ) 0.j jl l i i i i
ii ij

i l i j l
j l j j l j l c j l j l c j l j j l j         

    
        

This is obtained by equating the coefficients of the different powers of infinite number of 
linear equations in the variable cij. However, the finite number of linear equations can be 
obtained by equating the coefficients of negative powers of q which is a unique solution. It is 
suffices to calculate those coefficients of the q-expansions which contribute to negative 
powers of  ( )j   and only need the first l2 + l coefficients of the q-expansion of the j-function. 
Computing on modular polynomial becomes tedious as when prime l getting bigger, the 
number of digit for the coefficient do increase rapidly. Previously, we have listed the two 
modular polynomial 3( , )x y and 5( , )x y . For 11( , )x y , its coefficients are more than 120 
digits and is not shown here.  

Lemma 5.1.2.1 

Let E1/ℂ and E2/ ℂ be two elliptic curves with j-invariants 
1Ej  and 

2Ej respectively, then 

1 2
( , ) 0n E Ej j   if and only if there is an isogeny from E1 to E2 whose kernel is cyclic of degree n. 

Theorem 5.1.2.5 

Let E an elliptic curve defined over Fp with p ≠ l, then the l + 1 zeroes pj F of the 

polynomial ( , ( )) 0l x j E   are the j-invariants of the isogenous curves /E E C  with C one 
of the l + 1 cyclic subgroups of E[l]. 

Theorem 5.1.2.6 (Atkin classification). 

Let E be an ordinary elliptic curve defined over Fp with j-invariant j ≠ 0, 1728. Let 
1 2( , ) ...l sx j h h h  be the factorization of ( , ) [ ]l px j F x  as a product of irreducible 

polynomials. Then there are the following possibilities for the degrees of 1 ,..., sh h : 

i. (1, l) or (1, 1, …, 1). In either case we have 2 4 0(mod )t p l    . In the former case we 
set r = l and the later case r = 1. 

ii. (1, 1, r, r, ..., r). In this case 2 4t p   is square modulo l, r divides l – 1 and p acts on 

E[l] as a diagonal matrix 
0

0



 
 
 

 with λ, μ ∈ *
lF . 

iii. (r, r, …, r) for some r > 1. In this case 2 4t p    is a nonsquare modulo l, r divides l + 1 
and the restriction of p  to E[l] has an irreducible characteristic polynomial over lF  

In all these 3 cases, r is the order of p  in PGL2(Fp) and the trace t satisfies 
2 1 2( ) (mod )t p l     for some r-th root of unity lF  . The number of irreducible factors s 

satisfies ( 1) ( )s p
l

  . 
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Proof:  Refer to (Galin, 2007). 

To determine the type of prime, it suffices to compute ( ) gcd( ( , ), )p
lg x x j x x   . If g(x) ≠ 1, l 

is an Elkies prime else it is an Atkin prime. 

Example 5.1.2.1 

Let an elliptic curve, E defined over 113F with the equation given by y2 = x3 - 15x +13 

S = {2, 3, 5, 7} such that 4
1 210 4 43ii l p


     . Let us check l = 3 and 5. 

For l = 3. check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

4 3 3 4 3 2 2 3 3 3
3

3 3 2 2 2 2

2 2

( ,28) (28) (28) 2232( (28) (28) ) 1069956( (28) (28) )

36864000( (28) ) 2587918086 (28) 8900222976000( (28) (28) )

452984832000000( (28) ) 770845966336000000 (28)
1855425871872

x x x x x x x

x x x x

x x

       

    

  
 000000000( 28).x 

 

4
3

3 281 11( ,28) (mod1131 65 52 )x x x xx       

113
3gcd( ( ,28), ) 1x x x    

Hence 3 is an Atkin prime. 

For l = 5. Check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

6 5
5

4 3 290( 81 6,28 49) 5x xx x x x      (mod 113) 

113
5

2gcd( ( 94 63,28), ) 1x x x x x     

Hence 5 is an Elkies prime. 

Definition 5.1.2.1 

Let the discriminant of the characteristic equation, 2 4t p   . If   is a square in lF  then 
the prime l is an Elkies prime else l is an Atkin prime. 

5.1.2.5 Atkin primes procedures 

Since 2 1 2( )t p     over Fl, each pair 1( , )   determines one value of t2 or at most two 
values of t. 

The number of the possible values of lt  is Euler totient function, ( )r  and 1r l  .  

Let recall the reduced characteristic polynomial 2( ) ( )( )l l lT T t T p T T         

2( )( ) ( ) ( )T T T T         
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 Substituting the q-expansion for ( )j  and ( )j l  into ( , )l x y , we have the following:  

 
0 0

(( ( ) ( ))( ( ) ( ) ) ( ) ( ) ( ( ) ( ) ( ) ( ) ) 0.j jl l i i i i
ii ij

i l i j l
j l j j l j l c j l j l c j l j j l j         

    
        

This is obtained by equating the coefficients of the different powers of infinite number of 
linear equations in the variable cij. However, the finite number of linear equations can be 
obtained by equating the coefficients of negative powers of q which is a unique solution. It is 
suffices to calculate those coefficients of the q-expansions which contribute to negative 
powers of  ( )j   and only need the first l2 + l coefficients of the q-expansion of the j-function. 
Computing on modular polynomial becomes tedious as when prime l getting bigger, the 
number of digit for the coefficient do increase rapidly. Previously, we have listed the two 
modular polynomial 3( , )x y and 5( , )x y . For 11( , )x y , its coefficients are more than 120 
digits and is not shown here.  

Lemma 5.1.2.1 

Let E1/ℂ and E2/ ℂ be two elliptic curves with j-invariants 
1Ej  and 

2Ej respectively, then 

1 2
( , ) 0n E Ej j   if and only if there is an isogeny from E1 to E2 whose kernel is cyclic of degree n. 

Theorem 5.1.2.5 

Let E an elliptic curve defined over Fp with p ≠ l, then the l + 1 zeroes pj F of the 

polynomial ( , ( )) 0l x j E   are the j-invariants of the isogenous curves /E E C  with C one 
of the l + 1 cyclic subgroups of E[l]. 

Theorem 5.1.2.6 (Atkin classification). 

Let E be an ordinary elliptic curve defined over Fp with j-invariant j ≠ 0, 1728. Let 
1 2( , ) ...l sx j h h h  be the factorization of ( , ) [ ]l px j F x  as a product of irreducible 

polynomials. Then there are the following possibilities for the degrees of 1 ,..., sh h : 

i. (1, l) or (1, 1, …, 1). In either case we have 2 4 0(mod )t p l    . In the former case we 
set r = l and the later case r = 1. 

ii. (1, 1, r, r, ..., r). In this case 2 4t p   is square modulo l, r divides l – 1 and p acts on 

E[l] as a diagonal matrix 
0

0



 
 
 

 with λ, μ ∈ *
lF . 

iii. (r, r, …, r) for some r > 1. In this case 2 4t p    is a nonsquare modulo l, r divides l + 1 
and the restriction of p  to E[l] has an irreducible characteristic polynomial over lF  

In all these 3 cases, r is the order of p  in PGL2(Fp) and the trace t satisfies 
2 1 2( ) (mod )t p l     for some r-th root of unity lF  . The number of irreducible factors s 

satisfies ( 1) ( )s p
l

  . 

 
Elliptic Curve Cryptography and Point Counting Algorithms 

 

109 

Proof:  Refer to (Galin, 2007). 

To determine the type of prime, it suffices to compute ( ) gcd( ( , ), )p
lg x x j x x   . If g(x) ≠ 1, l 

is an Elkies prime else it is an Atkin prime. 

Example 5.1.2.1 

Let an elliptic curve, E defined over 113F with the equation given by y2 = x3 - 15x +13 

S = {2, 3, 5, 7} such that 4
1 210 4 43ii l p


     . Let us check l = 3 and 5. 

For l = 3. check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

4 3 3 4 3 2 2 3 3 3
3

3 3 2 2 2 2

2 2

( ,28) (28) (28) 2232( (28) (28) ) 1069956( (28) (28) )

36864000( (28) ) 2587918086 (28) 8900222976000( (28) (28) )

452984832000000( (28) ) 770845966336000000 (28)
1855425871872

x x x x x x x

x x x x

x x

       

    

  
 000000000( 28).x 

 

4
3

3 281 11( ,28) (mod1131 65 52 )x x x xx       

113
3gcd( ( ,28), ) 1x x x    

Hence 3 is an Atkin prime. 

For l = 5. Check whether it is an Elkies or Atkin prime. The j- invariant, Ej  = 28. 

6 5
5

4 3 290( 81 6,28 49) 5x xx x x x      (mod 113) 

113
5

2gcd( ( 94 63,28), ) 1x x x x x     

Hence 5 is an Elkies prime. 

Definition 5.1.2.1 

Let the discriminant of the characteristic equation, 2 4t p   . If   is a square in lF  then 
the prime l is an Elkies prime else l is an Atkin prime. 

5.1.2.5 Atkin primes procedures 

Since 2 1 2( )t p     over Fl, each pair 1( , )   determines one value of t2 or at most two 
values of t. 

The number of the possible values of lt  is Euler totient function, ( )r  and 1r l  .  

Let recall the reduced characteristic polynomial 2( ) ( )( )l l lT T t T p T T         

2( )( ) ( ) ( )T T T T         
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Therefore (mod )t l    and (mod )p l   

Then 


is an element of order exactly r in 2lF  Find r such that which gcd( ( ), ) 1
rp

l x x x   . 




  where 2lF  is a primitive r-th root of unity. Now let g be a generator of 2
*

lF  and 

2( 1)i l
r

i g

 
  
   for gcd( , ) 1i r   and satisfying 1 i r  . 

Next, for nonsquare ld F , we have 1 2x x d    and 1 2x x d    for some i lx F . 

Similarly we have 
1 2

2 2 2
1 2 1 22( )i i i

x x d x x dg g d
p

 
 

 
      where 

1 2
,i i lg g F  

Compare both sides, 

1 1

2
2 21 2 2
1 2(mod )       (mod )i i

x x x dg l pg x x d l
p


     

2 2
1 2

1 2
2 (mod )  2 (mod )i i

x x dg d l pg x x l
p

     

Also, 2 2
1 2 (mod )p x dx l   , so it follows that 12

1
( 1)

2
ip g

x


  . If 2
1x is not a square in 

lF , i  is discarded and move to the next one. Else, we have the following. 

12 (mod )t x l      

5.1.2.6 Elkies primes procedures 

Determine for the isogenous elliptic curve. Then recall the reduced characteristic polynomial 
2( ) ( )( )l l lT T t T p T T         

2( )( ) ( ) ( ).T T T T         

Therefore, (mod )t l    and (mod ).p l   

Notice that (mod )l
pt l       , so once we get the value of λ then we can find .lt  

If   , then 2 2 (mod ).lt p l   

If    , E[l]  has two subgroups C1, C2 that are stable under p , we need to replace the 

division polynomial with degree 2( 1) 2l   by finding a  kernel polynomial with degree 
( 1) 2l  whose roots are the x-coordinate of the subgroup C1 or C2. The kernel polynomial is 
defined by  
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\{0}
( ) ( ( ))

L

l
P C

F x x x P
 

 
 

One can obtain the value of  λ by using the relation ( , ) ( , )p px y x y . 

We find λ such that 2
1 1gcd( ( ) , ( )) 1p

lx x F x        . It suffices to check the value 

1 ( 1) 2l   .  Then compute (mod ).l
pt l        

To combine Elkies and Atkin prime, we apply the concept of Chinese Remainder Theorem, 
and then we obtain the t in the final step by using the elementary method (baby-steps giant-
steps which is not covered in this chapter, and one should refer to (Galin, 2007) for further 
details). Next, we summarize these two algorithms into making some comparison between 
them.   

6. Compare and contrast between Schoof’s algorithm and Schoof-Elkies-
Atkin (SEA) algorithm 
i. Similarities between Schoof’s algorithm and SEA algorithm 
 Polynomial time and deterministic point counting algorithms for elliptic curve with 

characteristic K ≠ 2, 3 
 Using Hasse’s theorem or specifically Hasse’s interval as a boundary to determine 

#E(Fp). 
 Using a specific type of polynomial which is essential for the computation steps. 
 Classified as l-adic point counting algorithms. 
 Begin by letting S = {2, 3, 5,…, L} be a set of primes not including char (Fp) such that 

4
l S

l p

  . 

 Both algorithms is to find the trace of the Frobenius endomorphism, t. 
 Making use of the Frobenius endomorphism, p and the characteristic equation is such 

that: 

2( )l l lT T t T p     = ( )( )T T   , so (mod )t l    and (mod )p l . 

ii. Differences between Schoof’s algorithm and SEA algorithm 
  Practicality  
i. Schoof’s algorithm: Most successful general point counting algorithm but not practical 

because the degree of division polynomial will grow exponentially when l becomes 
larger.  

ii. SEA algorithm: Most practical version of point counting algorithm. However the use of 
classical modular polynomial will lead to the increasing of number of coefficients when 
l becomes larger. This problem is overcome by using canonical modular polynomial, 
Müller modular polynomial and Atkin modular polynomial which have similar 
construction like classical modular polynomial.  

 Complexity 
i. Schoof’s algorithm: O (log 8 p) bit operations. 
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Therefore (mod )t l    and (mod )p l   
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
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rp

l x x x   . 



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*
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2( 1)i l
r

i g

 
  
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1 2
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x x d x x dg g d
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 
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1 2
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1 2
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2 (mod )  2 (mod )i i

x x dg d l pg x x l
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1
( 1)

2
ip g

x


  . If 2
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12 (mod )t x l      
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division polynomial with degree 2( 1) 2l   by finding a  kernel polynomial with degree 
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Atkin (SEA) algorithm 
i. Similarities between Schoof’s algorithm and SEA algorithm 
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 Begin by letting S = {2, 3, 5,…, L} be a set of primes not including char (Fp) such that 

4
l S

l p

  . 

 Both algorithms is to find the trace of the Frobenius endomorphism, t. 
 Making use of the Frobenius endomorphism, p and the characteristic equation is such 

that: 

2( )l l lT T t T p     = ( )( )T T   , so (mod )t l    and (mod )p l . 

ii. Differences between Schoof’s algorithm and SEA algorithm 
  Practicality  
i. Schoof’s algorithm: Most successful general point counting algorithm but not practical 

because the degree of division polynomial will grow exponentially when l becomes 
larger.  

ii. SEA algorithm: Most practical version of point counting algorithm. However the use of 
classical modular polynomial will lead to the increasing of number of coefficients when 
l becomes larger. This problem is overcome by using canonical modular polynomial, 
Müller modular polynomial and Atkin modular polynomial which have similar 
construction like classical modular polynomial.  

 Complexity 
i. Schoof’s algorithm: O (log 8 p) bit operations. 
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ii. SEA algorithm: O (log 6 p) bit operations due to the replacement of division polynomial 
2( 1) / 2l   by its factor that is kernel polynomial with degree ( 1) / 2l  .  

 Classification of prime, p 
i. Schoof’s algorithm: No classification of prime. However,  two  cases are considered 

such that : 

2 2
( , ) ( , )p p

lx y p x y   or 
2 2

( , ) ( , )p p
lx y p x y    

ii. SEA algorithm: for p > 2, p is classified as Elkies primes or Atkin primes by using 
modular polynomial such that gcd( ( , ( )), ) 1p

l x j E x x   , then l is an Atkin prime, else l 
is an Elkies prime. 

 Polynomial involved 
i. Schoof’s algorithm: division polynomial, l  with degree 2( 1) / 2l  . To construct 

division polynomial, concept of torsion point is applicable. 
ii. SEA algorithm: modular polynomial with degree l +1 is used to differentiate Atkin and 

Elkies prime. The construction of modular polynomial works in complex field and also 
need to deal with j-function and q-expansion (Cox, 1989) but the result can be applied in 
finite field, Fp. 

 Method to combine the tl (mod l) 
i. Schoof’s algorithm: Recover the t from tl (mod l) from Chinese Remainder Theorem. 
ii. SEA algorithm:  

For Elkies primes: Recover the Et  from tl (mod l) from Chinese Remainder Theorem. For 
Atkin primes: Divide the primes into two  sets that each in equal numbers  by using Chinese 
Remainder Theorem. Finally this theorem is used again and then the exact t is found by 
using baby-steps giant steps. 

7. Some literature on Schoof and Schoof-Elkies-Atkin (SEA) point counting 
algorithms 
In this section, we will give some brief literature of these two algorithms. As we have 
mentioned earlier, René Schoof (Schoof, 1985) had proposed the Schoof’s algorithm in 1985. 
In (Cohen et al, 2006), Atkin and Elkies had further improved the Schoof’s algorithm in 1991. 
In Elkies procedure, Elkies had replaced the division polynomial with degree 2( 1) / 2l    by 
a kernel polynomial with degree ( 1) / 2l   whereas Atkin developed an algorithm to 
evaluate the order of p  in PGL2(Fl) and hence shown that the number of point can be 

counted on  ( )pE F  and this thus lead to the Schoof-Elkies-Atkin (SEA) algorithm which was 

practical.  

In (Menezes et al., 1993), elliptic curves which defined over field of characteristic 2 are 
attractive because the arithmetic easier for implementation. They have employed some 
heuristic to improve the running time and able to compute #E( 2mF ) for 155m  . For the 
Schoof’s part, they were able to compute t modulo l for l = 3, 5, 7, 11, 13, 17, 19, 23, 31, 64, 
128, 256, 512 and 1024. The computation on #E( 1552F ) takes roughly 61 hours on a SUN-2 
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SPARC station. Then, it was also mentioned that the information obtained from Schoof’s 
algorithm and the heuristics can be combined with the information from Atkin’s method to 
compute #E( 2mF ) for large values of m. 

In (Couveignes & Morain, 1994), they had shown how to use the powers of good prime in 
an efficient way by computing the isogenies between curves over the ground field. They had 
investigated the properties of new structure which is known as isogeny cycle. 

In (Lercier & Morain, 1995), they mentioned that when l was an Elkies prime, the cost of 
computation turn out to be greater than that computation of Atkin prime and hence 
suggested that it is better to treat an Elkies prime as an Atkin prime and hence motivate 
their dynamic strategy. The implementation result shown that Schoof’s algorithm in 
characteristic 2 was faster than in large characteristic at least for small fields. The large 
prime case was faster due to the polynomial arithmetic was faster for 2nF  since squaring 
was an easy operation in characteristic 2.  However, when n increased, the computing cost 
of the isogeny took much time than in large prime case.  

In (Lercier, 1997), mentioned the improvement made by Elkies and Atkin and worked in 
any finite field. The computation of isogeny is only worked in finite fields of large 
characteristic. However this problem was solved by Couveignes, by taking in the formal 
group and had implemented it. The computation of isogenies then turned out to be the 
major cost while counting the point. Lercier had proposed better algorithm for characteristic 
2 case which based on algebraic properties. The slight change in Schoof’s algorithm sped up 
the randomly search of elliptic curves with order nearly prime instead of specific curves 
such as supersingular curves or curves obtained from complex multiplication. 

In (Izu et al., 1998), they wanted to find elliptic curve which had prime order and believed that 
curve with this order was secure for cryptographic application. In calculating the order, they 
combined efficiently the Atkin and Elkies method, the isogeny cycles method and trial search 
by match-and-sort techniques and implemented them for elliptic curve over prime field, Fp in a 
reasonable time where p is a prime number whose size around 240-bits. As a result, it had 
increased the speed of the process almost 20%. They managed to find elliptic curves with 
prime order in a reasonable time for characteristic p of base field is around 240- bits. 

In SEA algorithm, the classical modular polynomials with degree l +1 will increase the size of 
coefficient as l increases, as well as their degree in y also is very high. Therefore canonical 
modular polynomials achieve small coefficient and lower degree in y. Details can be obtained 
in (Cohen et al., 2006). Besides, according to the work from (Blake et al., n.d.), their approach 
shown that classical modular polynomial can be replaced by Müller modular polynomial or 
Atkin modular polynomial. This experiment had been done for l =197. The result shows that 
Müller modular polynomial has less number of coefficients compared to the classical one. 
However the Atkin modular polynomial has the least number of coefficients compared with 
the classical modular polynomial and Müller modular polynomial. 

8. Conclusion 
This chapter gives some backgrounds on elliptic curve cryptography. The mathematical 
preliminaries on elliptic curve, basic definitions, group operations on an elliptic curve, the 
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ii. SEA algorithm: O (log 6 p) bit operations due to the replacement of division polynomial 
2( 1) / 2l   by its factor that is kernel polynomial with degree ( 1) / 2l  .  

 Classification of prime, p 
i. Schoof’s algorithm: No classification of prime. However,  two  cases are considered 

such that : 

2 2
( , ) ( , )p p

lx y p x y   or 
2 2

( , ) ( , )p p
lx y p x y    
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l x j E x x   , then l is an Atkin prime, else l 
is an Elkies prime. 

 Polynomial involved 
i. Schoof’s algorithm: division polynomial, l  with degree 2( 1) / 2l  . To construct 

division polynomial, concept of torsion point is applicable. 
ii. SEA algorithm: modular polynomial with degree l +1 is used to differentiate Atkin and 

Elkies prime. The construction of modular polynomial works in complex field and also 
need to deal with j-function and q-expansion (Cox, 1989) but the result can be applied in 
finite field, Fp. 

 Method to combine the tl (mod l) 
i. Schoof’s algorithm: Recover the t from tl (mod l) from Chinese Remainder Theorem. 
ii. SEA algorithm:  

For Elkies primes: Recover the Et  from tl (mod l) from Chinese Remainder Theorem. For 
Atkin primes: Divide the primes into two  sets that each in equal numbers  by using Chinese 
Remainder Theorem. Finally this theorem is used again and then the exact t is found by 
using baby-steps giant steps. 

7. Some literature on Schoof and Schoof-Elkies-Atkin (SEA) point counting 
algorithms 
In this section, we will give some brief literature of these two algorithms. As we have 
mentioned earlier, René Schoof (Schoof, 1985) had proposed the Schoof’s algorithm in 1985. 
In (Cohen et al, 2006), Atkin and Elkies had further improved the Schoof’s algorithm in 1991. 
In Elkies procedure, Elkies had replaced the division polynomial with degree 2( 1) / 2l    by 
a kernel polynomial with degree ( 1) / 2l   whereas Atkin developed an algorithm to 
evaluate the order of p  in PGL2(Fl) and hence shown that the number of point can be 

counted on  ( )pE F  and this thus lead to the Schoof-Elkies-Atkin (SEA) algorithm which was 

practical.  

In (Menezes et al., 1993), elliptic curves which defined over field of characteristic 2 are 
attractive because the arithmetic easier for implementation. They have employed some 
heuristic to improve the running time and able to compute #E( 2mF ) for 155m  . For the 
Schoof’s part, they were able to compute t modulo l for l = 3, 5, 7, 11, 13, 17, 19, 23, 31, 64, 
128, 256, 512 and 1024. The computation on #E( 1552F ) takes roughly 61 hours on a SUN-2 
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SPARC station. Then, it was also mentioned that the information obtained from Schoof’s 
algorithm and the heuristics can be combined with the information from Atkin’s method to 
compute #E( 2mF ) for large values of m. 

In (Couveignes & Morain, 1994), they had shown how to use the powers of good prime in 
an efficient way by computing the isogenies between curves over the ground field. They had 
investigated the properties of new structure which is known as isogeny cycle. 

In (Lercier & Morain, 1995), they mentioned that when l was an Elkies prime, the cost of 
computation turn out to be greater than that computation of Atkin prime and hence 
suggested that it is better to treat an Elkies prime as an Atkin prime and hence motivate 
their dynamic strategy. The implementation result shown that Schoof’s algorithm in 
characteristic 2 was faster than in large characteristic at least for small fields. The large 
prime case was faster due to the polynomial arithmetic was faster for 2nF  since squaring 
was an easy operation in characteristic 2.  However, when n increased, the computing cost 
of the isogeny took much time than in large prime case.  

In (Lercier, 1997), mentioned the improvement made by Elkies and Atkin and worked in 
any finite field. The computation of isogeny is only worked in finite fields of large 
characteristic. However this problem was solved by Couveignes, by taking in the formal 
group and had implemented it. The computation of isogenies then turned out to be the 
major cost while counting the point. Lercier had proposed better algorithm for characteristic 
2 case which based on algebraic properties. The slight change in Schoof’s algorithm sped up 
the randomly search of elliptic curves with order nearly prime instead of specific curves 
such as supersingular curves or curves obtained from complex multiplication. 

In (Izu et al., 1998), they wanted to find elliptic curve which had prime order and believed that 
curve with this order was secure for cryptographic application. In calculating the order, they 
combined efficiently the Atkin and Elkies method, the isogeny cycles method and trial search 
by match-and-sort techniques and implemented them for elliptic curve over prime field, Fp in a 
reasonable time where p is a prime number whose size around 240-bits. As a result, it had 
increased the speed of the process almost 20%. They managed to find elliptic curves with 
prime order in a reasonable time for characteristic p of base field is around 240- bits. 

In SEA algorithm, the classical modular polynomials with degree l +1 will increase the size of 
coefficient as l increases, as well as their degree in y also is very high. Therefore canonical 
modular polynomials achieve small coefficient and lower degree in y. Details can be obtained 
in (Cohen et al., 2006). Besides, according to the work from (Blake et al., n.d.), their approach 
shown that classical modular polynomial can be replaced by Müller modular polynomial or 
Atkin modular polynomial. This experiment had been done for l =197. The result shows that 
Müller modular polynomial has less number of coefficients compared to the classical one. 
However the Atkin modular polynomial has the least number of coefficients compared with 
the classical modular polynomial and Müller modular polynomial. 

8. Conclusion 
This chapter gives some backgrounds on elliptic curve cryptography. The mathematical 
preliminaries on elliptic curve, basic definitions, group operations on an elliptic curve, the 
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addition law as well as the doubling operations are part of the discussion topics in this 
chapter. This chapter also includes the arithmetic of elliptic curves defined over the real 
numbers as well as on a finite field and some examples are shown to enhance 
understanding. Several schemes such as elliptic curve Diffie-Hellman key exchange 
scheme, elliptic curve ElGamal cryptosystem and elliptic curve digital signature scheme 
are discussed along with some examples. Concept of point counting algorithms is also 
treated quite rigorously in terms of the mathematical aspects, and the discussion is 
restricted to two types of algorithms, the Schoof and the Schoof-Elkies-Atkin (SEA) point 
counting algorithms. Building on the discussion of the point counting algorithms, several 
comparisons are derived along with some literatures on the development of these two 
point counting algorithms especially on the Schoof-Elkies-Atkin (SEA) algorithm. This 
chapter has shown the procedures in the Schoof and the Schoof-Elkies-Atkin (SEA) 
algorithms. Extensive mathematical concepts explaining these two algorithms are 
displayed in this chapter. The Schoof point counting algorithm is regarded as an initiative 
effort towards producing efficient point counting algorithm, where several modification 
has emerges from the idea of this algorithm, and the immediate improvement were 
produced by Elkies and Atkin. The most recent known modification build on Schoof 
algorithm is the one from Pierrick Gaudry, David Kohel, Benjamin Smith (Schoof-Pila 
algorithm), presented in the Elliptic Curve Cryptography workshop, held in Nancy, 
France, in September 2011.   

 The arithmetic on elliptic curve plays a very important role in cryptography and this 
chapter has highlighted some mathematical aspects needed in the development of elliptic 
curve cryptography. Many studies have been devoted to finding fast algorithms on 
performing group operations on elliptic curves as well as algorithms to compute number of 
points on elliptic curves. So far elliptic curve cryptography seems to out perform other 
cryptographic schemes. Interest groups working on elliptic curve cryptography are seen to 
have more ideas to explore as most directions are on the higher genus curves or 
hyperelliptic curves instead of the ordinary curves that are being treated in this chapter. 
Genus 2 curve for instance, is a hyperelliptic curve, which possesses different properties 
from the ordinary elliptic curve. Points on hyperelliptic curves do not forms a group, 
instead the corresponding jacobian takes the role. Some properties in the ordinary curves 
could be extended to those higher genus curves. In the future, we might probably have a 
situation where hyperelliptic curve cryptography comes into play.  
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points on elliptic curves. So far elliptic curve cryptography seems to out perform other 
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have more ideas to explore as most directions are on the higher genus curves or 
hyperelliptic curves instead of the ordinary curves that are being treated in this chapter. 
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1. Introduction  
Arithmetic operation such as addition, multiplication, division and inversion are widely used in 
data communication systems, coding and cryptography particularly public key cryptography.  

Since 1976, when the principles of public key cryptography were introduced (by Whitfield 
Diffie and Martin Hellman) (Diffie & Hellman 1976), RSA was the most well-known public 
key cryptographic system. Rivest, Shamir and Adleman (RSA) algorithm composes a public 
key considered sufficiently long enough to be recognized as secure. The security of RSA is 
based on difficulty of factoring large numbers to its prime components. For many years, 
RSA was the leading method for industrial encryption. RSA cryptographic algorithm 
includes addition, squaring and multiplication operations. Addition and squaring are two 
simple operations over finite fields; hence, the most important arithmetic operation for RSA 
based cryptographic systems is multiplication.  

With the advances of computer computational power, RSA is becoming more and more 
vulnerable. In 1985, Victor S. Miller (Miller 1985) and Neal Koblitz (Koblitz 1987) proposed 
Elliptic Curve Cryptography (ECC), independently. ECC offer higher security in compare 
with RSA.  

The security of ECC relies on the difficulty of solving Elliptic Curve Discrete Logarithm 
Problem or ECDLP.  So far not any efficient method has been offered to solve ECDLP and its 
complexity is higher than factoring large numbers to its prime components (where the security 
of RSA relies on that). Hence, ECC can offer higher security with smaller key size and designers 
can use it to save storage space, consumed power in the circuit and increase the bandwidth.  

Elliptic Curve Cryptographic algorithm includes addition, squaring, multiplication and 
division (or inversion). Many research and studies have been done on multiplication. 
However, division and inversion research are becoming more relevant to cryptographic 
systems. In the terms of implementation area, complexity and executing time; division (or 
inversion) is the most costly operation in public key cryptography. For many years 
hardware implementations of division or inversion were an ambitious goal. However, 
recent advances in technology of ASIC circuits and the ability to provide high capacity 
FPGAs, let circuit designers to achieve this goal.  

In this chapter we study two main classes of proposed algorithms for division (and 
inversion). The first class of dividers is based on Fermat’s little theorem. This class of 
dividers also called as multiplicative based dividers. In the next chapter we introduce the 
principles of these algorithms and the proposed methods to improve their efficiency. 
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Chapter three is about the other class of dividers, called Euclidian based dividers. We 
review the principles and all proposed algorithms based on Euclidian algorithm.      

2. Dividers based on Fermat’s little theorem  
The most simple and primary dividers were based on Fermat’s little theorem. These kinds of 
dividers are also known as multiplicative based dividers, because in these algorithms, 
division is performed by sequence of multiplication operations (and squaring). Squaring in 
finite fields are simple operations, which are usually perform in a simple clock cycle. 
However multiplication is more complicated operation and in terms of time and 
implementation area is more costly. 

Based on Fermat’s little theorem, if � is a prime number for any integer �, we can write: 

�� ≡ ��(�����) 
Dividing two side to �, we get  

���� ≡ ��(�����)    or    � � ���� ≡ ��(�����) 
Hence we can conclude the inversion of any integer � over ��(�) is ����. 

Example.1: For example inversion of 4 over ��(�) is 4�� ≡ 4� ≡ 2�(�����). 
2 � 4 ≡ � ≡ ��(�����) 

Expanding this technique to ��(2�), we can write 

����� � � � ����� � ��(�������(2�)). 
Hence, ��� � �����, in which � � ��(2�). 
To compute �����, the most primary method is “square and multiplication” algorithm. In 
square and multiplication algorithm instead of 2� − 3 multiplications, we calculate �����, 
with at most � − � squaring and � − 2 multiplications.  
 

Alg.1:  Square and Multiplication Algorithm 

Input � � ��(2�) 
Output � � ����� 

1. b=2� − 2 
2. � � ��
3. while � � � 

3.1.         if (b is even) 
3.1.1.                 � � ��2 
3.1.2.                 � � � � � 

3.2.        else 
3.2.1.                  � � � − � 
3.2.2.                  � � � � � 

4. Return � 
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To better understand of square and multiplication algorithms, we review the following 
equations. As we know, we can decompose 2��� in the following form. 

2� − 2 = 2(2��� − 1) 
= 2(2��� − 2 + 1) 

= 2(1 + 2(2��� − 1)) 
⋮ 

= 2(1 + 2(1 + 2(1+. . ))) 
Hence, we can use the above equations to decompose ����� to: 

����� = ��(������) = (�(������))� 

= (�(��������))� = (� � �(������))� 

(� � ��(������))� = (� � (�(������))�)� 

⋮ 
= (�(�(…�(���)� … )�)�)� 

The square and multiplication algorithm use the same principle to calculate �����.  

2.1 Itoh and Tsujii algorithm 

Itoh and Tsujii (Itoh & Tsujii 1988) offered a more efficient algorithm over normal basis; 
however it is applicable over polynomial and other basis. Their algorithm was based on 
multiplication which can be applied on some values of �. In their algorithm, they reduced 
the number of multiplications, significantly. Many efforts have been done to improve Itoh 
and Tsujii algorithm and make it more general for all values of � (Guajardo & C. Paar 2002; 
Henrquez, et. al. 2007). Here we review the general form of this algorithm. 

To describe Itoh and Tsujii algorithm, we introduce a new term, called addition chain.  

Definition addition chain: Addition chain for an integer value such as � − 1, is a series of 
integers with � elements such that, �� = 1 and �� = � − 1, and �� = ��� + ���. 
Where �� and �� are two integer values between 0 and �. 
Example.2: If � = 1�3, then the addition chain could be  

1, 2, 3, 6, 12, 24, 48, 96, 192 

In this addition chain for all elements of sequence we have  �� = ���� + ���� except for ��, 
which �� = �� + ��. 

�� �� �� �� �� 
 �� + �� �� + �� �� + �� �� + �� 
1 2 3 6 12 
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�� �� �� �� 

�� + �� �� + �� �� + �� �� + �� 

24 48 96 192 

Let’s define a function  ��(�) = �����, which � � ��(2�). We know that  ��(�) = ����� =
���. The other characteristic of this function is enlisted as follow: 

���� = ���� � �� 
��� = ���

��� or  ���� � �� 

Hence, to compute ���, we should use the equations above and using addition chaining to 
achieve  ��(�) = �����. 

Example.3: for � = 193, and above addition chain, we can write the following calculations 

�� = 1  �� = �����

�� = 2  �� = (��)���� = ����� 

�� = 3  �� = (��)���� � ��
�� = 6  �� = (��)�� � ��
�� = 12  ��� = (��)�� � ��
�� = 24  ��� = (���)��� � ���
�� = 48  ��� = (���)��� � ���
�� = 96  ��� = (���)��� � ���
�� = 192  ���� = (���)��� � ���

It has been shown that the maximum number of multiplication in this method is � and 
the required number of square operation is � � 1. The size of addition chain or � is 
estimated as �����(� � 1)� + ��(� � 1) + 1, where ��(� � 1) is the hamming weight of 
� � 1. 

For more information and more details, the readers may refer to (Guajardo & C. Paar 2002; 
Henrquez, et. al. 2007). 

Itoh and Tsujii algorithm is presented in Alg.2. 

After calculating inversion, division simply becomes a multiplication operation. 

The advantage of Fermat’s little theorem based inversion algorithm is that, it can be 
implemented just by using multiplication and square arithmetic operators. This eliminates 
the need to add any extra components, such as dividers. When ECC was proposed, the 
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dividers were not as advanced as they are now; hence, multiplicative based dividers were 
the best candidates for hardware implementation of ECC, particularly over FPGAs. Also it is 
possible to use these dividers for reconfigurable cryptosystems, which are designed to 
perform both RSA and ECC algorithms. Since the sizes of these cryptosystems are becoming 
larger, dropping a big component such as divider is a huge saving on implemented area for 
designers. The main drawback of the cipher cores without dividers is the longer 
computational time.  

Alg.2:  Itoh and Tsujii Algorithm to compute inversion 

Input � � ��(2�) 
Output ��� 

1. ���(�) = � 
2. For � = 1 to � do 

2.1.        ���(�) = �����(�)��
���
× ����(�) 

3. Return ���� (�) 

3. Euclidian based dividers 
Euclid’s algorithm is an old algorithm to calculate the greatest common divider (GCD) of 
two integers. The basic principle of Euclid’s algorithm is that, the greatest common divider 
of � and �, ���(�, �), is equal to the greatest common divider of � and � � � or in other 
word ���(�, �) = ���(�, � � �) = ���(� � �, �). 
Example.4: ���(1�,30) = �,�

���(1�,30) =�
���(30 − 1�,1�) = ����(12,1�) =�
����(1� − 12,12) = ����(�,12) =��
���(12 − �,�) = ���(�,�) = ��

We can apply the above principle more than once and rewrite this theorem as  ���(�, �) =
���(�, � × � � � × �) = ���(�́ × � � �́ × �, �).  
Example.5:  GCD(90,525)=15 

���(90,525 − 5 × 90) = ���(90,525 − 450) = 

���(90,75) = ���(75,90 − 75) = 

���(75,15) = ���(15,75 − 3 × 15) = 

���(15,0) = 15 

To reduce the calculation time, we can offer the Alg.3. 
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Alg.3:  Euclidian algorithm to calculate Greatest Common Divider (GCD) 

Input �� � 

Output ���(�� �) 
1. While (� � �)  

1.1.       � � � 
1.2.       � � ������� 
1.3.       �� � �� 

2. Return (�) 

The above algorithm can be made more compact using a recursive approach. Alg. 4 presents 
the recursive and more compact version of Alg. 3.  

Alg.4:  Euclidian algorithm to calculate Greatest Common Divider 
(Recursive Approach)  

Input �� � 

Output ���(�� �) 
1. if (� � �)  

1.1.      Return (�) 
2. else 

2.1.       Return (���(�� � ��� �)) 

We provide  a useful theorem below which will be used this section, to make the Euclidian 
algorithm more general for our purpose. 

Theorem: let’s assume � � � � � � �. Then ���(�� �) � ����(�� �) 

���(�� �) � ����(�� � � � � �) 
 �� ����(�� �) 

The simple proof for this theorem is by applying Euclid’s theorem (���(�� �) � ����(�� � �
�)) for � times, to give the same relationship.  

In order to use Euclid’s theorem for division or inversion, assume two values such as � and 
�. We have already seen how to compute � � ���(�� �). We know that there are two 
variables,  � and �, which satisfies the following equation 

� � � � � � � � � 

If we can design an algorithm which accepts � and �, and produces � and �; we can use that 
algorithm to find inversion. Assume � is a prime value and � is an integer where � � � �
� � �. We know � � ���(�� �) � �. Hence, applying the above algorithm, we can find  � 
and � which � � � � � � � � �. 
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If we use that algorithm over the finite field, ��(�), we can calculate the inverse of � which 
is � (i.e. ��� = �). Using the algorithm above, it gives us � and � such that it satisfy the 
equation: � � � � � � � = 1. Over the finite field, ��(�), � � � = 0. Then � � � � � � � = 1 
over ��(�) could be simplified to � � � = 1. Then � is the inversion of � over ��(�). 
Let’s ���(��� ��) = �. We know there are two integer values, �� and �� such that (where one 
of the values is smaller than zero): 

�� � �� � �� � �� = �. 

Based on Euclid’s theorem, we can write  ���(��� �� � ����) = �. Hence, the equation above 
can be rewritten as:  

�� � ���� � (�� � ����) � ���� = �. 

By rearranging this equation, we can write: 

�� � ���� � ���� � ���� � �� � ���� = 

�� � (���� � �� � ����) � �� � ���� = � 

Then we can conclude: 

�� = ���� � �� � ���� 

�� = ����. 
(1) 

Similarly, for����(�� � ����� ��) = �, we can write the same equations and conclude  

�� = ���� � �� � ���� 

�� = ����. 
(2) 

If we perform the Euclidian algorithm to calculate �, at the final step or loop ���(��� ��) =
���(��� ����) = �� = �. The above relationship for this step will be  

�� � �� � �� � �� = 

�� � �� � ���� � �� = �� = � 

So �� = 1 and �� = 0.  

Example.6: Let’s � = �� and � = 1� 

 ���� � 1��� = 1 

(�� � 2 � 1�)�� � 1��� = 1         �� = 2 

 ��� � 1��� = 1 

��� � (1� � 5 � �)�� = 1               �� = 5 
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Alg.3:  Euclidian algorithm to calculate Greatest Common Divider (GCD) 
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1.3.       �� � �� 
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The above algorithm can be made more compact using a recursive approach. Alg. 4 presents 
the recursive and more compact version of Alg. 3.  

Alg.4:  Euclidian algorithm to calculate Greatest Common Divider 
(Recursive Approach)  

Input �� � 

Output ���(�� �) 
1. if (� � �)  

1.1.      Return (�) 
2. else 

2.1.       Return (���(�� � ��� �)) 

We provide  a useful theorem below which will be used this section, to make the Euclidian 
algorithm more general for our purpose. 

Theorem: let’s assume � � � � � � �. Then ���(�� �) � ����(�� �) 

���(�� �) � ����(�� � � � � �) 
 �� ����(�� �) 

The simple proof for this theorem is by applying Euclid’s theorem (���(�� �) � ����(�� � �
�)) for � times, to give the same relationship.  

In order to use Euclid’s theorem for division or inversion, assume two values such as � and 
�. We have already seen how to compute � � ���(�� �). We know that there are two 
variables,  � and �, which satisfies the following equation 

� � � � � � � � � 

If we can design an algorithm which accepts � and �, and produces � and �; we can use that 
algorithm to find inversion. Assume � is a prime value and � is an integer where � � � �
� � �. We know � � ���(�� �) � �. Hence, applying the above algorithm, we can find  � 
and � which � � � � � � � � �. 
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If we use that algorithm over the finite field, ��(�), we can calculate the inverse of � which 
is � (i.e. ��� = �). Using the algorithm above, it gives us � and � such that it satisfy the 
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over ��(�) could be simplified to � � � = 1. Then � is the inversion of � over ��(�). 
Let’s ���(��� ��) = �. We know there are two integer values, �� and �� such that (where one 
of the values is smaller than zero): 

�� � �� � �� � �� = �. 

Based on Euclid’s theorem, we can write  ���(��� �� � ����) = �. Hence, the equation above 
can be rewritten as:  

�� � ���� � (�� � ����) � ���� = �. 

By rearranging this equation, we can write: 

�� � ���� � ���� � ���� � �� � ���� = 

�� � (���� � �� � ����) � �� � ���� = � 

Then we can conclude: 

�� = ���� � �� � ���� 

�� = ����. 
(1) 

Similarly, for����(�� � ����� ��) = �, we can write the same equations and conclude  

�� = ���� � �� � ���� 

�� = ����. 
(2) 

If we perform the Euclidian algorithm to calculate �, at the final step or loop ���(��� ��) =
���(��� ����) = �� = �. The above relationship for this step will be  

�� � �� � �� � �� = 

�� � �� � ���� � �� = �� = � 

So �� = 1 and �� = 0.  

Example.6: Let’s � = �� and � = 1� 

 ���� � 1��� = 1 

(�� � 2 � 1�)�� � 1��� = 1         �� = 2 

 ��� � 1��� = 1 

��� � (1� � 5 � �)�� = 1               �� = 5 
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3�� + 2�� = 1 

(3 − 1 × 2)�� + 2�� = 1         �� = 1 

�� + 2�� = 1 

�� + (2 − 2 × 1)�� = 1               �� = 2 

�� = 1 

Using (1) and (2) for the above relation in backward (start from ��, �� and ��), we can 
calculate �� and ��. 

�� = �� = 0             �� = �� − ���� = 1 

�� = �� = 1             �� = �� − ���� = −1 

�� = �� = −1          �� = �� − ���� = 6 

�� = �� = 6             �� = �� − ���� = −13 

Then finally: 

37 × 6 + 17 × (−13) = 1 

Hence, one way of finding � and � is to execute Euclidian algorithm. Then calculate  �� and 
�� based on the equations above. Alg.5 is based on this idea. 

Alg.5:  Algorithm of Finding  � and � 

Input: �� �			(� � �) 
Output: ���(�� �)� �� � 

1. �� = 1	
2. �� = 0	
3. �� = 1	
4. �� = 0	
5. While (� � 1)  

5.1.      � = ���� ; 	� = � − ��; 	� = �� − ���; 	� = �� − ���; 
5.2.       � = �; 	� = �;	�� = ��;	�� = �;	�� = ��;	�� = �; 

6. � = �;	
7. � = ��;		
8. � = ��;
9.  Return (�� �� �) 

In order to get better impression about the role of ��, ��� �� and �� in Alg.5 (and Alg.6) we 
recommend to extend the last two equations of example.6 (i.e. �� and ��) and rewrite them 
with ��, �� and ��.  

All the substitutions at step 5.1 and 5.2 of Alg.5 should be executed at the same time. 
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We can simplify this algorithm for � and � (where 0 � � � �, and � is a prime number) to 
calculate ��� over ����) (Alg.6).  

 
 

Alg.6:  Algorithm of Computing Inversion Over ����)  
Input: �� � � ����) 
Output: ��� 

1. �� = 1	
2. �� = 0	
3. While (� � 1)  

3.1.      � = ���� 
3.2.       � = � � ��� 	� = ��	�� = ��;	�� = �� � ��� 

4.  Return (��) 

All the operations on Alg.6 are performs over ����). All the substitutions at step 3.2 of 
Alg.6 should be done simultaneously. 

In the algorithm above, we should perform a division at each loop (step 3.1.). To avoid 
division, we can assume if � � � then � =1 and if � � � then � = 0 or swap � and � and �� 
and �� values. Then we can compute ������ � � �), instead of computing ������ �) =
������ � � ��). This technique increases the number of iterations. 

Modifying the above algorithms for polynomial basis, we have Alg.7. All operations in 
Alg.7 should be done over �����). In Alg.7, � represents the irreducible polynomial of 
�����). 

 
 

Alg.7:  Algorithm of Computing Inversion Over �����)  
Input: � � �����) 
Output: ��� 

1. �� = 1	
2. �� = 0	
3. While (� � 1)  

3.1.       � = � � �� 	� = ��	�� = ��;	�� = �� � �� 
4.  Return (��) 
 

 

Example.7: let’s assume we want to calculate 1/7 over ���17) 
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(3 − 1 × 2)�� + 2�� = 1         �� = 1 

�� + 2�� = 1 

�� + (2 − 2 × 1)�� = 1               �� = 2 

�� = 1 

Using (1) and (2) for the above relation in backward (start from ��, �� and ��), we can 
calculate �� and ��. 

�� = �� = 0             �� = �� − ���� = 1 

�� = �� = 1             �� = �� − ���� = −1 

�� = �� = −1          �� = �� − ���� = 6 

�� = �� = 6             �� = �� − ���� = −13 

Then finally: 

37 × 6 + 17 × (−13) = 1 

Hence, one way of finding � and � is to execute Euclidian algorithm. Then calculate  �� and 
�� based on the equations above. Alg.5 is based on this idea. 

Alg.5:  Algorithm of Finding  � and � 

Input: �� �			(� � �) 
Output: ���(�� �)� �� � 

1. �� = 1	
2. �� = 0	
3. �� = 1	
4. �� = 0	
5. While (� � 1)  

5.1.      � = ���� ; 	� = � − ��; 	� = �� − ���; 	� = �� − ���; 
5.2.       � = �; 	� = �;	�� = ��;	�� = �;	�� = ��;	�� = �; 

6. � = �;	
7. � = ��;		
8. � = ��;
9.  Return (�� �� �) 

In order to get better impression about the role of ��, ��� �� and �� in Alg.5 (and Alg.6) we 
recommend to extend the last two equations of example.6 (i.e. �� and ��) and rewrite them 
with ��, �� and ��.  

All the substitutions at step 5.1 and 5.2 of Alg.5 should be executed at the same time. 
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We can simplify this algorithm for � and � (where 0 � � � �, and � is a prime number) to 
calculate ��� over ����) (Alg.6).  

 
 

Alg.6:  Algorithm of Computing Inversion Over ����)  
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Output: ��� 

1. �� = 1	
2. �� = 0	
3. While (� � 1)  

3.1.      � = ���� 
3.2.       � = � � ��� 	� = ��	�� = ��;	�� = �� � ��� 

4.  Return (��) 

All the operations on Alg.6 are performs over ����). All the substitutions at step 3.2 of 
Alg.6 should be done simultaneously. 

In the algorithm above, we should perform a division at each loop (step 3.1.). To avoid 
division, we can assume if � � � then � =1 and if � � � then � = 0 or swap � and � and �� 
and �� values. Then we can compute ������ � � �), instead of computing ������ �) =
������ � � ��). This technique increases the number of iterations. 

Modifying the above algorithms for polynomial basis, we have Alg.7. All operations in 
Alg.7 should be done over �����). In Alg.7, � represents the irreducible polynomial of 
�����). 

 
 

Alg.7:  Algorithm of Computing Inversion Over �����)  
Input: � � �����) 
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Example.7: let’s assume we want to calculate 1/7 over ���17) 
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�� = �							�� = 0							� = 7							� = �7 

�� = ��							�� = �							� = �0							� = 7 

�� = �							�� = ��							� = 7							� = �0 

�� = ��							�� = �							� = �							� = 7 

�� = �							�� = ��							� = �								� = � 

�� = ��							�� = �							� = �								� = � 

�� = 5							�� = ��							� = �								� = � 

Then  7�� = 5 over ��(�7). 
The reviewed algorithm, so far, calculates inversion. After an inversion is calculated, simply 
multiply �� to create a division. In (Takagi 1998), N. Takagi offered an algorithm which 
directly calculates division.  

This algorithm is based on two concepts:  

(1) If � is even and � is odd, then ���(�� �) = ���(���� �);  
(2) If both � and � are odd, then  ���(�� �) = ���((� � �)��� �) 	=
���(���� � �); Where in the proposed algorithm, we choose the minimum 
of � and � (i.e. ���(�� �) = ���((� � �)������	��� ��)). 

The proposed algorithm over ��(�) is presented as Alg.8. In Alg.8, �� represents the least 
significant bit (LSB) of �. Also all operation are performed over ��(�). 
 

 

Alg.8:  Algorithm of Computing Division Over ��(�)  
Input: �� � � ��(�)� � � ��(�) 
Output:  � ��  

1. � = 0	
2. While (� � 0)  

2.1.      While (�� = 0) 
2.1.1. � = ���	� 	� = ���	�	

2.2.       If (� � �)	
2.2.1. � = � � �� 	� = � � ��	

2.3.       else  
2.3.1. � = � � �� 	� = �� 
2.3.2. � = � � �� 	� = �� 

3.  Return (�) 
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� values decrease at each step. At the final step, � and � are zero and one, respectively. This 
algorithm will finish at most after 2� � 1 iterations, where 2��� � � � 2�. 

 

Alg.9:  Algorithm of Computing Division Over ��(2�)  
Input: �(�)� � � ��(2�)� � � ��(2�) 
Output:  � ��  

1. � = �;	
2. While ((� � �)	���	(� � 1)) 

2.1.    If (�� = 1) 
2.1.1.       If (� � �)	

2.1.1.1. � = � � �� 	� = � � ��	
2.1.2.       else  

2.1.2.1. � = � � �� 	� = �� 
2.1.2.2. � = � � �� 	� = �� 

2.2.    � = ��2�	
2.3.    � = ��2� 

3.  Return (�) 

To extend this algorithm to be applicable over ��(2�), the following changes should be 
applied; Assume �(�) as irreducible polynomial (It is known that �� is always 1) and 
substitute �(�) with �. The degrees of the most significant nonzero bit of �(�) and �(�) will 
distinguish which variable is larger (in step 2.2). Hence, the algorithm will be as Alg.9.  
 

 

Alg.10:  Modified Algorithm of Computing Division Over ��(2�)  
Input: �(�)� � � ��(2�)� � � ��(2�) 
Output:  � ��  

1. � = �;	
2. While ((� � �)	���	(� � 1)) 

2.1.    If (�� = 1) 
2.1.1. If (� � �) 

2.1.1.1. � = � � �� � = ��	
2.1.1.2. � = � � �� � = ��	
2.1.1.3. � = ���	

2.1.2.       else  
2.1.2.1. � = � � �� 
2.1.2.2. � = � � �� 

2.2.    � = ��2�	
2.3.    � = ��2� 
2.4.    � = � � 1� 

3.  Return (�) 
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�� = �							�� = 0							� = 7							� = �7 
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Then  7�� = 5 over ��(�7). 
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���(���� � �); Where in the proposed algorithm, we choose the minimum 
of � and � (i.e. ���(�� �) = ���((� � �)������	��� ��)). 

The proposed algorithm over ��(�) is presented as Alg.8. In Alg.8, �� represents the least 
significant bit (LSB) of �. Also all operation are performed over ��(�). 
 

 

Alg.8:  Algorithm of Computing Division Over ��(�)  
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Output:  � ��  
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2. While (� � 0)  
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� values decrease at each step. At the final step, � and � are zero and one, respectively. This 
algorithm will finish at most after 2� � 1 iterations, where 2��� � � � 2�. 

 

Alg.9:  Algorithm of Computing Division Over ��(2�)  
Input: �(�)� � � ��(2�)� � � ��(2�) 
Output:  � ��  
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3.  Return (�) 

To extend this algorithm to be applicable over ��(2�), the following changes should be 
applied; Assume �(�) as irreducible polynomial (It is known that �� is always 1) and 
substitute �(�) with �. The degrees of the most significant nonzero bit of �(�) and �(�) will 
distinguish which variable is larger (in step 2.2). Hence, the algorithm will be as Alg.9.  
 

 

Alg.10:  Modified Algorithm of Computing Division Over ��(2�)  
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This algorithm, takes at most �� − 1 iterations to finish. Checking the degree of � and �, is a 
costly operation in hardware implementation. In (Brent & Kung 1983), Brent and Kung 
reduced this complexity by adopting a new idea. They used a new variable, �, to represent 
the difference of upper bounds of degree � and �(�). In (Brent & Kung 1983) they use this 
method to calculate the Greatest Common Divisor of two variables. However this method 
can be used to calculate division. 

At the initialization step, � should be equal to −1. Then the above algorithm has to be 
changed as Alg.10. 

Example.8: Let’s � � 11�1, � � �111 and the irreducible polynomial is �(�) � �� � � � 1. 

� � −1���� � �111���� � 1���11���� � 11�1���� � � 

� � �������� � 1�1����� � ���111���� � 1111���� � 11�1 

� � −1���� � �1�1���� � ���111���� � 111����� � 11�1 

� � �������� � ���1���� � ���1�1���� � 1������� � 111� 

� � −1���� � ��1����� � ���1�1���� � ��11���� � 111� 

� � −����� � ���1���� � ���1�1���� � 1������� � 111� 

� � −1���� � ��1����� � �����1���� � ��11���� � 1��� 

The final step to improve the algorithm above is applied within the loop. Hardware 
implementation of “�����” statement is difficult. This is because the number of iterations is 
an unknown variable, making it inappropriate for cryptographic cores and particularly 
systolic implementations. We know that this algorithm takes at most �� − 1 iterations. 
Hence, instead of a “�����” loop, we implement a “���” loop. This modification can be done 
by a simple change in Alg.10. In step.2, instead of “While ((� � �)�����(� � 1))” we should 
write “For � � 1�to��� − 1”. 

So far we have presented very general forms of divider algorithms. We reviewed all the 
proposed algorithms because each one has a unique characteristic that makes it more 
efficient for a specific design of a core. Many research papers have been done to improve the 
above algorithms and make them more efficient for hardware implementations. For 
example, in (Wu, Shieh & Hwang 2001), the designers proposed a new algorithm. In their 
algorithms, they eliminate � and use two other variables to Instead of comparing � 
relationship to zero, they only check two bits of their new adopted variables in their 
algorithm; thus making the new algorithms more efficient for hardware (by eliminating step 
2.1.1 in Alg.10). Another example can be seen in (Zadeh 2007), where the number of 
iterations is reduced from �� − 1 to � by combining two loop iterations. The paper 
explores how a number of modifications can reduce the number of conditional statements. 

Other similar classes of dividers have been proposed such as Dual Field Modular dividers 
or Unified Modular Division (UMD). These classes perform division on two finite field (over 
��(�) and ��(��)). Unified Modular Dividers have been applied in some applications such 
as network servers (Wolkerstorfer 2002; Tenca & Tawalbeh 2004). 
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Euclidian algorithm is the most efficient algorithm for division in terms of area and time. 
Until now, not many hardware platforms were able to implement this algorithm. Advances 
in technology of ASIC offer many high capacity reconfigurable platforms such as FPGA. It 
gives hardware designers the ability of using these dividers in real applications. It is 
foreseeable that Euclidian dividers will be more widely implemented in the future. 

4. Conclusion  
In this chapter, we have reviewed two common classes of dividers which are widely used 
for cryptographic purpose. The most common dividers to be implemented in Elliptic Curve 
Cryptography and other cryptographic cores are multiplicative based dividers (based on 
Fermat’s little theorem) and Euclidian based dividers.  

To perform division over finite field, some other dividers have been proposed such as 
“Wiener-Hopf equation” based dividers. In Wiener-Hopf based dividers, the divisor (�) 
should expand to an � �� matrix, �, then the linear equation � � � � � should be solved 
to get �. � can be calculated using Gaussian elimination algorithm (Morii, Kasahara & 
Whiting 1989; Hasan & Bhargava 1992). The hardware efficiency of these dividers are not 
comparable with multiplicative and Euclidian based dividers.  

In terms of implementation area multiplicative based dividers are very efficient. Since they 
don’t need any extra component on the circuit and they can perform division using 
embedded components of the cipher cores. Also in term of speed, Euclidian based dividers 
are very fast.   
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1. Introduction 
In recent years, wireless sensor networks (WSNs) have drawn considerable attention from 
the research community on issues ranging from theoretical research to practical 
applications. Special characteristics of WSNs, such as resource constraints on energy and 
computational power and security have been well-defined and widely studied (Akyildiz et 
al., 2002; Sen, 2009). What has received less attention, however, is the critical privacy 
concern on information being collected, transmitted, and analyzed in a WSN. Such private 
and sensitive information may include payload data collected by sensors and transmitted 
through the network to a centralized data processing server. For example, a patient's blood 
pressure, sugar level and other vital signs are usually of critical privacy concern when 
monitored by a medical WSN which transmits the data to a remote hospital or doctor's 
office. Privacy concerns may also arise beyond data content and may focus on context 
information such as the location of a sensor initiating data communication. Effective 
countermeasure against the disclosure of both data and context-oriented private information 
is an indispensable prerequisite for deployment of WSNs in real-world applications (Sen, 
2010a; Bandyopadhyay & Sen, 2011). 

Privacy protection has been extensively studied in various fields such as wired and wireless 
networking, databases and data mining. However, the following inherent features of WSNs 
introduce unique challenges for privacy preservation of data and prevent the existing 
techniques from being directly implemented in these networks. 

 Uncontrollable environment: sensors may have to be deployed in an environment that is 
uncontrollable by the defender, such as a battlefield, enabling an adversary to launch 
physical attacks to capture sensor nodes or deploy counterfeit ones. As a result, an 
adversary may retrieve private keys used for secure communication and decrypt any 
communication eavesdropped by the adversary.  

 Sensor-node resource constraints: battery-powered sensor nodes generally have severe 
constraints on their ability to store, process, and transmit the sensed data. As a result, 
the computational complexity and resource consumption of public-key ciphers is 
usually considered unsuitable for WSNs.  
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 Topological constraints: the limited communication range of sensor nodes in a WSN 
requires multiple hops in order to transmit data from the source to the base station. 
Such a multi-hop scheme demands different nodes to take diverse traffic loads. In 
particular, a node closer to the base station (i.e., data collecting and processing server) 
has to relay data from nodes further away from base station in addition to transmitting 
its own generated data, leading to higher transmission rate. Such an unbalanced 
network traffic pattern brings significant challenges to the protection of context-
oriented privacy information. Particularly, if an adversary has the ability to carry out a 
global traffic analysis, observing the traffic patterns of different nodes over the whole 
network, it can easily identify the sink and compromise context privacy, or even 
manipulate the sink node to impede the proper functioning of the WSN. 

The unique challenges for privacy preservation in WSNs call for development of effective 
privacy-preserving techniques. Supporting efficient in-network data aggregation while 
preserving data privacy has emerged as an important requirement in numerous wireless 
sensor network applications (Acharya et al., 2005; Castelluccia et al., 2009; Girao et al., 2005; 
He et al., 2007; Westhoff et al., 2006). As a key approach to fulfilling this requirement of 
private data aggregation, concealed data aggregation (CDA) schemes have been proposed in 
which multiple source nodes send encrypted data to a sink along a converge-cast tree with 
aggregation of cipher-text being performed over the route (Acharya et al., 2005; Armknecht 
et al., 2008; Castelluccia et al., 2009; Girao et al., 2005; Peter et al., 2010; Westhoff et al., 2006). 

He et al. have proposed a cluster-based private data aggregation (CPDA) scheme in which the 
sensor nodes are randomly distributed into clusters (He et al., 2007). The cluster leaders 
carry out aggregation of the data received from the cluster member nodes. The data 
communication is secured by using a shared key between each pair of communicating nodes 
for the purpose of encryption. The aggregate function leverages algebraic properties of the 
polynomials to compute the desired aggregate value in a cluster. While the aggregation is 
carried out at the aggregator node in each cluster, it is guaranteed that no individual node 
gets to know the sensitive private values of other nodes in the cluster. The intermediate 
aggregate value in each cluster is further aggregated along the routing tree as the data 
packets move to the sink node. The privacy goal of the scheme is two-fold.  First, the privacy 
of data has to be guaranteed end-to-end. While only the sink could learn about the final 
aggregation result, each node will have information of its own data and does not have any 
information about the data of other nodes. Second, to reduce the communication overhead, 
the data from different source nodes have to be efficiently combined at the intermediate 
nodes along the path. Nevertheless, these intermediate nodes should not learn any 
information about the individual nodes' data. The authors of the CPDA scheme have 
presented performance results of the protocol to demonstrate the efficiency and security of 
the protocol. The CPDA protocol has become quite popular, and to the best of our 
knowledge, there has been no identified vulnerability of the protocol published in the 
literature so far. In this chapter, we first demonstrate a security loophole in the CPDA 
protocol and then proceed to show how the protocol can be made more secure and efficient.  

Some WSN application may not require privacy of the individual sensor data. Instead, the 
data aggregation scheme may need high level of security so that no malicious node should 
be able to introduce any fake data during the execution of the aggregation process. This 
requirement introduces the need for design of secure aggregation protocols for WSNs. 
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Keeping this requirement in mind, we also present a secure and robust aggregation protocol 
for WSNs where aggregation algorithm does not preserve the privacy of the individual 
sensor data but guarantees high level of security in the aggregation process so that a 
potential malicious insider node cannot inject false data during the aggregation process. 

The rest of this chapter is organized as follows. Section 2 provides a brief background 
discussion on the CPDA scheme. In Section 3, we present a cryptanalysis on CPDA and 
demonstrate a security vulnerability of the scheme. In Section 4, we present some design 
modifications of the CPDA scheme. Section 4.1 presents an efficient way to compute the 
aggregation operation so as to make CPDA more efficient. Section 4.2 briefly discusses how 
the identified security vulnerability can be addressed. Section 5 presents a comparative 
analysis of the overhead of the original CPDA protocol and its proposed modified version. 
Section 5.1 provides a comparison of the communication overheads in the network, and 
Section 5.2 provides an analysis of the computational overheads in the sensor nodes in the 
sensor nodes. Section 6 discusses the importance of security in designing aggregation 
schemes for WSNs. Section 7 presents some related work in the field of secure aggregation 
protocols in WSNs. In Section 8, a secure aggregation algorithm for WSNs is proposed.  
Section 9 presents some simulation results to evaluate the performance of the proposed 
secure aggregation protocol. Section 10 concludes the chapter while highlighting some 
future directions of research in privacy and security in WSNs.  

2. The CPDA scheme for data aggregation in WSNs 
The basic idea of CPDA is to introduce noise to the raw data sensed by the sensor nodes in a 
WSN, such that an aggregator can obtain accurate aggregated information but not 
individual sensor data (He et al., 2007). This is similar to the data perturbation approach 
extensively used in privacy-preserving data mining. However, unlike in privacy-preserving 
data mining, where noises are independently generated (at random) leading to imprecise 
aggregated results, the noises in CPDA are carefully designed to leverage the cooperation 
between different sensor nodes, such that the precise aggregated values can be obtained by 
the aggregator. The CPDA protocol classifies sensor nodes into two types: cluster leaders 
and cluster members. There is a one-to-many mapping between the cluster leaders and 
cluster members. The cluster leaders are responsible for aggregating data received from the 
cluster members. For security, the messages communicated between the cluster leaders and 
the cluster members are encrypted using different symmetric keys for each pair of nodes.  

The details of the CPDA scheme are provided briefly in the following sub-sections. 

2.1 The network model 

The sensor network is modeled as a connected graph G(V, E), where V represents the set of 
senor nodes and E represents the set of wireless links connecting the sensor nodes. The 
number of sensor nodes is taken as |V| = N. 

A data aggregation function is taken that aggregates the individual sensor readings. CPDA 

scheme has focused on additive aggregation function: 
1

( ) ( ),
N
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f t d t


  where di(t) is the 

individual sensor reading at time instant t for node i. For computation of the aggregate 
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 Topological constraints: the limited communication range of sensor nodes in a WSN 
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global traffic analysis, observing the traffic patterns of different nodes over the whole 
network, it can easily identify the sink and compromise context privacy, or even 
manipulate the sink node to impede the proper functioning of the WSN. 

The unique challenges for privacy preservation in WSNs call for development of effective 
privacy-preserving techniques. Supporting efficient in-network data aggregation while 
preserving data privacy has emerged as an important requirement in numerous wireless 
sensor network applications (Acharya et al., 2005; Castelluccia et al., 2009; Girao et al., 2005; 
He et al., 2007; Westhoff et al., 2006). As a key approach to fulfilling this requirement of 
private data aggregation, concealed data aggregation (CDA) schemes have been proposed in 
which multiple source nodes send encrypted data to a sink along a converge-cast tree with 
aggregation of cipher-text being performed over the route (Acharya et al., 2005; Armknecht 
et al., 2008; Castelluccia et al., 2009; Girao et al., 2005; Peter et al., 2010; Westhoff et al., 2006). 

He et al. have proposed a cluster-based private data aggregation (CPDA) scheme in which the 
sensor nodes are randomly distributed into clusters (He et al., 2007). The cluster leaders 
carry out aggregation of the data received from the cluster member nodes. The data 
communication is secured by using a shared key between each pair of communicating nodes 
for the purpose of encryption. The aggregate function leverages algebraic properties of the 
polynomials to compute the desired aggregate value in a cluster. While the aggregation is 
carried out at the aggregator node in each cluster, it is guaranteed that no individual node 
gets to know the sensitive private values of other nodes in the cluster. The intermediate 
aggregate value in each cluster is further aggregated along the routing tree as the data 
packets move to the sink node. The privacy goal of the scheme is two-fold.  First, the privacy 
of data has to be guaranteed end-to-end. While only the sink could learn about the final 
aggregation result, each node will have information of its own data and does not have any 
information about the data of other nodes. Second, to reduce the communication overhead, 
the data from different source nodes have to be efficiently combined at the intermediate 
nodes along the path. Nevertheless, these intermediate nodes should not learn any 
information about the individual nodes' data. The authors of the CPDA scheme have 
presented performance results of the protocol to demonstrate the efficiency and security of 
the protocol. The CPDA protocol has become quite popular, and to the best of our 
knowledge, there has been no identified vulnerability of the protocol published in the 
literature so far. In this chapter, we first demonstrate a security loophole in the CPDA 
protocol and then proceed to show how the protocol can be made more secure and efficient.  

Some WSN application may not require privacy of the individual sensor data. Instead, the 
data aggregation scheme may need high level of security so that no malicious node should 
be able to introduce any fake data during the execution of the aggregation process. This 
requirement introduces the need for design of secure aggregation protocols for WSNs. 
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Keeping this requirement in mind, we also present a secure and robust aggregation protocol 
for WSNs where aggregation algorithm does not preserve the privacy of the individual 
sensor data but guarantees high level of security in the aggregation process so that a 
potential malicious insider node cannot inject false data during the aggregation process. 

The rest of this chapter is organized as follows. Section 2 provides a brief background 
discussion on the CPDA scheme. In Section 3, we present a cryptanalysis on CPDA and 
demonstrate a security vulnerability of the scheme. In Section 4, we present some design 
modifications of the CPDA scheme. Section 4.1 presents an efficient way to compute the 
aggregation operation so as to make CPDA more efficient. Section 4.2 briefly discusses how 
the identified security vulnerability can be addressed. Section 5 presents a comparative 
analysis of the overhead of the original CPDA protocol and its proposed modified version. 
Section 5.1 provides a comparison of the communication overheads in the network, and 
Section 5.2 provides an analysis of the computational overheads in the sensor nodes in the 
sensor nodes. Section 6 discusses the importance of security in designing aggregation 
schemes for WSNs. Section 7 presents some related work in the field of secure aggregation 
protocols in WSNs. In Section 8, a secure aggregation algorithm for WSNs is proposed.  
Section 9 presents some simulation results to evaluate the performance of the proposed 
secure aggregation protocol. Section 10 concludes the chapter while highlighting some 
future directions of research in privacy and security in WSNs.  

2. The CPDA scheme for data aggregation in WSNs 
The basic idea of CPDA is to introduce noise to the raw data sensed by the sensor nodes in a 
WSN, such that an aggregator can obtain accurate aggregated information but not 
individual sensor data (He et al., 2007). This is similar to the data perturbation approach 
extensively used in privacy-preserving data mining. However, unlike in privacy-preserving 
data mining, where noises are independently generated (at random) leading to imprecise 
aggregated results, the noises in CPDA are carefully designed to leverage the cooperation 
between different sensor nodes, such that the precise aggregated values can be obtained by 
the aggregator. The CPDA protocol classifies sensor nodes into two types: cluster leaders 
and cluster members. There is a one-to-many mapping between the cluster leaders and 
cluster members. The cluster leaders are responsible for aggregating data received from the 
cluster members. For security, the messages communicated between the cluster leaders and 
the cluster members are encrypted using different symmetric keys for each pair of nodes.  

The details of the CPDA scheme are provided briefly in the following sub-sections. 

2.1 The network model 

The sensor network is modeled as a connected graph G(V, E), where V represents the set of 
senor nodes and E represents the set of wireless links connecting the sensor nodes. The 
number of sensor nodes is taken as |V| = N. 

A data aggregation function is taken that aggregates the individual sensor readings. CPDA 

scheme has focused on additive aggregation function: 
1

( ) ( ),
N

i
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  where di(t) is the 

individual sensor reading at time instant t for node i. For computation of the aggregate 
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functions, the following requirements are to be satisfied: (i) privacy of the individual sensor 
data is to be protected, i.e., each node's data should be known to no other nodes except the 
node itself, (ii) the number of messages transmitted within the WSN for the purpose of data 
aggregation should be kept at a minimum, and (iii) the aggregation result should be as 
accurate as possible. 

2.2 Key distribution and management 

CPDA uses a random key distribution mechanism proposed in (Eschenauer & Gligor, 2002) 
for encrypting messages to prevent message eavesdropping attacks. The key distribution 
scheme has three phases: (i) key pre-distribution, (ii) shared-key discovery, and (iii) path-
key establishment. These phases are described briefly as follows. 

A large key-pool of K keys and their identities are first generated in the key pre-distribution 
phase. For each sensor nodes, k keys out of the total K keys are chosen. These k keys form a 
key ring for the sensor node. 

During the key-discovery phase, each sensor node identifies which of its neighbors share a 
common key with itself by invoking and exchanging discovery messages. If a pair of 
neighbor nodes share a common key, then it is possible to establish a secure link between 
them.  

In the path-key establishment phase, an end-to-end path key is assigned to the pairs of 
neighboring nodes who do not share a common key but can be connected by two or more 
multi-hop secure links at the end of the shared-key discovery phase. 

At the end of the key distribution phase, the probability that any pair of nodes possess at 
least one common key is given by (1). 

 
2(( )!)1

( 2 )! !connect
K kp
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If the probability that any other node can overhear the encrypted message by a given key is 
denoted as poverhear, then poverhear is given by (2). 

 overhear
kp
K

  (2) 

It has been shown in (He et al., 2007) that the above key distribution algorithm is efficient for 
communication in a large-scale sensor network and when a limited number of keys are 
available for encryption of the messages to prevent eavesdropping attacks.  

2.3 Cluster-based private data aggregation (CPDA) protocol  

The CPDA scheme works in three phases: (i) cluster formation, (ii) computation of aggregate 
results in clusters, and (ii) cluster data aggregation. These phases are described below. 

Cluster formation: Fig. 1 depicts the cluster formation process. A query server Q triggers a 
query by sending a HELLO message. When the HELLO message reaches a sensor node, it elects 
itself as a cluster leader with a pre-defined probability p. If the value of p is large, there will be 
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more number of nodes which will elect themselves as cluster leaders. This will result in higher 
number of clusters in the network. On the other hand, smaller values of p will lead to less 
number of clusters due to fewer number of cluster leader nodes. Hence, the value of the 
parameter p can be suitably chosen to control the number of clusters in the network. If a node 
becomes a cluster leader, it forwards the HELLO message to its neighbors; otherwise, it waits for 
a threshold period of time to check whether any HELLO message arrives at it from any of its 
neighbors. If any HELLO message arrives at the node, it decides to join the cluster formed by its 
neighbor by broadcasting a JOIN message as shown in Fig. 2. This process is repeated and 
multiple clusters are formed so that the entire WSN becomes a collection of a set of clusters. 

 
Fig. 1. The query server Q sends HELLO messages for initiating the cluster formation 
procedure to its neighbors A, D, E and F. The query server is shaded in the figure. 

Computation within clusters: In this phase, aggregation is done in each cluster. The 
computation is illustrated with the example of a simple case where a cluster contains three 
members: A, B, and C, where A is the assumed to be the cluster leader and the aggregator 
node, whereas B and C are the cluster member nodes. Let a, b, c represent the private data 
held by the nodes A, B, and C respectively. The goal of the aggregation scheme is to 
compute the sum of a, b and c without revealing the private values of the nodes. 

 
Fig. 2. A and D elect themselves as the cluster leaders randomly and in turn send HELLO 
messages to their neighbors. E and F join the cluster formed by Q. B and C join the cluster 
formed with A as the cluster leader, while G and H join the cluster with D as the cluster 
leader. All the cluster leaders and the query server are leader. 
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functions, the following requirements are to be satisfied: (i) privacy of the individual sensor 
data is to be protected, i.e., each node's data should be known to no other nodes except the 
node itself, (ii) the number of messages transmitted within the WSN for the purpose of data 
aggregation should be kept at a minimum, and (iii) the aggregation result should be as 
accurate as possible. 

2.2 Key distribution and management 

CPDA uses a random key distribution mechanism proposed in (Eschenauer & Gligor, 2002) 
for encrypting messages to prevent message eavesdropping attacks. The key distribution 
scheme has three phases: (i) key pre-distribution, (ii) shared-key discovery, and (iii) path-
key establishment. These phases are described briefly as follows. 

A large key-pool of K keys and their identities are first generated in the key pre-distribution 
phase. For each sensor nodes, k keys out of the total K keys are chosen. These k keys form a 
key ring for the sensor node. 

During the key-discovery phase, each sensor node identifies which of its neighbors share a 
common key with itself by invoking and exchanging discovery messages. If a pair of 
neighbor nodes share a common key, then it is possible to establish a secure link between 
them.  

In the path-key establishment phase, an end-to-end path key is assigned to the pairs of 
neighboring nodes who do not share a common key but can be connected by two or more 
multi-hop secure links at the end of the shared-key discovery phase. 

At the end of the key distribution phase, the probability that any pair of nodes possess at 
least one common key is given by (1). 
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If the probability that any other node can overhear the encrypted message by a given key is 
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It has been shown in (He et al., 2007) that the above key distribution algorithm is efficient for 
communication in a large-scale sensor network and when a limited number of keys are 
available for encryption of the messages to prevent eavesdropping attacks.  

2.3 Cluster-based private data aggregation (CPDA) protocol  

The CPDA scheme works in three phases: (i) cluster formation, (ii) computation of aggregate 
results in clusters, and (ii) cluster data aggregation. These phases are described below. 

Cluster formation: Fig. 1 depicts the cluster formation process. A query server Q triggers a 
query by sending a HELLO message. When the HELLO message reaches a sensor node, it elects 
itself as a cluster leader with a pre-defined probability p. If the value of p is large, there will be 
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more number of nodes which will elect themselves as cluster leaders. This will result in higher 
number of clusters in the network. On the other hand, smaller values of p will lead to less 
number of clusters due to fewer number of cluster leader nodes. Hence, the value of the 
parameter p can be suitably chosen to control the number of clusters in the network. If a node 
becomes a cluster leader, it forwards the HELLO message to its neighbors; otherwise, it waits for 
a threshold period of time to check whether any HELLO message arrives at it from any of its 
neighbors. If any HELLO message arrives at the node, it decides to join the cluster formed by its 
neighbor by broadcasting a JOIN message as shown in Fig. 2. This process is repeated and 
multiple clusters are formed so that the entire WSN becomes a collection of a set of clusters. 

 
Fig. 1. The query server Q sends HELLO messages for initiating the cluster formation 
procedure to its neighbors A, D, E and F. The query server is shaded in the figure. 

Computation within clusters: In this phase, aggregation is done in each cluster. The 
computation is illustrated with the example of a simple case where a cluster contains three 
members: A, B, and C, where A is the assumed to be the cluster leader and the aggregator 
node, whereas B and C are the cluster member nodes. Let a, b, c represent the private data 
held by the nodes A, B, and C respectively. The goal of the aggregation scheme is to 
compute the sum of a, b and c without revealing the private values of the nodes. 

 
Fig. 2. A and D elect themselves as the cluster leaders randomly and in turn send HELLO 
messages to their neighbors. E and F join the cluster formed by Q. B and C join the cluster 
formed with A as the cluster leader, while G and H join the cluster with D as the cluster 
leader. All the cluster leaders and the query server are leader. 



 
Cryptography and Security in Computing 

 

138 

As shown in Fig. 3, for the privacy-preserving additive aggregation function, the nodes A, B, 
and C are assumed to share three public non-zero distinct numbers, which are denoted as x, 
y, and z respectively. In addition, node A generates two random numbers r1A and r2A, which 
are known only to node A. Similarly, nodes B and C generate r1B, r2B and r1C, r2C respectively, 
which are private values of the nodes which have generated them. 

 
Fig. 3. Nodes A, B and C broadcast their distinct and non-zero public seeds x, y and z 
respectively 

Node A computes vAA, vBA, and vCA as shown in (3). 
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Similarly, node B computes vAB, vBB, and vCB as in (4). 
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Likewise, node C computes vAC, vBC, and vCC as in (5). 

 

2
1 2

2
1 2

2
1 2

C C C
A
C C C
B
C C C
C

v c r x r x

v c r y r y

v c r z r z

  

  

  

 (5) 

 
Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks 

 

139 

Node A encrypts vBA and sends it to node B using the shared key between node A and 
node B. Node A also encrypts vCA and sends it to node C using the shared key between 
node A and node C. In the same manner, node B sends encrypted vAB to node A and vCB to 
node C; node C sends encrypted vAC and vBC to node A and node B respectively. The 
exchanges of these encrypted messages are depicted in Fig. 4. On receiving vAB and vAC, 
node A computes the sum of vAA (already computed by node A), vAB and vAC. Now, node 
A computes FA using (6). 

 
Fig. 4. Exchanges of encrypted messages among nodes A, B and C using shared keys 

 2
1 2( )A B C

A A A AF v v v a b c r x r x         (6) 

In (6), 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   . Similarly, node B and node C compute FB and 
FC respectively, where FB and FC are given by (7) and (8) respectively. 

 2
1 2( )A B C

B B B BF v v v a b c r y r y         (7) 

    2
1 2( )A B C

C C C CF v v v a b c r z r z           (8) 

Node B and node C broadcast FB and FC to the cluster leader node A, so that node A has the 
knowledge of the values of FA, FB and FC. From these values the cluster leader node A can 
compute the aggregated value (a + b + c) as explained below.  

The equations (6), (7), and (8) can be rewritten as in (9). 

 1U G F  (9) 
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Node A encrypts vBA and sends it to node B using the shared key between node A and 
node B. Node A also encrypts vCA and sends it to node C using the shared key between 
node A and node C. In the same manner, node B sends encrypted vAB to node A and vCB to 
node C; node C sends encrypted vAC and vBC to node A and node B respectively. The 
exchanges of these encrypted messages are depicted in Fig. 4. On receiving vAB and vAC, 
node A computes the sum of vAA (already computed by node A), vAB and vAC. Now, node 
A computes FA using (6). 

 
Fig. 4. Exchanges of encrypted messages among nodes A, B and C using shared keys 
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In (6), 1 1 1 1
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A B Cr r r r   . Similarly, node B and node C compute FB and 
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Node B and node C broadcast FB and FC to the cluster leader node A, so that node A has the 
knowledge of the values of FA, FB and FC. From these values the cluster leader node A can 
compute the aggregated value (a + b + c) as explained below.  

The equations (6), (7), and (8) can be rewritten as in (9). 
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In (9),  
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 and  TA B cF F F F .  

Since x, y, z, FA, FB, and FC are known to the cluster leader node A, it can compute the value 
of (a + b + c) without having any knowledge of b and c. 

In order to avoid eavesdropping attack by neighbor nodes, it is necessary to encrypt the 
values of vBA, vCA, vAB, vCB, vAC, and vBC. If node B overhears the value of vCA, then node B 
gets access to the values of vCA, vBA and FA. Then node B can deduce: A A A

A A B Cv F v v   . 
Having the knowledge of vAA, node B can further obtain the value of a if x, vAA, vAB and vAC 
are known. However, if node A encrypts vCA and sends it to node C, then node B cannot get 
vCA. With the knowledge of vBA, FA, and x from node A, node B cannot deduce the value of a. 
If node B and node C collude and reveal node A's information (i.e., vBA and vCA), to each 
other, then node A's privacy will be compromised and its private value a will be revealed. In 
order to reduce the probability of such collusion attacks, the cluster size should be as large 
as possible, since in a cluster of size m, at least (m - 1) nodes should collude in order to 
successfully launch the attack. Higher values of m will require larger number of colluding 
nodes thereby making the attack more difficult. 

Cluster data aggregation The CPDA scheme has been implemented on top of a protocol 
known as Tiny Aggregation (TAG) protocol (Madden et al., 2002). Using the TAG protocol, 
each cluster leader node routes the sum of the values in the nodes in its cluster to the query 
server through a TAG routing tree whose root is situated at the server.  

3. An Attack on the CPDA scheme 
In this section, we present an efficient attack (Sen & Maitra, 2011) on the CPDA aggregation 
scheme. The objective of the attack is to show the vulnerability of the CPDA scheme which 
can be suitably exploited by a malicious participating sensor node. The intention of the 
malicious node is to participate in the scheme in such a way that it can get access to the 
private values (i.e., a, b and c) of the participating sensor nodes. For describing the attack 
scenario, we use the same example cluster consisting of three sensor nodes A, B and C. Node 
A is the cluster leader whereas node B and node C are the cluster members. We distinguish 
two types of attacks: (i) attack by a malicious cluster leader (e.g., node A) and (ii) attack by a 
malicious cluster member (e.g., either node B or node C). These two cases are described in 
detail in the following sub-sections. 

3.1 Privacy attack by a malicious cluster leader node 

Let us assume that the cluster leader node A is malicious. Node A chooses a very large value 
of x such that x >> y, z. Since y and z are public values chosen by node B and node C which 
are broadcast in the network by node B and node C respectively, it is easy for node A to 
choose a suitable value for x. 

Nodes A, B and C compute the values of vAA, vBA, vCA, vAB, vBB, vCB, vAC, vBC, and vCC using (3), 
(4) and (5) as described in Section 2.3. As per the CPDA scheme, node A receives: 
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2
1 2

B B B
Av b r x r x   from node B. Since x is very large compared to b and r1B node A can 

derive the value of r2B using (10) where we consider integer division. 

 1
2 2 22 2 0 0

B B
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xx x
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Using the value of r2B as derived in (10), and using 2
1 2

B B B
Av b r x r x   , node A can now 

compute the value of r1B by solving (11). 
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In the same manner, node A derives the values of r1C and r2C from vAC received from node C. 
Since 1 1 1 1

A B Cr r r r   , and 2 2 2 2
A B Cr r r r   , as shown in (6), (7) and (8), node A can 

compute the values of r1 and r2 (r1B, r2B, r1C, and r2C are derived as shown above, and r1A and 
r2A were generated by node A). 

At this stage, node A uses the values of FB and FC received from node B and node C 
respectively as shown in (7) and (8). Node A has now two linear simultaneous equations 
with two unknowns:  b and c, the values of y and z being public. Solving (7) and (8) for b and 
c, the malicious cluster leader node A can get the access to the private information. 

3.2 Privacy attack by a malicious cluster member node 

In this scenario, let us assume that the cluster member node B is malicious and it tries to 
access the private values of the cluster leader node A and the cluster member node C. Node 
B chooses a very large value of y so that y >> x, z. Once the value of FB is computed in (7), 
node B derives the value of r2 and r1 using (12) and (13). 
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As per the CPDA scheme, node B receives 2
1 2

C C C
Bv c r y r y   from node C. Since the 

magnitude of y is very large compared to c, r1C and r2C, it is easy for node B to derive the 
values of r2C and r1C using (14) and (15) respectively. 
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Using (12), (13), (14}) and (15) node B can compute 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   . 

Now, node B can compute the value of a using 2
1 2

B A A
Av a r y r y   (received from node A), 
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In (9),  
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 and  TA B cF F F F .  

Since x, y, z, FA, FB, and FC are known to the cluster leader node A, it can compute the value 
of (a + b + c) without having any knowledge of b and c. 

In order to avoid eavesdropping attack by neighbor nodes, it is necessary to encrypt the 
values of vBA, vCA, vAB, vCB, vAC, and vBC. If node B overhears the value of vCA, then node B 
gets access to the values of vCA, vBA and FA. Then node B can deduce: A A A

A A B Cv F v v   . 
Having the knowledge of vAA, node B can further obtain the value of a if x, vAA, vAB and vAC 
are known. However, if node A encrypts vCA and sends it to node C, then node B cannot get 
vCA. With the knowledge of vBA, FA, and x from node A, node B cannot deduce the value of a. 
If node B and node C collude and reveal node A's information (i.e., vBA and vCA), to each 
other, then node A's privacy will be compromised and its private value a will be revealed. In 
order to reduce the probability of such collusion attacks, the cluster size should be as large 
as possible, since in a cluster of size m, at least (m - 1) nodes should collude in order to 
successfully launch the attack. Higher values of m will require larger number of colluding 
nodes thereby making the attack more difficult. 

Cluster data aggregation The CPDA scheme has been implemented on top of a protocol 
known as Tiny Aggregation (TAG) protocol (Madden et al., 2002). Using the TAG protocol, 
each cluster leader node routes the sum of the values in the nodes in its cluster to the query 
server through a TAG routing tree whose root is situated at the server.  

3. An Attack on the CPDA scheme 
In this section, we present an efficient attack (Sen & Maitra, 2011) on the CPDA aggregation 
scheme. The objective of the attack is to show the vulnerability of the CPDA scheme which 
can be suitably exploited by a malicious participating sensor node. The intention of the 
malicious node is to participate in the scheme in such a way that it can get access to the 
private values (i.e., a, b and c) of the participating sensor nodes. For describing the attack 
scenario, we use the same example cluster consisting of three sensor nodes A, B and C. Node 
A is the cluster leader whereas node B and node C are the cluster members. We distinguish 
two types of attacks: (i) attack by a malicious cluster leader (e.g., node A) and (ii) attack by a 
malicious cluster member (e.g., either node B or node C). These two cases are described in 
detail in the following sub-sections. 

3.1 Privacy attack by a malicious cluster leader node 

Let us assume that the cluster leader node A is malicious. Node A chooses a very large value 
of x such that x >> y, z. Since y and z are public values chosen by node B and node C which 
are broadcast in the network by node B and node C respectively, it is easy for node A to 
choose a suitable value for x. 

Nodes A, B and C compute the values of vAA, vBA, vCA, vAB, vBB, vCB, vAC, vBC, and vCC using (3), 
(4) and (5) as described in Section 2.3. As per the CPDA scheme, node A receives: 
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2
1 2

B B B
Av b r x r x   from node B. Since x is very large compared to b and r1B node A can 

derive the value of r2B using (10) where we consider integer division. 

 1
2 2 22 2 0 0

B B
B B BAv b r r r r

xx x
        (10) 

Using the value of r2B as derived in (10), and using 2
1 2

B B B
Av b r x r x   , node A can now 

compute the value of r1B by solving (11). 

 
2

2
1 1 10

B B
B B BAv r x b r r r

x x


      (11) 

In the same manner, node A derives the values of r1C and r2C from vAC received from node C. 
Since 1 1 1 1

A B Cr r r r   , and 2 2 2 2
A B Cr r r r   , as shown in (6), (7) and (8), node A can 

compute the values of r1 and r2 (r1B, r2B, r1C, and r2C are derived as shown above, and r1A and 
r2A were generated by node A). 

At this stage, node A uses the values of FB and FC received from node B and node C 
respectively as shown in (7) and (8). Node A has now two linear simultaneous equations 
with two unknowns:  b and c, the values of y and z being public. Solving (7) and (8) for b and 
c, the malicious cluster leader node A can get the access to the private information. 

3.2 Privacy attack by a malicious cluster member node 

In this scenario, let us assume that the cluster member node B is malicious and it tries to 
access the private values of the cluster leader node A and the cluster member node C. Node 
B chooses a very large value of y so that y >> x, z. Once the value of FB is computed in (7), 
node B derives the value of r2 and r1 using (12) and (13). 

 1
2 22 2

( ) 0 0BF a b c r r r
yy y

 
       (12) 

 
2

2
1 1 1

( ) 0BF r y a b c r r r
y y
  

      (13) 

As per the CPDA scheme, node B receives 2
1 2

C C C
Bv c r y r y   from node C. Since the 

magnitude of y is very large compared to c, r1C and r2C, it is easy for node B to derive the 
values of r2C and r1C using (14) and (15) respectively. 

 1
2 2 22 2 0 0

C C
C C CBv c r r r r

yy y
        (14) 

 
2

2
1 1 10

C C
C C CBv r y c r r r

y y


      (15) 

Using (12), (13), (14}) and (15) node B can compute 1 1 1 1
A B Cr r r r   and 2 2 2 2

A B Cr r r r   . 

Now, node B can compute the value of a using 2
1 2

B A A
Av a r y r y   (received from node A), 
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in which the values of all the variables are known except that of a. In a similar fashion, node 
B derives the value of c using 2

1 2
C C C
Bv c r y r y    (received from node C). 

Since the private values of the nodes A and C are now known to node B, the privacy attack 
launched by participating cluster member node B is successful on the CPDA aggregation 
scheme. 

4. Modification of the CPDA Scheme 
In this section, we present two modifications of CPDA scheme: one towards making the 
protocol more efficient and the other for making it more secure. 

4.1 Modification of CPDA scheme for enhanced efficiency 

In this section, a modification is proposed for the CPDA protocol for achieving enhanced 
efficiency in its operation. The modification is based on suitable choice for the value of x (the 
public seed) done by the aggregator node A. 

Let us assume that the node A chooses a large value of x such that the following conditions 
in (16) and (17) are satisfied. 

 2
2 1r x r x  (16) 

 1 ( )r x a b c    (17) 

In (16) and (17), 1 1 1 1
A B Cr r r r    and 2 2 2 2

A B Cr r r r   . Now, node A has computed the value 
of FA as shown in (6). In order to efficiently compute the value of (a + b + c), node A divides 
the value of FA by x2 as shown in (18). 

 1
2 2 22 2 2

( ) 0 0AF a b c r x r r r
x x x

 
        (18) 

Using (18), node A derives the value of r2. Once the value of r2 is deduced, node A attempts 
to compute the value of r1 using (19) and (20). 

 2
2 1( )AF r x a b c r x      (19) 

 
2 2 2

2 2 2
1

( ) ( ) ( ) ( )0A A AF r x a b c F r x F r xr
x x x x
    

       (20) 

Since, the values of FA, r2 and x are all known to node A, it can compute the value of r1 using 
(20). Once the values of r1  and r2 are computed by node A, it can compute the value of (a + b + c) 
using (6). Since the computation of the sum (a + b + c) by node A involves two division 
operations (involving integers) only (as done in (18) and (20)), the modified CPDA scheme is 
light-weight and it is much more energy-efficient hence much more energy- and time-efficient 
as compared to the original CPDA scheme. The original CPDA scheme involved additional 
computations of the values of FB and FC, and an expensive matrix inversion operation as 
described in Section 2.3. 
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4.2 Modification of the CPDA scheme for resisting the attack 

In this section, we discuss the modifications required on the existing CPDA scheme so that a 
malicious participant node cannot launch the attack described in Section 3. 

It may be noted that, the vulnerability of the CPDA scheme lies essentially in the 
unrestricted freedom delegated on the participating nodes for generating their public seed 
values. For example, nodes A, B and C have no restrictions on their choice for values of x, y 
and z respectively while they generate these values. A malicious attacker can exploit this 
freedom to generate an arbitrarily large public seed value, and can thereby launch an attack 
as discussed in Section 3.  

In order to prevent such an attack, the CPDA protocol needs to be modified. In this 
modified version, the nodes in a cluster make a check on the generated public seed values so 
that it is not possible for a malicious participant to generate any arbitrarily large seed value. 
For a cluster with three nodes, such a constraint may be imposed by the requirement that 
the sum of any two public seeds must be greater than the third seed.  In other words: x + y > 
z, z + x > y, and y + z > x. If these constraints are satisfied by the generated values of x, y and 
z, it will be impossible for any node to launch the attack and get access to the private values 
of the other participating nodes. 

However, even if the above restrictions on the values of x, y and z are imposed, the nodes 
should be careful in choosing the values for their secret random number pairs. If two nodes 
happen to choose very large values for their random numbers compared to those chosen by 
the third node, then it will be possible for the third node to get access to the private values of 
the other two nodes. For example, let us assume that nodes A and C have chosen the values 
of r1A, r2A and r1C, r2C such that they are all much larger than r1B and r2B - the private random 
number pair chosen by node B. It will be possible for node B to derive the values of a and c: 
the private values of nodes A and C respectively. This is explained in the following. 

Node B receives 2
1 2

A A A
Bv a r y r y   from node A and computes the values of r1A and r2A 

using (21) and (22). 

 1
2 22 2 0 0

A A
A ABv a r r r

yy y
       (21) 

 
2

2
1 1 10

A A
A A ABv r y a r r r

y y


      (22) 

In a similar fashion, node B derives the values of r1C and r2C from vBC received from node C. 
Now, node B computes 1 1 1 1

A B Cr r r r   and 2 2 2 2
A B Cr r r r   , since it has access to the values 

of all these variables. In the original CPDA scheme in (He et al., 2007), the values of FB and 
FC are broadcast by nodes B and C in unencrypted from. Hence, node B has access to both 
these values. Using (7) and (8), node B can compute the values of a and c, since these are the 
only unknown variables in the two linear simultaneously equations. 

In order to defend against the above vulnerability, the CPDA protocol needs further 
modification. In this modified version, after the values vAA, vAB, and vAC are generated and 
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in which the values of all the variables are known except that of a. In a similar fashion, node 
B derives the value of c using 2

1 2
C C C
Bv c r y r y    (received from node C). 

Since the private values of the nodes A and C are now known to node B, the privacy attack 
launched by participating cluster member node B is successful on the CPDA aggregation 
scheme. 

4. Modification of the CPDA Scheme 
In this section, we present two modifications of CPDA scheme: one towards making the 
protocol more efficient and the other for making it more secure. 

4.1 Modification of CPDA scheme for enhanced efficiency 

In this section, a modification is proposed for the CPDA protocol for achieving enhanced 
efficiency in its operation. The modification is based on suitable choice for the value of x (the 
public seed) done by the aggregator node A. 

Let us assume that the node A chooses a large value of x such that the following conditions 
in (16) and (17) are satisfied. 

 2
2 1r x r x  (16) 

 1 ( )r x a b c    (17) 

In (16) and (17), 1 1 1 1
A B Cr r r r    and 2 2 2 2

A B Cr r r r   . Now, node A has computed the value 
of FA as shown in (6). In order to efficiently compute the value of (a + b + c), node A divides 
the value of FA by x2 as shown in (18). 

 1
2 2 22 2 2

( ) 0 0AF a b c r x r r r
x x x

 
        (18) 

Using (18), node A derives the value of r2. Once the value of r2 is deduced, node A attempts 
to compute the value of r1 using (19) and (20). 

 2
2 1( )AF r x a b c r x      (19) 

 
2 2 2

2 2 2
1

( ) ( ) ( ) ( )0A A AF r x a b c F r x F r xr
x x x x
    

       (20) 

Since, the values of FA, r2 and x are all known to node A, it can compute the value of r1 using 
(20). Once the values of r1  and r2 are computed by node A, it can compute the value of (a + b + c) 
using (6). Since the computation of the sum (a + b + c) by node A involves two division 
operations (involving integers) only (as done in (18) and (20)), the modified CPDA scheme is 
light-weight and it is much more energy-efficient hence much more energy- and time-efficient 
as compared to the original CPDA scheme. The original CPDA scheme involved additional 
computations of the values of FB and FC, and an expensive matrix inversion operation as 
described in Section 2.3. 
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4.2 Modification of the CPDA scheme for resisting the attack 

In this section, we discuss the modifications required on the existing CPDA scheme so that a 
malicious participant node cannot launch the attack described in Section 3. 

It may be noted that, the vulnerability of the CPDA scheme lies essentially in the 
unrestricted freedom delegated on the participating nodes for generating their public seed 
values. For example, nodes A, B and C have no restrictions on their choice for values of x, y 
and z respectively while they generate these values. A malicious attacker can exploit this 
freedom to generate an arbitrarily large public seed value, and can thereby launch an attack 
as discussed in Section 3.  

In order to prevent such an attack, the CPDA protocol needs to be modified. In this 
modified version, the nodes in a cluster make a check on the generated public seed values so 
that it is not possible for a malicious participant to generate any arbitrarily large seed value. 
For a cluster with three nodes, such a constraint may be imposed by the requirement that 
the sum of any two public seeds must be greater than the third seed.  In other words: x + y > 
z, z + x > y, and y + z > x. If these constraints are satisfied by the generated values of x, y and 
z, it will be impossible for any node to launch the attack and get access to the private values 
of the other participating nodes. 

However, even if the above restrictions on the values of x, y and z are imposed, the nodes 
should be careful in choosing the values for their secret random number pairs. If two nodes 
happen to choose very large values for their random numbers compared to those chosen by 
the third node, then it will be possible for the third node to get access to the private values of 
the other two nodes. For example, let us assume that nodes A and C have chosen the values 
of r1A, r2A and r1C, r2C such that they are all much larger than r1B and r2B - the private random 
number pair chosen by node B. It will be possible for node B to derive the values of a and c: 
the private values of nodes A and C respectively. This is explained in the following. 

Node B receives 2
1 2

A A A
Bv a r y r y   from node A and computes the values of r1A and r2A 

using (21) and (22). 

 1
2 22 2 0 0

A A
A ABv a r r r

yy y
       (21) 
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2
1 1 10

A A
A A ABv r y a r r r

y y


      (22) 

In a similar fashion, node B derives the values of r1C and r2C from vBC received from node C. 
Now, node B computes 1 1 1 1

A B Cr r r r   and 2 2 2 2
A B Cr r r r   , since it has access to the values 

of all these variables. In the original CPDA scheme in (He et al., 2007), the values of FB and 
FC are broadcast by nodes B and C in unencrypted from. Hence, node B has access to both 
these values. Using (7) and (8), node B can compute the values of a and c, since these are the 
only unknown variables in the two linear simultaneously equations. 

In order to defend against the above vulnerability, the CPDA protocol needs further 
modification. In this modified version, after the values vAA, vAB, and vAC are generated and 
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shared by nodes A, B and C respectively, the nodes check whether the following constraints 
are satisfied: vAA + vAB > vAC, vAB + vAC > vAA, and vAC + vAA > vAB. The nodes proceed for 
further execution of the algorithm only if the above three inequalities are satisfied. If all 
three inequalities are not satisfied, there will be a possibility that the random numbers 
generated by one node is much larger than those generated by other nodes - a scenario 
which indicates a possible attack by a malicious node. 

5. Performance analysis  
In this section, we present a brief comparative analysis of the overheads of the original CPDA 
protocol and the proposed modified CPDA protocols that we have discussed in Section 4.1 
and Section 4.2. Our analysis is based on two categories of overheads: (i) overhead due to 
message communication in the network and (ii) computational overhead at the sensor nodes. 

5.1 Communication overhead 

We compare communication overheads of three protocols - the tiny aggregation protocol 
(TAG), the original CPDA protocol and the proposed modified CPDA protocols. In TAG, 
each sensor node needs to send 2 messages for the data aggregation protocol to work. One 
HELLO message communication from each sensor node is required for forming the 
aggregation tree, and one message is needed for data aggregation. However, this protocol 
only performs data aggregation and does not ensure any privacy for the sensor data. In the 
original CPDA protocol, each cluster leader node sends 4 messages and each cluster 
member node sends 3 messages for ensuring that the aggregation protocol works in a 
privacy-preserving manner. In the example cluster shown in Fig. 3, the 4 messages sent by 
the cluster leader node A are: one HELLO message for forming the cluster, one message for 
communicating the public seed x, one message for communicating vBA and vCA to cluster 
member nodes B and C respectively, and one message for sending the aggregate result from 
the cluster. Similarly, the 3 messages sent by the cluster member node B are:  one message 
for communicating its public seed y, one message for communicating vAB and vCB to cluster 
leader node A and cluster member node C respectively, and one message for 
communicating the intermediate result FB to the cluster leader node A. 

In contrast to the original CPDA protocol, the modified CPDA protocol in Section 4.1 
involves 3 message communications from the cluster leader node and 2 message 
communications from each cluster member node. The 3 messages sent by the cluster leader 
node A are: one HELLO message for forming the cluster, one message for broadcasting its 
public seed x, and one message for sending the final aggregate result. It may be noted that in 
this protocol, the cluster leader node A need not send vBA and vCA to the cluster member 
nodes B and C respectively. Each cluster member node needs to send 2 messages. For 
example, the cluster member node B needs to broadcast its public seed y, and also needs to 
send vAB to the cluster leader node A. Unlike in the original CPDA protocol, the cluster 
member node B does not send FB to the cluster leader. Similarly, the cluster member node C 
does not send FC to the cluster leader node A. In a cluster consisting of three members, the 
original CPDA protocol would involve 10 messages (4 messages from the cluster leader and 
3 messages from each cluster member). The modified CPDA protocol presented in Section 
4.1, on the other hand, would involve 7 messages (3 messages from the cluster leader and 2 

 
Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks 

 

145 

messages from each cluster member) in a cluster of three nodes. Therefore, in a cluster of 
three nodes, the modified CPDA protocol presented in Section 4.1 will involve 3 less 
message communications. Since in a large-scale WSN the number of clusters will be quite 
high, there will be an appreciable reduction in the communication overhead in the modified 
CPDA protocol presented in Section 4.1. 

The secure version of the modified CPDA protocol presented in Section 4.2 involves the 
same communication overhead as the original CPDA protocol. However, if any node 
chooses abnormally higher values for its public seed or its private random numbers, the 
secure version of the modified CPDA protocol will involve 2 extra messages from each of 
the participating sensor nodes. Therefore, in a cluster of three nodes, the secure version of 
the modified CPDA protocol will involve 6 extra messages in the worst case scenario when 
compared with the original CPDA protocol.   

If pc is the probability of a sensor node electing itself as a cluster leader, the average number of 
messages sent by a sensor node in the original CPDA protocol is: 4 3(1 ) 3c c cp p p    . Thus, 
the message overhead in the original CPDA is less than twice as that in TAG. However, in the 
modified CPDA protocol presented in Section 4.1, the average number of messages 
communicated by a sensor node is: 3 2(1 ) 2c c cp p p    . As mentioned in Section 2.3, in 
order to prevent collusion attack by sensor nodes, the cluster size in the CPDA protocol should 
be as large as possible. This implies that the value of pc should be small. Since the value of pc is 
small, it is clear that the message overhead in the modified CPDA protocol presented in 
Section 4.1 is almost the same as that in TAG and it is much less (one message less for each 
sensor node) than that of the original CPDA protocol. In the secure version of the protocol in 
Section 4.2, the communication overhead, in the average case, will be the same as in the 
original CPDA protocol. However, in the worst case, the number of messages sent by a sensor 
node in this protocol will be: 6 5(1 ) 5c c cp p p    . This is 2.5 times the average 
communication overhead in the TAG protocol and 1.67 times the average communication 
overhead in the original CPDA protocol. The secure protocol, therefore, will involve 67% more 
overhead in the worst case scenario (where a malicious participant sensor node chooses 
abnormally higher values for its public seed as well as for its private random numbers).  

5.2 Computational overhead 

In this section, we present a comparative analysis of the computational overheads incurred 
by the sensor nodes in the original CPDA protocol and in the proposed efficient version of 
the protocol. 

Computational overhead of the original CPDA protocol: The computational overhead of 
the CPDA protocol can be broadly classified into four categories: (i) computation of the 
parameters, (ii) computation for encrypting messages, (iii) computation of the intermediate 
results, and (iv) computation of the final aggregate result at the cluster leader node. The 
details of these computations are presented below: 

i. Computation of the parameters at the sensor nodes: Each sensor node in a three member 
cluster computes three parameters. For example, the cluster leader node A computes 
vAA, vBA, vCA. Similarly, the cluster member node B computes vAB, vBB and vCB. We first 
compute the overhead due these computations. 
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shared by nodes A, B and C respectively, the nodes check whether the following constraints 
are satisfied: vAA + vAB > vAC, vAB + vAC > vAA, and vAC + vAA > vAB. The nodes proceed for 
further execution of the algorithm only if the above three inequalities are satisfied. If all 
three inequalities are not satisfied, there will be a possibility that the random numbers 
generated by one node is much larger than those generated by other nodes - a scenario 
which indicates a possible attack by a malicious node. 

5. Performance analysis  
In this section, we present a brief comparative analysis of the overheads of the original CPDA 
protocol and the proposed modified CPDA protocols that we have discussed in Section 4.1 
and Section 4.2. Our analysis is based on two categories of overheads: (i) overhead due to 
message communication in the network and (ii) computational overhead at the sensor nodes. 

5.1 Communication overhead 

We compare communication overheads of three protocols - the tiny aggregation protocol 
(TAG), the original CPDA protocol and the proposed modified CPDA protocols. In TAG, 
each sensor node needs to send 2 messages for the data aggregation protocol to work. One 
HELLO message communication from each sensor node is required for forming the 
aggregation tree, and one message is needed for data aggregation. However, this protocol 
only performs data aggregation and does not ensure any privacy for the sensor data. In the 
original CPDA protocol, each cluster leader node sends 4 messages and each cluster 
member node sends 3 messages for ensuring that the aggregation protocol works in a 
privacy-preserving manner. In the example cluster shown in Fig. 3, the 4 messages sent by 
the cluster leader node A are: one HELLO message for forming the cluster, one message for 
communicating the public seed x, one message for communicating vBA and vCA to cluster 
member nodes B and C respectively, and one message for sending the aggregate result from 
the cluster. Similarly, the 3 messages sent by the cluster member node B are:  one message 
for communicating its public seed y, one message for communicating vAB and vCB to cluster 
leader node A and cluster member node C respectively, and one message for 
communicating the intermediate result FB to the cluster leader node A. 

In contrast to the original CPDA protocol, the modified CPDA protocol in Section 4.1 
involves 3 message communications from the cluster leader node and 2 message 
communications from each cluster member node. The 3 messages sent by the cluster leader 
node A are: one HELLO message for forming the cluster, one message for broadcasting its 
public seed x, and one message for sending the final aggregate result. It may be noted that in 
this protocol, the cluster leader node A need not send vBA and vCA to the cluster member 
nodes B and C respectively. Each cluster member node needs to send 2 messages. For 
example, the cluster member node B needs to broadcast its public seed y, and also needs to 
send vAB to the cluster leader node A. Unlike in the original CPDA protocol, the cluster 
member node B does not send FB to the cluster leader. Similarly, the cluster member node C 
does not send FC to the cluster leader node A. In a cluster consisting of three members, the 
original CPDA protocol would involve 10 messages (4 messages from the cluster leader and 
3 messages from each cluster member). The modified CPDA protocol presented in Section 
4.1, on the other hand, would involve 7 messages (3 messages from the cluster leader and 2 
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messages from each cluster member) in a cluster of three nodes. Therefore, in a cluster of 
three nodes, the modified CPDA protocol presented in Section 4.1 will involve 3 less 
message communications. Since in a large-scale WSN the number of clusters will be quite 
high, there will be an appreciable reduction in the communication overhead in the modified 
CPDA protocol presented in Section 4.1. 

The secure version of the modified CPDA protocol presented in Section 4.2 involves the 
same communication overhead as the original CPDA protocol. However, if any node 
chooses abnormally higher values for its public seed or its private random numbers, the 
secure version of the modified CPDA protocol will involve 2 extra messages from each of 
the participating sensor nodes. Therefore, in a cluster of three nodes, the secure version of 
the modified CPDA protocol will involve 6 extra messages in the worst case scenario when 
compared with the original CPDA protocol.   

If pc is the probability of a sensor node electing itself as a cluster leader, the average number of 
messages sent by a sensor node in the original CPDA protocol is: 4 3(1 ) 3c c cp p p    . Thus, 
the message overhead in the original CPDA is less than twice as that in TAG. However, in the 
modified CPDA protocol presented in Section 4.1, the average number of messages 
communicated by a sensor node is: 3 2(1 ) 2c c cp p p    . As mentioned in Section 2.3, in 
order to prevent collusion attack by sensor nodes, the cluster size in the CPDA protocol should 
be as large as possible. This implies that the value of pc should be small. Since the value of pc is 
small, it is clear that the message overhead in the modified CPDA protocol presented in 
Section 4.1 is almost the same as that in TAG and it is much less (one message less for each 
sensor node) than that of the original CPDA protocol. In the secure version of the protocol in 
Section 4.2, the communication overhead, in the average case, will be the same as in the 
original CPDA protocol. However, in the worst case, the number of messages sent by a sensor 
node in this protocol will be: 6 5(1 ) 5c c cp p p    . This is 2.5 times the average 
communication overhead in the TAG protocol and 1.67 times the average communication 
overhead in the original CPDA protocol. The secure protocol, therefore, will involve 67% more 
overhead in the worst case scenario (where a malicious participant sensor node chooses 
abnormally higher values for its public seed as well as for its private random numbers).  

5.2 Computational overhead 

In this section, we present a comparative analysis of the computational overheads incurred 
by the sensor nodes in the original CPDA protocol and in the proposed efficient version of 
the protocol. 

Computational overhead of the original CPDA protocol: The computational overhead of 
the CPDA protocol can be broadly classified into four categories: (i) computation of the 
parameters, (ii) computation for encrypting messages, (iii) computation of the intermediate 
results, and (iv) computation of the final aggregate result at the cluster leader node. The 
details of these computations are presented below: 

i. Computation of the parameters at the sensor nodes: Each sensor node in a three member 
cluster computes three parameters. For example, the cluster leader node A computes 
vAA, vBA, vCA. Similarly, the cluster member node B computes vAB, vBB and vCB. We first 
compute the overhead due these computations. 
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Since 2
1 2

A A A
Av a r x r x   , for computation of vAA, node A needs to perform 2 addition, 2 

multiplication and 1 exponentiation operations. Hence, for computing vAA, vBA and vCA, 
node A needs to perform 6 addition, 6 multiplication and 3 exponentiation operations. 
Therefore, in a cluster consisting of three members, for computation of all parameters, 
the original CPDA protocol requires 18 addition, 18 multiplication and 9 exponentiation 
operations.  

ii. Computations for encrypting messages: Some of the messages in the CPDA protocol need 
to be communicated in encrypted form. The encryption operation involves 
computational overhead. For example, node A needs to encrypt vBA and vCA before 
sending them to nodes B and C respectively. Therefore, 2 encryption operations are 
required at node A. For a cluster consisting of three members, the CPDA protocol will 
need 6 encryption operations. 

iii. Computations of intermediate results: The nodes A, B, and C need to compute the 
intermediate values FA, FB and FC respectively for computation of the final aggregated 
result. Since 2

1 2( )A B C
A A A AF v v v a b c r x r x         and 1 1 1 1

A B Cr r r r    and 

2 2 2 2
A B Cr r r r   , for computing FA, node A will need to perform 4 addition operations. 

Therefore, for a cluster of three members, 12 addition operations will be needed. 
iv. Aggregate computation at the cluster leader: For computing the final aggregated result in a 

privacy-preserving way, the cluster leader node A needs to perform one matrix 
inversion operation and one matrix multiplication operation. 

The summary of various operations in the original CPDA protocol are presented in Table 1. 
 

Operation Type No. of operations 

Addition 
Multiplication 
Exponentiation 
Encryption 
Matrix multiplication 
Matrix inversion 

30 
18 
3 
6 
1 
1 

Table 1. Operation in the CPDA protocol 

Computational overhead of the modified CPDA protocol: The overhead of the efficient 
version of the CPDA protocol presented in Section 4.1 are due to: (i) computation of the 
parameters at the sensor nodes, (ii) computation of the intermediate result at the cluster 
leader node, and (iii) computation of the aggregated result at the cluster leader node. The 
details of these computations are presented below. 

i. Computation of the parameters at the sensor nodes: In the modified version of the CPDA 
protocol, the nodes A, B and C need to only compute vAA, vAB, and vAC respectively. As 
shown earlier, each parameter computation involves 2 addition, 2 multiplication and 1 
exponentiation operations. Therefore, in total, 6 addition, 6 multiplication, and 3 
exponentiation operations will be needed.  
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ii. Computations for encrypting messages: The nodes B and C will need to encrypt the 
messages vAB and vAC respectively before sending them to the cluster leader node A. 
Therefore, 2 encryption operations will be required. 

iii. Computation of intermediate result: The cluster leader node A will only compute FA in the 
modified CPDA. The cluster member nodes B and C need not perform any 
computations here. As discussed earlier, computation of FA needs 4 addition operations. 

iv. Aggregate computation at the cluster leader: For computation of the final result at the 
cluster leader node, 2 integer division and 2 subtraction operations will be required. 

v. The summary of various operations in the modified CPDA protocol are presented in 
Table 2. 

 

Operation Type No. of operations 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Encryption 

10 
2 
6 
2 
3 
2 

Table 2. Operation in the proposed modified CPDA protocol 

It is clearly evident from Table 1 and Table 2 that the modified version of the CPDA protocol 
involves much less computational overhead than the original version of the protocol. 

6. Security requirements in data aggregation protocols for WSNs 
The purpose of any WSN deployment is to provide the users with access to the information 
of interest from the data gathered by spatially distributed sensor nodes. In most 
applications, users require only certain aggregate functions of this distributed data. 
Examples include the average temperature in a network of temperature sensors, a particular 
trigger in the case of an alarm network, or the location of an event. Such aggregate functions 
could be computed under the end-to-end information flow paradigm by communicating all 
relevant data to a central collector node. This, however, is a highly inefficient solution for 
WSNs which have severe constraints in energy, memory and bandwidth, and where tight 
latency constraints are to be met. As mentioned in Section 1 of this chapter, an alternative 
solution is to perform in-network computations (Madden et al., 2005). However, in this case, 
the question that arises is how best to perform the distributed computations over a network 
of nodes with wireless links. What is the optimal way to compute, for example, the average, 
min, or max of a set of statistically correlated values stored in different nodes? How would 
such computations be performed in the presence of unreliability such as noise, packet drops, 
and node failures? Such questions combine the complexities of multi-terminal information 
theory, distributed source coding, communication complexity, and distributed computation.  
This makes development of an efficient in-network computing framework for WSNs very 
challenging. 

Apart from making a trade-off between the level of accuracy in aggregation and the energy 
expended in computation of the aggregation function, another issue that needs serious 
attention in WSN is security. Unfortunately, even though security has been identified as a 
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Therefore, in a cluster consisting of three members, for computation of all parameters, 
the original CPDA protocol requires 18 addition, 18 multiplication and 9 exponentiation 
operations.  
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privacy-preserving way, the cluster leader node A needs to perform one matrix 
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The summary of various operations in the original CPDA protocol are presented in Table 1. 
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Table 1. Operation in the CPDA protocol 

Computational overhead of the modified CPDA protocol: The overhead of the efficient 
version of the CPDA protocol presented in Section 4.1 are due to: (i) computation of the 
parameters at the sensor nodes, (ii) computation of the intermediate result at the cluster 
leader node, and (iii) computation of the aggregated result at the cluster leader node. The 
details of these computations are presented below. 

i. Computation of the parameters at the sensor nodes: In the modified version of the CPDA 
protocol, the nodes A, B and C need to only compute vAA, vAB, and vAC respectively. As 
shown earlier, each parameter computation involves 2 addition, 2 multiplication and 1 
exponentiation operations. Therefore, in total, 6 addition, 6 multiplication, and 3 
exponentiation operations will be needed.  
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ii. Computations for encrypting messages: The nodes B and C will need to encrypt the 
messages vAB and vAC respectively before sending them to the cluster leader node A. 
Therefore, 2 encryption operations will be required. 

iii. Computation of intermediate result: The cluster leader node A will only compute FA in the 
modified CPDA. The cluster member nodes B and C need not perform any 
computations here. As discussed earlier, computation of FA needs 4 addition operations. 

iv. Aggregate computation at the cluster leader: For computation of the final result at the 
cluster leader node, 2 integer division and 2 subtraction operations will be required. 

v. The summary of various operations in the modified CPDA protocol are presented in 
Table 2. 

 

Operation Type No. of operations 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Encryption 
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Table 2. Operation in the proposed modified CPDA protocol 

It is clearly evident from Table 1 and Table 2 that the modified version of the CPDA protocol 
involves much less computational overhead than the original version of the protocol. 

6. Security requirements in data aggregation protocols for WSNs 
The purpose of any WSN deployment is to provide the users with access to the information 
of interest from the data gathered by spatially distributed sensor nodes. In most 
applications, users require only certain aggregate functions of this distributed data. 
Examples include the average temperature in a network of temperature sensors, a particular 
trigger in the case of an alarm network, or the location of an event. Such aggregate functions 
could be computed under the end-to-end information flow paradigm by communicating all 
relevant data to a central collector node. This, however, is a highly inefficient solution for 
WSNs which have severe constraints in energy, memory and bandwidth, and where tight 
latency constraints are to be met. As mentioned in Section 1 of this chapter, an alternative 
solution is to perform in-network computations (Madden et al., 2005). However, in this case, 
the question that arises is how best to perform the distributed computations over a network 
of nodes with wireless links. What is the optimal way to compute, for example, the average, 
min, or max of a set of statistically correlated values stored in different nodes? How would 
such computations be performed in the presence of unreliability such as noise, packet drops, 
and node failures? Such questions combine the complexities of multi-terminal information 
theory, distributed source coding, communication complexity, and distributed computation.  
This makes development of an efficient in-network computing framework for WSNs very 
challenging. 

Apart from making a trade-off between the level of accuracy in aggregation and the energy 
expended in computation of the aggregation function, another issue that needs serious 
attention in WSN is security. Unfortunately, even though security has been identified as a 
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major challenge for sensor networks (Karlof & Wagner, 2003), most of the existing proposals 
for data aggregation in WSNs have not been designed with security in mind. Consequently, 
these schemes are all vulnerable to various types of attacks (Sen, 2009). Even when a single 
sensor node is captured, compromised or spoofed, an attacker can often manipulate the 
value of an aggregate function without any bound, gaining complete control over the 
computed aggregate. In fact, any protocol that computes the average, sum, minimum, or 
maximum function is insecure against malicious data, no matter how these functions are 
computed. To defend against these critical threats, in this chapter, an energy-efficient 
aggregation algorithm based on distributed estimation approach. The algorithm is secure 
and robust against malicious attacks in WSNs. The main threat that has been considered 
while designing the proposed scheme is the injection of malicious data in the network by an 
adversary who has compromised a sensor’s sensed value by subjecting it to unusual 
temperature, lighting, or other spoofed environmental conditions. In designing the 
proposed algorithm, a WSN is considered as a collective entity that performs a sensing task 
and have proposed a distributed estimation algorithm that can be applied to a large class of 
aggregation problems. 

In the proposed scheme (Sen, 2011), each node in a WSN has complete information about 
the parameter being sensed. This is in contrast to the snapshot aggregation, where the 
sensed parameters are aggregated at the intermediate nodes till the final aggregated result 
reaches the root. Each node, in the proposed algorithm, instead of unicasting its sensed 
information to its parent, broadcasts its estimate to all its neighbors. This makes the protocol 
more fault-tolerant and increases the information availability in the network. The scheme is 
an extension of the one suggested in (Boulis et al., 2003). However, it is more secure and 
reliable even in presence of compromised and faulty nodes in a WSN.  

In the following section, we provide a brief discussion on some of the well-known secure 
aggregation schemes for WSNs.  

7. Overview of some aggregation protocols for WSNs  
Extensive work has been done on aggregation applications in WSNs. However, security and 
energy- two major aspects for design of an efficient and robust aggregation algorithm have 
not attracted adequate attention. Before discussing some of the existing secure aggregation 
mechanisms, we present a few well-known aggregation schemes for WSNs.  

In (Heidemann, 2001), a framework for flexible aggregation in WSNs has been presented 
following snapshot aggregation approach without addressing issues like energy 
efficiency and security in the data aggregation process. A cluster-based algorithm has 
been proposed in (Estrin et al., 1999) that uses directed diffusion technique to gather a 
global perspective utilizing only the local nodes in each cluster. The nodes are assigned 
different level – level 0 being assigned to the nodes lying at the lowest level. The nodes 
at the higher levels can communicate with the nodes in the same cluster and the cluster 
head node. This effectively enables localized cluster computation. The nodes at the higher 
level communicate the local information of the cluster to get a global picture of the 
network aggregation. In (Madden et al., 2002), the authors have proposed a mechanism 
called TAG – a generic data aggregation scheme that involves a language similar to SQL 
for generating queries in a WSN. In this scheme, the base station (BS) generates a query 
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using the query language, and the sensor nodes send their reply using routes constructed 
based on a routing tree. At each point in the routing tree, the data is aggregated using 
some aggregation function that was defined in the initial query sent by the BS. In 
(Shrivastava et al., 2004), a summary structure for supporting fairly complex aggregate 
functions, such as median and range quires have been proposed. Computation of 
relatively easier function such as min/max, sum, and average are also supported in the 
proposed framework. However, more complex aggregates, such as the most frequently 
reported data values are not supported. The computed aggregate functions are 
approximate but the estimate errors are statistically bounded. There are also 
propositions based on programmable sensor networks for aggregation based on 
snapshot algorithms (Jaikaeo et al., 2000). In (Zhao et al., 2002), the authors have 
focussed their attention into the problem of providing a residual energy map of a WSN. 
They have proposed a scheme for computing the equi-potential curves of residual energy 
with certain acceptable margin of error. A simple but efficient aggregation function is 
proposed where the location approximation of the nodes are not computed. A more 
advanced aggregate function can be developed for this purpose that will encompass an 
accurate convex curve. For periodic update of the residual energy map, the authors have 
proposed a naïve scheme of incremental updates. Thus if a node changes its value 
beyond the tolerance limit its value is transmitted and aggregated again by some nodes 
before the final change reaches the user. No mechanism exists for prediction of changes 
or for estimation of correlation between sensed values for the purpose of setting the 
tolerance threshold. In (Goel & Imielinski, 2001), a scheme has been proposed for the 
purpose of monitoring the sensed values of each individual sensor node in a WSN. There 
is no aggregation algorithm in the scheme; however, the spatial-temporal correlation 
between the sensed data can be extrapolated to fit an aggregation function. The authors 
have also attempted to modify the techniques of MPEG-2 for sensor network monitoring 
to optimize communication overhead and energy. A central node computes predictions 
and transmits them to all the nodes.  The nodes send their update only if their sensed 
data deviate significantly from the predictions. A distributed computing framework is 
developed by establishing a hierarchical dependency among the nodes. An energy 
efficient aggregation algorithm is proposed by the authors in (Boulis et al., 2003), in 
which each node in a WSN senses the parameter and there is no hierarchical dependency 
among the nodes. The nodes in a neighbourhood periodically broadcast their information 
based on a threshold value.  

As mentioned earlier in this section, none of the above schemes consider security aspects in 
the aggregation schemes. Security in aggregation schemes for WSNs has also attracted 
attention from the researchers and a considerable number of propositions exist in the 
literature in this perspective. We discuss some of the well-known mechanisms below. 

A secure aggregation (SA) protocol has been proposed that uses the TESLA protocol (Hu & 
Evans, 2003). The protocol is resilient to both intruder devices and single device key 
compromises. In the proposition, the sensor nodes are organized into a tree where the 
internal nodes act as the aggregators. However, the protocol is vulnerable if a parent and 
one of its child nodes are compromised, since due to the delayed disclosure of symmetric 
keys, the parent node will not be able to immediately verify the authenticity of the data sent 
by its children nodes.  
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major challenge for sensor networks (Karlof & Wagner, 2003), most of the existing proposals 
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aggregation problems. 

In the proposed scheme (Sen, 2011), each node in a WSN has complete information about 
the parameter being sensed. This is in contrast to the snapshot aggregation, where the 
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more fault-tolerant and increases the information availability in the network. The scheme is 
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not attracted adequate attention. Before discussing some of the existing secure aggregation 
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In (Heidemann, 2001), a framework for flexible aggregation in WSNs has been presented 
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using the query language, and the sensor nodes send their reply using routes constructed 
based on a routing tree. At each point in the routing tree, the data is aggregated using 
some aggregation function that was defined in the initial query sent by the BS. In 
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functions, such as median and range quires have been proposed. Computation of 
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proposed framework. However, more complex aggregates, such as the most frequently 
reported data values are not supported. The computed aggregate functions are 
approximate but the estimate errors are statistically bounded. There are also 
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snapshot algorithms (Jaikaeo et al., 2000). In (Zhao et al., 2002), the authors have 
focussed their attention into the problem of providing a residual energy map of a WSN. 
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proposed where the location approximation of the nodes are not computed. A more 
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accurate convex curve. For periodic update of the residual energy map, the authors have 
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purpose of monitoring the sensed values of each individual sensor node in a WSN. There 
is no aggregation algorithm in the scheme; however, the spatial-temporal correlation 
between the sensed data can be extrapolated to fit an aggregation function. The authors 
have also attempted to modify the techniques of MPEG-2 for sensor network monitoring 
to optimize communication overhead and energy. A central node computes predictions 
and transmits them to all the nodes.  The nodes send their update only if their sensed 
data deviate significantly from the predictions. A distributed computing framework is 
developed by establishing a hierarchical dependency among the nodes. An energy 
efficient aggregation algorithm is proposed by the authors in (Boulis et al., 2003), in 
which each node in a WSN senses the parameter and there is no hierarchical dependency 
among the nodes. The nodes in a neighbourhood periodically broadcast their information 
based on a threshold value.  

As mentioned earlier in this section, none of the above schemes consider security aspects in 
the aggregation schemes. Security in aggregation schemes for WSNs has also attracted 
attention from the researchers and a considerable number of propositions exist in the 
literature in this perspective. We discuss some of the well-known mechanisms below. 

A secure aggregation (SA) protocol has been proposed that uses the TESLA protocol (Hu & 
Evans, 2003). The protocol is resilient to both intruder devices and single device key 
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Przydatek et al. have presented a secure information aggregation (SIA) framework for sensor 
networks (Przydatek et al., 2003; Chan et al., 2007). The framework consists of three 
categories of node: a home server, base station and sensor nodes. A base station is a 
resource-enhanced node which is used as an intermediary between the home server and 
the sensor nodes, and it is also the candidate to perform the aggregation task. SIA 
assumes that each sensor has a unique identifier and shares a separate secret 
cryptographic key with both the home server and the aggregator. The keys enable 
message authentication and encryption if data confidentiality is required. Moreover, it 
further assumes that the home server and the base station can use a mechanism, such as 
μTESLA, to broadcast authenticated messages. The proposed solution follows aggregate-
commit-prove approach. In the first phase: aggregate- the aggregator collects data from 
sensors and locally computes the aggregation result using some specific aggregate 
function. Each sensor shares a key with the aggregator. This allows the aggregator to 
verify whether the sensor reading is authentic. However, there is a possibility that a 
sensor may have been compromised and an adversary has captured the key. In the 
proposed scheme there is no mechanism to detect such an event. In the second phase: 
commit- the aggregator commits to the collected data. This phase ensures that the 
aggregator actually uses the data collected from the sensors, and the statement to be 
verified by the home server about the correctness of computed results is meaningful. One 
efficient mechanism for committing is a Merkle hash-tree construction (Merkle, 1980). In 
this method, the data collected from the sensors is placed at the leaves of a tree. The 
aggregator then computes a binary hash tree staring with the leaf nodes. Each internal 
node in the hash tree is computed as the hash value of the concatenation of its two 
children nodes. The root of the tree is called the commitment of the collected data. As the 
hash function in use is collision free, once the aggregator commits to the collected values, 
it cannot change any of the collected values. In the third and final phase, the aggregator and 
the home server engage in a protocol in which the aggregator communicates the 
aggregation result. In addition, aggregator uses an interactive proof protocol to prove 
correctness of the reported results. This is done in two logical steps. In the first step, the 
home server ensures that the committed data is a good representation of the sensor data 
readings collected. In the second step, the home server checks the reliability of the 
aggregator output. This is done by checking whether the aggregation result is close to the 
committed results. The interactive proof protocol varies depending on the aggregation 
function is being used.  Moreover, the authors also presented efficient protocols for secure 
computation of the median and the average of the measurements, for the estimation of the 
network size, and for finding the minimum and maximum sensor reading. 

In (Mahimkar & Rappaport, 2004), a protocol is proposed that uses elliptic curve 
cryptography for encrypting the data in WSNs.  The scheme is based on clustering where all 
nodes within a cluster share a secret cluster key. Each sensor node in a cluster generates a 
partial signature over its data. Each aggregator aggregates its cluster data and broadcasts 
the aggregated data in its cluster.  Each node in a cluster checks its data with the aggregated 
data broadcast by the aggregator. A sensor node puts its partial signature to authenticate a 
message only if the difference between its data and aggregated data is less than a threshold. 
Finally, the aggregator combines all the partially signed message s to form a full signature 
with the authenticated result. 
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Deng et al. proposed a collection of mechanisms for securing in-network processing (SINP) for 
WSNs (Deng et al., 2003). Security mechanisms have been proposed to address the 
downstream requirement that sensor nodes authenticate commands disseminated from 
parent aggregators and the upstream requirement that aggregators authenticate data 
produced by sensors before aggregating that data. In the downstream stage, two techniques 
are involved: one way functions and TESLA. The upstream stage requires that a pair-wise 
key be shared between an aggregator and its sensor nodes.  

Cam et al. proposed an energy-efficient secure pattern-based data aggregation (ESPDA) protocol 
for wireless sensor networks (Cam et al., 2003; Cam et al., 2005; Cam et al., 2006a). ESPDA is 
applicable for hierarchy-based sensor networks. In ESPDA, a cluster-head first requests 
sensor nodes to send the corresponding pattern code for the sensed data. If multiple sensor 
nodes send the same pattern code to the cluster-head, only one of them is permitted to send 
the data to the cluster-head. ESPDA is secure because it does not require encrypted data to 
be decrypted by cluster-heads to perform data aggregation. 

Cam et al. have introduced another secure differential data aggregation (SDDA) scheme based 
on pattern codes (Cam et al., 2006b). SDDA prevents redundant data transmission from 
sensor nodes by implementing the following schemes: (1) SDDA transmits differential data 
rather than raw data, (2) SDDA performs data aggregation on pattern codes representing the 
main characteristics of the sensed data, and (3) SDDA employs a sleep protocol to 
coordinate the activation of sensing units in such a way that only one of the sensor nodes 
capable of sensing the data is activated at a given time. In the SDDA data transmission 
scheme, the raw data from the sensor nodes is compared with the reference data and the 
difference of them is transmitted in the network. The reference data is obtained by taking 
the average of previously transmitted data. 

In (Sanli et al., 2004 ), a secure reference-based data aggregation (SRDA) protocol is proposed for 
cluster-based  WSNs, in which raw data sensed by sensor nodes are compared with 
reference data values and then only difference data is transmitted to conserve sensor energy. 
Reference data is taken as the average of a number of historical (i.e. past) sensor readings.  
However, a serious drawback of the scheme is that does not allow aggregation at the 
intermediate nodes. 

To defend against attacks by malicious aggregator nodes in WSNs which may falsely 
manipulate the data during the aggregation process, a cryptographic mechanism has been 
proposed in (Wu et al., 2007). In the proposed mechanism, a secure aggregation tree (SAT), is 
constructed that enables monitoring of the aggregator nodes. The child nodes of the 
aggregators can monitor the incoming data to the aggregators and can invoke a voting 
scheme in case any suspicious activities by the aggregator nodes are observed.  

A secure hop-by-hop data aggregation protocol (SDAP) has been proposed in (Yang et al., 2006), 
in which a WSN is dynamically partitioned into multiple logical sub-trees of almost equal 
sizes using a probabilistic approach. In this way, fewer nodes are located under a high-level 
sensor node, thereby reducing potential security threats on nodes at higher level. Since a 
compromised node at higher level in a WSN will cause more adverse effect on data 
aggregation than on a lower-level node, the authors argue that by reducing number of 
nodes at the higher level in the logical tree, aggregation process becomes more secure. 
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Przydatek et al. have presented a secure information aggregation (SIA) framework for sensor 
networks (Przydatek et al., 2003; Chan et al., 2007). The framework consists of three 
categories of node: a home server, base station and sensor nodes. A base station is a 
resource-enhanced node which is used as an intermediary between the home server and 
the sensor nodes, and it is also the candidate to perform the aggregation task. SIA 
assumes that each sensor has a unique identifier and shares a separate secret 
cryptographic key with both the home server and the aggregator. The keys enable 
message authentication and encryption if data confidentiality is required. Moreover, it 
further assumes that the home server and the base station can use a mechanism, such as 
μTESLA, to broadcast authenticated messages. The proposed solution follows aggregate-
commit-prove approach. In the first phase: aggregate- the aggregator collects data from 
sensors and locally computes the aggregation result using some specific aggregate 
function. Each sensor shares a key with the aggregator. This allows the aggregator to 
verify whether the sensor reading is authentic. However, there is a possibility that a 
sensor may have been compromised and an adversary has captured the key. In the 
proposed scheme there is no mechanism to detect such an event. In the second phase: 
commit- the aggregator commits to the collected data. This phase ensures that the 
aggregator actually uses the data collected from the sensors, and the statement to be 
verified by the home server about the correctness of computed results is meaningful. One 
efficient mechanism for committing is a Merkle hash-tree construction (Merkle, 1980). In 
this method, the data collected from the sensors is placed at the leaves of a tree. The 
aggregator then computes a binary hash tree staring with the leaf nodes. Each internal 
node in the hash tree is computed as the hash value of the concatenation of its two 
children nodes. The root of the tree is called the commitment of the collected data. As the 
hash function in use is collision free, once the aggregator commits to the collected values, 
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home server ensures that the committed data is a good representation of the sensor data 
readings collected. In the second step, the home server checks the reliability of the 
aggregator output. This is done by checking whether the aggregation result is close to the 
committed results. The interactive proof protocol varies depending on the aggregation 
function is being used.  Moreover, the authors also presented efficient protocols for secure 
computation of the median and the average of the measurements, for the estimation of the 
network size, and for finding the minimum and maximum sensor reading. 

In (Mahimkar & Rappaport, 2004), a protocol is proposed that uses elliptic curve 
cryptography for encrypting the data in WSNs.  The scheme is based on clustering where all 
nodes within a cluster share a secret cluster key. Each sensor node in a cluster generates a 
partial signature over its data. Each aggregator aggregates its cluster data and broadcasts 
the aggregated data in its cluster.  Each node in a cluster checks its data with the aggregated 
data broadcast by the aggregator. A sensor node puts its partial signature to authenticate a 
message only if the difference between its data and aggregated data is less than a threshold. 
Finally, the aggregator combines all the partially signed message s to form a full signature 
with the authenticated result. 
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In (Ozdemir, 2007), a secure and reliable data aggregation scheme – SELDA- is proposed 
that makes use of the concept of web of trust. Trust and reputation based schemes have been 
extensively used for designing security solutions for multi-hop wireless networks like mobile 
ad hoc networks (MANETs), wireless mesh networks (WMNs) and WSNs (Sen, 2010b; Sen, 
2010c; Sen 2010d). In this scheme, sensor nodes exchange trust values in their neighborhood 
to form a web of trust that facilitates in determining secure and reliable paths to aggregators. 
Observations from the sensor nodes which belong to a web of trust are given higher weights 
to make the aggregation process more robust. 

A data aggregation and authentication (DAA) protocol is proposed in (Cam & Ozdemir, 2007), 
to integrate false data detection with data aggregation and confidentiality. In this scheme, a 
monitoring algorithm has been proposed for verifying the integrity of the computed 
aggregated result by each aggregator node.  

In order to minimize false positives (a scenario where an alert is raised, however there is no 
attack), in a WSN, a dynamic threshold scheme is proposed in (Parkeh & Cam, 2007), which 
dynamically varies the threshold in accordance with false alarm rate. A data aggregation 
algorithm is also proposed to determine the detection probability of a target by fusing data 
from multiple sensor nodes.   

Du et al. proposed a witness-based data aggregation (WDA) scheme for WSNs to assure the 
validation of the data fusion nodes to the base station (Du et al., 2003). To prove the validity 
of the fusion results, the fusion node has to provide proofs from several witnesses. A 
witness is one who also conducts data fusion like a data fusion node, but does not forward 
its result to the base station. Instead, each witness computes the MAC of the result and then 
provides it to the data fusion node, which must forward the proofs to the base station. This 
scheme can defend against attacks on data integrity in WSNs. 

Wagner studied secure data aggregation in sensor networks and proposed a mathematical 
framework for formally evaluating their security (Wagner, 2004). The robustness of an 
aggregation operator against malicious data is quantified. Ye et al. propose a statistical en-
route filtering mechanism to detect any forged data being sent from the sensor nodes to the 
base station of a WSN using multiple MACs along the path from the aggregator to the base 
station (Ye et al., 2004; Ye et al., 2005).    

8. The proposed distributed secure aggregation protocol  
In this section, we propose a distributed estimation algorithm that is secure and resistant to 
insider attack by compromised and faulty nodes. There are essentially two categories of 
aggregation functions (Boulis et al., 2003):   

 Aggregation functions that are dependent on the values of a few nodes (e.g., the max 
result is based on one node). 

 Aggregation functions whose values are determined by all the nodes (e.g., the average 
function).  

However, computation of both these types of functions are adversely affected by wrong 
sensed result sent by even a very few number of compromised nodes. In this chapter, we 
consider only the first case, i.e., aggregation function that find or approximate some kind of 
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boundaries (e.g., maxima, minima), and hence the aggregation result is determined by the 
values of few nodes.  However, the proposed algorithm does not assume any knowledge 
about the underlying physical process. 

8.1 The proposed secure aggregation algorithm 

In the proposed distributed estimation algorithm, a sensor node instead of transmitting a 
partially aggregated result, maintains and if required, transmits an estimation of the global 
aggregated result. The global aggregated description in general will be a vector since it 
represents multi-dimensional parameters sensed by different nodes. A global estimate will 
thus be a probability density function of the vector that is being estimated. However, in 
most of the practical situations, due to lack of sufficient information, complex computational 
requirement or unavailability of sophisticated estimation tools, an estimate is represented 
as: (estimated value, confidence indication), which in computational terms can be represented 
as: (average of estimated vector, covariance matrix of estimated vector). For the sake of 
manipulability with tools of estimation theory, we have chosen to represent estimates in the 
form of (A, PAA) with A being the mean of the aggregated vector and PAA being the 
covariance matrix of vector A. For the max aggregation function, vector A becomes a scalar 
denoting the mean of the estimated max, and PAA becomes simply the variance of A. 

In the snapshot aggregation, a node does not have any control on the rate at which it send 
information to its parents; it has to always follow the rate specified the user application. 
Moreover, every node has little information about the global parameter, as it has no idea 
about what is happening beyond its parent. In proposed approach, a node accepts 
estimations from all of its neighbors, and gradually gains in knowledge about the global 
information. It helps a node to understand whether its own information is useful to its 
neighbors. If a node realizes that its estimate could be useful to its neighbors, it transmits the 
new estimate. Unlike snapshot aggregation where the node transmits its estimate to its 
parent, in the proposed scheme, the node broadcasts its estimate to all its neighbors. 
Moreover, there is no need to establish and maintain a hierarchical relationship among the 
nodes in the network. This makes the algorithm particularly suitable for multiple user, 
mobile users, faulty nodes and transient network partition situations.  

The proposed algorithm has the following steps: 

1. Every node has an estimate of the global aggregated value (global estimate) in the form 
of (mean, covariance matrix). When a node makes a new local measurement, it makes 
an aggregation of the local observation with its current estimate. This is depicted in the 
block Data Aggregation 1 in Fig. 5. The node computes the new global estimate and 
decides whether it should broadcast the new estimate to its neighbors. The decision is 
based on a threshold value as explained in Section 8.4.  

2. When a node receives a global estimate from a neighbor, it first checks whether the 
newly received estimate differs from its current estimate by more than a pre-defined 
threshold. 
a. If the difference does not exceed the threshold, the node makes an aggregation of 

the global estimates (its current value and the received value) and computes a new 
global estimate. This is depicted in the block Data Aggregation 2 in Fig. 5. The node 
then decides whether it should broadcast the new estimate.   
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that makes use of the concept of web of trust. Trust and reputation based schemes have been 
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sensed result sent by even a very few number of compromised nodes. In this chapter, we 
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boundaries (e.g., maxima, minima), and hence the aggregation result is determined by the 
values of few nodes.  However, the proposed algorithm does not assume any knowledge 
about the underlying physical process. 

8.1 The proposed secure aggregation algorithm 

In the proposed distributed estimation algorithm, a sensor node instead of transmitting a 
partially aggregated result, maintains and if required, transmits an estimation of the global 
aggregated result. The global aggregated description in general will be a vector since it 
represents multi-dimensional parameters sensed by different nodes. A global estimate will 
thus be a probability density function of the vector that is being estimated. However, in 
most of the practical situations, due to lack of sufficient information, complex computational 
requirement or unavailability of sophisticated estimation tools, an estimate is represented 
as: (estimated value, confidence indication), which in computational terms can be represented 
as: (average of estimated vector, covariance matrix of estimated vector). For the sake of 
manipulability with tools of estimation theory, we have chosen to represent estimates in the 
form of (A, PAA) with A being the mean of the aggregated vector and PAA being the 
covariance matrix of vector A. For the max aggregation function, vector A becomes a scalar 
denoting the mean of the estimated max, and PAA becomes simply the variance of A. 

In the snapshot aggregation, a node does not have any control on the rate at which it send 
information to its parents; it has to always follow the rate specified the user application. 
Moreover, every node has little information about the global parameter, as it has no idea 
about what is happening beyond its parent. In proposed approach, a node accepts 
estimations from all of its neighbors, and gradually gains in knowledge about the global 
information. It helps a node to understand whether its own information is useful to its 
neighbors. If a node realizes that its estimate could be useful to its neighbors, it transmits the 
new estimate. Unlike snapshot aggregation where the node transmits its estimate to its 
parent, in the proposed scheme, the node broadcasts its estimate to all its neighbors. 
Moreover, there is no need to establish and maintain a hierarchical relationship among the 
nodes in the network. This makes the algorithm particularly suitable for multiple user, 
mobile users, faulty nodes and transient network partition situations.  

The proposed algorithm has the following steps: 

1. Every node has an estimate of the global aggregated value (global estimate) in the form 
of (mean, covariance matrix). When a node makes a new local measurement, it makes 
an aggregation of the local observation with its current estimate. This is depicted in the 
block Data Aggregation 1 in Fig. 5. The node computes the new global estimate and 
decides whether it should broadcast the new estimate to its neighbors. The decision is 
based on a threshold value as explained in Section 8.4.  

2. When a node receives a global estimate from a neighbor, it first checks whether the 
newly received estimate differs from its current estimate by more than a pre-defined 
threshold. 
a. If the difference does not exceed the threshold, the node makes an aggregation of 

the global estimates (its current value and the received value) and computes a new 
global estimate. This is depicted in the block Data Aggregation 2 in Fig. 5. The node 
then decides whether it should broadcast the new estimate.   
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b. If the difference exceeds the threshold, the node performs the same function as in 
step (a). Additionally, it requests its other neighbors to send their values of the 
global estimate. 

c. If the estimates sent by the majority of the neighbors differ from the estimate sent 
by the first neighbor by a threshold value, then the node is assumed to be 
compromised. Otherwise, it is assumed to be normal. 

3. If a node is identified to be compromised, the global estimate previously sent by it is 
ignored in the computation of the new global estimate and the node is isolated from the 
network by a broadcast message in its neighborhood. 

 
Fig. 5. A Schematic flow diagram of the proposed aggregation algorithm 

8.2 Aggregation of two global estimates 

In Fig. 5, the block Data Aggregation 1 corresponds to this activity. For combining two global 
estimates to produce a single estimate, covariance intersection (CI) algorithm is used. CI 
algorithm is particularly suitable for this purpose, since it has the capability of aggregating 
two estimates without requiring any prior knowledge about their degree of correlation. This 
is more pertinent to WSNs, as we cannot guarantee statistical independence of observed 
data in such networks.  

Given two estimates (A, PAA) and (B, PBB), the combined estimate (C, PCC) by CI is given by 
(23) and (24):  

 1 1 1( * (1 ) )CC AA BBP P P       (23) 

 1 1( * * (1 ) * )CC AA BBC P P A P B      (24) 

Here, PAA, PBB, and PCC represent the covariance matrices associated with the estimates A, B, 
and C respectively. The main computational problem with CI is the computation of ω. The 
value of ω lies between 0 and 1. The optimum value of ω is arrived at when the trace of the 
determinant of PCC is minimized.  
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For max aggregation function, covariance matrices are simple scalars. It can be observed 
from (23) and (24) that in such a case ω can be either 1 or 0. Subsequently, PCC is equal to the 
minimum of PAA and PBB, and C is equal to either A or B depending on the value of PCC. 
Even when the estimates are reasonably small-sized vectors, there are efficient algorithms to 
determine ω. 

8.3 Aggregation of a local observation with a global estimate 

This module corresponds to the block Data Aggregation 2 in Fig. 5. Aggregation of a local 
observation with a global estimate involves a statistical computation with two probability 
distributions.  

Case 1: Mean of the local observation is greater than the mean of the current global estimate: 
In case of max aggregation function, if the mean of the local observation is greater than the 
mean of the current global estimate, the local observation is taken as the new estimate. The 
distribution of the new estimate is arrived at by multiplying the distribution of the current 
global estimate by a positive fraction (w1) and summing it with the distribution of the local 
observation. The fractional value determines the relative weight assigned to the value of the 
global estimate. The weight assigned to the local observation being unity.   

Case 2: Mean of the local observation is smaller than the mean of the current global 
estimate: If a node observes that the mean of the local observation is smaller than its current 
estimate, it combines the two distributions in the same way as in Case 1 above, but this time 
a higher weight (w2) is assigned to the distribution having the higher mean (i.e. the current 
estimate). However, as observed in (Boulis et al., 2003), this case should be handled more 
carefully if there is a sharp fall in the value of the global maximum. We follow the same 
approach as proposed in (Boulis et al., 2003). If the previous local measurement does not 
differ from the global estimate beyond a threshold value, a larger weight is assigned to the 
local measurement as in Case 1. In this case, it is believed that the specific local measurement 
is still the global aggregated value.  

For computation of the weights w1 and w2 in Case 1 and Case 2 respectively, we follow the 
same approach as suggested in (Boulis et al., 2003). Since all the local measurements and 
the global estimates are assumed to follow Gaussian distribution, almost all the 
observations are bounded within the interval [μ ± 3*σ]. When the mean of the local 
measurement is larger than the mean of the global estimate, the computation of the 
weight (w1) is done as follows. Let us suppose that l(x) and g(x) are the probability 
distributions for the local measurement and the global estimate respectively. If l(x) and 
g(x) can take non-zero values in the intervals [x1, x2] and [y1, y2] respectively, then the 
weight w1(x) will be assigned a value of 0 for all x  1 – 3* and w1(x) will be assigned a 
value of 1 for all x  1 – 3*. Here, x1 is equal to μ1 – 3*σ1, where μ1 and σ1 are the mean 
and the standard deviation of l(x) respectively.  

When the mean of the local measurement is smaller than the mean of the global estimate, 
the computation of the weight w2 is carried out as follows. The value of w2(x) is assigned to 
be 0 for all x    max {1 – 3*1, 2 – 3*2}. w2(x) is assigned a value of 1 for all x   max {1 – 
3*1, 2 – 3*2}. Here, y1 is equal to 2 – 3*2, where 2 and 2 represent the mean and the 
standard deviation of g(x) respectively.  
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b. If the difference exceeds the threshold, the node performs the same function as in 
step (a). Additionally, it requests its other neighbors to send their values of the 
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c. If the estimates sent by the majority of the neighbors differ from the estimate sent 
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compromised. Otherwise, it is assumed to be normal. 

3. If a node is identified to be compromised, the global estimate previously sent by it is 
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Here, PAA, PBB, and PCC represent the covariance matrices associated with the estimates A, B, 
and C respectively. The main computational problem with CI is the computation of ω. The 
value of ω lies between 0 and 1. The optimum value of ω is arrived at when the trace of the 
determinant of PCC is minimized.  
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For computation of the weights w1 and w2 in Case 1 and Case 2 respectively, we follow the 
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distributions for the local measurement and the global estimate respectively. If l(x) and 
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weight w1(x) will be assigned a value of 0 for all x  1 – 3* and w1(x) will be assigned a 
value of 1 for all x  1 – 3*. Here, x1 is equal to μ1 – 3*σ1, where μ1 and σ1 are the mean 
and the standard deviation of l(x) respectively.  
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be 0 for all x    max {1 – 3*1, 2 – 3*2}. w2(x) is assigned a value of 1 for all x   max {1 – 
3*1, 2 – 3*2}. Here, y1 is equal to 2 – 3*2, where 2 and 2 represent the mean and the 
standard deviation of g(x) respectively.  
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In all these computations, it assumed that the resultant distribution after combination of two 
bounded Gaussian distributions is also a Gaussian distribution. This is done in order to 
maintain the consistency of the estimates. The mean and the variance of the new Gaussian 
distribution represent the new estimate and the confidence (or certainty) associated with 
this new estimate respectively. 

8.4 Optimization of communication overhead 

Optimization of communication overhead is of prime importance in resource constrained 
and bandwidth-limited WSNs. The block named Decision Making in Fig. 5 is involved in this 
optimization mechanism of the proposed scheme. This module makes a trade-off between 
energy requirement and accuracy of the aggregated results.  

To reduce the communication overhead, each node in the network communicates its 
computed estimate only when the estimate can bring a significant change in the estimates of its 
neighbors. For this purpose, each node stores the most recent value of the estimate it has 
received from each of its neighbors in a table. Every time a node computes its new estimate, it 
checks the difference between its newly computed estimate with the estimates of each of its 
neighbors. If this difference exceeds a pre-set threshold for any of its neighbors, the node 
broadcasts its newly computed estimate. The determination of this threshold is crucial as it has 
a direct impact on the level of accuracy in the global estimate and the energy expenditure in 
the WSN. A higher overhead due to message broadcast is optimized by maintaining two-hop 
neighborhood information in each node in the network (Boulis et al., 2003). This eliminates 
communication of redundant messages. This is illustrated in the following example. 

Suppose that nodes A, B and C are in the neighborhood of each other in a WSN. Let us 
assume that node A makes a local measurement and this changes its global estimate. After 
combining this estimate with the other estimates of its neighbors as maintained in its local 
table, node A decides to broadcast its new estimate. As node A broadcasts its computed 
global estimate, it is received by both nodes B and C. If this broadcast estimate changes the 
global estimate of node B too, then it will further broadcast the estimate to node C, as node B 
is unaware that the broadcast has changed the global estimate of node C also. Thus the same 
information is propagated in the same set of nodes in the network leading to a high 
communication overhead in the network.  

To avoid this message overhead, every node in the network maintains its two-hop 
neighborhood information. When a node receives information from another node, it not 
only checks the estimate values of its immediate neighbors as maintained in its table but 
also it does the same for its two-hop neighbors. Thus in the above example, when node B 
receives information from node A, it does not broadcast as it understands that node C has 
also received the same information from node A, since node C is also a neighbor of node A. 
The two-hop neighborhood information can be collected and maintained by using 
algorithms as proposed in (McGlynn & Borbash, 2001). 

The choice of the threshold value is vital to arrive at an effective trade-off between the 
energy consumed for computation and the accuracy of the result of aggregation. For a 
proper estimation of the threshold value, some idea about the degree of dynamism of the 
physical process being monitored is required. A more dynamic physical process puts a 

 
Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks 

 

157 

greater load on the estimation algorithm thereby demanding more energy for the same level 
of accuracy (Boulis et al., 2003). If the user has no information about the physical process, he 
can determine the level of accuracy of the aggregation and the amount of energy spent 
dynamically as the process executes.  

8.5 Security in aggregation scheme 

The security module of the proposed scheme assumes that the sensing results for a set of 
sensors in the same neighborhood follows a normal (Gaussian) distribution. Thus, if a node 
receives estimates from one (or more) of its neighbors that deviates from its own local estimate 
by more than three times its standard deviation, then the neighbor node is suspected to have 
been compromised or failed. In such a scenario, the node that first detected such an anomaly 
sends a broadcast message to each of its neighbors requesting for the values of their estimates. 
If the sensing result of the suspected node deviates significantly (i.e., by more than three times 
the standard deviation) from the observation of the majority of the neighbor nodes, then the 
suspected node is detected as malicious. Once a node is identified as malicious, a broadcast 
message is sent in the neighborhood of the node that detected the malicious node and the 
suspected node is isolated from the network activities.  

However, if the observation of the node does not deviate significantly from the observations 
made by the majority of its neighbors, the suspected node is assumed to be not malicious. In 
such a case, the estimate sent by the node is incorporated in the computation of the new 
estimate and a new global estimate is computed in the neighborhood of the node. 

9. Simulation results 
In this section, we describe the simulations that have been performed on the proposed scheme. 
As the proposed algorithm is an extension of the algorithm presented in (Boulis et al., 2003), we 
present here the results that are more relevant to our contribution, i.e., the performance of the 
security module. The results related to the energy consumption of nodes and aggregation 
accuracy for different threshold values (discussed in Section 8.4) are presented in detail in (Boulis 
et al., 2003) and therefore these are not within the scope of this work. 

In the simulated environment, the implemented application accomplishes temperature 
monitoring, based on network simulator (ns-2) and its sensor network extension Mannasim 
(Mannasim, 2002). The nodes sense the temperature continuously and send the maximum 
sensed temperature only when it differs from the last data sent by more than 2%.In order to 
simulate the temperature behaviour of the environment, random numbers are generated 
following a Gaussian distribution, taking into consideration standard deviation of 1C from 
an average temperature of 25C. The simulation parameters are presented in Table 3.  

To evaluate the performance of the security module of the proposed algorithm, two 
different scenarios are simulated. In the first case, the aggregation algorithm is executed in 
the nodes without invoking the security module to estimate the energy consumption of the 
aggregation algorithm. In the second case, the security module is invoked in the nodes and 
some of the nodes in the network are intentionally compromised. This experiment allows us 
to estimate the overhead associated with the security module of the algorithm and its 
detection effectiveness. 
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In all these computations, it assumed that the resultant distribution after combination of two 
bounded Gaussian distributions is also a Gaussian distribution. This is done in order to 
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global estimate of node B too, then it will further broadcast the estimate to node C, as node B 
is unaware that the broadcast has changed the global estimate of node C also. Thus the same 
information is propagated in the same set of nodes in the network leading to a high 
communication overhead in the network.  

To avoid this message overhead, every node in the network maintains its two-hop 
neighborhood information. When a node receives information from another node, it not 
only checks the estimate values of its immediate neighbors as maintained in its table but 
also it does the same for its two-hop neighbors. Thus in the above example, when node B 
receives information from node A, it does not broadcast as it understands that node C has 
also received the same information from node A, since node C is also a neighbor of node A. 
The two-hop neighborhood information can be collected and maintained by using 
algorithms as proposed in (McGlynn & Borbash, 2001). 

The choice of the threshold value is vital to arrive at an effective trade-off between the 
energy consumed for computation and the accuracy of the result of aggregation. For a 
proper estimation of the threshold value, some idea about the degree of dynamism of the 
physical process being monitored is required. A more dynamic physical process puts a 
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greater load on the estimation algorithm thereby demanding more energy for the same level 
of accuracy (Boulis et al., 2003). If the user has no information about the physical process, he 
can determine the level of accuracy of the aggregation and the amount of energy spent 
dynamically as the process executes.  

8.5 Security in aggregation scheme 

The security module of the proposed scheme assumes that the sensing results for a set of 
sensors in the same neighborhood follows a normal (Gaussian) distribution. Thus, if a node 
receives estimates from one (or more) of its neighbors that deviates from its own local estimate 
by more than three times its standard deviation, then the neighbor node is suspected to have 
been compromised or failed. In such a scenario, the node that first detected such an anomaly 
sends a broadcast message to each of its neighbors requesting for the values of their estimates. 
If the sensing result of the suspected node deviates significantly (i.e., by more than three times 
the standard deviation) from the observation of the majority of the neighbor nodes, then the 
suspected node is detected as malicious. Once a node is identified as malicious, a broadcast 
message is sent in the neighborhood of the node that detected the malicious node and the 
suspected node is isolated from the network activities.  

However, if the observation of the node does not deviate significantly from the observations 
made by the majority of its neighbors, the suspected node is assumed to be not malicious. In 
such a case, the estimate sent by the node is incorporated in the computation of the new 
estimate and a new global estimate is computed in the neighborhood of the node. 

9. Simulation results 
In this section, we describe the simulations that have been performed on the proposed scheme. 
As the proposed algorithm is an extension of the algorithm presented in (Boulis et al., 2003), we 
present here the results that are more relevant to our contribution, i.e., the performance of the 
security module. The results related to the energy consumption of nodes and aggregation 
accuracy for different threshold values (discussed in Section 8.4) are presented in detail in (Boulis 
et al., 2003) and therefore these are not within the scope of this work. 

In the simulated environment, the implemented application accomplishes temperature 
monitoring, based on network simulator (ns-2) and its sensor network extension Mannasim 
(Mannasim, 2002). The nodes sense the temperature continuously and send the maximum 
sensed temperature only when it differs from the last data sent by more than 2%.In order to 
simulate the temperature behaviour of the environment, random numbers are generated 
following a Gaussian distribution, taking into consideration standard deviation of 1C from 
an average temperature of 25C. The simulation parameters are presented in Table 3.  

To evaluate the performance of the security module of the proposed algorithm, two 
different scenarios are simulated. In the first case, the aggregation algorithm is executed in 
the nodes without invoking the security module to estimate the energy consumption of the 
aggregation algorithm. In the second case, the security module is invoked in the nodes and 
some of the nodes in the network are intentionally compromised. This experiment allows us 
to estimate the overhead associated with the security module of the algorithm and its 
detection effectiveness. 
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Parameter Value 

No. of nodes 
Simulation time 
Coverage area 
Initial energy in each node 
MAC protocol 
Routing protocol 
Node distribution 
Transmission power of each node 
Transmission range 
Node capacity 
Energy spent in transmission 
Energy spent in reception 
Energy spent in sensing 
Sampling period 
Node mobility 

160 
200  s 

120 m * 120 m 
5 Joules 

IEEE 802.11 
None 

Uniform random 
12 mW 
15 m 

5 buffers 
0.75 W 

0.25 mW 
10 mW 

0.5 s 
Stationary 

Table 3. Simulation parameters   

 
Fig. 6. Detection effectiveness with 10% of the nodes in the network faulty 

It is observed that delivery ratio (ratio of the packets sent to the packets received by the 
nodes) is not affected by invocation of the security module. This is expected, as the packets 
are transmitted in the same wireless environment, introduction of the security module 
should not have any influence on the delivery ratio. 

Regarding energy consumption, it is observed that the introduction of the security module 
has introduced an average increase of 105.4% energy consumption in the nodes in the 
network. This increase is observed when 20% of the nodes chosen randomly are 
compromised intentionally when the aggregation algorithm was executing. This increase in 
energy consumption is due to additional transmission and reception of messages after the 
security module is invoked. 
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To evaluate the detection effectiveness of the security scheme, further experiments are 
conducted. For this purpose, different percentage of nodes in the network is compromised and 
the detection effectiveness of the security scheme is evaluated. Fig. 6 and Fig. 7 present the 
results for 10% and 20% compromised node in the network respectively. In these diagrams, the 
false positives refer to the cases where the security scheme wrongly identifies a sensor node as 
faulty while it is actually not so. False negatives, on the other hand, are the cases where the 
detection scheme fails to identify a sensor node which is actually faulty. It is observed that even 
when there are 20% compromised nodes in the network the scheme has a very high detection 
rate with very low false positive and false negative rate. The results show that the proposed 
mechanism is quite effective in detection of failed and compromised nodes in the network. 

 
Fig. 7. Detection effectiveness with 20% of the nodes in the network faulty 

10. Conclusion and future research issues 
In-network data aggregation in WSNs is a technique that combines partial results at the 
intermediate nodes en route to the base station (i.e. the node issuing the query), thereby 
reducing the communication overhead and optimizing the bandwidth utilization in the 
wireless links. However, this technique raises privacy and security issues of the sensor 
nodes which need to share their data with the aggregator node. In applications such as 
health care and military surveillance where the sensitivity of the private data of the sensors 
is very high, the aggregation has to be carried out in a privacy-preserving way, so that the 
sensitive data are not revealed to the aggregator. A very popular scheme for this purpose 
exists in the literature which is known as CPDA. Although CPDA is in literature for quite 
some time now, no vulnerability of the protocol has been identified so far. In this chapter, 
we have first demonstrated a security vulnerability in the CPDA protocol, wherein a 
malicious sensor node can exploit the protocol is such a way that it gets access to the private 
values of its neighbors while participating in data aggregation process. A suitable 
modification of the CPDA protocol is further proposed so as to plug the identified 
vulnerability and also to make the protocol computationally more efficient. We have also 
made an analysis of the communication and computational overhead in the original CPDA 
protocol and the proposed modified version of the CPDA protocol. It has been found from 
the analysis that the modified version of the protocol involves appreciably less message 
communication overhead in the network and computational load on the sensor nodes. 
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exists in the literature which is known as CPDA. Although CPDA is in literature for quite 
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malicious sensor node can exploit the protocol is such a way that it gets access to the private 
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modification of the CPDA protocol is further proposed so as to plug the identified 
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protocol and the proposed modified version of the CPDA protocol. It has been found from 
the analysis that the modified version of the protocol involves appreciably less message 
communication overhead in the network and computational load on the sensor nodes. 
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We have also presented a comprehensive discussion on the existing secure aggregation 
protocols for WSNs and proposed a secure aggregation protocol for defending against 
attacks by malicious insider nodes that may introduce fake messages/data or alter data of 
honest nodes in the network. The performance of the proposed scheme has been evaluated 
on a network simulator and results have shown that the scheme is effective for defending 
attacks launched by malicious insider nodes in a WSN. 

It may be noted that over the past few years, several schemes have been proposed in the 
literature for privacy preserving data aggregation in WSNs. A very popular and elegant 
approach in this direction is homomorphic encryption (Fontaine & Galand, 2007). Westhoff et al. 
have proposed additive privacy homomorphic functions that allow for end-to-end encryption 
between the sensors and the sink node and simultaneously enable aggregators to apply 
aggregation functions directly over the ciphertexts (Westhoff et al., 2006). This has the 
advantage of eliminating the need for intermediate aggregators to carry out decryption and 
encryption operations on the sensitive data. Armknecht et al. have presented a symmetric 
encryption scheme for sensor data aggregation that is homomorphic both for data and the 
keys (Armknecht et al., 2008). This is called bi-homomorphic encryption, which is also essentially 
an additive homomorphic function. Castellucia et al. have proposed an approach that 
combines inexpensive encryption techniques with simple aggregation methods to achieve 
efficient aggregation of encrypted data in WSNs (Castelluccia et al., 2009). The method relies 
on end-to-end encryption of data and hop-by-hop authentication of nodes. Privacy is achieved 
by using additive homomorphic functions. A very simple approach for privacy-preserving 
multi-party computation has been discussed by Chaum (Chaum, 1988). The protocol is known 
as Dining Cryptographers Problem which describes the way a channel is created so that it is 
difficult to trace (i.e. identify) the sender of any message through that channel.    

The approaches based on privacy homomorphic functions are more elegant than CPDA for 
the purpose of carrying out sensor data aggregation in a privacy preserving way. However, 
they involve large computational overhead due to complexities involved in computing the 
homomorphic encryption functions and the associated key management related issues. Most 
of the existing public key cryptography-based privacy homomorphic functions are too 
heavy for resource-constrained battery-operated sensor nodes. Some secure data 
aggregation schemes use elliptic curve cryptography (Westhoff et al., 2006). However, these 
schemes work only for some specific query-based aggregation functions, e.g., sum, average 
etc. A more elegant scheme that works for all types of functions is clearly in demand. In 
(Gentry, 2009), a fully homomorphic function has been presented. However, this scheme is 
too complex and heavy-weight for deployment in WSNs. In addition, in some WSN 
environment, symmetric cryptography-based privacy homomorphic encryption schemes are 
more suitable (Castelluccia, 2005; Castelluccia, 2009; Ozdemir, 2008). However, most of the 
current homomorphic encryption schemes are based on public key encryption. Hence, 
exploration of symmetric key cryptography based privacy homomorphism functions is an 
interesting research problem.  Another emerging research problem is the use of digital 
watermarking schemes in place of privacy homomorphic encryption functions (Zhang et al., 
2008). However, this method allows only one-way authentication of sensor data at the base 
station only. To defend against rogue base station attacks on sensor nodes, this scheme would 
not be applicable. Design of mutual authentication scheme using watermarking techniques 
for secure and privacy-preserving data aggregation protocols is another research problem 
that needs attention of the research community. 
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We have also presented a comprehensive discussion on the existing secure aggregation 
protocols for WSNs and proposed a secure aggregation protocol for defending against 
attacks by malicious insider nodes that may introduce fake messages/data or alter data of 
honest nodes in the network. The performance of the proposed scheme has been evaluated 
on a network simulator and results have shown that the scheme is effective for defending 
attacks launched by malicious insider nodes in a WSN. 
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encryption operations on the sensitive data. Armknecht et al. have presented a symmetric 
encryption scheme for sensor data aggregation that is homomorphic both for data and the 
keys (Armknecht et al., 2008). This is called bi-homomorphic encryption, which is also essentially 
an additive homomorphic function. Castellucia et al. have proposed an approach that 
combines inexpensive encryption techniques with simple aggregation methods to achieve 
efficient aggregation of encrypted data in WSNs (Castelluccia et al., 2009). The method relies 
on end-to-end encryption of data and hop-by-hop authentication of nodes. Privacy is achieved 
by using additive homomorphic functions. A very simple approach for privacy-preserving 
multi-party computation has been discussed by Chaum (Chaum, 1988). The protocol is known 
as Dining Cryptographers Problem which describes the way a channel is created so that it is 
difficult to trace (i.e. identify) the sender of any message through that channel.    

The approaches based on privacy homomorphic functions are more elegant than CPDA for 
the purpose of carrying out sensor data aggregation in a privacy preserving way. However, 
they involve large computational overhead due to complexities involved in computing the 
homomorphic encryption functions and the associated key management related issues. Most 
of the existing public key cryptography-based privacy homomorphic functions are too 
heavy for resource-constrained battery-operated sensor nodes. Some secure data 
aggregation schemes use elliptic curve cryptography (Westhoff et al., 2006). However, these 
schemes work only for some specific query-based aggregation functions, e.g., sum, average 
etc. A more elegant scheme that works for all types of functions is clearly in demand. In 
(Gentry, 2009), a fully homomorphic function has been presented. However, this scheme is 
too complex and heavy-weight for deployment in WSNs. In addition, in some WSN 
environment, symmetric cryptography-based privacy homomorphic encryption schemes are 
more suitable (Castelluccia, 2005; Castelluccia, 2009; Ozdemir, 2008). However, most of the 
current homomorphic encryption schemes are based on public key encryption. Hence, 
exploration of symmetric key cryptography based privacy homomorphism functions is an 
interesting research problem.  Another emerging research problem is the use of digital 
watermarking schemes in place of privacy homomorphic encryption functions (Zhang et al., 
2008). However, this method allows only one-way authentication of sensor data at the base 
station only. To defend against rogue base station attacks on sensor nodes, this scheme would 
not be applicable. Design of mutual authentication scheme using watermarking techniques 
for secure and privacy-preserving data aggregation protocols is another research problem 
that needs attention of the research community. 
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1. Introduction

Individual authentication increases in importance as network technology advances. IC
passport, SIM card and ID card used in entering and leaving management systems are
dependent on a cryptography circuit for keeping their security. LSI chips used there usually
include cryptography circuits and encrypt/decrypt important data such as ID numbers and
electronic money information. However, there is a threat that a secret key may be retrieved
from the cryptography LSI chip. Recently, side-channel attacks against a cryptosystem LSI
has been reported (Boneh et al., 1997; Brier et al., 2004; Kocher, 1996; Kocher el al., 1999;
Schramm el al., 2003). For example, scan-based side-channel attacks which retrieve secret
keys in a cryptography LSI have attracted attention over the five years. A scan path is one
of the most important testing techniques, where registers are connected in serial so that they
can be controlled and observed directly from outside the LSI. Test efficiency can be increased
significantly. On the other hand, one can have register data easily by using a scan path, which
implies that one can retrieve a secret key in a cryptography LSI. This is a scan-based side-channel
attack.

One of the difficulties in the scan-based side-channel attack is how to retrieve a secret key
from obtained scanned data from a cryptosystem LSI. In a scan path, registers inside a
circuit have to be connected so that its interconnection length will be shortened to satisfy
timing constraints. This means that no one but a scan-path designer knows correspondence
between registers and scanned data. To succeed a scan-based side-channel attack against
a cryptography LSI, an attacker needs to retrieve secret keys from the scanned data almost
“randomly” connected.

Symmetric-key cryptosystems such as DES and AES are very popular and widely used. They
make use of the same secret key in encryption and decryption. However, it may be difficult
to securely share the same secret key, such as in communicating on the Internet. Public-key
cryptosystems, on the other hand, make use of different keys to encrypt and decrypt. One
of the most popular public-key cryptography algorithms is RSA (Rivest et al., 1978), which is
used by many secure technologies such as secure key agreement and digital signature.

Yang et al. first showed a scan-based side-channel attack against DES in 2004 and retrieved
a secret key in DES (Yang et al., 2004). They also proposed a scan-based side-channel
attack against AES in 2006 (Yang et al., 2006). Nara et al. proposed an improved scan-based
side-channel attack method against AES in 2009 (Nara et al., 2009). A scan-based side-channel
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1. Introduction

Individual authentication increases in importance as network technology advances. IC
passport, SIM card and ID card used in entering and leaving management systems are
dependent on a cryptography circuit for keeping their security. LSI chips used there usually
include cryptography circuits and encrypt/decrypt important data such as ID numbers and
electronic money information. However, there is a threat that a secret key may be retrieved
from the cryptography LSI chip. Recently, side-channel attacks against a cryptosystem LSI
has been reported (Boneh et al., 1997; Brier et al., 2004; Kocher, 1996; Kocher el al., 1999;
Schramm el al., 2003). For example, scan-based side-channel attacks which retrieve secret
keys in a cryptography LSI have attracted attention over the five years. A scan path is one
of the most important testing techniques, where registers are connected in serial so that they
can be controlled and observed directly from outside the LSI. Test efficiency can be increased
significantly. On the other hand, one can have register data easily by using a scan path, which
implies that one can retrieve a secret key in a cryptography LSI. This is a scan-based side-channel
attack.

One of the difficulties in the scan-based side-channel attack is how to retrieve a secret key
from obtained scanned data from a cryptosystem LSI. In a scan path, registers inside a
circuit have to be connected so that its interconnection length will be shortened to satisfy
timing constraints. This means that no one but a scan-path designer knows correspondence
between registers and scanned data. To succeed a scan-based side-channel attack against
a cryptography LSI, an attacker needs to retrieve secret keys from the scanned data almost
“randomly” connected.

Symmetric-key cryptosystems such as DES and AES are very popular and widely used. They
make use of the same secret key in encryption and decryption. However, it may be difficult
to securely share the same secret key, such as in communicating on the Internet. Public-key
cryptosystems, on the other hand, make use of different keys to encrypt and decrypt. One
of the most popular public-key cryptography algorithms is RSA (Rivest et al., 1978), which is
used by many secure technologies such as secure key agreement and digital signature.

Yang et al. first showed a scan-based side-channel attack against DES in 2004 and retrieved
a secret key in DES (Yang et al., 2004). They also proposed a scan-based side-channel
attack against AES in 2006 (Yang et al., 2006). Nara et al. proposed an improved scan-based
side-channel attack method against AES in 2009 (Nara et al., 2009). A scan-based side-channel
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attack against elliptic curve cryptography (Koblitz, 1987; Miller, 1986) was proposed by Nara
et al. (Nara et al., 2011). On the other hand, any scan-based side-channel attacks against RSA
have not been proposed yet in spite of the fact that RSA is a de-facto standard for a public-key
cryptosystem. Since public-key cryptosystems have complicated algorithm compared with
that of symmetric-key cryptosystems such as DES and AES, we cannot apply the scan-based
side-channel attacks against symmetric-key cryptosystems to an RSA circuit. An elliptic curve
cryptography algorithm is completely different from an RSA algorithm although they both are
public-key algorithms. We cannot apply the scan-based side-channel attacks against elliptic
curve cryptosystem to RSA, either.

In this paper, we propose a scan-based side-channel attack against an RSA circuit, which is
almost independent of a scan-path structure. The proposed method is based on detecting
intermediate values calculated in an RSA circuit. We focus on a 1-bit time-sequence which
is specific to some intermediate value. We call it a scan signature because its value shows
their existence in the scanned data obtained from an RSA circuit. By checking whether a scan
signature is included in the scanned data or not, we can retrieve a secret key in the target RSA
circuit even if we do not know a scan path structure, as long as a scan path is implemented on
an RSA circuit and it includes at least 1-bit of each intermediate value.

The purpose of our proposed method is, not to make secure scan architecture ineffective but to
retrieve a secret key using scanned data in an RSA circuit with as few limitations as possible.
In fact, our scan-based side-channel attack method without any modification might not work
against RSA circuits using some secure scan architecture. Several secure scan architectures
without consideration of our proposed scan signature cannot protect our method as discussed
in Section 6.

This paper is organized as follows: Section 2 introduces RSA encryption and decryption
algorithms; Section 3 shows an algorithm of retrieving a secret key in an RSA circuit
using intermediate values and explains problems to retrieve a secret key using a scan path;
Section 4 proposes our scan-based side-channel attack method based on a scan signature;
Section 5 demonstrates experimental results and performance analysis; Section 7 gives several
concluding remarks.

2. RSA algorithm

RSA cryptography (Rivest et al., 1978) was made public in 1978 by Ronald Linn Rivest,
Adi Shamir, Leonard Max Adleman. The RSA is known as the first algorithm which
makes public-key cryptography practicable. It is commonly used to achieve not only
encryption/decryption but also a digital signature and a digital authentication, so that most
cryptography LSIs in the market implement and calculate the RSA cryptography.

The security of an RSA cryptography depends on the difficulty of factoring large numbers.
To decrypt a ciphertext of an RSA cryptography will be almost impossible on the assumption
that no efficient algorithm exists for solving it.

2.1 Encryption and decryption

An RSA algorithm encrypts a plaintext with a public key (n, e) and decrypts a ciphertext
with a secret key (n, d). Let us select two distinct prime numbers p and q. We calculate n by
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Algorithm 1 Binary method (MSB to LSB).

Input: c, d, and n.
Output: cd mod n.

i = L − 1.
m = 1.
while i ≥ 0 do

m = m2 mod n.
if di = 1 then

m = m × c mod n.
end if
i = i − 1.

end while
return m.

multiplying p by q, which is used as the modulus for both a public key and a secret key. To
determine exponents of them, we calculate ϕ(pq)1 for multiplying (p − 1) by (q − 1).

Let us select an integer e satisfying the conditions that 1 < e < ϕ(pq) and, e and ϕ(pq) is
coprime, where e is an exponent of a public key. Let us determine an integer d satisfying the
congruence relation de ≡ 1 mod ϕ(pq). That is to say, the public key consists of the modulus
n and the exponent e. The private key consists of the modulus n and the exponent d.

Let us consider that Alice secretly sends a message m to Bob. First, Alice receives his public
key (n, e). Second, she calculates the ciphertext c with Equation 1.

c = me mod n (1)

Then Alice transmits c to Bob. Bob decrypts c by using his private key and receive her message
m. Equation 2 represents a decryption computation.

m ≡ cd mod n (2)

2.2 Binary method

The bit length of an RSA key must be more than 1,024 bits because its security depends on its
key length. It is currently recommended that n be at least 2,048 bits long (Silverman, 2002).
This means that the exponent d in Equation 2 is at least 1,024 bits long. When we decrypt a
cyphertext, its computation amount becomes quite large without modification. Since modulo
exponentiation dominates the execution time of decrypting a cyphertext, efficient algorithms
have been proposed. The binary method (Stein, 1967), as shown in Algorithm 1, is one of
the most typical exponent algorithms. In Algorithm 1, the exponent d is represented by d =
dL−12L−1 + dL−22L−2 + · · · + d12 + d0, where L shows the maximum key bit length. Fig. 1
shows an example of the binary method in case of d = 10112.

3. Scan-based attack against RSA

A scan path connects registers in an circuit serially and makes us access to them directly so
that a tester can observe register values inside the circuit easily. A scan path model is shown

1 ϕ() is Euler’s totient function.
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m = 1 m=1 c mod n2 m=c mod n2 m=(c ) c mod n2 2 m=(c ) c mod n25

c c c

Fig. 1. Binary method example (d = 10112).

in Fig. 2. A scan path test is widely used in recent circuit implementations due to its testability
and easiness of implementation.
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Fig. 2. Scan path model.

The purpose of a scan-based attack against RSA is to retrieve a secret exponent d from scanned
data in an RSA circuit. Scan-based attack here requires several assumptions as in the previous
researches in (Nara et al., 2009; 2011; Yang et al., 2004; 2006), which are summarized as shown
below:

1. Attackers can encrypt/decrypt arbitrary data using the secret key on a target RSA circuit.

2. Attackers can obtain scanned data from a target RSA circuit.

3. Scanned data is not modified with compactors aimed at test efficiency.

4. Attackers know that the binary method in Algorithm 1 is used in a target RSA circuit.

5. Attackers also know the modulus n used in a target RSA circuit.2

In addition to these, they need to be able to predict the intermediate values of the binary
method using an off-line simulation.

In this section, we explain the scan-based attack against an RSA circuit (Section 3.1) and its
problems in a practical case (Section 3.2).

2 Note that, since the public key consists of the modulus n and the public exponent e, attackers can easily
know the modulus n.
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3.1 Retrieving a secret exponent using intermediate values (Messerges et al., 1999)

In order to retrieve a secret exponent d, we have to solve the integer factorization in RSA. If the
bit length of a secret exponent d is more than 1,024 bits or more than 2,048 bits, it is impossible
to solve this problem within a realistic time. However, if we know all the “intermediate
values” during the binary method shown in Algorithm 1, we can retrieve a secret exponent d
in a polynomial time (Messerges et al., 1999).

Let d = dL−12L−1 + dL−22L−2 + · · · + d12 + d0, where L is the maximum key bit length
of d. Assume that all the intermediate values in Algorithm 1 are obtained. Let m(i)
be the intermediate value of m at the end of loop i in Algorithm 1. Assume also that
dL−1, dL−2, · · · , di+1 are already retrieved. An attacker tries to reveal the next bit di. In this
case, m(i) is equal to Equation 3 below, if and only if di = 0:

c∑L−1
j=i+1 dj2j−i

mod n. (3)

Similarly, m(i) is equal to Equation 4 below, if and only if di = 1:

c∑L−1
j=i+1 dj2j−i+1 mod n. (4)

Based on the above discussion, we employ SF(i) defined by Equation 5 as a selective function
for RSA:

SF(i) = c∑�−1
j=i+1 dj2j−i+1 mod n. (5)

� represents a significant key length, or key length in left-align representation, i.e., the secret
exponent can be represented by

d = dL−12L−1 + · · ·+ d12 + d0

∣∣∣
dL−1=0,...,d�=0

= d�−12�−1 + · · ·+ d12 + d0. (6)

When using the selective function for RSA above, we have to know in advance
d�−1, d�−2, · · · , di+1.

SF(i) �= SF(j) always holds true for i �= j for 0 ≤ i, j ≤ � − 1. Given a message c and bit
values of secret component d�−1, d�−2, · · · , di+1, we assume that di = 1 and check whether
SF(i) appears somewhere in intermediate values. If it appears in them, we really determine
di as one. If not, we determine di as zero.

Example 1. Let us consider that the public key (n, e) = (101111001, 1011) and the secret key (n, d) =
(101111001, 10111). The maximum key length L is 8 bits and the secret exponent d = 10111, i.e,
d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1. We assume that we do not know d
and a significant key length �. The intermediate values in Algorithm 1 are summarized in Table 2 when
we use a message c = 10011100, whose parameters are shown in Table 1.

Now we try to retrieve the 8-bit secret exponent d using intermediate values.

First we try to retrieve the first bit d�−1 (i = �− 1). We find d�−1 = 1 by the definition of a significant
key length �. Then SF(�− 1) is calculated as SF(�− 1) = c = 10011100. Since 10011100 appears in
Table 2, we confirm that d�−1 is retrieved as one. Now we assume that the secret exponent d = 1. We
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compare m(�− 1) = (c1 mod n) = 10011100 with the binary method result 10001111. Since they
are not equal, d �= 1.

Next, we try to retrieve the second bit d�−2 (i = �− 2). We have already known that d�−1 = 1. We
assume here that d�−2 = 1. In this case, SF(�− 2) is calculated as SF(�− 2) = 11010. Since 11010
does not appear in Table 2, then d�−2 is retrieved not as one but as zero, i.e., d�−2 = 0. Now we assume
that d = 10. We compare m(�− 2) = (c10 mod n) = (m(�− 1)2 mod n) = 11010000 with the
binary method result 10001111. Since they are not equal, d �= 10.

Next, we try to retrieve the third bit d�−3 (i = � − 3). We have already known that d�−1 = 1 and
d�−2 = 0. We assume here that d�−3 = 1. In this case, SF(�− 3) is calculated as SF(�− 3) =
10000010. Since 10000010 appears in Table 2, then d�−3 is retrieved as one, i.e., d�−3 = 1. Now we
assume that d = 101. We compare m(�− 3) = (c101 mod n) = SF(�− 3) = 10000010 with the
binary method result 10001111. Since they are not equal, d �= 101.

Next, we try to retrieve the fourth bit d�−4 (i = � − 4). We have already known that d�−1 = 1,
d�−2 = 0 and d�−3 = 1. We assume here that d�−4 = 1. In this case, SF(�− 4) is calculated as
SF(�− 4) = 100111. Since 100111 appears in Table 2, then d�−1 is retrieved as one, i.e., d�−4 = 1.
Now we assume that d = 1011. We compare m(�− 4) = (c1011 mod n) = SF(�− 4) = 100111
with the binary method result 10001111. Since they are not equal, d �= 1011.

We have already known that d�−1 = 1, d�−2 = 0, d�−3 = 1 and d�−4=1. We assume here that
d�−5 = 1. SF(�− 5) is calculated as SF(�− 5) = 10001111 (i = �− 5). Since 10001111 appears in
Table 2, then d�−5 is retrieved as one, i.e., d�−5 = 1. Now we assume that d = 10111. We compare
m(� − 5) = (c10111 mod n) = SF(�− 5) = 10001111 with the binary method result 10001111.
Since they are equal to each other, we find that the secret exponent d is 10111 and a significant bit � is
five.

3.2 Problems to retrieve a secret key using scan path

If we retrieve an L-bit secret exponent d using an exhaustive search, we have to try 2L possible
values to do it. On the other hand, the method explained in Section 3.1 retrieves a secret
exponent one-bit by one-bit from MSB to LSB. It tries at most 2L possible values to retrieve an
L-bit secret exponent. Further, the method just checks whether SF(i) exists in the intermediate
value m(i) in Algorithm 1.

In order to apply this method to a scan-based attack, we have to know which registers store
intermediate values, i.e., we have to know correspondence between scanned data and SF(i).

However, scan paths are usually designed automatically by EDA tools so that nearby registers
are connected together to shorten the scan path length. Only designers can know the
correspondence between scanned data and registers and thus retrieved scanned data can be
considered to be “random” for attackers. Therefore, it is very difficult to find out the values
of SF(i) in scanned data for attackers.

Messerges (Messerges et al., 1999) only shows the correspondence between intermediate
values and a bit of a secret exponent. It does not indicate the method how to discover the
intermediate value from scanned data. For that reason, its analysis method cannot directly
apply to scan-based attacks against an RSA LSI.

We have to find out only SF(i) somehow in the scanned data to retrieve a secret exponent d
using the method in Section 3.1.
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Maximum key length L 8 bits
Modulus n 101111001

Public exponent e 1011
Secret exponent d 10111

Table 1. Example parameters in Algorithm 1.

i di m2 m

7 0 1 1
6 0 1 1
5 0 1 1
4 1 1 10011100
3 0 11010000 11010000
2 1 100011110 10000010
1 1 100111000 100111
0 1 1101 10001111

Table 2. Intermediate values at the end of i-th loop of Algorithm 1 (message c = 100111002).

4. Analysis scanned data

In order to solve the problem that attackers do not know the correspondence between registers
of the scanned data and ones storing intermediate values during the binary method, we focus
on the general property on scan paths: a bit position of a particular register r in a scanned data
when giving one input data is exactly the same as that when giving another input data. This is clearly
true, since a scan path is fixed in an LSI chip and the order of connected registers in its scan
path is unchanged.

If we execute the binary method for each of N messages on an RSA circuit, a bit pattern of
a particular bit position in scanned data for these N messages gives N-bit data. Based on the
above property, this N-bit data may give a bit pattern of a particular bit in an intermediate
value when we give each of these N messages to the RSA circuit.

We can calculate SF(i) from the same N messages and d�−1 down to d0 of the secret exponent
d by using an off-line simulation. By picking up a particular bit (LSB, for example) in each of
SF(i) values for N messages, we also have an N-bit data (see Fig. 3). If N is large enough, this
N-bit data gives information completely unique to SF(i). We can use this N-bit data as a scan
signature SSi to SF(i) in scanned data.

Our main idea in this section is that we find out a scan signature SSi to SF(i) in scanned
data (see Fig. 4) to retrieve the secret exponent d from d�−1 down to d0. If an N-bit scan
signature SSi appears in the scanned data for N messages, di is determined as one. If not, it is
determined as zero.

In the rest of this section, we firstly propose a scan signature SSi to SF(i). Secondly we propose
an overall method to retrieve a secret exponent d using scan signatures. Thirdly we analyze
the probabilities of successfully retrieving a secret exponent by using our method.
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In order to apply this method to a scan-based attack, we have to know which registers store
intermediate values, i.e., we have to know correspondence between scanned data and SF(i).

However, scan paths are usually designed automatically by EDA tools so that nearby registers
are connected together to shorten the scan path length. Only designers can know the
correspondence between scanned data and registers and thus retrieved scanned data can be
considered to be “random” for attackers. Therefore, it is very difficult to find out the values
of SF(i) in scanned data for attackers.

Messerges (Messerges et al., 1999) only shows the correspondence between intermediate
values and a bit of a secret exponent. It does not indicate the method how to discover the
intermediate value from scanned data. For that reason, its analysis method cannot directly
apply to scan-based attacks against an RSA LSI.

We have to find out only SF(i) somehow in the scanned data to retrieve a secret exponent d
using the method in Section 3.1.
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4. Analysis scanned data

In order to solve the problem that attackers do not know the correspondence between registers
of the scanned data and ones storing intermediate values during the binary method, we focus
on the general property on scan paths: a bit position of a particular register r in a scanned data
when giving one input data is exactly the same as that when giving another input data. This is clearly
true, since a scan path is fixed in an LSI chip and the order of connected registers in its scan
path is unchanged.

If we execute the binary method for each of N messages on an RSA circuit, a bit pattern of
a particular bit position in scanned data for these N messages gives N-bit data. Based on the
above property, this N-bit data may give a bit pattern of a particular bit in an intermediate
value when we give each of these N messages to the RSA circuit.

We can calculate SF(i) from the same N messages and d�−1 down to d0 of the secret exponent
d by using an off-line simulation. By picking up a particular bit (LSB, for example) in each of
SF(i) values for N messages, we also have an N-bit data (see Fig. 3). If N is large enough, this
N-bit data gives information completely unique to SF(i). We can use this N-bit data as a scan
signature SSi to SF(i) in scanned data.

Our main idea in this section is that we find out a scan signature SSi to SF(i) in scanned
data (see Fig. 4) to retrieve the secret exponent d from d�−1 down to d0. If an N-bit scan
signature SSi appears in the scanned data for N messages, di is determined as one. If not, it is
determined as zero.

In the rest of this section, we firstly propose a scan signature SSi to SF(i). Secondly we propose
an overall method to retrieve a secret exponent d using scan signatures. Thirdly we analyze
the probabilities of successfully retrieving a secret exponent by using our method.
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SF(i) = 0 0 1 … 1 1 … 0 1 1
SF(i) = 1 1 1 … 0 1 … 0 1 1
SF(i) = 0 1 1 … 0 0 … 1 0 0
SF(i) = 0 1 1 … 0 1 … 1 1 0
SF(i) = 1 0 0 … 1 0 … 1 0 1

SF(i) = 0 1 0 … 1 1 … 1 1 0

(N bits)

Input: SF(i) (1 r N),
Output: Scan Signature SS

SS

L bits
Fig. 3. Scan signature SSi.

…001100001011……110011011000……010000111110…
…111100101100……101101000110……010101001101…
…101110011110……101110011110……110111010110…
…111000101101……111000101101……001110100101…
…010111001110……010111001110……000110001111…

…001000101101……001000101101……011010101000…

sd =
sd =
sd =
sd =
sd =

sd =
Size of scan path

N bits

FF
th

FF
th

FF
th

Scan path

All cycles during binary method
Fig. 4. Scanned data.

4.1 Calculating a scan signature to SF(i)

Assume that N messages c1, · · · , cN are given. Also assume that we have already known
d�−1, · · · , di+1 for a secret exponent d. Let SF(i)r be the selective function for RSA when
giving the message cr for 1 ≤ r ≤ N. Assuming that di = 1, we can calculate SF(i)r for
1 ≤ r ≤ N.

Let us focus on a particular bit of SF(i)r. If N is large enough, a set of these bits for SF(i)r
(1 ≤ r ≤ N) gives information unique to SF(i)r. By using it, we can check whether SF(i)r are
calculated or not in the target. As Fig. 3 shows, we define a scan signature SSi to be a set of
SF(i)r LSBs for the sake of convenience.
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If SSi appears in scanned data, di is determined as one. If not, di is determined as zero. After
di is correctly determined, we can continue to determine the next bit of the secret exponent d
in the same way.

Our proposed method has an advantage compared to conventional scan-based attacks (Yang
et al., 2004; 2006). Our method is effective in the case of partial scan architecture. As long as
a scan path includes at least 1-bit of each intermediate value, we can check whether the scan
signature exists or not in the scanned data.

4.2 Scanned data analysis method

First we prepare N messages c1, · · · , cN and give them to an RSA circuit. For each of these
messages, we obtain all the scanned data from the scan out of the RSA circuit until it outputs
the binary method result. As Fig. 4 shows, the size of scanned data for each of these messages
is (“scan path length” × “number of binary method cycles.”)

Now we check whether a scan signature SSi to SF(i) appears in the obtained scanned data
under the assumption that we do not know a secret exponent d in the RSA circuit as follows:

Step 1: Prepare N messages c1, c2, · · · , cN , where cr �= cs for 1 ≤ r, s ≤ N and r �= s.

Step 2: Input cr (1 ≤ r ≤ N) into the target RSA circuit and obtain scanned data every one
cycle while the binary method works, until the RSA circuit outputs the result. Let sdr
denote the obtained scanned data for the message cr (1 ≤ r ≤ N).

Step 3: From the definition, we have d�−1 = 1. Compare m(� − 1) = (c1 mod n) with its
binary method result. If they are equal, then we find that the secret exponent d is one and
stop. If not, go to the next step.

Step 4: Calculate SF(�− 2)r assuming d�−2 = 1 for each cr (1 ≤ r ≤ N) and obtain the scan
signature SS�−2.

Step 5: Check whether the scan signature SS�−2 exists in the scanned data sd1, · · · , sdN ,
which includes the scanned data in all the cycles while the binary method runs. If it exists,
then we can find out that d�−2 is equal to 1, and if it does not exist, then we can find out
that d�−2 is equal to 0.

Step 6: Calculate m(�− 2) = ((c1)
d�−1×2+d�−2 mod n) and compare it with its binary method

result. If they are equal, then we find that the secret exponent d is retrieved and terminate
the analysis flow.

Step 7: We determine d�−3, d�−4, · · · in the same way as Step 4–Step 6 until the analysis flow
is terminated at Step 6.

We show the example below to explain how the method above works.

Example 2. As in Example 1, let us consider that the public key (n, e) = (101111001, 11) and the
secret key (n, d) = (101111001, 10111). The maximum key length L is 8 bits and the secret exponent
d = 1011110 = 101112 , i.e, d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1.
We assume that we do not know d and a significant key length �. The parameters are shown in Table 1.
Assume that the cycle counts of binary method are 16 and the size of the scan path is 128 in the target
RSA circuit.

(Step 1) First we prepare 8 messages c1, c2, · · · , c8, where cr �= cs for 1 ≤ r, s ≤ 8 and r �= s. The
target RSA circuit executes the binary method as in Table 2.
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4.1 Calculating a scan signature to SF(i)

Assume that N messages c1, · · · , cN are given. Also assume that we have already known
d�−1, · · · , di+1 for a secret exponent d. Let SF(i)r be the selective function for RSA when
giving the message cr for 1 ≤ r ≤ N. Assuming that di = 1, we can calculate SF(i)r for
1 ≤ r ≤ N.

Let us focus on a particular bit of SF(i)r. If N is large enough, a set of these bits for SF(i)r
(1 ≤ r ≤ N) gives information unique to SF(i)r. By using it, we can check whether SF(i)r are
calculated or not in the target. As Fig. 3 shows, we define a scan signature SSi to be a set of
SF(i)r LSBs for the sake of convenience.
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If SSi appears in scanned data, di is determined as one. If not, di is determined as zero. After
di is correctly determined, we can continue to determine the next bit of the secret exponent d
in the same way.

Our proposed method has an advantage compared to conventional scan-based attacks (Yang
et al., 2004; 2006). Our method is effective in the case of partial scan architecture. As long as
a scan path includes at least 1-bit of each intermediate value, we can check whether the scan
signature exists or not in the scanned data.

4.2 Scanned data analysis method

First we prepare N messages c1, · · · , cN and give them to an RSA circuit. For each of these
messages, we obtain all the scanned data from the scan out of the RSA circuit until it outputs
the binary method result. As Fig. 4 shows, the size of scanned data for each of these messages
is (“scan path length” × “number of binary method cycles.”)

Now we check whether a scan signature SSi to SF(i) appears in the obtained scanned data
under the assumption that we do not know a secret exponent d in the RSA circuit as follows:

Step 1: Prepare N messages c1, c2, · · · , cN , where cr �= cs for 1 ≤ r, s ≤ N and r �= s.

Step 2: Input cr (1 ≤ r ≤ N) into the target RSA circuit and obtain scanned data every one
cycle while the binary method works, until the RSA circuit outputs the result. Let sdr
denote the obtained scanned data for the message cr (1 ≤ r ≤ N).

Step 3: From the definition, we have d�−1 = 1. Compare m(� − 1) = (c1 mod n) with its
binary method result. If they are equal, then we find that the secret exponent d is one and
stop. If not, go to the next step.

Step 4: Calculate SF(�− 2)r assuming d�−2 = 1 for each cr (1 ≤ r ≤ N) and obtain the scan
signature SS�−2.

Step 5: Check whether the scan signature SS�−2 exists in the scanned data sd1, · · · , sdN ,
which includes the scanned data in all the cycles while the binary method runs. If it exists,
then we can find out that d�−2 is equal to 1, and if it does not exist, then we can find out
that d�−2 is equal to 0.

Step 6: Calculate m(�− 2) = ((c1)
d�−1×2+d�−2 mod n) and compare it with its binary method

result. If they are equal, then we find that the secret exponent d is retrieved and terminate
the analysis flow.

Step 7: We determine d�−3, d�−4, · · · in the same way as Step 4–Step 6 until the analysis flow
is terminated at Step 6.

We show the example below to explain how the method above works.

Example 2. As in Example 1, let us consider that the public key (n, e) = (101111001, 11) and the
secret key (n, d) = (101111001, 10111). The maximum key length L is 8 bits and the secret exponent
d = 1011110 = 101112 , i.e, d7 = 0, d6 = 0, d5 = 0, d4 = 1, d3 = 0, d2 = 1, d1 = 1, d0 = 1.
We assume that we do not know d and a significant key length �. The parameters are shown in Table 1.
Assume that the cycle counts of binary method are 16 and the size of the scan path is 128 in the target
RSA circuit.

(Step 1) First we prepare 8 messages c1, c2, · · · , c8, where cr �= cs for 1 ≤ r, s ≤ 8 and r �= s. The
target RSA circuit executes the binary method as in Table 2.
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(Step 2) We input cr (1 ≤ r ≤ 8) into the target RSA circuit and obtain scanned data every one cycle
while the binary method works, until the RSA circuit outputs the result. Let sdr denote the obtained
scanned data for the messages cr (1 ≤ r ≤ 8). The total size of scanned data is 16 × 128 = 2, 048 (see
Fig. 5).

sd =
sd =
sd =
sd =
sd =
sd =
sd =
sd =

16 x 128 = 2,048 bits

8 bits

……101110011110……1011…1101…1110…
……001110111101……1010…0110…0110…
……101110111100……0011…0111…0111…
……110011001111……0110…1100…0100…
……100011110000……0011…0110…0110…
……101000100110……1111…1111…0110…
……011011000000……0111…0111…0100…
……110010111010……1011…0100…1111…

SS SS SS SS

Fig. 5. Scanned data example.

(Step 3) Let us start to determine d�−1. We find d�−1 = 1 by the definition of �. It is not necessary to
check whether d�−1 = 1 or not, but we can check it as follows: we calculate SF(�− 1)r = cr for each cr
(1 ≤ r ≤ 8) and obtain the scan signature SS�−1 (see Fig. 6). As Fig. 6 (a) shows, the scan signature
SS�−1 becomes “11101001”. Since we find out that the scan signature SS�−1 exists in bit patterns of
scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we confirm that d�−1 is retrieved as one, i.e., d�−1 = 1. Now
we assume that d = 1. We compare m(�− 1) = ((c1)

1 mod n) with its binary method result. In
case they are not equal, d �= 1.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine d�−2. We calculate SF(�− 2)r assuming
d�−2 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−2 (see Fig. 6 (b)). As Fig. 6 (b)
shows, the scan signature SS�−2 becomes “01111100”. Since we find out that the scan signature SS�−2
does not exist in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that d�−2
is equal to zero, i.e., d�−2 = 0. Now we assume that d = 10. We compare m(�− 2) = (m(� − 1)2

mod n) with its binary method result. In case they are not equal, d �= 10.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine d�−3. We calculate SF(�− 3)r assuming
d�−3 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−3 (see Fig. 6 (c)). As Fig. 6
(c) shows, the scan signature SS�−3 becomes “00010110”. Since we find out that the scan signature
SS�−3 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that d�−3 is
equal to one, i.e., d�−3 = 1. Now we assume that d = 101. We compare m(�− 3) = (m(�− 2)2 × c1
mod n) = SF(�− 3)1 with its binary method result. In case they are not equal, d �= 101.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine d�−4. We calculate SF(�− 4)r assuming
d�−4 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−4 (see Fig. 6 (d)). As Fig. 6
(d) shows, the scan signature SS�−4 becomes “01101110”. Since we find out that the scan signature
SS�−4 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that d�−4 is equal
to one, i.e., d�−4 = 1. Now we assume that d = 1011. We compare m(�− 4) = (m(� − 3)2 × c1
mod n) = SF(�− 4)1 with its binary method result. In case they are not equal, d �= 1011.

(Step 4, Step 5, Step 6, and Step 7) Finally let us determine d�−5. We calculate SF(�− 5)r assuming
d�−5 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−5 (see Fig. 6 (e)). As Fig. 6
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Input: SF( -1) (1 r 8)
Output: Scan signature SS
SF( -1) = 1 0 1 1 0 0 1 1
SF( -1) = 1 0 0 1 1 0 0 1
SF( -1) = 0 0 1 0 1 1 0 1
SF( -1) = 0 1 0 1 0 0 1 0
SF( -1) = 1 0 1 0 1 1 0 1
SF( -1) = 0 0 0 1 0 0 1 0
SF( -1) = 1 1 1 1 1 0 0 0
SF( -1) = 0 0 0 1 1 0 0 1

SS

(a) Scan signature

SF( -2) = 0 0 0 0 1 0 1 0
SF( -2) = 1 1 1 1 0 1 0 1
SF( -2) = 0 1 1 0 0 1 1 1
SF( -2) = 1 1 0 0 1 1 0 1
SF( -2) = 1 1 0 0 1 0 1 1
SF( -2) = 0 0 1 1 1 0 1 1
SF( -2) = 0 1 1 0 0 1 1 0
SF( -2) = 0 1 1 1 0 1 0 0

Input: SF( -2) (1 r 8)
Output: Scan signature SS

SS

(b) Scan signature

Input: SF( -3) (1 r 8)
Output: Scan signature SS
SF( -3) = 0 1 1 0 0 1 1 0
SF( -3) = 1 1 1 1 1 0 0 0
SF( -3) = 0 1 1 0 0 1 0 0
SF( -3) = 1 0 0 1 0 0 1 1
SF( -3) = 0 0 0 0 1 1 0 0
SF( -3) = 0 0 0 1 0 0 1 1
SF( -3) = 0 1 1 1 0 0 0 1
SF( -3) = 0 0 0 1 1 0 0 0

SS

(c) Scan signature

SF( -4) = 1 1 0 0 1 0 1 0
SF( -4) = 0 1 0 1 1 1 0 1
SF( -4) = 1 1 1 0 0 1 1 1
SF( -4) = 0 1 1 0 0 1 0 0
SF( -4) = 1 1 0 1 1 0 1 1
SF( -4) = 1 0 1 1 0 0 1 1
SF( -4) = 0 1 1 0 0 1 1 1
SF( -4) = 1 0 1 1 0 0 0 0

Input: SF( -4) (1 r 8)
Output: Scan signature SS

SS

(d) Scan signature

SF( -5) = 0 0 1 0 1 1 1 1
SF( -5) = 0 0 0 1 1 0 0 1
SF( -5) = 0 0 1 0 0 1 0 1
SF( -5) = 0 1 1 1 0 1 0 0
SF( -5) = 0 1 1 1 1 0 1 1
SF( -5) = 1 0 1 0 0 0 0 1
SF( -5) = 0 1 1 0 1 1 1 0
SF( -5) = 1 0 1 1 1 0 1 1

Input: SF( -5) (1 r 8)
Output: Scan signature SS

SS

(e) Scan signature

Fig. 6. Example of scan signatures.

(e) shows, the scan signature SS�−5 becomes “11101101”. Since we find out that the scan signature
SS�−5 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that d�−5 is equal
to one, i.e., d�−5 = 1. Now we assume that d = 10111. We compare m(�− 5) = (m(�− 4)2 × c1
mod n) = SF(�− 5)1 with its binary method result. In case they are equal to each other, we find that
the secret exponent d is 10111 and a significant bit � is five.
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(Step 2) We input cr (1 ≤ r ≤ 8) into the target RSA circuit and obtain scanned data every one cycle
while the binary method works, until the RSA circuit outputs the result. Let sdr denote the obtained
scanned data for the messages cr (1 ≤ r ≤ 8). The total size of scanned data is 16 × 128 = 2, 048 (see
Fig. 5).
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8 bits
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Fig. 5. Scanned data example.

(Step 3) Let us start to determine d�−1. We find d�−1 = 1 by the definition of �. It is not necessary to
check whether d�−1 = 1 or not, but we can check it as follows: we calculate SF(�− 1)r = cr for each cr
(1 ≤ r ≤ 8) and obtain the scan signature SS�−1 (see Fig. 6). As Fig. 6 (a) shows, the scan signature
SS�−1 becomes “11101001”. Since we find out that the scan signature SS�−1 exists in bit patterns of
scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we confirm that d�−1 is retrieved as one, i.e., d�−1 = 1. Now
we assume that d = 1. We compare m(�− 1) = ((c1)

1 mod n) with its binary method result. In
case they are not equal, d �= 1.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine d�−2. We calculate SF(�− 2)r assuming
d�−2 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−2 (see Fig. 6 (b)). As Fig. 6 (b)
shows, the scan signature SS�−2 becomes “01111100”. Since we find out that the scan signature SS�−2
does not exist in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that d�−2
is equal to zero, i.e., d�−2 = 0. Now we assume that d = 10. We compare m(�− 2) = (m(� − 1)2

mod n) with its binary method result. In case they are not equal, d �= 10.
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d�−3 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−3 (see Fig. 6 (c)). As Fig. 6
(c) shows, the scan signature SS�−3 becomes “00010110”. Since we find out that the scan signature
SS�−3 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8) in Fig. 5, we can determine that d�−3 is
equal to one, i.e., d�−3 = 1. Now we assume that d = 101. We compare m(�− 3) = (m(�− 2)2 × c1
mod n) = SF(�− 3)1 with its binary method result. In case they are not equal, d �= 101.

(Step 4, Step 5, Step 6, and Step 7) Next let us determine d�−4. We calculate SF(�− 4)r assuming
d�−4 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−4 (see Fig. 6 (d)). As Fig. 6
(d) shows, the scan signature SS�−4 becomes “01101110”. Since we find out that the scan signature
SS�−4 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that d�−4 is equal
to one, i.e., d�−4 = 1. Now we assume that d = 1011. We compare m(�− 4) = (m(� − 3)2 × c1
mod n) = SF(�− 4)1 with its binary method result. In case they are not equal, d �= 1011.

(Step 4, Step 5, Step 6, and Step 7) Finally let us determine d�−5. We calculate SF(�− 5)r assuming
d�−5 = 1 for each cr (1 ≤ r ≤ 8) and obtain the scan signature SS�−5 (see Fig. 6 (e)). As Fig. 6
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Input: SF( -1) (1 r 8)
Output: Scan signature SS
SF( -1) = 1 0 1 1 0 0 1 1
SF( -1) = 1 0 0 1 1 0 0 1
SF( -1) = 0 0 1 0 1 1 0 1
SF( -1) = 0 1 0 1 0 0 1 0
SF( -1) = 1 0 1 0 1 1 0 1
SF( -1) = 0 0 0 1 0 0 1 0
SF( -1) = 1 1 1 1 1 0 0 0
SF( -1) = 0 0 0 1 1 0 0 1

SS

(a) Scan signature

SF( -2) = 0 0 0 0 1 0 1 0
SF( -2) = 1 1 1 1 0 1 0 1
SF( -2) = 0 1 1 0 0 1 1 1
SF( -2) = 1 1 0 0 1 1 0 1
SF( -2) = 1 1 0 0 1 0 1 1
SF( -2) = 0 0 1 1 1 0 1 1
SF( -2) = 0 1 1 0 0 1 1 0
SF( -2) = 0 1 1 1 0 1 0 0

Input: SF( -2) (1 r 8)
Output: Scan signature SS

SS

(b) Scan signature

Input: SF( -3) (1 r 8)
Output: Scan signature SS
SF( -3) = 0 1 1 0 0 1 1 0
SF( -3) = 1 1 1 1 1 0 0 0
SF( -3) = 0 1 1 0 0 1 0 0
SF( -3) = 1 0 0 1 0 0 1 1
SF( -3) = 0 0 0 0 1 1 0 0
SF( -3) = 0 0 0 1 0 0 1 1
SF( -3) = 0 1 1 1 0 0 0 1
SF( -3) = 0 0 0 1 1 0 0 0

SS

(c) Scan signature

SF( -4) = 1 1 0 0 1 0 1 0
SF( -4) = 0 1 0 1 1 1 0 1
SF( -4) = 1 1 1 0 0 1 1 1
SF( -4) = 0 1 1 0 0 1 0 0
SF( -4) = 1 1 0 1 1 0 1 1
SF( -4) = 1 0 1 1 0 0 1 1
SF( -4) = 0 1 1 0 0 1 1 1
SF( -4) = 1 0 1 1 0 0 0 0

Input: SF( -4) (1 r 8)
Output: Scan signature SS

SS

(d) Scan signature

SF( -5) = 0 0 1 0 1 1 1 1
SF( -5) = 0 0 0 1 1 0 0 1
SF( -5) = 0 0 1 0 0 1 0 1
SF( -5) = 0 1 1 1 0 1 0 0
SF( -5) = 0 1 1 1 1 0 1 1
SF( -5) = 1 0 1 0 0 0 0 1
SF( -5) = 0 1 1 0 1 1 1 0
SF( -5) = 1 0 1 1 1 0 1 1

Input: SF( -5) (1 r 8)
Output: Scan signature SS

SS

(e) Scan signature

Fig. 6. Example of scan signatures.

(e) shows, the scan signature SS�−5 becomes “11101101”. Since we find out that the scan signature
SS�−5 exists in bit patterns of scanned data sdr (1 ≤ r ≤ 8), we can determine that d�−5 is equal
to one, i.e., d�−5 = 1. Now we assume that d = 10111. We compare m(�− 5) = (m(�− 4)2 × c1
mod n) = SF(�− 5)1 with its binary method result. In case they are equal to each other, we find that
the secret exponent d is 10111 and a significant bit � is five.
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4.3 Possibility of successfully retrieving a secret key

Given that the scan size is α bits and the cycle counts to obtain the binary method result is T.
Assume that scanned data are completely random data.

Even though SF(i)r for 1 ≤ r ≤ N is not calculated in the target RSA circuit, its scan signature
may exist in scanned data. When αT < 2N , the probability that the scan signature SSi to SF(i)r
exists in somewhere in bit patterns of scanned data sdr (1 ≤ r ≤ N) is αT/2N despite we do
not calculate SF(i)r.

Sufficiently large N can decrease the probability that we mistakenly find out the scan signature
SSi in scanned data. For instance, if α is 3,072, T is 1,024, and N is 303, then the probability
that we mistakenly find out the scan signature SSi in scanned data is 3, 072 × 1, 024/230 �
2.93 × 10−3. If α is 6,144, T is 2,048, and N is 35, then the probability that we mistakenly find
out the scan signature SSi in scanned data is 6, 144 × 2, 048/235 � 3.66 × 10−4.

5. Experiments and analysis

We have implemented our analysis method proposed in Section 4 in the C language on Red
Hat Enterprise Linux 5.5, AMD Opteron 2360SE 2.5GHz, and 16GB memories and performed
the following experiments:

1. First, we have generated secret exponents randomly. Thousand of them have a bit length
of 1,024 and 2,048, respectively. The other hundred of them have a bit length of 4,096.

2. Next, we have given each of the secret exponents into the target RSA circuit based on
Algorithm 1 and obtained scanned data. The target RSA circuit obtains binary method
results in 1,024 cycles for a 1,024-bit secret exponent, in 2,048 cycles for a 2,048-bit secret
exponent, and in 4,096 cycles for a 4,096-bit secret exponent. Scan path length for a 1,024-bit
secret exponent is 3,072 bits, that for a 2,048-bit secret exponent is 6,144 bits, and that for
a 4,096-bit secret exponent is 12,192 bits. Then total size of the obtained scanned data
for 1,024-bit secret exponent is 3, 072 × 1, 024 = 3, 145, 728 bits, that for 2,048-bit secret
exponent is 6, 144 × 2, 048 = 12, 582, 912 bits, and that for 4,096-bit secret exponent is
12, 192 × 4, 096 = 49, 938, 432 bits

3. Finally, we have retrieved each of the secret exponents by our proposed analysis method
using the obtained scanned data.

Fig. 7 and Table 4 show the results. Fig. 7 shows the number N of required messages to
retrieve each secret exponent when giving each of the secret exponents. For example, the
4th 1,024-bit secret exponent is shown in Table 3. In order to retrieve this secret exponent,
we need 29 messages, i.e., n = 29. In this case, we can successfully retrieve the 4th secret
exponent using 29 messages but fail to retrieve it using 28 messages or less.

Throughout this experiment, the required number of messages is approximately 29.5 on
average for 1,024-bit secret exponents and is approximately 32 for 2,048-bit secret exponents
and is approximately 37 for 4,096-bit secret exponents. A running time is 98.3 seconds to
retrieve a 1,024-bit secret exponent and 634.0 seconds to retrieve a 2,048-bit secret exponent.

3 These values are derived from the experiments in Section 5.
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4-th secret exponent d
1,024 bits 0x3AD29CF2FC6CB6B0C010B17DF98C5081

4E4585225AC42E8ECB7BB1847498D62F
BA696CDD226EE9195F4E58A89321721F
021C4511E6C994301363706058FF3765
E29EEBA03E370A201BA5B60A356682A5
1D05EE10DF8CB75D7B4578B3D29A515E
2F86DEC487AB6BCD88C7351908D71851
6C11B2419BD8C05739214E6CF44D12F

Table 3. Secret exponent example.

Key bit length bit 1,024 2,048 4,096
# of retrieving secret exponents 1,000 1,000 100
# of required messages (average) 29.5 32 37

Table 4. Experimental results.
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Fig. 7. Number of required messages to retrieve secret exponents.

6. Discussions

We consider secure scan architecture proposed so far against our proposed scan-based attack.

Firstly, the secure scan architecture proposed in (Sengar et al., 2007) cannot protect our
proposed method from retrieving a secret key. (Sengar et al., 2007) inserts some inverters
into a scan path to invert scanned data. However, since inverted positions of scanned data
are always fixed, the value of a 1-bit register sequence is only changed to its inverted value.
By checking whether SSi or inverted SSi exist in the scanned data, our proposed method can
easily make it ineffective.

Inoue’s secure scan architecture (Inoue et al., 2009) adds unrelated data to scanned data to
confuse attackers. A sequence of scanned data to which unrelated data are added is fixed and
it is not always true that they confuse all the bits to protect the scanned data in order to reduce
area overhead. If the register storing scan signature SSi is not confused, our proposed method
can easily make it ineffective, too.

Secondly, (Chandran & Zhao, 2009; Gomułkiewicz et al., 2006; Hely et al., 2005; 2006; 2007;
Lee et al., 2006; 2007; Paul et al., 2007; Yang et al., 2006) require authentication to transfer
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Given that the scan size is α bits and the cycle counts to obtain the binary method result is T.
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Even though SF(i)r for 1 ≤ r ≤ N is not calculated in the target RSA circuit, its scan signature
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12, 192 × 4, 096 = 49, 938, 432 bits

3. Finally, we have retrieved each of the secret exponents by our proposed analysis method
using the obtained scanned data.

Fig. 7 and Table 4 show the results. Fig. 7 shows the number N of required messages to
retrieve each secret exponent when giving each of the secret exponents. For example, the
4th 1,024-bit secret exponent is shown in Table 3. In order to retrieve this secret exponent,
we need 29 messages, i.e., n = 29. In this case, we can successfully retrieve the 4th secret
exponent using 29 messages but fail to retrieve it using 28 messages or less.

Throughout this experiment, the required number of messages is approximately 29.5 on
average for 1,024-bit secret exponents and is approximately 32 for 2,048-bit secret exponents
and is approximately 37 for 4,096-bit secret exponents. A running time is 98.3 seconds to
retrieve a 1,024-bit secret exponent and 634.0 seconds to retrieve a 2,048-bit secret exponent.

3 These values are derived from the experiments in Section 5.
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Fig. 7. Number of required messages to retrieve secret exponents.

6. Discussions

We consider secure scan architecture proposed so far against our proposed scan-based attack.

Firstly, the secure scan architecture proposed in (Sengar et al., 2007) cannot protect our
proposed method from retrieving a secret key. (Sengar et al., 2007) inserts some inverters
into a scan path to invert scanned data. However, since inverted positions of scanned data
are always fixed, the value of a 1-bit register sequence is only changed to its inverted value.
By checking whether SSi or inverted SSi exist in the scanned data, our proposed method can
easily make it ineffective.

Inoue’s secure scan architecture (Inoue et al., 2009) adds unrelated data to scanned data to
confuse attackers. A sequence of scanned data to which unrelated data are added is fixed and
it is not always true that they confuse all the bits to protect the scanned data in order to reduce
area overhead. If the register storing scan signature SSi is not confused, our proposed method
can easily make it ineffective, too.

Secondly, (Chandran & Zhao, 2009; Gomułkiewicz et al., 2006; Hely et al., 2005; 2006; 2007;
Lee et al., 2006; 2007; Paul et al., 2007; Yang et al., 2006) require authentication to transfer
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between system mode and test mode, and their security depends on authentication methods.
If authentication would be broken-through and attackers could obtain scanned data, a secret
key in an RSA circuit could be retrieved by using our proposed method. We consider that
authentication strength is a different issue from the purpose of this chapter.

Finally, (Mukhopadhyay, et al.; Sengar et al., 2007; Shi el al., 2008) use a compactor so as not
to output scanned data corresponding to registers directly. (Doulcier el al., 2007) proposes
AES-based BIST, whereby there is no need for scan path test. However, applying these
methods effectively to an RSA circuit is quite unclear because these methods are implemented
only on an AES circuit or just on a sample circuit not for cryptography.

7. Concluding remarks

Our proposed scan-based attack can effectively retrieve a secret key in an RSA circuit, since
we just focus on the variation of 1-bit of intermediate values named a scan signature. By
monitoring it in the scan path, we can find out the register position specific to intermediate
values. The experimental results demonstrate that a 1,024-bit secret key can be retrieved by
using 29.5 messages, a 2,048-bit secret key by using 32 input, and a 4,096-bit secret key can be
retrieved by using 37 messages.

In the future, we will develop a new scan-based side-channel attack against compressed scan
data for RSA. In this paper, we only pick up one RSA LSI implementation but there can be
other implementations available such as in (Miyamoto et al., 2008). We will attack these RSA
implementations and successfully retrieve a secret key. Developing countermeasures against
the proposed scan-based side-channel attacking method is another future work.
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1. Introduction 
Every few years, computer security has to re-invent itself. New technologies and new 
application bring new threats, especially with the ever-increasing growth of data 
communication, the need for security and privacy has become a necessity. Cryptography 
and data security are an essential requirement for communication privacy. One of the 
newest hot spots in security research is curve security. The forms produced by graphic 
systems are much harder to counterfeit, especially when the counterfeiter has no 
information about algorithm and the data that are used in design the shape.  

The main goal of this chapter is combining the curve security methods with cryptography 
algorithms in order to increase the capability of cryptography. The weakness of the 
cryptographic key generated from normal color image is clear due to the nearest pixel 
values of image. This led to propose in this chapter a new method in order to generate a 
cryptographic key depending on generated (2D & 3D) mathematical models (digital image) 
and clipping the key according to algorithm and the data of curve generation. 

2. Key management cryptographic systems 
2.1 Conventional encryption 

Conventional encryption has benefits; most notably speed. It is especially useful for 
encrypting data which will not be transmitted. However, conventional encryption alone, as 
a means for transmitting secure data, can be expensive simply due to the difficulty of secure 
key distribution (Droste, 1996). For a sender and recipient to communicate securely using 
conventional encryption, they must agree upon a key and keep it secret between themselves. 
If they are in different physical locations, they must trust a courier or some other secure 
communications medium to prevent the disclosure of the secret key during transmission 
(Sauer & Chandy, 1981). 

2.2 Public-key cryptography 

The concept of public-key cryptography was introduced in 1976 by Whitfield Diffie and 
Martin Hellman and, independently, by Ralph Markle, to solve the key management 
problem in secret-key cryptography. Each person receives a pair of different but related 
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keys; the public-key and the private key (Schneir, 1996). The public key is published, while 
the private key is kept secret. Anyone can send a confidential message using public 
information, but the message can only decrypted by someone who has the private key. It is 
not possible to determine the secret key from the public key. 

Public-key cryptography is based on the idea of a trapdoor function: 

 :f X Y  
 f is one-to-one, 
 f   is easy to compute, 

  1f  is difficult to compute, and 

  1f  becomes easy to compute if a trapdoor is known. 

Public-key cryptography ensures a secret key exists between communicating parties, 
without the need to distribute secret keys. The most famous public-key cryptosystem is that 
devised by Rivest et al. (RSA). The RSA scheme relies on the inability to factor n where 
n=pq; p and q are large strong prime numbers, and when p and q are of roughly equal 
length, the modules become harder to factor. Factoring is assumed to be a difficult problem 
upon which several public-key cryptosystems are based. However, no known polynomial 
time algorithm can decipher the keys using the public information. 

In RSA, algorithm encryption and decryption take the following forms: 

modeC M n  

moddM C n  

Where M: plain text, C: cipher text, e: encryption key, and d: decryption key. Finding the 
factors of an RSA modulus depends on finding the encryption key. If an adversary discovers 
the factors of n, he or she can easily compute the decryption key using the following steps 
(Guan, 1987): 

n p q   

( ) ( 1)( 1)n p q    , then 

1( ( ))modd e n n  

The RSA algorithm has the following characteristics (Menezes et al.,1996):  

 It is computationally infeasible to determine the decryption key given only knowledge 
of the algorithm and the encryption key.  

 Either of the two keys can be used for encryption, with the other used for decryption. 

2.3 Use of multi keys (huge) in a public-key cryptography system 

One of the major roles of public-key encryption has been to address the problem of key 
distribution. There are two distinct aspects involving the use of public-key cryptography in 
this regard: 
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1. The distribution of public keys 
2. The use of public-key encryption to distribute secret keys 
3. A hybrid schema 

2.3.1 Distribution of public keys 

Several techniques have been proposed for the distribution of public keys. Almost all these 
proposals can be grouped within the following general schemes: 

1. Public announcement 
2. Publicly available directory 
3. Public-key authority 
4. Public-key certificates 

For more details see (Stalings,2005). 

2.3.2 Distribution of secret keys using public-key cryptography 

Once public keys have been distributed or have become accessible, secure communication 
that thwarts eavesdropping, tampering, or both is possible. However, few users will wish to 
make exclusive use of public-key encryption for communication because of the relatively 
slow data rates that can be achieved. Accordingly, public-key encryption allows the 
distribution of secret keys to be used for conventional encryption. 

1. Simple Secret Key Distribution 
2. Secret Key Distribution with Confidentiality and Authentication.  

2.3.3 A hybrid schema 

A further application of public-key encryption used to distribute secret keys is a hybrid 
approach based on IBM mainframes .This scheme retains the use of a key distribution centre 
(KDC) that shares a secret master key with each user and distributes secret session keys 
encrypted with the master key. A public key scheme is used to distribute the master keys. 
The following rationale is provided for using this three-level approach: 

Performance:  There are many applications, especially transaction-oriented applications, in 
which the session keys change frequently. Distribution of session keys by public-key encryption 
could degrade overall system performance because of the relatively high computational load of 
public-key encryption and decryption. With a three-level hierarchy, public-key encryption is 
used only occasionally to update the master key between a user and the KDC. 

Backward compatibility:  The hybrid scheme is easily overlaid on an existing KDC scheme, 
with minimal disruption or software changes. The addition of a public-key layer provides a 
secure, efficient means of distributing master keys. This is of advantage in a configuration 
where a single KDC serves a widely distributed set of users. 

3. Cryptographic protocol (Pretty Good Privacy) 
Pretty Good Privacy (PGP) is a public key system for encrypting electronic mail using the RSA 
public key cipher (Schaefer, 1999). PGP is a hybrid cryptosystem and combines some of the 
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best features of both conventional and public-key cryptography. When a user encrypts 
plaintext, PGP first compresses that plaintext. Data compression saves modem transmission 
time and disk space and, more importantly, strengthens cryptographic security. The majority 
of cryptanalysis techniques exploit patterns found in the plaintext to crack the cipher. 
Compression reduces these patterns in the plaintext, thereby greatly enhancing resistance to 
cryptanalysis (files which are too short to compress or which do not compress well are not 
compressed).  PGP then creates a session key, which is a one-time-only secret key. This key is a 
random number generated from the random movements of the mouse and the keystrokes. The 
session key works with a very secure, fast conventional encryption algorithm to encrypt the 
plaintext; the result is ciphertext. Once the data is encrypted, the session key is then encrypted 
to the recipient’s public key. This public key-encrypted session key is transmitted along with 
the ciphertext to the recipient. Figure (1) shows the send process. 

 
Fig. 1. Send Process. 

Decryption works in the reverse way. The recipient’s copy of PGP uses his or her private 
key to recover the session key, which PGP then uses to decrypt the conventionally 
encrypted ciphertext. Figure (2) shows the receiving process. 

 
Fig. 2. Received Process 
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The combination of the two encryption methods combines the convenience of public-key 
encryption with the speed of conventional encryption. Conventional encryption is 
approximately 10,000 times faster than public-key encryption. Public-key encryption in turn 
provides a solution to key distribution and data transmission issues. Used together, 
performance and key distribution are improved without any compromise in security. 

4. Generate randomness digital images 
4.1 Introduction 

Computer graphics is a topic of rapidly growing importance in the field of information 
technology. It has always been one of the most visually spectacular branches of computer 
technology, producing images whose appearance and motion make them quite unlike any 
other form of computer output . Computer graphics are also an extremely effective medium 
for communication between man and computer; the human eye can absorb the information 
content of a diagram or perspective view much faster than it can scan a table of numbers 
(Demel & Miller, 1984).  

It is important to achieve consensus about what computer graphics and visualisation are. The 
word graphics is associated with charts, graphs, images, pictures and patterns, often in the 
context of art, design or animation; visualisation is the process of converting data into images 
(Gomes & Velho, 1997) .In order to understand computer graphics, we must study the 
methods used to create and structure data in the computer, as well as the methods for 
turning these into images. These two steps correspond to the two main areas of research in 
computer graphics: modelling and visualisation (Egerton & Hall,1998). Computer graphics 
are pictures generated by a computer (Hill, 2000) 

4.2 Curve fitting generation 

There are two main classes of curve generation algorithms:  

Firstly, algorithms that interpolate the control points: the algorithm returns points along a 
curve which pass exactly through the control points at specific instants and form a smooth 
curve for points in between.  

Secondly, algorithms that approximate the control points: this algorithm returns points from 
a curve that are attracted toward each control point in turn, but do not actually pass through 
all of them (Hill, 2000 ). 

4.3 Interpolation techniques 

Interpolation techniques are of great importance in numerical analysis since they are widely 
used in a variety of science and engineering domains where numerical methods are the only 
way to predict the value of tabulated functions for new input data. There are three reasons for 
using interpolation: firstly, interpolation methods are the basis of many other procedures, such 
as numerical differentiation, integration and solution methods for ordinary and partial-
differential equations. Secondly, these methods demonstrate important theories about 
polynomials and the accuracy of numerical methods. Thirdly, interpolating with polynomials 
serves as an excellent introduction to techniques for drawing smooth curves .  

Several methods of interpolation and approximation exist, some of which are:- 
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4.3.1 Lagrangian polynomials 

The Lagrange polynomial is the simplest way to exhibit the existence of a polynomial for 
interpolation with unevenly spaced data. The Lagrange interpolating polynomial ,LN K  has 

degree N and is one at kx x and j k  zero at jx x  where   
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It is just a linear combination of the Lagrange interpolation polynomials  

, ( )N KL x  with the Ky as the coefficients (Goldman, 2002). 

4.3.2 B-spline polynomials 

Although Bezier curves and surfaces are well suited to many shape-modelling problems, 
complex geometric constructions are required to guarantee continuity when piecing curves 
together (Harrington, 1987). The use of spline functions avoids this by using mathematical 
constraints to allow only those curves that possess the required continuity at joints. The B-
spline function generates a curve section which has continuous slopes so that they fit 
together smoothly: see figure (3). 

 
Fig. 3. B-Spline curve segment. 
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A B-spline of order k=3 consisting of n-k+2 segments is defined by a linear combination of 
basic functions  iC using n+1  
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A B-spline curve exhibits local control- a control point is connected to four segments (in the 
case of a cubic) and moving a control point can influence only these segments. In figure (4) 
that shows the effect of changing control points P1. This pulls the segments of curve in the 
appropriate direction and also affects, to a lesser extent, parts of the curve, thus 
demonstrating the important locality property of B-spline (Watt, 1999). 

 
Fig. 4. The effect of changing the position of control point P1. 

5. Generating 2D and 3D digital images using curve fitting techniques 
A new method is proposed to generate 2D and 3D images using the parametric Lagrange 
curve and rolling circle movement. 

5.1 Generating 2D images using the parametric lagrange curve and rolling circle 
movement 

In this section a new method is proposed for generating a 2D image (digital image); it 
involves using a rolling circle moved around the parametric Lagrange curve as a tool for 
generating the digital image.  

The image generated must have the following properties:- 
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case of a cubic) and moving a control point can influence only these segments. In figure (4) 
that shows the effect of changing control points P1. This pulls the segments of curve in the 
appropriate direction and also affects, to a lesser extent, parts of the curve, thus 
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5. Generating 2D and 3D digital images using curve fitting techniques 
A new method is proposed to generate 2D and 3D images using the parametric Lagrange 
curve and rolling circle movement. 

5.1 Generating 2D images using the parametric lagrange curve and rolling circle 
movement 

In this section a new method is proposed for generating a 2D image (digital image); it 
involves using a rolling circle moved around the parametric Lagrange curve as a tool for 
generating the digital image.  

The image generated must have the following properties:- 
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a. The image must not be regular; i.e. does not contain identifiable objects or pattern and 
cannot be described to anyone  by anybody. 

b. Reproduction of the image by counterfeiters will be difficult or infeasible unless all the 
algorithms used to generate the image are known, as well as all the parameter values. 

c. The image must have the property of random colour (pixel values), allowing the image 
to be used in the security field. 

The process to generate such a 2D image consists of the following stages: 

Stage One 

 Initialise a 2D mesh of control points to generate a curve.  
 Initialising a 2D mesh is achieved by selecting a set of control points according to a 

determined increment value between control points. This increment value, as well as 
those of the x-coordinate and y- coordinate, may be fixed or variable. These choices 
were all studied and the conclusion drawn was that the increment value plays an 
important role in the generated image, since any change in its value generates a new 
mesh of control points and will lead to a new image with new features. This property 
gives security to the image, because counterfeiters would have difficulty guessing the 
starting control points and the increment values of the x- or y-coordinates. Figure (5) 
shows an example of a 2D mesh of control points with equal increments to the x- and y-
coordinates. 

 
Fig. 5. Mesh of control points (p). 

Stage Two 

The generated curve is then moved according to algorithm (1) through the 2D mesh 
initialised in stage one. This process is achieved by marking the control points on the mesh 
using a simple method , for example 1, 2, 3… etc, and entering the number of control points 
from the 2D mesh into a simple pseudo-random generator. The pseudo-random generator 
produces a set of numbers represented as addresses of the control points in the 2D mesh; it 
does this in a random way and these are used to generate (interpolate) the curve. Figure (6) 
shows two examples of marking a 2D mesh; figure (2a) shows a mesh of size (4×4) with 
control points, and figure (2b) shows a mesh of size (5×5).  
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(a) (b) 

 

Fig. 6. Examples for marking meshes of control points. 

Stage Three 

After executing stage two, the generated image boundaries are determined. A large number 
of recursive pixels will be obtained and spread across the computer screen according to the 
isolation movement of the generated curve. Determining the image boundaries is achieved 
by deleting all the pixels outside the fixed boundaries of the image. The size of the image 
(boundaries) is kept secret between the sender and the receiver.  

Described below are the proposed complete algorithms for generating a 2D image using a 
parametric Lagrange curve with a rolling circle moved around it. 

5.1.1 Algorithm (1): Generate a 2D image 

Input: Input a first control point, increment value (Inc), size of mesh control points (N×N) 
and the image size desired. 

Output: Generate a 2D digital image. 

Process: 

Step 1. Initialise the mesh of control points according to the start control points; increment 
the value and the size of the mesh. 

Step 2. Mark the control points of the mesh. 
Step 3. Enter the number of marks to simple pseudo-random generator. 
Step 4. Take the sequence of output from the generator to represent the addresses of the            

set of control points in the mesh. 
Step 5. draw the parametric Lagrange curve            with rolling circle. 
Step 6. Repeat step 4 with new sequence of numbers and step 5 until obtaining the           

recursive pixels that covers the image size that need to generate. 
Step 7. Clip the image according to the size the user entered. 
Step 8. Obtain the 2D generated image. 
Step 9. End. 
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Stage Three 

After executing stage two, the generated image boundaries are determined. A large number 
of recursive pixels will be obtained and spread across the computer screen according to the 
isolation movement of the generated curve. Determining the image boundaries is achieved 
by deleting all the pixels outside the fixed boundaries of the image. The size of the image 
(boundaries) is kept secret between the sender and the receiver.  

Described below are the proposed complete algorithms for generating a 2D image using a 
parametric Lagrange curve with a rolling circle moved around it. 

5.1.1 Algorithm (1): Generate a 2D image 

Input: Input a first control point, increment value (Inc), size of mesh control points (N×N) 
and the image size desired. 

Output: Generate a 2D digital image. 

Process: 

Step 1. Initialise the mesh of control points according to the start control points; increment 
the value and the size of the mesh. 

Step 2. Mark the control points of the mesh. 
Step 3. Enter the number of marks to simple pseudo-random generator. 
Step 4. Take the sequence of output from the generator to represent the addresses of the            

set of control points in the mesh. 
Step 5. draw the parametric Lagrange curve            with rolling circle. 
Step 6. Repeat step 4 with new sequence of numbers and step 5 until obtaining the           

recursive pixels that covers the image size that need to generate. 
Step 7. Clip the image according to the size the user entered. 
Step 8. Obtain the 2D generated image. 
Step 9. End. 
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Example: 

In the following example a 2D image is generated using a mesh size of (25×25) with the 
same increment value of x- and y-coordinates equal to (10), using a radius for the rolling 
circle equal to (15), and the image size required to be generated is equal to (256×256) pixels. 
Figure (7a) shows the random oscillation curve movement through the 2D mesh is due to 
the movement of the curve path out of the mesh boundary. Figure (7b) shows the final stage 
of generating the 2D image by clipping the image size to (256×256) pixels. 

   
(a) (b) 

Fig. 7. (a) The random oscillation curve movement through the 2D mesh, (b) image of size 
(256x256) pixels 

5.2 Generating a 3D image 

This section introduces a new idea for generating a 3D image by inserting a third coordinate 
(z) to all the mathematical equations that were used to generate the 2D image. Generating a 
3D image is very useful for increasing the key space and thus renders the process of 
estimating the key infeasible. This is because searching in 3D increases the number of 
possible control points the counterfeiter needs to estimate. In order to imagine working with 
3D, it is suggested that the image be viewed as an empty cube which is to be filled 
completely with random colour pixels, then slides from the cube will be clipped in different 
ways. The clipped slide from the three-dimensional image can be used directly as a secret 
key, or by clipping a curve from this slide according to a secret set of control points by using 
a parametric Bezier curve (control curve) to represent the secret key between the sender and 
receiver. 

5.2.1 Proposed algorithm to move a 3D rolling circle around a 3D parametric Lagrange 
curve 

To create a parametric form from a 3D curve, it is necessary to invent three functions, x(.), 
y(.), z(.), and say that the curve is "at" P(t)=(x(t),y(t),z(t)) at time t (Hill, 2000). The circular 
helix is given parametrically by: x (t) = cos (t), y (t) =sin (t) and z (t)=bt. For some constant b. 
The curve is illustrated in figure (8): 
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Fig. 8. Circular helix. 

Many variations on the circular helix are possible. For example, the conical helix, with 
equation P (t) = (t cos (t), t sin (t), bt). Any 2D curve (x(t), y(t)) can, of course, be converted 
into a helix by appending z(t)= bt, or some other form for z(t).  

5.2.2 Algorithm2: (Move a 3D rolling circle around a 3D parametric Lagrange curve) 

Input:  Take the triple data (New-xi, New-yi, New-zi), i= 0,…,h-1, that was computed in 
algorithm (1) to represent the circle centre coordinates (x-c, y-c, z-c),and the radius circle 
value.    

Output:  Moving a 3D rolling circle around the 3D parametric Lagrange curve that 
generated in algorithm (1). 

Process: 

Step 1. Set radius=15, b=10 
Step 2. For i= 0 to h-1 

Set x-c= New-x, y-c=New-y, z-c=New-z 
For index=0 to 360 
X=radius*cos (index) +x-c 
Y=radius*sin (index) +y-c 
Z=index*b+z-c       

Step 3. Plot (X, Y, Z) 
Step 4. Next index 
Step 5. Next i 
Step 6. End. 

5.2.3 Generating 3D image stages 

In section (7.2.1) the method for generating the 3D image by using 3D mathematical models 
was described and the algorithms needed to perform this generation were explained. In 
addition, it was suggested that the 3D image resembles an empty cube and the aim is to fill 
the cube completely with random colour pixels. This process involved a set of different 
stages, including: initialising a 3D mesh of control points; marking the control points to 
produce a sequence of control points by using a pseudo-random generator; implementation 
of algorithm (2) to move the 3D Lagrange curve with a  3D rolling circle through the 3D 
mesh of control points; deleting all the pixels outside the cube; and the final stage is 
obtaining the cube (image) which is completely filled with random colour pixels. The 
following illustrates the stages for generating a 3D image:- 
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ways. The clipped slide from the three-dimensional image can be used directly as a secret 
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receiver. 

5.2.1 Proposed algorithm to move a 3D rolling circle around a 3D parametric Lagrange 
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Many variations on the circular helix are possible. For example, the conical helix, with 
equation P (t) = (t cos (t), t sin (t), bt). Any 2D curve (x(t), y(t)) can, of course, be converted 
into a helix by appending z(t)= bt, or some other form for z(t).  

5.2.2 Algorithm2: (Move a 3D rolling circle around a 3D parametric Lagrange curve) 

Input:  Take the triple data (New-xi, New-yi, New-zi), i= 0,…,h-1, that was computed in 
algorithm (1) to represent the circle centre coordinates (x-c, y-c, z-c),and the radius circle 
value.    

Output:  Moving a 3D rolling circle around the 3D parametric Lagrange curve that 
generated in algorithm (1). 

Process: 

Step 1. Set radius=15, b=10 
Step 2. For i= 0 to h-1 

Set x-c= New-x, y-c=New-y, z-c=New-z 
For index=0 to 360 
X=radius*cos (index) +x-c 
Y=radius*sin (index) +y-c 
Z=index*b+z-c       

Step 3. Plot (X, Y, Z) 
Step 4. Next index 
Step 5. Next i 
Step 6. End. 

5.2.3 Generating 3D image stages 

In section (7.2.1) the method for generating the 3D image by using 3D mathematical models 
was described and the algorithms needed to perform this generation were explained. In 
addition, it was suggested that the 3D image resembles an empty cube and the aim is to fill 
the cube completely with random colour pixels. This process involved a set of different 
stages, including: initialising a 3D mesh of control points; marking the control points to 
produce a sequence of control points by using a pseudo-random generator; implementation 
of algorithm (2) to move the 3D Lagrange curve with a  3D rolling circle through the 3D 
mesh of control points; deleting all the pixels outside the cube; and the final stage is 
obtaining the cube (image) which is completely filled with random colour pixels. The 
following illustrates the stages for generating a 3D image:- 
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Stage One 

3D shape is to be divided into slides (planes) as each slide takes a 2D matrix, its axes are x 
and y, and the number of their slides will be equal to the depth z-axis of the shape. Figure (9 
shows an example of an initialised 3D mesh. 

 
Fig. 9. Initialised 3D mesh. 

The initialising of a 3D mesh is achieved using the same algorithm that was used to generate 
the 2D mesh of control points, but by inserting the third coordinate (z) to the control point 
coordinates, and determining the increment values of the x-, y-, and z-coordinates. In 
addition, when changing the increment values of the x-, y-, and z-coordinates, we obtain 
different types of 3D mesh control points, which makes the process of estimating the mesh 
more difficult for counterfeiters. Figure (10) shows an example of the cubic mesh (3D mesh) 
with equal increment values (x, y and z) between the control points. 

 
Fig. 10. Example of cube mesh. 

Stage Two 

Marking  the 3D mesh is achived by counting the 3D mesh control points. The cube mesh 
can be visualised as resembling a set of 2D mesh slides marked with page numbers (z-
coordinates), or an array of three dimensional coordinates.   

Stage Three 

A pesudo-random generator is used to produce the random addresses of control points 
from the 3D mesh, which are then used as a set of control points to implement algorithm (2) 
for moving the 3D curve (parametric Lagrange curve) with the 3D rolling circle through the 
3D mesh. Figure (11) shows an example of the curve moving through the 3D cube.  
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Fig. 11. Example of moving curve through cube. 

Stage Four 

This stage eliminates all the pixels drawn out of the cube due to the isolation of the moving 
Lagrange curve. The deleting process aims to remove all the pixels outside the 3D shape, 
and this is implicitly implemented in the algorithm which computes pixels and tests 
whether their coordinates are outside the boundaries of the 3D coordinates.  

The complete algorithm below shows how to generate a 3D image using 3D mathematical 
models. 

Algorithm 3: Generating a 3D Image Using 3D Mathematical Model 

Input: Identify the first control point, increment value, size of mesh control points (N×N×N) 
and size of the 3D image that need to   be generated. 

Output: Generate 3D image and save the colour values in 3D array size (N×N×N). 

Process: 

Step 1. Initialise a 3D mesh of control points according to the starting control point; 
increment the value and the size of the 3D mesh. 

Step 2. Mark the control points of the 3D mesh. 
Step 3. Enter the number of marks from 3D mesh into a simple pseudo-random generator. 
Step 4. Take a sequence of numbers from the pseudo-random generator to represent the 

addresses of the control points in the mesh. 
Step 5. Execute algorithms (1) and (2) to draw the parametric Lagrange curve with a rolling 

circle and save the resulting colour pixel values for points in 3D array size 
(N×N×N).   

Step 6. Repeat step4 with a new sequence of control point numbers and step 5 until the 
cube is completely filled with recursive pixels.   

Step 7. Delete all the pixels which were placed outside the cube due to the isolation-
moving curve.                

Step 8. Obtain 3D generated image. 
Step 9. End. 
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Step 7. Delete all the pixels which were placed outside the cube due to the isolation-
moving curve.                

Step 8. Obtain 3D generated image. 
Step 9. End. 
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Example 

To explain the work of the algorithm, figure (5) shows the implementation of algorithm (8). 
This example used the 3D size (100×100×10), (i.e. the 3D consisted of 100,000 random colour 
pixels) that was used to generate a 3D mesh of control points, and the 3D mesh of size 
(50×50×50), (i.e. the mesh consisted of 125,000 control points), and equal increment values 
between the control points. Figure (12) shows the results: 

 
Fig. 12. Example to generate 3D-image 

6. Clipping symmetric keys from the 2D and 3D images using the bezier 
curve method 
The weakness of a key that is generated from a normal colour image is clear due to the 
nearest pixel values of the image. A new method for generating a symmetric cryptographic 
key is proposed which works by generating 2D and 3D images according to mathematical 
curve equations which will make the key sufficiently robust. A symmetric key is a string of 
random bits, and the number of random bits in it determine the key’s variability and 
strength. Cryptographers recommend that to be reasonably secure, keys should be at least 
90 bits long. The world standard is 128 bits because this is a convenient size for computers; 
there is no technical reason to use a shorter key. The second type of encryption is the public 
key or asymmetric systems, which uses separate keys for encryption and decryption: private 
key and the public key. 
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6.1 Proposed algorithm for clipping symmetric key from the (2D and 3D) images using 
the bezier curve method 

Control points play an important role in curve generation as well as in clipping 
cryptography keys from 2D images and from the slides of 3D images. Control points are 
used to clip a curve or part of the generated images (2D & 3D). For this reason the control 
point must remain secret between the sender and receiver, (i.e. control points represent the 
master key used to clip the secondary key formed by a curve from random pixel colour 
values). 

According to cryptography principles, it is assumed that all  algorithms used are public to 
the attacker and only the key is secret. The secret key consists of a number of control points 
used to clip the key, and the coordinates of the control points; for example 
(4,10,10,20,15,30,60,100) which means using 4 control points to clip the curve and use the 
coordinates respectively (10,10),(20,15),(15,30),(60,100).  Additionally, we can change any 
one of the parameters for the secret key to obtain a new secret key; this makes the process of 
generating the key more flexible and efficient.  

There are different ways to select the control points from a 2D mesh or from a 3D mesh with 
different increment values between the control points and the control points themselves; 
this makes the counterfeiter’s process of estimating the primary key infeasible. Figure (13) 
shows an example for selecting a set of control points to clip the curve of points using the 
Bezier method. 

 
Fig. 13. Example for clip key from 2D mesh using Bezier Curve. 

The size of the clipped key from the generated image is flexible depending on the flexibility 
of the generated image size; for example in the 2D image, the image size used is 256×256 
pixels, which is equal to 65,536 pixels with each pixel represented by 24 bits (i.e. the key size 
is 1,572,864 bits), and the key space used in the 3D image is (100×100×100) pixels, which is 
equal to 1,000,000 pixels (i.e. the key space size is 24,000,000 bits). 

In this example, samples of different key sizes were clipped, and the randomness of the keys 
was tested according to the five popular tests for randomness mentioned above.  

Figure (14) shows an example of how to clip slides from a 3D image; figure (15) shows how 
to clip a curve as a key from a 3D slide. 
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Example 

To explain the work of the algorithm, figure (5) shows the implementation of algorithm (8). 
This example used the 3D size (100×100×10), (i.e. the 3D consisted of 100,000 random colour 
pixels) that was used to generate a 3D mesh of control points, and the 3D mesh of size 
(50×50×50), (i.e. the mesh consisted of 125,000 control points), and equal increment values 
between the control points. Figure (12) shows the results: 

 
Fig. 12. Example to generate 3D-image 

6. Clipping symmetric keys from the 2D and 3D images using the bezier 
curve method 
The weakness of a key that is generated from a normal colour image is clear due to the 
nearest pixel values of the image. A new method for generating a symmetric cryptographic 
key is proposed which works by generating 2D and 3D images according to mathematical 
curve equations which will make the key sufficiently robust. A symmetric key is a string of 
random bits, and the number of random bits in it determine the key’s variability and 
strength. Cryptographers recommend that to be reasonably secure, keys should be at least 
90 bits long. The world standard is 128 bits because this is a convenient size for computers; 
there is no technical reason to use a shorter key. The second type of encryption is the public 
key or asymmetric systems, which uses separate keys for encryption and decryption: private 
key and the public key. 
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6.1 Proposed algorithm for clipping symmetric key from the (2D and 3D) images using 
the bezier curve method 

Control points play an important role in curve generation as well as in clipping 
cryptography keys from 2D images and from the slides of 3D images. Control points are 
used to clip a curve or part of the generated images (2D & 3D). For this reason the control 
point must remain secret between the sender and receiver, (i.e. control points represent the 
master key used to clip the secondary key formed by a curve from random pixel colour 
values). 

According to cryptography principles, it is assumed that all  algorithms used are public to 
the attacker and only the key is secret. The secret key consists of a number of control points 
used to clip the key, and the coordinates of the control points; for example 
(4,10,10,20,15,30,60,100) which means using 4 control points to clip the curve and use the 
coordinates respectively (10,10),(20,15),(15,30),(60,100).  Additionally, we can change any 
one of the parameters for the secret key to obtain a new secret key; this makes the process of 
generating the key more flexible and efficient.  

There are different ways to select the control points from a 2D mesh or from a 3D mesh with 
different increment values between the control points and the control points themselves; 
this makes the counterfeiter’s process of estimating the primary key infeasible. Figure (13) 
shows an example for selecting a set of control points to clip the curve of points using the 
Bezier method. 

 
Fig. 13. Example for clip key from 2D mesh using Bezier Curve. 

The size of the clipped key from the generated image is flexible depending on the flexibility 
of the generated image size; for example in the 2D image, the image size used is 256×256 
pixels, which is equal to 65,536 pixels with each pixel represented by 24 bits (i.e. the key size 
is 1,572,864 bits), and the key space used in the 3D image is (100×100×100) pixels, which is 
equal to 1,000,000 pixels (i.e. the key space size is 24,000,000 bits). 

In this example, samples of different key sizes were clipped, and the randomness of the keys 
was tested according to the five popular tests for randomness mentioned above.  

Figure (14) shows an example of how to clip slides from a 3D image; figure (15) shows how 
to clip a curve as a key from a 3D slide. 
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Fig. 14. Example of clipping slides from a 3D image. 

 
Fig. 15. Example of clipping a curve from slide of cube.   

The following illustrates the algorithm for clipping a key from a 2D image and clipping a 
key from slides of a 3D image. 

6.1.1 Algorithm(4): Generating key from generated image using Bezier curve method 
or by clipping parts of the generated images directly 

Input:  The sender inputs the number of control points to be used for the generation of the 
key (N), then inputs the chosen set of control point coordinates (x,y,z) from the mesh of the 
2D or 3D image according to the boundaries of the images (i.e. the sender must know the 
boundaries of the generated image before clipping the keys).  

Output:  Clip stream of colour pixels from generated image (2D or 3D) using the Bezier 
Curve method or clip part (slide) from the generated image directly. 
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Process:   

Step 1. Assignment of the set of control points entered by sender to two arrays x (.), y (.). 
Step 2. The user inputs his choice for clipping key from 2D or 3D and using curve 

equations for clipping the key or clipping part from the generated image directly.  
If (clipped the key from 2D-image) then go to (A) 
Otherwise, go to (B)  
(A) (Clipped Key From 2D-Generated Image). 
 If (Clipped Key Using Bezier Curve Equation) then go to step3. 
 Otherwise, go to step 12. 

Step 3. (Clipped Key Using Bezier Curve Generation). 
Set i=0     
i<= N-1 do 
For u= 0 to 1 step 0.01 

Step 4. Let 3 2 2 3
1 2 3(1 ) 3(1 ) 3(1 )i i i iX u x u ux u u x u x          

Let 3 2 2 3
1 2 3(1 ) 3(1 ) 3(1 )i i i iY u y u uy u u y u y          

Step 5. Get Pixel (X, Y), 
Step 6. Open file (Clip.txt) to save the pixel colour for pairs (X, Y).  
Step 7. Next u 
Step 8. i=i-1, 

Loop 
Step 9. Convert the Contents the files (Clip.txt) to the binary digits  (Bin.txt), which 

represent stream of bits (symmetric key). 
Step 10. Execute the five-randomness test on the binary files (Bin.txt) for checking the 

randomness of the key (i.e. Step10 is an optional step the user can cancel this step). 
Step 11. End.  
Step 12. (Clipped part from generated image to represent the key). 

{When the sender decides to clip directly from the 2D-generated image, he chooses 
only two corner coordinates from the mesh that represent the two corners of a 
rectangle}.   

Step 13. Input the two control points (x1, y1) and (x2, y2). 
Step 14. For i= x1 to x2 

 For   j= y1 to y2  
 Get pixel (i,j) 

Step 15. Open file (Clip-p.txt) to save the pixel colour for pairs (i,j).   
Step 16. Next j 

Next i 
Step 17. Convert the Contents of files (Clip-p.txt) to binary digits (Bin.txt), which represent 

stream of bits (symmetric key). 
Step 18. End. 

(Clipped Key From 3D-generated Image) 

{Work with a 3D image requires user to determine the level of (z)- coordinate from 
the cube, which is represented in this case by the slide number from the cube to clip 
2D slide from 3D image.} 
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Fig. 14. Example of clipping slides from a 3D image. 

 
Fig. 15. Example of clipping a curve from slide of cube.   

The following illustrates the algorithm for clipping a key from a 2D image and clipping a 
key from slides of a 3D image. 

6.1.1 Algorithm(4): Generating key from generated image using Bezier curve method 
or by clipping parts of the generated images directly 

Input:  The sender inputs the number of control points to be used for the generation of the 
key (N), then inputs the chosen set of control point coordinates (x,y,z) from the mesh of the 
2D or 3D image according to the boundaries of the images (i.e. the sender must know the 
boundaries of the generated image before clipping the keys).  

Output:  Clip stream of colour pixels from generated image (2D or 3D) using the Bezier 
Curve method or clip part (slide) from the generated image directly. 
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Process:   

Step 1. Assignment of the set of control points entered by sender to two arrays x (.), y (.). 
Step 2. The user inputs his choice for clipping key from 2D or 3D and using curve 

equations for clipping the key or clipping part from the generated image directly.  
If (clipped the key from 2D-image) then go to (A) 
Otherwise, go to (B)  
(A) (Clipped Key From 2D-Generated Image). 
 If (Clipped Key Using Bezier Curve Equation) then go to step3. 
 Otherwise, go to step 12. 

Step 3. (Clipped Key Using Bezier Curve Generation). 
Set i=0     
i<= N-1 do 
For u= 0 to 1 step 0.01 

Step 4. Let 3 2 2 3
1 2 3(1 ) 3(1 ) 3(1 )i i i iX u x u ux u u x u x          

Let 3 2 2 3
1 2 3(1 ) 3(1 ) 3(1 )i i i iY u y u uy u u y u y          

Step 5. Get Pixel (X, Y), 
Step 6. Open file (Clip.txt) to save the pixel colour for pairs (X, Y).  
Step 7. Next u 
Step 8. i=i-1, 

Loop 
Step 9. Convert the Contents the files (Clip.txt) to the binary digits  (Bin.txt), which 

represent stream of bits (symmetric key). 
Step 10. Execute the five-randomness test on the binary files (Bin.txt) for checking the 

randomness of the key (i.e. Step10 is an optional step the user can cancel this step). 
Step 11. End.  
Step 12. (Clipped part from generated image to represent the key). 

{When the sender decides to clip directly from the 2D-generated image, he chooses 
only two corner coordinates from the mesh that represent the two corners of a 
rectangle}.   

Step 13. Input the two control points (x1, y1) and (x2, y2). 
Step 14. For i= x1 to x2 

 For   j= y1 to y2  
 Get pixel (i,j) 

Step 15. Open file (Clip-p.txt) to save the pixel colour for pairs (i,j).   
Step 16. Next j 

Next i 
Step 17. Convert the Contents of files (Clip-p.txt) to binary digits (Bin.txt), which represent 

stream of bits (symmetric key). 
Step 18. End. 

(Clipped Key From 3D-generated Image) 

{Work with a 3D image requires user to determine the level of (z)- coordinate from 
the cube, which is represented in this case by the slide number from the cube to clip 
2D slide from 3D image.} 



 
Cryptography and Security in Computing 198 

Step 19. Step19: Input the level of z-coordinate (z-coordinate), and the two control points  
(x1, y1) and (x2, y2) from z-slide, and clipped slide of colour pixels from the three 
dimensions array (3D). 

Step 20. Set z= z-coordinate 
For i= x1 to x2 
For   j= y1 to y2 
slide (i, j) =3D(i , j, z) 
Next j,   Next i. 

Step 21. Go to (A). 

6.2 Tests of randomness for the clipped keys 

Different sizes of keys are used in these tests and the results prove that the keys have the 
randomness property and can be used as a symmetric key in the cryptography field. 
 

Tests Key5= 
1024 bit

Key6= 
2604 bit

Key7= 
3844 bit

Key 8= 
5084 bit

Pass 
value 

Frequency test 0.098 0.498 1.000 0.964 Must be 
≤ 3.84 

Run test 
T0 9.289 13.028 20.680 13.249 

Must be 
≤ 22.362 

T1 6.656 3.867 5.475 8.127 

Poker test 7.409 1.568 3.077 3.497 Must be 
≤ 11.1 

Serial test 4.016 1.705 6.504 5.899 Must be 
≤5.99 

Auto 
correlation 
test for ten bits 

Shift 1 
Shift 2 
Shift 3 
Shift 4 
Shift 5 
Shift 6 
Shift 7 
Shift 8 
Shift 9 

Shift 10 

0.079 
3.068 
0.024 
0.004 
0.048 
0.035 
0.048 
0.476 
0.616 
0.063 

0.031 
3.086 
0.019 
0.886 
0.010 
0.006 
0.003 
0.006 
0.420 
1.124 

0.075 
1.268 
0.094 
1.667 
0.115 
0.104 
0.284 
0.652 
1.102 
0.104 

0.087 
2.240 
0.044 
1.196 
0.884 
0.911 
0.640 
0.013 
0.331 
0.133 

Must be 
≤3.48 

Table 1. the results of randomness test for the keys clipped from 2D & 3D images. 
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6.3 Using generated digital images to modify cryptography protocol (PGP) 

The strong cryptography employed by PGP is the best available today. The PGP protocol 
is a hybrid cryptosystem that combines some of the best features of both conventional 
and public-key cryptography. In this section, we propose to insert the generated digital 
image capability into the PGP protocol stages in order to increase protocol robustness in 
the face of counterfeiters. According to the tests in the previous sections, the generated 
2D or 3D images have the randomness property and can clip many keys with different 
sizes. These properties make the generated images very useful as a source of clipping 
randomness session keys, and there is the capability to generate many keys from the 
images. We propose to use the generated (3D or 3D) images facility to generate a session 
key instead of using movement of the mouse or keystrokes. The session key clipped from 
the generated image in this case consists of two session keys; a primary session key and a 
secondary session key. The primary session key represents the Bezier curve coordinates 
and the secondary session key represents the stream of randomness bits sequence that is 
clipped according to curve equations. The work with New-PGP begins when a user 
encrypts plaintext. Firstly, the plaintext is compressed. Secondly, a session key is created 
by generating 2D or 3D images according to the proposed algorithms. Thirdly, the user 
enters the primary session key to the clip secondary key from the digital image. Fourthly, 
the user XOR the stream of bits sequence (secondary session key) with the plaintext after 
the compression process. Fifthly, the sender uses the public key from the RSA algorithm 
to encrypt the primary session key. Sixthly, the sender transmits the encrypt primary 
session key along with the ciphertext to the recipient. Decryption works in the reverse 
order. The recipient’s copy of new-PGP uses his or her private key from the RSA 
algorithm to recover the primary session key which is used to generate the secondary 
key from the generated image to decrypt the conventionally encrypted ciphertext. 
Figures (16) and (17) show the send and receive process according  to new-PGP protocol. 
 

 
Fig. 16. Send Process 
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Step 19. Step19: Input the level of z-coordinate (z-coordinate), and the two control points  
(x1, y1) and (x2, y2) from z-slide, and clipped slide of colour pixels from the three 
dimensions array (3D). 

Step 20. Set z= z-coordinate 
For i= x1 to x2 
For   j= y1 to y2 
slide (i, j) =3D(i , j, z) 
Next j,   Next i. 

Step 21. Go to (A). 

6.2 Tests of randomness for the clipped keys 

Different sizes of keys are used in these tests and the results prove that the keys have the 
randomness property and can be used as a symmetric key in the cryptography field. 
 

Tests Key5= 
1024 bit

Key6= 
2604 bit

Key7= 
3844 bit

Key 8= 
5084 bit

Pass 
value 

Frequency test 0.098 0.498 1.000 0.964 Must be 
≤ 3.84 

Run test 
T0 9.289 13.028 20.680 13.249 

Must be 
≤ 22.362 

T1 6.656 3.867 5.475 8.127 

Poker test 7.409 1.568 3.077 3.497 Must be 
≤ 11.1 

Serial test 4.016 1.705 6.504 5.899 Must be 
≤5.99 

Auto 
correlation 
test for ten bits 

Shift 1 
Shift 2 
Shift 3 
Shift 4 
Shift 5 
Shift 6 
Shift 7 
Shift 8 
Shift 9 

Shift 10 

0.079 
3.068 
0.024 
0.004 
0.048 
0.035 
0.048 
0.476 
0.616 
0.063 

0.031 
3.086 
0.019 
0.886 
0.010 
0.006 
0.003 
0.006 
0.420 
1.124 

0.075 
1.268 
0.094 
1.667 
0.115 
0.104 
0.284 
0.652 
1.102 
0.104 

0.087 
2.240 
0.044 
1.196 
0.884 
0.911 
0.640 
0.013 
0.331 
0.133 

Must be 
≤3.48 

Table 1. the results of randomness test for the keys clipped from 2D & 3D images. 

 
PGP Protocol and Its Applications 199 

6.3 Using generated digital images to modify cryptography protocol (PGP) 

The strong cryptography employed by PGP is the best available today. The PGP protocol 
is a hybrid cryptosystem that combines some of the best features of both conventional 
and public-key cryptography. In this section, we propose to insert the generated digital 
image capability into the PGP protocol stages in order to increase protocol robustness in 
the face of counterfeiters. According to the tests in the previous sections, the generated 
2D or 3D images have the randomness property and can clip many keys with different 
sizes. These properties make the generated images very useful as a source of clipping 
randomness session keys, and there is the capability to generate many keys from the 
images. We propose to use the generated (3D or 3D) images facility to generate a session 
key instead of using movement of the mouse or keystrokes. The session key clipped from 
the generated image in this case consists of two session keys; a primary session key and a 
secondary session key. The primary session key represents the Bezier curve coordinates 
and the secondary session key represents the stream of randomness bits sequence that is 
clipped according to curve equations. The work with New-PGP begins when a user 
encrypts plaintext. Firstly, the plaintext is compressed. Secondly, a session key is created 
by generating 2D or 3D images according to the proposed algorithms. Thirdly, the user 
enters the primary session key to the clip secondary key from the digital image. Fourthly, 
the user XOR the stream of bits sequence (secondary session key) with the plaintext after 
the compression process. Fifthly, the sender uses the public key from the RSA algorithm 
to encrypt the primary session key. Sixthly, the sender transmits the encrypt primary 
session key along with the ciphertext to the recipient. Decryption works in the reverse 
order. The recipient’s copy of new-PGP uses his or her private key from the RSA 
algorithm to recover the primary session key which is used to generate the secondary 
key from the generated image to decrypt the conventionally encrypted ciphertext. 
Figures (16) and (17) show the send and receive process according  to new-PGP protocol. 
 

 
Fig. 16. Send Process 



 
Cryptography and Security in Computing 200 

 
Fig. 17. Receive Process. 

Example:- 

To explain how the New-Protocol works and indicate the protocol behaviour, we proposed 
to generate a 3D-image size (100×100 ×100) pixels, by using a mesh size of (50×50×50) 
control points, and a primary session key (PSK) that consists of (4) control points with the 
coordinates (10,10), (20,20), (30,30), (40,40), with increment step u equal to 0.01. According to 
the primary session key, we clipped a secondary session key size (SSK) equal to 260 random 
bits. According to the randomness tests in table (1), the public key (PK) of  RSA algorithm 
consists of (n=997517,e=193) where (secret p=977) and (secret q=1021), and the private key 
of RSA algorithm equals (d=727297).  

Figures (18) and (19) illustrate the proposed protocol with the example values: 

 
Fig. 18. Send Process. 
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Fig. 19. Receive Process.  

7. Conclusions  
The proposed methods in this chapter are starts by studying most of the curve fitting 
methods and selects the curve fitting methods that are suitable to the work. Secondly 
developing the curve security algorithm and proposed algorithm to generate (2D & 3D) 
digital images, thirdly producing algorithm to clipping symmetric cryptographic key from 
2D or 3D generated image, fourthly proposing algorithm to modify PGP cryptographic 
protocol by using 2D or 3D generated images. 

Finally implementing the proposed generated digital image in image cryptography 
technique and then testing the results according to the authorized measures that are used in 
this field. 

In this chapter proved a combine curve security with cryptography algorithms increase the 
cryptography capability. The  proposed  methods gives reasonable results in generating 
many randomness keys with different sizes. The 2D & 3D mathematical models succeed to 
generate randomness digital images that can play important role in cryptography according 
to the results that obtain from authorized randomness tests and from image cryptography 
tests, which gave reasonable tests. 

From the New-PGP method, we obtained the following information:- 

1. The process of guessing the primary session key from the secondary key is infeasible, 
because there is no correlation between the two session keys. 

2. If the counterfeiter succeed in solving the factorisation problem from RSA and found 
the private key from public key, the key obtained would not help him to recover the 
plaintext from the primary session key unless the secondary session key was known. 

3. All the secondary session keys have the property of randomness according to the 
randomness tests. 

4. The New-PGP increased the security of the PGP protocol, making the protocol more 
robust and efficient. 
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To explain how the New-Protocol works and indicate the protocol behaviour, we proposed 
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developing the curve security algorithm and proposed algorithm to generate (2D & 3D) 
digital images, thirdly producing algorithm to clipping symmetric cryptographic key from 
2D or 3D generated image, fourthly proposing algorithm to modify PGP cryptographic 
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Finally implementing the proposed generated digital image in image cryptography 
technique and then testing the results according to the authorized measures that are used in 
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cryptography capability. The  proposed  methods gives reasonable results in generating 
many randomness keys with different sizes. The 2D & 3D mathematical models succeed to 
generate randomness digital images that can play important role in cryptography according 
to the results that obtain from authorized randomness tests and from image cryptography 
tests, which gave reasonable tests. 

From the New-PGP method, we obtained the following information:- 

1. The process of guessing the primary session key from the secondary key is infeasible, 
because there is no correlation between the two session keys. 

2. If the counterfeiter succeed in solving the factorisation problem from RSA and found 
the private key from public key, the key obtained would not help him to recover the 
plaintext from the primary session key unless the secondary session key was known. 

3. All the secondary session keys have the property of randomness according to the 
randomness tests. 

4. The New-PGP increased the security of the PGP protocol, making the protocol more 
robust and efficient. 
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challenging area between cryptographers and attackers, and since finding keys of approved 
cryptographic techniques computationally is impossible, attackers prefer to somehow breach 
the key management process instead of trying to crack keys (Techateerawat & Jennings, 2007). 

Today many techniques like DES, 3DES, RSA etc. have emerged for protecting data secrecy. 
One internationally approved and widely used key management method is master-key 
which empowers a computer to generate keys from a Key Derivation Key (KDK), the 
parties’ identity, labels and some other information (Chen, 2009). By utilizing master-key a 
computer can generate new keys and distribute them among its nodes, sometimes even 
establishing a hierarchy among them (Onmez, 2009). 

IKM has developed from performing some changes on workflow and key generation 
algorithms of master-key to achieving more dynamism and some advanced features like 
intelligent attack resiliency (Chaeikar et al., 2010b, 2010a).  

Master-key and IKM have many features in common. In both there are algorithms of key 
generation, both use environmental parameters as key generation parameters, both generate 
symmetric keys, both generate keys of variable length and so on. Therefore it was felt that there 
was a need for guidelines on both schemes to facilitate making a choice regarding requirements. 
The purpose of this article is to provide a guideline for helping researchers and developers to 
choose the proper cryptographic scheme between master-key and IKM regarding their goal of 
application and working criteria. To do so, master-key and IKM are compared according their 
security features and amount of imposed traffic load on the server and network. 

The second section of this chapter explains the process of master-key key generation in three 
modes. The third part discusses IKM key generation workflow and algorithms concisely. 
The fourth part compares these two methods in terms of security and performance to help 
researchers and developers to choose the most convenient technique between master-key 
and IKM with regard to their required features and criteria. The last section summarizes the 
results of this analysis in a few paragraphs for fast review of this article. 
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2. Master-key 
A key derivation function is a function that uses an input key and some other input data to 
produce keying material which will be employed by a cryptographic algorithm. A key that 
is input of key derivation function is called a Key Derivation Key (KDK). This key either can 
be generated by an automated key generation process (Piper & Murphy, 2002; Fumy & 
Landrock, 1993) or by an approved random bit generator function (Onmez, 2009). If a KDK 
is generated through an automated key generation process then it will be considered as part 
of secret keying material of that process.  

Any chosen part of derived keying material which meets the needed key length can be used 
as input of cryptographic algorithm. To ensure that all parties using the same Key 
Derivation Function (KDF) are synchronized they must agree on the way that the keying 
material will convert into a cryptographic key. For instance, if derived keying material 
length is 256 bits then the first segment (first 128 bits) can be used as an authentication key 
and the second segment (second 128 bits) as an encryption key. 

If KDF uses Pseudo Random Function (PRF) then based on desired length of keying 
material the KDF might require calling PRF several times to achieve the desired length. This 
article explains three types of master-key key generation modes. The following notations are 
described concisely for a better understanding of algorithms. 

��: a key which will be fed into a KDF for deriving the keying material. 
��: binary string output of KDF. 
Label: a binary string that explains the goal of key derivation. 
Context: a binary string including information such as identities of parties which are 

deriving/using derived keying material and sometimes a nonce which is known by 
those parties who derived the keys. 

IV: initial binary string value of first iteration of feedback mode which either can be kept 
public or secret. IV also might be an empty string.  

L: an integer which shows length of derived keying material K� in bits. Length of binary 
string varies based on the encoding method of input data. 

h: an integer which shows length of PRF output in bits. 
n: an integer which shows the number of needed PRF iterations to achieve L bits of keying 

materials. 
i: binary string input of PRF in each iteration. 
r: an integer smaller or equal to 32 which shows binary length of counter i. 
{X}: shows that the value of X is an optional value for KDF. 
0x00: separator of different parts of variable length data fields. 

A PRF type KDF concatenates n times output of PRF until it achieves the L bits of desired 
length where n=�L/h�. In counter mode n should not exceed 2� − 1 while r ≤ 32. For double-
pipeline iteration and feedback mode maximum value of n is 2�� − 1. In every iteration of 
PRF the KDK K� will be used as key and the input data includes both fixed input data and 
an iteration variable. Iteration value depending on iteration mode can be a counter, the 
result of last iteration of PRF, a mix of both or the result of first iteration if the mode is 
double pipeline.  
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2.1 Counter mode key derivation function (KDF) 

Counter mode result of PRF will use a counter as iteration value. Counter mode is 
structured as follows: 

h: PRF result length in bits. 
r: length of binary format of counter i. 

Input data: K�, L, Context, and Label        Output: K� 

Counter mode KDF algorithm: 

1. n=�L/h�  
2. if n > 2� − 1 then error 
3. result(0):= ∅ 
4. for i=1 to n do 

4.1. K(i):= PRF(K�,�i��||Label||0x00||Context||�L��) 
4.2. Result(i):= result(i-1)||K(i) 

5. Return: K�:= first L bits of result(n) 

 
Fig. 1. Counter mode KDF structure (Chen, 2009) 

In every round of iteration constant input values are Label||0x00||Context||�L�� and 
iteration variables are K(i-1){||�i��}. The structure of counter mode is illustrated in Fig. 1. 

2.2 Feedback mode key derivation function (KDF) 

In feedback mode the result of the PRF is generated according the results of last iteration 
and counter of number of iterations. Feedback mode is structured as follows: 

h: PRF result length in bits. 
r: length of binary format of counter i. 

Input data: K�, L, IV, Context, and Label.   Output: K�. 



 
Cryptography and Security in Computing 204 

2. Master-key 
A key derivation function is a function that uses an input key and some other input data to 
produce keying material which will be employed by a cryptographic algorithm. A key that 
is input of key derivation function is called a Key Derivation Key (KDK). This key either can 
be generated by an automated key generation process (Piper & Murphy, 2002; Fumy & 
Landrock, 1993) or by an approved random bit generator function (Onmez, 2009). If a KDK 
is generated through an automated key generation process then it will be considered as part 
of secret keying material of that process.  

Any chosen part of derived keying material which meets the needed key length can be used 
as input of cryptographic algorithm. To ensure that all parties using the same Key 
Derivation Function (KDF) are synchronized they must agree on the way that the keying 
material will convert into a cryptographic key. For instance, if derived keying material 
length is 256 bits then the first segment (first 128 bits) can be used as an authentication key 
and the second segment (second 128 bits) as an encryption key. 

If KDF uses Pseudo Random Function (PRF) then based on desired length of keying 
material the KDF might require calling PRF several times to achieve the desired length. This 
article explains three types of master-key key generation modes. The following notations are 
described concisely for a better understanding of algorithms. 

��: a key which will be fed into a KDF for deriving the keying material. 
��: binary string output of KDF. 
Label: a binary string that explains the goal of key derivation. 
Context: a binary string including information such as identities of parties which are 

deriving/using derived keying material and sometimes a nonce which is known by 
those parties who derived the keys. 

IV: initial binary string value of first iteration of feedback mode which either can be kept 
public or secret. IV also might be an empty string.  

L: an integer which shows length of derived keying material K� in bits. Length of binary 
string varies based on the encoding method of input data. 

h: an integer which shows length of PRF output in bits. 
n: an integer which shows the number of needed PRF iterations to achieve L bits of keying 

materials. 
i: binary string input of PRF in each iteration. 
r: an integer smaller or equal to 32 which shows binary length of counter i. 
{X}: shows that the value of X is an optional value for KDF. 
0x00: separator of different parts of variable length data fields. 

A PRF type KDF concatenates n times output of PRF until it achieves the L bits of desired 
length where n=�L/h�. In counter mode n should not exceed 2� − 1 while r ≤ 32. For double-
pipeline iteration and feedback mode maximum value of n is 2�� − 1. In every iteration of 
PRF the KDK K� will be used as key and the input data includes both fixed input data and 
an iteration variable. Iteration value depending on iteration mode can be a counter, the 
result of last iteration of PRF, a mix of both or the result of first iteration if the mode is 
double pipeline.  

 
Comparative Analysis of Master-Key and Interpretative Key Management (IKM) Frameworks 205 

2.1 Counter mode key derivation function (KDF) 

Counter mode result of PRF will use a counter as iteration value. Counter mode is 
structured as follows: 

h: PRF result length in bits. 
r: length of binary format of counter i. 

Input data: K�, L, Context, and Label        Output: K� 

Counter mode KDF algorithm: 

1. n=�L/h�  
2. if n > 2� − 1 then error 
3. result(0):= ∅ 
4. for i=1 to n do 

4.1. K(i):= PRF(K�,�i��||Label||0x00||Context||�L��) 
4.2. Result(i):= result(i-1)||K(i) 

5. Return: K�:= first L bits of result(n) 

 
Fig. 1. Counter mode KDF structure (Chen, 2009) 

In every round of iteration constant input values are Label||0x00||Context||�L�� and 
iteration variables are K(i-1){||�i��}. The structure of counter mode is illustrated in Fig. 1. 
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Feedback mode KDF algorithm: 

1. n=�L/h� 
2. If n > 2�� − 1 then error 
3. Result(0):= ∅ and K(0):= IV 
4. For i = 1 to n, do  

4.1  K(i):= PRF (K�,K(i-1){||�i��}||Label||0x00||Context||(L)�) 
4.2  Result(i):=result(i-1)||K(i) 

5. Return: K�:= first L bits of result(n) 

In every round of iteration constant input values are Label||0x00||Context||���� and 
iteration variables are K(i-1){||����}. The structure of feedback mode is illustrated in Fig. 2. 

 
Fig. 2. Feedback mode KDF structure (Chen, 2009) 

2.3 Double pipeline iteration mode key derivation function (KDF) 

In counter mode or feedback mode the PRF iterates in a single pipeline while in double 
pipeline iteration mode there are two pipelines. In the first pipeline series of secret values 
A(i) will be generated which then will be fed into respective PRF iteration of the second 
pipeline. Double pipeline iteration mode is structured as follows: 

h: PRF result length in bits. 
r: length of binary format of counter i. 

Input data: K�, L, Context, and Label    output:	K�. 

Double pipeline mode KDF algorithm: 

1. n= �L/h� 
2. if n ≤2�� then error 
3. result(0):= ∅ 
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4. A(0):=IV=Label||0x00||Context||�L�� 
5. For i=1 to n do 
5.1 A(i) := PRF (K�, A(i-1)) 
5.2 K(i) := PRF (KI, A(i){|| �i��}||Label||0x00||Context||�L��) 
5.3 Result (i) := result(i-1)||K(i) 
6. Return:K�, i.e., first L bits of result(n)  

The first iteration pipeline uses the result of feedback mode with the initial value of 
A(0)=IV=Label||0x00||Context||(L)�. K(i) by using A(i), and as an optional choice, 
counter (i)� are iteration variables in every iteration of the second pipeline. The following 
figure illustrates double pipeline KDF.  

 
Fig. 3. Double pipeline mode KDF structure (Chen, 2009) 

2.4 Key derivation key (KDK) length 

In some of KDFs length of KDK depends on PRF. For instance, if Cipher-based Message 
Authentication Code (CMAC) was being used as PRF then key length directly depends on 
length of the respective block cipher. Therefore, at application time, consistency of PRF and 
KDK must be checked.  

In contrast to CMAC if Keyed-hash Message Authentication Code (HMAC) was being used 
as PRF then the KDK can be almost any length. To provide consistency of PRF output and 
block length, if the key is longer than hash function block length then the key will be hashed 
into the length of the hash function output.  
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2.5 Conversion of keying material into cryptographic keys 

The derived keying material length depends on the chosen cryptographic algorithm. The 
algorithm that will apply generated cryptographic key, like message authentication code, 
will determine its length. If no limitation is defined by the application then any portion of 
derived keying material, which has needed length, can be employed as a cryptographic key 
only if there is no overlapping among derived keys from KDF output. Therefore, length of 
derived keying material must be more or equal with the sum of keys.  

3. Interpretative key management (IKM) 
Core of Interpretative Key Management (IKM) workflow is a key server which is 
responsible for: 

Producing the interpreter 
Distributing the produced interpreter among nodes 
Supervising nodes’ activities for higher security 
Declaration of revocation of the interpreter to nodes when it expires 

The first responsibility of the server is generating the interpreter to be distributed among the 
nodes. The interpreter includes a time zone, a calendar, a bit-stream source address, a 24 
digit number, a key generation algorithm and a revocation code. Once the interpreter has 
been created then it must be distributed among authorized nodes through a secure channel. 
When the interpreter is installed on nodes then the first 512 bits of the defined file from the 
given address will be downloaded. Since keys are time-dependent and key generation 
components which are bit-stream source, defined time zone and calendar, 24 digits and key 
generation algorithm are the same among all computers and they will be able to generate 
identical time-dependent keys in future without any coordination or key distribution. Also 
because keys have a predefined lifetime then without a key revocation call they will expire. 

 
Fig. 4. Interpretative key management (IKM) workflow 
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One of the main key management issues is the existence of key storage, but in IKM because 
keys will be generated when they are needed and keys are constantly changing then no key 
storage is required. IKM keys expire automatically after the lifetime expires and a new one 
will replace automatically. But once the server issues a revocation call this means that the 
interpreter is expired and generated keys will no longer be valid. The following sections 
explain the detailed responsibilities of IKM components.  

3.1 Server 

The server role starts with generating the interpreter. To generate it a time zone, a calendar, 
a bit-stream source, a revocation code, a key generation algorithm and 24 digits must be 
selected and embedded into it. Once it has been generated then through an established 
secure channel, like Diffie-Hellman, it must be distributed among authorized parties.  

Every generated key will be expired when its lifetime expires, but the interpreter will 
continue working until it receives a revocation call which means one of the interpreters is 
either compromised or is suspected to be compromised. In such a case all nodes will stop 
using the current interpreter and will wait until they receive a new version. 

Once the interpreter has been generated and distributed then the server will supervise the 
security status of nodes. Because the interpreter is in charge of encryption and decryption, 
and keys are time-dependent then it can distinguish genuine packets from attack packets 
and report the number and type of attacks to the server. The server, based on received 
security reports, will decide whether the node can continue working, temporarily must stop 
working or must shut down completely.  

3.2 Interpreter 

The interpreter’s task is to generate fresh synchronized keys and to send security status 
reports to the server. The interpreter’s components and important points are as follows. 

3.2.1 Bit-stream source 

The bit-stream source is the address of a file on the network, the first 512 bits of which will 
be downloaded to construct a bit matrix to be fed into the key generation algorithm. The 
first 512 bits of the file, regardless of file type, will be downloaded and arranged into a 22*23 
matrix. One of the most important criteria for choosing a bit-stream source is its updating 
intervals which, if not long enough, will result in inconsistency of keys among different 
interpreters because they may download different bit-streams at different times and 
eventually generate different keys. If the IKM being deployed is on a WAN then a shared 
file via FTP service can be utilized as a bit-stream source.  

The bit-stream source can either be placed on the network or can be a file with its update 
intervals known by the administrator of the established encrypted sessions. For instance, if the 
administrator decides to use the available sources then an online PDF version of a newspaper 
which updates at particular times would be the proper choice. In this case the chosen source 
will be changed every day at a particular time and all nodes must update their bit-stream every 
time it changes. But if the updating interval of the chosen source is longer than our needed time 
or the source is located on the server, then renewing the bit-stream is not necessary. 



 
Cryptography and Security in Computing 208 

2.5 Conversion of keying material into cryptographic keys 

The derived keying material length depends on the chosen cryptographic algorithm. The 
algorithm that will apply generated cryptographic key, like message authentication code, 
will determine its length. If no limitation is defined by the application then any portion of 
derived keying material, which has needed length, can be employed as a cryptographic key 
only if there is no overlapping among derived keys from KDF output. Therefore, length of 
derived keying material must be more or equal with the sum of keys.  

3. Interpretative key management (IKM) 
Core of Interpretative Key Management (IKM) workflow is a key server which is 
responsible for: 

Producing the interpreter 
Distributing the produced interpreter among nodes 
Supervising nodes’ activities for higher security 
Declaration of revocation of the interpreter to nodes when it expires 

The first responsibility of the server is generating the interpreter to be distributed among the 
nodes. The interpreter includes a time zone, a calendar, a bit-stream source address, a 24 
digit number, a key generation algorithm and a revocation code. Once the interpreter has 
been created then it must be distributed among authorized nodes through a secure channel. 
When the interpreter is installed on nodes then the first 512 bits of the defined file from the 
given address will be downloaded. Since keys are time-dependent and key generation 
components which are bit-stream source, defined time zone and calendar, 24 digits and key 
generation algorithm are the same among all computers and they will be able to generate 
identical time-dependent keys in future without any coordination or key distribution. Also 
because keys have a predefined lifetime then without a key revocation call they will expire. 

 
Fig. 4. Interpretative key management (IKM) workflow 

 
Comparative Analysis of Master-Key and Interpretative Key Management (IKM) Frameworks 209 

One of the main key management issues is the existence of key storage, but in IKM because 
keys will be generated when they are needed and keys are constantly changing then no key 
storage is required. IKM keys expire automatically after the lifetime expires and a new one 
will replace automatically. But once the server issues a revocation call this means that the 
interpreter is expired and generated keys will no longer be valid. The following sections 
explain the detailed responsibilities of IKM components.  

3.1 Server 

The server role starts with generating the interpreter. To generate it a time zone, a calendar, 
a bit-stream source, a revocation code, a key generation algorithm and 24 digits must be 
selected and embedded into it. Once it has been generated then through an established 
secure channel, like Diffie-Hellman, it must be distributed among authorized parties.  

Every generated key will be expired when its lifetime expires, but the interpreter will 
continue working until it receives a revocation call which means one of the interpreters is 
either compromised or is suspected to be compromised. In such a case all nodes will stop 
using the current interpreter and will wait until they receive a new version. 

Once the interpreter has been generated and distributed then the server will supervise the 
security status of nodes. Because the interpreter is in charge of encryption and decryption, 
and keys are time-dependent then it can distinguish genuine packets from attack packets 
and report the number and type of attacks to the server. The server, based on received 
security reports, will decide whether the node can continue working, temporarily must stop 
working or must shut down completely.  

3.2 Interpreter 

The interpreter’s task is to generate fresh synchronized keys and to send security status 
reports to the server. The interpreter’s components and important points are as follows. 

3.2.1 Bit-stream source 

The bit-stream source is the address of a file on the network, the first 512 bits of which will 
be downloaded to construct a bit matrix to be fed into the key generation algorithm. The 
first 512 bits of the file, regardless of file type, will be downloaded and arranged into a 22*23 
matrix. One of the most important criteria for choosing a bit-stream source is its updating 
intervals which, if not long enough, will result in inconsistency of keys among different 
interpreters because they may download different bit-streams at different times and 
eventually generate different keys. If the IKM being deployed is on a WAN then a shared 
file via FTP service can be utilized as a bit-stream source.  

The bit-stream source can either be placed on the network or can be a file with its update 
intervals known by the administrator of the established encrypted sessions. For instance, if the 
administrator decides to use the available sources then an online PDF version of a newspaper 
which updates at particular times would be the proper choice. In this case the chosen source 
will be changed every day at a particular time and all nodes must update their bit-stream every 
time it changes. But if the updating interval of the chosen source is longer than our needed time 
or the source is located on the server, then renewing the bit-stream is not necessary. 



 
Cryptography and Security in Computing 210 

 
Fig. 5. IKM key generation process 

3.2.2 Time, date and 24 digits 

Date and time are two parameters used in the process of synchronized key generation, but 
because nodes might be distributed around the world then they will use different regions’ 
time and calendar. So to unify the time and date of all nodes they must agree to the same 
time zone and calendar. For instance, the UTC time and Gregorian calendar can be chosen 
so that computers have the same parameters. Then each computer will compute the 
difference of time and date to be used at the key generation process.  

Time and date unification is a very important process because firstly using time and date 
will lead to having time-dependent keys that can resist against attacks like replay attack. 
Secondly if there are any problems for a node in synchronizing itself then it will not be able 
to communicate with other nodes. The IKM server, designated web site or any publicly 
available time server can be utilized for synchronizing nodes.  

From the viewpoint of attackers, guessing date and time is a very easy step to achieving 
two important key generation factors. Therefore, for tightening IKM key generation 
security, full format time and date will be repeated twice to achieve 24 digits. Then the 24 
embedded digits will be added to the time and date 24 digits to make it unbreakable for 
attackers. For example, if the current date and time is 27/7/2010, 5:44 then its twice 
repeated full format will be 270720100544270720100544. Then the 24 randomly generated 
and embedded digits will produce 24 new digits that are not guessable by attackers and 
will change every minute. Fig. 6 illustrates process of converting date, time and 24 digits 
into new 24 digits. 
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Fig. 6. Conversion process of current time and date into 24 digits 

3.2.3 Revocation code 

The revocation code is an embedded secret code in the interpreter that once received from 
the server means that the current version of the interpreter either is compromised or, 
according to the decision of the IKM server administrator for security reasons, is no longer 
valid and must stop working. All nodes will send their security reports to the IKM server for 
monitoring purposes and regarding received reports it can decide whether the current 
version is compromised, is suspected of being compromised or can continue working. Also 
for enhancing security it is better to renew interpreter periodically. 

3.2.4 IKM key lifetime 

Regarding the IKM structure and level of desired secrecy, three types of key lifetime are 
introduced in IKM. Because of utilizing time and date in key generation process, period of 
updating keys can be every minute, hour, or day. 

A new key will be produced and employed every minute, hour or day. If a new key every 
minute is chosen then a new key will be generated and employed every minute. If the 
hourly key is selected then a specific minute of every hour will be considered as the 
parameter of key generation regardless of whether the nodes are going to join before or after 
it. For a daily key, a specific hour and minute will be considered as the time parameter of 
the key generation process. 

Early seconds of changing key, both new and previous keys will be valid for decryption. 
Those packets which are encrypted and sent at the last moments of the changing minute will 
most likely be received in the early seconds of the following minute. Therefore, those 
packets are encrypted with the last key and cannot be decrypted with the new key. The 
maximum time needed for sending a packet between two distant nodes will be the time of 
double key checking. Once a packet is received in the first seconds of the changing key 
firstly an attempt will be made at being decrypted with the new key, but if this process fails 
then it will be decrypted with the last key. If neither new key nor the last key could decrypt 
it then this packet runs the likelihood of being a running replay attack against the node and 
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if it is repeated many times then it will be reported as an attack to the IKM server. Fig. 7 
shows the process of decryption of received packets. 

 
Fig. 7. Double key checking diagram 

3.2.5 Key generation algorithm 

IKM utilizes many key generation schemes and one of them is the matrix technique. The 
matrix technique is downloading a bit-stream, arranging it in a matrix and surveying the 
matrix according to 24 generated digits. The 24 digits explain how the matrix must be 
surveyed from the start point of (0,0). If the digit is even then it means that the matrix must 
be surveyed vertically and for odd numbers surveyed horizontally. This process will 
continue until the desired key length is being produced. For odd numbers if while key 
generation algorithm is picking up bits from the matrix reaches to the end of row, then the 
algorithm will pick up bits from beginning of next row. For even numbers if it reaches to 
end of column then will continue form beginning of next column. In the case of finishing 24 
digits before producing the desired key length then the 24 digits will be used again and if it 
obtains the desired length before finishing the numbers then the remaining digits will be 
ignored. Fig. 8 illustrates the survey of a matrix with the first 12 digits if the digits are 
493148769486. 

In addition to different key generation intervals, the interpreter can produce keys of 
different lengths. A combination of different key lengths and three key lifetime types 
produces a variety of key types which vary from long minute keys to short daily keys that 
are convenient for different purposes. The strongest type is the long minute key which can 
guaranty security of top secret data encryption and the weakest type is the short daily key 
which is suitable for providing the lowest level of security. 
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Fig. 8. Matrix technique bit-extraction illustration 

3.2.6 Nodes’ joining and disjoining process 

For a new node joining it must send its request to the IKM server and if it passes the 
authentication process then it will be eligible to download the interpreter to start 
communicating securely with other parties. Those nodes which have already downloaded 
the interpreter, but for a while were inactive, must send a test packet to a neighbour node. If 
the test packet replied then it shows the current interpreter is still valid, but if no response is 
received then the process of downloading a new version is the same as joining a new node. 

If a node is going to leave sessions permanently then the installed interpreter must be 
removed to reduce the likelihood of compromising the interpreter. If the disjoined node is 
trustworthy and the interpreter is removed successfully then other nodes can continue 
utilizing the current version, or else revoking the current version and installing the new 
version is a compulsory process. To renew the interpreter version, only replacing the old 24 
digits with new 24 digits is enough. For example, if three counterpart companies are going 
to establish secure sessions then they can utilize IKM for providing security. Therefore, all 
computers must install the same interpreter to enable them to communicate securely. While 
they are working together, nodes can join and disjoin sessions, but if one of companies 
decides to disjoin permanently then the current interpreter must be revoked and a new 
version must be distributed among authorized parties. 

4. Security and performance comparison between IKM and master-key 
To compare two methods, their features and capabilities must be compared to help readers 
choose more convenient choice regarding their requirements. To do so, in this section we 
compare IKM and Master-Key methods in term of security and performance. 
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4.1 Security comparison between master-key and IKM 

To compare security between master-key and IKM, five important features are analyzed and 
compared. 

4.1.1 Key storage 

One issue in key management is storing keys for future use which means encrypting the key 
and restoring it after going through a password check. This process increases the probability 
of compromising keys, but IKM only produces the key when needed and never saves it as 
the keys are changing continuously. Even at double valid key time after a few seconds the 
interpreter eliminates the old key from the memory. 

4.1.2 Replacing multiple key distribution with one time interpreter distribution 

Some attacks like man in the middle attack, known plain text attack, replay attack and brute 
force attack endanger the safety of the key distribution process (Techateerawat & Jennings, 
2007). By increasing key distribution times, the likelihood of attacks happening will also 
increase. IKM only needs interpreter distribution to be done once and afterwards will 
deploy unlimited fresh keys without any necessity for key distribution. In current practices 
to have unique key per session for n sessions, n times key distribution is needed which n 
times increases the likelihood of compromising. But for IKM this process will only be run 
once and there is less likelihood of compromising. By reducing n times to once, 
compromising likelihood reduces to 1/n as well. Since IKM only once goes through key 
distribution process and establishes more complicated secure channels then it can provide 
higher level of security. 

4.1.3 Utilizing unique or multiple key per session 

Ideally in cryptography every transaction must be encrypted with a unique key, but in light 
of cost and difficulties in implementation it is not practiced widely yet. IKM nodes produce 
keys instead of receiving them and generating key makes less traffic than distributing it over 
the network. Since generating keys does not impose traffic on the network and has less cost, 
therefore node-side key production is cheaper and easier, and converts the ideal of 
cryptography into reality. For example, if every ATM user took 90 seconds to do a 
transaction and the ATM uses a per minute IKM key, then every ATM transaction would be 
encrypted with a unique key meaning the ideal encryption becomes reality. 

4.1.4 Attack resistance capability 

During the running time the interpreter records the amount and type of incorrect packets 
received and sends this to the IKM server. Depending on the received statistics the IKM 
server will decide whether that specific interpreter must continue working, stop temporarily 
or stop working completely. Also regarding received statistics the IKM server will decide 
whether is better to renew the current interpreter or whether it is still safe to produce a key. 

The IKM structure enables resistance to some attacks that endanger the safety of key 
production and distribution, and reacts intelligently against attacks while there is no same 
feature in master-key. 
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4.1.5 No key revocation 

Since IKM keys have a predefined validity term, they will expire automatically and there is 
no need for a revocation call unless for revoking the interpreter. But each key of the master-
key technique must be expired by issuing a revocation call from the server. Therefore, no 
necessity for a key revocation is counted as an advantage of IKM versus master-key. 

4.2 Performance comparison between IKM and master-key 

To compare performance between IKM and master-key, imposed traffic load on network for 
specific duration and imposed traffic load on network per generated key are calculated and 
compared. 

4.2.1 Key management imposed traffic load 

To make an analogy about imposed key management traffic between IKM and master-key 
we can assume each key will last for one day and bit-stream reloading happens once a week. 
The contents of table 1 represent load of activities in the real world and the following 
formulas are used to calculate table 2 and table 3, and Fig. 9 values are used to make an 
analogy between these two methods. Table 3 and table 4 show differences of running 
master-key and IKM for minutely, hourly and daily keys.  

 Master-key load for n� = (k�� + k��) * 7 * n�  (1) 

 IKM load for n� = (i�� + i��) + (n� * b��)  (2) 
 

Item explanation Metric Symbol 

Key distribution load (master-key) 1KB k��	
Key revocation load (master-key) 0.5KB k��	
Interpreter distribution load (IKM) 50KB i��	
Interpreter revocation load (IKM) 0.5KB i��	
Bit-stream downloading load 0.5KB b��	
Number of weeks - n�	

Table 1. Traffic load and symbol of activities 
 

Number of weeks Master-key IKM 

1 10.5 51 

4 42 52.5 

13 136.5 57 

26 273 63.5 

52 546 76.5 

Table 2. Daily key imposed load on server and network per node 
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Fig. 9. Analogy of IKM and master-key traffic load on key management server for daily key 

As is visible in the results of table 3 and table 4 after one year IKM’s imposed traffic for the 
daily key is  , for the hourly key is , and for the minutely key is  of master-key 
imposed traffic. 
 

Key per session 
No. of keys Load per key 

364 1.5KB 

Table 3. Number and imposed traffic load of key per session after 52 weeks 

IKM 
Minutely key Hourly key Daily key 

No. of keys Load per key No. of keys Load per key No. of keys Load per key 
524160 0.000145KB 8736 0.00875 KB 364 0.208 KB 

Table 4. Number and imposed traffic load of IKM keys after 52 weeks for minutely, hourly 
and daily keys 
  

Feature IKM Master-key 

Replay attack resistance   

Man in the middle resistance   

Brute force attack resistance   

Less key management traffic   

Intelligent reaction against attackers   

Easy key distribution   

Easy key revocation   

Dynamism   

Less traffic per key   

Table 5. IKM and master-key features comparison 
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4.2.2 Analysis of comparison results 

Figure 9 is drawn based on table 1 and table 2 values. It shows that employing IKM would 
be more beneficial if the number of needed fresh keys is over 34. When the number of fresh 
keys for sessions is less than 34, utilizing master-key is easier and more cost effective, but 
when it exceeds this threshold then IKM would be more secure and economic. As the 
number of needed keys increases, IKM imposes less traffic and even after one year for IKM’s 
minutely key it would be less than one bit per generated key.  

The second important point is the level of desired security. IKM reacts more intelligently 
than master-key against attacks. Because of IKM’s structure, running brute force and replay 
attacks against IKM is impossible, but for man in the middle master-key is safer.  

Altogether, if terms of running encrypted sessions longer than 34 keys (34 days for daily 
key, 34 hours for hourly key or 34 minutes for minutely key) and if a safer technique is 
needed then IKM is the more convenient choice, but for short-term sessions the master-key 
is more reasonable.  

5. Conclusion 
Cryptography is the technique of making information unintelligible for unauthorized 
parties. To do so many techniques have been developed which guaranty secrecy of 
encrypted information. Master-key is one internationally approved technique that can 
generate cryptographic keys using some environmental parameters like parties’ 
information. Interpretative key management (IKM) framework is a newly devised method 
that has many similarities with master-key such as the power of key generation and using 
environmental parameters in key generation. 

Since both techniques have some features in common, this article gives a comparative 
analysis to help researchers or developers who are going to utilize one of them and gives a 
guide for choosing between these two regarding their requirements and criteria. 

A comparison of the results shows that for short-term or temporary secured sessions utilizing 
master-key is easier and more cost effective. But in the long run, utilizing IKM is not only more 
beneficial but also, because of its intelligent attack resiliency features, is more secure. 
Regarding imposed traffic load on the network, threshold of moving from master key to IKM 
is using 34 keys which depend on chosen IKM key generation method would vary from 34 
minutes to 34 days. From the point of view of equipment needed both schemes need to have a 
server. For master-key the server is responsible of generating and distributing fresh keys and 
with regard to providing a key per session it is almost steadily in the process of generating and 
distributing fresh keys. While for IKM the server generates and distributes the interpreter once 
and then afterwards only supervises the security status of nodes. 

To sum up the main criteria for choosing either master-key or IKM is the period of running 
secured sessions and the necessity for intelligent security features. 
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needed then IKM is the more convenient choice, but for short-term sessions the master-key 
is more reasonable.  

5. Conclusion 
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parties. To do so many techniques have been developed which guaranty secrecy of 
encrypted information. Master-key is one internationally approved technique that can 
generate cryptographic keys using some environmental parameters like parties’ 
information. Interpretative key management (IKM) framework is a newly devised method 
that has many similarities with master-key such as the power of key generation and using 
environmental parameters in key generation. 

Since both techniques have some features in common, this article gives a comparative 
analysis to help researchers or developers who are going to utilize one of them and gives a 
guide for choosing between these two regarding their requirements and criteria. 

A comparison of the results shows that for short-term or temporary secured sessions utilizing 
master-key is easier and more cost effective. But in the long run, utilizing IKM is not only more 
beneficial but also, because of its intelligent attack resiliency features, is more secure. 
Regarding imposed traffic load on the network, threshold of moving from master key to IKM 
is using 34 keys which depend on chosen IKM key generation method would vary from 34 
minutes to 34 days. From the point of view of equipment needed both schemes need to have a 
server. For master-key the server is responsible of generating and distributing fresh keys and 
with regard to providing a key per session it is almost steadily in the process of generating and 
distributing fresh keys. While for IKM the server generates and distributes the interpreter once 
and then afterwards only supervises the security status of nodes. 

To sum up the main criteria for choosing either master-key or IKM is the period of running 
secured sessions and the necessity for intelligent security features. 
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1. Introduction 
IPsec is one of the most secure technologies nowadays. It is used in almost all institutions 
that are concerned with protecting their communications. Although IPsec is not a very hard 
set of protocols to understand and use, once you get into its details and try to understand 
how it works, what is its applicability and what are its limitations, you will find yourself 
surrounded by mathematics, cryptography and network protocol design challenges. 
Because IPsec is not just another “encryption” protocol. It is actually an entire stack of 
protocols, ranging from negotiation protocols, to authentication protocols,  to access 
network technologies, tunnelling protocols, PKI availability, routing and last, but not least, a 
good deal of cryptography. Companies use IPsec to securely connect their branches to the 
headquarters or between each other, over the Internet. Just the same, the remote workers 
have the possibility to securely access their data located at their work place premises no 
matter where they are. One of the most important aspects of this technology is its 
authentication role. By itself, IPsec does not provide network authentication. The 
authentication role of this stack of protocols is reserved for the IKE procedures. Currently at 
version 2, IKE has managed to simplify the authentication process of a peer and at the same 
time has managed to increase the security of this process. One of the latest additions to these 
authentication procedures is the support for mobile subscriber authentication. This 
functionality is achieved by incorporating the UMTS-SIM and UMTS-AKA key exchange 
protocols, useful in the NGN world. 

Authentication functionality is closely related to identity protection and identification. In a 
world of mobile devices and wireless communication, the identity theft and impersonation 
are a continuously raising concern. The NGN technologies require the provisioning of 
services at an end-to-end guaranteed quality of experience, provided through high data 
rates and aggressive SLAs. The aim of the future technologies is to provide multimedia 
services no matter the location of the subscribers, which assumes inter-operator agreements 
all over the Globe, location and presence services. In order to maintain a high level of 
quality and availability, proper authentication, correct authorization and detailed and 
rigorous accounting are essential. Examples of NGN networks range from 4G access 
networks, like WiMAX and SAE to the converged services core, as it is IMS. These 
technologies are still under development. Even though there are already a number of 
production implementations, the technologies are still perfecting; one aspect of this process 
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networks, like WiMAX and SAE to the converged services core, as it is IMS. These 
technologies are still under development. Even though there are already a number of 
production implementations, the technologies are still perfecting; one aspect of this process 
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is security. IPsec is an important part of the design of any NGN system, for its proved 
security in the wireline industry (Liu, 2010). It supports IPv4 a set of protocols on top of 
layer 3 design and it is natively integrated into IPv6. The development of IPv6 considered 
this technology as a native part of the layer 3 design, in order to provide for security 
mechanism of the future networks. IMS design (TS 24.229) was originally described as 
running only over IPv6. 

This paper does a brief analysis of the security issues faced by the NGN mobile 
equipment users, as well as the ones faced by the NGN operators. As it describes the 
security challenges the NGN is going to face, it explores the areas where IPsec has been 
described as the answer to the question for a secure communication environment in the 
near future. The paper goes over the IPsec applications in a near future access network as 
WiMAX and SAE are, as well as the usage of this technology in the IMS world. IPsec 
integrates technologies like key agreement and management via the EAP and PKI 
frameworks. One goal of this paper is to identify use cases and scenarios where the IPsec 
of the future is going to take effect. Even though the NGN mobile terminals are already 
powerful enough to support the cryptographic computations necessary to function as an 
IPsec peer, these terminals may make use of the ECC technology to improve their 
performances. While encrypting the traffic with IPsec is a good security practice, applying 
this practice to VoIP or Video traffic, sensitive to delays and latencies, poses a number of 
efficiency challenges. This is when the IKE capabilities come into play; IPsec provides key 
exchange functionality for SIP negotiation, so that the IMS voice and video traffic is to be 
protected (RFC4475, 2006; Vrakas, 2010; Wang, 2009). While reviewing the role and 
capabilities of the IPsec, as well as its possible applications in the next generation 
architectures, this paper also identifies some of the challenges and limitations this 
framework faces in the NGN context: mobile IP and mobility management, resistance to 
denial of service attacks, multimedia protocols, IPv6 control protocols and so on. Though 
a classic security solution for wireline technologies, IPsec diversifies and evolves, acquires 
new features and capabilities, while at the same time getting lighter to accommodate the 
requirements of the mobile subscribers. This paper proposes a journey of understanding 
how the technology that secures our communications works and how it can be applied in 
the near-future applications and network design. 

2. IPsec technologies 
IPsec (Internet Protocol Security) can be defined as a complex set of protocols on top of IP, 
supported on both IPv4 and IPv6. By itself, IPsec refers to the technology employed in 
order to secure the transmission of information over an unprotected medium. The 
security of the transmission may be achieved by using two sets of protocols: ESP 
(Encapsulated Security Payload) and AH (Authentication Header). In order to be able to 
use one of these two protocols, or both of them at the same time, security information in 
the form of encryption and/or authentication keys must be available. This information 
may be statically pre-configured by a security administrator or it may be dynamically 
negotiated between the IPsec entities/peer. The first case is referred to as manual keying. In 
this case, the security administrator has already configured security information on both 
end of the IPsec communication channel; the traffic passing through the IPsec equipment 
and matching several conditions is to be protected using this information. The second 
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way of achieving the security agreement between the IPsec aware devices is to 
dynamically negotiate the session information between the IPsec peers. This method has 
the advantage of dynamic keying, but it may also be susceptible to man-in-the-middle 
attacks in the first phases of the negotiation. The generic protocol employed to do the 
negotiation is called ISAKMP (Internet Security Association and Key Management 
Protocol), represented most commonly by the IKE (Internet Key Exchange) protocol, 
which has reached its second version. When discussion the use-cases that can take place 
in an IPsec environment, the IPsec peers may find themselves in one of these two 
scenarios: one is called site-to-site and the other one is called remote-access. These two 
scenarios both refer to the situation where the IPsec computation takes place either 
between two security gateways or between a security gateway and a stand-alone unit 
(laptop, pda, smartphone...) called roadwarrior; this scenario is also called dial-up vpn by 
some security vendors. There is a separate case where the IPsec peers want to transmit 
information between each-other in a secure manner, but without the use of an external 
service provider (as it is a security gateway). This case is called transport mode. 

2.1 IPsec architecture and traffic logic 

The main components of the IPsec architecture are the following: 

a. the Policy Agent: this component has the responsibility of negotiating the IPsec 
cryptographic parameters; these parameters refer to traffic identifiers (also called traffic 
selectors) that are input as a tuple in the Security Policy Database 

b. the Security Policy Database(SPD): this component is a database (considering it as a 
stand-alone database implementation or part of an operating system kernel); it consists 
of tuples that represent the traffic selectors of an IPsec agreement: the IP addresses or 
the subnet which the traffic to be secured belongs to, or, for some of the IPsec 
equipment on the market, it may also contain port numbers in order to identify the 
traffic 

c. the Security Association Database(SAD): this component is a database as well (stand-
alone or part of a kernel implementation); it contains the IKE and IPsec security 
parameters that are negotiated: cryptographic algorithms, authentication information 
and identification information 

Tuples in both databases are indexed and retrieved at run-time via their index, called SPI 
(Security Parameter Index), a value transmitted at run-time in each IPsec packet, in order 
for the receiver to select the proper tuple for decryption of the packet. The traffic logic 
flow of an IPsec use-case is the following: the Policy Agent is the one to start the IKE 
negotiation process, which consists of two phases (for each IKEv1 and IKEv2 protocols). 
The output of the Phase 1 is called ISAKMP SA(Security Association). The output of the 
Phase 2 is called IPsec SA. The IPsec processing engine adds a new layer of 
transformation for the actual network traffic; the engine is integrated to the TCP/IP stack 
of the system and it is called when a particular IP or a layer 4 segment matches the 
conditions for IPsec. Depending on each implementation, there may be available the 
configuration of different keys per traffic direction or a single set of keys for each IPsec 
tunnel. Also, there are ways to configure the Policy Agent to function based on the policy 
configured for that equipment (policy-based tunnelling), or to be triggered by a route 
utilization (route-based tunnelling). 
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2.2 Secure tunnel negotiation 

In order to securely establish a dynamic IPsec tunnel, the ISAKMP – IKE protocol is used, 
whether its version 1 or version 2. Version 1 is considered less safe than version 2, where 
multiple security vulnerabilities where covered by safer implementation. IKEv1 is 
considered more difficult to implement. IKEv1 is described in RFC 2409 and it is currently 
implemented by all the major security equipment providers. Both IKEv1 and IKEv2 
negotiate the IPsec SA in two phases. Phase 1 in IKEv1 can be accomplished in two separate 
and incompatible flows. One of them is referred to as Main Mode and it has 6 messages (or 3 
exchanges), and the second one is called Aggressive Mode and it consists of 3 messages. Phase 
2 of IKEv1 is referred to as Quick Mode and it has 3 messages. 

The Main Mode messages are the following: 

- HDR ISAKMP SAi Proposal – request sent by the Initiator of the tunnel to the 
Responder, containing the encryption and authentication algorithms 

- HDR ISAKMP SAr Response – response sent by the Responder, containing its available 
encryption and authentication methods 

- HDR DH KEi, Ni – message identifying the Diffie-Hellman group and keying material, 
as well as the Initiator nonce 

- HDR DH KEr, Nr – same as the previous message, but identifying the Responder’s 
capabilities 

- HDR IDi, Hashi – authenticates the Initiator’s Identity 
- HDR IDr, Hashr – authenticates the Responder’s Identity 

Because the 5th and 6th messages are preceded by the exchange of cryptographic 
information and DH groups, the identities exchanged by them are already encrypted; this 
makes Main Mode exchange referred to as providing Identity Protection. This protection if 
identity does not happen for Aggressive Mode, where the phase 1 of IKEv1 has only 3 
messages: 

- ISAKMP SAi Proposal, DH KEi, Ni, IDi – request sent by the Initiator, containing 
cryptographic information, Diffie-Hellman material, a nonce and the Identity of the 
Initiator – in clear 

- ISAKMP SAi Response, DH KEr, Nr, IDr, Hashr – same as the proposal, but with the 
Responder’s information 

- HDR Hashi2 – the Initiator’s hash 

In the notations above, the “i” refers to the initiator of the IPsec negotiation, while the “r” 
refers to the responder of the IPsec negotiation offer. 

Phase 1 is followed by Phase 2, also called Quick Mode. The purpose of this exchange is to 
negotiate the traffic selectors and the cryptographic information for the actual data-plane 
encapsulation. This traffic is referred to as non-ISAKMP by RFC 2409. Quick Mode is 
composed of three messages: 

- HDR, Hashi, SA, Ni, [KEi, IDi, IDr] – this message contains the IKE header, hash, SA, nonce 
and optionally the new DH key, and identities of the parties and it is send by the Initiator 

- HDR, Hashr, SA, Nr, [KEr, IDi, IDr] – same as above, but on the Responder side 
- HDR, Hashi2 – last message of the Initiator before sending traffic 
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The second version of IKE, IKEv2 is not fully supported by all equipments on the market, 
but it is starting to get more and more attention, due to its capabilities: faster tunnel setup, 
more secure negotiations, more consistent authentication and identification rules, simpler 
implementation etc. There is only one type of so-called Phase 1 and Phase 2 in IKEv2. The 
IKEv2 exchange is the following: 

- HDR (IKE_SA_INIT), SAi1, KEi, Ni – the initial request coming from the Initiator and 
containing the cryptographic parameters, DH keys and a nonce 

- HDR (IKE_SA_INIT), SAir, KEr, Nr, [CERTREQ] – same as above, the Responder 
having the possibility to ask for a digital certificate at this point 

- HDR (IKE_AUTH), SK {IDi, [CERT,] [CERTREQ,] [IDr], AUTH, SAi2, TSi, TSr} – 
authentication message, encrypted and authenticated (as in the first exchange there was 
already sent the DH information), containing the authentication information, ID of the 
other party, SA and traffic selectors of the Initiator as well as the Responder 

- HDR (IKE_AUTH) SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr} – same as above, but from 
the Responder’s side 

- HDR (CREATE_CHILD_SA), SK {[N], SA, Ni, [KEi], [TSi, TSr]} – request for creating an 
SA (IPsec SA) with the nonces, DH keys and traffic selectors indicated 

- HDR (CREATE_CHILD_SA) SK {SA, Nr, [KEr], [TSi, TSr]} – same as above, from 
Responder’s side 

The first four messages can be assimilated as Phase 1 of the IKEv2, and the last two 
messages as Phase 2 of the IKEv2. Nevertheless, at tunnel establishment time, only the first 
four messages appear in the negotiation, as usually the information provided by the last two 
messages is comprised in messages 3 and 4. The last 2 messages are used for the re-keying 
process. 

2.3 Secure data transmission 

After having established the secure parameters to be employed in order to protect the 
transmission of the data, two protocols can be used to achieved this security, either separate 
or both at the same time. These protocols are AH (RFC 4302) and ESP (RFC 4303). AH 
protocol number is 51 and the purpose of this protocol is to ensure protection against replay 
attacks, due to the integrity check and sequencing it employs. AH method makes a hash of 
the entire IP packet (both headers and data payload) and adds this has value to the packet 
sent over the wire. The only fields not taken into consideration when computing the hash 
value are the ones that are expected to change when routing occurs in a normal network: 
TTL, TOS, CRC etc. The ESP protocol number is 50 and this method encrypts the data using 
the material and algorithms negotiated earlier. ESP only encapsulates the payload. 

2.4 Authentication and Identification 

Two of the most important aspects of the IPsec negotiation are the authentication and 
identification. Not only do they perform two important functions (authenticating the IPsec 
peers to each other and identifying the peers to each other), but they are a crucial point for 
interoperability between different IPsec implementations. Not all networks worldwide 
happen to use exactly the same equipment as IPsec peers, so interoperability issues arise in 
many situations. RFC 2409 defines only two types of authentication available for IKEv1: PSK 
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makes Main Mode exchange referred to as providing Identity Protection. This protection if 
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Phase 1 is followed by Phase 2, also called Quick Mode. The purpose of this exchange is to 
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The second version of IKE, IKEv2 is not fully supported by all equipments on the market, 
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four messages appear in the negotiation, as usually the information provided by the last two 
messages is comprised in messages 3 and 4. The last 2 messages are used for the re-keying 
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2.3 Secure data transmission 

After having established the secure parameters to be employed in order to protect the 
transmission of the data, two protocols can be used to achieved this security, either separate 
or both at the same time. These protocols are AH (RFC 4302) and ESP (RFC 4303). AH 
protocol number is 51 and the purpose of this protocol is to ensure protection against replay 
attacks, due to the integrity check and sequencing it employs. AH method makes a hash of 
the entire IP packet (both headers and data payload) and adds this has value to the packet 
sent over the wire. The only fields not taken into consideration when computing the hash 
value are the ones that are expected to change when routing occurs in a normal network: 
TTL, TOS, CRC etc. The ESP protocol number is 50 and this method encrypts the data using 
the material and algorithms negotiated earlier. ESP only encapsulates the payload. 

2.4 Authentication and Identification 

Two of the most important aspects of the IPsec negotiation are the authentication and 
identification. Not only do they perform two important functions (authenticating the IPsec 
peers to each other and identifying the peers to each other), but they are a crucial point for 
interoperability between different IPsec implementations. Not all networks worldwide 
happen to use exactly the same equipment as IPsec peers, so interoperability issues arise in 
many situations. RFC 2409 defines only two types of authentication available for IKEv1: PSK 



 
Cryptography and Security in Computing 

 

224 

(pre-shared key) and digital certificates/RSA, while RFC 4306 for IKEv2 defines four 
authentication types: PSK, RSA, DSS and EAP (Extensible Authentication Protocol). The 
way these options are combined it is a totally different discussion. Most of the site-to-site 
implementations use a symmetrical authentication scheme (both peers use the same type of 
authentication for the tunnel being established). On the other hand, the remote-access 
scenarios many times use a hybrid authentication scheme, where the security gateway 
authenticates to the road-warriors via a digital certificate, while the clients are authenticated 
via a password. At the same time, if we are discussing IKEv2, where the EAP method is 
available, there are many more ways of authentication of the road-warriors. 

Configuring PSK on devices is many time straight forward. The RSA configuration tends to 
be more difficult, as it assume the existence of a PKI infrastructure. As an example, on 
Strongswan, by default, there is a dedicated directory where the root certificates should 
reside (/etc/ipsec.d/cacerts). In /etc/ipsec.d/certs the administrator should copy the IPsec 
certificates for the local machine. All these files paths may be changed from a configuration 
file (/etc/ipsec.conf). The certificates are usually supplied in pem format, but they can also be 
parsed in der format (this option is default for Windows CA servers) and the administrator 
can convert a certificate from one format to another using a tool like openssl. When exporting 
a certificate generated on the CA, both the public and the private keys are downloaded 
(because the csr file has been directly generated on the CA). In this case, the format 
presented is PKCS12. From PKCS12, the administrator is able to extract both the public key 
(in a digital certificate) and the private key, in separate files. 

- from DER to PEM format: 
openssl x509 -inform DER -in local.cer -outform PEM -out local.pem 
- from PKCS12 to PEM format: 
openssl pkcs12 -in myFile.p12 -out cert.pem -clcerts –nokeys 

IOS, JunOS or StokeOS network operating systems usually keep the certificate information 
in their non-volatile memory. 

The next step after achieve peer authentication is the proper identification of the peers to 
each other. This step is very important and it is also very important that the identities of the 
peers are not disclosed to unauthorized parties. This is one reason why Aggressive Mode 
method, which does not provide Identity Protection, is no longer included in IKEv2. RFC 
2407 identifies the syntax for the identification variables in IKEv1, and RFC 4306 describes 
this syntax for IKEv2. The identification payload types for IKEv1 are the following: 
ID_IPv4_ADDR, ID_FQDN, ID_USER_FQDN, ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR, 
ID_IPV6_ADDR_SUBNET, ID_IPV4_ADDR_RANGE, IP_IPV6_ADDR_RANGE, 
ID_DER_ASN1_DN, ID_DER_ASN1_GN, ID_KEY_ID, and the ones for IKEv2 are the 
following: ID_IPV4_ADDR, ID_IPV6_ADDR, ID_FQDN, ID_RFC822_ADDR, 
ID_DER_ASN1_DN, ID_DER_ASN1_GN, ID_KEY_ID.  

Identification is one of the major aspects when it comes to interoperability issues, especially 
when the administrator has to configure a particular type of identification mechanism which 
is not supported on the peer equipment. Strongswan for instance accepts ID_IP_ADDR (and 
ID_IP_ADDR_SUBNET for IKEv1), both v4 and v6, ID_FQDN, as in the certificate. The file 
also permits the configuration of an ID_ASN1_DER_CN, where the administrator can enter 
the entire subject of the certificate or only certain fields.  
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conn connection1 
left=192.168.0.1 
right=192.168.0.2 
leftid="C=RO, ST=Romania, L=Bucharest, O=Company, OU=Department, 
CN=DebianTest/emailAddress=debian@test.com" 
rightid="C=US, ST=California, L=Calabasas, O=Company, OU=Department, 
CN=Test1" 

Other equipment has a more or less similar way of defining this set of parameters. 

A particular case is IEKv2-EAP. This protocol is described by RFC 3748 and it supports the 
following internal EAP methods: MD5, TLS, SIM, AKA etc. While MD5 is a simple protocol 
that can be implemented locally on the IPsec peer, TLS, SIM or AKA usually require an 
external Radius server, like ACS, FreeRadius or NPS. This is not a mandatory condition, but 
it is a good practice to have the authentication server separated from the IPsec peer. TLS can 
be used for almost any type of connection and it may also only authentication the server to 
the client, as per the TLS specifications. SIM protocol was defined for authentication in 2G 
networks, used for proving the GSM Subscriber Identity of the client to the 3G access 
network; this protocol is described in RFC 4186. EAP-AKA (Authentication and Key 
Agreement) has been defined for authentication of the 3G subscribers to the 3G networks 
which have a Radius server. Further on, the EAP-AKA is the preferred method of the 4G 
network authentication procedures, when the mobile equipment to be authenticated is a 
non-native 4G equipment. LTE uses the native AKA procedure for authenticating the native 
4G handset, using the AAA proxy for mobile devices connecting from WiFi or WLAN areas. 

An example of an EAP-SIM and EAP-AKA users as they are defined in a FreeRadius 
implementation is described below. 

user1 Auth-Type := EAP, EAP-Type := EAP-TLS, Password == "p@ssw0rd" 
eapsim1 Auth-Type := EAP, EAP-Type := SIM 
EAP-Sim-RAND1 = 0x201112131415161718191a1b1c1d1e1f, 
EAP-Sim-SRES1 = 0xd2d2d3d4, 
EAP-Sim-KC1 = 0xa0a2a2a3a4a5a6a7, 
eapaka1  Auth-Type := EAP, EAP-Type := AKA 
EAP-Sim-AUTN  = 0xa0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0, 
EAP-Aka-IK    = 0xb0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0, 
EAP-Aka-CK    = 0xc0c0c0c0c0c0c0c0c0c0c0c0c0c0c0c0, 
EAP-Sim-RES   = 0xd0d0d0d0d0d0d0d0d0d0d0d0d0d0d0d0, 
EAP-Sim-RAND  = 0xe0e0e0e0e0e0e0e0e0e0e0e0e0e0e0e0, 

As for the moment, the IPsec technology is mature enough and considered stable. 
Improvements have been made to IKEv2 to support a large range of scenarios. What is of 
interest in this paper is how much of IPsec can actually be used in the Next Generation 
Networks, with emphasis on 4G-SAE, the mobile technology that has the greatest area of 
attention at the moment. We can use IPsec in a peer-to-peer manner for providing hop-by-
hop security between core network elements, but we should be able to learn a lot from its 
authentication and negotiation stages in order to secure the 4G access level, which is of 
bigger interest due to the large number of devices that will try to connect, as well as due to 
the large number of connectivity and mobility scenarios employed (Wang, 2008). 
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(pre-shared key) and digital certificates/RSA, while RFC 4306 for IKEv2 defines four 
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implementations use a symmetrical authentication scheme (both peers use the same type of 
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via a password. At the same time, if we are discussing IKEv2, where the EAP method is 
available, there are many more ways of authentication of the road-warriors. 

Configuring PSK on devices is many time straight forward. The RSA configuration tends to 
be more difficult, as it assume the existence of a PKI infrastructure. As an example, on 
Strongswan, by default, there is a dedicated directory where the root certificates should 
reside (/etc/ipsec.d/cacerts). In /etc/ipsec.d/certs the administrator should copy the IPsec 
certificates for the local machine. All these files paths may be changed from a configuration 
file (/etc/ipsec.conf). The certificates are usually supplied in pem format, but they can also be 
parsed in der format (this option is default for Windows CA servers) and the administrator 
can convert a certificate from one format to another using a tool like openssl. When exporting 
a certificate generated on the CA, both the public and the private keys are downloaded 
(because the csr file has been directly generated on the CA). In this case, the format 
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in their non-volatile memory. 

The next step after achieve peer authentication is the proper identification of the peers to 
each other. This step is very important and it is also very important that the identities of the 
peers are not disclosed to unauthorized parties. This is one reason why Aggressive Mode 
method, which does not provide Identity Protection, is no longer included in IKEv2. RFC 
2407 identifies the syntax for the identification variables in IKEv1, and RFC 4306 describes 
this syntax for IKEv2. The identification payload types for IKEv1 are the following: 
ID_IPv4_ADDR, ID_FQDN, ID_USER_FQDN, ID_IPV4_ADDR_SUBNET, ID_IPV6_ADDR, 
ID_IPV6_ADDR_SUBNET, ID_IPV4_ADDR_RANGE, IP_IPV6_ADDR_RANGE, 
ID_DER_ASN1_DN, ID_DER_ASN1_GN, ID_KEY_ID, and the ones for IKEv2 are the 
following: ID_IPV4_ADDR, ID_IPV6_ADDR, ID_FQDN, ID_RFC822_ADDR, 
ID_DER_ASN1_DN, ID_DER_ASN1_GN, ID_KEY_ID.  

Identification is one of the major aspects when it comes to interoperability issues, especially 
when the administrator has to configure a particular type of identification mechanism which 
is not supported on the peer equipment. Strongswan for instance accepts ID_IP_ADDR (and 
ID_IP_ADDR_SUBNET for IKEv1), both v4 and v6, ID_FQDN, as in the certificate. The file 
also permits the configuration of an ID_ASN1_DER_CN, where the administrator can enter 
the entire subject of the certificate or only certain fields.  
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Other equipment has a more or less similar way of defining this set of parameters. 

A particular case is IEKv2-EAP. This protocol is described by RFC 3748 and it supports the 
following internal EAP methods: MD5, TLS, SIM, AKA etc. While MD5 is a simple protocol 
that can be implemented locally on the IPsec peer, TLS, SIM or AKA usually require an 
external Radius server, like ACS, FreeRadius or NPS. This is not a mandatory condition, but 
it is a good practice to have the authentication server separated from the IPsec peer. TLS can 
be used for almost any type of connection and it may also only authentication the server to 
the client, as per the TLS specifications. SIM protocol was defined for authentication in 2G 
networks, used for proving the GSM Subscriber Identity of the client to the 3G access 
network; this protocol is described in RFC 4186. EAP-AKA (Authentication and Key 
Agreement) has been defined for authentication of the 3G subscribers to the 3G networks 
which have a Radius server. Further on, the EAP-AKA is the preferred method of the 4G 
network authentication procedures, when the mobile equipment to be authenticated is a 
non-native 4G equipment. LTE uses the native AKA procedure for authenticating the native 
4G handset, using the AAA proxy for mobile devices connecting from WiFi or WLAN areas. 

An example of an EAP-SIM and EAP-AKA users as they are defined in a FreeRadius 
implementation is described below. 
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As for the moment, the IPsec technology is mature enough and considered stable. 
Improvements have been made to IKEv2 to support a large range of scenarios. What is of 
interest in this paper is how much of IPsec can actually be used in the Next Generation 
Networks, with emphasis on 4G-SAE, the mobile technology that has the greatest area of 
attention at the moment. We can use IPsec in a peer-to-peer manner for providing hop-by-
hop security between core network elements, but we should be able to learn a lot from its 
authentication and negotiation stages in order to secure the 4G access level, which is of 
bigger interest due to the large number of devices that will try to connect, as well as due to 
the large number of connectivity and mobility scenarios employed (Wang, 2008). 
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There are multiple studies regarding the security of the IPsec, and specially the IKE 
protocols. One of them (Cremers, 2011) identifies the following vulnerabilities: Reflection 
attack on IKEv1 Main Mode with digital signatures or pre-shared keys, Reflection attack on 
IKEv1 Quick Mode, Reflection attack on IKEv1 Main Mode with public key encryption, 
Authentication failure on IKEv1 Aggressive Mode with digital signatures, Authentication 
failure on IKEv1 Main Mode with digital signatures that does not require self-
communication, Reflection attack on IKEv2 phase 2 exchange. Another important aspect of 
the IPsec protocol is the computational overhead, described in detail in (Xenakis, 2006). The 
factors taken into account are the encryption type and the authentication mechanism, and 
the resultants reflect in the system throughput, total delay and rate increase of the protected 
data. (Shue, 2007) Overall, the throughput overhead is larger than the overhead brought in 
by upper layer security protocols, like SSL or TLS, but the security offered by IPsec is also 
higher and the protocol can tunnel and secure a larger variety of traffic protocols than SSL 
or TLS can. 

3. 4G and services networks technologies 
4G is the next generation network technology at the moment. 4G is a generic term that 
defines a set of features and capabilities for a radio network, as well as for quality of service, 
mobility and services provided to the customer. It is not strictly related to a particular 
technology. It has been declared that both WiMAX and LTE are considered 4G technologies. 
WiMAX is being standardized by the WiMAX forum, being developed from the 802.16 
family of wireless standards. The 802.16 is also being called fixed WiMAX and was 
published in 2001. In 2005, the 802.16e family was deployed, called mobile WiMAX. In 2011, 
there have begun to appear implementations of 802.16m. At the same time, the 3GPP forum 
also worked on improving the UMTS technology, which is considered a 3G generation. This 
is how the LTE (Long Term Evolution) technology came into existence. LTE is considered a 
4G technology and it proposes an all-IP network, simplifying the access level of the network, 
as well as providing support for higher transmission rates due to improvements on the 
radio side and dynamic or seamless handover to both 3G networks, as well as to non-3GPP 
networks, like WiMAX or WLAN. Both 4G technologies are aiming at providing a simple 
and transparent access to the services network, for their subscribers. One example of 
services network is the IMS (IP Multimedia Subsystem), developed by 3GPP. IMS supports a 
large area of services, from simple data, voice and video to sms, mms, push-to-talk, 
conferencing and presence. A different approach to connecting to an IMS network is the 
direct access to Internet, where the services accessed may be the same ones as accessed from 
a wireless connection, without being provided in a unified manner, as in IMS. There is also 
possible an intermediary solution, where the services network is only referring to the 
Application Servers (AS) part of the IMS, overlooking the call session functions (Plewes, 
2007; Sayyad, 2011). 

From now on, the paper will provide a short introduction into the 3GPP LTE technology 
and discuss the security issues that appear at the access layer of this architecture 
(Kowtarapu, 2009). We will see what decisions the 3GPP forum has made in terms of 
protocols to use, their advantages and vulnerabilities and investigate how we can use the 
lessons learnt from our experience with IPsec. 
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3.1 3GPP LTE architecture and services network 

The 4G-LTE architectures comprises two main components: the radio access network and 
the EPC (Evolved Packet Core). The radio access network is the eNodeB(the antenna) and 
the radio medium. The core network contains multiple devices, with roles in signaling, 
authentication, routing, providing quality of service and so on. The following elements are 
the most common devices located in the LTE core network (TS 23.203, TS 23.401, TS 29.274, 
TS 33.401): 

a. MME (Mobility Management Entity): it deals with user registration to the network, 
signalling and mobility management; it can be partially assimilated with the SGSN 
(Serving GPRS Support Node) from the UMTS architecture, with two major differences: 
the MME, unlike the SGSN, only does signalling, and, unlike SGSN, additionally has a 
management position towards the antennas; the MME connects to the database that 
holds the subscriber authentication information, having a very important role in the 
user authentication; in 3G, the RNC (Radio Network Controller) had the dedicated 
function of antenna management; 

b. SGW (Serving Gateway): unlike the MME, this entity does both signalling and traffic 
plane and it is responsible for routing data traffic to a particular set of radio cells (called 
Tracking Areas); 

c. PGW (Packet Data Network Gateway): this component is the one connecting the access 
network (LTE network) to the services network (IMS, Internet, Intranet etc); it is also 
one of the QoS enforcement points, together with the antenna; the PGW is connected to 
the database that holds the subscriber information; this entity may be assimilated to the 
3G GGSN (Gateway GPRS Support Node) (Good, 2007); 

d. PCRF (Policy Charging and Rules Function): the policy database holding the 
subscription information material (Yang, 2011); 

e. HSS (Home Subscriber Server): the database holding information about the mobile 
equipment identity and credentials; 

The picture below is a schematic representation of a typical 4G network (TS 29.061), where 
the access side is done via native 4G environment, as well as via 3G and non-3GPP media. 

The antenna is the first point of contact of the user to the LTE network. The mobile 
equipment connects to the network, identifies this network and upon the user signalling to 
the network, the LTE starts the authentication process. The entities involved in this process 
are the mobile equipment, as one of the authentication peers (the client), the HSS, as the 
second authentication peer (the server), the MME as the authenticator and the eNB, as a sort 
of authentication relay. The MME is the one requesting the UE (User Equipment) its identity 
information, when downloading credentials from the HSS, in order to start the 
authentication process and secure key establishment with the mobile. The protocol used for 
this process is AKA (in native 4G and 3G) and EAP-AKA for the non-3GPP access. Once the 
authentication is complete, there take place several keys determination, based on 
mathematical functions defined by 3GPP. The key hierarchy is different for each case: 3G. 
4G and non-3GPP. In the 4G case, there are keys for securing and/or authenticating both 
signalling and data-plane traffic flows, unlike 3G, where only the data-plane was secured. 
Also, there are specific requirements on how to assure a safe interoperability function 
between these types of access levels. For instance, the handover from a 4G network to a 3G 
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3.1 3GPP LTE architecture and services network 
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the radio medium. The core network contains multiple devices, with roles in signaling, 
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function of antenna management; 
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plane and it is responsible for routing data traffic to a particular set of radio cells (called 
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d. PCRF (Policy Charging and Rules Function): the policy database holding the 
subscription information material (Yang, 2011); 

e. HSS (Home Subscriber Server): the database holding information about the mobile 
equipment identity and credentials; 

The picture below is a schematic representation of a typical 4G network (TS 29.061), where 
the access side is done via native 4G environment, as well as via 3G and non-3GPP media. 

The antenna is the first point of contact of the user to the LTE network. The mobile 
equipment connects to the network, identifies this network and upon the user signalling to 
the network, the LTE starts the authentication process. The entities involved in this process 
are the mobile equipment, as one of the authentication peers (the client), the HSS, as the 
second authentication peer (the server), the MME as the authenticator and the eNB, as a sort 
of authentication relay. The MME is the one requesting the UE (User Equipment) its identity 
information, when downloading credentials from the HSS, in order to start the 
authentication process and secure key establishment with the mobile. The protocol used for 
this process is AKA (in native 4G and 3G) and EAP-AKA for the non-3GPP access. Once the 
authentication is complete, there take place several keys determination, based on 
mathematical functions defined by 3GPP. The key hierarchy is different for each case: 3G. 
4G and non-3GPP. In the 4G case, there are keys for securing and/or authenticating both 
signalling and data-plane traffic flows, unlike 3G, where only the data-plane was secured. 
Also, there are specific requirements on how to assure a safe interoperability function 
between these types of access levels. For instance, the handover from a 4G network to a 3G 
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network is simpler and does not require additional cryptographic computation, while the 
handover from a 3G network to a 4G network is more cumbersome. In order to achieve 
authentication for the non-3GPP devices, one or more 3GPP-AAA servers are needed and a 
ePDG (Evolved Packet Data Gateway). This ePDG entity is the other end of the 
authentication scenario, the peer the mobile connects to for authentication (Guo, 2010). 

 
Fig. 1. NGN architecture; local breakout with home & visited network operator’s functions 

Roaming is an aspect with importance when it comes to security (authentication, 
authorization as well as accounting and charging). Generically, there are three types of 
roaming: home routed traffic (the PGW is located in the home network), local breakout with 
home operator’s application functions only (the PGW is located in the visited network, but 
the services the user accesses are provided by its home network, as it is the example of using 
an e-mail service) and local breakout with visited operator’s application functions only (the 
PGW is in the visited network as well, but the visited network also provides the services in 
this case, having a roaming agreement with the home network, in order for that; the home 
network only serves at assuring the authentication of the user and the policy verification). 

Independent of the details of implementation of the access network, the PGW ultimately 
connects the UE to an APN (Access Point Name) via the SGi interface, an IP-based logical 
interface. The APN is the services network, no matter the actual format of this network: 
Internet, Intranet, IMS etc. The typical case considered in this paper is the IMS network. In 
this case, the PGW connects to the P-CSCF equipment of the IMS core.  

The centre of the IMS functionality is the CSCF (Call Session Control Function), provided 
via three different logical entities: a Proxy (P-CSCF), an Interrogating unit (I-CSCF) and a 
Serving unit (S-CSCF). The P-CSCF is the first point of contact in the IMS network, staying 
always in the SIP signalling path and being able to do traffic inspection, SIP header 
compression (SigComp) and secure tunnelling to the UE: this is the entity the mobile IMS-
aware handset establishes and IPsec session with. The P-CSCF can also do media-plane QoS 
enforcement. The S-CSCF is responsible for registration, message inspection and for 
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selecting the AS (Application Server) that is to serve the subscriber. Assigning a particular S-
CSCF to a certain subscriber is the task of the HSS, which is interrogated by the I-CSCF to 
provide this information. Just as for the 4G network, the IMS relies on the existence of HSS 
and PCRF databases. The standards move towards a more intimate and efficient integration 
of the 4G and IMS networks. 

3.2 Security aspects 

The security aspects in such a complex environment are many and complex. 3GPP has 
defined five security levels in order to separate the areas that are somehow independent of 
each other (TS 33.203). 

a. Network Access Security: this area deals with granting access to the (core) network only 
to those users that prove their identity, that identity matching a network’s registered 
user, with valid authentication credentials and with a subscription that allows services 
to be delivered to this user; 

b. Network Domain Security: this area deals with the secure interoperation between the 
Evolved Packet Core (EPC) network entities; this security is described by the protocols 
involved in securing the communications between EPC nodes: IPsec (recommended by 
Specs to take place within an operator’s premises) and TLS (usually for inter-operator 
secure communications); 

c. User Domain Security: this area deals with the secure access to the mobile stations; 
d. d. Application Domain Security: this area is concerned with how to secure the 

communication between the applications that reside on the user’s mobile device and the 
core network application servers; as a layer 7 application, this area may implement a 
large variety of security structures; 

e. Visibility and Configurability of Security: this is an informational area, for the user; the 
subscriber must have constant access to the information concerning the security 
features available on his device, whether or not they are functioning properly and 
whether or not they are required for the secure operation of a certain service 

When it comes to access to the 4G network, there are two aspects that threaten the security 
of the model. These aspects are related to the EPS-AKA procedures and there are the lack of 
identity protection at the first Initial Attach to the network (where the user must send its 
IMSI over the air, unencrypted) and the lack of the PFS (Perfect Forward Secrecy) property 
of the AKA algorithm. Sending the IMSI over the air is a problem only for the very first 
Attach Request, because the subsequent requests are done using a temporary global identity 
(GUTI).  

This attach request message is sent by the UE to the MME; this request may be a TAU 
(Tracking Area Update), procedure mandatory when moving between areas of radio cells. 
When the new MME receives this message, it retrieves the identity of the previous MME 
from the message, and contacts this previous MME. In the message, the new MME 
requests the IMSI for the GUTI it provides. This way, under the fair assumption that the 
connection between MMEs is secured (via IPsec for instance), the IMSI identity of the UE 
is protected. 

With regards to the services network, there are a lot of vulnerabilities, some related directly 
to the security capabilities of the SIP and RTP protocols, while some other to the network 
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selecting the AS (Application Server) that is to serve the subscriber. Assigning a particular S-
CSCF to a certain subscriber is the task of the HSS, which is interrogated by the I-CSCF to 
provide this information. Just as for the 4G network, the IMS relies on the existence of HSS 
and PCRF databases. The standards move towards a more intimate and efficient integration 
of the 4G and IMS networks. 

3.2 Security aspects 

The security aspects in such a complex environment are many and complex. 3GPP has 
defined five security levels in order to separate the areas that are somehow independent of 
each other (TS 33.203). 

a. Network Access Security: this area deals with granting access to the (core) network only 
to those users that prove their identity, that identity matching a network’s registered 
user, with valid authentication credentials and with a subscription that allows services 
to be delivered to this user; 

b. Network Domain Security: this area deals with the secure interoperation between the 
Evolved Packet Core (EPC) network entities; this security is described by the protocols 
involved in securing the communications between EPC nodes: IPsec (recommended by 
Specs to take place within an operator’s premises) and TLS (usually for inter-operator 
secure communications); 

c. User Domain Security: this area deals with the secure access to the mobile stations; 
d. d. Application Domain Security: this area is concerned with how to secure the 

communication between the applications that reside on the user’s mobile device and the 
core network application servers; as a layer 7 application, this area may implement a 
large variety of security structures; 

e. Visibility and Configurability of Security: this is an informational area, for the user; the 
subscriber must have constant access to the information concerning the security 
features available on his device, whether or not they are functioning properly and 
whether or not they are required for the secure operation of a certain service 

When it comes to access to the 4G network, there are two aspects that threaten the security 
of the model. These aspects are related to the EPS-AKA procedures and there are the lack of 
identity protection at the first Initial Attach to the network (where the user must send its 
IMSI over the air, unencrypted) and the lack of the PFS (Perfect Forward Secrecy) property 
of the AKA algorithm. Sending the IMSI over the air is a problem only for the very first 
Attach Request, because the subsequent requests are done using a temporary global identity 
(GUTI).  

This attach request message is sent by the UE to the MME; this request may be a TAU 
(Tracking Area Update), procedure mandatory when moving between areas of radio cells. 
When the new MME receives this message, it retrieves the identity of the previous MME 
from the message, and contacts this previous MME. In the message, the new MME 
requests the IMSI for the GUTI it provides. This way, under the fair assumption that the 
connection between MMEs is secured (via IPsec for instance), the IMSI identity of the UE 
is protected. 

With regards to the services network, there are a lot of vulnerabilities, some related directly 
to the security capabilities of the SIP and RTP protocols, while some other to the network 
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design, authentication, authorization and user profile. ETSI has developed the TVRA model 
in order to organize a table of security vulnerabilities description. The table below proposes 
a summary of the VoIP networks vulnerabilities, organized on the TVRA model (Edwards 
2007; Karopoulos, 2010; VoIPSA, 2011). 
 

No. Asset Weakness Threat Location Incident Objective 

1 SIP Session Signal w/o 
confidentiality SIP sniffer Gm Loss of 

privacy Confidentiality 

2 Network 
topology 

Weak 
authentication 

and control 
mechanism 

Scan Gm/Mw Loss or 
privacy Confidentiality 

3 SIP Session Signal w/o 
confidentiality

SIP Bye 
attack Gm Session 

damage Integrity 

4 SIP 
Register 

UE 
configuration 

configuration 
tampering UE DoS Availability 

5 SIP 
Register DNS reliability DNS cache 

attacks Gm DoS Availability 

6 SIP 
Register 

Weak 
authentication 

and control 
mechanism 

P-CSCF-in-
the-middle 

attack 
Gm 

Impersonation 
attack  

(P-CSCF) 
Authentication 

7 SIP 
Lack of 

DoS/DDoS 
prevention 

SIP Register 
flooding Gm DoS Availability 

8 SIP Session

Weak 
authentication 

and control 
mechanism 

Message 
Spoofing Gm Impersonation 

attack (user) Authentication 

9 RTP 
Session 

No integrity 
protection 

RTP insert 
attack Gm Session 

damage Integrity 

10 RTP 
Session 

Weak control of 
streams Media theft UE-UE Service theft Accountability 

11 RTP 
Session 

Weak 
authentication 

and control 
mechanism 

SPIT UE-UE User exhaust Controllability 

12 User 
profile 

Weak 
authentication 

and control 
mechanism 

SIP SQL 
injection HSS DoS Availability 

Table 1. VoIP TVRA model example 

Along with the list of vulnerabilities, there are organizations that discuss these security 
issues in more details and also present the current status of the security tools available for 
assessing the level of security of this type of networks (Plewes, 2007). 
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4. Security solutions and alternative models 
4.1 4G GAA security solution 

The 3GPP forum defines a generic authentication scheme, named GAA (Generic 
Authentication Architecture), which as two main components: the component responsible for 
authentication via shared secrets, GBA (Generic Bootstrapping Authentication) and the 
component responsible for authentication via digital certificates, SSC (Support for Subscriber 
Certificates). There are six entities as defined by the GAA: HSS, BSF, NAF, ZnProxy, SLF and 
UE. The figure below describes an authentication scenario where the UE is located in roaming, 
and there is a third, untrusted, network between the visited and the home network. 

 
Fig. 2. GBA simplified architecture 

The HSS is the database holding the USS (User Security Settings). It has the purpose of 
mapping the USS to one or more private user identities, which in IMS is called IMPI (IP 
Multimedia Private Identity). An example of USS is the GUSS (GBA User Security Settings), 
which may contain the following parameters: type of UICC, lifetime of the subscriber’s key, 
timestamp etc. The BSF (Bootstrapping Server Function) has the role to authenticate the UE, 
via the AKA method. Before that, it communicates to the HSS in order to download AV 
(Authentication Vector) parameters used to derive the keying material for AKA. A native 4G 
handset should support discussion EPS-AKA with the BSF. The NAF (Network Application 
Function) is a generic server that the UE tries to connect to. The BSF derives the Ks_NAF key 
and sends it to the NAF. The UE also generates also a Ks_NAF key. For this procedure to 
function properly, the BSF should have connectivity to the NAF the user connects to. The 
BSF should keep a list of NAFs and a list of groups of NAFs, in order to be able to identify at 
any given moment which NAF should be chosen if an application-specific USS appears. 
(Aiash, 2010; Keromytis, 2010) The ZnProxy appears in the roaming cases, and it may be a 
stand-alone device or part of the functionality of an existing device, like the visited NAF, 
visited AAA server or an application server. This entity has the role of locating the user’s 
home BSF device. In cases where there are multiple HSS databases, the SLF (Subscriber 
Location Function) is the entity queried by the BSF in order to locate the HSS containing the 
authentication information. The following steps describe the bootstrapping procedure: 
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Along with the list of vulnerabilities, there are organizations that discuss these security 
issues in more details and also present the current status of the security tools available for 
assessing the level of security of this type of networks (Plewes, 2007). 
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1. UE sends the HTTP request to the BSF, inserting an user identity, either its IMPI or its 
TMPI, if it has a temporary ID available; 

2. The BSF identifies whether it received a TMPI or an IMPI; if it was a TMPI, it looks for 
the corresponding IMPI in its cache, and if it’s not found, it gives an error to the UE, 
requesting the IMPI, otherwise it continues authenticating the UE to the HSS. 

Then the BSF tries to locate the HSS and retrieve the GUSS and the AV from it, where 
AV=(RAND||AUTN||XRES||CK||IK), over Zh; 
3. BSF forwards the RAND and AUTN to the UE, in order to authenticate it; 
4. The UE uses AUTN to authenticate the network, then computes the XRES, CK and IK 

and  
5. sends the XRES to the BSF, in order to be authenticated by this entity and 

 
Fig. 3. GBA procedure 

1. the BSF verifies the XRES against its already computed RES; if they match, the UE is 
authenticated; 

2. The BSF obtains the Ks by concatenating CK and IK, same as the UE and  
3. replies to the UE with a B-TID in the 200 OK message; 
4. The UE also obtains the Ks by concatenating its CK and IK 

At this point, both the UE and the BSF derive the Ks_NAF key, the actual key that will be 
used to secure the communication between the UE and the NAF. 

Ks_NAF = KDF (Ks, “gba-me”, RAND, IMPI, NAF_Id), where KDF is the key derivation 
function and the NAF_Id looks like this: NAF_Id = FQDN of the NAF || Ua security 
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protocol identifier. All the values possible and structure of these components are defined in 
references. 

4.2 IMS AKA procedure 

The IMS network is the NAF server from the above topology (more exactly, the P-CSCF 
plays the role of the NAF server). Another method to do subscriber authentication is the 
SIP-AKA procedure. The purpose of this procedure is to authenticate the user and exchange 
keying material for IPsec (Chen, 2008; MSF, 2011; Nasser, 2009; TR 33.978). 

I have executed several tests, using an IMS client and an IMS CSCF solution. The figure 
below describes the theoretical exchange, while some of the traffic captures are included 
following the theoretical description. 

 
Fig. 4. SIP-IMS-AKA authentication procedure 

The first packet of the conversation is the SIP REGISTER, which at first does not contain any 
authentication methods, nor information. 
Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Method: REGISTER 
Request-URI: sip:open-ims.test 
[Resent Packet: False] 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport;branch=z9hG4bK1275411663890 
From: <sip:11111@open-ims.test>;tag=6334 

To: <sip:11111@open-ims.test> 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 

CSeq: 901 REGISTER 
Max-Forwards: 70 
Allow: INVITE, ACK, CANCEL, BYE, MESSAGE, OPTIONS, NOTIFY, PRACK, UPDATE, 
REFER 
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Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Method: REGISTER 
Request-URI: sip:open-ims.test 
[Resent Packet: False] 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport;branch=z9hG4bK1275411663890 
From: <sip:11111@open-ims.test>;tag=6334 

To: <sip:11111@open-ims.test> 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 

CSeq: 901 REGISTER 
Max-Forwards: 70 
Allow: INVITE, ACK, CANCEL, BYE, MESSAGE, OPTIONS, NOTIFY, PRACK, UPDATE, 
REFER 
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Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000;+deviceID="3ca50bcb-
7a67-44f1-afd0-994a55f930f4";mobility="fixed" 
User-Agent: IM-client/OMA1.0 Mercuro-Bronze/v4.0.1624.0 
P-Preferred-Identity: <sip:11111@open-ims.test> 
Supported: path 
P-Access-Network-Info: ADSL;eutran-cell-id-3gpp=00000000 
Privacy: none 
Content-Length: 0 

The P-CSCF locates the S-CSCF assigned by the HSS and collects the AKA information from 
there, one or more AVs, containing the following parameters: RAND, AUTN, XRES, IK, CK. 
The RAND and AUTN are passed on to the UE, via the 401 Unauthorized SIP message, 
while the XRES is kept for comparison. 

Status-Line: SIP/2.0 401 Unauthorized - Challenging the UE 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport=1143;branch=z9hG4bK1275411663890 
From: <sip:11111@open-ims.test>;tag=6334 

SIP from address: sip:11111@open-ims.test 
SIP from address User Part: 11111 
SIP from address Host Part: open-ims.test 
SIP tag: 6334 

To: <sip:11111@open-ims.test>;tag=925746a962736b96138042b427df6549-2212 
SIP to address: sip:11111@open-ims.test 
SIP to address User Part: 11111 
SIP to address Host Part: open-ims.test 
SIP tag: 925746a962736b96138042b427df6549-2212 

Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 901 REGISTER 
Path: <sip:term@pcscf.open-ims.test:4060;lr> 
Service-Route: <sip:orig@scscf.open-ims.test:6060;lr> 
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, PUBLISH, 
MESSAGE, INFO 
Server: Sip EXpress router (2.1.0-dev1 OpenIMSCore (i386/linux)) 
Content-Length: 0 
Warning: 392 172.21.119.1:6060 "Noisy feedback tells:  pid=2028 req_src_ip=172.21.118.1 
req_src_port=5060 in_uri=sip:scscf.open-ims.test:6060 out_uri=sip:scscf.open-ims.test:6060 
via_cnt==3" 
WWW-Authenticate: Digest realm="open-ims.test", nonce = "qxZ3KUqjXlvgogK8aNtyH 
L4yoDzYBwAAFNpK0YllC1w=", algorithm = AKAv1-MD5, qop="auth,auth-int" 
Authentication Scheme: Digest 
realm="open-ims.test" 
nonce="qxZ3KUqjXlvgogK8aNtyHL4yoDzYBwAAFNpK0YllC1w=" 
algorithm=AKAv1-MD5 
qop="auth 

SIP-AKA provides mutual authentication. The UE uses the AUTN to authenticate the 
network and if this authentication is successful, it then computes the RES (response) and 
sends it to the P-CSCF. It also derives the CK and IK keys. 
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Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport;branch=z9hG4bK1275411663891 
From: <sip:11111@open-ims.test>;tag=6334 
To: <sip:11111@open-ims.test> 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 902 REGISTER 
Max-Forwards: 70 
Allow: INVITE, ACK, CANCEL, BYE, MESSAGE, OPTIONS, NOTIFY, PRACK, UPDATE, 
REFER 
Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000;+deviceID="3ca50bcb-
7a67-44f1-afd0-994a55f930f4";mobility="fixed" 
User-Agent: IM-client/OMA1.0 Mercuro-Bronze/v4.0.1624.0 
Authorization: Digest algorithm=AKAv1-MD5,username="11111@open- 
ims.test", realm= "open- 
ims.test",nonce="qxZ3KUqjXlvgogK8aNtyHL4yoDzYBwAAFNpK0YllC1w=",uri="sip:open-
ims.test",response="974679fa1f988670b52ebd3b058cf42a",qop=auth-in 

P-Preferred-Identity: <sip:11111@open-ims.test> 
Supported: path 
P-Access-Network-Info: ADSL;eutran-cell-id-3gpp=00000000 
Privacy: none 
Content-Length: 0 

Upon the receipt of this message, the P-CSCF authenticates the user by comparing the RES 
and XRES values, and sends a reply back to acknowledge this fact. 

Status-Line: SIP/2.0 200 OK - SAR successful and registrar saved 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport=1143;branch=z9hG4bK1275411663891 
From: <sip:11111@open-ims.test>;tag=6334 
To: <sip:11111@open-ims.test>;tag=925746a962736b96138042b427df6549-5b6b 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 902 REGISTER 
P-Associated-URI: <sip:11111@open-ims.test> 
Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000 
Path: <sip:term@pcscf.open-ims.est:4060;lr> 
Service-Route: <sip:orig@scscf.open-ims.test:6060;lr> 
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, PUBLISH, 
MESSAGE, INFO 
Server: Sip EXpress router (2.1.0-dev1 OpenIMSCore (i386/linux)) 
Content-Length: 0 
Warning: 392 172.21.119.1:6060 "Noisy feedback tells:  pid=2027 req_src_ip=172.21.118.1 
req_src_port=5060 in_uri=sip:scscf.open-ims.test:6060 out_uri=sip:scscf.open-ims.test:6060 
via_cnt==3" 

The two parties (the UE and the P-CSCF) may use the CK and IK keys to establish an IPsec 
tunnel. 
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Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000;+deviceID="3ca50bcb-
7a67-44f1-afd0-994a55f930f4";mobility="fixed" 
User-Agent: IM-client/OMA1.0 Mercuro-Bronze/v4.0.1624.0 
P-Preferred-Identity: <sip:11111@open-ims.test> 
Supported: path 
P-Access-Network-Info: ADSL;eutran-cell-id-3gpp=00000000 
Privacy: none 
Content-Length: 0 

The P-CSCF locates the S-CSCF assigned by the HSS and collects the AKA information from 
there, one or more AVs, containing the following parameters: RAND, AUTN, XRES, IK, CK. 
The RAND and AUTN are passed on to the UE, via the 401 Unauthorized SIP message, 
while the XRES is kept for comparison. 

Status-Line: SIP/2.0 401 Unauthorized - Challenging the UE 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport=1143;branch=z9hG4bK1275411663890 
From: <sip:11111@open-ims.test>;tag=6334 

SIP from address: sip:11111@open-ims.test 
SIP from address User Part: 11111 
SIP from address Host Part: open-ims.test 
SIP tag: 6334 

To: <sip:11111@open-ims.test>;tag=925746a962736b96138042b427df6549-2212 
SIP to address: sip:11111@open-ims.test 
SIP to address User Part: 11111 
SIP to address Host Part: open-ims.test 
SIP tag: 925746a962736b96138042b427df6549-2212 

Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 901 REGISTER 
Path: <sip:term@pcscf.open-ims.test:4060;lr> 
Service-Route: <sip:orig@scscf.open-ims.test:6060;lr> 
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, PUBLISH, 
MESSAGE, INFO 
Server: Sip EXpress router (2.1.0-dev1 OpenIMSCore (i386/linux)) 
Content-Length: 0 
Warning: 392 172.21.119.1:6060 "Noisy feedback tells:  pid=2028 req_src_ip=172.21.118.1 
req_src_port=5060 in_uri=sip:scscf.open-ims.test:6060 out_uri=sip:scscf.open-ims.test:6060 
via_cnt==3" 
WWW-Authenticate: Digest realm="open-ims.test", nonce = "qxZ3KUqjXlvgogK8aNtyH 
L4yoDzYBwAAFNpK0YllC1w=", algorithm = AKAv1-MD5, qop="auth,auth-int" 
Authentication Scheme: Digest 
realm="open-ims.test" 
nonce="qxZ3KUqjXlvgogK8aNtyHL4yoDzYBwAAFNpK0YllC1w=" 
algorithm=AKAv1-MD5 
qop="auth 

SIP-AKA provides mutual authentication. The UE uses the AUTN to authenticate the 
network and if this authentication is successful, it then computes the RES (response) and 
sends it to the P-CSCF. It also derives the CK and IK keys. 
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Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport;branch=z9hG4bK1275411663891 
From: <sip:11111@open-ims.test>;tag=6334 
To: <sip:11111@open-ims.test> 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 902 REGISTER 
Max-Forwards: 70 
Allow: INVITE, ACK, CANCEL, BYE, MESSAGE, OPTIONS, NOTIFY, PRACK, UPDATE, 
REFER 
Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000;+deviceID="3ca50bcb-
7a67-44f1-afd0-994a55f930f4";mobility="fixed" 
User-Agent: IM-client/OMA1.0 Mercuro-Bronze/v4.0.1624.0 
Authorization: Digest algorithm=AKAv1-MD5,username="11111@open- 
ims.test", realm= "open- 
ims.test",nonce="qxZ3KUqjXlvgogK8aNtyHL4yoDzYBwAAFNpK0YllC1w=",uri="sip:open-
ims.test",response="974679fa1f988670b52ebd3b058cf42a",qop=auth-in 

P-Preferred-Identity: <sip:11111@open-ims.test> 
Supported: path 
P-Access-Network-Info: ADSL;eutran-cell-id-3gpp=00000000 
Privacy: none 
Content-Length: 0 

Upon the receipt of this message, the P-CSCF authenticates the user by comparing the RES 
and XRES values, and sends a reply back to acknowledge this fact. 

Status-Line: SIP/2.0 200 OK - SAR successful and registrar saved 
Message Header 
Via: SIP/2.0/UDP 172.20.1.1:1143;rport=1143;branch=z9hG4bK1275411663891 
From: <sip:11111@open-ims.test>;tag=6334 
To: <sip:11111@open-ims.test>;tag=925746a962736b96138042b427df6549-5b6b 
Call-ID: M-50a5456166f246b78f081ac2453ee4ea 
CSeq: 902 REGISTER 
P-Associated-URI: <sip:11111@open-ims.test> 
Contact: <sip:11111@172.20.1.1:1143;transport=udp>;expires=600000 
Path: <sip:term@pcscf.open-ims.est:4060;lr> 
Service-Route: <sip:orig@scscf.open-ims.test:6060;lr> 
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, SUBSCRIBE, NOTIFY, PUBLISH, 
MESSAGE, INFO 
Server: Sip EXpress router (2.1.0-dev1 OpenIMSCore (i386/linux)) 
Content-Length: 0 
Warning: 392 172.21.119.1:6060 "Noisy feedback tells:  pid=2027 req_src_ip=172.21.118.1 
req_src_port=5060 in_uri=sip:scscf.open-ims.test:6060 out_uri=sip:scscf.open-ims.test:6060 
via_cnt==3" 

The two parties (the UE and the P-CSCF) may use the CK and IK keys to establish an IPsec 
tunnel. 
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4.3 IPsec in end-to-end security 

The most common case of the IPsec usage in a 4G network is the simple end-to-end 
implementation of the protocol between the mobile device and the services network peer (a 
security gateway, server or another peer) (Vintilă, 2010). A representation of this scenario is 
pictured in the figure below. 

 
Fig. 5. IPsec scheme in LTE topology 

The ends of the IPsec tunnels are the UE and the P-CSCF. The IMS negotiation messages 
would look the following. The first REGISTER message contains the IPsec declaration. Some 
of the headers have been excluded to save editing space. 

Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=666; spi-s=777; port-c=1234; port-
s=5678 
Require: sec-agree 
Proxy-Require: sec-agree 
The reply from the P-CSCF is initially a 401 Unauthorized. 
Status-Line: SIP/2.0 401 Unauthorized - Challenging the UE 
Message Header 
Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96;spi-c=222;spe-s=333;port-c=2345;port-
s=3456 

The second REGISTER message looks like this: 

Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=666; spi-s=777; port-c=1234; port-
s=5678 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96;spi-c=222;spe-s=333;port-c=2345;port-
s=3456 
Require: sec-agree 
Proxy-Require: sec-agree 

The IPsec tunnel is thus negotiated. 
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For the VoIP networks, there can be used up to five different security mechanisms: digest, 
TLS, IPsec-IKE, IPsec-man and IPsec-3gpp, the latter being specified by 3GPP. This end-to-
end security mechanism should not be influenced by the handover scenarios. This is because 
the local security association between the UE, the MME and eNB are refreshed during 
handover and/or TAU procedures, while the “application” security associations are 
maintained. This assumption holds as long as the UE is attached to a particular PGW. If the 
UE detaches, there is no guarantee it will get the same IP the next time it attaches and even 
in that case, the IPsec tunnel is torn down. 

In the NAT scenarios, the issues that impact the wireline IPsec are the same in the NGN 
case. 

The mobile device has to follow specific steps to get authenticated in the 4G network. 
Similar or totally different steps must be taken to authenticate to each services network. The 
process for 4G is EPS-AKA or EAP-AKA. In the IMS network it can authenticate via IMS-
AKA and secure the traffic via TLS or IPsec. But, because IMS is a special kind of services 
network, being closely described by 3GPP in conjunction with the access network, some part 
of the security weight already established can be used to secure the access to the services 
network. The following scheme tries to lessen the cryptographic and message exchange 
burden of the UE to IMS authentication process, by using the PGW as an authentication 
proxy. This happens because the PGW is the closest 4G entity to the IMS network. It should 
be in direct connection to the P-CSCF. The PGW unpacks both the signaling GTPv2-c 
packets as well as the GTPv1-u data-plane packets that arrive on the S5/S8 interface. Being 
at the edge of the 4G network, it is also able to inspect the content of these message or 
forward packets that match some particular criteria (port number, protocol number, ToS 
value etc) to a separate, dedicated, inspection entity. It is fairly simple to identity the IMS 
SIP packets (for instance by the port number, usually 5060). In the classic model, the SIP 
packets would simply be forwarded to the P-CSCF, as the PGW (GGSN) has no specific 
IMS-aware functionality (Vintilă, 2011). 

In the proposed scheme, before the Initial Attach procedure, the UE  selects ‘p’ and ‘g’ 
primes non-null and a secret ‘a’, then uses these values to derive value A from the Diffie-
Hellman procedure: A=g^a mod p. Then the UE inserts value A, p and g (or only A if p and 
g are somehow agreed upon from a pre-configured setting), then adds them to the PCO 
(Protocol Configuration Options) IE in the Attach Request message to the MME, PCO IE that 
propagates to the PGW in the Create Session Request message. This entity looks at the 
values received and computes value B=g^b mod p, where b is its key. After it verifies that 
the UE is valid and sends it an IP (or an empty IP, if it is to be configured later dynamically), 
and includes also the B value in the PCO from the Create Session Response. The response 
gets back to the UE in the Attach Accept message. At this moment, the UE and the PGW 
derive a common Diffie-Hellman key K, which they can use as a symmetrical encryption 
key or as a master key to derive further key for securing traffic between them. The UE sends 
the SIP Register message and includes its secret key SIP-K, encrypted with K. This message 
arrives at the PGW. 

The P-CSCF discovery procedure follows next, while the PGW acts on behalf of the UE 
during the IMS authentication. If the authentication is successful, the PGW will announce 
the UE (via a 200 OK message) that the UE is connected to the IMS core. 
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4.3 IPsec in end-to-end security 

The most common case of the IPsec usage in a 4G network is the simple end-to-end 
implementation of the protocol between the mobile device and the services network peer (a 
security gateway, server or another peer) (Vintilă, 2010). A representation of this scenario is 
pictured in the figure below. 

 
Fig. 5. IPsec scheme in LTE topology 

The ends of the IPsec tunnels are the UE and the P-CSCF. The IMS negotiation messages 
would look the following. The first REGISTER message contains the IPsec declaration. Some 
of the headers have been excluded to save editing space. 

Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=666; spi-s=777; port-c=1234; port-
s=5678 
Require: sec-agree 
Proxy-Require: sec-agree 
The reply from the P-CSCF is initially a 401 Unauthorized. 
Status-Line: SIP/2.0 401 Unauthorized - Challenging the UE 
Message Header 
Security-Server: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96;spi-c=222;spe-s=333;port-c=2345;port-
s=3456 

The second REGISTER message looks like this: 

Request-Line: REGISTER sip:open-ims.test SIP/2.0 
Security-Client: ipsec-3gpp; alg=hmac-sha-1-96; spi-c=666; spi-s=777; port-c=1234; port-
s=5678 
Security-Verify: ipsec-3gpp; q=0.1; alg=hmac-sha-1-96;spi-c=222;spe-s=333;port-c=2345;port-
s=3456 
Require: sec-agree 
Proxy-Require: sec-agree 

The IPsec tunnel is thus negotiated. 
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For the VoIP networks, there can be used up to five different security mechanisms: digest, 
TLS, IPsec-IKE, IPsec-man and IPsec-3gpp, the latter being specified by 3GPP. This end-to-
end security mechanism should not be influenced by the handover scenarios. This is because 
the local security association between the UE, the MME and eNB are refreshed during 
handover and/or TAU procedures, while the “application” security associations are 
maintained. This assumption holds as long as the UE is attached to a particular PGW. If the 
UE detaches, there is no guarantee it will get the same IP the next time it attaches and even 
in that case, the IPsec tunnel is torn down. 

In the NAT scenarios, the issues that impact the wireline IPsec are the same in the NGN 
case. 

The mobile device has to follow specific steps to get authenticated in the 4G network. 
Similar or totally different steps must be taken to authenticate to each services network. The 
process for 4G is EPS-AKA or EAP-AKA. In the IMS network it can authenticate via IMS-
AKA and secure the traffic via TLS or IPsec. But, because IMS is a special kind of services 
network, being closely described by 3GPP in conjunction with the access network, some part 
of the security weight already established can be used to secure the access to the services 
network. The following scheme tries to lessen the cryptographic and message exchange 
burden of the UE to IMS authentication process, by using the PGW as an authentication 
proxy. This happens because the PGW is the closest 4G entity to the IMS network. It should 
be in direct connection to the P-CSCF. The PGW unpacks both the signaling GTPv2-c 
packets as well as the GTPv1-u data-plane packets that arrive on the S5/S8 interface. Being 
at the edge of the 4G network, it is also able to inspect the content of these message or 
forward packets that match some particular criteria (port number, protocol number, ToS 
value etc) to a separate, dedicated, inspection entity. It is fairly simple to identity the IMS 
SIP packets (for instance by the port number, usually 5060). In the classic model, the SIP 
packets would simply be forwarded to the P-CSCF, as the PGW (GGSN) has no specific 
IMS-aware functionality (Vintilă, 2011). 

In the proposed scheme, before the Initial Attach procedure, the UE  selects ‘p’ and ‘g’ 
primes non-null and a secret ‘a’, then uses these values to derive value A from the Diffie-
Hellman procedure: A=g^a mod p. Then the UE inserts value A, p and g (or only A if p and 
g are somehow agreed upon from a pre-configured setting), then adds them to the PCO 
(Protocol Configuration Options) IE in the Attach Request message to the MME, PCO IE that 
propagates to the PGW in the Create Session Request message. This entity looks at the 
values received and computes value B=g^b mod p, where b is its key. After it verifies that 
the UE is valid and sends it an IP (or an empty IP, if it is to be configured later dynamically), 
and includes also the B value in the PCO from the Create Session Response. The response 
gets back to the UE in the Attach Accept message. At this moment, the UE and the PGW 
derive a common Diffie-Hellman key K, which they can use as a symmetrical encryption 
key or as a master key to derive further key for securing traffic between them. The UE sends 
the SIP Register message and includes its secret key SIP-K, encrypted with K. This message 
arrives at the PGW. 

The P-CSCF discovery procedure follows next, while the PGW acts on behalf of the UE 
during the IMS authentication. If the authentication is successful, the PGW will announce 
the UE (via a 200 OK message) that the UE is connected to the IMS core. 
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Fig. 6. Proposed scheme 

Although it saves only a few messages, this scheme has the main advantage of decreasing 
both the network load, as well as the cryptographic computation on the UE. One of the 
disadvantages of this scheme is that the cryptographic computation actually increases in the 
beginning, due to the DH procedure. The advantage is that the DH key can be used as a 
master key for further exchanges and this key remains valid for duration of the attach. 
Another disadvantage is that the model produces small functionality changes in the UE 
functionality. The SIP implementation will need to store the secret key in a dedicated 
header. This should not be a great impediment in the implementation of this feature, as the 
SIP protocol is highly flexible and there is no 100% agreed implementation in the industry, 
at this moment. Another advantage is that the IMS model, being relatively mature and 
stable, is not needed to implement this mode. The internal IMS-AKA procedure remains 
unchanged. The PGW replies to the 401 Unauthorized message; it verifies the AUTN, 
computes the RES and replies to P-CSCF. A secondary benefit is the generation of a secret 
key which can be used as a master key to derive cryptographically resistant session keys for 
later use. 
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5. Conclusion 
IPsec is considered one of the most secure protocols in the Internet. It is being successfully 
used in securing traffic all over the Internet, in the wireline technologies. Whether the use 
case involves companies trying to secure traffic between their branches or trying to assure a 
secure remote connection for its mobile workers, the IPsec is one of the preferred protocols. 
IPsec is a complex set of protocols, and none of the solutions right now on the market 
actually implement all of it. This situation leads to many incompatibility cases between 
different IPsec implementations. Nonetheless, IPsec is widely implemented and the 
differences in implementation many times constitute market differentiators.  

As it is so popular in wireline technologies, industry and researchers investigate ways to 
implement IPsec or parts of it in the wireless technologies, as well, in order to export its 
benefits to the telecommunications world. Protocols used in IPsec are already implemented 
in technologies like WiMAX and UMTS: AKA, used as an EAP method in IPsec – IKEv2 
authentication procedures. In 4G, the 3GPP forum looks into the EAP-AKA procedure for 
authenticating mobile handsets that attach to the 4G network from non-3GPP access radio 
networks. 3GPP also makes use of the IPsec in the IMS security: IPsec-3GPP, negotiated not 
via IKE, but via SIP signaling. Other IPsec alternatives appear as IPsec-man and IPsec-IKE in 
the SIP negotiation, along with digest and TLS. 

The examples provided using open-source implementations in tools like OpenIMSCore, 
Strongswan or FreeRadius demonstrate how the IPsec protocols can be configured. 
Although different security equipment producers provide alternative configuration 
methods, the overall input aspect is similar, according to the purpose served. Adapting 
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