
Ernst Denert Award
for Software
Engineering 2020

Michael Felderer · Wilhelm Hasselbring
Heiko Koziolek · Florian Matthes
Lutz Prechelt · Ralf Reussner
Bernhard Rumpe · Ina Schaefer Eds.

Practice Meets
Foundations

Ernst Denert Award for Software Engineering 2020

Michael Felderer • Wilhelm Hasselbring •
Heiko Koziolek • Florian Matthes • Lutz Prechelt •
Ralf Reussner • Bernhard Rumpe • Ina Schaefer
Editors

Ernst Denert Award for
Software Engineering 2020
Practice Meets Foundations

Editors
Michael Felderer
Department of Computer Science
University of Innsbruck
Innsbruck, Austria

Wilhelm Hasselbring
Department of Computer Science
Kiel University
Kiel, Germany

Heiko Koziolek
Corporate Research
ABB
Ladenburg, Germany

Florian Matthes
Institute of Computer Science
Technical University Munich
Garching, Germany

Lutz Prechelt
Department of Mathematics
and Computer Science
Freie Universität Berlin
Berlin, Germany

Ralf Reussner
Program Structures and Data Organization
Karlsruhe Institute of Technology
Karlsruhe, Germany

Bernhard Rumpe
Software Engineering
RWTH Aachen University
Aachen, Germany

Ina Schaefer
Software Engineering and Automotive
Informatics
Technische Universität Braunschweig
Braunschweig, Germany

ISBN 978-3-030-83127-1 ISBN 978-3-030-83128-8 (eBook)
https://doi.org/10.1007/978-3-030-83128-8

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons license and indicate if changes
were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover Photograph: © 2020 Ernst Denert, all rights reserved

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3818-4442
https://doi.org/10.1007/978-3-030-83128-8
http://creativecommons.org/licenses/by/4.0/

Contents

Ernst Denert Software Engineering Award 2020 . 1
Michael Felderer, Wilhelm Hasselbring, Heiko Koziolek, Florian Matthes,
Lutz Prechelt, Ralf Reussner, Bernhard Rumpe, and Ina Schaefer

Some Patterns of Convincing Software Engineering Research, or:
How to Win the Ernst Denert Software Engineering Award 2020 9
Lutz Prechelt

What You See Is What You Get: Practical Effect Handlers in
Capability-Passing Style . 15
Jonathan Immanuel Brachthäuser

How to Effectively Reduce Failure Analysis Time? . 45
Mojdeh Golagha

Open Source Software Governance: Distilling and Applying
Industry Best Practices . 73
Nikolay Harutyunyan

Dynamically Scalable Fog Architectures . 91
Dominic Henze

Crossing Disciplinary Borders to Improve Requirements
Communication . 115
Anne Hess

DevOpsUse: A Community-Oriented Methodology for Societal
Software Engineering . 143
István Koren

Hybrid Differential Software Testing . 167
Yannic Noller

v

vi Contents

Ever Change a Running System: Structured Software
Reengineering Using Automatically Proven-Correct
Transformation Rules. 197
D. Steinhöfel

Static Worst-Case Analyses and Their Validation Techniques for
Safety-Critical Systems . 227
Peter Wägemann

Improving the Model-Based Systems Engineering Process 249
Michael von Wenckstern

Understanding How Pair Programming Actually Works in
Industry: Mechanisms, Patterns, and Dynamics . 275
Franz Zieris

Ernst Denert Software Engineering
Award 2020

Michael Felderer, Wilhelm Hasselbring, Heiko Koziolek, Florian Matthes,
Lutz Prechelt, Ralf Reussner, Bernhard Rumpe, and Ina Schaefer

Abstract This is the introductory chapter of the book on the Ernst Denert Software
Engineering Award 2020. It provides an overview of the 11 nominated PhD theses,
the work of the award winner, and the structure of the book.

1 Introduction

Software-based products, systems, or services are influencing all areas of our daily
life. They are the basis and central driver for digitization and all kinds of innovation.
This makes software engineering a core discipline to drive technical and societal

M. Felderer (�)
Department of Computer Science, University of Innsbruck, Innsbruck, Austria

W. Hasselbring
Department of Computer Science, Kiel University, Kiel, Germany

H. Koziolek
Corporate Research, ABB, Ladenburg, Germany

F. Matthes
Institute of Computer Science, Technical University Munich, Garching, Germany

L. Prechelt
Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany

R. Reussner
Program Structures and Data Organization, Karlsruhe Institute of Technology, Karlsruhe,
Germany

B. Rumpe
Software Engineering, RWTH Aachen University, Aachen, Germany

I. Schaefer
Software Engineering and Automotive Informatics, Technische Universität Braunschweig,
Braunschweig, Germany

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-83128-8_1

2 M. Felderer et al.

innovations in the age of digitization [4]. The IEEE Standard Glossary of Software
Engineering Terminology [5] defines software engineering as follows:

1. The application of a systematic, disciplined, quantifiable approach to the devel-
opment, operation, and maintenance of software; that is, the application of
engineering to software

2. The study of approaches as in (1)

It defines software engineering as an engineering discipline (“application of
engineering to software”) with its own methodology (“systematic, disciplined, quan-
tifiable approach”) applied to all phases of the software life cycle (“development,
operation, and maintenance of software”). The two-part structure of the definition
of software engineering also makes the tight integration of software engineering (1)
and software engineering research (2) explicit.

Therefore, the Ernst Denert Software Engineering Award specifically rewards
researchers who value the practical impact of their work and aim to improve
current software engineering practices [3]. Creating tighter feedback loops between
professional practitioners and academic researchers is essential to make research
ideas ready for industry adoption. Researchers who demonstrate their proposed
methods and tools on nontrivial systems under real-world conditions in various
phases of the software lifecycle shall be supported, so that the gap between research
and practice can be decreased.

Overall, 11 PhD theses that were defended between September 1, 2019, and
October 31, 2020, were nominated and finally presented during the Software
Engineering Conference SE 2021.

All submissions fulfill the ambitious selection criteria of the award defined in
detail in the book for the Ernst Denert Software Engineering Award 2019 [2].
These criteria include, among others, practical applicability, usefulness via tools,
theoretical or empirical insights, currentness, and contribution to the field. In a
nutshell, “The best submissions are those that will be viewed as important steps
forward even 15 years from now” [3].

This book includes a chapter on the jury decision process (chapter “Some
Patterns of Convincing Software Engineering Research, or: How to Win the Ernst
Denert Software Engineering Award 2020”), which might help future candidates
to shape the presentation of their work for the Ernst Denert Software Engineering
Award and beyond.

In this introductory chapter we give an overview of the nominated 11 PhD theses,
present the work of the award winner, and outline the structure of the book.

2 Overview of the Nominated PhD Theses

As mentioned before, 11 PhD theses were nominated for the Ernst Denert Software
Engineering Award 2020. They cover the broad range of software engineering
research; show the wide spectrum and liveliness of the field with respect to different

Denert Software Engineering Award 2020 3

application domains (covering information systems, embedded systems, and IoT
systems in different application contexts) and research methods (covering formal
methods, design science, as well as quantitative and qualitative empirical methods);
and address software lifecycle activities (covering analysis, design, programming,
testing, deployment, operation, and maintenance). In the following, we present a
short overview of the nominee’s PhD theses (alphabetically sorted by the nominee’s
names) by a short summary of the chapters on the respective theses contributed to
this book.

The chapter by Jonathan Immanuel Brachthäuser entitled “What You See Is
What You Get: Practical Effect Handlers in Capability-Passing Style” aims to
bring effect handlers in programming languages closer to the software engineering
practice by developing capability passing as an implementation technique for effect
handlers. Capability passing provides the basis for the integration of effect handlers
into mainstream object-oriented programming languages and thereby unlocks novel
modularization strategies.

The chapter by Mojdeh Golagha entitled “How to Effectively Reduce Failure
Analysis Time?” proposes methodologies and techniques supporting developers in
knowing which data they need for further analysis, in being able to group failures
based on their root causes, and in being able to find more information about the root
causes of each failing group.

The chapter by Nikolay Harutyunyan entitled “Open Source Software Gover-
nance: Distilling and Applying Industry Best Practices” develops and evaluates
a theory of industry best practices which captures how more than 20 experts from 15
companies worldwide govern their corporate use of open source software. Further-
more, the theory is operationalized via a handbook for open source governance that
enables practitioners from various domains to apply the findings in their companies.

The chapter by Dominic Henze entitled “Dynamically Scalable Fog Archi-
tectures” provides a framework called xFog (Extension for Fog Computing) that
models fog architectures based on set theory and graphs. It contains parts to establish
the set-theoretical foundations to enable dynamic and scalable fog architectures to
dynamically add new components or layers, and to provide a view concept which
allows stakeholders to focus on different levels of abstraction.

The chapter by Anne Hess entitled “Crossing Disciplinary Borders to
Improve Requirements Communication” investigates role-specific views in
software requirements specifications. Based on a series of empirical studies that
served as a baseline for a secondary analysis role-specific views are defined and
evaluated. Moreover, a proof-of-concept implementation is realized that is capable
of generating role-specific views.

The chapter by István Koren entitled “DevOpsUse: A Community-Oriented
Methodology for Societal Software Engineering” introduces the DevOpsUse
methodology, which extends DevOps by additionally fostering a stronger involve-
ment of end user communities in software development by including them in the
process of infrastructuring, that is, the appropriation of infrastructure during its
usage. The developed DevOpsUse methodology and support tools are validated by
the transitions between three generations of technologies: near-real-time peer-to-
peer web architectures, edge computing, and IoT systems.

4 M. Felderer et al.

The chapter by Yannic Noller entitled “Hybrid Differential Software Testing”
proposes the concept of Hybrid Differential Software Testing (HyDiff) as a hybrid
analysis technique to generate difference-revealing inputs. HyDiff consists of two
components that operate in a parallel setup, that is, a search-based technique
that inexpensively generates inputs and a systematic exploration technique to also
exercise deeper program behaviors. HyDiff is based on differential fuzzing directed
by differential heuristics and differential dynamic symbolic execution that allows to
incorporate concrete inputs in its analysis.

The chapter by Dominic Steinhöfel entitled “Ever Change a Running Sys-
tem: Structured Software Reengineering Using Automatically Proven-Correct
Transformation Rules” proposes the concept of structured software reengineering
replacing the ad hoc forward engineering part of a reengineering process with
the application of behavior-preserving, proven-correct transformations improving
nonfunctional program properties. Furthermore, a specification and verification
framework for statement-based program transformation rules on Java programs
building on symbolic execution is presented. It is applied to code refactoring, cost
analysis of program transformations, and transformations reshaping programs for
the application of parallel design patterns. Finally, a workbench for modeling and
proving statement-level Java transformation rules is provided.

The chapter by Peter Wägemann entitled “Static Worst-Case Analyses and
Their Validation Techniques for Safety-Critical Systems” provides a novel
program analysis approach for worst-case energy consumption bounds, which
accounts for temporarily power-consuming devices, scheduling with fixed real-
time priorities, synchronous task activations, and asynchronous interrupt service
routines. Regarding the validation of worst-case tools, a technique for automatically
generating benchmark programs is provided. The generator combines program
patterns so that the worst-case resource consumption is available along with the
generated benchmark. Knowledge about the actual worst-case resource demand
then serves as the baseline for evaluating and validating program analysis tools.
The benchmark generator helped to reveal previously undiscovered software bugs
in a widespread worst-case execution time tool for safety-critical systems.

The chapter by Michael von Wenckstern entitled “Improving the Model-Based
Systems Engineering Process” provides approaches and tools for supporting
the automotive software engineer with automatic consistency checks of large
component and connector models, automatic verification of these models against
design decisions, tracing and navigating between design and implementation mod-
els, finding structural inconsistencies during model evolution, defining different
extra-functional properties for component and connector models, and formalizing
constraints on these models for extra-functional properties for automatic consistency
checks.

Finally, the chapter by Franz Zieris entitled “Understanding How Pair Pro-
gramming Actually Works in Industry: Mechanisms, Patterns, and Dynamics”
is aimed at understanding how pair programming actually works by uncovering the
underlying mechanisms and in order to ultimately formulate practical advice for
developers by following a grounded theory methodology. Franz Zieris is the winner

Denert Software Engineering Award 2020 5

of the Ernst Denert Software Engineering Award 2020, and we present his work in
more detail in the next section.

3 The Work of the Award Winner

We congratulate Franz Zieris, his advisor Lutz Prechelt, and his Alma Mater Freie
Universität Berlin for winning the Ernst Denert Software Engineering Award 2020
for the PhD thesis “Qualitative analysis of knowledge transfer in pair programming.”

Dr. Franz Zieris used qualitative research methods to break down the actual work
process involved in pair programming (PP). There has been a lot of research on PP
in the last 20 years, but it provided remarkably little insight overall:

• In controlled experiments, PP is usually faster than solo programming, but
sometimes not (and almost never twice as fast). The results are often better
with respect to design quality or reliability than with solo programming, but
sometimes they are not.

• The subject of the experiments was almost always toy programs. The results’
generalizability to realistic code bases is completely unknown.

• Explanations for the considerable variations between experiments are almost
nonexistent.

The work of Franz Zieris has now conceptualized what is going on in the pair
programming process in an industrial context:

1. Zieris found a number of behavioral patterns and anti-patterns that can explain
why the previous quantitative results have varied so much. For example, the
much-investigated differences in programming experience play a much smaller
role than whether the developers manage to build and maintain a common mental
model of the software system.

2. These patterns provide professional pair programmers and developers who do
not like pair programming so far with an opportunity to reflect on their behavior
and avoid inefficient behaviors.

3. Zieris found an overall dynamic of PP sessions that makes it clear that the
previous experiments completely lack the central element of professional PP
sessions, namely the alignment and acquisition of system understanding; thus,
the realism of previous experiments is very low.

4. From these findings it is derived which pair constellations are helpful which can
help teams to use PP wisely.

5. Both advantages, that is, (2) and (4), were validated with professional developers.

The spectacular thing about Franz Zieris’ work is the enormous generality of the
improvements, because the results are applicable in any application domain and with
any technology, and they are also timeless. The work of Franz Zieris is presented in
more detail in chapter “Understanding How Pair Programming Actually Works in
Industry: Mechanisms, Patterns, and Dynamics” of this book.

6 M. Felderer et al.

4 Structure of the Book

The remainder of the book is structured as follows. In the next chapter Lutz Prechelt
describes the jury’s decision process, which might help future candidates to shape
the presentation of their work for the Ernst Denert Software Engineering Award and
beyond.

This is followed by 11 chapters, one for the work of each nominee listed above.
Each nominee presents in his or her chapter

• An overview and the key findings of the work
• Its relevance and applicability to practice and industrial software engineering

projects
• Additional information and findings that have only been discovered afterward,

for example, when applying the results in industry or when continuing research.

The chapters of the nominees are based on their PhD theses and arranged in
alphabetic order.

As already highlighted in the introductory book chapter of the last year’s
award [3] and by Prof. Denert’s reflection on the field [1], software engineering is
teamwork. Outstanding research with high impact is also always teamwork, which
somewhat conflicts with the requirement that a doctoral thesis must be the work of
a single author. Still, the respective chapters are written by the nominees only.

Thanks

We gratefully thank Professor Ernst Denert for all his help in the process and the
Gerlind & Ernst Denert-Stiftung for the kind donation of the price and the overall
support. We thank the organization team of the Software Engineering Conference
SE 2021 that was virtually organized by the Technical University of Braunschweig
to host the presentations of the nominees and the award ceremony. Finally, we thank
the German, Austrian, and Swiss computer science societies, that is, the GI, the
OCG, and the SI, respectively, for their support in making the Ernst Denert Software
Engineering Award 2020 a success.

References

1. Denert, E.: Software engineering. In: Ernst Denert Award for Software Engineering 2019, pp.
11–17. Springer, Berlin (2020)

2. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe, B.,
Schaefer, I.: Ernst Denert Award for Software Engineering 2019: Practice Meets Foundations
(2020)

Denert Software Engineering Award 2020 7

3. Felderer, M., Hasselbring, W., Koziolek, H., Matthes, F., Prechelt, L., Reussner, R., Rumpe,
B., Schaefer, I.: Ernst Denert software engineering awards 2019. In: Ernst Denert Award for
Software Engineering 2019, pp. 1–10. Springer, Berlin (2020)

4. Felderer, M., Reussner, R., Rumpe, B.: Software engineering and software-engineering-
Forschung im Zeitalter der Digitalisierung. Inform. Spektrum 44(2), 82–94 (2021)

5. IEEE: IEEE standard glossary of software engineering terminology. IEEE Std 610.12-1990 pp.
1–84 (1990)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Some Patterns of Convincing Software
Engineering Research, or: How to Win
the Ernst Denert Software Engineering
Award 2020

Lutz Prechelt

Abstract We explain what properties the jury looked for to identify strong
contributions and why they are important. They are formulated as seven pieces
of advice: (1) Be in scope, (2) Enumerate your assumptions, (3) Delineate your
contribution, (4) Honestly discuss limitations, (5) Show usefulness and practical
applicability, (6) Have a well-prepared nutshell, and (7) Be timeless.

1 Introduction

This chapter is going to give some insight into the jury’s decision process: What we
found convincing or not so convincing, and why.

We write this up as much for the benefit of those who want to win this award in
the future (“you”) as for our own. It helps us to reflect:

• How do our award criteria work out?
• What is the nature of the limitations of works that do not come out victoriously?

It helps you and ourselves getting an idea of some of the relevant psychological
dynamics of the jury work.

We write it as a list of separate pieces of advice, formulated as properties that
good work should have. The first three we found by counter-examples, the other
two by positive examples. We do not name the respective works, but you may be
able to identify them by looking at the rest of the book.

We may or may not refine the list in the coming years, for example, by sharpening
the terminology used herein.

Each of the remaining sections covers one piece of advice. Please consider them
as a proposer or when you prepare your presentation.

L. Prechelt (�)
Freie Universität Berlin, Berlin, Germany
e-mail: prechelt@inf.fu-berlin.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_2&domain=pdf
mailto:prechelt@inf.fu-berlin.de
https://doi.org/10.1007/978-3-030-83128-8_2

10 L. Prechelt

2 Be in Scope

Obviously, to appeal to the jury of a software engineering award, your work must
look and feel like software engineering.

In this year’s list of 11 works, there was one that we liked a lot in many respects,
but we felt was too far removed from the technical work in software development.
Another, also with some definite strengths, we classified as work in an application
domain, not in software engineering as such. Both of these were removed from our
consideration quickly.

3 Enumerate Your Assumptions

Make sure you explain carefully where the ideas and techniques you describe will
apply, will likely apply, may apply, and will likely or surely not apply.

The jury is allergic to overselling, to claiming something that is not true. So if
we spot a case or area where your techniques do not apply or where we expect they
will likely not apply, yet perceive you as claiming they do, we will view your work
much more critically.

Therefore, make sure you spell out your assumptions regarding aspects such as

• The target application domain(s) of the software your techniques help building
(e.g., hard real-time systems), or the nature of those domains (e.g., regarding the
possible precision of specifications)

• The specific technologies that software must be using (e.g., Java), or the nature
of those technologies (e.g., statically typed languages)

• The software development process (team sizes, qualification of the people
involved, roles, specific practices used or not used, etc.)

The above list is horribly poor and the software engineering community has not yet
developed taxonomies that could be used as checklists, so you will have to think
yourself what relevant assumptions are underlying your work and shortly explain
them to the jury. The characterization can be made positively (“applies if”) or
negatively (“applies unless”).

For several of this year’s candidate works, the jury was unsure in its discussion
where the work might or might not apply. Such uncertainty will stifle the enthusiasm
your work must spark in the jury in order to win.

Works with broad applicability are of course great. Works with narrower
applicability can often create much larger improvements—also great. Works with
unsure applicability, however, are less likely to convince the jury, and several of this
year’s contributions had a lot of room for improvement in this regard.

How to Win the Ernst Denert Award 2020 11

4 Delineate Your Contribution

You will, of course, point out what your research contribution is; how your work
advances the state of the art. But the flip side of this is also helpful: By pointing out
what is not part of your contribution (because it was already there before your work),
you will often make it a lot easier for the jury to understand what the contribution
really is, and appreciate it.

We had at least two submissions where different members of the jury viewed
the amount of originality in the work very differently. I suspect the ones with the
more negative view recognized some aspects they believed were previously known,
perceived them as being claimed to be part of the contribution, and then overlooked
or underappreciated what was really new. Such situations damage your chances.

5 Honestly Discuss Limitations

We value intellectual honesty. The more you bring of that, the better. Even within
the realm of applicability outlined by your assumptions, there will be areas where
your techniques work well and others where they work not so well, including cases
where they do not work at all. Where the assumptions describe the macro level of
applicability, these limitations describe the micro level.

The same advice applies as for assumptions: If the jury spots a limitation you did
not mention, our opinion of your work will be damaged a lot more than the limitation
itself ever could. Make sure you state all relevant limitations of your work.

6 Show Usefulness and Practical Applicability

One reason why the Ernst Denert Award even exists is that Ernst Denert feels aca-
demic software engineering work is often overly academic and neglects usefulness,
practical applicability, or both. Therefore, a good candidate work will cater for these
aspects and argue why the contribution is strong in this respect.

Ideally, it will report in detail on extensive field use and calculate return-on-
invest. However, this is almost always unrealistic.

The next best thing would be widely spread pick-up of a tool: If dozens of teams
decide the tool is worth using and keep up use over some time, this is also strong
evidence that the tool is useful and applicable. This variant is likely applicable only
to tools, not to other types of contribution.

The third-best possibility would be a limited field trial describing what about the
contribution worked easily or well and what made problems or showed limitations.
Such an approach should present initial evidence that the technique in question is
indeed useful and the benefits exceed the costs and downsides. Subjective statements

12 L. Prechelt

of various participants may be the best you can get, but if done right, they can be
convincing.

For contributions that apply to artifacts, applying them in the laboratory to a
broad corpus of such artifacts can sometimes be an alternative.

But even that may be impossible: Your work may be groundwork that is not
directly applicable. Or it may be insufficiently far developed to overcome many
of the practical hurdles against using it in real software development settings.
In such cases you need to resort to argumentation: Explain a scenario of how
your contribution can be developed into something that is useful and applicable in
practice. It will be a lot harder to convince the jury in this way, but if you have done
a good job with respect to explaining delineation, assumptions, and limitations, it
should be possible.

7 Have a Well-Prepared Nutshell

The importance of the presentation you give to the jury can hardly be overestimated.
Two thousand pages of dissertation text is not something the average (or indeed

any) jury member is going to read, let alone understand and remember. One hundred
pages of expertises and submitters’ rationales are more manageable for a jury
member in principle, but are difficult to digest and keep in memory for so many
candidates when one is not familiar with the individual works and many of their
topic areas. Do not assume any jury member has read any of this material. They
may have. But more likely than not, have not.

Therefore, the short presentation you are going to give essentially has to do it all:
motivate your work, explain its techniques, explain its results and their contribution,
and address the concerns discussed above to overcome the jury members’ diverse
biases, preferences, and pet peeves.

It is a super-difficult task. While trying to find a solution, keep in mind the
following:

• We are a more generalist audience than the collection of experts and semi-experts
you encounter in a typical conference session. Therefore:

• Avoid losing us by explaining technical detail we cannot understand because we
lack some of the foundations.

• Avoid losing us by going too fast wherever any concepts are involved that some
of us do not encounter often.

• Under these circumstances, “telling a story” is the approach most likely to work.
If you have never tried this, learn it now; it is highly effective in many situations,
in research and beyond.

• On the other hand, you do not need to convince us that you “know your stuff.”
We know all of the works are very good and their authors very capable.

How to Win the Ernst Denert Award 2020 13

8 Be Timeless

Imagine a time 20 years into the future: What will the role be of your contribution
of today in the software engineering knowledge of tomorrow?

• Will it be something that had its 15 minutes of fame 20 years ago but has long
become completely irrelevant?

• Will it have been surpassed by improved solutions that address the same problem,
but build on your contribution?

• Will it have become a classical tool, hardly changed, but still somewhat useful
(like make)?

• Will it be a well-known piece of method knowledge, long considered obvious
and self-understood (like refactoring)?

If your contribution has aspects that you expect to last long, make sure you explain
to the jury what those are and why you think so. We appreciate it.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

What You See Is What You Get:
Practical Effect Handlers
in Capability-Passing Style

Jonathan Immanuel Brachthäuser

Abstract Structuring control flow is an essential task almost every programmer
faces on a daily basis. At the same time, the control flow of software applications
is becoming increasingly complicated, motivating languages to include more and
more features like asynchronous programming and generators. Effect handlers are a
promising alternative since they can express many of these features as libraries.
To bring effect handlers closer to the software engineering practice, we present
capability passing as an implementation technique for effect handlers. Capability
passing provides the basis for the integration of effect handlers into mainstream
object-oriented programming languages and thereby unlocks novel modularization
strategies. It also enables programmers to apply lexical reasoning about effects and
gives rise to a new form of effect polymorphism. Finally, it paves the path for
efficient compilation strategies of control effects.

1 Introduction

Structuring control flow is an essential task almost every programmer faces on
a daily basis. The control-flow mechanisms offered by modern programming
languages range from simple local control-flow mechanisms, such as conditional
branching and loops, to more complex constructs that enable non-local control flow
transfers, such as exceptions, asynchronous programming, generators, fibers, and
many more.

Some programs require combining various of the aforementioned mechanisms to
structure control flow. As an example, take the following JavaScript program.

async function* readFiles(files) {

for (const file of files) {

const contents = await read(file);

J. I. Brachthäuser (�)
EPFL, Lausanne, Switzerland
e-mail: jonathan.brachthauser@epfl.ch

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_3

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_3&domain=pdf
mailto:jonathan.brachthauser@epfl.ch
https://doi.org/10.1007/978-3-030-83128-8_3

16 J. I. Brachthäuser

if (!contents) { throw "empty file" }

else { yield contents }

}

}

The example structures the local program flow using for and if. It also uses
exceptions (e.g., throw), generators (e.g., yield), and asynchronous program-
ming (e.g., async / await). Integrating and combining all of those mechanisms
in one language (like JavaScript) come with significant challenges.

Programmers struggle to understand programs that combine the various fea-
tures [41]. Does calling the above function result in a promise containing a gen-
erator, or a generator of promises? Where will the exception "empty file"
be caught? At the call site of readFiles? When awaiting the promise? When
requesting the next result from the generator? At the same time, mechanisms
like async/await turn structuring control flow from an implementation detail to
a cross-cutting concern, having a negative impact on modularity and modular
reasoning.

Language designers have to establish the correctness of the individual fea-
tures and their interaction. Interestingly, generators and async/await have been
added individually to ECMAScript in versions 2016 and 2017. The combina-
tion (i.e., asynchronous generator functions) however was only considered in
ES2018. Most languages that incorporate features like exceptions, generators, or
asynchronous programming lack a static type- and effect system that guarantees
that all exceptions are handled and that, for example, generators yield values of
the correct type. Establishing effect safety without sacrificing flexible use and
program understanding appears as a particular challenge for language designers.

Compiler engineers have to optimize the runtime performance of every single
construct. This is particularly challenging on platforms with just-in-time (JIT)
compilation like JavaScript and Java, since in those languages the features need
to be implemented in both the interpreter and the compiler. This affects both
the correctness and the performance of the various features and their interaction,
which needs to be considered in interpreter and compiler.

Algebraic effects and handlers [46–48] (in this chapter we refer to them as effect
handlers) are a promising solution to many of the aforementioned problems. Orig-
inally presented as a mathematical theory to model the semantics of computational
effects (like exceptions), they can now be found as a program structuring principle
in languages like Koka [33], Frank [40], Multicore OCaml [20], Helium [5],
and Effekt [8]. It has been shown that effect handlers can express many of the
aforementioned features as libraries. This includes exceptions [34], asynchronous
programming [1, 36], generators [7, 34], cooperative multitasking [18, 21], and
many more. Expressing those mechanisms as libraries instead of building them into
a language has multiple advantages: Programmers only need to learn and understand
one language feature instead of a multitude of different features. Modeling language
features in terms of effect handlers allows programmers to use the same conceptual

Practical Effect Handlers in Capability-Passing Style 17

framework to understand the features and their interaction. Instead of having to deal
with a combinatorial explosion, language designers only need to prove soundness
of a single feature, once and for all. By implementing language features as libraries,
their composition is automatically well-defined. Also compiler engineers are only
concerned with implementing and optimizing a single feature. Improving the
performance of a single feature automatically impacts the performance of all control
structures, which are implemented as libraries in terms of this one feature.

Effect handlers solve many of the aforementioned problems and are constantly
gaining traction in the programming languages community. So why have they not
been adopted by existing mainstream general purpose programming languages, yet?
To prepare them for practical use and facilitate a widespread adoption, we can
identify three challenges and corresponding areas of research:

1. Effect handlers have been conceived in the realm of functional programming lan-
guages. In consequence, many implementations of effect handlers can be found
in functional programming languages. They are either built into the language,
like in Eff [3], Koka [33], Frank [40], Multicore OCaml [17], Links [27], and
Helium [5]. Or they are implemented as a libraries for Haskell [29, 31, 55],
OCaml [29, 32], or Idris [13]. Studying how the paradigm of effect handling can
be integrated into other paradigms such as object-oriented programming (OOP)
could positively impact adoption by OO languages such as Java or Scala.

2. Effect handlers provide a unifying semantic framework to reason about pro-
grams. However, just like with exceptions [59], reasoning about the control flow
of programs that make extensive use of handlers can remain challenging—in
particular in the presence of higher-order functions [39]. Effect systems, as a
static approximation of the runtime semantics, often help but easily become
complicated to reason about themselves [8]. We believe that being able to reason
lexically (that is just from the program text) about where an effect is handled
could significantly improve program understanding.

3. Effect handlers are general enough to express many control flow mechanisms.
This generality comes with a price: runtime performance. While great improve-
ments are being made [35, 49, 53], we believe that further improving runtime
performance is important to facilitate a widespread adoption. Programmers
should not be forced to choose between the right abstraction and efficiency.

After providing an introduction to effect handlers, in this chapter, we present the
current state of the art in the above three research areas. In particular, we discuss
how the implementation technique of capability passing can contribute to improve
on the abovementioned problems.

18 J. I. Brachthäuser

Fig. 1 Effect handlers generalize exception handlers. They allow resuming the computation at
the call site. Examples of an effect signature, an effectful program, and an effect handler in the
programming language Effekt

2 Effect Handlers

Here we offer a brief introduction into programming with effects and handlers. The
examples in this section use our language Effekt1 [8], but (unless pointed out) the
underlying principles apply to most languages with support for effect handling, such
as Koka [37] or Multicore OCaml [21].

Effect handlers can be thought of as a generalization of the simpler and widely
known control-flow construct exceptions. Similar to exceptions, programs using
effect handlers are conceptually split into three parts: effect operations, effectful
functions, and effect handlers. All three components are illustrated in Fig. 1.

Effect operations. Compared with exceptions, effect operations correspond to
throw as found in languages like Java [25]. However, instead of being built
in, effect operations are user defined. One can define operations like yield
to output elements of a (push-based) stream, getHttp to send (asynchronous)
http-requests, or suspend to (cooperatively) transfer control to a scheduler [34].
In contrast to exceptional control flow with throw, effect operations can
potentially return results. The effect operation yield in Fig. 1 takes integer
values and returns a boolean value.

Effectful programs. Programs are effectful [3, 29] if they call effect operations.
This can occur either directly or indirectly via other effectful programs. Like
checked exceptions in Java, some implementations of effect handlers track the
effects used by an effectful program in its type. This allows the type checker
to distinguish effectful programs from pure programs (i.e., programs using no
effects) and to assert that all effects are eventually handled. The effectful program
range uses the yield operation to yield values between from and to. Its
inferred type is Unit / { Gen }, that is, it does return a value of type Unit

1 The language implementation, further documentation, and a programming environment are
available online (https://effekt-lang.org).

https://effekt-lang.org

Practical Effect Handlers in Capability-Passing Style 19

(similar to void in Java) and uses the Gen effect. In general, we can read types
like T / { E1, E2, ...} as: the computation returns a value of type T and requires
handling of effects E1, E2, and so forth.

Effect handlers. Effect handlers generalize exception handlers [2, 47]. They
implement the effect operations, specifying what it means for example to yield,
send http-requests, or suspend. Like exception handlers delimit the scope with
try { ... }, effect handlers delimit the dynamic scope in which effect
operations of a particular effect signature are handled by this very handler. In
our example, we handle the generator effect of the program range(0, 10) by
printing the values obtained from the generator. It then resumes the computation
at the original call to yield, passing the value true as the result of the call to
yield. This possibility to resume the computation equips effect handlers with
the additional expressive power over exceptions.

Effect operations are often declared (and grouped) in effect signatures (such as
Gen), which act as an interface between the user of effect operations (i.e., effectful
programs) and the implementor of effect operations (i.e., effect handlers). Program-
ming with effect handlers encourages modularity, by separating the declaration of
effect operations from their implementation in effect handlers [29].

2.1 Aborting the Computation

Effect handlers can express many different control-flow mechanisms. Maybe the
simplest form are exceptions. Simply by not calling resume, we can abort the
computation that called raise as illustrated in the following example.

Effect Signature:

effect Exc {
def raise[A](msg: String): A

}

Effectful Program:

def div(x: Double, y: Double) =
if (y == 0.0) {

raise("division by zero")
} else {

x / y
}

Effect Handler:

def divideBy(n: Double) =
try { println(div(4.0, n)) }
with Exc {

def raise(msg: String) = {
println("Error:" ++ msg)

}
}

20 J. I. Brachthäuser

The type of raise promises to return a value of type A for every A. This is
possible since we will never call resume and thus never have to provide such
a value. In our example, calling divideBy(2.0) prints 2.0 whereas calling
divideBy(0.0) reports an error.

2.2 Dynamic Dependencies

One important usage of effects is to express dependencies to other components or
to model configuration [12]. This is illustrated in the following example.

Effect Signature:

effect Request {
def port(): Int
def path(): String

}
effect Session {

def user(): User
}

Effectful Program:

def render() =
if (path() == "/index") { index() }
else { ... }

def index() =
p("Welcome: " ++ user().name)

The example declares two effects: Request to represent context information about
the current request to a webserver and Session to express information that is
available in the present session.

Expressing dependencies this way has two advantages: First, context information
such as the current request do not need to be passed explicitly as arguments. Instead,
the function render immediately calls the effect operation path, and index
calls user. Neither function requires explicit passing of arguments. Second,
dependencies are tracked uniformly by the type system. The inferred type of index
is Html / { Session } communicating that it returns Html values using the
Session effect that needs to be handled at the call site. Similarly, render has an
inferred type of Html / { Request, Session } and thus requires handling
of both, Request and Session. Effects allow us to make dependencies explicit in
the type, while type- and effect inference improves maintainability and, for instance,
simplifies adding dependencies without having to change the type signature.

2.3 Advanced Control Flow

So far, we have seen examples where we either did not call the continuation
(i.e., resume) to model exceptional control flow or where we immediately called
the continuation to express dynamic dependencies. While these are common use
cases, in general, effect handlers can express many more control-flow patterns. For

Practical Effect Handlers in Capability-Passing Style 21

example, cooperative multitasking can be implemented in terms of an effect like
Fiber:

Effect Signature:

effect Fiber {
def fork(): Boolean
def suspend(): Unit
def exit(): Unit

}

Effectful Program:

if (fork()) {
println("in fork"); suspend(); ...

} else {
println("in main fiber"); suspend(); ...

}

Effect handlers for Fiber can implement scheduling of virtual threads by storing
the continuation in a queue [9, 21] and resuming them at a later point. Similarly,
control-flow mechanisms for asynchronous programming [36] and generators [34]
can be expressed. That is, all of the features from the introductory example (Sect. 1)
can be modeled in terms of effect handlers. Effect handlers thus provide a unifying
semantic framework to program with complex control flow.

In the remainder of this chapter, we present the implementation technique of
capability-passing style and discuss how different shortcomings of effect handlers
are addressed by it.

3 Effect Handlers and Object-Oriented Programming

Effect handlers have been conceived in the setting of functional programming
languages. Given this heritage, it is not surprising that effect handlers have been
implemented as libraries for functional programming languages like Haskell [29,
31, 55], Idris [13], or OCaml [29, 32]. Similarly, most standalone languages that
support effect handlers are centered around the functional programming paradigm.
Examples include Eff [3], Koka [33], Frank [40], Links [27], and Helium [4].

Implementations in the realm of object-oriented programming (OOP) are much
more difficult to find. Only few implementations, which we are aware of, explicitly
use OOP features in their APIs. This comes somewhat with a surprise: the way we
introduced effect handlers in earlier sections used vocabulary, which is also often
used to describe object-oriented programming. More than that, Fig. 2 shows that we
can directly map concepts from programming with effect handlers to object-oriented

Effect Handlers Object-Oriented Programming
Effect Signatures Interfaces
Effect Operation Method
Effect Handlers Implementations (Classes)
Effectful Programs Interface Users

Effect Capability Instances / Objects

Fig. 2 Mapping concepts from effect handlers to object-oriented programming

22 J. I. Brachthäuser

programming—an observation that we made in prior work [6, 7, 9] and that has been
made independently by other researchers in the field [28, 60].

Effect signatures as interfaces. Effect signatures list the available effect
operations, which are associated with one effect. They only specify the type
signatures of effect operations without giving a concrete implementation. Effect
signatures thus directly correspond to interfaces in OOP, while effect operations
correspond to abstract methods defined in the interface.

Effect handlers as implementing classes. Effect handlers specify what it
means to call an effect operation like yield. They are implementations of
effect signatures and thus directly correspond to classes in OOP. One important
difference to traditional classes in OOP is that effect handlers can make use of the
continuation resume to implement effect operations, allowing them to express
advanced patterns of control flow. We refer the interested reader to Zhang et
al. [60] for a detailed comparison of the control flow offered by handlers and
classes and their connection to OOP.

Capabilities as instances. One OOP concept that traditionally has no direct
correspondence in the realm of algebraic effect handlers is the one of objects or
instances. To implement algebraic effect handlers as libraries for languages like
Scala [6, 9], or Java [7], in prior work, we introduced the notion of a capability as
an instance of an effect handler. A capability not only holds the implementation
of an effect handler but can also be seen as the constructive proof that the holder
is entitled to use a particular effect. The concept of capabilities is inspired by the
object-capability model for authority control [16, 43, 44].

Directly mapping effect handlers to OOP features has several advantages.
Reusing existing concepts to structure effect handlers and effectful programs lets
users focus on what is new with effect handlers. At the same time, users can
immediately apply their knowledge and intuition about interfaces and classes to
structure effect signatures and handlers, correspondingly.

Reusing existing abstractions from OOP allows users to combine the advantages
of those abstractions with the abstraction of effect handlers. The combination of
effect handlers with object-oriented features enables novel modularization strate-
gies, not only for effectful programs but also for effect handler implementations [7].
For instance, programmers can use standard OOP techniques like inheritance,
subtyping, private state, dynamic dispatch, and others to structure and implement
effect handlers [11]. By embedding handlers in a language like Scala, programmers
can additionally use more advanced features (like mixin composition or abstract
type members) to modularly describe effects and handlers.

Language implementors benefit from reusing existing abstractions since this
removes the burden of re-implementing very similar abstractions all over again.
Having fewer features also potentially reduces the risk of bad feature interaction.
To implement the functionality of effect handlers as libraries, reuse is even more
essential since it simply might not be possible to add new abstractions to a language
without modifying its syntax and semantics. Our design allowed us to implement

Practical Effect Handlers in Capability-Passing Style 23

effect handlers as libraries for Scala [6] and Java [7] without modifications to the
languages.

The focus of this chapter is on capabilities and capability passing—for a detailed
study of the newly gained extensibility and modularity by combining object-
oriented programming with effect handlers, we refer the interested reader to Chapter
4 of [11].

3.1 Capability Passing

Alongside the concept of a capability as a handler instance, we also developed the
technique of capability passing—in variants also known as handler passing [58],
evidence passing [56], or lexically scoped effects [3, 5]. Here we use capability
passing as terminology for the implementation technique and lexically scoped
effects to describe the mode of reasoning that comes with it.

We can illustrate capability passing by translating our example from Sect. 2.1
from Effekt to explicit capability-passing style.

Effekt Source Program:

def div(x: Double, y: Double): Double / { Exc } =

if (y == 0.0) { raise("division by zero") }
else { x / y }

Program in Capability-Passing Style:

def div(x: Double, y: Double, exc: Exc): Double =

if (y == 0.0) { exc .raise("division by zero") }

else { x / y }

Importantly, the function div now takes an additional argument exc—the capabil-
ity for the exception effect. The call to effect operation raise becomes a method
call on the capability. In general, for each effect that is (transitively) used by an
effectful function (like div), the function needs to take the corresponding capability
as an additional parameter. At the call site, those capabilities have to be explicitly
passed along, motivating the terminology of capability passing.

We developed capability-passing style as a technique to support effect handlers
in the form of libraries in existing OOP languages like Scala or Java [7, 10]. Since
then, capability-passing style evolved into a generic implementation technique for
effect handlers independent of object-oriented programming languages [8]. Much
like a continuation-passing (CPS) transformation makes the evaluation order of a
program explicit [24, 50], an intermediate representation in capability-passing style
makes it explicit where an effect is handled, or in other words, where an effect is
bound. In the remainder of this chapter, we will see how capability passing can
improve reasoning about effectful programs and significantly speed up the runtime
performance.

24 J. I. Brachthäuser

4 Lexically Scoped Effect Handlers: What You See Is What
You Get

Effect handlers are not only syntactically reminiscent of exception handlers; also
their semantics is a generalization of exception handlers. One particular aspect of
this relationship is that, like exceptions, effects are traditionally handled by the
dynamically closest handler. We also say, they are dynamically scoped.

4.1 Dynamically Scoped Effect Handlers

Let us revisit dynamically scoped handling by analogy to exception handling.
Figure 3 shows a JavaScript example that uses exception handling. The code in the
left column calls a function eachLine with a filename and a callback, which is
supposed to be called with each line of the file contents. On encounter of an empty
line it throws an exception that is supposed to be caught by the lexically (i.e., in the
surrounding program text) enclosing exception handler in the same column.

However, the function eachLine might be implemented as found in the right
column. It could internally use exceptions to signal error conditions and trigger
aborting and closing of the file. At runtime, when throw "Empty" is evaluated,
the stack is dynamically searched by unwinding frames until an exception handler is
found. Since the handler in the right column has most recently been installed, it will
be used to handle the exception. This is very similar to dynamically scoped bindings
in a language like LISP [42]. Handlers follow a stack discipline: the handler installed
last at runtime is the first to be considered—it shadows all previous handlers.

This semantics based on searching the stack carries over from exception handlers
to effect handlers. Since the inception of effect handlers [47, 48], most languages
that implement effect handlers are based on a dynamic search for the corresponding
handler. Examples of such languages include Koka [37], Frank [40], and Multicore
OCaml [21]. Dynamic scoping of exception handlers comes with a well-known

Fig. 3 Example of exception handling in JavaScript. An exception is always handled by the
dynamically closest exception handler. Here, an empty line would lead to the file being closed

Practical Effect Handlers in Capability-Passing Style 25

set of problems [59] that also immediately apply to the generalized form of effect
handlers.

Reasoning. As illustrated in the example in Fig. 3, dynamic handler search
makes it difficult to reason about which exception is handled by which handler.
In general, the combination of effects (such as exceptions) with higher-order
functions (like eachLine) can easily lead to accidental handling [59]. That is,
like in our example in Fig. 3, an exception is handled by a handler other than
the expected one. The problem not only pertains to functional programming
languages. Quite the contrary, in object-oriented programming, almost every
method that takes another object as parameter is higher order in this sense.

Performance. Since it can only be known at runtime which effect is handled by
which handler, standard optimizations such as inlining of handlers are not easily
applicable.

Both aspects are aggravated by the fact that effects (as opposed to exceptions)
are proposed as a primitive program structuring technique, not only to be used in an
exceptional case, but pervasively throughout the codebase. As such, we believe that
addressing the aforementioned problems is essential in order to scale effects and
handlers to practical languages.

4.2 Dynamic vs. Lexical Scoping

Much like variables can be scoped lexically or dynamically, the same applies to
effect handlers. However, before we go into detail of dynamically vs. lexically
scoped effect handlers, let us revisit dynamic scoping in the context of variable
bindings. To illustrate, let us assume a hypothetical extension of JavaScript that
also includes dynamically scoped variables [38], written ?x. The example in Fig. 4
rephrases our running example by replacing the use of exception handlers with a

Fig. 4 Example illustrating the difference between dynamic and lexical scoping. Dynamically
scoped variables are both bound and referenced with ?exc

26 J. I. Brachthäuser

variable binding exc—the overall structure of the example remains the same. The
example illustrates the difference between dynamic scoping and lexical scoping. In
the case of dynamic scoping (on the left), the use of a variable and its binding are
largely disconnected and might arbitrarily change at runtime. In our example, calling
eachLine shadows the binding of ?exc and rebinds it to "closing file".
Like with exceptions, dynamic binding resolves to the latest (or dynamically closest)
binder at runtime. In contrast, in the case of lexical scoping (on the right), the use
of the variable and its binding are connected lexically. That is, we can determine
the binding site simply by inspecting the source text: starting from the use-site
and expanding our search outward until we discover the first binder for exc. In
our example, we can determine that exc is bound immediately before the call to
eachLine, regardless of implementation details of eachLine. While dynamic
binding can be useful to describe extension points and model configuration, code
using it can be difficult to understand and maintain [38].

4.3 Lexically Scoped Effect Handlers

Capability passing is at the core of languages like Effekt [8] and provides the basis
for lexical scoping of effects [5]. To see how capability passing enables lexical
scoping, we can once more manually perform the steps of the Effekt compiler and
translate an Effekt program into explicit capability-passing style. As before, the core
idea is to explicitly pass handler instances, that is capabilities, instead of performing
a dynamic search at runtime.

As a first step, the left column of Fig. 5 expresses our running example in
the Effekt language. The example makes use of the previously defined exception
effect. The syntax slightly differs from the JavaScript example. In particular, Effekt
introduces the concept of block arguments such as { line ⇒ ... }. For our
purposes, block arguments can be understood as function arguments, binding the
parameter (e.g., line) in the body that follows.

Fig. 5 Translation to explicit capability-passing style. As part of the language implementation, the
Effekt program on the left is translated to an explicit form of capability passing on the right

Practical Effect Handlers in Capability-Passing Style 27

As a second step, the right column of Fig. 5 gives the translation of the program
into explicit capability-passing style. We can see that handling an effect like Exc
introduces a capability and binds it to the term variable exc highlighted in gray.
Calling effect operations simply translates to calling methods on the capability (in
our case exc.raise(...)). Explicit capability passing is essential to establish
a lexical connection between an effect handler and the operations it handles. In
particular, here we can see that the block passed to eachLine now simply closes
over the capabilities that are in scope at its definition site. Closing over capabilities
avoids accidental handling. Our exception will be handled by the correct handler,
regardless of the implementation details of eachLine.

4.3.1 Effect Types Carry Meaning

In the Effekt language, the translation to capability-passing style is directed by
the effect types. That is, whether or not a capability is bound (or passed) is
determined exclusively by the involved static types. In consequence, the meaning of
our example program depends on the type signature of eachLine. The translation
in Fig. 5 assumes the following signature:

def eachLine(file: File)

{ block: String ⇒ Unit / {} }: Unit / {}

where types of block parameters (like block) are enclosed in braces2. That is,
given a filename of type File and a block that lets us observe no effects (i.e., the
first empty effect set {}), we produce a value of type Unit while also requiring no
effects to be handled (i.e., the second empty effect set {}). From the perspective of
an implementor of eachLine, the empty effect set {} in type of block

block: String ⇒ Unit / {}

informs us that it does not allow us to handle any effects it might use. All effects
used by block, such as the exception Exc, need to be handled at the call site
of eachLine. This is also made explicit by the capability-passing transformation
(Fig. 5, right column). The block closes over the exception capability, bound at the
call site.

To obtain the capturing behavior of the original JavaScript program, we can
change the signature of eachLine to:

def eachLine(file: File)

{ block: String ⇒ Unit / { Exc } }: Unit / {}

2 Enclosing the type of block parameters in braces mimics the syntax at the call site.

28 J. I. Brachthäuser

The changed type of block now communicates that eachLine is able to handle
Exc effects. As a direct consequence of this change, the translation of our user code
changes to:

try { exc ⇒
eachLine(someFile) { line ⇒ exc ⇒

if (line == "") exc .raise("Empty")

else ...

}

} with Exc {

def raise(msg: String) = println("empty line")

}

This illustrates how changing the type signature in Effekt influences the meaning
of programs. While in the translation of Fig. 5, the exception effect is handled by
the lexically enclosing handler, it now is handled by eachLine, which introduces
another binding of exc that shadows the outer binding.

4.4 Effect Parametricity

Capability passing provides the necessary operational semantics guaranteeing that
effect handlers are abstraction safe [58]. Handlers can only handle those effects,
which are visible in the static effect types of a program. This also directly enables
effect parametric reasoning [5, 58]. In general, parametricity [51, 54] allows us to
use types (and effects) to reason about the dynamic semantics of programs and
obtain program equivalences that can be used, for instance, to carry out semantics
preserving refactorings. In our example, only by inspecting the type of eachLine,
we can know whether or not it can handle (and hence influence the semantics) of
the Exc effect. If its type does not mention the Exc effect, there is no way it can
accidentally, or purposefully, handle this effect. The effects in our signature thus
enable us to reason about possible implementations

Capability passing furthermore enables lexical reasoning: To determine where
an effect is being handled, or bound in the jargon of variable binders, we simply
have to inspect the static effect types in the lexical context of the call site.

Effekt Source Programs:

def outer(): Unit / {} = {
def inner(): Unit / { Exc } =

raise("error!")

try {
inner()

} with Exc { ... }
}

def outer(): Unit / { Exc } = {

def inner(): Unit / {} =
raise("error!")

try {
inner()

} with Exc { ... }
}

Practical Effect Handlers in Capability-Passing Style 29

In the first example, by inspecting the types, we know that raise is handled at the
call site of inner, that is, by the handler that follows the definition of inner. In
the second example, inner is annotated with an empty effect set. In consequence,
all effects have to be handled at its definition site, that is, at the call site of outer.

Admittedly, effect types that influence the operational semantics can be con-
fusing at first. However, following the types and translating the programs to
capability-passing style can help in building up some intuition.

Programs in Capability-Passing Style:

def outer(): Unit = {
def inner(exc: Exc): Unit =

exc .raise("error!")

try { exc ⇒
inner(exc)

} with Exc { ... }
}

def outer(exc: Exc): Unit = {

def inner(): Unit =
exc .raise("error!")

try { exc ⇒
inner()

} with Exc { ... }
}

Again, in the translation we can see that for every effect in an effect set, an additional
argument is introduced. On the left-hand side inner takes an additional argument,
while on the right-hand side it closes over exc capability in the outer lexical scope.

In consequence, we can conclude that the handler in the right column has no
influence on the meaning of our program. Since it does not handle anything, we
can refactor it and safely remove the handler to arrive at the semantically equivalent
program of

def outer(): Unit / { Exc } = {

def inner(): Unit / {} = raise("error!")

inner()

}

which we can simplify further to the equivalent:

def outer(): Unit / { Exc } = raise("error!")

Note that this is not the case for the program in the left column. Here, the handler
is meaningful since it handles the effects of inner, as indicated by the type of
inner.

4.5 Effect Polymorphism

Explicit capability-passing style not only enables reasoning with effect parametric-
ity [58] and lexical scoped effects [5], but also gives rise to a novel form of effect
polymorphism, which we call contextual effect polymorphism [8]. In languages with
effect systems, effectful functions generally have a type like α→ β/ ε, where α and

30 J. I. Brachthäuser

β are meta-variables representing types, and ε is a meta-variable that represents a
collection of effects. We identify two possible readings of such a type signature.

The Traditional Reading. Traditionally, the signature would be read as fol-
lows: Given a value of type α, the function produces a value of type β and
has effects ε. Effects are often seen as a side effect or additional “output” of a
function. In particular, an empty ε implies that the function cannot have effects—
it is pure. In contrast, a non-empty ε suggests that a function is effectful.

The Contextual Reading. In our design of the Effekt language, we propose
a novel reading of the types of effectful functions given above, inspired by
Osvald et al. [45]. Given a value of type α, the function produces a value of
type β and requires the calling context to handle effects ε. We interpret effects
as a requirement to the caller or additional “input” to a function. In particular,
an empty ε implies that the function does not impose any requirements on
its caller—it is contextually pure. Contextual purity does not imply purity; a
contextually pure function may be side-effecting, but those effects are handled
elsewhere. In contrast, a non-empty ε suggests that the function is contextually
effectful, meaning that the context is responsible for handling the effects.

To better understand the nuances and implications of the different readings, let
us inspect the signature of our running example eachLine.

4.5.1 The Traditional Reading

In an effect language that uses the traditional reading (we use Koka [37] here for
illustration), a conceivable signature would be this:

eachLine : (file, string → <> ()) → <> ()

The type of the function parameter has an empty effect row <>, which means it
cannot have any effects. Under this type signature our example would not type
check, since we pass an anonymous function (block) that throws exceptions and thus
does have an effect. We could change the signature of eachLine to indicate that
the function parameter may throw exceptions. Since eachLine calls its function
parameter, we have to adapt the resulting effect type as well:

eachLine : (file, string → <exc> ()) → <exc> ()

Specializing signatures of higher-order functions to every use-site is practically not
feasible and so Koka offers support for parametric effect polymorphism.

eachLine : forall<e> (file, string → e ()) → e ()

This signature expresses that at the call site we can pick an arbitrary collection of
effects (called e here). Calling eachLine will have the same effects as the block
passed to it.

Practical Effect Handlers in Capability-Passing Style 31

4.5.2 The Contextual Reading

Clearly, demanding the parameter of eachLine to be pure is too strict, as the
example illustrates. Extending the signature for a particular use case is not a modular
solution. Parametric effect polymorphism comes with its own set of problems,
which we discuss in a moment. In any case, the traditional reading does not allow
to express that the parameter of eachLine should be contextually pure, which is
expressed as follows in Effekt:

︸︷︷︸

Effects provided by eachLine
︸︷︷︸

Effects required by eachLine

def eachLine(file: File) { f: String ⇒ Unit / {} }: Unit / {}

Applying the contextual reading, the return type of eachLine communicates that
it does not require handling of any effects. In consequence, we can call eachLine
in any context. More interestingly, the type of the block parameter f also mentions
no effects. The function f is contextually pure: While the caller of f might
observe additional effects (for instance through mutable state), it cannot handle
them. Instead, all effects that are used by f have to be handled at the call site of
eachLine. In our example, the Exc effect, which used to signal empty lines, is
handled at the call site.

4.5.3 Parametric vs. Contextual Effect Polymorphism

Effect polymorphism means that programmers can reuse eachLine with different
function arguments, potentially using different effects. In languages like Koka,
with support for parametric effect polymorphism, this amounts to instantiating
the effect variable e to the effects of choice (i.e., exc in our example). With
parametric effect polymorphism, signatures of functions make it explicit, which
effects they do not care about, which might seem counterintuitive. Parametric effect
polymorphism complicates function signatures, and care must be taken to avoid
accidental capture [58] and to guarantee encapsulation [14]. We agree with Lindley
et al. [40], who state that users should not be confronted with the details of effect
polymorphism

In designing Frank we have sought to maintain the benefits of effect polymorphism whilst
avoiding the need to write effect variables in source code.

and with Leijen [37], who states that

In practice though we wish to simplify the types more and leave out “obvious” polymor-
phism.

Languages, like Koka and Frank, attempt to hide the details of parametric effect
polymorphism behind syntactic sugar. However, once programs get sufficiently
complicated, the syntactic abstraction breaks down and effect polymorphism
becomes visible to the user (for instance in error messages). To the best of our
knowledge, all languages with support for effects and handlers and static effect-
typing support this parametric form of effect polymorphism.

32 J. I. Brachthäuser

4.5.4 Contextual Effect Polymorphism

In contrast, Effekt offers contextual effect polymorphism. Effekt does not have
language constructs for type-level effect variables or quantification over effects.
Still, it supports effect polymorphic reuse of functions and guarantees effect safety.
We say that effect polymorphism in Effekt is contextual. Users never have to deal
with parametric effect polymorphism as the feature simply does not exist.

4.6 What You See Is What You Get

The implementation technique of capability passing truly supports the mantra of
“what you see is what you get.” It provides the necessary foundation for lexically
scoped effects—inspecting the lexical scope is enough to determine where an effect
is bound; it enables reasoning with effect parametricity—handlers can only handle
effects that are visible in the static effect types; and it gives rise to a novel form of
effect polymorphism—we only have to consider the visible effects, and all others are
handled elsewhere. While effect handlers do no magically remove the complexity
of programs as the introductory one in Sect. 1, static type and effect systems and a
lexical reasoning principle provide a powerful way of statically approximating the
runtime semantics of programs with complex control flow patterns.

5 Improving the Performance of Effect Handlers

Effect handlers allow high-level, user-definable, and composable control abstrac-
tions. However, typically a significant runtime cost is associated with searching the
correct handlers and capturing the continuation. There exist two lines of related
work with the goal to minimize the performance overhead of the abstraction of
effect handlers: runtime optimizations and compile-time optimizations.

Runtime optimizations. Some languages limit the expressivity of effect han-
dlers to allow more efficient implementation strategies in the language runtime.
For example, Multicore OCaml originally only allowed continuations to be
called once to support efficient (and destructive) stack switching [19, 20].
Other languages detect usage patterns of the continuation, which then can be
supported more efficiently. In the Koka implementation, Leijen [35] syntactically
recognizes that the continuation is only used once in tail position to optimize
capture/resume sequences.

Compile-time optimizations. Leijen [37] uses effect types to distinguish pure
from effectful computations and only applies a CPS transformation to the latter.
Pretnar et al. [49] explore compile-time source-to-source transformation rules to
implement an optimizing compiler for the language Eff. The idea is to repeatedly
apply rewrite rules in order to specialize effectful programs to their handlers [49].

Practical Effect Handlers in Capability-Passing Style 33

In general, existing implementation techniques for control effects often try
to avoid performance penalties for programs that do not use control effects. In
consequence, these implementations often sacrifice the performance of continuation
capture [30].

We believe that effect usage should be the norm rather than the exception.
Programmers should not need to trade-off modularity with performance. Efficient
implementations of effect handlers would enable programmers to develop many
general-purpose or domain-specific control flow constructs as libraries without
sacrificing performance. Taking an effects first approach, in various lines of work,
we studied how capability passing can help improve the performance of programs
that make heavy use of effect handlers and control effects.

Capability-passing style allows us to separate two concerns of handling effects:
(1) finding the correct handler implementation and (2) capturing the continuation.
Both aspects are traditionally associated with additional runtime overhead. In
Sect. 5.1, we will see how capability passing offers improvements for the former
concern. The subsequent Sect. 5.2 illustrates how capability passing paves the way
to optimizations regarding the latter concern.

5.1 Optimizing Handler Search

Traditionally, calling an effect operation triggers a dynamic search for the cor-
responding handler on the runtime stack. Searching for the correct handler is
not only costly but also hinders optimizations across effect calls. Searching the
handler implementation is entangled with traversing the call stack and capturing
the continuation. In contrast, with capability passing, functions can simply close
over capabilities, opening up many standard optimizations performed by compilers
and language runtimes [7, 35], such as inlining. To illustrate, how capability passing
offers improvements over dynamic handler search, in the following we discuss one
common optimization in more detail.

5.1.1 Optimizing Tail Resumptions

In many use cases, the continuation does not need to be captured. This includes most
examples that use effects to model dynamic dependencies, as in Sect. 2.2. One such
special case can be seen in our example of Fig. 1:

try { range(0, 10) } with Gen {

def yield(value: Int) = {

println(value); resume(true)

}

}

34 J. I. Brachthäuser

Here, the last statement in the handler for Gen is calling resume. Leijen [35] refers
to continuations that are called exactly once in tail position as tail resumptions.

Observing the control flow of these examples, we can notice that the continuation
is being captured and removed from the runtime stack, just to be reinstalled after
evaluating the effect operation. Depending on the underlying implementation, cap-
turing and reinstalling of the continuation can come with a significant performance
impact. While it is desirable to prevent the unnecessary capture of the continuation,
just omitting it does not necessarily preserve semantics. To see why, let us inspect
the following extended example:

Original Program:

try {

try { ... yield(42) ... } with Exc { ... }

} with Gen {

def yield(value: Int) = {

raise(value); resume(true)

}

}

The handler in this example uses an exception effect that is handled outside of
the program. Additionally, the call to the effect operation yield occurs under
an exception handler. Importantly, this exception handler should not handle the
exception used by the handler of yield. Naivly optimizing the continuation
capture would amount to rewriting the example to:

Optimized Program (Wrong):

def yieldImpl(value: Int): Boolean / { Exc } = {

raise(value); return true

}

try { ... yieldImpl(42) ... } with Exc { ... }

That is, we replaced the call to the effect operation yield with a call to the
function yieldImpl. Instead of resuming, the function immediately returns
true. However, the implementation itself makes use of another effect Exc. As
the signature of yieldImpl communicates, this effect is handled at the call
site! In consequence, by performing the optimization, we modified the meaning
of our program. While in the original program, the exception will be handled at the
definition site of the handler, in the optimized program the exception will be handled
at the call site of the function.

The problem of our wrong optimization becomes immediate when translating
our program to capability-passing style.

Practical Effect Handlers in Capability-Passing Style 35

Optimized Program in Capability Passing (Wrong):

def yieldImpl(value: Int, exc: Exc): Boolean = {

exc. raise(value); return true

}

try { exc ⇒ ... yieldImpl(42, exc) ... } with Exc { ... }

The exception effect is accidentally handled by the nested exception handler.
To allow such optimizations, while at the same time being semantics preserving,

languages that are based on dynamic handler search have to resort to complicated
workarounds that amount to remembering where on the runtime stack the effect
operation should conceptually be evaluated [35].

In contrast, in languages that establish a lexical scoping of effects, like Effekt
does by capability passing, it is very easy to implement such an optimization while
also preserving the semantics. In Effekt, we simply have to change the annotated
type of yieldImpl to express the correct semantics:

Optimized Program (Correct):

def yieldImpl(value: Int): Boolean / {} = {

raise(value); return true

}

try { ... yieldImpl(42) ... } with Exc { ... }

As discussed in Sect. 4.3.1, this small change in the type signature means that effects
used in the implementation should not be handled at the call site of yieldImpl,
but at its definition site! Capability passing thus allows us to replace tail-resumptive
effect calls by a simple dynamic dispatch [7, 56].

Passing capabilities explicitly enables a unified treatment of capability binders
and other variable binders in the language. In particular, under certain conditions,
capability passing can be performed at compile time, effectively inlining the handler
at the call to the effect operation [53]. Similarly, just-in-time compilers can easily
specialize effectful functions with respect to concrete handler implementations
simply by inlining capabilities [6, 7].

5.2 Optimizing Continuation Capture

In a second line of work, we explore an alternative strategy to efficiently compile
control effects and optimize continuation capture. Our compilation strategy rests
on the following observations: In general, the semantics of a program with control
effects depends on and potentially modifies the call stack. Effect handlers allow
capturing parts of the call stack as a continuation—resuming reinstalls the captured
continuation onto the call stack. The concrete stack can only be known at runtime.
But, what if certain information about the stack can be determined statically, that
is, at compile time? Traditionally, in languages that are built on a dynamic handler

36 J. I. Brachthäuser

search, the stack carries both, the effect handler implementations as well as markers
delimiting the extent to which a continuation should be captured. If some of this
information would be available at compile time, can we use it to partially evaluate
(i.e., specialize) the program? We can distinguish the following two classes of
potentially static information:

Handler implementation. We might know the concrete handler implemen-
tation that will be present on the stack when evaluating a particular part of
the program. This allows us to inline the handler implementations at the call
site of the effect operation. Inlining the handlers not only removes the runtime
search for the handler implementation, but also potentially opens up further local
optimizations.

Stack shape. We might know in which order effect handlers will be present on
the stack, when evaluating a part of the program. We refer to this information
as the shape of the stack. Statically knowing the order in which effect handlers
appear allows us to specialize the control flow and continuation capture.

In recent work [52, 53], we explored how to use this static information to
efficiently compile control effects.3

To make the additional information explicit, we present a language (called
λCap) that has two distinguishing features [53]. First, similar to our presentation in
Sect. 3.1, programs in λCap are written in explicit capability-passing style. Second,
λCap is equipped with a specialized type system that tracks the stack shape of
an effectful computation: a list of types corresponding to the types expected by
enclosing handlers. For example, let us assume the following computation:

try {

val res = try { prog() > 1 } with Gen { ... };

println(res)

} with Exc { ... }

In λCap the function prog would be assigned the type:

prog : () ⇒ Int [Unit, Boolean]

It computes an integer value and is required to be run in a context with two
surrounding effect handlers. The outer handler is delimited at type Unit (in our
example, the Exc effect), and the inner handler is delimited at type Boolean (in
our example, the Gen effect). Guided by the stack shape, we implement control
effects in λCap by performing an iterated CPS translation [15, 52]. That is, for every
handler that occurs in the type of a program, our translation performs one CPS
transformation. Each iteration of the CPS transformation adds an extra continuation
argument to functions. Our example function prog would thus be CPS translated
twice, once for each entry in the stack shape.

3 Here we only sketch the highlevel ideas, for a detailed presentation, soundness proofs, and
performance evaluation, we direct the interested reader to the full paper [53].

Practical Effect Handlers in Capability-Passing Style 37

Time in ms (Standard Deviation)
Benchmark Baseline Cap Cap Native

Koka
Triple 2504.1 ±19.5 66.2 ±2.2 23.9 ±0.6 6.2 ±0.2
Queens (18) 403.4 ±9.3 170.8 ±1.7 171.4 ±1.2 161.9 ±4.1
Count (2K) 56.0 ±1.8 0.4 ±0.0 0.2 ±0.0 0.0 ±0.0
Generator (1K) 43.9 ±1.8 0.4 ±0.0 0.1 ±0.0 0.0 ±0.0

Chez Scheme
Triple 68.6 ±1.1 3.7 ±0.1 3.7 ±0.1 1.8 ±0.0
Queens (18) 93.7 ±3.5 89.6 ±0.6 88.1 ±1.0 89.5 ±1.2
Count (1M) 445.2 ±27.2 10.5 ±0.6 10.5 ±0.8 1.9 ±0.0
Generator (1M) 664.2 ±14.6 17.6 ±0.5 17.7 ±0.5 2.1 ±0.0

Multicore OCaml
Triple 25.0 ±2.4 4.5 ±0.1 2.4 ±0.1 2.0 ±0.1
Queens (18) 57.9 ±2.2 33.1 ±0.7 33.7 ±0.6 34.8 ±2.7
Count (1M) 72.5 ±0.9 19.4 ±0.5 7.5 ±0.2 2.8 ±0.0
Generator (1M) 93.9 ±1.3 18.3 ±0.5 10.3 ±0.3 3.9 ±0.1
Primes (1K) 32.2 ±0.6 29.0 ±0.6 22.8 ±0.4 N/A
Chameneos 26.7 ±0.6 32.7 ±1.0 28.7 ±0.9 N/A

Fig. 6 Comparing the performance of λCap and λλCap with Koka 1, Multicore OCaml, and Chez
Scheme (from Schuster et al. [53])

5.3 Full Elimination of Control Abstractions

While λCap only makes capability passing and stack shapes explicit, in a second
language (which we call λλCap), we make use of this additional information. In
particular, λλCap has the same operational semantics as λCap but refines the type
system and restricts the class of programs expressible in λλCap as a sub-language of
λCap for which we always statically know handler implementations.

Statically knowing both the handler for each effect operation and the stack shape
allows us to perform capability passing at compile time to effectively inline effect
handlers. This way we can fully reduce all abstractions related to effect handlers at
compile time.

5.4 Performance Evaluation

To evaluate the performance gains, in our benchmarks (Fig. 6, [53]) we compare
code generated from λCap and λλCap with Koka 1 [37], Multicore OCaml [20], and
Chez Scheme [22]. The benchmarks indicate that our translation offers significant
speedups (of up to 409x) for examples, which heavily use effects and handlers,

38 J. I. Brachthäuser

and shows competitive performance for examples with only simple uses of effect
handlers.

Interestingly, on Chez Scheme we cannot observe a significant difference
between λCap and the fully optimizing λλCap. It appears that the information,
made explicit through our approach, is enough for optimizing compilers (like Chez
Scheme) to perform inlining. In particular, by using the stack shape to guide our
iterated CPS translation, the control flow and context of effectful function calls are
made fully explicit. Similarly, by capability passing, we make explicit which effect
is handled by which effect handler.

6 Related Work

Here we offer a brief comparison of our approach of capability-passing style for
effect handlers with other closely related techniques.

Object Capabilities
The general idea of explicitly representing the ability to perform an effect operation
in a capability that can be passed to other components is not new. To reason
about access privileges and authority control, the object-capability model represents
security critical resources as capabilities [16, 43, 44]. Only the holder to such a
capability can perform operations on such resources. It is this line of work that
inspired us to use the name capability for instances of effect handlers. Object
capabilities enable a similar style of lexical reasoning as described in Sect. 4.4.
We are not aware of any prior work that combined object capabilities with effect
handlers.

(Generalized) Evidence Passing
Xie et al. [56] explore how languages with support for effect handlers can be
implemented efficiently by performing evidence passing. In contrast to our work,
where each handler introduces separate capabilities, Xie et al. pass all currently
available handlers in an evidence vector. Every effectful function is modified to
receive this evidence vector as an additional argument. They develop evidence pass-
ing as an implementation technique for traditional languages with effect handlers
and parametric effect polymorphism [56, 57]. In consequence, they purposefully do
not close over evidence and thus do not establish lexical scoping of effect handlers.

Lexical Effect Handlers
In terms of enabling lexical reasoning for effect handlers, our work is closely related
to the one by Zhang et al. [58, 60] as well as the one by Biernacki et al. [5].

Zhang et al. [60] show how passing handlers (what we refer to as “capabilities”)
can enable effect parametricity. Like in our own prior work [6], their handler
instances H� are pairs of handler implementations H and prompt markers �. While
our own prior work focuses on embedding effect handlers into existing languages
like Scala [6] or Java [7], they present a standalone calculus, prove it sound, and

Practical Effect Handlers in Capability-Passing Style 39

show important properties such as effect abstraction. In particular, they show that
no manual lifting annotations [4, 14, 39] are required to avoid accidental capture.

Biernacki et al. [5] show how effect handlers can be seen as binders for effect
operations. They present two variants of operational semantics. First, an “open
semantics” where effect handlers are directly treated as binders and reduction is
performed under such binders. Second, a “generative semantics,” where reducing
an effect handlers generates a fresh runtime label, which is then substituted. The
treatment of effect handlers as binders is morally equivalent to how effect handlers
in our work introduce and bind capabilities. Most of our own prior work of effect
handlers [6–9] is based on multi-prompt delimited control [23, 26] and thus closer
to the generative semantics.

Both lines of work offer striking similarity to our approach of capability passing.
Both show that passing effect handlers (or treating them as binders) enables some
form of lexical reasoning and prevents accidental capture. However, to the best of
our knowledge, we are the first to fully embrace this mode of lexical reasoning by
replacing parametric effect polymorphism with contextual effect polymorphism.

7 Conclusion and Future Directions

Originally developed as an implementation technique to embed effect handlers
into object-oriented programming languages, capability passing has proved to be
an interesting basis for practical implementations of effect handlers. Building on
capability passing, we developed library implementations for Scala and Java, as
well as a new standalone language “Effekt.”

Capability passing immediately gives rise to lexical scoping of effect handlers,
allowing programmers to apply the same reasoning principles for effects that they
are used to from reasoning about variable bindings. Basing the operational seman-
tics of effect handlers on capability passing, instead of dynamic handler search, also
casts a different light on type and effect systems. It gives rise to reasoning with
effect parametricity and motivates a novel form of effect polymorphism: contextual
effect polymorphism. Furthermore, problems such as accidental capturing of effects
and effect encapsulation [14, 39] are ruled out by design.

Capability passing also helps to significantly improve the performance of pro-
grams with effect handlers and complex control flow. By replacing dynamic handler
search with capability passing, optimizations like tail resumptions and inlining of
handlers are facilitated. Combining capability-passing style with explicitly tracking
the stack of the runtime stack in the types of programs, we were able to fully
eliminate all abstractions associated with effect handlers. While capability passing
offers an interesting semantic foundation for new languages, also existing languages
(like Koka) can benefit from it. However, since the semantics of capability passing
differs from traditional handler search, it is necessary to establish a semantic
correspondence between programs in capability-passing style and programs using
dynamic handler search. Xie et al. [56] provide an important first step into this

40 J. I. Brachthäuser

direction by identifying a subset of Koka programs that can safely be expressed in a
variant of capability-passing style4 called evidence passing. By doing so, the work
by Xie et al. provides one foundational basis for version 2 of Microsoft’s language
Koka.

7.1 Future Directions

To further prepare effects and handlers as a tool for practical software engineering,
we can identify the following future directions of research.

• We established that capability passing allows for an efficient compilation under
certain conditions [53]. However, in particular both, the order of handlers and
the concrete handler implementation do not necessarily need to be statically
known. While we believe it is important to make the conditions explicit under
which optimal compilation is possible, more research is necessary to also support
programs with only partially static knowledge.

• One concrete avenue we plan to pursue is to develop a just-in-time compiler with
dedicated support for control effects. A JIT compiler can use recorded traces to
generate versions of effectful function, specialized to their calling context. In this
way, we could gather information about the stack shape and used effect handlers
to apply the above-described optimizations.

• Capability passing enables lexical reasoning about effects and contextual effect
polymorphism. It would be interesting to perform user studies to validate the
claim that this improves program understanding and maintainability.

• The concrete implementation of contextual effect polymorphism in the Effekt
language comes with the restriction that no first-class functions are supported.
That is, functions can only be passed as arguments, but cannot be returned or
stored in data structures. In ongoing work we are lifting this restriction, while
carefully trading off expressivity with understandability.

We are excited to see how effect handlers, and capability-passing style, can shape
the future practice of software engineering.

Acknowledgments I would like to thank all my collaborators and coauthors for significantly
contributing to all of the papers, which this chapter is directly or indirectly based upon [6–
9, 12, 52, 53, 56].

4 There exist a few significant differences between evidence and capabilities. In particular,
capabilities are passed individually, while evidence is provided in form of a vector [56]. While
this has subtle implications on aspects such as effect polymorphism, from the perspective of this
chapter, both achieve similar goals.

Practical Effect Handlers in Capability-Passing Style 41

References

1. Ahman, D., Pretnar, M.: Asynchronous effects. Proc. ACM Program. Lang. 5(POPL) (2021).
https://doi.org/10.1145/3434305

2. Bauer, A., Pretnar, M.: An effect system for algebraic effects and handlers. In: International
Conference on Algebra and Coalgebra in Computer Science, pp. 1–16. Springer, Berlin,
Heidelberg (2013)

3. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers. J. Logical Algebraic
Methods Program. 84(1), 108–123 (2015)

4. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Abstracting algebraic effects. Proc.
ACM Program. Lang. 3(POPL), 6:1–6:28 (2019)

5. Biernacki, D., Piróg, M., Polesiuk, P., Sieczkowski, F.: Binders by day, labels by night: effect
instances via lexically scoped handlers. Proc. ACM Program. Lang. 4(POPL) (2019). https://
doi.org/10.1145/3371116

6. Brachthäuser, J.I., Schuster, P.: Effekt: Extensible algebraic effects in Scala (short paper). In:
Proceedings of the International Symposium on Scala. ACM, New York (2017). https://doi.
org/10.1145/3136000.3136007

7. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effect handlers for the masses. Proc. ACM
Program. Lang. 2(OOPSLA), 111:1–111:27 (2018). https://doi.org/10.1145/3276481

8. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effects as capabilities: effect handlers and
lightweight effect polymorphism. Proc. ACM Program. Lang. 4(OOPSLA) (2020). https://doi.
org/10.1145/3428194

9. Brachthäuser, J.I., Schuster, P., Ostermann, K.: Effekt: capability-passing style for type- and
effect-safe, extensible effect handlers in Scala. J. Funct. Program. (2020). https://doi.org/10.
1017/S0956796820000027

10. Brachthäuser, J.I.: Towards naturalistic EDSLs using algebraic effects (2017). Presentation at
Domain-Specific Language Design and Implementation (DSLDI)

11. Brachthäuser, J.I.: Design and implementation of effect handlers for object-oriented program-
ming languages. Ph.D. Thesis, University of Tübingen, Germany (2020). https://doi.org/10.
15496/publikation-43400

12. Brachthäuser, J.I., Leijen, D.: Programming with implicit values, functions, and control. Tech.
Rep. MSR-TR-2019-7, Microsoft Research (2019)

13. Brady, E.: Programming and reasoning with algebraic effects and dependent types. In:
Proceedings of the International Conference on Functional Programming, pp. 133–144. ACM,
New York (2013)

14. Convent, L., Lindley, S., McBride, C., McLaughlin, C.: Doo bee doo bee doo. J. Funct.
Program. 30, e9 (2020). https://doi.org/10.1017/S0956796820000039

15. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the Conference on LISP and
Functional Programming, pp. 151–160. ACM, New York (1990)

16. Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed computations.
Commun. ACM 9(3), 143–155 (1966)

17. Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan, K., White,
L.: Concurrent system programming with effect handlers. In: Proceedings of the Symposium
on Trends in Functional Programming. Springer LNCS 10788 (2017)

18. Dolan, S., Eliopoulos, S., Hillerström, D., Madhavapeddy, A., Sivaramakrishnan, K., White,
L.: Effectively tackling the awkward squad. In: ML Workshop (2017)

19. Dolan, S., Muralidharan, S., Gregg, D.: Compiler support for lightweight context switching.
ACM Trans. Archit. Code Optim. 9(4), 36:1–36:25 (2013)

20. Dolan, S., White, L., Madhavapeddy, A.: Multicore OCaml. In: OCaml Workshop (2014)
21. Dolan, S., White, L., Sivaramakrishnan, K., Yallop, J., Madhavapeddy, A.: Effective concur-

rency through algebraic effects. In: OCaml Workshop (2015)
22. Dybvig, R.K.: The development of chez scheme. In: Proceedings of the Eleventh ACM

SIGPLAN International Conference on Functional Programming, ICFP ’06, pp. 1–12. ACM,
New York (2006). https://doi.org/10.1145/1159803.1159805

https://doi.org/10.1145/3434305
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3136000.3136007
https://doi.org/10.1145/3276481
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.1017/S0956796820000027
https://doi.org/10.15496/publikation-43400
https://doi.org/10.15496/publikation-43400
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1145/1159803.1159805

42 J. I. Brachthäuser

23. Dybvig, R.K., Peyton Jones, S.L., Sabry, A.: A monadic framework for delimited continua-
tions. J. Funct. Program. 17(6), 687–730 (2007)

24. Fischer, M.J.: Lambda calculus schemata. In: Proceedings of ACM Conference on Proving
Assertions About Programs, pp. 104–109. ACM, New York (1972)

25. Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification. Addison-Wesley Publish-
ing, Boston (1996)

26. Gunter, C.A., Rémy, D., Riecke, J.G.: A generalization of exceptions and control in ML-like
languages. In: Proceedings of the Conference on Functional Programming Languages and
Computer Architecture, pp. 12–23. ACM, New York (1995)

27. Hillerström, D., Lindley, S., Atkey, B., Sivaramakrishnan, K.: Continuation passing style for
effect handlers. In: Formal Structures for Computation and Deduction, LIPIcs, vol. 84. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik (2017)

28. Inostroza, P., van der Storm, T.: JEff: Objects for effect. In: Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2018. ACM, New York (2018)

29. Kammar, O., Lindley, S., Oury, N.: Handlers in action. In: Proceedings of the International
Conference on Functional Programming, pp. 145–158. ACM, New York (2013)

30. Kiselyov, O.: Delimited control in OCaml, abstractly and concretely. Theor. Comput. Sci. 435,
56–76 (2012)

31. Kiselyov, O., Sabry, A., Swords, C.: Extensible effects: an alternative to monad transformers.
In: Proceedings of the Haskell Symposium, pp. 59–70. ACM, New York (2013)

32. Kiselyov, O., Sivaramakrishnan, K.: Eff directly in OCaml. In: ML Workshop (2016)
33. Leijen, D.: Koka: Programming with row polymorphic effect types. In: Proceedings of the

Workshop on Mathematically Structured Functional Programming (2014)
34. Leijen, D.: Algebraic effects for functional programming. Tech. rep., MSR-TR-2016-29.

Microsoft Research technical report (2016)
35. Leijen, D.: Implementing algebraic effects in C. In: Proceedings of the Asian Symposium on

Programming Languages and Systems, pp. 339–363. Springer, Cham (2017)
36. Leijen, D.: Structured asynchrony with algebraic effects. In: Proceedings of the Workshop on

Type-Driven Development, pp. 16–29. ACM, New York (2017)
37. Leijen, D.: Type directed compilation of row-typed algebraic effects. In: Proceedings of the

Symposium on Principles of Programming Languages, pp. 486–499. ACM, New York (2017)
38. Lewis, J.R., Launchbury, J., Meijer, E., Shields, M.B.: Implicit parameters: dynamic scoping

with static types. In: Proceedings of the Symposium on Principles of Programming Languages,
pp. 108–118. ACM, New York (2000)

39. Lindley, S.: Encapsulating effects. Dagstuhl Rep. 8(4), 114–118 (2018)
40. Lindley, S., McBride, C., McLaughlin, C.: Do be do be do. In: Proceedings of the Symposium

on Principles of Programming Languages, pp. 500–514. ACM, New York (2017)
41. Madsen, M., Lhoták, O., Tip, F.: A model for reasoning about javascript promises. Proc. ACM

Program. Lang. 1(OOPSLA) (2017). https://doi.org/10.1145/3133910
42. McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine,

Part I. Commun. ACM 3(4), 184–195 (1960). https://doi.org/10.1145/367177.367199
43. Melicher, D., Shi, Y., Potanin, A., Aldrich, J.: A capability-based module system for authority

control. In: 31st European Conference on Object-Oriented Programming (ECOOP 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

44. Miller, M.S.: Robust composition: Towards a unified approach to access control and concur-
rency control. Ph.D. Thesis, Johns Hopkins University, Baltimore, Maryland, USA (2006).
AAI3245526

45. Osvald, L., Essertel, G., Wu, X., Alayón, L.I.G., Rompf, T.: Gentrification gone too far?
affordable 2nd-class values for fun and (co-) effect. In: Proceedings of the Conference on
Object-Oriented Programming, Systems, Languages and Applications, pp. 234–251. ACM,
New York (2016)

46. Plotkin, G., Power, J.: Algebraic operations and generic effects. Appl. Categorical Struct. 11(1),
69–94 (2003)

https://doi.org/10.1145/3133910
https://doi.org/10.1145/367177.367199

Practical Effect Handlers in Capability-Passing Style 43

47. Plotkin, G., Pretnar, M.: Handlers of algebraic effects. In: European Symposium on Program-
ming, pp. 80–94. Springer, Berlin (2009)

48. Plotkin, G.D., Pretnar, M.: Handling algebraic effects. Logical Methods Comput. Sci. 9(4),
1–36 (2013)

49. Pretnar, M., Saleh, A.H.S., Faes, A., Schrijvers, T.: Efficient compilation of algebraic effects
and handlers. Tech. rep., Department of Computer Science, KU Leuven; Leuven, Belgium
(2017)

50. Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In: Proceed-
ings of the ACM Annual Conference, pp. 717–740. ACM, New York (1972)

51. Reynolds, J.C.: Types, abstraction and parametric polymorphism. In: Proceedings of the IFIP
World Computer Congress, pp. 513–523. Elsevier (North-Holland), Amsterdam (1983)

52. Schuster, P., Brachthäuser, J.I.: Typing, representing, and abstracting control. In: Proceedings
of the Workshop on Type-Driven Development, pp. 14–24. ACM, New York (2018). https://
doi.org/10.1145/3240719.3241788

53. Schuster, P., Brachthäuser, J.I., Ostermann, K.: Compiling effect handlers in capability-passing
style. Proc. ACM Program. Lang. 4(ICFP) (2020). https://doi.org/10.1145/3408975

54. Wadler, P.: Theorems for free! In: Proceedings of the Conference on Functional Programming
Languages and Computer Architecture, pp. 347–359. ACM, New York (1989)

55. Wu, N., Schrijvers, T.: Fusion for free—efficient algebraic effect handlers. In: Proceedings of
the Conference on Mathematics of Program Construction. Springer LNCS 9129 (2015)

56. Xie, N., Brachthäuser, J.I., Hillerström, D., Schuster, P., Leijen, D.: Effect handlers, evidently.
Proc. ACM Program. Lang. 4(ICFP) (2020). https://doi.org/10.1145/3408981

57. Xie, N., Leijen, D.: Generalized evidence passing for effect handlers. Tech. Rep. MSR-TR-
2021-5, Microsoft (2021). https://www.microsoft.com/en-us/research/publication/generalized-
evidence-passing-for-effect-handlers/. V2, 2021-04-24

58. Zhang, Y., Myers, A.C.: Abstraction-safe effect handlers via tunneling. Proc. ACM Program.
Lang. 3(POPL), 5:1–5:29 (2019)

59. Zhang, Y., Salvaneschi, G., Beightol, Q., Liskov, B., Myers, A.C.: Accepting blame for safe
tunneled exceptions. In: Proceedings of the Conference on Programming Language Design and
Implementation, pp. 281–295. ACM, New York (2016)

60. Zhang, Y., Salvaneschi, G., Myers, A.C.: Handling bidirectional control flow. Proc. ACM
Program. Lang. 4(OOPSLA) (2020). https://doi.org/10.1145/3428207

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3240719.3241788
https://doi.org/10.1145/3408975
https://doi.org/10.1145/3408981
https://www.microsoft.com/en-us/research/publication/generalized-evidence-passing-for-effect-handlers/
https://www.microsoft.com/en-us/research/publication/generalized-evidence-passing-for-effect-handlers/
https://doi.org/10.1145/3428207
http://creativecommons.org/licenses/by/4.0/

How to Effectively Reduce Failure
Analysis Time?

Mojdeh Golagha

Abstract Debugging is one of the most expensive and challenging phases in the
software development life-cycle. One important cost factor in the debugging process
is the time required to analyze failures and find underlying faults. Two types of tech-
niques that can help developers to reduce this analysis time are Failure Clustering
and Automated Fault Localization. Although there is a plethora of these techniques
in the literature, there are still some gaps that prevent their operationalization in real-
world contexts. Besides, the abundance of these techniques confuses the developers
in selecting a suitable method for their specific domain. In order to help developers
in reducing analysis time, we propose methodologies and techniques that can be
used standalone or in a form of a tool-chain. Utilizing this tool-chain, developers
(1) know which data they need for further analysis, (2) are able to group failures
based on their root causes, and (3) are able to find more information about the
root causes of each failing group. Our tool-chain was initially developed based on
state-of-the-art failure diagnosis techniques. We implemented and evaluated existing
techniques. We built on and improved them where the results were promising and
proposed new solutions where needed. The overarching goal of this study has been
the applicability of techniques in practice.

1 Introduction

We are in the era of software intensive systems. The complexity of systems is
growing as they are being increasingly used in safety critical applications. These
new applications have raised the need for intensive testing to assure the reliability
of the systems.

M. Golagha (�)
fortiss, München, Germany
e-mail: golagha@fortiss.org

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_4

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_4&domain=pdf
mailto:golagha@fortiss.org
https://doi.org/10.1007/978-3-030-83128-8_4

46 M. Golagha

These changes have consequently influenced software debugging endeavors.
From the increase in the number of tests and the fast pace of delivering software
have emerged the need for more automated debugging techniques. Automated
diagnosis techniques can reduce the effort spent on manual debugging, which
shortens the test-diagnose-repair cycle, and can therefore be expected to lead to
more reliable systems, and a shorter time-to-market. Software debugging has always
been recognized as a time-consuming, tiresome, and expensive task that cost billions
for economies every year [35].

In our terminology, a failure is the deviation of actual run-time behavior from
intended behavior, and a fault is the reason for the deviation [36]. In other words, a
fault is the program element that needs to be changed in order to remove the failure.
The essence of failure diagnosis is to trace back a failure to the fault or faults [11].

Developers usually get quick and yet preliminary test results from huge amounts
of test runs and use this information to attack problems such as locating faults. Such
a quick feedback approach may lower the development cost but puts a lot of pressure
on developers. In practice, the time resource allocated for each debugging session
is usually limited and predetermined. Therefore, developers need an assisting tool
which increases their productivity and reduces failure analysis time. We focused on
automated diagnosis techniques and tried to improve them to make them applicable
in practice. We recognized two general categories of techniques for addressing
reducing failure diagnosis time: failure clustering and automated fault localization.

Failure clustering methods attempt to group failing tests with respect to the faults
that caused them [30]. If there are several failing test cases (TC) as the result of test
execution, these failing TCs may be clustered such that tests which are in the same
cluster would have failed due to the same hypothesized fault. Then, in an ideal
world, testers investigate only one representative TC from each cluster to discover
all the underlying faults. This process eliminates the need for analyzing each failing
TC individually. Thus, there would be a significant reduction in analysis time[9].

Automated fault localization techniques aim to “identify some program event(s)
or state(s) or element(s) that cause or correlate with the failure to provide the
developer with a report that will aid fault repair” [21]. The debugging process
is usually predicated on the developer’s ability to find and repair faults. While
both steps in the debugging process (fault localization and fault repair) are time-
consuming in their own right, fault localization is considered more critical, as it is a
prerequisite for fault repair [21]. Furthermore, Kochhar et al. have found that there
is a large demand for fault localization solutions among developers [17]. Therefore,
over the past ten years, a lot of research has gone into developing automated
techniques for fault localization in order to help speed up the process [38].

There is a plethora of failure clustering and automated fault localization tech-
niques in the literature [28]. Although developers find these methods worthwhile
and essential [17], these techniques are not adopted in practice yet.

How to Effectively Reduce Failure Analysis Time? 47

2 Failure Clustering

Clustering failures is effective in reducing failure analysis time [9]. Its advantages
are threefold:

1. It eliminates the need to analyze each failing test individually. To achieve this
goal, it is enough to select one representative for each cluster and analyze only
the representatives to find all the underlying faults in case of multiple faults [9].

In an industrial environment, usually several dozens of TCs are executed
each night as regressions happen, and several hundred every weekend, which
together usually lead to large numbers of failures. Developers must analyze
the failing tests and find all the root causes in the short time they have before
the software release. The complexity of the analysis process makes the failure
diagnosis process tough and time-consuming. Since in practice, a single fault
usually leads to the failure of multiple TCs, analyzing only the representative
TCs helps developers to find more faults in a shorter time.

2. It provides the opportunity for debugging in parallel [13].
3. It gives an estimation of the number of faults causing the failures. Fault

localization, while there are several faults in the code, is more challenging than
when there is only one fault in the code. When a program fails, the number of
faults is, in general, unknown, and certain faults may mask or obfuscate other
faults [13].

Jones et al. [13] introduced a parallel debugging process as an alternative to
sequential debugging. They suggest that in the presence of multiple faults in a pro-
gram, clustering failing tests based on their underlying faults, and assigning clusters
to different developers for simultaneous debugging, reduce the total debugging cost
and time. They propose two clustering techniques. Using the first technique, they
cluster failures based on execution profiles and fault localization results. They start
the clustering process by using execution profile similarities and complete it using
fault localization results. Their second technique suggests to only use the results of
fault localization.

Hoegerle et al. [12] introduced another parallel debugging method which is based
on integer linear programming [25]. They applied the above-mentioned second
clustering technique of Jones et al. to compare it with their own debugging approach.
Their results show that this clustering technique of Jones et al. is not so effective.
But the first technique is effective if it is adapted to the context.

Parallel debugging reduces the analysis time. However, it does not remove the
need for analyzing all the failing tests one by one. It provides segregation between
faults to facilitate fault localization. But it does not provide segregation between
failing tests.

Another shortcoming in this area of research is the lack of a methodology for
adapting this idea to different industrial domains.

Moreover, the other similar existing approaches in the literature are either based
on coverage data or use context-specific data [31]. Therefore, there is a need for

48 M. Golagha

other sources of noncoverage data for the cases that the source code or execution
profile is not available.

To close the above-mentioned gaps, we propose a clustering approach. In the
following, first we describe our general clustering approach. Then, we explain two
different techniques based on available data.

2.1 Clustering Approach

Our general approach consists of usual steps of any clustering solution: First, we run
TCs and collect relevant data to use for clustering. Second, we apply hierarchical
clustering [32] on data. Third, we use some metrics to choose the best number
of clusters and finalize clusters. In an ideal solution, there is one cluster for each
underlying fault. Therefore, the number of clusters equals the number of faults.
Intuitively, we are not aware of this number beforehand. Fourth, we select one (or
k) representative for each cluster to start the debugging process. To implement this
clustering approach, one might need to adapt some steps based on available data. In
the following, we explain two failure clustering techniques that can be utilized in
different settings and at different levels of testing.

2.1.1 Failure Clustering with Coverage

In this approach, we use test coverage profiles as data for clustering. First, we
run a test suite and extract an execution profile for each TC. Second, utilizing
agglomerative hierarchical clustering, we build a tree of failing tests based on the
similarity of execution traces. In order to cut this tree into clusters we need to know
the best number of clusters. In the third step, we hence utilize fault localization
techniques to decide on the best number of clusters. Then, we cut the tree into the
found number of clusters. Finally, in the fourth step, we calculate the centers of the
clusters and choose the failures which are closest to the centers as representative
tests.

Step 1: Running Tests and Profiling Executions

The first step is to run the tests and profile executions. To profile TC executions, we
instrument the code. Executing a program while instrumenting the code results in a
report about which lines of code have been executed. We developed Aletheia [10]
to instrument the code and prepare data for clustering.

How to Effectively Reduce Failure Analysis Time? 49

Step 2: Generating Failure Tree

We use hierarchical clustering since it enables users to retrieve an arbitrary number
of clusters without the need to re-execute the clustering algorithm. This is especially
useful in practice since in a real-world scenario, it will not limit the users to a single
suggested number of clusters. Users will be able to explore multiple alternatives
without the need to wait for the re-execution of the clustering tool. We utilize
hierarchical clustering to generate a dendrogram of failing tests. We use execution
profiles generated in the previous step, as our feature sets for clustering.

Step 3: Cutting the Failure Tree by Fault Localization

Like any other clustering application, the next question is regarding the best number
of clusters. In our case, in an ideal solution, the number of clusters equals the number
of underlying fault which we do not know a priori. Therefore, we need a strategy to
predict the number of clusters. We use Spectrum-Based Fault Localization (SBFL)
(see Sect. 3) to find the best number of clusters k, or the cutting point, of the
dendrogram. Liu and Han [19] as well as Jones et al. [13] suggest that if the failures
in two clusters identify the same entities as faulty entities, they most likely failed
due to the same reason and should be merged into one cluster.

This process can be considered in a top-down manner. This technique computes
the fault localization rank for the children of a parent to decide whether the parent
is a better cluster or it should be divided into its two children. The result of fault
localization is a ranked list of entities from the most to the least suspicious. To check
similarity between ranked lists, we use Jaccard [24] set similarity as suggested by
[13], defined on two sets A and B as follows.

Similarity(A,B) = |A ∩ B|
|A ∪ B| (1)

If the similarity of the fault localization rank of two children is smaller than
a predefined threshold, they are (likely) pointing to different faults. They are
dissimilar and should not be merged. Thus, the parent cluster is not a good stopping
point and should be divided into its children. Otherwise, the parent is a better
cluster and this is the stopping point for clustering. According to Fig. 1, the first
step is to decide whether dashed line 1 is a better cutting point or dashed line 2. To
answer this question, the fault localization rank at cluster c2 is compared to fault
localization rank at cluster c3. If the similarity between these two sets is larger than
the predefined threshold, they are similar and the parent c1 is a better clustering than
dividing it into two clusters c2 and c3. As the result, line 1 is the cutting point. If line
1 is not the cutting point, the process continues to the point that no more division is
needed. Because of the good results in our large-scale experiments [9], we propose
0.85 as the similarity threshold.

50 M. Golagha

Fig. 1 Hierarchical clustering of four failing tests

Step 4: Selecting Representative TCs

We have already grouped TCs based on their hypothesized root causes by generating
the failure tree and cutting it into clusters. Now, we need to suggest a representative
for each cluster. Developers investigate only the representatives to find all the faults.
Since it is likely that clustering is imperfect, the selection of representatives for
a cluster has a great importance: We are aware that clusters are unlikely to be
100% pure [5]. We require our solution to make the representatives reliable. To
avoid selecting an outlier (a failure which does not belong to the fault class that has
the majority in the cluster) as a representative in clustering, we hence calculate the
center of the cluster and find the k-nearest neighbors (KNN) [3] to the center. These
KNNs are selected as representatives of the respective cluster. KNN search finds the
nearest neighbors in a set of data for each data point. Based on discussion with test
engineers, we suggest k = 1.

2.1.2 Failure Clustering Without Coverage

In previous section, we explained our first clustering approach that uses the coverage
profile of tests as the input for clustering. However, it is not always possible
to use this kind of data in practice due to three reasons. First, the source code
is not always accessible (e.g., in the case of Hardware-in-Loop tests). Second,
in this approach, collecting coverage information when running passing tests is
also needed. Sometimes, this requirement imposes extra work on the system.

How to Effectively Reduce Failure Analysis Time? 51

Third, instrumenting very large projects when running integration tests can be very
expensive and time-consuming. In this section, we propose a clustering technique
to group failing tests based on noncoverage data, retrieved from three different
sources. These data sources make the clustering approach applicable in different
stages of testing and other purposes such as test prioritization.

In this approach, first, we collect the data from different non-code-based sources,
for example, Jira tickets to make a feature vector for each TC. We binarize all of
them to prepare them for hierarchical clustering. Second, utilizing agglomerative
clustering, we build a tree of failing tests based on the similarity of their feature
vectors. Third, using a regression model on the number of failing tests in previous
test runs, we predict the number of clusters. Finally, in the fourth step, we calculate
the centers of the clusters and choose the failing tests which are closest to the
centers as the representative tests. The developers receive the list of representatives
to investigate them. If the suggested number of clusters appears to the developers
to be inaccurate, they can immediately adjust the number of clusters on the user
interface and get new representatives. Steps two and four are similar to the first
clustering approach. In the following, we describe all the steps in detail.

Step 1: Collecting the Input Data

Two main input data sources are: the database of test results that includes several
thousand test results from the previous test runs, and the repository of the TCs,
providing the source files for the tests. We can extract three sets of features (variables
in a data set) using these two data sources. Since the primary objective is to cluster
failing tests, these data are extracted only for failing tests. In case of test selection
or prioritization, they can be extracted for all tests. Typically, multiple projects (e.g.,
weekly, daily, nightly) are used to test a unit in an industrial setting (e.g., a single
ECU in a car company). Each test run is usually called a build. All the feature
values are extracted individually for each build. We explain each set of features in
the following.

General Features The following features can be extracted from the database [18]:
general information about the test; that is, its source file, component, domain, and
the hardware that executes the test (if any).

If features are of categorical nature and do not follow an ordinal scale, we
transform them into binary data.

Jira History We use the Jira tickets to extract the next feature set which is based
on the faults assigned to the previously analyzed failed tests. The idea is that tests
which frequently shared the same cause in the past are also likely to fail due to the
same cause in the future [18]. Table 1 shows an example. Each “cause” is a Jira
ticket ID that has been assigned to the failing test. One ticket may be assigned to
several failing tests if the manual analysis shows that these tests are failing because
of the same reason. Similar to the previous feature sets, this table should change to
a binary form as shown in Table 2.

52 M. Golagha

Table 1 Jira history [18] Test Project Build Cause

TC 1 Project 1 Build 1 Cause x

TC 2 Project 1 Build 1 Cause x

TC 3 Project 1 Build 1 Cause y

TC 1 Project 1 Build 2 Cause z

Table 2 Binary Jira History Test Build1CauseX Build1CauseY Build2CauseZ

TC 1 1 0 1

TC 2 1 0 0

TC 3 0 1 0

Test Case Similarity The files used to generate TCs are usually maintained in SVN
repositories. These repositories are referenced to define the source files needed to
generate the desired test series. Our hypothesis is that the likelihood that two tests
failed due to the same cause increases with the similarity of their underlying source
files [18]. To facilitate the calculation of similarity between two files, we compare
the high level steps taken in each test.

Input Feature Weights We extract three set of features as input for clustering.
These three sets lead to the generation of three different data sets. We measure the
distance between TCs using all these three sets. Then, to have an aggregated distance
value, we assign weights to each group and sum up the distance values. Based on our
experience [7], test similarity, general features, and Jira history are almost equally
important and therefore can be assigned similar weights, as shown in the following
equation:

daggregate(x, y) = 0.31 ∗dgeneral(x, y)+ 0.35 ∗djira(x, y)+ 0.34 ∗dtestF ile(x, y)

(2)

Step 2: Generating Failure Tree

Similar to the first approach, we apply hierarchical clustering on collected data.

Step 3: Cutting the Failure Tree by Fitting a Regression Model

In this approach, since we do not have coverage profile of tests, we cannot utilize
FL to predict the number of clusters. Therefore, we propose using polynomial
regression [16] to examine the relationship between the number of failing tests and
the cutting distance on the hierarchical tree which basically shows the number of
clusters. To this end, we extract the real number of faults in the previous analyzed
builds from the database. Then, we calculate the cutting distances of the respective

How to Effectively Reduce Failure Analysis Time? 53

trees. Finally, we fit the regression model to predict the cutting distance based on the
number of failing tests. Figure 2 illustrates an example. However, a model should
be fitted for each specific case.

0 100 200 300 400 500 600 700 800
0

2

4

6

Failing Tests

Cu
tti
ng

D
ist
an
ce

(o
pt
)

() = 0.0000322 × 2 − 0.006752 × + 2.2044

Fig. 2 Polynomial regression model for cutting distance[18]

Step 4: Selecting Representative TCs

Similar to the first approach, the nearest neighbor to the center of the cluster is
considered as the representative of the cluster. Since we want the developers to
be able to change the number of the cluster in real time, we pre-compute the
representatives for all the clusters considering all possible cutting distances.

2.2 Industry Impact

Our large-scale evaluations in [9] and [7] show that using first and second clustering
approaches, we are able to reduce more than 80% and 60% of the failure analysis
time, respectively. Analyzing only the representative tests, we discovered all the
underlying faults in the first approach and more than 80% of the faults using the
second approach. These numbers show that our clustering approach is an effective
way to reduce failure diagnosis time in an industrial setting.

The second takeaway is that if the source code is available and the highest
accuracy is required, one can use approach one; if short response time is important
and some level of inaccuracy is tolerable, one can use approach two.

54 M. Golagha

3 Fault Localization

One of the most popular subsets of automated FL techniques is spectrum-based
fault localization, known as SBFL [38]. In order to correlate program elements
with failing TCs, these techniques are built upon abstractions of program execution
traces, also known as program spectra, executable statement hit spectra, or code
coverage [38]. These program spectra can be defined as a set of program elements
covered during test execution. The initial goal of SBFL techniques is therefore
to identify program elements that are highly correlated with failing tests [21]. In
order to determine the correlation between program elements and TC results, SBFL
techniques utilize ranking metrics to pair a suspiciousness score with each program
element, indicating how likely it is to be faulty. The rationale behind these metrics
is that program elements frequently executed in failing TCs are more likely to be
faulty. Thus, the suspiciousness score considers the frequency at which elements
are executed in passing and failing TCs. Some of the more popular ranking metrics
have been specifically created for the use in FL, such as Tarantula [14] and DStar
[37], whereas others have been adapted from areas such as molecular biology, which
is the case for Ochiai [23]. DStar, Ochiai, and Tarantula are three of the most popular
and best-performing metrics in recent studies [28].

DStar = (NCF)∗

NUF + NCS

,

T arantula =
NCF

Nf

NCF

NF
+ NCS

NS

,

Ochiai = NCF√
NF ∗ (NCF + NCS)

,

where NF is the number of failing tests, NS is the number of passing tests, NCF

is the number of failing tests that cover the element, NCS is the number of passing
tests that cover the element, NUF is the number of failing tests that do not cover the
element. DStar metric takes a parameter *. The nominator is then taken to the power
of *. There is no significant difference between these metrics [28].

An example of a hit spectrum is shown in Table 3. Each • in the table means that
the respective element “e” (can be at different levels of granularity, e.g., statement,
method, basic block, etc.) was hit in the respective test run “t”. Table 4 shows the
suspiciousness scores and ranks of program elements in Table 3 using Ochiai metric.
As the ranks indicate, element e4 is the most suspicious element.

A study on developers’ expectations on automated FL [17] shows that most of
the studied developers view FL process as successful only if it:

• Can localize faults in the Top-10 positions
• Is able to process programs of size 100,000 LOC
• Completes its processing in less than a minute
• Provides rationales of why program elements are marked as potentially faulty

How to Effectively Reduce Failure Analysis Time? 55

Table 3 A hypothetical hit
spectrum

Element Test cases

t1 t2 t3 t4 t5 t6

e1 • • • • • •
e2 • • • •
e3 • • • •
e4 • • • •
e5 •
Verdict F P P P P F

Table 4 Ochiai
suspiciousness scores

Element Suspiciousness

Score Rank

e1 0.577 2

e2 0 3

e3 0 3

e4 0.707 1

e5 0 3

Considering these expectations, real-world evaluations [28] show that SBFL
techniques are not yet applicable in practice. They are able to process large-size
programs, but are not always able to locate the faults in top positions. This might
be the consequence of considering the correlation, not causation. Although the goal
of any FL technique is “to identify the code that caused the failure and not just any
code that correlated with it” [21], SBFL techniques measure the correlation between
program elements and test failures to compute suspiciousness scores. Thus, they do
not control potential confounding bias [27]. Confounding bias is a distortion that
modifies an association between an exposure (execution of a program element) and
an outcome (program failure) because a factor is independently associated with the
exposure and the outcome (see Sect. 3.2).

In addition, for SBFL techniques, the granularity of the program elements in the
program spectra is important, not only to the effectiveness of the system but also
to the preferences of developers [17]. Kochhar et al. found that among surveyed
developers, method, followed by statement and basic block were the most preferred
granularities. But when it comes to the effectiveness of the system, the method and
statement granularities may be too coarse- or fine-grained, respectively, to properly
locate the faulty program elements [21, 26]. Unfortunately, there is no golden rule
to say which granularity is the best for all contexts.

Despite ongoing research and improvements, the real-world evaluations show
that FL techniques are not always effective. Considering above-mentioned gaps, we
suggest the following improvements on SBFL.

56 M. Golagha

3.1 Syntactic Block Granularity

As mentioned previously, the two main program spectra granularities used by
practitioners are statement and method [17]. Unfortunately, neither of these options
are perfect, as they both have their limitations.

Due to its fine-grained nature, the statement granularity has a number of draw-
backs. First, simple profile elements like statements cannot properly characterize
and reveal nontrivial faults. Statements might be too simple to describe some
complex faults, such as those that are induced by a particular sequence of statements
[21]. In the Defects4J data set [15], which is the largest available database of Java
faults, also the most used one for FL studies, the median size of a fault is four lines,
with 244 bugs having faults spread across multiple locations in the program [33].
Furthermore, due to the nature of the statement granularity, it is incapable of locating
bugs due to missing code, known as a fault of omission [38]. For example, of the
395 bugs in the Defects4J data set, only 228 can be localized by the granularity of
statements.

Unfortunately, it is unclear whether developers can actually determine the faulty
nature of a statement by simply looking at it, without any additional information
[26, 38]. As a possible solution to the drawbacks of the statement granularity, Masri
suggests the usage of more-complex profiling types with higher granularity [21].
Previous empirical studies have shown that the effectiveness of SBFL techniques
improves when the granularity of the program elements is increased [21]. For that
reason, among others, many practitioners prefer to use the method granularity.

However, due to its coarse-grained nature, the method granularity has a handful
of drawbacks when used for calculating SBFL scores. Sohn and Yoo suggest two
drawbacks to the method granularity due to the nature of methods themselves [34].
First, methods on a single call chain can share the same spectrum values, resulting
in tied SBFL scores. Second, if there are TCs that only execute non-faulty parts of
a faulty method, they will decrease the overall suspiciousness score of the given
method. Furthermore, when given a list of methods ranked by their suspiciousness,
a programmer would still have to walk through all the statements in each method
while looking for the bug, which can result in a lot of wasted effort, especially if
the methods are large. Finally, the method granularity also lacks any sort of context
and may not provide any further information to the developer. For instance, if there
are failing TCs that focus on testing one specific method, such as a unit test, the
developer will already know that the fault is contained within the failing method, so
the method granularity results are of no additional help.

As both the statement and method granularities exhibit drawbacks, there is a
clear need for a new granularity level that has a higher granularity than statements,
without the added wasted effort and lack of context of methods. As a possible
solution, we propose the usage of the syntactic block granularity. Based on different
syntactic components found in the program’s source code (see Table 8 for syntactic
blocks in Java), it considers a wide range of program elements in an effort to provide
more context to the developer with minimal added cost.

How to Effectively Reduce Failure Analysis Time? 57

Fig. 3 Faulty mid() method.
Each syntactic block is
enclosed by a box

To illustrate the drawbacks of the statement and method granularities, as well as
highlight the benefits of the syntactic block granularity, consider the sample program
in Fig. 3. The method mid() takes as input three integers and outputs the median
value. The method contains a fault of omission, where the proper implementation
should include the else-if block from lines 8–10. Tables 5, 6, and 7 contain the
coverage information from a test suite containing six different TCs for each of the
three different granularities. In each table, each TC corresponds to a column, with
the top of the column corresponding to the inputs, the black dots corresponding to
coverage, and the status of the test at the bottom of the column. To the right of
the test case columns are the Ochiai score [1] and the corresponding rank for each
element.

As mentioned previously, it is not possible to localize a fault of omission
using the statement granularity. Therefore, no SBFL technique using the statement
granularity will be able to localize the fault in the mid() method.

To localize the fault using the method granularity, the only information provided
to the developer is that the fault is contained in the mid() method (see Table 6).
However, due to the unit test nature of the TCs, this fact is obvious. A developer
would still have to go through all the statements in the method to find the fault.

58 M. Golagha

Table 5 mid() Statement granularity Ochiai calculations

Test cases

Line # 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Ochiai Rank

1 • • • • • • 0.577 2

2 • • • • • • 0.577 2

3 • • • • • • 0.577 2

4 • • • • 0.707 1

5 • 0 6

13 • • 0 6

14 • • 0 6

15 • 0 6

17 • 0 6

18 0 6

21 • • • • • • 0.577 2

Verdict F P P P P F

Table 6 mid() Method granularity Ochiai calculations

Test cases

Line #’s 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Ochiai Rank

1–22 • • • • • • 0.577 1

Status F P P P P F

Table 7 mid() Syntactic block granularity Ochiai calculations

Test cases

Block type Line #’s 3,3,5 1,2,3 3,2,1 5,5,5 5,3,4 2,1,3 Ochiai Rank

MD 1–22 • • • • • • 0.577 3

ICS 3 • • • • • • 0.577 3

ITB 3–12 • • • • 0.707 1

ICS 4 • • • • 0.707 1

ITB 4–6 • 0 5

IEB 13–20 • • 0 5

ICS 14 • • 0 5

ITB 14–16 • 0 5

ICS 17 • 0 5

ITB 17–19 0 5

Verdict F P P P P F

As seen in Table 7, when using the syntactic block granularity, the fault is
localized to the then block of the if statement (ITB block) from lines 3–12 with
a rank of 1. As an improvement over the method granularity result, the developer
would only have to look through one portion of the method to find the fault.
Furthermore, the developer would have a further intuition as to the location/type
of fault that exists. Due to the average depth of faults within the program elements

How to Effectively Reduce Failure Analysis Time? 59

of the syntactic block granularity, the developer would expect the fault to likely be
an issue with the direct children elements of the block, or the block itself. In this
case, the faulty missing element would in fact be a direct child of the top ranked
ITB block from lines 3–12. Furthermore, due to the 0 suspiciousness score of the
ITB block from lines 4–6, the developer can infer that the fault is either with the if
statement conditional at line 4 or is a fault of omission.

This added information provided by the syntactic block granularity, as well as
the reduced number of statements required to search through to localize the fault,
helps illustrate the benefits of the syntactic block granularity over the other two
granularities.

Extracting Syntactic Blocks
Each syntactic block consists of a set of statements that syntactically belong together
to form a program element. For instance, every statement in a method declaration
belongs together, as whenever the method is called, the contained statements may be
run. Furthermore, each element may further be broken into multiple sub-elements.
For example, an if statement has three components: the condition statement, the
then block, and the else block. Each of these sub-elements may be run separately
from each other. For instance, the condition statement will always be executed, but
depending on the Boolean value of the conditional, either the then block or the else
block will be executed. As a result, for Java programs, the syntactic block granularity
consists of the 18 different types of program elements found in Table 8. For ease of
use, each syntactic block type has an ID associated with it. An example of each type
of syntactic block can be found in bold in the last column in Table 8.

Like the method granularity, for each syntactic block, if any of the contained
statements are executed, the syntactic block is also marked as executed. Originally,
Class, Interface, and Enum declarations were also considered as types of syntactic
blocks. However, due to their average size compared to all other types of blocks,
the added benefit of encompassing class level faults (such as missing method
declarations or incorrect class variables) was outweighed by the overall added
wasted effort associated with inspecting whole classes for a fault.

Due to the hierarchical nature of syntactic blocks, it is possible for one block to
completely encapsulate another. For example, in Fig. 3 the ITB block from lines 3–
12 encapsulates the ICS block at line 4 and the ITB block from lines 4–6. Because of
this, sections of code will appear multiple times as a programmer walks through the
ranked list of elements. In order to prevent unnecessary work, any block completely
encapsulated by another block with a higher suspiciousness score can be ignored
and removed from the final ranking.

While our work focused on faults in Java programs, the concept would be similar
for other programming languages with similar syntax, for example, C, C++, C#,
Go, PHP, and Swift.

60 M. Golagha

Table 8 Java syntactic block types

Base program element Syntactic block type Type ID Example

– Constructor declaration CND class X { X() { ... } }

– Method declaration MD public int foo() { ... }

– Initializer declaration IND static { a = 3; }

– Do statement DS do { ... } while (a == 0);

Foreach statement Condition statement FECS for (Object
o :
objects)
{ foo(); }

Body block FEBB for (Object
o :
objects)
{ foo(); }

For statement Condition statement FCS for (int
a = 3; a
<10; a++) {
foo(); }

Body block FBB for (int
a = 3; a
<10; a++) {
foo(); }

If statement Condition statement ICS if (a == 5) foo() else bar();

Then block ITB if (a == 5) foo() else bar();

Else block IEB if (a == 5) foo() else bar();

Switch statement Statement SS switch(a) { ... }

Entry statement SES case 1: foo(); break;

Try-catch statement Try block TCTB try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
}

Catch block TCCB try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
}

Finally block TCFB try { foo(); }
catch (Exception
e) { bar(); }
finally { x = 0;
}

While statement Condition statement WCS while (a > 0) { bar(); }

Body block WBB while (a > 0) { bar(); }

3.2 Re-ranking Program Elements

Using Fig. 4, we explain an example of confounding bias in SBFL results. The code
snippet indicates a hypothetical faulty program. Assume that a fault in method F1
propagates only through the left branch where method F2 is triggered, while the
right branch, where method F3 is called, executes correctly. Put differently, although
F1 contains a fault, only those tests taking the left branch are failing. In this case,

How to Effectively Reduce Failure Analysis Time? 61

an SBFL technique gives the highest suspiciousness score to the method F2, since
it is executed more frequently in failing executions and less frequently in passing
executions (F1: 1 failing, 1 passing, F2: 1 failing, and F3: 1 passing). However,
method F1 is the faulty element.

Fig. 4 A hypothetical faulty method with two branches

“Confounding bias happens when a seeming causal impact of an event on a
failure may be in fact due to another unknown confounding variable, which causes
both the event and the failure” [21]. Given a program and a test suite, assume that
all failing TCs induce dependence chain (chain of executed program elements in
our case) e1 → e2 → ebug → e3 → e4 → ef ail and all passing TCs induce
e1 → e2 only, where ebug indicates the execution of faulty element and ef ail

indicates a failure. A correlation-based approach such as SBFL would assign the
same suspiciousness score to any of ebug, e3, or e4, thus resulting in two false
positives, whereas a causation-based approach that considers dependencies to have
causal effect would assign e4 the lowest suspiciousness score and ebug the highest
suspiciousness score. This means, when computing the suspiciousness scores, the
confounding bias to consider for e4 would involve e3 and ebug, for e3 it would
involve ebug, and no confounding is involved when computing the suspiciousness
score of ebug [21].

In our analysis on SBFL results, we observed that often if the most suspicious
element s* does not contain a fault, one of its parents or grandparents contains
a fault, as shown in Fig. 4. Method F2 is the most suspicious element, while its
parent F1 contains a fault. To improve SBFL effectiveness, we propose a re-ranking
strategy based on this observation.

In this approach, we augment SBFL with a combined dynamic call and data-
dependency graphs of failing tests. First, using any similarity metric such as DStar,
we find the most suspicious method s* of the program. It has rank 1 on the
suspiciousness ranking list. We locate it on the combined dynamic call graph of
the failing tests and list all of its parents and grandparents. Then, we inject this list
between rank 1 and 2 of the ranking list and re-rank all the elements accordingly.
The re-ranking approach gives the second rank to the parents (if exists) of s* and the
third to its grandparents. We start inspecting the suspicious elements based on the
newly ranked list. Visual representation of call graph while highlighting the most

62 M. Golagha

Fig. 5 Human patch to fix Lang-26 [4]

suspicious elements on it aids users in better understanding the problem. In the
following, we use a real fault, Lang-26, from Defects4J database as our motivating
example to explain each step. This bug is a wrong method reference that causes one
test to fail [33] (Fig. 5).

Step 1: Finding the Most Suspicious Method(s) Using SBFL
As mentioned earlier, we arbitrarily use DStar (*=4) to find the most suspicious
method in the first step. DStar calculations on Lang-26 spectrum places
“lang3.time.FastDateFormat-TextField-1171” and “lang3.time.FastDateFormat-
StringLiteral-1130” methods at rank 1, as the most suspicious methods. Method
“lang3.time.FastDateFormat-820” which is the faulty method gets rank 17.

Step 2: Locating the Most Suspicious Method(s) on the Dynamic Call and/or
Data-Dependency Graph
In the second step, we generate a graph which includes dynamic method calls and/or
explicit data-dependencies of all failing tests. A dynamic call graph is generated
at runtime by monitoring the program execution. The graph contains nodes that
indicate the executed methods and edges between methods that represent method
calls. We consider dynamic call graph to inspect real, not potential (as is the case
in static call graphs), dependencies. An explicit data-dependency graph indicates
dependencies between program elements introduced by a common variable used in
multiple program elements. A data-dependency exists when two program elements
exchange data using a variable. This happens when one program element writes to
a field, and another element reads that field later. The result is a data-dependency
between the first and second elements.

Considering Fig. 6, a call graph contains only the solid lines. A data-dependency
graph contains only the dashed line. A combined graph can be helpful in SBFL. If
method compute is faulty, method getResult will also return a wrong result. Thus, it
will be labeled as a suspect. Looking into the combined graph, one can improve the
labeling by adjusting for the confounder.

Figure 7 shows the call graph of Lang-26 failing test. Due to space constraints, it
is only depicting the left branch. Thick red boundaries highlight the most suspicious
methods. All nodes are annotated with their ranks.

How to Effectively Reduce Failure Analysis Time? 63

Fig. 6 Combined
call/data-dependency graph f

compute

getResult

Step 3: Re-ranking Program Methods
In step 3, we find the parents and grandparents of the DStar’s most suspicious
methods. Then, we inject them between rank 1 and rank 2 and change all the
ranks accordingly. Parents get rank 2 and grandparents get rank 3. In our example,
“lang3.time.FastDateFormat-888” is the parent and “lang3.time.FastDateFormat-
820” is the grandparent. Thus, in our new list, we place them right after
ranked 1 methods and change their ranks to 2 and 3, respectively. Users get
the new ranking list. As annotations on Fig. 7 show, the rank of faulty method
“lang3.time.FastDateFormat-820” changes from 17 to 3 which is a considerable
improvement.

3.3 Evaluation

Our evaluation results in [6] show that using our proposed re-ranking techniques, we
can improve the average effectiveness of SBFL to 73.5% when it comes to locating
faulty elements in Top-10 ranks. This means, in 75.3% of the cases, SBFL with
re-ranking listed the faulty element in top ten ranks.

In addition, using syntactic blocks, we add context to SBFL results, provide
additional insight into the possible location of the fault, and cover more types
of faults than both popular statement and method granularities. Syntactic block
granularity exhibits ranking behavior similar to the method granularity, while having
a wasted effort (# lines that have to be inspected before finding the fault) equivalent
to, if not better than, the statement granularity. Finally, when compared to the
method granularity, it exhibits up to a 92.48% improvement when it comes to
the locality of the program elements to the fault, a characteristic that provides the
user with a better insight into the possible location of the faults. When inspecting
program elements containing multiple statements, it is important to be able to have
some insight as to which statements are more suspicious than others. For example,
when inspecting a method for a fault, it would be helpful for the user to know where
to start looking for the fault, instead of having to walk through each statement
one-by-one. By knowing certain characteristics of the program elements in each
granularity, a user may be able to localize the fault easier. One possible characteristic
to consider would be the proximity of the most suspicious faulty program element

64 M. Golagha

F
ig

.7
L

ef
tb

ra
nc

h
of

L
an

g-
26

ca
ll

gr
ap

h.
N

um
be

rs
in

th
e

no
de

s
in

di
ca

te
th

e
li

ne
nu

m
be

rs
of

m
et

ho
ds

in
th

e
so

ur
ce

co
de

How to Effectively Reduce Failure Analysis Time? 65

e* to the fault itself. If the average depth of the fault in the abstract syntax tree (AST)
of the program element e* is low, it will be easier to find the fault, as the user could
work their way down the AST, giving higher priority to the shallower elements.

However, we observed an issue when it comes to its application in industrial
domains: the effectiveness of SBFL varies from case to case. It is not clear for
a user whether using SBFL would help in reducing analysis time or waste time.
Therefore, to continue our endeavor in developing practical solutions, first we need
to understand what is the reason behind this observation. Why is the effectiveness
of these techniques so unpredictable? What are the factors that influence the
effectiveness of fault localization? Can we accurately predict fault localization
effectiveness? Answering these questions can help in two ways: (1) We would know
how to improve the code to facilitate SBFL. (2) We would be able to predict the
effectiveness of SBFL. This helps users in deciding where and when to use it to
avoid wasting time and money.

3.4 Predicting the Quality of SBFL

We tried to shed light on the observations above and understand what factors
explain such variations. Knowing influencing factors and being able to predict the
effectiveness of SBFL can improve the user’s trust. If SBFL is expected to be
bad, we don’t use it—and the other way around. Doing this will not always help
programmers, but it doesn’t frustrate them either with bad predictions of the fault
location.

To learn the aspects of the projects with the strongest influence on fault local-
ization effectiveness, we investigated a large number of potential factors affecting
SBFL effectiveness and built models, using standard machine learning techniques
and a set of carefully selected metrics, to predict effectiveness. We wanted to
determine whether we can build a model, using collected metrics as features, that is
accurate enough to be used for SBFL effectiveness predictions in practice.

We grouped metrics into three groups according to the source of information
they are based on. Metrics were considered potentially relevant when we had a
hypothesis about why they could influence SBFL effectiveness. Considering code
metrics, a metric had to be actionable as well, meaning that a developer could, using
an appropriate programming style, improve its value. Static metrics measure the
static aspects of the whole source code. Dynamic metrics measure the dynamic
aspects considering the test runs. Test suite metrics are correlated to the test suite.
In total, we collected 46 metrics and computed them for the buggy versions of five
Defects4J projects. Tables 9, 10, and 11 illustrate the collected metrics.

Based on the metrics defined above, we need to predict if SBFL is effective and
define class labels to predict. To define effectiveness, we relied on method-level
Ochiai results. If the rank of the faulty method was between 1 and 10, we labeled
SBFL as “effective” or “1”, otherwise “ineffective” or “0”. Using collected metrics
as variables or features and SBFL effectiveness as labels, we formed a data set. We

66 M. Golagha

Table 9 Static metrics

ID Metric Definition

S1 PML % of methods with LoC>30

S2 PHFS % of files with LoC>750

S3 PMFS % of files with 300<LoC<750

S4 PHND % of methods with nesting depth>5

S5 PMND % of methods with 3<=nesting depth<=5

S6 CC Mean cyclomatic complexity [22]

S7 MCC # of methods with 10<CC<20

S8 AFFC Mean afferent coupling [2]

S9 EFFC Mean efferent coupling [2]

S10 ABKD Mean block depth

S11 ADIH Mean depth of inheritance hierarchy

S12 ALOCPM Mean # of LoC per method

S13 ANOCPT Mean # of constructors per type

S14 ANOFPT Mean # of fields per type

S15 ANOMPT Mean # of methods per type

applied regression analysis and classification algorithms on the data set with the goal
to find the most relevant and influential metrics. A model generated using influential
metrics helps decide whether or not to proceed with fault localization, thus avoiding
misleading recommendations and waste of time.

Our evaluation results in [8] show that the best model is based on random forest;
combines 15 static code, dynamic execution, and test suite metrics; and shows an
excellent discrimination power (AUC = 0.88). The most influential metrics are: four
static metrics (% Methods with LoC>30, % Methods with Nesting Depth>5, %
Methods with 3<=Nesting Depth<=5, Mean # of Fields per Type), four dynamic
metrics (Mean Node Degree, Max. Node Out-Degree, Graph Diameter, Response
for Class), and two test metrics (% Method Coverage, % Methods Covered in Failing
Tests). A slightly less accurate model (AUC = 0.87), based on only 10 metrics, relies
on logistic regression. There is a considerable overlap of eight metrics which yield
an AUC of 0.86 when using logistic regression and 0.87 when using random forest.
These prediction models can be used in two ways: (1) to decide whether or not to
proceed with fault localization and (2) to guide improvements in code quality and
test suites.

4 Contribution and Limitation

We make the following contributions:

• A failure clustering methodology. We propose a failure clustering technique
and a methodology for adapting the idea of debugging in parallel to a real context.

How to Effectively Reduce Failure Analysis Time? 67

Table 10 Dynamic metrics ID Metric Definitiona

D1 VC # of Nodes in call graph

D2 EC # of Edges in call graph

D3 MAXVD Max. node degree

D4 MVD Mean node degree

D5 MAXVI Max. node in-degree

D6 MVI Mean node in-degree

D7 MAXVO Max node out-degree

D8 MVO Mean node out-degree

D9 MSND Avg. start node degree

D10 GD Graph diameter

D11 GR Graph radius

D12 MGD Mean geodesic distance

D13 VCON Node connectivity

D14 ECON Edge connectivity

D15 ClCo Mean clustering coefficient [20]

D16 SCOV % of statement coverage

D17 CBO Coupling between objects [2]

D18 RFC Response for class [2]
aD1: # methods. D2: # method calls. D3: max. # edges
connected to a node. D5: max. # edges entering a node. D7:
max. # edges leaving a node. D10: greatest distance between
any two nodes. D11: min. distance between any two nodes.
D12: # edges in a shortest path between any two nodes.
D13: min. # nodes that must be removed to break all paths
between two nodes. D14: min. # edges that must be removed
to break all paths between two nodes. D15: measures degree
to which nodes in a graph tend to cluster

Table 11 Test suite metrics ID Metric Definition

T1 T # of tests

T2 M # of methods

T3 PPT % of passing tests

T4 PFT % of failing tests

T5 D Density [29]

T6 G Diversity [29]

T7 U Uniqueness [29]

T8 DDU Density × diversity × uniqueness [29]

T9 MatSpar Matrix sparsity

T10 MetCov % of method coverage

T11 COVPT % of methods covered in passing tests

T12 COVFT % of methods covered in failing tests

T13 AVGMV Mean covered methods per test

68 M. Golagha

• A collection of data sources for failure clustering. We introduce a list of
coverage and noncoverage data that are useful in the clustering of failing tests.

• A new data granularity for failure diagnosis. We propose a new granularity
for program spectra called the syntactic block granularity which considers 18
different types of program elements.

• A new ranking strategy. We propose a ranking approach for SBFL techniques
which leverages dynamic call and data-dependency graphs of failing executions.

• A model to predict the effectiveness of SBFL. We introduce a set of metrics
which influence the effectiveness of SBFL. Using these metrics, we build a model
to predict the effectiveness of SBFL. This model can be helpful in facilitating
fault localization as well.

• A tool-chain for failure diagnosis. We introduce a tool-chain for failure
diagnosis which puts failure clustering and fault localization in a pipeline.

However, we are aware that our work has its limitations. The difficulty of
gathering data for evaluation prevented us from reporting on several case studies. We
evaluated our solution ideas on either C++ programs or Java programs. However,
a comprehensive evaluation should contain benchmarks from both languages.
Comparing the results, finding similarities, and understanding dissimilarities can
help us better understand the important factors in general and in each category.

In our fault localization evaluations, we assumed that each buggy version
contains only one bug. However, this is not the case in practice. Although we suggest
that before any fault localization attempt, one should do clustering on failing tests
to segregate between faults, a comprehensive evaluation should also consider cases
with multiple bugs.

5 Summary and Outlook

We proposed techniques and enhancements to facilitate failure diagnosis experience
for developers. The proposed techniques can be used stand-alone or form a tool-
chain; applying SBFL on fault-focused clusters yields more accurate results. The
following is how developers and testers can benefit from using our proposed
approaches.

Tester X is responsible for the quality of software development and deployment.
She is involved in performing automated and manual tests to ensure the software
created by developers is fit for purpose. Every week, she runs 1000 scheduled tests.
Test runs take about 2 days. While running tests she collects coverage information.
She has also provided a database of relevant data to measure the similarity between
TCs.

After each test run, developers have two days to analyze failures, find bugs,
repair them, and mark the analyzed failed tests as ready for the next test run. Thus,
tester X collects failing tests and clusters them. The clustering results include a
prediction of the numbers of bugs, groups of failing tests that are failing because of

How to Effectively Reduce Failure Analysis Time? 69

the same reason, and one representative test for each cluster of failing tests. Tester
X, then, assigns each group of failures to one developer and asks them to analyze
the representative failing tests to find the reasons behind failures as soon as possible.

Developers Y and Z use SBFL prediction model. Developer Y receives promising
results. She continues using SBFL techniques to get some insight regarding the fault
in her code. Developer Z, on the other hand, does not receive promising results. She
continues the debugging process without using SBFL. However, later she uses the
model to improve the quality of her code to facilitate fault localization.

Note Automated failure diagnosis techniques can be very helpful in reducing
failure analysis time regardless of the programming language. However, a minimum
code and test quality is needed. If software is of poor quality, not only our tool-chain
but any other tool or technique cannot be highly effective on it. Thus, there is a
prerequisite for using such tools and techniques.

References

1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.C.: On the accuracy of spectrum-based fault
localization. In: Proceedings—Testing: Academic and Industrial Conference Practice and
Research Techniques, TAIC PART-Mutation 2007 (2007)

2. Bundschuh Manfred, D.C.: Object-Oriented Metrics, pp. 241–255. Springer, Berlin (2008)
3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13(1),

21–27 (1967)
4. Defects4J Dissection. http://program-repair.org/defects4j-dissection/#!/bug/Lang/26.

Accessed: 2021-10-05
5. DiGiuseppe, N., Jones, J.A.: Fault density, fault types, and spectra-based fault localization.

Empir. Softw. Eng. 20, 928–967 (2015)
6. Golagha, M.: A framework for failure diagnosis. Ph.D. Thesis, Technical University of Munich,

Germany (2020)
7. Golagha, M., Lehnhoff, C., Pretschner, A., Ilmberger, H.: Failure clustering without coverage.

In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2019 (2019)

8. Golagha, M., Pretschner, A., Briand, L.: Can we predict the quality of spectrum-based fault
localization? pp. 4–15 (2020)

9. Golagha, M., Pretschner, A., Fisch, D., Nagy, R.: Reducing failure analysis time: an industrial
evaluation. In: Proceedings of the 39th International Conference on Software Engineering:
Software Engineering in Practice Track, ICSE-SEIP ’17, pp. 293–302. IEEE Press, Piscataway
(2017)

10. Golagha, M., Raisuddin, A.M., Mittag, L., Hellhake, D., Pretschner, A.: Aletheia: a failure
diagnosis toolchain. In: 2018 IEEE/ACM 40th International Conference on Software Engi-
neering Companion (2018)

11. Hatton, L.: Characterising the diagnosis of software failure. IEEE Software—SOFTWARE
(2008)

12. Hogerle, W., Steimann, F., Frenkel, M.: More debugging in parallel. In: Proceedings—
International Symposium on Software Reliability Engineering, ISSRE, pp. 133–143 (2014)

13. Jones, J.A., Bowring, J.F., Harrold, M.J.: Debugging in parallel. In: Proceedings of the 2007
International Symposium on Software Testing and Analysis—ISSTA ’07, p. 16 (2007)

http://program-repair.org/defects4j-dissection/#!/bug/Lang/26

70 M. Golagha

14. Jones, J.A., Harrold, M.J.: Empirical evaluation of the tarantula automatic fault-localization
technique. In: Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’05, pp. 273–282. ACM, New York (2005)

15. Just, R., Jalali, D., Inozemtseva, L., Ernst, M.D., Holmes, R., Fraser, G.: Are mutants a valid
substitute for real faults in software testing? In: Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering—FSE 2014, pp. 654–665
(2014)

16. Khuri, A.I.: Introduction to Linear Regression Analysis, 5th edn. In: Montgomery, D.C., Peck,
E.A., Vining, G.G. (eds.) International Statistical Review (2013)

17. Kochhar, P.S., Xia, X., Lo, D., Li, S.: Practitioners’ expectations on automated fault localiza-
tion. In: Proceedings of the 25th International Symposium on Software Testing and Analysis,
ISSTA 2016, pp. 165–176. ACM, New York (2016)

18. Lehnhoff, C.: Reducing failure analysis time: a data-driven approach. Master’s Thesis,
Technical University of Munich (2019)

19. Liu, C., Han, J.: Failure proximity: a fault localization-based approach. In: Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pp. 46–56. ACM, New York (2006)

20. Luce, R.D., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2),
95–116 (1949)

21. Masri, W.: Chapter three—automated fault localization: advances and challenges, pp. 103–156.
Elsevier, Amsterdam (2015)

22. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-2(4), 308–320 (1976)
23. Ochiai, A.: Zoogeographical studies on the soleoid fishes found in Japan and its neighbouring

regions-II. Nippon Suisan Gakkaishi 22, 526–530 (1957)
24. Pang-Ning, T., Steinbach, M., Kumar, V.: Introduction to Data Mining (2006)
25. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.

Prentice-Hall, Upper Saddle River (1982)
26. Parnin, C., Orso, A.: Are automated debugging techniques actually helping programmers? In:

Proceedings of the 2011 International Symposium on Software Testing and Analysis, ISSTA
’11, pp. 199–209. ACM, New York (2011)

27. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge University Press, Cam-
bridge (2000)

28. Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M.D., Pang, D., Keller,
B.: Evaluating and improving fault localization. In: Proceedings of the 39th International
Conference on Software Engineering (2017)

29. Perez, A., Abreu, R., van Deursen, A.: A test-suite diagnosability metric for spectrum-based
fault localization approaches. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 654–664 (2017)

30. Podgurski, A., Leon, D., Francis, P., Masri, W., Minch, M., Sun, J.S.J., Wang, B.W.B.:
Automated support for classifying software failure reports. In: 25th International Conference
on Software Engineering, 2003. Proceedings, vol. 6, pp. 465–475 (2003)

31. Rogstad, E., Briand, L.C.: Clustering deviations for black box regression testing of database
applications. IEEE Trans. Reliab. 65(1), 4–18 (2016)

32. Rokach, L., Maimon, O.: Chapter 15—Clustering Methods. The Data Mining and Knowledge
Discovery Handbook, p. 32 (2010)

33. Sobreira, V., Durieux, T., Delfim, F.M., Monperrus, M., de Almeida Maia, M.: Dissection of a
bug dataset: anatomy of 395 patches from defects4j. CoRR abs/1801.06393 (2018)

34. Sohn, J., Yoo, S.: Fluccs: using code and change metrics to improve fault localization. In:
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2017, pp. 273–283. ACM, New York (2017)

35. Trembly, A.C.: Software bugs cost billions annually. Nat. Underwriter/Life Health Financ.
Serv. 106(31), 43 (2002)

36. Utting, M., Legeard, B., Pretschner, A.: A taxonomy of model-based testing. Softw. Testing
Verif. Reliab. 22(April) (2006)

How to Effectively Reduce Failure Analysis Time? 71

37. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software fault
localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

38. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault localization.
IEEE Trans. Softw. Eng. PP(99) (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Open Source Software Governance:
Distilling and Applying Industry Best
Practices

Nikolay Harutyunyan

Abstract Modern software architectures are becoming increasingly complex and
interdependent. The days of exclusive in-house software development by companies
are over. A key force contributing to this shift is the abundant use of open source
frameworks, components, and libraries in software development. Over 90% of all
software products include open source components. Being efficient, robust, and
affordable, they often cover the non-differentiating product requirements companies
have. However, the uncontrolled use of open source software in products comes with
legal, engineering, and business risks stemming from incorrect software licensing,
copyright issues, and supply chain vulnerabilities. While recognized by a handful
of companies, this topic remains largely ignored by the industry and little studied
by the academia. To address this relevant and novel topic, we undertook a 3-year
research project into open source governance in companies, which resulted in a
doctoral dissertation. The key results of our work include a theory of industry
best practices, where we captured how more than 20 experts from 15 companies
worldwide govern their corporate use of open source software. Acknowledging the
broad industry relevance of our topic, we developed a handbook for open source
governance that enabled practitioners from various domains to apply our findings in
their companies. We conducted three evaluation case studies, where more than 40
employees at three Germany-based multinational companies applied our proposed
best practices. This chapter presents the highlights of building and implementing
the open source governance handbook.

1 Introduction

Traditionally, companies tended to develop large parts of their software products
internally with the occasional outsourcing or supplier code. However, modern
software development requires the use of free/libre and open source software

N. Harutyunyan (�)
Friedrich-Alexander-Universität, Erlangen-Nürnberg, Germany
e-mail: nikolay.harutyunyan@fau.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_5

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_5&domain=pdf
mailto:nikolay.harutyunyan@fau.de
https://doi.org/10.1007/978-3-030-83128-8_5

74 N. Harutyunyan

(FLOSS) components. Major software infrastructures are built using Linux servers;
many projects rely on open source libraries in Python, web browsers, and database
management systems; and much more are critically dependent on the use of
open source software. Moreover, many successful companies embrace open source
software development and contribute their own software as open source projects
including TensorFlow,1 a library for machine learning developed by Google; React,2

a front end library for building user interfaces or UI components; Android; Angular;
and Chromium just to name a few. While these and many other FLOSS components
are used daily by companies, few of them know about the associated risks of such
unstructured use.

When not properly managed, incorporating open source software in a company
product can have unforeseen legal, technical, and business consequences. A com-
mon example is the unintended use of an open source component licensed under
a GPL (GNU General Public License) license,3 which requires the user of the
code to in turn open source their software under the same license. If an unaware
developer uses a piece of GPL-licensed code in a company product, the company
will eventually be forced to either open source the whole product (which might not
make business sense) or replace the incorporated open source component. Over the
years, companies have been dealing with copyright and licensing violations [1, 2],
issues with complex licensing [3, 4], technical issues due to the dependency on other
open source projects [5, 6] and low quality documentation [7, 8], and other risks [9–
11].

Another major challenge of the uncontrolled FLOSS use are the software supply
chain vulnerabilities. A recent 2021 story by Alex Birsan4 outlines a remarkably
simple software supply chain attack, which affected PayPal, Apple, Microsoft, and
many other companies. In a nutshell, a developer analyzed several companies’
commonly used software components that were developed internally by these
companies. He then created public open source packages on GitHub with matching
names but unintended functionalities. Surprisingly, many developers from these
companies started using his public libraries instead, a confusion that can easily
happen when open source software development is highly integrated with in-house
development. This led to bugs and supply chain vulnerabilities across the board,

1 TensorFlow is a free and open-source software library for machine learning maintained by Google
and community—https://www.tensorflow.org/.
2 React is an open-source, front end, JavaScript library for building user interfaces or UI
components. It is maintained by Facebook and a community of individual developers and
companies—https://reactjs.org/.
3 The GNU General Public License is a series of widely used free software licenses that guarantee
end users the freedom to run, study, share, and modify the software—http://www.gnu.org/licenses/
gpl-3.0.en.html.
4 An article by Alex Birsan titled “Dependency Confusion: How I Hacked into Apple, Microsoft
and Dozens of Other Companies”—https://medium.com/@alex.birsan/dependency-confusion-
4a5d60fec610.

https://www.tensorflow.org/
https://reactjs.org/
http://www.gnu.org/licenses/gpl-3.0.en.html
http://www.gnu.org/licenses/gpl-3.0.en.html
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Open Source Software Governance: Distilling and Applying Industry Best Practices 75

demonstrating that even successful industry players sometimes lack comprehensive
open source governance.

What causes the above-mentioned risks and problems when using open source
components in companies?

We aimed to answer this question in the first phase of our study. The answer
essentially was the lack of open source software governance. Companies that did
not have a structured and explicit approach for dealing with open source related
questions were bound to have such problems. Among the companies we studied,
some employees claimed that the use of open source software in their products was
not allowed. However, even in such cases, developers used open source libraries
and components simply without authorization or any checks, thus exacerbating the
problem.

We then set out to find the recommendations for comprehensive open source
governance. On the one hand, while many researchers recognized the issue [12–
14], the academic literature with actual FLOSS governance guidelines were scarce
and often limited to the “hot” topics, such as licensing [3, 15]. On the other hand,
practitioners were filling the gap with their own experience reports [10, 16], which,
however, did not follow rigorous or scientific methods for the elicitation of the
recommended practices.

Seeing the industry relevance and need for this research, as well as acknowl-
edging its potential business impact, we set out to study open source governance
at companies with an advanced understanding of the topic. Based on the state-of-
the-art literature and our preliminary industry interviews, we identified four key
subtopics: getting started with open source governance, inbound governance, supply
chain management, and outbound governance. Accordingly, we asked the following
research questions:

• RQ1: How should companies using open source components in their products
get started with open source governance based on existent industry best practice?

• RQ2: How should companies using open source components in their products
govern the inbound aspects of the FLOSS use?

• RQ3: How should companies using open source components in their products
govern their software supply chains?

• RQ4: How should companies using open source components in their products
govern the outbound aspects of the FLOSS use?

Our goal was to gather expert knowledge from the industry through interviews,
observations, and primary materials analysis, in order to distill and propose a set of
industry best practices for open source software governance.

This phase of our study took about two years and resulted in more than 80
recommended industry best practices for different aspects of FLOSS governance,
including:

• Transition toward open source governance
• IP-at-risk analysis
• Component search

76 N. Harutyunyan

• Component approval
• Component reuse
• Bill of materials management
• License compliance and more

Following the qualitative survey method by Jansen [17], we collected and
analyzed data from more than 20 expert interviews at 15 companies, primary
materials, and observation notes. This resulted in a proposed theory of industry best
practices for corporate open source governance.

From an academic view, we built a theory, but we wanted to go beyond that
and see our findings actually used by companies. To do this, we cast our theory
as a practical handbook for open source governance that can be easily customized
and used by practitioners in their companies. In each subsection of this chapter, we
present best practice subsets from the handbook.

We concluded our study by conducting three evaluation case studies at large,
multinational companies based in Germany. We followed the multiple-case case
study method by Yin [18]. The collaboration with the selected companies was
essential for the successful evaluation of our proposed best practices. We worked for
over two years with the case study companies to implement parts of our open source
governance handbook at different production projects. Over time, we observed how
these companies with little to no previous understanding of FLOSS governance were
able to establish internal processes and tools to efficiently and comprehensively
manage their open source use. In the course of the implementation, we identified
the lacking aspects of our theory and addressed them. At the same time, we helped
these companies take their first steps toward FLOSS governance, which increased
their benefits from using open source components while limiting the potential risks.
In the following subsections, we couple the proposed best practices with their
implementation reports at the case study companies.

Observing the actual industry impact of our research work was very rewarding,
and we are happy to share our experience in this chapter, which is structured as
follows. Section 2 focuses on the discovery and capture of industry best practices
for open source governance including subsections on getting started with FLOSS
governance, supply chain management. Section 3 goes on to describe the case
studies where the proposed best practices were applied. Section 4 concludes the
paper outlining the potential directions for future research.

2 Distilling Industry Best Practices

In the first phase of our study we developed a theory of industry best practices for
corporate open source governance based on expert interviews, primary materials,
and observations we conducted at 15 companies worldwide. These companies all
had an advanced understanding of open source governance, included a form of
open source program office responsible for establishing and executing open source

Open Source Software Governance: Distilling and Applying Industry Best Practices 77

governance processes, and were willing to be interviewed for our study. We selected
these companies from a larger sample of 140 companies in our professional network.
We first classified these companies using different predefined criteria such as the size
of the company, product types, business models, and more. We aimed for a polar
theoretical sampling that would result in companies with different profiles and from
different industries. As a result we had a mix of small, medium, and large companies
from varying domains such as automotive, consulting, and enterprise software. The
details of the sampling and method description can be found in the dissertation [19].

After analyzing the collected data following Jansen’s qualitative survey method
[17] and using qualitative data analysis tools such as MAXQDA,5 we distilled the
frequent best practices highlighted by experts. Figure 1 illustrates the hierarchical
structure of the distilled best practice categories and subcategories.

Answering the research questions RQ1-RQ4 we addressed the main concepts
of open source governance proposing subsets of industry best practices for each
category. As an example, we can consider the Supply Chain Management (SCM)
category in Fig. 1. Answering RQ3, we analyzed how expert companies established
their SCM policy and processes focused on presenting governance and corrective
governance. The former would include among other things recommendations for
supplier selection with open source governance aspects in mind. The latter would
focus on assessing the risks of supplier vulnerabilities and mitigating potential risks.
Each subcategory (leaf in the tree) would then include individual best practices
presented in the following subsections. An example of a best practice covering the
choice of the right supplier as a preventive SCM measure is presented in Table 1.

Together all the best practices we identified form a handbook that can be modified
and applied by any company that has software as part of their products. Additionally,
to make the handbook more applicable for practitioners, we constructed workflows
of interconnected best practices. Customizing and then following such a workflow
would make the application of the handbook at a company easier. A sample page
from the handbook is presented in Fig. 2.

2.1 Getting Started with FLOSS Governance

Answering the research question RQ1, we addressed a common problem companies
have when faced with the issue of open source software governance: where does one
start. The first part of our handbook is devoted to getting started with corporate open
source governance.

In this “Getting Started” category, we identified the following best practices:

• Product Analysis (OSGOV-GETSTA-PROANA)—eight best practices
• IP-at-Risk Analysis (OSGOV-GETSTA-IPRISK)—nine best practices

5 MAXQDA is a software program designed for computer-assisted qualitative and mixed methods
data, text, and multimedia analysis—https://www.maxqda.com/.

https://www.maxqda.com/

78 N. Harutyunyan

Industry Best Practices
for Corporate Open
Source Governance

Getting Started

Transition Policy

Transition Organization

Product Analysis

IP-at-Risk Analysis

Communication and Capabilities

General Governance

Governance Management

Open Source Program Office

License Interpretation

Capabilities

Inbound Governance

Component Search

Component Selection

Component Approval

Approval Process

Approval Rules

Approval Templates

Component Integration

Component Reuse

Reuse Policy

Reuse Process

Component Repository

Component Monitoring

Communication

Education

Outbound Governance

License Compliance

Release Management

Contribution Management

Supply Chain Management

SCM Policy

SCM Process

Preventive Governance

Supplier Selection

Supplier Certification

Supplier Contracts

Corrective Governance

Supplier Audit

Risk Assessment

Risk Mitigation

Bill of Materials Management

Metadata

Tracking

Standard Format

License Compliance for SCM

License Review

License Obligations

Tools

Fig. 1 Distilling industry best practices: Key concepts

• Transition Policy (OSGOV-GETSTA-TRAPOL)—three best practices
• Transition Organization (OSGOV-GETSTA-TRAORG)—eight best practices
• Communication and Capabilities (OSGOV-GETSTA-COMCAP)—five best

practices

Open Source Software Governance: Distilling and Applying Industry Best Practices 79

Table 1 OSGOV-SUCHMA-PREGOV-1. Choose the right supplier

Name Choose the right supplier

Actor Supply chain management responsibles, IT department, procurement depart-
ment

Context Virtually all companies use supplied software components as part of their
products. Not all suppliers are the same in terms of open source governance and
compliance. Choosing a supplier without open source governance consideration
can result in functionally superior software with open source components that
are not compliant with the company’s license use case pairs

Problem If supplied code causes open source governance and compliance risks, you will
have to either change your supplier or address the risks in cooperation with the
supplier after the delivery. How can such situations be prevented?

Solution To prevent potential issues with FLOSS governance and compliance you should
choose the right suppliers that are aware and mature in terms of governance
and compliance, as well as experienced in using open source components in
their products. To do this, you need to → assess open source governance
and compliance awareness and maturity which can be done by → requesting
supplier certification or self-certification from potential suppliers. To establish
a consistent approach for preventive governance → design supplier contracts
with open source governance aspects in mind and use the governance related
clauses in case of license non-compliance by a supplier. The latter can be used
for corrective governance, namely to → trigger supplier contract clauses and
get the supplier to take care of the issue

The Product Analysis subcategory included practices for an initial scanning of
the open source components already in use at a company. Even if the company
had a policy discouraging the use of open source software, more often than
not, there are a considerable number of such components that were previously
undetected or undocumented. This cannot be ignored when getting started with
FLOSS governance. You need to take stock of the overall FLOSS use before
establishing the governance processes.

Once the initial assessment is conducted, companies need to perform an IP-at-
Risk Analysis, which covers the assessment of potential licensing issues, copyright
violations, or other inconsistencies. The identified risks need to be mitigated at
this stage either by complying with the component license or by removing or
encapsulating the component.

Afterwards, the company can start the transition from the unstructured use
of open source software to basic governance defined in a Transition Policy and
operationalized through the proposed Transition Organization best practices. During
the whole transition, companies need to pay close attention to communicating the
changes to all the stakeholders and building internal capabilities where needed.

An example best practice from the Getting Started category is presented in
Table 2, which covers the basic process that the project architect will use for
reporting and assessing ongoing additions of open source components during the
transition.

80 N. Harutyunyan

Fig. 2 Distilling industry best practices: Key concepts

All the proposed best practices can be traced to the primary data we analyzed in
the first stage of our study. Here is an example of such a trace from Company 14s6

legal counsel responsible for open source compliance talking about the specifics
of establishing a process of continuous reporting and assessment of open source
components:

6 Company and interviewee names were anonymized per their request.

Open Source Software Governance: Distilling and Applying Industry Best Practices 81

Table 2 OSGOV-PROANA-1.2. Establish a process of continuous reporting and assessment

Name Establish a process of continuous reporting and assessment

Actor Transition manager and/or project architect

Context You already → used one mandatory survey for initial assessment. Now you need
a process for continuous reporting and assessment of any open source usage
during the transition

Problem The transition needs to prepare the company for fully structured FLOSS gov-
ernance. However, during the transition how should the process of continuous
reporting and assessment look like?

Solution Establish a process of continuous reporting and assessment that involves
defined and easy-to-follow steps for developers when using new open source
components during the transition. This can be achieved using a product archi-
tecture model (a meta-model for all governance related information such as
license information, copyright noticed, export restrictions, etc.), bill of materials
documentation, questionnaires or forms, etc. The process should help:

• Continuously report new use of open source components during transition
• Automate this reporting as much as possible, by → selecting and using

governance tools for automation
• Continuously assess new use of open source components during transition

– Assess license compliance
– Assess copyright notices
– Assess export restrictions
– Assess software supply chains

• Document the assessment findings
• Share the reported use of open source and documented assessment findings

When our developers are reporting the open source via [our internal tool], there is always
the main file which is also mentioned in the license file which is also computed by GitHub or
by the community behind. And with this scan tooling, we cross-check the whole software,
so we definitely see, okay, that’s not only the MIT license which is mentioned in the license
file but also other licenses, so the GPL files. And, then, we’re talking to our developer which
is reporting the open source. In most cases, the developer says, no to the GPL files, we don’t
use it, we only use the MIT file. And, so, they need to cross check what files they use, and
what licenses are used by them. – Company 14

More best practices on getting started with open source governance can be found
in the dissertation [19] or in our previous paper on the subject [20]. Furthermore,
we addressed the research questions RQ2 and RQ3 on inbound and outbound
governance in our previous papers [21] and [22], as well as in the dissertation [19].

2.2 Supply Chain Management

Answering the research question RQ2, we focused on the core topic of our
research—software supply chain management in the scope of FLOSS governance.

82 N. Harutyunyan

Software supply chains include both proprietary code (developed in-house or
supplied) and open source code. Modern software supply chains have multiple tiers
where each supplier has multiple suppliers on the deeper tiers. In each instance,
open source components are used and integrated into the larger software package
that ends up in the software of the end user sold by the OEM (Original Equipment
Manufacturer) company. In a nutshell, in case of issues due to poor FLOSS
governance down the supplier hierarchy, the whole responsibility can rarely be put
on suppliers.

We can consider a car example. The car manufacturer has commissioned a
supplier to develop an infotainment system for the car including navigation, music,
and other functionalities. The supplier (or their suppliers) uses open source libraries
for the graphical interface and a Linux-based operating system, both of which are
licensed under the GPL v3 (GNU General Public License version 3) license. This
license requires any user of the code to publish it under the same license and to
disclose the original copyright holders. If the suppliers fail to mention this to the
automotive company and the company does not do its own due diligence in terms
of FLOSS governance, a copyright holder of the original software under the GPL
license can sue the company for license non-compliance. As a result, the company
would face steep legal or operational costs as they would either have to settle or
update their software to comply with the license.

In this category we distilled industry best practices for the following subcate-
gories:

• Supply Chain Management Policy (OSGOV-SUCHMA-SCMPOL)—three best
practices

• Supply Chain Management Process (OSGOV-SUCHMA-SCMPRO)—five best
practices

• Preventive Governance (OSGOV-SUCHMA-PREGOV)—four best practices
• Corrective Governance (OSGOV-SUCHMA-CORGOV)—four best practices
• Bill of Materials Management (OSGOV-SUCHMA-BOMMAN)—four best

practices
• License Compliance for Supply Chain (OSGOV-SUCHMA-LICCOM)—two

best practices

To go one level deeper, we can consider the specific best practices focused on
corrective governance:

• OSGOV-SUCHMA-CORGOV-1. Audit your supply chain
• OSGOV-SUCHMA-CORGOV-2. Mitigate identified risks
• OSGOV-SUCHMA-CORGOV-2.1. Assess risks in accordance to the supply

chain management policy
• OSGOV-SUCHMA-CORGOV-2.2. Trigger supplier contract clauses and get the

supplier to take care of the issue
• OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

An example best practice in this subcategory is presented in Table 3. While
somewhat counter-intuitive, we found an industry best practice discouraging an

Open Source Software Governance: Distilling and Applying Industry Best Practices 83

extreme pressure on the suppliers in case of FLOSS governance issues identified
too late. If you were to put the whole responsibility on the supplier, you are running
a chance of bankrupting the supplier, which could leave your company in a worse
situation. As a result, you still have to deal with the litigation but also need to find a
different supplier or maintain their code on your own.

Table 3 OSGOV-SUCHMA-CORGOV-2.3. Do not run your supplier out of business

Name Do not run your supplier out of business

Actor OSPO (Open Source Program Office), Lawyer/legal counsel

Context You have identified compliance and governance risks in your supply chain and
→ assessed these risks in accordance with the supply chain management policy.
For certain critical risks you → triggered supplier contract clauses to take care
of the issue

Problem What actions should you not take when addressing the identified risks of non-
compliance by a supplier?

Solution Most companies have suppliers that are smaller than themselves, thus giving
them higher negotiation power over the suppliers. This means that in case of
non-compliance with open source licenses in the supplied code, you can easily
force your supplier to fix the risk causing software non-compliance. You can
even sue your supplier and get compensation. However, you should be careful
not to endanger the operation of the supplier company

If you run your supplier out of business by pressuring them with lawsuits or
financial pressure, you can end up with a binary instead of a source code and no
ability to maintain or update the software that was causing the non-compliance
issue in the first place. Most software is not supplied as source code, but rather
as a binary in order to protect the intellectual property of the supplier that makes
money by selling a different version of the product that uses its know-how in the
form of source code. If a company goes bankrupt, you might have to look for
another supplier, which is costly and time consuming. In a nutshell, do not run
your supplier out of business, when possible. Alternatively, make sure to get the
source code in case of the supplier bankruptcy or before changing the supplier
to avoid the above mentioned risk

More practices on the topic of supply chain management can be found in the
dissertation [19] or in our previous publication [23].

3 Applying Industry Best Practices

In the second phase of our study we applied our handbook for open source
governance at three companies in order to evaluate our findings in a real-life context
using the case study methodology by Yin [18]. We identified three Germany-
based companies that had little to no experience of open source governance, but
had products incorporating software. These companies were willing to learn and
implement FLOSS governance processes following our recommendations. On the
one hand, this was an opportunity for them to learn from the leading companies in

84 N. Harutyunyan

terms of open source use and governance. On the other hand, it was an opportunity
for us to have an actual industry impact by having our theory implemented and
testing it in real life. The three companies were at different stages in terms of
FLOSS governance. Company A had no prior experience of structured open source
governance, while Company B and C had some basic experience. Company B, in
particular, was dealing with many software suppliers and needed support in that
domain.

Further details on the case study company profiles and specifics can be found in
the dissertation [19].

3.1 Case Study A

Once the Getting Started part of the handbook was completed, we started the
evaluation phase that was running in parallel to the further theory building and
handbook extension. We implemented a subset of the proposed Getting Started best
practices at Company A, namely at five of their divisions with a focus on Division
A.1 (with aerospace products including software systems and components).

In the course of the transition toward open source governance at Division A.1,
a newly established open source program office (OSPO)7 followed our Getting
Started best practice OSGOV-GETSTA-PROANA-3.1. Run open source use analysis
in products. An R&D manager who was part of the OSPO ran an initial analysis of
the current FLOSS use at the division using an open source tool called FOSSology8

[24]. An excerpt from this analysis is presented in Fig. 3. Following the best practice
was well worth it, as the OSPO identified a number of problematic components that
were previously overlooked or ignored, including but not limited to open source
software licensed under GPL and AGPL9 (GNU Affero General Public License)
licenses. These components were later reviewed and analyzed individually.

Case Study A was extensive spanning over 2.5 years and enabled us to run a
longitudinal study into the implementation of various parts of our handbook across
five different divisions operating in different industries and in different countries
including Germany, Mexico, and China. Figure 3 presents only a brief snippet
of an evaluation artifact. More artifacts and thorough details can be found in
the dissertation [19], including a complete open source governance process that
Company A created when customizing our handbook.

7 Open Source Program Office (OSPO) is a typical organization unit responsible for managing the
internal and external aspects of corporate open source governance, often composed of software
developers, software architects, lawyers, and product managers.
8 FOSSology is an open source license compliance software system and toolkit that can be used to
scan software for license, copyright, and export control issues—https://www.fossology.org/.
9 GNU Affero General Public License is based on the GPL license but has more restrictive license
terms—https://www.gnu.org/licenses/agpl-3.0.en.html.

https://www.fossology.org/
https://www.gnu.org/licenses/agpl-3.0.en.html

Open Source Software Governance: Distilling and Applying Industry Best Practices 85

FO
SS

ol
og

y

Yo
ur

 O
rg

an
iz

at
io

n
 G

en
 D

at
e:

 2
01

8/
12

/1
8

10
:2

7:
21

 U
TC

 F
O

SS
ol

og
y

Ve
r:#

4d
63

34
-2

01
8/

12
/0

7
12

:2
0

U
TC

 P
ag

e
6

of
 7

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bi

ca
l/i

ca
lc

al
en

da
r.h

sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bi

ca
l/i

ca
lfi

le
se

t.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bi
ca

l/i
ca

lm
es

sa
ge

.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bi
ca

l/i
ca

ls
et

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

AU
D

IT
.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

C
H

EC
KS

U
M

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
0.

10
/g

st
/p

bu
til

s/
en

co
di

ng
-ta

rg
et

.h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

1.
0/

gs
t/p

bu
til

s/
en

co
di

ng
-ta

rg
et

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/h

u

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

0.
10

/g
st

/p
bu

til
s/

en
co

di
ng

-p
ro

fil
e.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
1.

0/
gs

t/p
bu

til
s/

en
co

di
ng

-p
ro

fil
e.

h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

bs
oc

ke
tc

an
.h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/g
st

re
am

er
-

1.
0/

gs
t/c

od
ec

pa
rs

er
s/

gs
th

26
4p

ar
se

r.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/li

bv
4l

1.
h

sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-tk

1/
us

r/i
nc

lu
de

/li
bv

4l
2.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
bv

4l
co

nv
er

t.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-tk
1/

us
r/i

nc
lu

de
/g

st
re

am
er

-
1.

0/
gs

t/c
od

ec
pa

rs
er

s/
gs

th
26

4p
ar

se
r.h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/s

ha
re

/p
er

l5
/P

ar
se

/P
id

l/S
am

ba
4/

C
O

M
/H

ea
de

r.p
m

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
N

FQ
U

EU
E.

h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/p

er
l5

/P
ar

se
/P

id
l/O

D
L.

pm

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
nf

sa
cl

.h

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/ro

 X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/s
ha

re
/X

11
/x

kb
/s

ym
bo

ls
/h

u

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
C

H
EC

KS
U

M
.h

sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r_
ip

v4
/ip

t_
EC

N
.h

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

 X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/i

nc
lu

de
/li

nu
x/

ne
tfi

lte
r/x

t_
D

SC
P.

h
sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

ec
n.

h

 sr
c/

ke
rn

el
.b

z2
/k

er
ne

l/a
pa

lis
-

tk
1/

us
r/s

ha
re

/X
11

/x
kb

/s
ym

bo
ls

/ro

FO
SS

ol
og

y

Yo
ur

 O
rg

an
iz

at
io

n
 G

en
 D

at
e:

 2
01

8/
12

/1
8

10
:2

7:
21

 U
TC

 F
O

SS
ol

og
y

Ve
r:#

4d
63

34
-2

01
8/

12
/0

7
12

:2
0

U
TC

 P
ag

e
7

of
 7

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r/x
t_

co
nn

tra
ck

.h

 X
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

XX
X

XX
XX

XX
XX

XX
XX

XX
XX

XX
XX

X

 sr

c/
ke

rn
el

.b
z2

/k
er

ne
l/a

pa
lis

-
tk

1/
us

r/i
nc

lu
de

/li
nu

x/
ne

tfi
lte

r_
ip

v4
/ip

t_
TT

L.
h

[e
xc

er
pt

; 1
20

0+
 p

ag
es

 re
m

ov
ed

]
 13

. B
ul

k
Fi

nd
in

gs

(L
ic

en
se

 n
am

e,
 L

ic
en

se
 te

xt
, F

ile
 p

at
h)

 14
. N

on
 F

un
ct

io
na

l L
ic

en
se

s

e.
g.

 /t
es

t o
r /

ex
am

pl
e.

 15
. I

rr
el

ev
an

t F
ile

s
(P

at
h,

 F
ile

s,
 L

ic
en

se
s)

 15
.1

.
C

om
m

en
t f

or
 Ir

re
le

va
nt

 fi
le

s
(L

ic
en

se
 n

am
e,

 C
om

m
en

t E
nt

er
ed

, F
ile

 p
at

h)

 16
. C

le
ar

in
g

Pr
ot

oc
ol

 C
ha

ng
e

Lo
g

La
st

 U
pd

at
e

R
es

po
ns

ib
le

C

om
m

en
ts

Fig. 3 Applying industry best practices: Initial open source use assessment at Case Study A

3.2 Case Study B

Company B was an enterprise software company operating internationally but based
in Germany. With nearly 5000 employees, the company had different approaches
for open source governance across different teams and business units. At the

86 N. Harutyunyan

time of our engagement, there was an initiative of establishing a centralized
organizational unit that would deal with everything related to open source software.
This team has been acquiring new FLOSS governance responsibilities and was glad
to collaborate with us in the scope of a research project. We introduced a subset of
best practices for Supply Chain Management from our handbook and observed their
implementation at the company. Similar to Company A, we did not conduct the
actual implementation, but rather observed and supported it. This enabled a more
unbiased evaluation of how our handbook would perform in a real-life setting of a
company.

Company B followed a number of our best practices establishing internal
processes for supplier evaluation with FLOSS governance in mind, as well as
optional supplier certifications, bill-of-materials (BOM) management, and more.
As a notable example, the software supplier manager at Company B followed our
best practice OSGOV-SUCHMA-PREGOV-1.1. Assess open source governance and
compliance awareness and maturity to create a supplier questionnaire that included
the key aspects recommended by our handbook. While abstract, the proposed best
practices served as a good basis to develop new supplier guidelines that were sent to
actual suppliers. Figure 4 presents an excerpt of the supplier questionnaire (its first
page with the table of contents). The questionnaire included the following points
recommended by our handbook:

• License information (including open source licenses)
• Level of open source awareness
• Technologies used in the development process
• Integration of third party software into supplier code
• Bill-of-materials information

Our best practice did not cover all the aspects required by Company B, so they
added points on quality management (including information on ISO certifications),
and sales process.

To see more details of our evaluation case studies, as well as handbook
implementation artifacts, see the dissertation [19].

Fig. 4 Applying industry best practices: Supplier questionnaire at Case Study B

Open Source Software Governance: Distilling and Applying Industry Best Practices 87

4 Conclusion

This section concludes the book chapter with the results’ highlights from our
work on open source software governance in companies. In the first stage of
the study, we distilled some best practices used in the industry for open source
governance. We captured and presented them as part of a larger handbook for
FLOSS governance that focused on getting started with governance, managing the
inbound and outbound aspects, as well as supply chain management. The handbook
was the practical artifact we developed to make our research results more relevant
and applicable for practitioners, who could customize and use our best practices.
The handbook consisted of topical categories and subcategories. Individual best
practices were arranged into workflows that would enable an easier execution at
a company.

Fig. 5 Tooling for handbook representation and forking: Editive—https://editive.com/en/

https://editive.com/en/

88 N. Harutyunyan

In the second stage of the study, we took parts of the handbook to companies
in Germany willing to put our findings to test in their production projects. We con-
ducted three case studies, where different best practice subsets were implemented
and evaluated in a real-life setting. The case studies demonstrated the pitfalls of
some best practices that we later addressed. They also demonstrated the limitations
of best practice transferability across companies. As a result, our handbook and its
best practices had to be abstract in nature and not specific for one industry domain.
Instead, we aimed for broad applicability and customization.

Going beyond the traditional academic work of theory building and working
closely with the industry to evaluate our findings, we also faced some setbacks.
Namely, Case Study C partially failed due to the misaligned expectations from the
project, as well as different visions for the open source governance handbook. We
learned that large shifts in company software architectures or processes are no easy
feat. They need to be thoroughly prepared and be backed by different stakeholders
across the company. And even in such cases, success is not a given. However, we
were able to learn from both our successes and failures during the three years of
working on this topic.

We see future opportunities for extending the research into other aspects of
both open source governance and related topics, such as corporate open sourcing
or license compliance. We also want to highlight the potential of the handbook
method for other studies in software engineering and computer science. Finally,
we see potential tooling support for the handbook that would make it even easier
for companies to use and modify the best practices across their organizational
complexities. In fact, we collaborated with a startup (Editive—https://editive.com/
en/) based on a spin-off project at our university to create a forkable prototype of
our handbook to present to our industry partners. A screenshot is presented in Fig. 5.
The further development of such tools can make introducing and maintaining open
source governance easier and more streamlined for any company in the future.

Acknowledgments This was not an individual effort. Throughout the whole research, many
people supported me—my family, my friends, my colleagues, and industry partners. I want to
especially thank my professor Dirk Riehle and my colleagues Ann Barcomb, Andreas Bauer,
Fariba Bensing, Maximilian Capraro, Hannes Dohrn, Michael Dorner, Andreas Kaufmann, Daniel
Knogl, and Georg Schwarz for their contributions to this research.

References

1. Ruffin, C., Ebert, C.: Using open source software in product development: a primer. IEEE
Softw. 21(1), 82–86 (2004)

2. Lin, L.C.-H., Shen, N.: Copyleft referring to GPL-3.0 was cited as a defense method in Chinese
intellectual property court in Beijing. Int. Free Open Source Softw. Law Rev. 10(1), 1–7, (2019)

3. German, D.M., Hassan, A.E.: License integration patterns: addressing license mismatches
in component-based development. In Proceedings of the 31st International Conference on
Software Engineering, pp. 188–198. IEEE Computer Society, Silver Spring (2009)

https://editive.com/en/
https://editive.com/en/

Open Source Software Governance: Distilling and Applying Industry Best Practices 89

4. Merilinna, J., Matinlassi, M.: Assessing the role of open source software in the European
secondary software sector: a voice from industry. In: 1st International Conference on Open
Source Systems (2005)

5. Chen, W., Li, J., Ma, J., Conradi, R., Ji, J., Liu, C.: An empirical study on software development
with open source components in the Chinese software industry. Softw. Process Improv. Practice
13(1), 89–100 (2008)

6. Agerfalk, P.J., Deverell, A., Fitzgerald, B., Morgan, L.: State of the art and practice of open
source component integration. In: 32nd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO’06), pp. 170–177. IEEE, Piscataway (2006)

7. Akkanen, J., Demeter, H., Eppel, T., Ivánfi, Z., Nurminen, J.K., Stenman, P.: Reusing an open
source application—practical experiences with a mobile CRM pilot. In: IFIP International
Conference on Open Source Systems, pp. 217–222. Springer, Berlin (2007)

8. Ayala, C., Hauge, Ø., Conradi, R., Franch, X., Li, J., Velle, K.S.: Challenges of the open source
component marketplace in the industry. In: IFIP International Conference on Open Source
Systems, pp. 213–224. Springer, Berlin (2009)

9. Stol, K.-J., Ali Babar, M.: Challenges in using open source software in product development: a
review of the literature. In: Proceedings of the 3rd International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, pp. 17–22. ACM, New York
(2010)

10. Popp, K.M.: Best Practices for commercial use of open source software: business models,
processes and tools for managing open source software. BoD–Books on Demand (2015)

11. Helmreich, M.: Best practices of adopting open source software in closed source software
products (2011)

12. Kemp, R.: Towards free/libre open source software governance in the organization. IFOSS L.
Rev. 1 (2009)

13. Markus, M.L.: The governance of free/open source software projects: monolithic, multidimen-
sional, or configurational? J. Manag. Governance 11(2), 151–163 (2007)

14. Gangadharan, G., D’Andrea, V., De Paoli, S., Weiss, M.: Managing license compliance in free
and open source software development. Inform. Syst. Front. 14(2), 143–154 (2012)

15. Alspaugh, T.A., Asuncion, H.U., Scacchi, W.: Analyzing software licenses in open architecture
software systems. In: Proceedings of the 2009 ICSE Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, pp. 54–57. IEEE, Piscataway
(2009)

16. Peters, S.: Best practices for creating an open source policy (2010)
17. Jansen, H.: The logic of qualitative survey research and its position in the field of social

research methods. Forum Qualitative Sozialforschung/Forum: Qualitative Social Research
11(2), (2010)

18. Yin, R.K.: Case Study Research and Applications: Design and Methods. Sage Publications,
New York (2017)

19. Harutyunyan, N.: Corporate Open Source Governance of Software Supply Chains. doctoralthe-
sis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2019)

20. Harutyunyan, N., Riehle, D.: Getting started with floss governance and compliance: a theory
of industry best practices. In: Proceedings of the 15th International Symposium on Open
Collaboration, Forthcoming, 2019

21. Harutyunyan, N., Riehle, D.: Industry best practices for FLOSS governance and component
reuse. In: Proceedings of the 24th European Conference on Pattern Languages of Programs.
ACM, New York (2019)

22. Harutyunyan, N., Riehle, D.: Industry best practices for component approval in floss gover-
nance. In: Proceedings of the 25th European Conference on Pattern Languages of Programs.
ACM, New York (2020)

23. Harutyunyan, N.: Managing your open source supply chain-why and how? Computer 53, 77–
81 (2020)

24. Gobeille, R.: The FOSSology project. In: Proceedings of the International Working Conference
on Mining Software Repositories, pp. 47–50. ACM, New York (2008)

90 N. Harutyunyan

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Dynamically Scalable Fog Architectures

Dominic Henze

Abstract Recent advances in mobile connectivity as well as increased computa-
tional power and storage in sensor devices have given rise to a new family of
software architectures with challenges for data and communication paths as well
as architectural reconfigurability at runtime. Established in 2012, Fog Computing
describes one of these software architectures. It lacks a commonly accepted defini-
tion, which manifests itself in the missing support for mobile applications as well
as dynamically changing runtime configurations. The dissertation “Dynamically
Scalable Fog Architectures” provides a framework that formalizes Fog Computing
and adds support for dynamic and scalable Fog Architectures.

The framework called xFog (Extension for Fog Computing) models Fog Archi-
tectures based on set theory and graphs. It consists of three parts: xFogCore,
xFogPlus, and xFogStar. xFogCore establishes the set theoretical foundations.
xFogPlus enables dynamic and scalable Fog Architectures to dynamically add
new components or layers. Additionally, xFogPlus provides a View concept which
allows stakeholders to focus on different levels of abstraction.

These formalizations establish the foundation for new concepts in the area of
Fog Computing. One such concept, xFogStar, provides a workflow to find the best
service configuration based on quality of service parameters.

The xFog framework has been applied in eight case studies to investigate
the applicability of dynamic Fog Components, scalable Fog Architectures, and
the service provider selection at runtime. The case studies, covering different
application domains—ranging from smart environments, health, and metrology to
gaming—successfully demonstrated the feasibility of the formalizations provided
by xFog, the dynamic change of Fog Architectures by adding new components and
layers at runtime, as well as the applicability of a workflow to establish the best
service configuration.

D. Henze (�)
Technical University of Munich, Munich, Germany
e-mail: henzed@mytum.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_6

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_6&domain=pdf
mailto:henzed@mytum.de
https://doi.org/10.1007/978-3-030-83128-8_6

92 D. Henze

1 Introduction

With the constant increase of computational power and available storage, mobile
devices get more and more involved in distributed systems, which are “collections
of independent computers that appear to be one single system to users” [1].
Nevertheless, mobile devices will always be resource poor in comparison to static
hardware, as static hardware is not capped by properties such as heat dissipation
or battery life [2, 3]. Therefore, mobile devices will always struggle with the most
advanced media and data analysis.

Mobile cloud computing was introduced to bridge this gap and combines mobile
computing with cloud computing to leverage the computational power of the cloud
for mobile devices [4, 5]. However, clouds are usually distant from the mobile
devices and using them creates high latencies, which are insufficient for real-time
applications such as augmented reality.

To address this issue, concepts such as Cloudlets, Edge Computing, and Fog
Computing emerged. Satyanarayanan et al. described these concepts to utilize
resource-rich components near the mobile device to offload computational intense
tasks while having “low latency, one-hop, high-bandwidth wireless access” [3].
While Cloudlets use trusted, nearby components with excessive computational
power, Edge Computing focuses on the entirety of the network trying to push
services as close to the edge as possible [6, 7].

Bonomi et al. introduced Fog Computing as a three-layered software architecture
containing a Cloud, Fog, and Edge layer [8]. These layers interact using subscriber
models with one layer acting as the provider and the other one as its user. Accord-
ingly, application scenarios such as dynamic vehicles, smart grids, distributed sensor
networks, and smart environments can benefit from using Fog Computing.

This loose definition has led to many interpretations of Fog Computing as well
as attempts to sharpen the definition. Nevertheless, there is no commonly accepted
definition of what Fog Computing or a Fog Node is, and the difference to similar
concepts such as Edge Computing is not clearly defined [9].

To address these misunderstandings, the dissertation “Dynamically Scalable Fog
Architectures” [10] follows the intent of the paper “Fog horizons—a theoretical
concept to enable dynamic fog architectures” [17] to create a formalized definition
for Fog Computing based on software architectures and set theory. It is based
on the organized and systematic research approach design science established by
Hevner and Wieringa [11, 12]. It investigates the following knowledge and technical
research goals:

Knowledge Goal 1: Establish Fog Computing as a subclass of software
architectures.

Technical Research Goal 1: Define a framework that provides a formalized
definition of Fog Computing.

Dynamically Scalable Fog Architectures 93

These goals are achieved with xFog, an extension for Fog Computing, and
xFogCore which defines the foundations of the framework. These foundations are
then used to address two additional challenges by formalization: Providing support
for dynamic components and addressing the ambiguity of layers, in particular of the
Fog.

Technical Research Goal 2: Define an extension to the foundations of Fog
Computing that supports components joining and leaving an architecture
(Dynamics).

Technical Research Goal 3: Define an extension to the foundations of Fog
Computing that supports the process of adding and removing layers (Scalabil-
ity).

These goals should be addressed with xFogPlus, one part of xFog that relies on
the foundations introduced by xFogCore and formalizes dynamics and scalability in
Fog Architectures.

The combination of both, xFogCore and xFogPlus, enables xFog to support
a variety of advanced concepts, such as xFogStar. xFogStar is an extension that
investigates the selection of service providers which is addressed with the following
goal:

Technical Research Goal 4: Enable service provider selection in dynamic
scalable Fog Architectures.

Finally, we want to investigate if and how xFog, its parts, and extension describe
Fog Computing:

Knowledge Goal 2: Investigate the feasibility of xFog.

Knowledge Goal 3: Investigate the feasibility of xFogStar.

Therefore, we validate three different aspects: Dynamic Fog Components , Scal-
able Fog Architectures , and Service Provider Selection. Each aspect is addressed
by multiple case studies with cases from different domains.

2 xFog: An Extension for Fog Computing

To define an architecture based on the component and connector definitions by
Shaw and Garlan, Bass and Kruchten for software architectures [13–15], we have
to investigate the components included within an architecture and the connections

94 D. Henze

xFog

Software Architecture

xFogPlus

Dynamic Fog
Components

Scalable Fog
Architectures

Views
Dynamic Type

Change

xFogCore

Fog Visibility

Fog Horizon

Fog Reachability

Fog Set

Fog Component

Communication
Component

Communication
Set

Fog Component
Set

Fog
Computing

Fig. 1 Overview of the xFog framework highlighting the most important concepts

among them. The framework xFog addresses this goal for Fog Computing and its
resulting architectures for the purpose of formalization. The name xFog is short
for an eXtension for Fog Computing and accordingly uses its principles and ideas
to provide a formalization which addresses knowledge goal 1 and the technical
research goal 1 (Fig. 1).

xFog is separated into two parts: xFogCore and xFogPlus. While xFogCore
focuses on the formalization of Fog Computing, xFogPlus extends these formaliza-
tions by the concepts of dynamic reconfigurability and scalability. Finally, xFogStar
extends xFog with a workflow that supports service consumers with the selection of
service providers.

2.1 Fog Component

Fog Computing is defined using three types of components: Cloud Devices, Fog
Nodes, and Edge Devices. While Cloud Devices are servers / data centers offering
storage, computational power, or specific software, Fog Nodes are devices on the
way between the cloud devices and edge devices that could potentially offer services

Dynamically Scalable Fog Architectures 95

with less computational power but faster response times, location awareness, and
mobility [8]. Lastly, Edge Devices are end-user devices that strive to use services
offered by cloud devices and/or Fog Nodes.

In order to make the following concepts more type independent and easier
to understand, we define a Fog Component as a common superclass. This Fog
Component shows the direct similarity to the software architecture definitions and
allows its comparability. The group of all Fog Components is called Fog Component
Set.

2.2 Fog Visibility

The first concept based on the Fog Component definition is the Fog Visibility.
The Fog Visibility is the virtual area around a Fog Component including all other
Fog Components that can be “seen.” This idea is translated to the terminology
of software architectures and networking as shown in Definition 1 using received
messages without transitivity.

Definition 1: Fog Visibility

FogVisibility(x) := {y | y receives direct messages from x}

with:
x, y ∈ FogComponentSet

Therefore, the Fog Visibility describes a relation on the Fog Component Set
which allows us to use and assign properties of sets and relations to it.

One limitation of the Fog Visibility and all following concepts is the communi-
cation channel used by the Fog Components. While communication channels such
as Wi-Fi, 3G, or 4G can potentially include a large amount of Fog Components,
others, such as Bluetooth, might be inherently limited. This aspect will be further
investigated in Sect. 2.7.

Figure 2 shows two examples of Fog Visibilities for a Fog Component A. The
Fog Visibility on the left describes the self-containing set and the Fog Visibility
on the right a more generic example. To show the Fog Visibility in both cases, we
display the range in which a Fog Component can send messages as circles. This
shape as well as the radius of the Fog Visibility can change substantially depending
on the communication channel used.

Also the first example is of less practical use; it describes the edge case of the
Fog Visibility definition and answers the question if Fog Components without other
communication partners still maintain Fog Visibilities. As we do not exclude the
Fog Component itself as a viable communication partner, the Fog Visibility relation
is reflexive and, therefore, exists even without other Fog Components in range.

The second example includes Fog Components A - F with Fog Components A -
C and E being inside A’s Fog Visibility. D and F are outside the circle and therefore
excluded.

96 D. Henze

A

FogVisibilit
y(A)

D

C

B

A

FogVisibilit
y(A)

E F

Fig. 2 Example graph of the Fog Visibility

2.3 Fog Horizon

The second concept is called Fog Horizon. Its name is on the one side inspired
by the visual line separating the earth from the sky and on the other side by the
event horizon of a black hole from which nothing can escape its gravitational field.
Transferring those ideas to the area of Fog Components, it describes devices that
closely interact with each other, have a certain locality attached, and share a common
medium, in our case a communication channel.

This aspect can be described using the introduced Fog Visibility. As shown in
Definition 2, the Fog Horizon is the symmetrical closure of the Fog Visibility and
contains all Fog Components that can send as well as receive messages from each
other, establishing a bidirectional communication. Based on this definition and the
property of the Fog Visibility, the Fog Horizon is reflexive as well as symmetric.
Accordingly, if one Fog Component A is in the Fog Horizon of Fog Component B,
B is also in the Fog Horizon of A.

Definition 2: Fog Horizon

FogHorizon(x) := FogVisibility(x)↔ =
FogVisibility(x) ∩ FogVisibility(x)− =
{y | y ∈ FogVisibility(x) ∧ x ∈ FogVisibility(y)}

with:
x, y ∈ FogComponentSet

Figure 3 shows a Fog Horizon example: As the circle around A does not include
any other Fog Components, its Fog Visibility and therefore Fog Horizon only
contain the component itself. In the case of Fog Component B, these sets do not
match up. While B can “see” D, this is not true the other way around, making the

Dynamically Scalable Fog Architectures 97

Fog Visibility of B equal to B and D and the Fog Horizon just B. C and D on
the other hand can send messages to each other, including them in each other’s Fog
Horizons.

D

C

BA

FogVisibility(A) FogVisibility
(B)

FogVisibility(C)

FogVisibility(D)

Fig. 3 Example graph for the Fog Horizon

2.4 Fog Reachability

The Fog Reachability describes the maximum outreach a Fog Component can
have and therefore addresses the missing indirect communication from the Fog
Visibility and Fog Horizon. While these concepts establish small isolated sets, the
Fog Reachability also includes Fog Components that can be reached using other Fog
Components as hops. Accordingly, as shown in Definition 3, the Fog Reachability is
defined as the transitive closure of the Fog Visibility or every Fog Component that
can receive direct or indirect messages.

Definition 3: Fog Reachability

FogReachability(x) := FogVisibility+(x) =
{y | y receives direct or indirect messages from x}

with:
x, y ∈ FogComponentSet

Figure 4 shows an example with four Fog Components A, B, C, and D. With
A’s Fog Visibility containing B and B’s Fog Visibility containing C and D, A’s Fog

98 D. Henze

Reachability contains all four Fog Components. B does not contain A, C does not
contain any Fog Components and finally D contains B and C.

D

CBA

FogVisibility(A)

FogVisibility(B)

FogVisibility(C)

FogVisibility(D)

Fig. 4 Example graph for the Fog Reachability

One issue of the Fog Reachability is shown as soon as the Fog Components are
not an isolated set, but open to the internet. According to the Fog Reachability’s
definition, just one open connection would result in a huge part of the internet being
included in the Fog Reachability.

2.5 Fog Set

To address this issue, we have to further limit the Fog Components that are included
in the set that describes a Fog Architecture, since we would not consider all these
Fog Components to be part of a single architecture but rather a superset. Similar
to the definition of the Fog Reachability, we use the transitive closure to create a
set that is not limited to single hops, but this time for the Fog Horizon instead of
the Fog Visibility as shown in Definition 4. This makes the Fog Set reflexive and
symmetrical, but also transitive, and allows us to emphasize the close interaction
between Fog Components that is described by the Fog Horizon.

Dynamically Scalable Fog Architectures 99

Definition 4: Fog Set

FogSet(x) := FogHorizon+(x) =
{y | y ∈ FogVisibility+(x) ∧ x ∈ FogVisibility+(y)}

with:
x, y ∈ FogComponentSet

Figure 5 shows an example for such a Fog Set. Since A’s Fog Horizon includes
B and B’s Fog Horizon includes C and D, the Fog Set of A includes all four
Fog Components. In fact, this is also the case for the Fog Sets of the other Fog
Components.

D

CB

A

FogVisibility(A)

FogVisibility(B)

FogVisibility(C)

FogVisibility(D)

Fig. 5 Example graph for the Fog Set

Since the Fog Set is reflexive, symmetrical, and transitive, it is an equivalence
relation and therefore the same and unique set for each involved Fog Component—
which is what we would expect from Fog Components in the same Fog Architecture.

100 D. Henze

2.6 Service Constraints

In addition to the previously introduced concepts, most architectures are limited to
specific services which are offered within them. These services are summarized in
the Service Set as shown in Definition 5.

Definition 5: Service Set

ServiceSet := {s | s is a Service }

To address this, the following three service sets—Provide, Consume, and
Interest—create sets based on the Fog Components relation to the given service
as defined by their names (Definition 6).

Definition 6: Service Sets

Provide(s) := {x | x offers and advertises s ∈ ServiceSet }
Consume(s) := {x | x requests s ∈ ServiceSet }
Interest (s) := Provide(s) ∪ Consume(s)

with:
x ∈ FogComponentSet
s ∈ ServiceSet

Using these definitions, we define the following sets P, C, and I, which present
selections on the given Fog Concept with respect to the provided service as shown
in Definition 7.

Definition 7: Service Constraint

Ps(f(x)) := f(x) ∩ Provide(s)
Cs(f(x)) := f(x) ∩ Consume(s)
Is(f(x)) := f(x) ∩ Interest(s)

with:
x ∈ FogComponentSet
f(x) ∈ { FogVisibility(x), FogHorizon(x),

FogReachability(x), FogSet(x)}
s ∈ ServiceSet

These sets will be of particular interest in Sect. 3.1 as soon as we establish layers.

2.7 Communication Set

The second set we want to investigate is the Communication Set, and therefore
the interactions/connectors between the different components of the Fog Set.

Dynamically Scalable Fog Architectures 101

While most architectures use the same communication medium for the entire
communication, Fog Architectures often involve different communication channels
depending on the devices used. These channels can range from close proximity such
as NFC or Bluetooth up to long distance communication such as 3G, 4G, or 5G. The
following Fig. 6 shows an excerpt of different communication channels which can
be found within Fog Architectures.

In the diagram, the channels are placed within a 2 × 2 grid in which the columns
indicate whether the channels are wired or wireless and the rows indicate local
and remote proximity. Therefore, the placement within the grid describes a double
inheritance of the contained channel to the according superclasses. Additionally,
all superclasses are Communication Channels themselves. This set, called
Communication Channel Set, is defined in Definition 8. It contains all potential
communication channels that can be used within a Fog Architecture.

Definition 8: Communication Channel Set

CommunicationChannelSet = {c | c is a communication channel.}

While most communication channels that are used in the context of Fog Archi-
tectures are bidirectional, network limitations as well as sensors only providing data
can include unidirectional communication channels. To include and address these
channels, our definition of Fog Visibility is unidirectional in comparison to the Fog

3G

4G 5G

2G

TeleTexTelex

Token-Bus Token-Ring

Ethernet

USB-A USB-C

Modem

BTX

Wireless Wired

Local Proximity

Remote Proximity

WIFI

Bluetooth

ZigBee

Z-Wave

RFID

Communication

Channel

Fig. 6 Excerpt of possible communication channels in the context of Fog Architectures: The
channels are divided based on the physical medium that they are using (wired versus wireless),
but also the physical distance for which the communication channels can be used

102 D. Henze

Horizon, and accordingly, the Communication Set can also include unidirectional
communication channels.

Bidirectional communication channels can be easily limited to unidirectional
communication using software solutions. Channels such as Wi-Fi, Bluetooth, or
USB rely on an open bidirectional communication approach. Therefore, encap-
sulating a certain amount of trust to other participants within the communication
structure is essential for Fog Architectures; only trusted instances are described as
part of a Fog Architecture.

In addition to the equivalent of a Component in the context of a Software
Architecture which is the Fog Component and the related sets, we define a
Communication Component as the equivalent to the Connector.

A Communication Component is a triple that consists of the source Fog
Component, the used Communication Channel, and the destination Fog Component
as shown in Definition 9. Specifying the source and destination allows to define
unidirectional communications.

Definition 9: Communication Component

CommunicationComponent := {SourceFogComponent,
CommunicationChannel,

DestinationFogComponent}

All Communication Components of one Fog Architecture are grouped within the
Communication Set. The Communication Set is defined as shown in Definition 10
and is the equivalent to the Fog Set. For a Communication Component to be con-
sidered part of the Communication Set, the source and destination Fog Component
have to be part of the Fog Set, and the Communication channel has to be part of the
Communication Channel Set.

Definition 10: Communication Set

CommunicationSet := {c : CommunicationComponent =
(source, channel, destination) | source ∈ FogSet

∧ destination ∈ FogSet

∧ channel ∈ CommunicationChannelSet}

3 xFogPlus: Dynamic and Scalable Fog Architectures

xFogPlus addresses technical research goals 2 and 3 to achieve dynamic recon-
figurability and scalability of Fog Architectures. This allows the addition of new
components to existing Fog Architectures and the addition of layers.

Dynamically Scalable Fog Architectures 103

3.1 Dynamic Reconfigurability

Being able to add new components to a Fog Architecture is simplified based on
the overarching mathematical definitions introduced in Sect. 2. Based on those
definitions, each component that should be considered part of the Fog Architecture
needs to fulfill two requirements. First, the component needs to be part of the Fog
Component Set, and second, it needs to be part of the Fog Set: As all concepts
introduced in Sect. 2 are based on the Fog Component Set, it is a mathematical
necessity for all of them, including the Fog Set, but the Fog Set is only sufficient for
the Fog Component Set.

The Fog Component Set itself already poses a problem. Based on the definition
shown in Sect. 2.1, the Fog Component Set consists of all potential Fog Compo-
nents. While Fog Components can be any IoT device on MOF level M0 and M1, the
Fog Component itself is an instance of the Fog Type on M3, which in turn has the
subclasses Edge Device, Fog Node, and Cloud Device. Although this definition is
helpful if different Fog Architectures are available and they should be differentiated
between each other, it is the wrong way around if new components should be added:
In order to be considered part of the Fog Component Set, the component needs to
be a Fog Component, and therefore already part of a Fog Architecture which is not
the case for new components.

Therefore, to be able to add components to the Fog Component Set, an alternative
definition for a Fog Component is required which solely focuses on properties of
the component itself. The first hard requirement is that every Fog Component is
necessarily an IoT device. This means that a component needs to have the capability:

1. To be interconnected
2. To have the intention to share information across platforms
3. To be uniquely addressable
4. To have computational capabilities

Soft requirements are that the components:

1. Preferably use wireless communication
2. Have an interest in locality
3. Have general-purpose computational power
4. Which they offer as services to other components

This definition allows us to extend the Fog Component Set by new components
which are not involved in any Fog Architecture, yet.

The second requirement is that the component satisfies the definition of a Fog
Set and thus can be included in a Fog Architecture. Based on Definition 4, for a
Fog Component x to be included in a Fog Set , the Fog Component needs to
be in the transitive closure of the Fog Horizon of a Fog Component within the
Fog Architecture that the Fog Component should be added to. Accordingly, it is
mathematically sufficient for the Fog Component to be able to send and receive
direct messages to and from any single Fog Component in the Fog Architecture.

104 D. Henze

After adding new components to the Fog Component Set and Fog Set, we have
to address the issue on which layer the component is added. In Fog Computing,
components can be assigned to three layers: the Edge Layer, the Fog Layer, or the
Cloud Layer. While the Edge Layer and Cloud Layer consist of single layers, the
Fog Layer can consist of several individual layers.

To indicate that the Fog Layer can consist of several layers, we rename the Fog
Layer to Fog Layer Set in compliance with the introduced concept of xFogCore. The
Fog Layer Set can consist of several Fog Layers itself.

Definition 11: Fog Layer Set

FogLayerSet := {l | l is a Fog Layer}

We present definitions for the different types of layers. Definition 12 shows the
properties of a Fog Component to be considered part of the Edge Layer. Each Fog
Component x needs to be part of the Fog Set , thus, part of the Fog Architecture ,
and does not provide any services to other Fog Components , which is represented
by not having any service s which makes Fog Component x part of its provide set.

Definition 12: Edge Layer

EdgeLayer := {x | x ∈ FogSet ∧ �s ∈ ServiceSet :x ∈ Provide(s) }

The Fog Layer is defined as every Fog Component x that is, equal to the Edge
Layer, part of the Fog Set and for which at least two services s1 and s2 exist, so
that Fog Component x consumes one of the services and offers the other one, as
shown in Definition 13. This describes the idea that Fog Components in the Fog
Layer bring services of higher layers, for example, the Cloud Layer, closer to the
Edge Layer but also do their own calculations.

Definition 13: Fog Layer

FogLayer := {x | x ∈ FogSet ∧ ∃s1, s2 ∈ ServiceSet :
x ∈ Consume(s1) ∧ x ∈ Provide(s2) }

The Cloud Layer, as shown in Definition 14, includes every Fog Component that
does not consume any service itself.

Definition 14: Cloud Layer

CloudLayer := {x | x ∈ FogSet ∧ �s ∈ ServiceSet :x ∈ Consume(s) }

Each Fog Layer in the Fog Layer Set is defined by a service pair si , sj that is
on the one side consumed by the layer and on the other side provided by the layer.
If different layers include the same Fog Components although being defined by

Dynamically Scalable Fog Architectures 105

different service pairs, those layers are fused to one layer consuming or providing
several services.

Using the provided definitions for the different layers, the issue of adding Fog
Components to specific layers can be reduced to these Fog Components providing
or consuming the services that uniquely identify each layer.

Figure 7 shows an example of different Fog Components distributed on
three layers: Edge Layer, Fog Layer Set, and Cloud Layer. The Fog
Layer Set consists of three layers: Fog Layer 1, Fog Layer 2, and Fog
Layer 3.

Provide(s
5
)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
2
,s

3
)

Fog Layer 1

Provide(s
2
,s

3
)

Consume(s
4
)

Fog Layer 2

Provide(s
4
)

Consume(s
5
)

Fog Layer 3

E1

E2

E3

E4

E5

F1

F2

F3

F4

F5

F5

F6

F7

C1

C2

1

Fig. 7 The graph shows an example for a Fog Architecture which is distributed over the three
layers Edge Layer, Fog Layer Set, and Cloud Layer

Although, in this example, all Fog Components in the Edge Layer consume
the same service s1, they could also consume other services as long as they do
not offer any services themselves. The first two Fog Layers are examples for
multiple consumed or provided services (s2, s3). These two layers present an
instance of fused Fog Layers as the service pairs s1, s2 as well as s1, s3 result
in the same set of Fog Components and therefore are on the same layer. The third
Fog Layer provides service s4 and consumes s5 which is provided by the Cloud
Layer.

Additionally, the example shows the case that Fog Component F7 is added
to the Fog Architecture. Based on the provided and consumed services s2, s3, and
s4, the new Fog Component can be added to the second Fog Layer; although no
connections are established, yet.

106 D. Henze

3.2 Scalability

Adding new layers to existing architectures is one key aspect for making them
dynamic and scalable. As most applications nowadays use client-server archi-
tectures, it is also essential for the transition from a centralized approach to a
decentralized approach using Fog Computing.

With the introduced layer definitions and their service-based nature, the process
of adding new layers to a Fog Architecture is simplified to the addition of a new Fog
Component that offers and consumes a new pair of services that is used by existing
Fog Components of the architecture.

Based on the position where the new layer should be added, we have to
differentiate three cases. First, the addition of a layer between the layers of a
client server architecture to create a Fog Architecture, second the addition of new
Fog Layers in existing Fog Architectures, and third the creation of new Edge or
Cloud Layers. Figure 8 shows three examples, one for each of these cases, with
the previous architecture on the left and the resulting Fog Architecture on the right.
Each example shows the resulting service configuration.

3.3 Handling Complexity

In order to handle the introduced complexity in Fog Architectures by new Fog
Components and layers, and to make Fog Architectures more accessible for different
stakeholders, we introduce a Fog Architecture view concept. A View of a Fog
Architecture is a part of a Fog Architecture that consists of a specified amount
of layers, which are of current interest for a stakeholder. The definition is based
on the view concept introduced in SysML which provides a perspective that spans
different abstractions, in our case layers [16]. Our View is defined based on a tuple
that contains natural numbers which refer to the selected layers of interest.

Definition 15: Fog Architecture: View, Viewpoint, and Abstraction Level

View(s) := ⋃|s|−1
i=0 Layer(si)

with:
s := Tuple containing the numbers referring to the selected layers
|s| = Amount of layers within the View ≤ |FogArchitecture|
View ⊆ FogArchitecture

Figure 9 shows a view example for a Fog Architecture describing a smart city
with six layers. The view highlights the Edge Layer and the lowest two Fog Layers.

Looking at the View, one can describe the view as a Fog Architecture itself using
the previous introduced layer definitions. Accordingly, Fog Components can take
different rolls depending on the current View. For example, Fog Components on the
“Street” layer which are on Fog Layer 2 of the entire Fog Architecture act as the
Cloud for the highlighted View.

Dynamically Scalable Fog Architectures 107

Provide(s
2
)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
2
)

Fog Layer

E
1

E
2

E
3

E
4

E
5

F
1

F
2

C
1

C
2

Provide(s
3
)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
2
)

Fog Layer 1

E
1

E
2

E
3

E
4

E
5

F
1

F
2

C
1

Provide(s
2
)

Consume(s
3
)

Fog Layer 2*

F
3

F
4

21

Provide(s
2
)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
2
)

Fog Layer

E
1

E
2

E
3

E
4

E
5

F
1

F
2

C
1

C
2

Provide(s
2
)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
1
*)

Fog Layer 1

E
1

E
2

E
3

E
4

E
5

F
2

F
3

C
1

C
2

Provide(s
1
*)

Consume(s
2
)

Fog Layer 2

F
4

F
5

F
1

1

Provide(s
1
)Consume(s

1
)

Client Layer Server Layer

E
1

E
2

E
3

E
4

E
5

C
1

C
2

Provide(s
1
*)Consume(s

1
)

Edge Layer Fog Layer Set Cloud Layer

Provide(s
1
)

Consume(s
1
*)

Fog Layer

E
1

E
2

E
3

E
4

E
5

F
1

F
2

C
1

C
2

1

Fig. 8 Three examples of layer additions: the transition to a Fog Architecture, the addition of a
new Fog Layer, and the addition of a new Edge/Cloud Layer

4 xFogStar: A Workflow for Service Provider Selection

Based on xFog, and accordingly xFogCore and xFogPlus, many new concepts can
be established in dynamically, scalable Fog Architecture. We introduce xFogStar,
one such concept, that focuses on the relation between service consumers and
service providers, the players suggested by Bonomi et al. [8], to show an application

108 D. Henze

States

Districts

Cities

Streets

Crossings

Edge

Fog

Cloud

Fog

Cloud

Edge

Fig. 9 View example of a Fog Architecture describing a smart city with six layers

of the introduced framework with a Fog Architecture containing two layer views.
xFogStar supports the service provider selection in case multiple providers are
within the Fog Horizon of a service consumer requesting one service, addressing
technical research goal 4.

To describe properties of the service provider and its service, but also the
requirements of the service consumers, we use QoS parameters and an according
QoS vector. We investigated an extensive list of QoS parameters that are of major
importance in Fog Architectures. Figure 10 provides an overview of all QoS
parameters and groups them according to their dependencies.

Depending on the application domain, a selection of these parameters can be
used to match the requirements of the service consumer with the service providers.
This process to match the service consumer with the best fitting service provider
for a specified service is depicted in Fig. 11. It shows a seven-step workflow
which translates the requirements using availability strategies, limits, comparability
strategies, ordering strategies, and weightings into a transparent, ordered list of
service providers for the service consumer.

5 Validation

Due to the extent of the empirical validation of the xFog framework and xFogStar
addressing Knowledge Goal 2 and Knowledge Goal 3, this section only provides
an overview of the conducted validation. Detailed descriptions on each individual
case study, including each case study’s design, its results, and the discussion, can be
found in the dissertation “Dynamically Scalable Fog Architectures” [10].

The validation tries to justify if stakeholder goals would be met if the treatment
is implemented in the problem domain’s context. It investigates if the requirements
for the treatment are addressed within a model of the problem domain. As the
validation is part of the design cycle, and thus conducted in a laboratory setting,
the implementation of the treatment in the problem domain is not of interest, yet.
This results in the validation being independent of the stakeholders, which is the

Dynamically Scalable Fog Architectures 109

Le
ve

l 1
S

in
g

le
 I
n

h
e
ri
ta

n
c
e

Le
ve

l 2

D
o

u
b

le
 I
n

h
e
ri
ta

n
c
e

Le
ve

l 4
Q

u
a
d

ru
p

le
 I
n

h
e
ri
ta

n
c
e

Le
ve

l 3
T
ri
p

le
 I
n

h
e
ri
ta

n
c
e

QoS Parameter

ServiceProvider
Dependent

ServiceConsumer
Dependent

Network
Dependent

Service
Dependent

ExecutionTime

NetworkTime

NetworkCost

NetworkEnergy

ExecutionCost

ExecutionEnergy

StorageTime

History

Bandwidth

StorageCost

StorageEnergy

StorageDataAmount

ExecutionDataAmount

ExecutionSustainability

StorageSustainability
NetworkSustainability

MemoryTime

MemoryCost

MemoryEnergy

MemoryDataAmount

MemorySustainability

Usability

Fidelity

Documentability

Extensibility

ExecutionAvailability

ExecutionReliability

ExecutionMaintainability

NetworkDataAmount NetworkAvailability

NetworkReliability

NetworkMaintainability

StorageAvailability

StorageReliability

StorageMaintainability

MemoryAvailability

MemoryReliability

MemoryMaintainability

ServiceCost

Locality

Fig. 10 Overview on QoS parameters for Fog Architectures and their dependencies

main difference between validation and evaluation. Therefore, different research
approaches are used such as modeling, simulations, and testing [11].

The validation of xFog was separated into the three aspects of the xFog
framework provided by xFogCore, xFogPlus, and xFogStar. Each validation relied
on the validation approaches modeling and simulation. First, we introduced the
design of the different case studies. We presented the problem domain of the case
study, the requirements, and which concepts of xFog or xFogStar were addressed.
We selected cases in different domains to support domain-independent conclusions.
In total, we addressed six different domains: Smart Environments, Smart Cities,
Health, Continuous Integration, Metrology, and Gaming. These domains were used
in eight case studies mapped to three validations.

Second, we reported on the results of the validation for the three core concepts:
Dynamic Fog Components, Scalable Fog Architecture, and Service Provider Selec-
tion. While the formalization of Fog Computing (xFogCore) is used throughout all
three concepts, each of the concepts can be assigned to an addition to xFog as shown
in Fig. 12. Dynamic Fog Components and Scalable Fog Architectures are covered

110 D. Henze

Service ProviderService Consumer

S
en

d

Q
o

S
 V

ec
to

r
S

en
d

Q

o
S

 V
ec

to
r

S
en

d

Q
o

S
 V

ec
to

r

S
ta

rt
S

er
vi

ce

D
is

co
ve

ry

S
en

d

Q
o

S
 V

ec
to

r

Q
o

S
 V

ec
to

r
M

at
ri

x

A
p

p
ly

U
n

av
ai

la
b

ili
ty

S
tr

at
eg

y

A
p

p
ly

O
rd

er
in

g
S

tr
at

eg
y

A
p

p
ly

C
o

m
p

ar
ab

ili
ty

S
tr

at
eg

y

A
p

p
ly

P
ar

am
et

er

L
im

it
s

L
im

it
ed

Q
o

S
 V

ec
to

r
M

at
ri

x

F
u

lly

P
o

p
u

la
te

d
Q

o
S

 V
ec

to
r

M
at

ri
x

E
st

ab
lis

h

C
o

n
n

ec
ti

o
n

S
el

ec
t

S
er

vi
ce

P

ro
vi

d
er

C
re

at
e

Q
o

S
 V

ec
to

r
R

an
ki

n
g

O
rd

er
ed

S

er
vi

ce

P
ro

vi
d

er
L

is
t

[E
m

pt
y

E
nt

rie
s]

[F
ul

ly
 P

op
ul

at
ed

]

S
el

ec
t

U
n

av
ai

la
b

ili
ty

S
tr

at
eg

y
P

ar
am

et
er

L

im
it

s

S
el

ec
t

C
o

m
p

ar
ab

ili
ty

S
tr

at
eg

y

S
el

ec
t

O
rd

er
in

g
S

tr
at

eg
y

P
ar

am
et

er
Im

p
o

rt
an

ce

[C
on

ne
ct

io
n

D
ec

lin
ed

]
[C

on
ne

ct
io

n
A

cc
ep

te
d]

C
o

m
p

ar
ab

le
Q

o
S

 V
ec

to
r

M
at

ri
x

O
rd

er
ed

Q
o

S
 V

ec
to

r
M

at
ri

x

F
ig

.1
1

T
he

w
or

kfl
ow

fo
r

se
rv

ic
e

pr
ov

id
er

se
le

ct
io

n
(U

M
L

A
ct

iv
it

y
D

ia
gr

am
)

Dynamically Scalable Fog Architectures 111

xF
o

g
S

ta
r

K
no

w
le

d
g

e
G

o
al

 3

S
er

vi
ce

 P
ro

vi
d

er
S

el
ec

ti
o

n
S

ca
la

b
le

Fo
g

 A
rc

hi
te

ct
ur

es
D

yn
am

ic

Fo
g

 C
o

m
p

o
ne

nt
s

xF
o

g
P

lu
s

K
no

w
le

d
g

e
G

o
al

 2

7. Case Study:

Quasar
2019

1. Case Study:

ARControl
2018/2019

4. Case Study:

DisCoFog
2018

DisCoFog 2
2018/2019

5. Case Study:

eHealth
2019

6. Case Study:

Fog.BOI
2018/2019

3. Case Study:

PdMFrame
2018

2. Case Study:

Lassie
2019

8. Case Study:

FoQsIs
2019/2020

Smart Environment Smart City Health

Metrology GamingContinuous Integration

Domains

xFog

Fig. 12 An overview of the validation design for the xFog framework. Each of the three rows
represent a validation with Dynamic Fog Components and Scalable Fog Architectures belonging
to concepts related to xFogPlus and the Service Provider Selection belonging to the xFogStar
workflow. The coloring of the case studies represents the domains they belong to

112 D. Henze

in xFogPlus as shown in the first two rows of the diagram. The Service Provider
Selection uses xFogCore and the workflow introduced by xFogStar.

Third, we discussed the impact of the results for the xFog framework, interpreted
the results, and addressed threads to the validity of the validation approach.

6 Conclusion

The main goal of the dissertation “Dynamically Scalable Fog Architectures” [10]
was to create a framework that establishes a formalization for Fog Computing and
integrates support for mobile applications and dynamic reconfigurability of Fog
Architectures. We implemented the formative research approach design science
using treatment designs and treatment validations.

The results can be separated into three parts: The problem investigation and
description, the creation of the xFog framework and its validation. The problem
investigation resulted in the goals shown in Fig. 1, which we translated into use
cases and functional and nonfunctional requirements. These were addressed by the
xFog Framework which can be divided in xFogCore, xFogPlus, and xFogStar.

xFogCore defined the Component Set represented by the Fog Set and the
Communication Set which relate to the components and connectors of a software
architecture. To define the Fog Set, xFogCore introduced the Fog Component Set,
Fog Visibility , Fog Horizon , and Fog Reachability . These concepts describe the
components of a Fog Architecture based on mathematical definitions. We showed
how the component sets can be constrained to specific services that are offered
or consumed, or that are of interest for a Fog Component, which allows the
identification of layers within Fog Architectures. We defined the Communication
Set as a set of Communication Components which are defined by the involved Fog
Components and the used communication channel. The sets were put into context
by a meta model on MOF level M2 including the basic building blocks of software
architectures which allowed the interpretation of the sets as graphs.

xFogPlus introduced support for the dynamic addition of Fog Components to
the Fog Architecture at runtime by redefining the idea of Fog Components and by
providing definitions for the three layers: Edge Layer, Fog Layer, and Cloud Layer.
Second, new layers can be described and added to the Fog Architecture enabling
scalability. As the scalability increased the complexity of the Fog Architecture, we
established the concept of different Views on the Fog Architecture to set a focus on
different layers depending on the stakeholder’s current interest.

xFogStar defined a workflow for the service provider selection in dynamically
scalable Fog Architectures which are described by the concepts of xFogCore and
xFogPlus. The workflow is used to select the best fitting service provider for
the service consumer’s needs. These needs are represented as a vector of QoS
parameters which we defined and categorized according to their dependencies. We
investigated the different steps of the xFogStar workflow to outline arising problems.

Dynamically Scalable Fog Architectures 113

We validated three aspects that use the foundations and formalization of xFog to
investigate Knowledge Goal 2 and Knowledge Goal 3: Dynamic Fog Components ,
Scalable Fog Architectures , and the Service Provider Selection. For each aspect, we
used a multiple case study to gather quantitative data on the feasibility of xFog, and
thus xFogCore, xFogPlus, and xFogStar. Dynamic Fog Components and Scalable
Fog Architectures related to xFogCore and xFogPlus, while the Service Provider
Selection addressed the xFogStar workflow.

Each validation compared the expected results with the results provided by
xFog. The first validation investigated three cases from different domains to support
generalizable conclusions. It demonstrated the feasibility of xFog and in partic-
ular xFogPlus by examining the addition of components at runtime. The second
validation included three cases to show the feasibility of the scalable concepts of
xFogPlus by adding new layers to existing Fog Architectures. The resulting Fog
Architectures were used to highlight the applicability of the View concept which
addresses complexity depending on the stakeholder’s current point of interest. The
last validation for the Service Provider Selection demonstrated the feasibility of the
xFogStar workflow in two cases.

Acknowledgments I would like to thank my first and second advisors Prof. Dr. Bruegge and
Prof. Dr. Lichter for their valuable insights and feedback. Additionally, I would like to thank all
members of the chair for applied software engineering from the Technical University of Munich
for the discussions and the students who took part in my case studies.

References

1. Tanenbaum, A., Van Steen, M.: Distributed Systems: Principles and Paradigms. Prentice-Hall,
Englewood Cliffs (2013)

2. Ferrer, A.J., Marquès, J.M., Jorba, J.: Towards the decentralised cloud: survey on approaches
and challenges for mobile, ad hoc, and edge computing. ACM Comput. Surv. 51, 111 (2019)

3. Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in
mobile computing. IEEE Pervasive Comput. 8, 14–23 (2009)

4. Dinh, H., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture,
applications, and approaches. Wirel. Commun. Mobile Comput. 13, 1587–1611 (2013)

5. Qi, H., Gani, A.: Research on mobile cloud computing: review, trend and perspectives. In: 2012
Second International Conference on Digital Information and Communication Technology and
it’s Applications (DICTAP), pp. 1–6 (2012)

6. Satyanarayanan, M.: The emergence of edge computing. IEEE Comput. 50 30–39 (2017)
7. Dolui, K., Datta, S. K.: Comparison of edge computing implementations: fog computing,

cloudlet and mobile edge computing. In: Global Internet of Things Summit (GIoTS), pp. 1–6
(2017)

8. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog Computing and its role in the Internet of
Things. In: MCC Workshop on Mobile Cloud Computing, vol. 1, pp. 13–16 (2012)

9. Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G., Zhu, J.: Do we all
really know what a fog node is? Current trends towards an open definition. Comput. Commun.
109, 117–130 (2017)

10. Henze, D.: Dynamically Scalable Fog Architectures. Technische Universität München,
München (2020)

114 D. Henze

11. Wieringa, R.: Design Science Methodology for Information Systems and Software Engineer-
ing. Springer, Berlin (2014)

12. Hevner, A., March, S., Park, J., Ram, S.: Design science in information systems research. MIS
Q. 28(1), 75–105 (2004)

13. Shaw, M., Garlan, D.: Software Architecture. Prentice-Hall, Englewood Cliffs (1996)
14. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,

Reading (2003)
15. Kruchten, P.: The 4+ 1 view model of architecture. IEEE Softw. 12 42–50 (1995)
16. ISO: IEC/IEEE systems and software engineering: architecture description. In: ISO/IEC/IEEE

42010: 2011 (E)(Revision of ISO/IEC 42010: 2007 and IEEE Std 1471-2000). IEEE, New
York (2011)

17. Henze, D., Schmiedmayer, P., Bruegge, B.: Fog horizons—a theoretical concept to enable
dynamic fog architectures. In: IEEE/ACM International Conference on Utility and Cloud
Computing, vol. 12, pp. 41–50 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Crossing Disciplinary Borders to Improve
Requirements Communication

Anne Hess

Abstract Software requirements specifications (SRS) serve as an important source
of information for a variety of roles involved in software engineering (SE) projects.
This situation poses a challenge to requirements engineers: Different information
needs have to be addressed, which are strongly dependent on the particular
role(s) that SRS stakeholders have within a project. This chapter summarizes the
contributions of a thesis that aimed to address and reduce role-specific defects in
SRS that negatively influence the efficient usage and acceptance of these documents.
To achieve this goal, we collected empirical data about role-specific information
needs in a series of empirical studies that served as a baseline for a secondary
analysis toward the definition of role-specific views. Moreover, we realized a proof-
of-concept implementation that is capable of generating role-specific views on SRS.
The results of a case study revealed that role-specific views have the potential to
efficiently support SRS consumers during the analysis of a given SRS. Besides
conducting further empirical studies in industry, future work aims to foster cross-
disciplinary collaboration and requirements communication, especially in agile
teams. Thereby, we are exploring synergy potential with best practices from non-
SE disciplines.

1 Introduction

Software development is a cooperative and creative process that requires stakehold-
ers from various software engineering (SE) disciplines to collaborate, exchange
information, and coordinate their tasks and efforts [1, 2]. In order to make this
collaboration successful, a shared understanding of the functional and nonfunctional
requirements of a software system is therefore required [3, 4].

A. Hess (�)
Fraunhofer IESE, Kaiserslautern, Germany
e-mail: Anne.Hess@iese.fraunhofer.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_7

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_7&domain=pdf
mailto:Anne.Hess@iese.fraunhofer.de
https://doi.org/10.1007/978-3-030-83128-8_7

116 A. Hess

A key discipline that supports the detailed analysis and communication of these
requirements is requirements engineering (RE) – a systematic and disciplined
approach to the elicitation, analysis, specification, and management of requirements
[5]. The results of these RE activities are typically documented in various require-
ments artifacts, which are consolidated and structured in software requirements
specifications (SRS). These SRS finally serve as an important information basis
for various people involved in SE disciplines such as architecture design, interac-
tion/user interface design, and software testing.

Despite their importance, we have observed that the acceptance of SRS is often
limited and that SRS are often neglected in practice. A more detailed investigation
of this observation revealed a number of so-called role-specific requirements defects
that are not sufficiently addressed by today’s RE approaches (see Table 2, Sect. 2.2).
While these defects can basically be traced to insufficient quality of SRS, as well as
the requirements artifacts they contain, they are characterized by an interesting fact:
Different SRS consumers might experience these defects individually – depending
on their particular discipline-related roles, responsibilities, and tasks within an SE
project.

In fact, the occurrence of role-specific defects is critical as they negatively
influence the efficient usage and analysis of an SRS from the consumer’s viewpoint.
This situation can again lead to failures, delays, and frustration in subsequent SE
activities and, ultimately, to costly changes and budget or time overruns [6, 10].

Addressing these role-specific defects finally motivated the practical improve-
ment goals of the thesis “Role-Specific Views on SRS: An Empirical Approach”
[11], whose contributions are summarized in this chapter. Within the scope of this
thesis, we collected empirical data about role-specific information needs in a series
of empirical studies, which served as a baseline for a secondary analysis aimed
at the definition of role-specific views. Moreover, we realized a proof-of-concept
implementation of our envisioned solution that is capable of generating role-specific
views on SRS. The results of the case study revealed that role-specific views have
the potential to efficiently support SRS consumers during the analysis of a given
SRS as well as requirements engineers during specification activities.

Following the thesis work, we continued to further investigate and improve cross-
disciplinary collaboration and requirements communication, especially in agile
teams. In doing so, we even cross the borders of the field of SE to get inspired by best
practices from non-SE disciplines such as criminology, film studies, psychology,
and law. The research objectives that we are pursuing in this research context include
the identification of synergies with such best practices and their incorporation – as
well as adaptation – into innovative methods and techniques to overcome existing
challenges.

In the remainder of this chapter, we will first discuss the background and results
of the research activities that shaped both the practical and scientific thesis goals in
Sect. 2. Then we will provide an overview of the overall solution idea, the research
approach, and our thesis contributions in Sect. 3. In Sect. 4, we will share insights
and results from our series of empirical studies, which served as a baseline for the

Crossing Disciplinary Borders to Improve Requirements Communication 117

definition of role-specific views on SRS. Section 5 introduces current and future
research activities that followed the thesis. The chapter concludes with a summary
in Sect. 6.

2 Background and Improvement Goals

This section introduces some background information related to the notion and
role of requirements artifacts and shares the results of research activities that were
conducted to shape the practical and scientific improvement goals of the thesis.

2.1 Requirements Artifacts

A central activity of RE approaches is the documentation of requirements-related
information (covering both functional and nonfunctional system aspects, as well as
elements of the usage environment) established and worked out during elicitation,
validation, and negotiation activities. This documentation typically results in a set
of requirements artifacts, which we define as “ . . . an object produced or shaped
by a human conception or agency in order to externalize requirements-related
information” [12].

Requirements artifacts are predominantly written in natural language, both in
unstructured common language and in a structured form using templates and forms
[13, 14]. Other documentation types include conceptual models (like UML state
diagrams or UML activity diagrams) or hybrid documentation combining natural
language and conceptual models [5].

In fact, requirements artifacts represent an important factor for the success
of a project [15, 16] as they serve as a medium of communication between
interdisciplinary project team members with different roles and tasks [17] (see
Table 1).

2.2 Practical Improvement Goals

To become a good basis for the various consumers, both the SRS and the require-
ments artifacts they contain must meet certain quality criteria (such as unambiguity,
consistency, or completeness) in order to prevent the occurrence and propagation of
requirements defects [7, 17]. Such defects ultimately may lead to major delays, cost
overruns, commercial consequences, and even the loss of lives [18].

Despite this major impact that requirements defects have throughout the whole
lifecycle of a software product, the data analysis of an industry survey as well as
literature reviews revealed that industry is still facing problems and challenges in

118 A. Hess

Table 1 Consumers of requirements artifacts [5, 15]

Role Tasks based on requirements artifacts

Project manager Planning of work packages and milestones for the implementation of the
system

Customer Validation of requirements as part of contract
Software architect Design of system architecture; analysis of change impacts;

validation of requirements as part of quality assurance
Usability expert
(Interaction
designer)

Design of interactions and user interface; analysis of change impacts;
validation of requirements as part of quality assurance

Developer Implementation of the system; analysis of change impacts
System test
engineer

Development of test cases to validate the system; analysis of change
impacts; validation of requirements as part of quality assurance

Maintenance
engineer

Analysis of defects during system maintenance

addressing quality-related issues when documenting requirements artifacts. As a
consequence, the acceptance of SRS is often limited and the documents are often
neglected in practice by their consumers.

To better understand and shape the practical problem of the thesis, we conducted
expert interviews and performed a literature review with the goal of identifying
requirements defects that hinder an efficient use and analysis of SRS from the
viewpoint of their readers. This activity resulted in a taxonomy of 14 requirements
defect categories [11].

Within the thesis, we focused our research activities on a subset of these
defects – so-called role-specific requirements defects – which are characterized by
an interesting fact: In contrast to “general defects” (such as ambiguity, missing,
or lacking traceability), role-specific requirements defects are possibly experienced
differently by different readers, depending on the role they have in a project [19].
Hence, we excluded the aforementioned “general defects” from our taxonomy and
obtained a list of role-specific defects, which are summarized in Table 2 together
with a list of requirements for a suitable solution.

Table 2 Role-specific defects and corresponding solution requirements

Role-specific requirements defect Requirements for suitable solution

Important information is missing
[6–9]

The SRS contains all information that is
relevant for a particular role

Superfluous information is specified
[6, 8, 9]

The SRS contains only information that is
relevant for a particular role

Important information is misplaced
[6, 8, 9]

The SRS is appropriately structured so that
relevant information can easily be found by
a particular role

Requirements artifacts are in an unusable form
[6, 8, 9]

Requirements artifacts are specified at the
right level of detail using the right notation

Crossing Disciplinary Borders to Improve Requirements Communication 119

As highlighted earlier, the occurrence of role-specific defects negatively influ-
ences the efficient usage and analysis of an SRS, as it is time-consuming and/or
cognitively difficult for SRS consumers to resolve and reconcile these problems
while working with the SRS [6, 8]. This is critical, as it might again lead to failures,
delays, and frustration in subsequent SE activities, and ultimately to costly changes
and budget or time overruns [6, 10].

Hence, addressing these role-specific problems ultimately constituted the practi-
cal improvement goals of the thesis, which are stated as:

Improve the quality of SRS by addressing and reducing role-specific require-
ments defects in SRS. Resulting from this achievement, we aim to increase
the efficiency of SRS analysis and hence the acceptance of an SRS from the
viewpoint of its readers.

2.3 Literature Review Activities

To strengthen and isolate the scientific contribution of the thesis, the role-specific
defects and corresponding solution requirements in Table 2 were subjected to further
literature review activities. The underlying research goal (RG) and related research
questions (RQ) of these activities are summarized in Table 3.

Table 3 Research goals and research questions of literature review activities (LRA)

RGLRA: Investigate and analyze the state of the practice/state of the art with regard to existing
solutions that particularly address role-specific defects and the corresponding requirements.
RQLRA-1: To what extent do existing requirements documentation and quality assurance
methods, techniques, or guidelines address role-specific defects and corresponding
requirements?
RQLRA-2: To what extent do existing view-based approaches support our overall solution idea
of generating role-specific views on requirements documents?

Our literature review activities toward RQLRA-1 revealed several (normative)
references that highlight and report on good quality characteristics of both individual
requirements and SRS [5, 8, 15, 18, 20]. However, we found that all of these
references are quite vague when it comes to describing what completeness or
minimality means from a role-specific point of view. This issue is also claimed
and supported by the work of [17], who argue that some quality criteria (such as
completeness) have to be rethought from a quality-in-use perspective. In fact, their
ABRE-QM (activity-based RE quality models) concept fits well into the scope of
this thesis as our empirical work contributes to the instantiation of their quality
models and our tool-based solution represents a concrete implementation of their
vision.

120 A. Hess

Similarly, existing writing guidelines [15, 21], languages, or requirements
templates [5] do not provide any information on the preferred level of detail and
notation that is suitable for a particular role. This observation also holds for standard
SRS structures such as [20, 22], which define an overall structure and corresponding
information that should be included in an SRS but do not provide any advice on the
suitable level of detail, as well as the right notation that should be used to specify
the information in the various sections. Moreover, these references do not address
the requirement of “minimality,” i.e., they do not hide irrelevant information from
the reader.

Requirements validation techniques [5, 23–25] seem to be helpful for identifying
and resolving role-specific defects [26] but typically happen after the SRS has been
created (rather than during the construction of the SRS). Moreover, these activities
easily get tedious and cognitively difficult for the inspectors if they have to search
for the relevant information that they have to validate from a dedicated perspective.
Also, inspection guidelines and checklists have to explicitly contain and address
the role-specific information needs that are to be checked with regard to their
fulfillment. And this knowledge is often missing.

There also exist a variety of formal methods that are capable of automatically
detecting and handling quality-related defects such as ambiguities, inconsistencies,
or missing traceability [27–29]. However, to the best of our knowledge, none of
these approaches is capable of automatically detecting and resolving the role-
specific defects that are the focus of the thesis.

Addressing RQLRA-2, we identified several view(point)-based solutions in the
context of RE [30–32]. However, the definition and usage of these viewpoints
differ between the various solutions. That is, some viewpoints reflect (orthogonal)
viewpoints of the system, or process-specific or organizational viewpoints rather
than role-specific views. Moreover, from a technical perspective, existing com-
mercial requirements management tools are capable of automatically generating
views on SRS that fit role-specific information needs. This is typically realized
by applying filter rules to predefined attributes [5]. However, in order to define
and instantiate these attributes, detailed knowledge about role-specific information
needs is required, which is not available in the tools but rather has to be obtained
individually.

We conclude that many good approaches are available that at least partially
address the role-specific defects and related requirements stated in Table 2. How-
ever, what all of these approaches are lacking is the explicit provision of detailed
knowledge about role-specific information needs. That is, to sufficiently address
role-specific defects and corresponding requirements – and hence to ultimately
address our practical improvement goals – we claim that detailed empirical knowl-
edge about role-specific information needs is required. It is exactly this empirical
knowledge that constitutes the core scientific improvement goal of the thesis, stated
as:

Crossing Disciplinary Borders to Improve Requirements Communication 121

Investigate role-specific information needs regarding SRS from the viewpoint
of different SRS readers.

3 Solution Idea and Research Approach

The overall solution idea of the thesis is illustrated in Fig. 1.

DOMAIN-SPECIFIC
REQUIREMENTS ARTIFACTS

SERIES OF
EMPIRICAL STUDIES

PARTICIPANTS / ROLES
(RESPONSIBILTIES)

EMPIRICAL DATA

ROLE-SPECIFIC
VIEWS

SRS STRUCTURE
AND TEMPLATES

FILTER RULES

EMPIRICAL INVESTIGATION UTILIZING EMPIRICAL KNOWLEDGE

ROLE-SPECIFIC VIEW
(SOFTWARE ARCHITECT)

SRS CONSUMERS
SOFTWARE ARCHITECT,

DESIGNER,
SOFTWARE TESTER

ROLE-SPECIFIC VIEW
(DESIGNER)

ROLE-SPECIFIC VIEW
(SOFTWARE TESTER)

Fig. 1 Solution idea

The approach is based on the idea of conducting a series of empirical studies on a
given set of domain-specific requirements artifacts in order to collect empirical data
with regard to role-specific information from the perspective of SRS consumers.
To limit the scope of the thesis, we focused our investigations on three types of
SRS consumers: software architects, usability experts in the role of designers, and
software testers. We selected these three types because their SE-related activities
strongly rely on information documented in SRS. Table 4 briefly summarizes the
main responsibilities of the three different roles.

The collected empirical data serves as a baseline for the derivation of role-specific
views on the investigated requirements artifacts. In this context, a role-specific view
comprises a set of requirements artifacts that are relevant for performing role-
specific tasks specified at a preferred level of detail using preferred notations.

These role-specific views in turn serve as input to a technical solution that utilizes
the empirical knowledge to apply filter rules to a given SRS structure, as well as
requirements artifact templates, in order to ultimately generate role-specific views
on the specification that meet the role-specific information needs.

122 A. Hess

Table 4 Roles and responsibilities of selected SRS consumers [33–35]

Software architects are responsible for designing an architectural solution
that satisfies expected system functionalities and has a long-lasting impact on
major quality attributes of a software-intensive system (like cost, evolution,
performance, safety, and security). To achieve this, software architects have
to fulfill a variety of complex tasks in order to make, realize, validate, and
document design decisions regarding a high-quality software architecture
based on a detailed understanding of the expected functionalities and
qualities of a software system.
Designers (usability experts) are responsible for conceptualizing and
designing human-system interactions based on documented requirements
with the aim of ensuring effectiveness, efficiency, and satisfaction when
performing tasks with the system (interaction designer). Moreover, efficient
task execution requires suitable organization and structuring of information
(information architect) as well as suitable visualization and implementation
of the user interface (UI) on the target platform (user interface designer).
Software testers have different responsibilities that require skills, such as
in-depth knowledge about test design and execution methods and techniques
and a good understanding of the system to be tested. The main
responsibilities of software testers include: (1) reading all relevant
documents and understanding what needs to be tested; (2) creating and
defining test designs, test processes, test cases, and test data; (3) executing
testing as per the defined procedures; and (4) preparing test reports that
document procedures as well as test results.

Within the thesis work, we followed a design science research approach as
proposed by [36]. Our approach is illustrated in Fig. 2, including the various
contributions we elaborated in each phase of the approach.

SOLUTION
OBJECTIVES

DESIGN &
DEVELOPMENT

DEMONSTRATION EVALUATION

COMMUNICATION
Conference / Workshop / Journal Publications & Talks

PROBLEM
IDENTIFICATION

Literature
Reviews,
Interviews, Survey
Taxonomy of
(role-specific)
requirements defects

State-of-the-Art /
State-of-the-
Practice Analysis
(Overview on existing
approaches &
solution idea)

Empirical Studies
(Empirical data
about role-specific
Information needs)

Secondary
Analysis
(Role-specific views)

Proof-of-Concept
Implementation,
Alternative
Solution
Concepts
(Tools &
usage scenarios)

Case Study,
Experiment Runs
(Evaluated benefits
& lessons learned)

Fig. 2 Research approach and contributions

The previously introduced taxonomy of (role-specific) requirements defects (see
Sect. 2.2) as well as the results of the literature review activities conducted to shape
the scientific contributions of the thesis (see Sect. 2.3) were identified and elaborated

Crossing Disciplinary Borders to Improve Requirements Communication 123

in the problem identification phase, as well as in the solution objectives phase of the
research approach.

In the subsequent design and development phase, we conducted a series of empir-
ical studies to first collect empirical data with respect to role-specific information
needs, from which role-specific views were then derived and defined in a subsequent
secondary analysis. A more detailed discussion of the empirical work can be found
in Sect. 4.

In the demonstration phase, we realized a proof-of-concept implementation (and
alternative solution concepts) that is capable of utilizing the gained empirical
knowledge about role-specific views to support typical usage scenarios of SRS both
from the consumers’ and from the requirements engineers’ point of view [37].

Empirical Data
(Priority of RE

Artifacts)

Domain specific
RE Artifacts

(TORE)

Commands to
Generate Views

Priority Tags

Role-Specific
Views

(Filter Rules)

Fig. 3 Proof-of-concept implementation

This technical solution (depicted in Fig. 3) was implemented as an extension of
Microsoft Excel

®
, a common tool often used in practical settings for creating and

reading requirements specifications. It comprises an SRS template that defines the
overall structure of the SRS as well as a set of domain-specific requirements artifact
templates (see Sect. 4.1). The empirical data we collected and analyzed in the series
of empirical studies (see Sects. 4.2 and 4.3) was incorporated in the form of priority
tags and filter rules (see Sect. 4.3). These filter rules can be applied via commands
in the menu bar (see Fig. 3) to generate different views for each of the three roles
(software architect, designer, and software tester):

124 A. Hess

• TOP Artifacts: Executing this filter function displays only requirements artifacts
and related information details that are of high priority for the corresponding role.
Such requirements artifacts include key information for the artifact consumers
that is critical for fulfilling their role-specific tasks. Hence, these artifacts and the
related information have to be specified timely and precisely.

• IMPORTANT Artifacts: Executing this filter function displays requirements
artifacts that are rather important, respectively of medium priority. In contrast to
high-priority artifacts, these artifacts and the related information are less critical.
That is, the artifact stakeholders could also do their tasks based on high-level
descriptions of these artifacts.

• VALIDATE Artifacts: Executing this filter function displays all requirements
artifacts that are of both high and medium priority. This artifact view is intended
to support validation activities following perspective-based techniques to assure
SRS quality.

Besides these role-specific views, our implementation also offers the possibility
to display all requirements artifacts and related information details (both with
and without meta-information). Additional views such as “Project Overview,”
“Document Info,” and “Appendix” are intended to further reduce the complexity
of the information displayed in the SRS.

Finally, within the evaluation phase, the proof-of-concept implementation was
applied in a case study within the context of a team-based software engineering
project at the University of Kaiserslautern. There we investigated several hypotheses
with regard to the practical and scientific improvement goals of the thesis. Even
though the validity of the case study is limited, the case study revealed promising
results. Among the conclusions and lessons learned from the case study, we found
that role-specific views have the potential to efficiently support SRS consumers
during the analysis of SRS, that the views reflect role-specific information needs,
and that they are helpful for supporting the communication and discussion of
requirements in software-developing teams. On the other hand, we found that the
usefulness of the views strongly depends on the project setting. That is, they are
possibly most beneficial in the context of the development of large systems resulting
in complex SRS that serve as a major source of requirements-related information.

In addition to the case study, we performed two trial runs of experimental
investigations with the overall goal of investigating hypotheses that compare the
efficiency of SRS analysis with our view-based solution and that of “traditional”
SRS. We found that properly designing such experiments is indeed a challenge
in terms of ultimately drawing valid conclusions. However, we gained interesting
insights and learned lessons from these investigations that will serve as guidelines
for future evaluation activities.

We continuously shared and published the results of our research activities
with and to research and industry as part of the communication phase. The
presentations of our results, the feedback we gained from the reviewers, and the
fruitful discussions we had at the various conferences and workshops confirmed the
relevance of our research for the RE community. The feedback we obtained from

Crossing Disciplinary Borders to Improve Requirements Communication 125

both practitioners and researchers helped us to continuously improve and validate
our work.

4 Empirical Studies

This section shares some insights into the series of empirical studies we conducted
to address the scientific improvement goal of the thesis, which ultimately served
as a baseline for the definition of role-specific views. In fact, we consider the
results of these studies as well as the underlying methodological approach as a core
contribution of the thesis that can be utilized and transferred into different solutions
aiming to improve requirements communication in software development.

4.1 Research Goals and Agenda

The overall research goal that we aimed to investigate in the empirical studies
was to identify and characterize requirements-related information that downstream
development engineers (SRS consumers) seek in an SRS to satisfy their needs and to
accomplish their role-specific tasks.

As outlined in the background section (Sect. 2), requirements-related information
is typically specified in the form of requirements artifacts in SRS. Due to the variety
of existing requirements artifacts, and to ensure comparability between the different
study results, we focused our investigation on well-known requirements artifacts
that are typically created when RE is performed within the information systems
domain. In particular, we considered artifacts that are created during the application
of the Task-oriented Requirements Engineering Framework – or TORE Framework
for short [38]. Due to their general nature, these requirements artifacts and thus
the results of our investigations can be easily mapped and transferred to other RE
approaches that produce requirements artifacts of this kind.

The investigated artifacts comprised:

• Descriptions of stakeholders capturing relevant information and characteristics
about stakeholders who are to be supported by or have an influence on the system
to be built.

• Descriptions of project goals that different stakeholders would like to achieve
with the system to be built. The project goals include and refine the vision of the
system and are considered the rationale for the system’s requirements.

• Descriptions of as-is situations that illustrate the execution of the tasks/business
processes that are to be supported by a system in the current situation, i.e.,
without the system to be built.

• Descriptions of to-be situations that illustrate the execution of tasks/business
processes to be supported in the future by the system.

126 A. Hess

• Descriptions of the system context that define the system’s environment (e.g.,
users, external systems), including an overview of functionalities that the system
offers to it.

• Descriptions of interactions that describe how the system interacts with entities
in its environment (e.g., users, external systems).

• Descriptions of system functions that specify the input, internal behavior, and
output of system functionalities. In contrast to interactions, system functions
represent functionalities that are automatically performed by the system.

• Descriptions of quality requirements that specify desired qualities (nonfunctional
requirements) of the system to be built.

• Descriptions of technical constraints that limit the solution space beyond what is
necessary for meeting the requirements.

Considering these requirements artifacts, we further refined the above research
goal into three research questions and corresponding metrics, which are summarized
and stated in Table 5.

Table 5 Research questions (RQ)

Research Question RQ-1EmpStudies
What are typical requirements artifacts that should be contained in an SRS from the viewpoint
of document stakeholders (SRS consumers) in order to accomplish their role-specific tasks?
Metric RQ-1EmpStudies: Importance level of TORE requirements artifacts

Research Question RQ-2EmpStudies
At what level of detail should relevant requirements artifacts be specified from the viewpoint
of document stakeholders (SRS consumers)?
Metric RQ-2EmpStudies: Relevant description items of TORE requirements artifacts

Research Question RQ-3EmpStudies
Which notation should be used to specify relevant requirements artifacts from the viewpoint of
document stakeholders (SRS consumers)?
Metric RQ-3EmpStudies: Preferred notation for documenting TORE requirements artifacts

In order to investigate the research goals and questions above, we designed and
conducted a series of four empirical studies as part of our research agenda. These
studies comprised:

• Study #1: An eye-tracking study conducted with two software architects and two
usability experts in the role of designers to investigate the relevance of TORE
artifacts (RQ-1EmpStudies) as well as the suitable level of detail (RQ-2EmpStudies)
and the preferred notations (RQ-3EmpStudies).

• Study #2: A survey study (U-KL) conducted in two practical software engineering
courses with a total of 18 participants in the role of software architects. In this
study, we retrospectively evaluated the relevance of TORE requirements artifacts
for architecture design activities (RQ-1EmpStudies).

• Study #3: A survey study (MUC) conducted with ten usability experts during a
tutorial session that aimed to investigate the relevance of TORE requirements

Crossing Disciplinary Borders to Improve Requirements Communication 127

artifacts (RQ-1EmpStudies), the suitable level of detail (RQ-2EmpStudies), and the
preferred notations f(RQ-3EmpStudies) for interaction/UI design activities.

• Study #4: A survey study (FHNW) conducted in semi-industrial software devel-
opment projects with a total of 47 participants in the role of software architects,
40 participants in the role of usability experts/designers, and 49 participants in
the role of software testers. This study aimed to collect data with regard to the
relevance of requirements artifacts for architecture design, interaction/UI design,
and testing activities (RQ-1EmpStudies).

Detailed descriptions of the design and the procedures of each of these studies
can be found in [11]. The elicited raw data of the studies is publicly accessible via
[39].

4.2 Analysis of Individual Studies: Empirical Baseline

Even though the setting and the procedures varied between the four different studies,
we asked the participants in each of the studies to rate the importance of various
requirements artifacts on a 4-point rating scale with the help of a questionnaire.
This rating scale was defined as follows:

• 1 = “This requirements artifact is very important for my task”
• 2 = “This requirements artifact is rather important for my task”
• 3 = “This requirements artifact is rather unimportant for my task”
• 4 = “This requirements artifact is very unimportant for my task”

We decided to use this 4-point scale in order to evoke a decision between (very)
important and (rather) unimportant.

4.2.1 Data Analysis Strategy: An Example

In the following, we would like to share some insights into the data analysis
strategies we applied on the questionnaire data based on the example of survey study
#4. This study was conducted within the scope of a practical project course offered
at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW).
A first study run (FHNWA-2013) was executed during the autumn term of 2013. We
repeated the same study in a second run (FHNWS-2014) in the subsequent spring
term of 2014. A third run (FHNWA-2014) was executed during the autumn term
of 2014, and the final fourth run (FHNWS-2015) in the subsequent spring term of
2015. At the end of a term (i.e., after the students had completed their role-specific
tasks), the coach responsible for the requirements engineering phase distributed our
questionnaire, which captured the importance of specified requirements artifacts for
role-specific tasks on the 4-point scale introduced above.

Table 6 shows an extract of the results of the application of our data analysis
strategy to the questionnaire data we collected from the viewpoint of usability
experts in the role of designers in the different study runs at FHNW.

128 A. Hess

T
ab

le
6

D
at

a
an

al
ys

is
re

su
lt

s
of

FH
N

W
st

ud
y

(u
sa

bi
li

ty
ex

pe
rt

s/
de

si
gn

er
s)

Im
po
rt
an
ce

of
re
qu
ir
em

en
ts
ar
ti
fa
ct
sa

FH
N

W
A

-2
01

3
(N

=
13

)

FH
N

W
S-

20
14

(N
=

11
)

FH
N

W
A

-2
01

4
(N

=
10

)
FH

N
W

S-
20

15
(N

=
6)

F
H

N
W

A
L

L
(N

=
40

)
O

S-
W

SR
T

(F
H

N
W

A
L

L
)

K
W

(N
=

40
)

M
dn

(M
)

M
dn

(M
)

M
dn

(M
)

M
dn

(M
)

M
dn

b
(M

)
H

M
dn

Z
p

M
in

−M
ax

M
in

−M
ax

M
in

−M
ax

M
in

−M
ax

M
in

−M
ax

p

D
es

cr
ip

ti
on

s
2

(2
.0

8)
1

(2
.1

8)
1.

5
(1

.5
0)

2
(2

.0
0)

2*
**

(1
.9

5)
3

−4
.4

62
0.

76
2

of
1–

4
1–

4
1–

2
1–

3
1–

4
<

0.
00

1

st
ak

eh
ol

de
rs

D
es

cr
ip

ti
on

s
4

(3
.0

0)
1

(2
.0

9)
1

(1
.2

0)
1.

5
(1

.5
0)

1
(1

.6
2)

3
−4

.2
30

0.
01

2
of

go
al

s
1–

4
1–

4
1–

2
1–

2
1–

4
(N

=
27

)
<

0.
00

1
D

es
cr

ip
ti

on
s

4
(3

.0
8)

1
(2

.0
9)

1
(1

.2
0)

1.
5

(1
.5

0)
1*

**
(1

.6
3)

3
−4

.2
30

0.
00

9
of

as
-i

s
1–

4
1–

4
1–

2
1–

2
1–

4
(N

=
27

)
<

0.
00

1

si
tu

at
io

ns
D

es
cr

ip
ti

on
4

(3
.0

0)
1

(2
.0

9)
1

(1
.2

0)
1.

5
(1

.5
0)

1*
**

(1
.6

3)
3

−4
.2

30
0.

01
2

of
to

-b
e

1–
4

1–
4

1–
2

1–
2

1–
4

(N
=

27
)

<
0.

00
1

si
tu

at
io

ns

(c
on

ti
nu

ed
)

Crossing Disciplinary Borders to Improve Requirements Communication 129

D
es

cr
ip

ti
on

s
4

(3
.0

8)
1

(2
.0

9)
2

(1
.9

0)
1.

5
(1

.6
7)

3*
(2

.5
3)

2
2.

72
9

0.
10

6
of

sy
st

em
1–

4
1–

4
1–

4
1–

3
1–

4
0.

00
6

co
nt

ex
t

D
es

cr
ip

ti
on

s
2

(2
.3

8)
1

(1
.6

4)
2

(1
.9

0)
1

(1
.1

7)
1*

**
(1

.8
8)

3
−4

.6
04

0.
21

0
of

1–
4

1–
4

1–
4

1–
2

1–
4

<
0.

00
1

in
te

ra
ct

io
ns

D
es

cr
ip

ti
on

s
1

(1
.2

3)
1

(1
.3

6)
1

(1
.1

0)
1

(1
.1

7)
1*

**
(1

.2
3)

3
−5

.8
72

0.
91

7
of

sy
st

em
1–

2
1–

4
1–

2
1–

2
1–

4
<

0.
00

1

fu
nc

ti
on

s
D

es
cr

ip
ti

on
s

1
(1

.2
3)

1
(1

.3
6)

1
(1

.1
0)

1
(1

.1
7)

1*
**

(1
.2

3)
3

−5
.8

72
0.

91
7

of
qu

al
it

y
1–

2
1–

4
1–

2
1–

2
1–

4
<

.0
01

re
qs

.
D

es
cr

ip
ti

on
s

1
(1

.4
6)

1
(1

.3
6)

1
(1

.1
0)

1
(1

.1
7)

1*
**

(1
.3

0)
3

−5
.7

62
0.

69
1

of
te

ch
ni

ca
l

1–
4

1–
4

1–
2

1–
2

1–
4

<
0.

00
1

co
ns

tr
ai

nt
s

a
R

es
po

ns
e

ra
ti

ng
sc

al
e:

1
=

T
he

R
A

is
ve

ry
im

po
rt

an
tf

or
m

y
ta

sk
,2

=
T

he
R

A
is

ra
th

er
im

po
rt

an
tf

or
m

y
ta

sk
,3

=
T

he
R

A
is

ra
th

er
un

im
po

rt
an

tf
or

m
y

ta
sk

,
4

=
T

he
R

A
is

ve
ry

un
im

po
rt

an
tf

or
m

y
ta

sk
b

O
ne

-s
am

pl
e

W
il

co
xo

n
si

gn
ed

-r
an

k
te

st
:

if
M

dn
(x

)
<

3:
H

0
:H

-M
dn

(x
)
=

3;
*
p

<
0.

05
;*

*
p

<
0.

01
;*

**
p

<
0.

00
1

if
M

dn
(x

)
>

2:
H

0
:H

-M
dn

(x
)
=

2;
*
p

<
0.

05
;*

*
p

<
0.

01
;*

**
p

<
0.

00
1

130 A. Hess

To analyze the questionnaire data, we first calculated descriptive statistics,
particularly the median (Mdn), sample means (M), minimum (Min), and maximum
(Max) values, for each requirements artifact in each study run based on the
questionnaire data [39]. As all the data sets were not normally distributed (according
to the Shapiro–Wilk test), we applied the Kruskall–Wallis test (KW) for independent
samples in order to determine possible differences in the medians between the four
groups (FHNWA-2013, FHNWS-2014, FHNWA-2014, and FHNWS-2015) for each of
the investigated requirements artifacts. For those variables that did not reveal any
significant difference in their median, we calculated the aforementioned descriptive
statistics on the consolidated data set (FHNWALL). Moreover, we applied the
one-sample Wilcoxon signed-rank test to check whether the participants shared a
meaningful opinion with regard to the relevance of the investigated artifacts. To do
so, we verified whether an observed median (Mdn(x)) was equal to hypothetical
values H-Mdn = 2 (if Mdn(x) > 2), respectively H-Mdn = 3 (if Mdn(x) < 3). The
significance level (p) was set to 0.05 in all tests. We performed all data analysis
activities with IBM

®
SPSS

®
PASW Statistics 18.

As highlighted in Table 6, we detected significant differences between the
samples FHNWA-2013 and FHNWA-2014 in the case of descriptions of goals, as-
is situations, and to-be situations. Due to this significant difference, we decided
to exclude the values of sample FHNWA-2013 from the consolidation step. This
decision was also underpinned by our assumption that the observed difference
between the samples might be attributed to a slight difference in the questionnaire
design that we used in the FHNWA-2013 study. However, we did not yet discard this
sample at this point in our analysis but kept the values of FHNWA-2013 separately
as input to the secondary analysis (see Sect. 4.3).

4.2.2 Data Interpretation

In order to draw a conclusion with regard to the overall importance level of a certain
requirements artifact – and hence to contribute to RQ-1EmpStudies – we interpreted
the mean values (M) that resulted from the analysis of the descriptive statistics on
the consolidated data set. To do so, we applied the following rules:

• If 1.0 ≤ M(x) < 1.5, the RA is very important for role-specific tasks.
• If 1.5 ≤ M(x) < 2.5, the RA is rather important for role-specific tasks.
• If 2.5 ≤ M(x) < 3.5, the RA is rather unimportant for role-specific tasks.
• If 3.5 ≤ M(x) ≤ 4.0, the RA is very unimportant for role-specific tasks.

Applying this scheme to the example data presented in Table 6 led to the
following conclusions:

Crossing Disciplinary Borders to Improve Requirements Communication 131

From the viewpoint of the participants of the FHNW study in the role
of designers, we identified descriptions of system functions and quality
requirements as very important requirements artifacts. In order of importance,
these were immediately followed by descriptions of goals, as-is situations, to-
be situations, interactions, and descriptions of stakeholders, which were all
identified as rather important artifacts. Only descriptions of system context
were identified as rather unimportant.

All these findings were also underpinned by the application of the one-sample
Wilcoxon signed-rank test (see column OS-WSRT, Table 6). This observation
proves the existence of a meaningful opinion shared among the participants
regarding the importance rating of the investigated requirements artifacts.

We applied the data analysis and interpretation scheme to the questionnaire
data of all studies for each role [39]. Ultimately, we consolidated the various
interpretations with regard to the importance of the investigated requirements
artifacts that we received from these initial data analysis activities.

Table 7 provides an overview of the consolidated findings over all requirements
artifacts from each of the investigated viewpoints.

This cross-study comparison of the analysis results revealed interesting findings.
We identified differences between the different studies (and even between different
study runs) with respect to the importance rating of the various requirements
artifacts. At this point of our research, it was still unclear whether the observed
differences between the different studies are significant or not. This analysis was
the subject of the secondary data analysis (see Sect. 4.3) that consolidated the results
we gained in the individual studies in order to arrive at final and more fine-grained
conclusions with regard to role-specific information needs and implications on role-
specific views.

In this fine-grained conclusion, we also aimed to address the following obser-
vation: We identified many requirements artifacts as “rather important” – some of
them close to the border to “very important.” In other words, the range underlying
our categorization based on the mean value (1.5 ≤ M(x) < 2.5) was possibly too
broad for the definition of role-specific views.

Apart from the differences between the different studies, we also observed
variances within samples of the individual studies. This was indeed an interesting
observation that motivated future research on factors such as personality or individ-
ual reading behavior, which might possibly influence the relevance of requirements
artifacts from the viewpoint of their consumers (see Sect. 5).

132 A. Hess

Table 7 Cross-study comparison

Investigated

requirements

artifacts

Software

architect (N = 67)

Usability

expert/designer

(N = 52)

Software

tester (N = 49)

Eye-

Tracking
U-KL FHNW

Eye-

Tracking
MUC FHNW FHNW

Descriptions of

stakeholders
RI RI RU VI RI RI RU

Descriptions of

goals
VI RI RI RI RI VU RI RU

Descriptions of

as-is situations
RI VU RU RI RU RI VU RI RU

Descriptions of

to-be situations
RI RI RI RI VI VU RI RU

Descriptions of

system context
RI RU RI RI N/A RU VU RU

Descriptions of

interactions
RI RI RI RI RI RI RI

Descriptions of

system functions
RI VI VI RI RI VI RI VI

Descriptions of

quality requirements
RI RI VI RI N/A VI RI VI

Descriptions of

technical constraints
VI RI VI RU N/A VI RI VI

Very important (VI) Rather important (RI) Rather unimportant (RU) Very unimportant (VU)

4.3 Secondary Data Analysis: Role-Specific Views

Based on the empirical baseline introduced in the previous section, we performed
a secondary data analysis. The overall goal of this secondary data analysis was
twofold: First, we aimed to compare and consolidate the data we had obtained in the
various empirical studies in order to ultimately arrive at a conclusion with regard to
the overall importance level of the different TORE requirements artifacts from the
viewpoint of software architects, designers, and software testers (RQ-1EmpStudies).

Second, we aimed to link our findings to our envisioned solution idea (see Sect.
3) and interpret the findings in terms of suitable contents of role-specific views for
each of the three downstream roles. The latter decision explicitly incorporated the
results we obtained from investigating RQ-2EmpStudies and RQ-3EmpStudies.

In the following, we will introduce and illustrate our data analysis strategy and
interpretation of this secondary data analysis with a concrete example.

Crossing Disciplinary Borders to Improve Requirements Communication 133

4.3.1 Data Analysis Strategy: An Example

The statistical data analysis strategy we followed during the secondary data analysis
comprised six analysis steps:

1. For each requirements artifact, we created a table summarizing the final priority
ratings of the different samples we derived from the data analysis of the
individual studies (see Sect. 4.1).

2. To test whether our data is normally distributed, we applied the Shapiro–Wilk
test, which led us to assume a non-normal data distribution.

3. Hence, in order to test for possible significant differences between the different
study samples, we applied nonparametric tests of independent samples (in
particularKruskal–Wallis tests, respectivelyMann–WhitneyU tests) and reported
the resulting p-values, which correspond to the asymptotic significance values
(for N ≥ 30) and the exact significance values if N < 30.

4. In the case of any significant differences identified in Step 3, we performed a
pairwise comparison to identify the particular samples that revealed differences
and reported the corresponding significance level (p), the observed value (Z), the
sample size (N), and the effect size (r).

5. Next, we calculated descriptive statistics based on the consolidated sample data
sets comprising median (Mdn), mean (M), minimum (Min), and maximum (Max)
values and generated a histogram visualizing the frequencies of the importance
ratings.

6. Last, we performed a one-sample Wilcoxon signed-rank test to check whether a
meaningful opinion shared among the participants can be observed with regard
to the importance of a particular requirements artifact. To do so, we tested for
possible significant differences to a hypothetical median value H-Mdn(x) = 2,
respectively H-Mdn(x) = 3. We report the Wilcoxon signed-rank observed value
(Z) as well as the significance level (p).

Table 8 illustrates our data analysis scheme for the example of the requirements
artifact “Descriptions of as-is situations” from the viewpoint of designers. The
columns Sample S1 to Sample S4 summarize the final priority ratings of the
different study samples we derived from the data analysis of the individual studies
(see Sect. 4.1). The Kruskall–Wallis test applied to the samples S1 to S4 revealed
significant differences between the four study groups (p = 0.006, N = 51). The
subsequent pairwise comparison identified significant differences between sample
S3 and sample S4 (p = 0.006, Z = 3.291, N = 40) with a strong effect size of
r = 0.5. The fact that this secondary analysis also revealed a significant difference
between the FHNWA-2013 and other samples supported our previously stated claim
that the difference might be attributed to a slight difference in the design of the
questionnaire that we used in FHNWA-2013 to elicit the importance of requirements
analysis. Hence, to mitigate this possible threat, we excluded sample S3 from the
consolidation and the calculated descriptive statistics (see Column ConDataS1S2S4)
and applied the one-sample Wilcoxon signed-rank test to this consolidated data set.
The latter revealed a significant difference between the observed median Mdn = 2

134 A. Hess

and the hypothetical median value H-Mdn = 3 (p < 0.001, N = 38, Z = −4.833).
This shows a clear opinion regarding the high relevance of descriptions of as-is
situations in the consolidated data set. We also observed minor variances in the
consolidated data set, as indicated in the histogram in Fig. 4.

Table 8 Secondary data analysis of “as-is situations” from the designer’s viewpoint

Importance of descriptions of as-is situationsa

ConDataS1S2S4

Sample S1 Sample S2 Sample S3 Sample S4 (N = 38)
Eye-tracking
(N = 2)

MUC2011
(N = 9)

FHNWA-2013
(N = 13)

FHNWALL
(N = 27)

Mdn (M)
Min–Max

Mdn (M)
Min–Max

Mdn (M)
Min–Max

Mdn (M)
Min–Max

Mdnb (M)
Min–Max

3
(2–4)

2 (1.78)
1–2

4 (3.08)
1–4

1 (1.63)
1–4

1*** (1.74)
1–4

aResponse rating scale: 1 = The RA is very important for IxD/UI design, 2 = The RA is rather
important for IxD/UI design, 3 = The RA is rather unimportant for IxD/UI design, 4 = The RA is
very unimportant for IxD/UI design
bOne-sample Wilcoxon signed-rank test H0: H-Mdn (x) = 3; *p < 0.05; **p < 0.01; ***p < 0.001

Fig. 4 Histogram visualizing
frequencies of importance
ratings

As-Is Situations (N=38)
0,00 1,00 2,00 3,00 4,00 5,00

0

15

20

10

5

Fr
eq

u
en

cy

Crossing Disciplinary Borders to Improve Requirements Communication 135

4.3.2 Data Interpretation

In order to draw general conclusions with regard to the overall importance level of
a certain requirements artifact, we first interpreted the mean values (M) resulting
from the analysis of the descriptive statistics on the consolidated data. To do so, we
applied the same rules as during the data analysis and interpretation of the individual
studies introduced in Sect. 4.2.2.

As highlighted in our conclusions in Sect. 4.2.2, we aimed to introduce a
more fine-grained differentiation of the classification of those requirements artifacts
that were identified as “rather important.” The fine-grained conclusions link our
empirical data and knowledge to the role-specific views utilized in our envisioned
technical solution (see Fig. 3).

As introduced in Sect. 3, we envisioned a role-specific view containing high-level
or detailed descriptions of requirements artifacts that are of high priority for a certain
role (TOP Artifacts). Besides that, we envisioned a second view (IMPORTANT
Artifacts) containing high-level or detailed descriptions of requirements artifacts
that are important but less critical than the artifacts contained in the TOP Artifacts
view. Requirements artifacts and related descriptions considered as rather unimpor-
tant or even very unimportant will not be included in the role-specific views. Based
on these concepts, we defined the following interpretation scheme for drawing fine-
grained conclusions toward the role-specific views:

• IF (1.0 ≤ M(x) ≤ 1.5), THEN assign detailed descriptions of the requirements
artifact to the view TOP Artifacts for the corresponding role.

• IF (1.5 < M(x) ≤ 2.0), THEN assign detailed descriptions of the requirements
artifact to the view IMPORTANT Artifacts for the corresponding role.

• IF (2.0 < M(x) < 2.5), THEN assign only high-level descriptions of the
requirements artifact to the view IMPORTANT Artifacts for the corresponding
role and hide further details in the role-specific views.

• IF (2.5 ≤ M(x) ≤ 4.0), THEN hide descriptions of the requirements artifact in
the role-specific views.

The concrete shape and representation of “detailed descriptions” or “high-level
descriptions” for each of the requirements artifacts were defined based on the results
regarding the suitable level of detail (RQ-2EmpStudies) and the preferred notations
(RQ-3EmpStudies) for relevant requirements artifacts that we investigated in Study #1
(eye-tracking study) and Study #3 (MUC) (see Sect. 4.1).

Referring to our example illustrated in Table 8, the application of our data
interpretation scheme led to the following conclusions for descriptions of as-is
situations from the viewpoint of designers:

136 A. Hess

In general, descriptions of as-is situations are rather important for designers.
We assign detailed descriptions (in particular process models (e.g., in the form
of UML Activity Diagrams) and detailed activity descriptions) to the view
IMPORTANT Artifacts for designers.

Again, we applied the data analysis and interpretation scheme to all requirements
artifacts from all three viewpoints (software architects, usability experts in the role
of designers, and software testers).

4.3.3 Data Utilization

Table 9 provides an overview of the consolidated results of the secondary data
analysis. For each of the three roles (i.e., software architects, usability expert and
tester), the table reflects the priority as well as the preferred level of detail of the
investigated artifacts based on the interpretation scheme introduced in Sect. 4.3.2
respectively the data utilization introduced in Sect. 4.3.3.

As introduced previously in Sect. 3, our technical solution utilizes our empirical
knowledge about role-specific information needs by applying filter rules on a given
SRS structure and requirements artifact templates that are defined in Microsoft
Excel

®
. These filter rules are based on priority tags that are assigned to each

description item of the artifact templates (see Fig. 3). Thereby, each priority tag
corresponds to the relevance of the investigated requirements artifacts from the
viewpoint of software architects (A), usability experts/designers (U), and software
testers (T). In particular, depending on the preferred level of detail, selected
description items of artifacts that were assigned to the view “TOP Artifacts” were
tagged with priority A1 (respectively U1 and T1), whereas selected description
items of artifacts that were assigned to the view “Important Artifacts” were tagged
with priority A2 (respectively U2 and T2). That is, executing the command “Top
Artifacts” for software architects in the menu bar (see Fig. 3), for instance, applies
a filter rule that displays only requirements artifacts and description items tagged
with priority tag A1.

5 Limitations and Future Work

The empirical work of the thesis is rather complex, and besides interesting observa-
tions and lessons learned, we also identified and discussed several threats to validity
that have to be considered when interpreting the results and that motivated future
work. For instance, the majority of subjects were students rather than practitioners
with a different level of expertise. Even though we mitigated this threat by cross-

Crossing Disciplinary Borders to Improve Requirements Communication 137

T
ab

le
9

R
ol

e-
sp

ec
ifi

c
vi

ew
s

on
re

qu
ir

em
en

ts
ar

ti
fa

ct
s

R
eq

ui
re

m
en

ts
ar

ti
fa

ct
s

So
ft

w
ar

e
ar

ch
it

ec
t

U
sa

bi
li

ty
ex

pe
rt

So
ft

w
ar

e
te

st
er

T
O

P
IM

PO
R

TA
N

T
T

O
P

IM
PO

R
TA

N
T

T
O

P
IM

PO
R

TA
N

T

D
es

cr
ip

ti
on

s
of

st
ak

eh
ol

de
rs

H
id
de
n

D
et

ai
le

d
H
id
de
n

D
es

cr
ip

ti
on

s
of

go
al

s
H

ig
h-

le
ve

l
D

et
ai

le
d

H
id
de
n

D
es

cr
ip

ti
on

s
of

as
-i

s
si

tu
at

io
ns

H
ig

h-
le

ve
l

D
et

ai
le

d
H
id
de
n

D
es

cr
ip

ti
on

s
of

to
-b

e
si

tu
at

io
ns

H
ig

h-
le

ve
l

D
et

ai
le

d
H
id
de
n

D
es

cr
ip

ti
on

s
of

sy
st

em
co

nt
ex

t
H

ig
h-

le
ve

l
H

ig
h-

le
ve

l
H
id
de
n

D
es

cr
ip

ti
on

s
of

in
te

ra
ct

io
ns

D
et

ai
le

d
D

et
ai

le
d

D
et

ai
le

d
D

es
cr

ip
ti

on
s

of
sy

st
em

fu
nc

ti
on

s
D

et
ai

le
d

D
et

ai
le

d
D

et
ai

le
d

D
es

cr
ip

ti
on

s
of

qu
al

it
y

re
qu

ir
em

en
ts

D
et

ai
le

d
D

et
ai

le
d

D
et

ai
le

d
D

es
cr

ip
ti

on
s

of
te

ch
ni

ca
lc

on
st

ra
in

ts
D

et
ai

le
d

D
et

ai
le

d
D

et
ai

le
d

138 A. Hess

checking our results with role-specific information needs reported in the literature,
further studies with practitioners are needed to increase the external validity of our
empirical results. Moreover, in all of our studies, we observed differences in the
ratings of requirements artifacts, both between different studies and even within one
sample. Even though these differences were (mostly) not significant, we claim that
there exist factors (such as working experience, project scope, or personality) that
influence the relevance of requirements artifacts. In the future, we aim to investigate
such influencing factors in more detail.

In the thesis, we focused our investigations on requirements artifacts that are
typically created when RE is performed within the information systems domain,
particularly when following the TORE framework. Due to the widespread use of
agile methodologies in industry, we aim to transfer our results to the context of
agile project settings, which are characterized by extensive collaboration, e.g., face-
to-face communication rather than in-depth documentation. In [40], we presented a
research agenda and early results that allowed us to better understand RE-related
challenges and their implications as well as the relevance of RE-related agile
practices from the viewpoint of different agile team members. We also elaborated
first guidelines on the example of user stories that incorporate our findings regarding
role-specific information needs.

In fact, improving requirements communication in interdisciplinary teams is a
highly interesting and relevant topic that motivates our current and future research
activities in the context of “learning from non-SE disciplines.” The core objective
of this research field is to cross the borders of the SE world and get inspired by
best practices from disciplines such as psychology, criminology, film studies, etc.
Thereby, we aim to identify synergy potential between these best practices in order
to ultimately incorporate and adapt them into new methods.

Currently, we are pursuing the idea of so-called “conspiracy walls,” which
are typically used by detectives in criminal investigations to visualize any data,
information, assumptions, and potential interrelations related to a particular crime.
We envision that a similar visualization applied to requirements-related information
could bring several benefits [41]. For instance, joint discussions and analysis
of the visualized data could foster communication and information exchange in
interdisciplinary teams and hence contribute to a better-shared understanding of
both the requirements and the information needs and responsibilities of the various
team members.

6 Summary

Delivering high-quality SRS that fit the demands of their consumers is a challenging
task for requirements engineers, as different information needs and expectations
have to be addressed. These information needs and expectations are strongly
dependent on the particular role(s) that the SRS consumers have within a project.

Crossing Disciplinary Borders to Improve Requirements Communication 139

Within the context of the thesis “Role-Specific Views on SRS: An Empirical
Approach,” we aimed to address practical problems experienced and observed by
us in industry that can be traced to role-specific requirements defects in SRS. In fact,
such problems might have a negative influence on the efficient usage of SRS, as it
becomes time-consuming and/or cognitively hard for the document stakeholders to
resolve and reconcile these problems while working with the SRS. This is critical as
it might in turn lead to failures, delays, and frustration in subsequent SE activities,
and ultimately to costly changes and budget or time overruns.

In order to address and reduce these defects, we aimed to empirically investigate
role-specific information needs regarding SRS from the viewpoint of different SRS
consumers involved in downstream tasks such as architecture design, interaction/UI
design, and testing. Following a design science research approach, we achieved
various contributions, which are summarized in this chapter. Besides a taxonomy
of role-specific defects as well as an overview of existing quality assurance and
view-based approaches in the context of requirements documentation activities,
we derived role-specific views from a series of empirical studies. These views
ultimately served as a baseline for a proof-of-concept implementation that is capable
of automatically generating role-specific views on SRS by filtering the information
in accordance with the empirical knowledge about role-specific information needs.
The main purpose of this implementation was to demonstrate our solution idea of
generating role-specific views on SRS. Moreover, it was subjected to a case study
that we conducted to investigate hypotheses with regard to the improvement goals of
the thesis. We found that role-specific views have the potential to efficiently support
SRS consumers during the analysis of SRS and that they are helpful for supporting
the communication of requirements in software-developing teams. However, their
usefulness depends on the project setting. That is, they are possibly most beneficial
in the context of the development of large systems resulting in complex SRS.

In future work, we aim to conduct further empirical studies in industry contexts
in order to increase the external validity of our results. Moreover, we will continue
our follow-up activities on improving requirements communication in agile project
contexts, thereby exploring synergy potential with best practices from non-SE
disciplines, such as psychology, criminology, or film studies.

Acknowledgments I sincerely thank my supervisors Prof. Dieter Rombach, Prof. Barbara Paech,
and Prof. Schneider as well as Dr. Jörg Dörr, Dr. Marcus Trapp, and Prof. Norbert Seyff for their
continuous support and valuable advice, which helped me a lot to shape the thesis and to align and
focus my research activities.

References

1. Zhang, W., Pastel, R.: Interdisciplinary team collaboration between software engineers and
technical communicators. Proc. Hum. Factor. Ergon. Soc. Annu. Meet. 59(1), 1137–1141
(2016)

2. Whitehead, J.: Collaboration in software engineering: a roadmap. In: Future of Software
Engineering (FOSE ‘07), pp. 214–225. IEEE, Piscataway, NJ (2007)

140 A. Hess

3. Glinz, M., Fricker, S.A.: On shared understanding in software engineering: an essay. Comput.
Sci. Res. Dev. 30(3–4), 363–376 (2015)

4. Bjarnason, E., Sharp, H.: The role of distances in requirements communication: a case study.
Requir. Eng. 22(1), 1–26 (2017)

5. Pohl, K., Rupp, C.: Requirements engineering fundamentals. In: A Study Guide for the Cer-
tified Professional for Requirements Engineering Exam, Foundation Level, IREB Compliant.
Rocky Nook, Santa Barbara, CA (2015)

6. Firesmith, D.: Common requirements problems, their negative consequences, and the industry
best practices to help solve them. J. Obj. Technol. 6(1), 17–33 (2007)

7. Alshazly, A., Elfatary, A.M., Abougabal, M.S.: Detecting defects in software requirements
specification. Alex. Eng. J. 53(3), 513–527 (2014)

8. Simon, T., Streit, J., Pizka, M.: Practically relevant quality criteria for requirements documents.
In: 2008 International Conference on Software Engineering Research & Practice (SERP 2008),
pp. 115–121. CSREA Press, Las Vegas (2008)

9. Lopes Margarido, I., Faria, J.P., Vidal, R.M., Vieira, M.: Classification of defect types
in requirements specifications: literature review, proposal and assessment. In: 6th Iberian
Conference on Information Systems and Technologies, pp. 1–6. IEEE, Piscataway, NJ (2011)

10. Macaulay, L.: Requirements for requirements engineering techniques. In: Proceedings of
2nd International Conference on Requirements Engineering (ICRE’96), pp. 157–164. IEEE,
Piscataway, NJ (1996)

11. Hess, A.: Role-specific views on software requirements specifications – an empirical approach.
In: PhD theses in experimental software engineering 69. Fraunhofer Verlag, Stuttgart (2020)

12. Adam, S., Riegel, N., Gross, A., Uenalan, O., Darting, S.: A conceptual foundation of
requirements engineering for business information systems. In: Enterprise, Business-Process
and Information Systems Modeling, pp. 91–106. Springer, Berlin (2012)

13. Mich, L., Franch, M., Novi Inverardi, P.: Market research for requirements analysis using
linguistic tools. Requir. Eng. 9(1), 40–56 (2004)

14. Femmer, H., Unterkalmsteiner, M., Gorschek, T.: Which requirements artifact quality defects
are automatically detectable? A case study. In: 2017 IEEE 25th International Requirements
Engineering Workshops (REW 2017), pp. 400–406. IEEE, Piscataway, NJ (2017)

15. Sommerville, I.: Software Engineering. Pearson, Boston (2011)
16. Femmer, H., Mund, J., Méndez Fernándes, D.: It’s the activities, stupid! A new perspective on

RE quality. In: 2nd International Workshop on Requirements Engineering and Testing (RET
2015), pp. 13–19. IEEE, Piscataway, NJ (2015)

17. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Software. 36(3),
83–91 (2018)

18. Firesmith, D.: Specifying good requirements. J. Obj. Technol. 2(4), 77–87 (2003)
19. Gross, A., Doerr, J.: What you need is what you get! The vision of view-based require-

ments specifications. In: 2012 IEEE 20th International Requirements Engineering Conference
(RE’12), pp. 171–180. IEEE, Piscataway, NJ (2012)

20. IEEE 830-1998.: Recommended Practice for Software Requirements Specifications
21. Sommerville, I., Sawyer, P.: Requirements Engineering. A Good Pratice Guide. Wiley,

Chichester (1997)
22. Robertson, J., Robertson, S.: Volere requirements specification template. https://

www.reqview.com/blog/2019-02-27-news-volere-requirements-specification-template.html.
(2019). Accessed 30 Apr 2021

23. Wiegers, K.E.: Peer Reviews in Software. A Practical Guide. Addison-Wesley, Boston (2002)
24. Gilb, T., Graham, D., Finzi, S.: Software Inspection. Addison-Wesley, Boston (1993)
25. Shull, F., Rus, I., Basili, V.: How perspective-based reading can improve requirements

inspections. Computer. 33(7), 73–79 (2000)
26. Felderer, M., Beer, A.: Using defect taxonomies for requirements validation in industrial

projects. In: 2013 IEEE 21st International Requirements Engineering Conference (RE’13), pp.
296–301. IEEE, Piscataway, NJ (2013)

https://www.reqview.com/blog/2019-02-27-news-volere-requirements-specification-template.html

Crossing Disciplinary Borders to Improve Requirements Communication 141

27. Shah, U.S., Jinwala, D.C.: Resolving ambiguities in natural language software requirements: a
comprehensive survey. Software Eng. Notes. 40(5), 1–7 (2015)

28. Hayes, J.H., Dekhtyar, A., Sundaram, S.K., Holbrook, E.A., Vadlamudi, S., April, A.: REquire-
ments TRacing On target (RETRO): improving software maintenance through traceability
recovery. Innov. Syst. Software Eng. 3(3), 193–202 (2007)

29. Nair, S., de La Vara, J.L., Sen, S.: A review of traceability research at the requirements
engineering conference@21. In: 2013 21st IEEE International Requirements Engineering
Conference (RE’13), pp. 222–229. IEEE, Piscataway, NJ (2013)

30. Kotonya, G.: Practical experience with viewpoint-oriented requirements specification. Requir.
Eng. 4(3), 115–133 (1999)

31. Sommerville, I., Sawyer, P.: Viewpoints: principles, problems and a practical approach to
requirements engineering. Ann. Software Eng. 3, 101–130 (1997)

32. Pohl, K.: The three dimensions of requirements engineering. In: Seminal Contributions to
Information Systems Engineering, pp. 63–80. Springer, Berlin (2013)

33. Kruchten, P.: What do software architects really do? J. Syst. Software. 81(12), 2413–2416
(2008)

34. Fischer, G.: User modeling in human-computer interaction. User Model User Adapt. Interact.
11(1/2), 65–86 (2001)

35. Meyer, B.: Seven principles of software testing. Computer. 41(8), 99–101 (2008)
36. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research

methodology for information systems research. J. Manag. Inf. Syst. 24(3), 45–77 (2007)
37. Hess, A., Doerr, J., Seyff, N.: How to make use of empirical knowledge about testers’

information needs. In: 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW 2017), pp. 327–330. IEEE, Piscataway, NJ (2017)

38. Adam, S., Riegel, N., Doerr, J.: TORE. A Framework for Systematic Requirements Devel-
opment in Information Systems. https://re-magazine.ireb.org/articles/tore (2014). Accessed 30
April 2021.

39. Hess, A.: Empirical Baseline for the Investigation of Role-Specific Information Needs. (2021).
https://fordatis.fraunhofer.de/handle/fordatis/202

40. Hess, A., Diebold, P., Seyff, N.: Understanding information needs of agile teams to improve
requirements communication. J. Ind. Inf. Integr. 14, 3–15 (2018)

41. Hess, A., Mennig, P., Bartels, N.: Conspiracy walls in requirements engineering - analyzing
requirements like a detective. In CEUR Workshop Proceedings Volume 2584. http://ceur-
ws.org/Vol-2584/CreaRE-paper1.pdf (2020). Accessed 30 Apr 2021

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://re-magazine.ireb.org/articles/tore
https://fordatis.fraunhofer.de/handle/fordatis/202
http://ceur-ws.org/Vol-2584/CreaRE-paper1.pdf
http://creativecommons.org/licenses/by/4.0/

DevOpsUse: A Community-Oriented
Methodology for Societal Software
Engineering

István Koren

Abstract The demanded fast innovation cycles of the ongoing digital transfor-
mation create an unstable environment in which the demands of heterogeneous
professional communities need to be addressed. Moreover, the information systems
infrastructure of these professional communities has a strong influence on their
practices. However, the evolution of the web as infrastructure is shaped by an
interplay of new technologies and innovative applications. It is characterized
by contrasts, such as centralized versus peer-to-peer architectures and a large
number of end users versus a small number of developers. Therefore, our aim
is to stabilize these dichotomies apparent in the web by means of an agile
information systems development methodology. The DevOps approach promotes
stronger cooperation between development and operations teams. Our DevOpsUse
methodology additionally fosters a stronger involvement of end-user communities
in software development by including them in the process of infrastructuring, that
is, the appropriation of infrastructure during its usage. The developed DevOpsUse
methodology and support tools have been successfully validated by the transitions
between three generations of technologies: near real-time peer-to-peer web archi-
tectures, edge computing, and the Internet of Things. In particular, we were able to
demonstrate our methodology’s capabilities through longitudinal studies in several
large-scale international digitalization projects. Beyond web information systems,
the framework and its open-source tools are applicable in further areas like Industry
4.0. Its broad adaptability testifies that DevOpsUse has the potential to unlock
capabilities for sustainable innovation.

I. Koren (�)
Information Systems and Databases, RWTH Aachen University, Aachen, Germany
e-mail: koren@dbis.rwth-aachen.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_8

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_8&domain=pdf
mailto:koren@dbis.rwth-aachen.de
https://doi.org/10.1007/978-3-030-83128-8_8

144 I. Koren

1 Introduction

The profound digital transformation of industrial processes is inevitably leading to
more software use. The underlying information systems not only need to be initially
developed, but they also have to be maintained. Shorter time-to-market processes
and far-reaching system integration additionally make it necessary to increase the
number of updates. To address this challenge, there have been tremendous advances
in software engineering methodologies over the past few decades. While historically
the waterfall model has been adopted for the strict process from formal contract
to product, it is now being replaced by agile methods. Technology support has
also followed this development. Modern frameworks are driving the separation
of concerns even further. This has resulted in component-based architectures with
microservices on the backend and user interface components on the frontend.

Software development, however, is no longer only object of developers. Instead,
it has far-reaching implications into the world of business models and processes,
and society in general. Therefore, the question is whether current methodologies
can cope with the increased speed and widespread societal involvement. How to
incorporate modern aspects such as increased agency of end-user communities
and data sovereignty? Especially with regard to the end users, we notice that
even in agile methods like Scrum, the users are only at the beginning and at
the end, that is, they are largely detached from the actual development. In our
research we have thus developed a methodology that explicitly integrates end-user
communities. Our solution is characterized by the deep integration of collaboration
tools, as well as the application of peer-to-peer architectures. At the same time,
contextual forces such as changing technologies need to be stabilized in order to
allow a sustainable development process. The evolution of information systems
from mainframes to PCs and cloud systems leads us to societal software, which
increases the responsibility of its users by paying as much attention to the process
of creating software as to the software product itself [46]. The implications of the
research presented here go beyond the technical aspects and open up new interesting
questions that extend into operational and legal perspectives.

This chapter is structured as follows. In the next section, we discuss the
motivation behind our research. Section 3 then presents the methodology in detail.
Section 4 provides an evaluation of technological and methodological aspects,
before discussing implications for societal software development projects. Finally,
Sect. 5 concludes this chapter and gives pointers on future work.

2 Motivation

The unrestrained demand for software products together with fast development
cycles lead to many challenges. Rapid innovation cycles and changing technology
create a disruptive and unstable environment in which the requirements of endless

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 145

communities must be met. The shift in speed becomes evident when considering
the update rates in the newly established app market economies of mobile operating
systems. The number of available developers alone cannot satisfy this demand.
Research fields such as End User Development attempt to solve this dilemma by
putting tools in the hands of users to build software themselves [34]. The shift
toward societal software development mentioned in the previous section extends
this end-user integration and expands it to the entire methodology.

Information infrastructure plays a special role here. The general term infras-
tructure thereby refers to an underlying factor. Information systems infrastructure,
while only partially visible and thus hard to grasp, has a strong influence on user
and developer practices. Driven by a body of standards, the web has reached
significance not only of technological nature but also quite distinctly of a societal
dimension. Its proliferation highlights the ubiquitous nature; it is now available
everywhere, on various types of hardware. Constantly evolving standards thereby
ensure interoperability between manufacturers and devices. Today, smartwatches
have built-in browsers, industrial assets are controlled by web interfaces, and even
the touchscreen control panels of the latest generation of space capsules work with
web technologies like JavaScript and HTML.1 Conceptually, the web is a graph
of linked resources [40]. Open interfaces allow the composition of these linked
resources to form distributed services and apps. However, changing interfaces can
also make them drift apart. One of the web’s key strengths is therefore also among
its weaknesses: the continuous context changes do not only increase the web’s
applicability and adoption, but also require constant retraining of users, developers,
and operators in order to handle the new realms.

Figure 1 highlights current dichotomies in web information systems engineering.
On the left, we see the everlasting duality between centralized and distributed
technologies,2 plus the combination of those. On top, device innovations create a
constant need for software adaptation, frameworks, and even usability considera-
tions. On the right, the imbalance is portrayed between a small number of developers
who know how to create software versus a large number of end users who as domain
experts knowwhat they need. Finally, the bottom layer refers to the ongoing changes
in workplace settings caused by digitization. Connecting all of these aspects, the
challenge is to create a core that holds and links everything together.

2.1 Central Hypothesis

In this field of mutually influencing dichotomies and the underlying infrastructure,
several research questions arise. What are the building blocks of community-

1 cf. https://cnet.co/3fiK0V5.
2 The reader is kindly referred to the history of computers from mainframes to personal computers
to the cloud, back to current edge computing efforts.

https://cnet.co/3fiK0V5

146 I. Koren

Fig. 1 Dichotomies in web information systems engineering

oriented information systems? How can we enable communities to develop informa-
tion systems on their specific information systems infrastructure? How to create a
sustainable life cycle of the developed information systems? Our central hypothesis
is that we can provide a stabilized socio-technical infrastructure on top of the
web as open ground. We therefore augment the collaborative notion of DevOps as
automation-driven cooperation between developers and operators by the notion of
end users. The goal of this extension to DevOpsUse is to make information systems
more resilient to technological disruptions by continuously engaging their users.
We provide automation of end-user participation via tools for social requirements
engineering and service deployment, among many others. Throughout this chapter,
we give selected pointers to these tools; for the in-depth discussion and answers
to the above questions we refer to the dissertation [26]. As overall methodological
research framework, we work along the design-science methodology by Hevner et
al. [17]. The seven guidelines tackle the problem-solving process by building and
applying an artifact that is later evaluated with due rigor. Instead of a single design
artifact, we created multiple particular tools that we then connect in the overarching
methodology.

2.2 Research Background

Agile practices in software engineering promote a stronger focus on the social
aspects like the development team and the customer. Additionally, the mindset of the

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 147

Agile Manifesto acknowledges frequent changes and overall working software [12].
Most popular instantiations include, for instance, Extreme Programming, Scrum, or
Kanban. DevOps, as a clipped compound of development and operation teams, is
driving a stronger cooperation between these by extensive automation. Recently,
related concepts have been introduced, like DevSecOps that stresses the growing
importance of security. We argue, however, that these methodologies do not
explicitly integrate users into the development process itself. In Scrum, for example,
users appear at the beginning and end of each sprint. Integrating end users, more
specifically Communities of Practice (CoP) as groups of professionals working
toward a common goal [53], helps not only leveraging their domain knowledge but
also increasing their agency and involvement, thereby sustaining the development
results.

Approaches that integrate end users are categorized as End User Develop-
ment (EUD) [34]. According to Liberman et al., there are two possible realizations:
parametrization of software products and creation from scratch. The research
domain of EUD is rather concerned with the second. Numerous ways have
been introduced, like macros for automating tasks in office applications and
programming-by-example in smart home settings. Yet they all specifically target
an application case and do not extend their findings to the methodological core. In
our research, we look at the underlying structures supporting information systems:
the infrastructure. Generally spoken, an infrastructure is “an underlying base or
foundation especially for an organization or system” [1]. In the obvious analogy
of traffic infrastructure, road networks connect cities and countries to ports and
other continents. With this, we can exemplify the transitory nature of infrastructure:
what is infrastructure for one (driver) is the work item for the other (road worker).
This transition is intrinsically much faster in software engineering, where today’s
developer tools render it possible to build a simple application and scale it to
thousands of users in the matter of a few days or hours. In information systems
literature, the term Infrastructuring has been coined [41, 51] to signify the creation
and continuous adaptation process. It represents in situ design work, respectively
design-in-use as opposed to design-before-use [42]. To infrastructure emphasizes
the conditional, flexible and open character of the infrastructure design process [51].
Thereby, the creation process is shaped by conventions of practice. At the same
time, the demands of professional communities are under constant change, so their
designs are expected to evolve with them [5]. This highlights the need for better
collaboration between communities and the developers and operators supporting
them. Communication is considered an essential part of infrastructuring that acts
as a bridge between actors and resources in different contexts and practices [35].
Similarly, the gap between users and designers is one of the major challenges in
design [47].

It is costly to put a lot of work in features that are not needed. Open innovation
tackles the circumstance that ideas are often planned without meeting the real
requirements, by opening up the ideation process to external influence [9]. However,
the duality between being too closed and too open may harm the original business
model of companies. For a sustainable open innovation strategy, we argue that

148 I. Koren

Fig. 2 The DevOpsUse life
cycle has the DevOps model
at its core, while aspects of
end-user communities are
surrounding and influencing it

Develop & Test

Release & Monitor

DEV

OPS

USE

DEPLOY

MONITOR

AWARENESS

IDEAS &

NEEDS

CO-DESIGN

FEEDBACK

DEVELOP

TEST

BETA

TESTING

CONTEXT

PRACTICE

the opening must be well-integrated into the methodological foundation. This is
impressively demonstrated by the open-source movement in the software industry,
scaling to a massively distributed, open effort. Tuomi therefore sees open innovation
to be strongly related to open-source software [52]. In this context, Hippel’s lead
users [18], who stand for domain experts acting as innovators, need to be included.

In this section, we explained the theoretical backgrounds that have significantly
influenced our research. In the following, the DevOpsUse methodology is explained
in detail.

3 DevOpsUse Methodology

One of the main parameters that influence the velocity in software engineering in the
context of frequent changes is the choice of the software development methodology.
This area has already seen a great deal of progress in the last decades: The shift from
inflexible waterfall models to agile environments has made a significant contribution
toward dealing with change. DevOps is a recent concept that furthermore includes
operators and thus provides a holistic view on development and deployment [11].
In this approach, automation between these groups plays an important role in
resolving the inherent conflict between them. At the core of Fig. 2 we see the
simplified life cycle of the cooperation between developers and operators. The
arrows represent steps involving automation. Starting from feedback on the top, that
is, the requirements engineering phase, the development of software takes place.

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 149

The resulting artifacts are then tested. From the testing phase, the software gets
delivered and staged to deployment. Finally, its usage is monitored. According to
this conception, the points of connection to users become clear: specifically, at
the beginning (feedback) and at the end (monitoring). Conversely, this model is
characterized by a lack of attention to end users, as they are not explicitly involved
in any of the development or operational phases. The software artifacts produced
therefore still have a lot of potential to become even more innovative and user-
friendly.

As progressive digitization affects more and more parts of our lives, software
also plays an increasingly important role therein. The detachment of development
practices from societal processes would therefore become even more critical in
the future. We therefore propose DevOpsUse as a new methodological foundation
for societal software engineering. It adds to DevOps the user as a cross-cutting
concern across the whole development and operation cycle. As a vehicle to carry
out these ideas, our methodology focuses on the underlying information systems
infrastructure, upon which development, operation, and usage are happening. The
inclusive development process leverages the collective strengths and potential
weaknesses of the people involved.

The outer circle of Fig. 2 exemplifies points of user participation in software
development. In the following, we highlight these aspects while going around the
circle and present the overarching elements that conceptually connect these points.
The first aspect is continuous innovation, that is, the influx of new ideas at every
development and usage phase. In particular, we showcase the boundary objects
connecting the individual tools.

3.1 Continuous Innovation

Requirements engineering (RE) captures the goals of the users and is the basis for
all other development activities [43]. However, common issue trackers are not easy
enough to be used by end users. Overall, they are very technical and require to
specify details, while for users it is often not evident whether it is caused by a
backend or frontend bug. Many open-source projects on GitHub additionally require
to follow a strict template with developer-specific terms that are hard to understand.

Social requirements engineering aims at collecting requirements in a way
that resembles social networks like Facebook and Twitter [45]. It serves both
developers and end users; the latter can easily enter new ideas or bug reports
and approve existing ones, while the former can start a dialog with the reporting
users through comments. Methodologically similar, CrowdRE describes automated
or semiautomated approaches to integrate a large number of users into RE [14].
However, CrowdRE explicitly discusses pull and push mechanisms as feedback
patterns. Contrarily, in DevOpsUse users are part of a community with developers.

150 I. Koren

Specifically, our Requirements Bazaar3 web application extends social RE to web
scale. It is a continuous innovation tool that allows a social exchange of ideas
while making requirements traceable across ideation, conception, and realization
phases. Following the design-science methodology, it was developed iteratively with
continuous exchange of its users on the very same platform. The web application
runs on mobile and desktop browsers. Filtering functionalities allow to filter only
the most or least active requirements, for instance. As a conclusion of this section,
we deem continuous innovation principles to be important to keep up disruptive
capacities of information systems and to create a sustainable long-term development
process.

3.2 Collaborative Modeling

Eliciting the mental representation of stakeholders while being as close to the
real world as possible is one of the challenging goals of modeling. At the same
time, it is a highly social activity. We thus see models as the smallest common
denominator between the domains of developers and end users. In our community-
driven approach, the mutual engagement of developers and end users within a CoP
helps to build better tools. As a starting point, we take a formal description of REST-
based APIs available in service repositories on the web. The OpenAPI interface
description language (formerly called Swagger) is a well-known format that is
widely used for automatic verification and conformance checks [38]. Along with
the goals of model-driven software engineering, it allows the type-safe generation
of API access layers for frontend applications. We leverage its expressiveness
and created a web-based collaboration tool for wiring services together with user
interface components. For this reason, we used the Interaction Flow Modeling
Language (IFML) that is governed by the Object Management Group, the same
standardization organization that oversees the Unified Modeling Language (UML).
It is a visual domain-specific modeling language for creating visual models of user
interactions and frontends [7]. The Direwolf Model Editor therefore allows the
model-driven composition of APIs and UIs [30]. Technically, it translates the data
types described in an OpenAPI description into a palette of possible UI elements,
like an HTML list for an array or a label for a string. Similarly, object types that
are used as input attribute of a service result in an HTML form being generated.
Besides the user interface creation, the tool can support other types of collaborative
model creation, as we have demonstrated for example with the iStar 2.0 strategic
goal modeling language [30].

The Direwolf Model Editor is a boundary object between end users and
developers. It shows how model-driven methods and associated benefits such as
generalization and code generation can be leveraged in a community-driven end-

3 cf. https://requirements-bazaar.org.

https://requirements-bazaar.org

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 151

Fig. 3 Screenshot of the SWEVA collaborative visual analytics tool

user development approach. Using generative approaches, repetitive patterns in
application creation, like creating input forms based for API inputs, can be scaled
to a myriad of users and device types.

3.3 Monitoring

At the intersection of professional communities, the IoT, web services, and peer-
to-peer communication between individuals and devices, challenges of analytics
are amplified. Visual Analytics is the “science of analytical reasoning facilitated
by interactive human-machine interfaces” [23]. It facilitates the exploration of large
data collections by combining the best of both worlds; computers that can cope with
large amounts of data, and humans who can see links and dependencies between
two seemingly unrelated datasets.

Since we noticed a lack of open-source or commercial visual analytics tools that
are general-purpose, draw on heterogeneous data sources, are community-aware,
and can be embedded in community-oriented applications, we developed Social Web
Environment for Visual Analytics [29]. It visualizes data coming from and flowing
between Internet of Things device networks, social (human) networks, and the
communication between apps and their components. Its web environment enables
a model-driven visual flow design of processing pipelines, which is executed in
real time. Thereby, data sources can be anything from real Industry 4.0 machines,
body-worn wearable sensors, or input captured on smartphones. Possible methods
include, for example, social network analysis like (overlapping) community detec-
tion and expert identification.

Figure 3 shows a screenshot of SWEVA. The tool allows different community
members to work simultaneously on models and visualizations to support each

152 I. Koren

other. On the left, the collaborative modeling tool allows to design visual analytics
pipelines. The underlying data model is a directed acyclic graph, whose topological
ordering ensures that the pipeline can be run without conflicts. It highlights broken
nodes to enable quick troubleshooting. The nodes represent either data retrieval
operations, custom calculations, or user input. Currently, the tool supports text,
number, numerical slider, Boolean toggles, enum selection, and fixed value inputs.
On the right, the collaborative visualization tool is responsible for showing the
results of the visualization pipeline and influencing its interactive parts by displaying
the previously configured user input possibilities. In between these parts sits the core
framework, which runs the modeled data processing pipeline. It can either be run
locally or remotely on an execution service. All parts or the whole is embeddable
into third-party web applications via custom HTML elements. For instance, the
<sweva-visualization-container> integrates the right part of Fig. 3.

3.4 Connecting the DevOpsUse Life Cycle

In the following, we connect the aspects of the previous subsections with the three
particular stages of DevOpsUse, development, operations, and usage. We present
aspects of industrial state-of-the-art, related research work and, finally, how we
tackled the challenges by showing how they contribute to the overall infrastructure.

Development The role of end users in requirements engineering, either directly
through focus groups or indirectly via domain experts, is important by definition. In
contrast, end-user involvement during actual programming is much more difficult,
as the cognitive hurdle in common textual programming languages is much higher.
Increased componentization efforts in software engineering have led to higher main-
tainability and reduced complexity of individual software packages. This applies to
user interfaces just as much as to the encapsulation of many basic app functionalities
by libraries. On the backend, microservice architectures similarly lead to higher
maintainability and better scalability. To ensure that modularization does not come
at the expense of complexity, standards are required for the interfaces. On the
traditionally client/server-driven web, the standards can be roughly assigned to the
frontend, the backend, and the communication in between. The formal background
of standards on the web makes them applicable to model-driven technologies like
validation, runtime interpretation, and code generation. User interface components
in particular are subject to modeling efforts, as they can be effectively abstracted.
Additionally, they are very concrete in terms of the cognitive model of end users, as
user interfaces provide the entry point to any application.

Numerous research works have utilized this circumstance by providing formal
models as interface description languages. Standardized user interface modeling
approaches, for instance, include Abstract Interaction Objects [4], ConcurTask-
Trees [39], and Cameleon [8], among others. Prototypes like Swashup [36] or
frameworks like ServFace Builder [37] allow to graphically wire together visual

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 153

representations of components. Similar prototypes exist for connecting functionali-
ties in the Internet of Things, for instance, by RAML for IoT [24], the open-source
Node-RED [22], or the commercial IFTTT [21].

Similarly, our Direwolf Model Editor allows the wiring of user interface elements
with backend functionality. It builds on the idea that developer and end-user com-
munities can support each other. Our tool allows the community-driven creation of
frontends by end users with domain knowledge. We are convinced that by enhancing
the collaboration between end users and developers, we finally improve the tooling
also for developers. In the end, the creation of context-specific, specialized user
interfaces, for example, for filling a database in order processes, could be entirely
done by the users themselves. Letting domain experts create their own tools puts
a focus on their own mental model and understandings. Based on the established
formalized descriptions of service APIs, not only graphical but also voice-based
user interfaces can be designed, such as for voice assistants.

Operation After a software system is developed, it gets delivered and finally
deployed to be executed and used. On a personal computer, software is downloaded
and then put on the local hard disk via an installer. For smartphones, the installation
process is even easier, as the app is selected in an appstore and with the click of
a button, the download and installation happens, after which the app icon appears
on the home screen. In web applications users can simply open up a URL and start
using the app; with modern progressive web applications, the web applications can
even be linked on the home screen, with the look and feel of native apps. On the
backend, concerning services, users are left out from the possibility of installing
apps. The question is therefore, how to allow community members to deploy
services on their own, community-specific infrastructure. For example, a learning
community in the construction sector could collect photographs of new building
material on an in-house server. For this, we leverage containerized microservices.
Microservices, first described by Lewis and Fowler and in a blog article [13],
combine several advantages. For instance, the decoupling allows them to be
developed independently. Defined interfaces (cf. the last section) make sure their
compatibility, as they only have to know their deployment URL to connect. Tooling
concerning the operation of microservices allows a high degree of automation.
Software containers are packages that bundle services together with their libraries,
so that they can be run within a sandbox with defined interfaces. This uniform format
allows them to be deployed on any host and even makes it possible to change the
underlying provider fast. Docker containers have reached mainstream adoptions as
particular technology that can be run inside clusters in the cloud (e.g., Kubernetes).

Thus, to enable end-user communities of practice to deploy their own services,
we conceptualized and implemented the Layers Box, a host environment for running
Docker services. It is a federated cloud-in-a-box that brings industrial-strength
container technology in often inexperienced professional communities. One of the
main advantages is that CoPs maintain full control over their data, while keeping
the authority to decide which data to share. Its high degree of automation allows
it to be deployed on different kinds of hardware, that is, local servers, or within

154 I. Koren

private, public, or hybrid cloud environments. The built-in Layers Adapter is a light-
weight reverse proxy that accepts incoming service calls over HTTP and forwards
them to internally registered services. In the case of a sudden cloud burst, it may
also forward requests to previously configured remote Layers Boxes. As additional
core part, all Layers Boxes come with a single sign-on solution. For this, we chose
the OpenID Connect (OIDC) authentication standard, which is built on top of the
OAuth2 authorization framework. OIDC is also supported by a number of online
account providers like Google, Auth0, or the German netID. Under the hood, our
OIDC server can connect to existing LDAP or Shibboleth user directories.

When deploying services close to professional communities using them, we are
entering the field of edge computing [48]. In the literature, typical use cases that
leverage the low latency on the edge are analytics [49], machine learning, or visual
applications in the area of augmented and virtual reality [15]. Another possibility
to reduce latency by offloading applications from the cloud is to use peer-to-peer
architectures. Peer-to-peer systems break up the dichotomy of client and server. In
use cases where large chunks of data need to be transferred through the network,
resources can be saved by directly forwarding data on the shortest topological
path. Another advantage is increased privacy, as data does not need to be routed
over a central entity that can possibly intercept message content. We developed a
number of tools targeted to end-user communities that leverage recent web standards
to allow browser-to-browser communication [26]. We were able to show that by
providing abstractions in terms of library supported, the increased complexity can
be managed well. Besides, advanced standards on the web render service discovery
of local Internet of Things devices possible, without the indirection of a cloud. In
particular, we connected the ideas of end-user development and the IoT [28].

Usage We conclude the DevOpsUse life cycle by focusing on its usage aspect and,
in particular, on analytics functionalities. Gartner reports several commercial tools
for analytical reasoning [20], for instance, RapidMiner and Tableau. KNIME is
another visual workflow builder for interactive data analytics [3]. There are also
tools specialized on visualizing aspects of the Internet of Things, like the IBM Wat-
son IoT Platform [19] and the Bosch IoT Suite [6]. While DevOps focuses on metrics
provided by the host environment that are interesting to developers and operators,
DevOpsUse extends the approach to integrate end users by giving them tools for
self-monitoring. Through collaboration and awareness functionalities, multifaceted
visual analytics with possibly conflicting views about interpretation of results
can be carried out. Our SWEVA tool allows to collaboratively design processing
pipelines while accessing a variety of community-specific data sources. We thereby
leverage visual analytics that combines the power of computer-generated analytics
and human interpretation. The approach is universally applicable and easy-to-use
and runs on all web platforms, even on constrained devices, as processing can be
offloaded to more powerful nodes running microservices. As a use case spanning
the mentioned interplay of IoT, human, and services, we demonstrated its usability
within the Immersive Community Learning Analytics scenario portrayed in Fig. 4.
Learning analytics aims to collect, manage, analyze, and exploit data from learners

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 155

Fig. 4 Immersive community analytics of human activities on the shopfloor

and instructors to facilitate the actual learning process [25]. It connects body-worn
sensors described by the ARLEM standard with a data processing infrastructuring
running sensor fusion. The results are visualized within the web browser running in
the augmented reality headset.

For an in-depth discussion on community-aware analytics capabilities, for
example, including the design of community information system success measures,
we refer to the dissertation [26]. Generally, our methodology and tool acknowledge
the collaboration between involved stakeholders. It is a concern that influences
all phases of software engineering. Although it is in the nature of stakeholder
collaboration, advanced real-time collaboration capabilities need to be made explicit
and integrated into development support tools.

4 Methodological and Technical Evaluation

We evaluate our methodology regarding three aspects. First, we look at three major
advancements of the web on a technological level; our framework was not only able
to handle but even to support them. We then show how evidences of DevOpsUse
tools and processes can be found in a real societal research and development projects
and present best practices. Finally, we look at the inherently more complex area of
Industry 4.0 and show how DevOpsUse relates to it and provides a path for its
continuous innovation.

156 I. Koren

4.1 Technology Evolution

Starting as a document exchange platform between researchers at CERN, the web
has come a long way and is now spreading into more and more areas. The speed
of its proliferation can be noticed by the conceiving and implementation of new
standards. This frequently changing context makes it hard to build on top of it.
With DevOpsUse, we were able to tackle three generations of technology that were
integrated into the web’s infrastructure over the last decade: peer-to-peer computing,
edge computing, and the Internet of Things. We thereby show that we do not only
target communities but can also handle technological leaps well. In the following,
we shortly discuss each of them.

Near Real-Time Peer-to-Peer Computing The client/server-driven web is gen-
erally orthogonal to peer-to-peer technologies, which aim for direct connections
between two computing devices. Among consumers, peer-to-peer has long since
entered the mainstream, although it was initially tainted due to major file-sharing
lawsuits. Today, applications include video conferencing, blockchain technologies,
and locally shared folders. On the web, the Web Real-Time Communication
(WebRTC) standard made browser-to-browser messages possible around the year
2013 with Google’s Chrome browser. In 2017, Apple and Microsoft followed with
their own implementations, and only recently, in January 2021, the version 1.0 of
the standard was announced by the W3C and IETF organizations. We evaluated
the technology early on and were able to cut browser-to-browser roundtrip latency
from around 150 ms to around 25 ms in a local network [27]. Specifically, following
the methodological core of building upon standards, we were able to replace the
connection layer of a collaborative multi-display user interface from a client/server
to a peer-to-peer architecture, without touching the user interface source code itself.
This enabled new use cases like gaming across browsers.

Edge Computing With the Layers Box, we pioneered self-managed installations
of services on-premise. In the meantime, the open-source Kubernetes platform has
taken over the market rapidly. Serverless computing is a next evolutionary step in
the history of componentization and modularization that microservice architectures
pioneered for backend services. They further encapsulation service modules into
dedicated functions, each responsible for a single API call. This makes onboarding
new developers easier, as no large monolithic technology stack needs to be learned
to integrate new functionality. As it is possible to further package these into
Docker containers, they can be easily integrated into our Layers Box. The web
is currently undergoing another technological transition from resource-oriented to
query-based service interfaces. In this evolutionary step, the GraphQL framework
for query-based API access gains popularity. In a recent work, we were able to
provide automated transformations from the previously used OpenAPI stack to
GraphQL [31]. This relatively simple step allows all of our end-user modeling tools
to still be used.

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 157

Internet of Things The model-based approach of connecting the API description
language OpenAPI to IFML as described in Sect. 3.2 can be extended to the Internet
of Things as well. For that, we leverage the AsyncAPI documentation convention
that describes asynchronous event-based architectures as they are common in the
Internet of Things [2]. Again, in our tools, the replacement is a minor step, yet it
enables entirely new use cases.

The societal impact of each one of these technological steps is profound. Beyond
web information systems, the framework and its open-source tools are applicable in
further innovative areas like mixed reality and Industry 4.0.

4.2 Best Practice Guidelines

We were able to demonstrate our methodology’s capabilities through longitudinal
studies in several large-scale international digitalization projects. Additionally,
scalability and involvement aspects were confirmed in entrepreneurial and medical
teaching courses. In the former, our student researchers acting as developers
(computer scientists) were asked to use and evaluate tools like Requirements Bazaar.
In the context of the latter studies, medical students in turn used the end-user-
oriented tools. Most of societal research problems require complex information
systems that need to be developed. Due to the involvement of our research group in
multiple European projects in the area of Technology-Enhanced Learning (TEL), it
was obvious to analyze their technology development. The area of lifelong learning
in TEL is particularly interesting to aspects of societal software development, as its
main subjects are humans and their learning capabilities in changing professional
environments. The speed at which new skills are needed as workplaces continue
their digital transformation is increasing.

Figure 5 portrays information system design and development activities within
the Learning Layers project of the European Commission (Framework Program 7,
runtime 2012–2016). They are put into context around the DevOpsUse life cycle.
The tool development was partitioned into four co-design teams. The precise team
descriptions can be found in a previous publication [33]. Two of them (Bits & Pieces
and PANDORA) tackled societal issues in healthcare, while the other two were
dealing with the construction sector (CAPTUS and Sharing Turbine). To analyze
their processes of information system development, we collected data points like
their initial requirements selection. Additionally, we gathered numerous artifacts
left behind by the design teams, including various pages created and updated in
the project wiki, text documents shared in the collaborative cloud space, as well
as photos, videos, and audio recordings distributed within the project. Overall a
flow of information (domain knowledge) comes in from the left, while on the right,
developed artifacts and material can be seen. For instance, CAPTUS performed
a market study. PANDORA worked with interviews of end users and developers.
The Sharing Turbine team organized group workshops. Bits & Pieces created user
interface mockups and discussed them with researchers.

158 I. Koren

Fig. 5 DevOpsUse case study with four co-design teams

Following our experiences in these and multiple other research projects dealing
with societal matters, we distilled best practices and recommendations to tackle
common software engineering challenges, which we presented in detail earlier [46].
Here, we shortly outline the main recommendations. Generally, they can be divided
into social and technical instruments. Social aspects play a major role in community-
driven information systems development. We therefore set up two subcommunities.
One is the developer task force, a group of developers that regularly meet to
tackle everyday issues in software development. The other is a governing body or
architecture board that decides with wider, often strategic impact on the project.

Concerning the technical setting, we suggest multiple building blocks. The tech-
nological development infrastructure needs to be standardized across participating
organizations. Following the ideas of open innovation in open-source systems [52]
they work best when the pivotal point is institutionalized, that is, central information
systems need to be set up and fixed early on. For instance, it includes services
for source code management and versioning, continuous integration, continuous
delivery, continuous deployment, as well as continuous innovation by tools like
Requirements Bazaar. These systems should be interconnected via means of
automation, for example, to perform regression tests. The particular software
systems need to be decided early on to not hamper the initial development efforts.
However, they should not be understood as a fixed entity that cannot change
over time and across projects. Recommendations change over time because of the
everlasting duality between social and technical development. Pointers to particular
software are highly susceptible to changes in the tool environment and licenses.
Overall, integration should be a convergent force on three layers. First, social

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 159

integration should happen with application partners, end users, and domain experts.
Second, server-side integration ensures that services are compatible to each other.
Third, client-side integration makes it possible to share data across apps.

As a one-stop shop for interested open-source developers, a developer hub should
collect all project documentation and resources like libraries. These dedicated
websites collecting all of an enterprise’s offers for developers or integrators are
also pursued by large companies like Google and Amazon. For instance, in
our experience, video tutorials with accompanying textual documentation about
particular APIs work well as teaching material. Additionally, in our case, we were
able to retarget these videos for teaching DevOpsUse in our entrepreneurial lab
course [10].

4.3 Application in Industry 4.0

In the last section we discussed the application of DevOpsUse in the realm of large-
scale societal development projects. An area that is even harder to manage is the
inherently complex Industry 4.0 setting. The term Industry 4.0 refers to the fourth
industrial revolution, driven by digital transformation and characterized by data-
driven insights [32]. Figure 6 discusses a typical setting in industrial companies
today. The environments are divided into the development, production, and user.
While in information systems development there are numerous programming
languages, integrated development environments, and runtime frameworks, the
production (planning) landscape is characterized by an even more diverse set of
design and planning software, file formats, product, and runtime specifications. This
leads to disruptive and incompatible data exchange. For instance, data and models
are only available within proprietary systems and not ready for cross-domain use.

These incompatibilities in information systems can be generally considered
less resource-intensive compared to asset-heavy industrial settings. Still, mod-
ern production settings heavily rely on software, making particular aspects of
DevOpsUse applicable. In the interdisciplinary cluster of excellence Internet of
Production at RWTH Aachen University that started in 2019, we are currently
actively implementing the methodological findings of our research. Here, data plays
a much larger role than in the socio-technical systems of TEL that were discussed in
Sect. 4.2. First achievements were setting up a large-scale Kubernetes-based server
cluster that is able to instantiate services in Docker containers. Within this cluster,
we have put in place multiple databases to create a data lake [44] that ingests
raw data from production and makes it available for later data-driven operations.
Following our own recommendations, a central identity provider (Keycloak) is
authenticating and authorizing human users, and later industrial assets that want
to push data into the data lake. With the help of model-based technologies we want
to automatically generate data schemas from SysML descriptions. Machine learning
algorithms will then be able to work on the data to generate (real-time) insights to
automate processes.

160 I. Koren

Production
Environment

Machine
Data

Simulation
Data

Product
Data

Development
Environment

User Environment

Customer
Data

Feedback
Data

Process
Data

Test
Data

CAD
Data

Many Proprietary
Systems

Missing
Usage Data and

Feedback

No “Personalized”
Machine Data

ERP
Data

Fig. 6 Challenges of production settings

While this work is still at its infancy, we have already made significant
progress setting up open-source web technologies. For instance, we are currently
evaluating the use of the new bytecode standard WebAssembly to uniformly target
computational use cases on the edge and on the cloud. Another example is the
use of GraphQL as the primary access layer to the data lake. Finally, the adoption
of further means of the DevOpsUse methodology, like continuous innovation and
automation, may unlock the full potential that Industry 4.0 promises in terms of
productivity [50].

5 Conclusion

During the dissertation project, the full extent of which we could only touch on here,
we developed a methodology and tool support that stabilizes the conflicting aspects
evident in the development of information systems. With the advent of societal
software, development processes have become much more complex and engineering
methods have to consider informal structures of Communities of Practice much
more than before. Our community-oriented development life cycle DevOpsUse
acknowledges that existing agile methods do not integrate end users to the full
extent. Using a digital ethnography approach, where we as researchers took part,
we validated our findings in several large-scale societal development projects and
their professional communities of practice. Our tools are available and actively
enhanced as open-source solutions on GitHub.4 Lack of interoperability between

4 cf. https://github.com/rwth-acis.

https://github.com/rwth-acis

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 161

new and existing tools was tackled by relying on standardized, open interfaces
from industrial practice. Each software developed features synchronous remote
collaboration capabilities to stress the collaborative nature of infrastructuring within
communities [16].

Our work is based on the fundamental insight that communities work on their
specific but web-based infrastructure. Therefore, we have been guided by infrastruc-
turing theories from information systems and adjusted parameters on top of it, while
pushing established boundaries like in the case of peer-to-peer technologies. The
artifacts were created and communicated following the phases of the design science
in information systems guidelines [17]. For instance, we presented and discussed
results at several summer schools in the area of technology-enhanced learning, as
well as the open-source community at venues such as FOSDEM. Additionally, we
carried out our research together with numerous students of our technical university,
for example, in yearly practice-oriented lab projects, where students work together
with local high-tech startups.

We validated DevOpsUse with three technological shifts that happened on
the web, namely peer-to-peer technologies, edge computing, and the Internet of
Things. At the intersection of these, technical improvements such as reduced
latency, economical merits, and even privacy aspects can be considered. Beyond the
demonstrated technology-enhanced learning projects, our findings can be applied to
other societal and industrial aspects of information systems development, such as
Industry 4.0. This opens up several interesting new challenges. We are working on
implementing the methodology in industry. Here, the impact of web technologies is
still small, but is expected to increase significantly, driven by artificial intelligence
methods that leverage data-driven technologies. In future, software engineering will
likely play an even stronger role in cross-functional teams, integrating mathematical
and engineering disciplines. Yet, innovation as quality characteristic heavily relies
on feedback from multiple sources, in particular those of end users. Therefore, lever-
aging web technologies, the analytical cycle for instance of industrial manufacturers
will extend into the usage cycle, that is, when produced artifacts are used by their
customers.

We are convinced that our methodology is employable for future societal
challenges and technological leaps as well. Information system development is
best dealt with in a societal context, explicitly integrating all community members
while keeping their agency and strengthening their involvement. In the end, the
principles of far-reaching automation and end-user integration will pave the way for
a sustainable societal software engineering.

Acknowledgments Thanks are due to all those who supported me while I was writing my
PhD thesis. In the context of this chapter, I would like to thank my advisors Prof. Dr. Matthias
Jarke and PD Dr. Ralf Klamma as well as the reviewers for providing helpful feedback. The
thesis project has received funding from the European Commission’s FP7 IP “Learning Layers”
under grant agreement no. 318209, from the European Union’s Horizon 2020 research and
innovation program under grant agreements no. 687669 (WEKIT), and from the European Union’s
Erasmus Plus program, grant agreement 2017-1-NO01-KA203-034192 (AR-FOR-EU). Funded

162 I. Koren

by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy—EXC-2023 Internet of Production—390621612.

References

1. American Heritage Dictionary of the English Language. Houghton Mifflin Harcourt (2018)
2. AsyncAPI: AsyncAPI specification 2.0.0 (2019). https://www.asyncapi.com/docs/

specifications/2.0.0/
3. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K.,

Wiswedel, B.: KNIME—The Konstanz information miner. SIGKDD Explor. Newsl. 11(1), 26
(2009). https://doi.org/10.1145/1656274.1656280

4. Bodart, F., Vanderdonckt, J.: Widget standardisation through abstract interaction objects. In: In
Advances in Applied Ergonomics, pp. 300–305. USA Publishing (1996)

5. Bødker, S., Dindler, C., Iversen, O.S.: Tying Knots: participatory infrastructuring at work.
Comput. Supported Coop. Work 26(1–2), 245–273 (2017). https://doi.org/10.1007/s10606-
017-9268-y

6. Bosch: Bosch’s IoT platform (2017). https://www.bosch-si.com/de/iot-plattform/bosch-iot-
suite/homepage-bosch-iot-suite.html

7. Brambilla, M., Fraternali, P.: Interaction flow modeling language: model-driven UI engineering
of web and mobile apps with IFML. The MK/OMG Press. Morgan Kaufmann (2014)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for multi-target user interfaces. Interact. Comput. 15(3), 289–
308 (2003). https://doi.org/10.1016/S0953-5438(03)00010-9

9. Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from
Technology. Harvard Business School Press, Boston (2003)

10. de Lange, P., Nicolaescu, P., Klamma, R., Koren, I.: DevOpsUse for rapid training of
agile practices within undergraduate and startup communities. In: Verbert, K., Sharples, M.,
Klobučar, T. (eds.) Adaptive and Adaptable Learning. Lecture Notes in Computer Science,
vol. 9891, pp. 570–574. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45153-4_
65

11. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: DevOps. IEEE Softw 33(3), 94–100 (2016).
https://doi.org/10.1109/MS.2016.68

12. Fowler, M., Highsmith, J.: The agile manifesto. Softw. Dev. 9(8), 28–35 (2001). http://users.
jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf

13. Fowler, M., Lewis, J.: Microservices (2014). http://martinfowler.com/articles/microservices.
html

14. Groen, E.C., Doerr, J., Adam, S.: Towards crowd-based requirements engineering a research
preview. In: Fricker, S.A., Schneider, K. (eds.) Requirements Engineering: Foundation for
Software Quality. Lecture Notes in Computer Science, vol. 9013, pp. 247–253. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16101-3_16

15. Ha, K., Pillai, P., Richter, W., Abe, Y., Satyanarayanan, M.: Just-in-time provisioning for cyber
foraging. In: Proceeding of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 153–166 (2013). https://doi.org/10.1145/2462456.2464451

16. Hanseth, O., Lundberg, N.: Designing work oriented infrastructures. Comput. Supported
Cooper. Work 10(3–4), 347–372 (2001). https://doi.org/10.1023/A:1012727708439

17. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research.
MIS Q. 28(1), 75–105 (2004). http://dl.acm.org/citation.cfm?id=2017212.2017217

18. Hippel, E.V.: Lead users: a source of novel product concepts. Manag. Sci. 32(7), 791–805
(1986). https://doi.org/10.1287/mnsc.32.7.791

19. IBM: Watson IoT Platform (2017). https://www.ibm.com/internet-of-things/platform/watson-
iot-platform/

https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://doi.org/10.1145/1656274.1656280
https://doi.org/10.1007/s10606-017-9268-y
https://doi.org/10.1007/s10606-017-9268-y
https://www.bosch-si.com/de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://www.bosch-si.com/de/iot-plattform/bosch-iot-suite/homepage-bosch-iot-suite.html
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.1007/978-3-319-45153-4_65
https://doi.org/10.1007/978-3-319-45153-4_65
https://doi.org/10.1109/MS.2016.68
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
https://doi.org/10.1007/978-3-319-16101-3_16
https://doi.org/10.1145/2462456.2464451
https://doi.org/10.1023/A:1012727708439
http://dl.acm.org/citation.cfm?id=2017212.2017217
https://doi.org/10.1287/mnsc.32.7.791
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/
https://www.ibm.com/internet-of-things/platform/watson-iot-platform/

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 163

20. Idoine, C., Krensky, P., Brethenoux, E., Linden, A.: Magic Quadrant for Data Science and
Machine Learning Platforms (2019). https://www.gartner.com/doc/reprints?id=1-65WC0O1&
ct=190128&st=sb

21. IFTTT Inc.: IFTTT (2018). https://ifttt.com/
22. JS Foundation: Node-RED (2018). https://nodered.org/
23. Keim, D.A., Andrienko, G., Fekete, J.D., Görg, C., Kohlhammer, J., Melançon, G.: Visual

analytics: definition, process, and challenges. In: Kerren, A., Stasko, J., Fekete, J.D. North,
C. (eds.) Information Visualization. LNCS, vol. 4950, pp. 154–175. Springer, Berlin (2008).
https://doi.org/10.1007/978-3-540-70956-5_7

24. Khodadadi, F., Dastjerdi, A.V., Buyya, R.: Simurgh: A framework for effective discovery,
programming, and integration of services exposed in IoT. In: 2015 International Conference on
Recent Advances in Internet of Things (RIoT), pp. 1–6 (2015). https://doi.org/10.1109/RIOT.
2015.7104910

25. Klamma, R.: Community learning analytics—challenges and opportunities. In: Wang, J.F.,
Lau, R.W.H. (eds.) Advances in Web-Based Learning: ICWL 2013. Lecture Notes in Computer
Science, vol. 8167, pp. 284–293. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-
41175-5_29

26. Koren, I.: DevOpsUse: Community-Driven Continuous Innovation of Web Information Infras-
tructures. Ph.D. Thesis, RWTH Aachen University (2020). https://doi.org/10.18154/RWTH-
2020-06868

27. Koren, I., Bavendiek, J., Klamma, R.: DireWolf goes pack hunting: a peer-to-peer approach for
secure low latency widget distribution using WebRTC. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) Web Engineering. LNCS, pp. 507–510. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08245-5_38

28. Koren, I., Klamma, R.: The Direwolf inside you: end user development for heterogeneous web
of things appliances. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) Web Engineering.
Lecture Notes in Computer Science, vol. 9671, pp. 484–491. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38791-8_35

29. Koren, I., Klamma, R.: Enabling visual community learning analytics with Internet of Things
devices. Comput. Hum. Behav. 89, 385–394 (2018). https://doi.org/10.1016/j.chb.2018.07.036

30. Koren, I., Klamma, R., Jarke, M.: Direwolf model academy: an extensible collaborative
modeling framework on the web. In: Michael, J., Bork, D. (eds.) Modellierung 2020 Short,
Workshop and Tools & Demo Papers, pp. 213–216 (2020). http://ceur-ws.org/Vol-2542/
MOD20-TuD5.pdf

31. Kus, D.A., Koren, I., Klamma, R.: A link generator for increasing the utility of OpenAPI-to-
GraphQL translations (2020). https://arxiv.org/abs/2005.08708

32. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industrie 4.0. Wirtschaftsinformatik
56(4), 261–264 (2014). https://doi.org/10.1007/s11576-014-0424-4

33. Ley, T., Cook, J., Dennerlein, S., Kravcik, M., Kunzmann, C., Pata, K., Purma, J., Sandars, J.,
Santos, P., Schmidt, A., Al-Smadi, M., Trattner, C.: Scaling informal learning at the workplace:
a model and four designs from a large-scale design-based research effort. Br. J. Educational
Technol. 45(6), 1036–1048 (2014). https://doi.org/10.1111/bjet.12197

34. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End-user development: an emerging paradigm.
In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development. Human-Computer
Interaction Series, vol. 9, pp. 1–8. Springer, Dordrecht (2006). https://doi.org/10.1007/1-4020-
5386-X_1

35. Marttila, S., Botero, A.: Infrastructuring for cultural commons. Comput. Supported Coop.
Work 26(1–2), 97–133 (2017). https://doi.org/10.1007/s10606-017-9273-1

36. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific language for web APIs
and services mashups. In: Krämer, B.J., Lin, K.J., Narasimhan, P. (eds.) Service-Oriented
Computing—ICSOC. Lecture Notes in Computer Science, vol. 4749, pp. 13–26. Springer,
Berlin (2007). https://doi.org/10.1007/978-3-540-74974-5_2.

37. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace builder—a
WYSIWYG approach for building service-based applications. In: Benatallah, B., Casati, F.,

https://www.gartner.com/doc/reprints?id=1-65WC0O1&ct=190128&st=sb
https://www.gartner.com/doc/reprints?id=1-65WC0O1&ct=190128&st=sb
https://ifttt.com/
https://nodered.org/
https://doi.org/10.1007/978-3-540-70956-5_7
https://doi.org/10.1109/RIOT.2015.7104910
https://doi.org/10.1109/RIOT.2015.7104910
https://doi.org/10.1007/978-3-642-41175-5_29
https://doi.org/10.1007/978-3-642-41175-5_29
https://doi.org/10.18154/RWTH-2020-06868
https://doi.org/10.18154/RWTH-2020-06868
https://doi.org/10.1007/978-3-319-08245-5_38
https://doi.org/10.1007/978-3-319-08245-5_38
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1016/j.chb.2018.07.036
http://ceur-ws.org/Vol-2542/MOD20-TuD5.pdf
http://ceur-ws.org/Vol-2542/MOD20-TuD5.pdf
https://arxiv.org/abs/2005.08708
https://doi.org/10.1007/s11576-014-0424-4
https://doi.org/10.1111/bjet.12197
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/1-4020-5386-X_1
https://doi.org/10.1007/s10606-017-9273-1
https://doi.org/10.1007/978-3-540-74974-5_2

164 I. Koren

Kappel, G., Rossi, G. (eds.) Web Engineering. Lecture Notes in Computer Science, vol. 6189,
pp. 498–501. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-13911-6_37

38. OpenAPI Initiative: The OpenAPI Specification: Version 3.0.2 (2018). https://www.openapis.
org

39. Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation for
specifying task models. In: Howard, S., Hammond, J., Lindgaard, G. (eds.) Human-Computer
Interaction INTERACT ’97, pp. 362–369. Springer, Boston (1997). https://doi.org/10.1007/
978-0-387-35175-9_58

40. Pautasso, C., Zimmermann, O.: The web as a software connector: integration resting on linked
resources. IEEE Softw. 35(1), 93–98 (2017). https://doi.org/10.1109/MS.2017.4541049

41. Pipek, V., Syrjänen, A.L.: Infrastructuring as capturing in-situ design. In: 7th Mediterranean
Conference on Information Systems (2006)

42. Pipek, V., Wulf, V.: Infrastructuring: Towards an integrated perspective on the design and use
of information technology. J. Assoc. Inform. Syst. 10(5), 447–473 (2009)

43. Pohl, K.: Requirements Engineering: Fundamentals, Principles, and Techniques. Springer,
Heidelberg and New York (2010)

44. Quix, C., Hai, R.: Data lake. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data
Technologies, pp. 1–8. Springer International Publishing, Cham (2018). https://doi.org/10.
1007/978-3-319-63962-8_7-1

45. Renzel, D., Klamma, R. (eds.): Large-Scale Social Requirements Engineering, vol. 2. IEEE
Special Technical Community on Social Networking (IEEE STCSN) (2014)

46. Renzel, D., Koren, I., Klamma, R., Jarke, M.: Preparing research projects for sustainable
software engineering in society. In: Proceedings 2017 IEEE/ACM 39th IEEE International
Conference on Software Engineering (ICSE) (2017). https://doi.org/10.1109/ICSE-SEIS.2017.
4

47. Sanders, E.B.N., Stappers, P.J.: Co-creation and the new landscapes of design. CoDesign 4(1),
5–18 (2008). https://doi.org/10.1080/15710880701875068

48. Satyanarayanan, M., Bahl, P., Cáceres, R., Davies, N.: The case for VM-based cloudlets
in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009). https://doi.org/10.1109/
MPRV.2009.82

49. Satyanarayanan, M., Simoens, P., Xiao, Y., Pillai, P., Chen, Z., Ha, K., Hu, W., Amos, B.: Edge
analytics in the Internet of Things. IEEE Pervasive Comput. 14(2), 24–31 (2015). https://doi.
org/10.1109/MPRV.2015.32

50. Schuh, G., Potente, T., Wesch-Potente, C., Weber, A.R., Prote, J.P.: Collaboration mechanisms
to increase productivity in the context of industrie 4.0. Proc. CIRP 19, 51–56 (2014). https://
doi.org/10.1016/j.procir.2014.05.016

51. Star, S.L., Bowker, G.C.: How to infrastructure. In: Lievrouw, L.A., Livingstone, S. (eds.)
Handbook of New Media: Social Shaping and Consequences of ICTs, pp. 151–162. SAGE
Publications, London (2002). https://doi.org/10.4135/9781848608245.n12

52. Tuomi, I.: Internet, innovation, and open source: actors in the network. First Mon-
day 6(1) (2001). https://doi.org/10.5210/fm.v6i1.824. http://firstmonday.org/ojs/index.php/fm/
article/view/824/733

53. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity. Learning in Doing.
Cambridge University Press, Cambridge (1998)

https://doi.org/10.1007/978-3-642-13911-6_37
https://www.openapis.org
https://www.openapis.org
https://doi.org/10.1007/978-0-387-35175-9_58
https://doi.org/10.1007/978-0-387-35175-9_58
https://doi.org/10.1109/MS.2017.4541049
https://doi.org/10.1007/978-3-319-63962-8_7-1
https://doi.org/10.1007/978-3-319-63962-8_7-1
https://doi.org/10.1109/ICSE-SEIS.2017.4
https://doi.org/10.1109/ICSE-SEIS.2017.4
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2015.32
https://doi.org/10.1109/MPRV.2015.32
https://doi.org/10.1016/j.procir.2014.05.016
https://doi.org/10.1016/j.procir.2014.05.016
https://doi.org/10.4135/9781848608245.n12
https://doi.org/10.5210/fm.v6i1.824
http://firstmonday.org/ojs/index.php/fm/article/view/824/733
http://firstmonday.org/ojs/index.php/fm/article/view/824/733

DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering 165

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Hybrid Differential Software Testing

Yannic Noller

Abstract Differential software testing is important for software quality assurance
as it aims to automatically generate test inputs that reveal behavioral differences in
software. Detecting regression bugs in software evolution, analyzing side-channels
in programs, maximizing the execution cost of a program over multiple executions,
and evaluating the robustness of neural networks are instances of differential
software analysis to generate diverging executions of program paths. The key
challenge thereby is to simultaneously reason about multiple program paths, often
across program variants, in an efficient way. Existing work in differential testing
is often not (specifically) directed to reveal a different behavior or is limited to a
subset of the search space. This work proposes the concept of Hybrid Differential
Software Testing (HYDIFF) as a hybrid analysis technique to generate difference
revealing inputs. HYDIFF consists of two components that operate in a parallel
setup: (1) a search-based technique that inexpensively generates inputs and (2)
a systematic exploration technique to also exercise deeper program behaviors.
HYDIFF’s search-based component uses differential fuzzing directed by differential
heuristics. HYDIFF’s systematic exploration component is based on differential
dynamic symbolic execution that allows to incorporate concrete inputs in its anal-
ysis. HYDIFF is evaluated experimentally with applications specific for differential
testing. The results show that HYDIFF is effective in all considered categories and
outperforms its components in isolation.

Please note that this book chapter is a condensed version of the original dissertation [1] and the
corresponding publications [2–7].

Y. Noller (�)
National University of Singapore, Singapore, Singapore
e-mail: yannic.noller@acm.org

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_9

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_9&domain=pdf
mailto:yannic.noller@acm.org
https://doi.org/10.1007/978-3-030-83128-8_9

168 Y. Noller

1 Introduction

Software Engineering (SE) is the “systematic application of scientific and tech-
nological knowledge, methods, and experience to the design, implementation,
testing, and documentation of software,” as defined by the IEEE [8]. A key insight
in the community is that “programming-in-the-large” [9] is much more com-
plex than “programming-in-the-small”, and hence, requires a proper engineering
approach [10]. The objective of SE research is the study of how to develop software
(in the large), in order to provide the scientific knowledge and methods to do so.
It searches for techniques to improve, simplify, and support software development.
A crucial part of software development is software quality assurance facilitated by
software testing [8], as it searches for errors in software.

Therefore, software testing is an essential part of software development, which
is widely applied by practitioners and is also the focus of numerous research
projects [11]. The goal is to provide confidence in the correctness of software
by searching for errors in its behavior. The manual creation of test cases can be
very expensive and time consuming. Therefore, recent research has focused on
automated test input generation [11, 12]. Identified errors can be investigated and
fixed, and so, software testing contributes to the quality of the software.

A special area in this research field is differential software testing, which aims
to identify behavioral differences in software, that is, differences in the execution
behavior of a program. Such differences can be represented by several forms,
for example, a difference in the direct output of a program, a difference in the
execution time, or also a difference in the covered code fragments. Differential
program analysis (here also called differential software testing) means the analysis
of one or multiple programs in order to reveal behavioral differences. In general,
the search for behavioral differences can be separated into two categories: It can
reveal divergences between two execution paths (1) of different program versions
or (2) within the same program. Figure 1 illustrates these two types of differential
analysis. Category (1) (on the left side of Fig. 1) searches for input x that leads
to a different execution behavior between program P and its successive variant
P’. Note that generally P and P’ can be completely different programs. Category
(2) (on the right side of Fig. 1) searches for two different inputs x and y that
lead to a different execution behavior for (the same) program P. Depending on
the application it can be interesting how similar the two inputs are. Both analysis
categories require multiple program executions, which makes differential software
testing a challenging problem.

For example, differential testing is often applied in software maintenance to
perform regression testing [13, 14], where the goal is to reveal differences between
two successive software versions. Such differences can be observed, for example,
along the control-flow or in the actual output of the execution. Other flavors of
differential program analysis are used in the area of software security to perform
automated vulnerability detection, for example, with regard to worst-case execution
paths [15, 16] or side channels [17–19]. For example, algorithmic complexity
vulnerabilities can be exploited to cause a denial of service attack. Side-channel

Hybrid Differential Software Testing 169

input1

program P

input2

program P

2

=?
behavior1

behavior2

x

y
input

program P

1

=?
behavior1

behavior2

x

Fig. 1 Two categories of differential software testing

vulnerabilities can be exploited to reveal sensitive information by observing the
nonfunctional characteristics of the program behavior, such as the execution time,
memory consumption, response size, or network traffic. A novel application of
differential analysis is the robustness analysis of neural networks [20, 21], which
concerns the software reliability. This kind of analysis aims to identify two inputs
that differ only very slightly, that is, for a human almost imperceptible, but for
which the neural network produces a different output (e.g., it results in different
classifications) [22]. The differences between such inputs are also called adversarial
perturbations and represent major safety and security issues.

This work focuses on the above problem of differential software testing with
its numerous application areas. In particular, it develops concepts and techniques
for the automated generation of test inputs that reveal behavioral differences in
software. Furthermore, it provides a general framework, which can be applied
to all the mentioned analysis types. In summary, differential software testing is
investigated in the context of the following applications:

Application Areas

A1 Regression analysis—The search for behavioral differences with the same
input in successive program versions.

A2 Worst-case complexity analysis—The search for worst-case triggering
inputs that perform significantly different than the average case.

A3 Side-channel analysis—The search for side-channel vulnerabilities
in security-critical applications, which involves analyzing correlations
between resource usages over multiple program paths.

A4 Robustness analysis of neural networks—The search for adversarial
behaviors in neural networks, which requires reasoning about multiple
network executions.

170 Y. Noller

The existing techniques in differential testing come with their own disadvantages:
Many of them are not directed to differential behavior, are not able to solve
necessary constraints to reach deep program behavior, or rely on an exhaustive
exploration. They are limited in the effectiveness of their analysis. An efficient and
effective testing approach asks for a hybrid execution setup [16, 23]. Therefore, this
work proposes the concept of HYbrid DIFFerential Software Testing (HYDIFF),
which combines search-based testing with a systematic exploration technique. More
specifically, this concept aims to combine the speed of search-based fuzzing [24]
and the systematic exploration of symbolic execution in a parallel setup. Both
components perform their own differential analysis, while they exchange (interest-
ing) inputs to support each other. This provides a generally applicable, differential
software testing approach, which in particular can be applied to the mentioned
application scenarios. The evaluation of HYDIFF investigates whether it can reveal
behavioral differences in software and how the hybrid combination performs in
contrast to its components in isolation. HYDIFF is evaluated based on a quantitative
analysis with benchmarks taken from the above-mentioned application scenarios.

Core Contributions

C1 The concept of differential fuzzing that incorporates various differential
metrics to provide a general differential analysis. In particular it allows the
search for side-channel vulnerabilities because it also uses cost metrics to
determine the cost difference of two executions.

C2 The concept of differential dynamic symbolic execution as a technique
to perform a dynamic symbolic exploration driven by differential heuris-
tics, which allows to incorporate concrete inputs during the analysis. This
allows the continuous guidance of the symbolic exploration to interesting
program behaviors.

C3 The concept of a general hybrid approach in differential program
analysis, which combines the strengths of single techniques in this research
field. This concept closes a gap in the research of differential program
analysis that is currently performed by specialized techniques with their
own advantages and disadvantages. The hybrid concept allows to combine
their advantages and compensate their disadvantages.

C4 The concept of a hybrid setup for applying fuzzing and symbolic exe-
cution in parallel as an alternative to already existing hybrid approaches
in test input generation. The parallel environment allows that both tech-
niques can continue their own powerful differential analysis while being
supported by the results of the other component.

Hybrid Differential Software Testing 171

2 Hybrid Differential Testing: Assumptions and Concept

Assumptions The overall goal of this work is to generate test inputs that expose
behavioral differences. The assumption thereby is that existing tests, like a regres-
sion test suite, are not sufficient to expose the behavioral differences. This assump-
tion is valid because existing work has shown that regression test suites need
augmentation to cover the changed behavior [25] as well as prioritization or
minimization to make its execution feasible [25, 26]. The assumption is also valid
for other applications of differential software testing that aim to discover security
vulnerabilities or to show robustness issues. They represent unexpected behavior
that is challenging to avoid [16, 18, 27], and there are usually no existing tests to
discover them. Therefore, there is a need to generate these inputs. Furthermore,
the proposed techniques in this work are designed to be effective with only one
valid seed input that is used to initially execute the application under test. This
increases the applicability of the presented techniques because they only make little
assumptions about the availability of existing tests for the application.

Concept The concept of HYbrid DIFFerential Software Testing (HYDIFF) is to
combine powerful techniques to tackle the problem of test input generation to
reveal behavioral differences in software. Differential software testing approaches a
difficult problem because it generally requires to reason about multiple program
executions. The existing work on differential analysis does not provide yet any
hybrid differential software testing approach. Furthermore, the existing single
approaches for a differential analysis have their own limitations. Therefore, this
work proposes the usage of a hybrid approach, which combines random-based
exploration (fuzzing) and systematic exploration (symbolic execution). The hybrid
setup includes the exchange of interesting inputs between both single approaches
that run in parallel. Both approaches can benefit from each other, and the overall
analysis can explore a larger state space, while quickly generating results.

In order to illustrate this idea, Fig. 2 shows the overall concept. By running
fuzzing and symbolic execution in parallel, both single techniques can perform their
own exploration and can incorporate interesting inputs from the other component
as well. This supports fuzzing to overcome narrow constraints in the program by
importing inputs from symbolic execution, which is a whitebox technique that
can analyze and solve these constraints with a constraint solver. Additionally,
this hybrid concept also provides guidance for symbolic execution to focus on
interesting program areas triggered by inputs from the fuzzing component. The term
interesting depends on the specific type of the differential analysis. For example,
in the context of regression analysis, an interesting input exposes a divergence
between two program versions, while in the context of worst-case complexity
analysis an interesting input maximizes the cost of the program execution. For a
hybrid differential analysis, both single techniques need to be able to perform their
own differential analysis.

172 Y. Noller

Fig. 2 Conceptual overview
of the parallel hybrid
exploration

exchange
interesting

inputs

input selection input mutation

input
generation

input
assessment

exploration

fuzzing

symbolic execution

Differential Fuzzing (DF) Fuzzing as a representative of inexpensive, random-
based exploration techniques [28] can generate a large number of inputs in a short
time period due to its low overhead. Therefore, fuzzing is known for its input
generation speed [24]. However, fuzzing is based on random operators and is usually
implemented as blackbox or greybox technique. It lacks the knowledge about the
program to go beyond complex constraints that guard deeper program behavior [24].

Similarly to standard fuzzing techniques, the proposed differential fuzzing
process consists of a loop between input selection and input mutation (see the upper
box in Fig. 2). The input mutation applies various mutation operators to generate
new inputs. The input selection determines which mutated inputs are reported as
interesting and which are kept for following evolutions. In order to perform a
differential analysis, the input selection is driven by differential heuristics.

Differential Dynamic Symbolic Execution (DDSE) Existing approaches based on
(dynamic) symbolic execution [29, 30] provide a systematic exploration of the state
space, which can be guided by several heuristics. They have the full knowledge
about the program, and hence, can unleash the full spectrum of program analysis
techniques, for example, to reach low-probability branches. However, the scope of
symbolic execution is usually limited to smaller programs because its systematic
exploration encounters the path explosion problem and expensive path constraints
solving [24]. Therefore, it does not scale to real-world applications.

The proposed differential (dynamic) symbolic execution consists of a loop
between input assessment, exploration, and input generation (see the lower box
in Fig. 2). The input assessment performs a concolic execution of concrete inputs,
which includes the analysis of the executed branches based on differential heuristics.

Hybrid Differential Software Testing 173

This analysis results in the identification and ranking of unexplored branches. The
highest ranked, unexplored branch is used as starting point for some additional sym-
bolic exploration. The resulting constraints of newly explored paths are extracted
and used to generate new concrete inputs. These inputs are again assessed with
concolic execution, which also reports interesting inputs for the fuzzing component.

3 Differential Fuzzing

Fuzzing Background Fuzzing [28] is a powerful technique to generate inputs that
reveal errors (e.g., crashes) in programs. Recent fuzzing research efforts focus on
optimizing the search process to find more crashes and cover more code [31, 32].
The metric to select new inputs from the mutated inputs for keeping them in
the mutation corpus is only based on the ability to increase the code coverage.
Leveraging a fuzzer for differential program analysis appears to be interesting due
to the fact that behavioral differences might be triggered by unexpected inputs,
which is exactly what fuzzing is made for. Nevertheless, for a differential program
analysis the current fuzzing approaches need to be significantly extended. The
fuzzer should not only generate inputs for crashes or increased code coverage but
should specifically search for difference revealing inputs. In addition to coverage-
based fuzzing, there are also efforts on directing fuzzing to specific program areas,
for example, with AFLGO [33]. However, such approaches cannot be explicitly
targeted to differential behavior. Nevertheless, such guiding capabilities are crucial
because, for example, hitting the areas of changed code is a key ability to find
regression bugs.

In general, a mutation-based fuzzer can be guided by three parameters: the seed
inputs, the applied mutation operators, and the selection mechanism.

Guidance by Seed Inputs Guiding a fuzzer by its seed inputs requires existing
inputs that already touch interesting areas of the program under test. Although in
general an existing test suite can provide good seed inputs, it is a rather strong
assumption that there are enough existing test inputs to sufficiently guide fuzzing.
Additionally, a fuzzer will likely leave the areas touched by the seed inputs quite
fast, based on its random mutation operators. A differential fuzzer should be able to
make progress even without good seed inputs and at the same time it should have
the possibility to incorporate new seed inputs during its fuzzing process.

Guidance by Mutation Operators Guiding a fuzzer with its mutation operators
is already implemented to some extent in the state-of-the-art greybox fuzzers. For
example AFL [34] implements mutation operators, which insert “known interesting
integers” like 0, 1, or maximum values of data types like Integer.MAX_VALUE.
Such mutation operators make sense when searching purely for crashes in programs,
but might not be as efficient for a differential analysis. In differential analyses we
need to guide the fuzzer first in interesting areas of the program, where actually a
difference is occurring.

174 Y. Noller

Guidance by Selection Finally, the third option to guide the fuzzing process is the
selection mechanism. In evolutionary algorithms, as they are used in fuzzing [31,
34], the mutant selection is the core guidance procedure. The selection procedure
determines whether a mutant is kept in the mutation corpus and, hence, is reused for
future mutations, or whether a mutant is eliminated. Therefore, a smart selection of
mutants significantly helps to guide the fuzzer into interesting program behaviors.
Typically, a fuzzer like AFL would identify inputs that produce program crashes,
program hangs, or which cover new program branches because the goal is to find
exactly these program behaviors. Inputs that produce crashes and hangs are moved
into separate output folders and are no longer used for further mutations. Only the
inputs that increase the coverage are kept in the mutation corpus. A differential
fuzzer has slightly different needs: Inputs that lead to crashes and hangs should be
still sorted out and not kept for further mutations. However, they should only be
reported if they reveal behavioral differences. On the other hand, not only inputs
that increase the branch coverage should be kept in the mutation corpus but also
inputs that, for example, get closer to a change, show some output difference, or
show some difference in its program exploration. Therefore, a differential fuzzer
needs to be guided by a various set of differential metrics, like output difference,
decision difference, cost difference, and patch distance. Additionally, a differential
fuzzer should also keep inputs that increase the program coverage, to further guide
it into unexplored areas.

Differential Fuzzing (DF) is defined as a method to identify behavioral
differences with a guided mutational fuzzing approach.

Approach Overview In order to provide differential fuzzing, this work extends
coverage-guided fuzzing by modifying the mutant selection mechanism (see Fig. 3).
The presented approach uses several differential metrics like output difference,
decision difference, cost difference, and patch distance to assess the behavioral
properties of the mutated inputs. The focus is on coverage-guided, mutational
fuzzing because the related work has shown that such a search-based fuzzing
approach is highly effective. Furthermore, it does not make strong assumptions
about the existing testing artifacts, for example, test suites or input grammars.
Mutation-based fuzzing is built on a genetic algorithm, which belongs to the class
of global search algorithms, known to be flexible, that is, being able to overcome
local maxima, and to scale up well to larger problems [35]. However, note that the
idea of differential fuzzing is not limited to this kind of fuzzing technique.

Figure 3 shows the overview of the proposed differential fuzzing technique.
Similar to coverage-based, mutational fuzzing, it starts with some initial seed inputs
(see step 1 in Fig. 3). It uses a queue (see step 2 in Fig. 3) to store the current fuzzing
corpus. In order to generate new mutants, it first trims the inputs (see step 3) and
afterwards applies several mutation operators on the inputs (see step 4). The main

Hybrid Differential Software Testing 175

difference to standard greybox fuzzing is in the mutation selection mechanism (see
step 5), which is specifically designed to select mutants that show new interesting
behavioral properties. As shown in step 5 in Fig. 3, it takes an input and parses it to
extract the various parameters of the application, which are then used to evaluate
the input on multiple program executions. Finally, the various observations are
compared and the differences are determined. Overall, differential fuzzing keeps
inputs that show new interesting behaviors for future mutant generation (see step 6).

initial seed les
queue trim input

mutate
repeatedly

mutated les that showed
(new) interesting behavior

4321

parse

input

determine

differences

behavioral
differences

check for new

interesting,

differential

properties

5
mutant selection by input evaluation for the

instrumented program P

6 fuzzing driver

P[x1 n]

P[y1 n]

cov1,
di . metrics1

y1 n

x1 n

cov2,
diff. metrics2

Fig. 3 Conceptual overview of differential fuzzing

4 Differential Dynamic Symbolic Execution

Symbolic Execution Background Symbolic execution [30] is well known for
traversing the application in a systematic way. Under some assumption like that
constraints can be solved in a reasonable time, or that third-party libraries calls can
be analyzed or appropriate models are available, symbolic execution can efficiently
generate test inputs to touch interesting program behavior. However, out-of-the-box
symbolic execution has the limitation that it focuses on only one software version at
once. A differential analysis, like regression analysis, is hence not possible with the
standard symbolic execution approach.

In the last decade, a couple of approaches have been proposed to perform
some sort of differential analysis with symbolic execution in the area of regression
analysis [13, 14, 36, 37]. In summary, the recent advances provide the basis for a
general differential testing approach, although none of them provide all necessary
aspects. They either perform their analysis only on the new version, rely too much
on concrete inputs for its guidance, or suffer from scalability issues, which makes it

176 Y. Noller

hard for a practical application. Moreover, all of them focus on regression analysis
and not on a general differential analysis. For a scalable, general, and differential
analysis, it needs a dynamic approach, to drive the exploration in interesting
program areas. Furthermore, the differential analysis should be able to analyze
multiple program versions at the same time to simplify constraints and prioritize
paths early that show the best chances to reveal divergences. The analysis should
allow the guidance by syntactic information about the program changes, so that
paths can be pruned efficiently.

Differential Dynamic Symbolic Execution (DDSE) is defined as a systematic
exploration of the program’s input space, characterized by symbolic values,
which is specifically focused and guided on generating inputs that reveal
behavioral differences.

Approach Overview Shadow symbolic execution [13] proposes the exploration
of change-annotated programs, which represents an elegant way of combining
multiple versions or allowing multiple differential behaviors in one execution. As
described in [6], shadow symbolic execution [13] might miss important divergences
due to its strong dependence on concrete inputs. The proposed approach in [6],
complete shadow symbolic execution, explores the usage of the four-way forking
idea in standard symbolic execution, without having any concrete inputs to drive
the exploration. While such an approach does not miss divergences, as long as the
program can be explored exhaustively, it obviously comes with its own scalability
issues. Therefore, the proposed solution for differential dynamic symbolic execution
(DDSE) allows the usage of concrete inputs to drive the exploration, but still uses
a complete four-way forking approach to detect all divergences in the search space.
Consequently, DDSE is driven by differential expressions introduced by change-
annotations inside the program and is further guided by differential metrics like the
cost difference and the patch distance. In a hybrid differential analysis setup, DDSE
is receptive for guidance based on concrete inputs from the fuzzing component.

Figure 4 shows the overview of the proposed differential dynamic symbolic
execution approach, consisting of five phases: (1) import of inputs, (2) input
assessment, (3) exploration, (4) input generation, and (5) export of inputs. Note that
all symbolic execution variants presented in Fig. 4, that is, concolic execution, trie-
guided symbolic execution, and bounded symbolic execution, support the execution
of a change-annotated program. All together, denoted with the dashed area in Fig. 4,
form the so-called differential dynamic symbolic execution.

Central Data Structure: Trie The central data structure in this dynamic symbolic
execution is a so-called trie, which has been adapted from Yang et al. [37]. A
trie represents a subset of the symbolic execution tree, where nodes represent the
choices during symbolic execution that include symbolic variables. Therefore, a trie
is a simplified variant of a symbolic execution tree, where only the components

Hybrid Differential Software Testing 177

are included, which are interesting for the analysis and which are necessary to
replay specific paths in the tree. In this approach it used to store the current state
of the analysis (see step 2 in Fig. 4) and to select a promising point to continue the
exploration (see step 3 in Fig. 4).

(1) Input Import The process starts with importing initial seed inputs (see step 1 in
Fig. 4). Note: The term importing inputs refers to the fact that such an import can not
only be performed in the beginning of the analysis but also periodically throughout
the whole process. This functionality is crucial for the synchronization with another
technique in a hybrid setup.

(2) Input Assessment The given inputs are executed concolically, that is, the
symbolic execution follows only the path of the concrete values but collects all
symbolic information (i.e., the value mapping and the path constraint) along this
path (see step 2 in Fig. 4). The execution is mapped to the simplified symbolic
execution tree called trie. After the concolic execution of the given inputs, each
node, which has unexplored branches, represents a potential entry point for further
exploration. The nodes are analyzed and ranked with the defined heuristics, which
is followed by the selection of the most promising node.

(3) Exploration The idea behind the expanded exploration step (see step 3 in Fig. 4)
is to discover new, interesting parts of the state space. In order to reach the actual
symbolic state at the selected node it starts with a trie-guided symbolic execution
and switches to a bounded symbolic execution as soon as it hits the selected node.

import inputsexport inputs

interesting input

Trie Extension /
Input Assessment

heuristics-based
analysis

concolic execution

includes

Exploration
Input
Generation

most promising node

trie-guided symbolic
execution

bounded symbolic
execution

model generation

input generation

new input

path constraint

4 3

2

15

Fig. 4 Conceptual overview of dynamic, heuristic-driven symbolic execution; based on [4]

178 Y. Noller

Trie-guided means that the symbolic execution simply follows the choices stored
in the trie without any invocation of a constraint solver. This step is very efficient
and builds the symbolic state. As soon as hitting the selected node, the execution
switches to a bounded symbolic execution mode, which will perform an exhaustive
symbolic execution up to a predefined bound. The exploration step results in a
sequence of satisfiable path constraints.

(4) Input Generation In step 4 in Fig. 4 an SMT solver is leveraged to generate
a model for each path constraint. Afterwards, these models are used to construct
inputs. The input generation is application-specific since the path constraints and
their models have no information about the actual input formats and requirements.
Note that the inputs have been generated based on the exploration of a promising
node determined by heuristics. This means that after the generation the inputs need
to be assessed for their actual usefulness for the current analysis. Therefore, they are
executed concolically (see step 2 in Fig. 4), and the trie is extended.

Altogether, the steps 2, 3, and 4 form an analysis loop (see dashed area in Fig. 4).
The loop can be paused for the import of new inputs (e.g., in the hybrid setup), it
can be stopped by a user-specified bound, or it is finished after the complete (i.e.,
exhaustive) exploration.

(5) Input Export As soon as a generated input is assessed as interesting, that is, it
shows some new behavior interesting for the current analysis, it is reported for the
export (see step 5 in Fig. 4). In a hybrid setup the exported inputs are made available
for the other technique; in a single analysis setup, the exported inputs represent the
output of the analysis.

5 General Framework for Hybrid Differential Software
Testing

The general framework HYDIFF is instantiated as the combination of the hybrid
concept (see Sect. 2) with the concrete solutions for its components differential
fuzzing (see Sect. 3) and differential dynamic symbolic execution (see Sect. 4).
HYDIFF’s overview is presented in Fig. 5.

Inputs The upper part of Fig. 5 shows the input of HYDIFF, which takes one or
two program version(s) (used for fuzzing) and the change-annotated program (used
for symbolic execution). Additionally, the approach expects one or more seed input
files to drive the exploration, which are shared by both components.

Collaborations Between Components The middle part of Fig. 5 shows the two
components and their workflow. In contrast to the existing related work on hybrid
analysis [24, 38], the proposed approach executes fuzzing and symbolic execution
in parallel and not in a sequential order. The intuition is that both techniques are
highly effective on their own but benefit from some guidance into certain areas

Hybrid Differential Software Testing 179

Input
program
versions

seed input change-annotated
program

Fuzzing Symbolic Execution

import

H
yD

i

ICFGinstrumentation

assessment trie extension /
assessment

constraint solving /
input generation

exploration

mutate
inputs

import

fuzzer output
queue

Output

symbc output
queue

input +odi +ddi +crash +cdi +patch-dist +cov

id:0001 X X X

id:0002 X X

id:0003 X X

set of divergence revealing test inputs

Fig. 5 Overview of HYDIFF’s workflow [7]

of the search space. Conceptually this is performed by importing the inputs from
the other’s output queue (see the arrows from the output queues to the assessment
nodes in both sides in the middle of Fig. 5). Additionally, both components use the
information from the inter-procedural control flow graph (ICFG) to drive/prune their
exploration, which is, for example, relevant for regression testing. DF leverages
the ICFG to calculate the distance values, which are used to determine whether
inputs get closer to the changed location(s), and hence, to guide the DF toward the
modification(s). DDSE uses it to prune paths that cannot reach any changed area.

Outputs The lower part of Fig. 5 shows the expected output of the hybrid analysis,
which is a list of generated inputs and their characteristics in terms of differential
behavior. They are classified according to the differential metrics.

180 Y. Noller

6 Applications

The main research interest in hybrid differential software testing is to expose
software bugs related to differential behavior. Finding such bugs is essential to
improve the software quality in general. The contributions by this work aim at
providing efficient and effective techniques to contribute to this research interest. In
particular, they aim at supporting software developers in creating reliable and secure
software, and hence, also facilitate the main research idea in software engineering,
namely to support software development with methods, techniques, and tools.
Therefore, HYDIFF needs to be evaluated on how its two components proceed,
whether their combination can amplify the exploration, and finally, how effective
HYDIFF is in general for differential software testing. These aspects are evaluated
based on a quantitative analysis with experiments and benchmarks in the presented
application areas of differential program analysis. The following sections present
exemplary insights and summaries from this evaluation for each application area.

Note that in addition to differential fuzzing (DF) the evaluation also reports results
for parallel differential fuzzing (PDF), which represents a variant of DF with two
parallel running fuzzer instances. PDF mitigates the parallel nature of HYDIFF in
the evaluation and provides a more fair comparison. For DDSE it is hard to provide
a similar parallel variant because parallel symbolic execution is its own research
problem. Simply running two symbolic execution instances in parallel would not
provide any benefit due to its deterministic behavior. The evaluation therefore also
included a DDSE variant with double time budget; however, there was no significant
improvement with regard to the identified differences.

6.1 Regression Analysis (A1)

Regression analysis is one of the main applications of differential program analysis
where the goal is to identify behavioral differences between two successive software
versions. The most meaningful semantic different behaviors are differences in the
actual output of an application like the result of a calculation or another output
message. Unintended behavioral differences are called regression errors. Regression
analysis is also one of the “most extensively researched areas in [software]
testing” [11] and is therefore the major focus of HYDIFF.

Example Listing 1 shows a change-annotated program, combining two versions
of the program calculate. This program is an artificial example, which shows
the strengths and drawbacks of fuzzing and symbolic execution. It processes two
integer inputs, x and y, and calculates a division based on these two values. The
large switch statement with cases from 0 to 250 (lines 4–7) is a challenge for
symbolic execution because there are a lot of branches to explore. In this example
it is especially problematic because none of them can be pruned because all of
them can reach the changed condition in line 18, and the interesting part is at the

Hybrid Differential Software Testing 181

Listing 1 Example program for regression testing with HYDIFF [7]

1 int calculate(int x, int y) {
2 int div;
3 switch (x) {
4 case 0: div = y + 1; break;
5 case 1: div = y + 2; break;
6 ...
7 case 250: div = y + 251; break;
8 default:
9 if (x == 123456)

10 // CHANGE: expression y + 123455 to y + 123456
11 div = change(y + 123455 , y + 123456);
12 else
13 div = x + 31;
14 }
15 int result = x / div;
16

17 // CHANGE: added conditional statement
18 if (change(false, result > 0))
19 result = result + 1;
20 return result;
21 }

�

end of the switch statement, which will be reached late in the exploration (when
having a deterministic exploration order). In the default case of the switch statement
(line 8), there is a check for the value 123456 representing a magic value, which
guards the first change in line 11. There the developer changed the right-hand-side
expression from y + 123455 to y + 123456, which fixed a division-by-zero
error for y=-123455, but introduced another crash for y=-123456. In contrary
to symbolic execution, fuzzing is expected to traverse the program quite fast, but
it will have problems with handling the magic number. In line 19, the developer
added a conditional statement result = result + 1 if result > 0. This
influences the output for all positive results. However, it does not directly fix or
introduce any crash.

To further illustrate the challenges of each individual component, the following
paragraph first discusses the results for running both components in isolation and
afterwards together in the hybrid setup. The differential fuzzing component finds its
first output difference after 5.07 (+− 0.99) sec (where the +− value denotes the 95%
confidence interval over 30 runs). In total it finds 1.37 (+− 0.17) output differences
and 1.00 (+− 0.00) decision differences. The new crash is not found within the time
bound of 10 min. Therefore, fuzzing is very fast in finding an output difference
(less than 5 s), but the narrow constraint at the end is difficult to reach for fuzzing:
(x=123456 & y=-123456). In contrast, the differential dynamic symbolic
execution component finds its first output difference after 135.27 (+− 0.66) s. In total,
it finds 35.10 (+− 1.10) output differences and 2.00 (+− 0.00) decision differences. So
it reveals much more output differences than fuzzing within the given time bound.

182 Y. Noller

In fact, the DDSE component can traverse all paths in 5 min. In contrast to fuzzing
it also finds the new crash, after 135.80 (+− 0.64) s. Nonetheless, symbolic execution
needs relatively long to find its first output difference. In the hybrid setup, the
differential fuzzing and symbolic execution components are started with the same
seed input. Both run their analysis in parallel and exchange inputs that are deemed
interesting according to the divergence metrics after a prespecified time bound. The
experimental results are as follows: first output difference after 4.73 (+− 0.78) s, in
total 35.13 (+− 1.04) output differences and 2.00 (+− 0.00) decision differences. The
hybrid technique finds the new crash already after 14.43 (+− 0.30) s. Figure 6 shows
the temporal development of the results for the three techniques. Although DDSE
and HYDIFF come to similar conclusions after 10 min, HYDIFF is significantly
faster in finding the first output differences (as well as the crash). DF is fast in
generating first results, but cannot achieve the same numbers as DDSE and HYDIFF

within the 10 min time bound.

0 100 200 300 400 500 600
0

10

20

30

time (seconds)

#
od

if
f

DF
95% CI
DDSE
95% CI
HyDiff
95% CI

0 100 200 300 400 500 600
0

0.5

1

1.5

2

time (seconds)

#
d
d
if
f

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

time (seconds)

#
cr
a
sh

Fig. 6 Results for DF, DDSE, and HYDIFF on hybrid approach sample (lines and bands show
averages and 95% confidence intervals across 30 repetitions)

The hybrid approach detects the regression bug more than nine times faster than
DDSE component in isolation. The DF component (in isolation) times out after

Hybrid Differential Software Testing 183

10 min without detecting the regression bug. The hybrid setup can leverage the
strengths of both techniques, so that it can get into many more paths by using
symbolic execution and quickly find its first output difference by using fuzzing.

Summary of Evaluation For the evaluation of the application regression analysis
the subjects are taken from multiple versions of the Traffic Collision Avoidance
System (TCAS) [39] as well as subjects from the Defects4J benchmark [40].
Additionally, HYDIFF is evaluated on subjects from Apache Commons CLI library
[41]. The conducted experiments indicate that the symbolic execution component of
HYDIFF can greatly benefit from the combination with fuzzing and vice versa. The
performance of differential fuzzing can be improved by running it in a parallel setup,
but still it cannot classify all subjects correctly. In contrast, HYDIFF does classify
all subjects correctly, that is, it identifies for all subjects output differences, for
which they actually exist. Furthermore, the overall evaluation shows that HYDIFF

still outperforms DDSE, DF, and PDF for the presented subjects.

6.2 Worst-Case Complexity Analysis (A2)

Worst-case complexity analysis (WCA) searches for worst-case execution paths,
which represent a serious threat to the system under test. The main objective is
not to identify the theoretical complexity of an algorithm but to identify inputs
that trigger a worst-case execution behavior. Similar to the next application side-
channel analysis, it is a highly relevant application in the security area because such
a characterization of an algorithm’s complexity can help, for example, to identify
worst-case complexity vulnerabilities [16]. The current need for such techniques is
also recognized by the US Defense Advanced Research Projects Agency (DARPA),
which recently organized the Space/Time Analysis for Cybersecurity (STAC) pro-
gram [42] that supported the development of new analysis techniques to identify
algorithmic complexity and side-channel vulnerabilities. Due to the simpler nature
of the worst-case complexity analysis (compared to the other application scenarios),
this approach is quite straightforward because it does not require the reasoning
about multiple execution paths at the same time. The basic goal is to maximize
the observed execution cost.

Example Listings 2 shows an implementation of the sorting algorithm Insertion
Sort taken from JDK 1.5, for which the worst-case execution behavior (in terms
of the runtime) is known: N2, where N denotes the length of the input array. The
worst-case would be triggered by a reverse-ordered array.

Table 1 shows the results for applying DF, PDF, DDSE, and HYDIFF on the
presented Insertion Sort subject. The experiments have been executed for 1 h and
repeated for 30 times. The columns in this table show the average maximum cost
obtained within the given time bound (c), the maximum cost value over all runs
(cmax), and the time in seconds until the first cost improvement with regard to

184 Y. Noller

Listing 2 Sample program for WCA: Insertion Sort

1 public static void sort(int[] a) {
2 final int N = a.length;
3 for (int i = 1; i < N; i++) {
4 int j = i - 1;
5 int x = a[i];
6 while ((j >= 0) && (a[j] > x)) {
7 a[j + 1] = a[j];
8 j--;
9 }

10 a[j + 1] = x;
11 }
12 }

�

Table 1 Results for the Insertion Sort with N = 64 (t = 3600 s = 60 min, 30 runs). The execution
cost c is measured as the number of executed JAVA bytecode instructions

Technique c̄ cmax
¯t : c > 0

DF 9048.40 (+− 85.51) 9567 5.70 (+− 0.16)

PDF 9355.03 (+− 41.53) 9571 5.10 (+− 0.11)

DDSE 1157.00 (+− 00.00) 1157 2.13 (+− 0.15)

HYDIFF 9693.77 (+− 42.44) 9923 2.93 (+− 0.16)

the cost value of the initial input (t : c > 0), which had a cost value of 509
bytecode instructions. The numbers in Table 1 show that HYDIFF can generate
inputs with significantly higher costs. However, within the 1 h time bound, none
of the techniques has been able to identify the worst-case input. The maximum cost
value generated by HYDIFF was 9923 and the actual worst-case cost value would
be 10,526 for a totally reverse-ordered array with N = 64. Nonetheless, the input
by HYDIFF with 9923 gets very close to this worst-case (see Listing 3). Therefore,
HYDIFF achieves on average a slowdown of ca. 19.04×, that is, that the identified
cost value as 19.04× more expensive than the cost value of the initial input.

Listing 3 HYDIFF’s worst-performing input for Insertion Sort N = 64 (t = 60 min)

a=[22, 23, 22, 21, 20, 20, 19, 19, 18, 17, 17, 17, 17, 13, 16,
16, 16, 15, 13, 14, 16, 16, 15, 13, 14, 15, 12, 12, 12, 11,
9, 10, 11, 11, 9, 9, 10, 7, 7, 7, 8, 7, 8, 5, 6,
6, 6, 6, 4, 6, 5, 5, 5, 5, 4, 3, 2, 2, 2, 2,
2, 2, 1, 0]

�

Parallel differential fuzzing (PDF) takes the second position with a slowdown of
18.38× followed by single differential fuzzing (DF) with a slowdown of 17.78×.
Far behind is differential dynamic symbolic execution (DDSE) with a slowdown of
2.27×, which cannot achieve high cost values. However, with regard to the time

Hybrid Differential Software Testing 185

to the first cost improvement, DDSE is the best followed by HYDIFF. Note that
these differences are quite small and also the fuzzing techniques show very similar
behavior.

More interesting is the comparison of the techniques over the analysis time like
shown in Fig. 7. During the first 2 min DF, PDF, and HYDIFF perform very similar,
but afterwards HYDIFF can break away and can generate an average cost value of
9000 executed bytecode instructions within 8.2 min, for which PDF needs 27.5 and
DF 54.6 min.

Fig. 7 Results for DF, PDF,
DDSE, and HYDIFF on the
Insertion Sort Example with
N = 64 (lines and bands
show averages and 95%
confidence intervals across 30
repetitions)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

0.2

0.4

0.6

0.8

1

·104

time (seconds)

#
in
st
ru

ct
io
n
s

DF
95% CI
PDF

95% CI
DDSE
95% CI
HyDiff
95% CI

Summary of Evaluation For the evaluation of application worst-case complexity
analysis, the subjects are chosen based on the evaluation of the approach SLOW-
FUZZ [16], since it is the most related work in this context. The data set includes
textbook algorithms like Insertion Sort and regular expression matching from the
JAVA JDK. It also includes algorithms from the STAC program [42] and real-world
applications, for example, APACHE COMMONS COMPRESS [43].

HYDIFF successfully combines the strengths of DDSE and DF. Symbolic execu-
tion helps HYDIFF to quickly make progress and fuzzing supports by continuously
improving the score. Therefore, in the majority of the cases, HYDIFF is as good
as its components or even outperforms them. In particular, HYDIFF’s strength is to
quickly generate a high cost value, for which the other techniques take quite long.

186 Y. Noller

6.3 Side-Channel Analysis (A3)

Side-channel analysis searches for information leakages that are caused by diverg-
ing cost-behaviors within the same application. As already mentioned for A2,
side-channel analysis is highly relevant with regard to security and is in the focus of
recent research projects. The popular Meltdown [44] and Spectre [45] side-channel
attacks also gave it some publicity outside the research community. Side-channel
analysis is difficult because it requires the reasoning about multiple execution paths
at the same time and additionally involves the handling of cost behaviors.

The key idea for the implementation of side-channel analysis with HYDIFF is to
use the idea of self-composition [46] and consider two execution paths, which both
are initialized with the same public input but different secret inputs. The goal is to
maximize the cost difference (δ) between these two execution paths. The higher the
cost difference can be identified, the more severe is a side-channel vulnerability.
This idea is described by the following formula:

maximize:
pub,sec1,sec2

δ = |c(P �pub, sec1�) − c(P �pub, sec2�)|

In this formula pub denotes the public value, and sec1 and sec2 denote the two
secret values. P �pub, sec1� denotes the execution of program P with the public
value pub, and the secret value sec1. c(P �..�) denotes the cost measurement of the
execution of program P . δ denotes the cost difference of both program executions.

For HYDIFF’s fuzzing component this means to fuzz three values: the public
value and two secret values. Note that this approach naturally extends to tuples
of values. The most important metric to detect the side-channel vulnerability is
the cost difference between these two executions, but the fuzzer will also collect
the information about decision differences and output differences. They are still
important metrics to drive the fuzzing process, although they cannot directly
measure the severity of a side-channel vulnerability. For HYDIFF’s symbolic
execution component, the variation in the secret input can be realized by the usage
of change-annotations:

secret = change(secret1, secret2)

The differential dynamic symbolic execution does also require three inputs (one
public and two secret values), but does combine the two secret values in one change-
annotated expression. This means that for symbolic execution there is only one
program execution necessary. Since this change-annotation happens directly in the
driver, the program itself does not contain any change-annotation, and hence, the
patch distance metric is not relevant for side-channel analysis. Also the control-flow
information cannot help to prune any path because the differential expression is
introduced straight in the beginning. The primary goal of the symbolic execution in
the hybrid setup is to support the fuzzing component by solving complex branching
conditions, which are infeasible for fuzzing.

Hybrid Differential Software Testing 187

Example To illustrate the analysis approach, consider the unsafe password compar-
ison algorithm in Listing 4. The algorithm takes two arrays as parameters, one array
for the (public) user input pub and the other for the stored (secret) password sec. It
starts with comparing the length of both arrays and will return false if both lengths
do not match. As long as both arrays have the same length, the algorithm continues
with comparing the passwords byte by byte. As soon as there is a mismatch, the
algorithm will return false, and only if all byte values match, the algorithm will
finally return true. Therefore, this unsafe algorithm has two early-returns, in lines
2 and 4, which are the reason for the vulnerability. In order to avoid the timing side-
channel, it would be necessary to iterate over the complete public input without
having such early returns.

Listing 4 Side-channel analysis example: an unsafe password checking algorithm

1 boolean pwcheck_unsafe(byte[] pub, byte[] sec) {
2 if (pub.length != sec.length) return false;
3 for (int i = 0; i < pub.length; i++)
4 if (pub[i] != sec[i]) return false;
5 return true;
6 }

�

Table 2 shows the experiment results for applying DF, PDF, DDSE, and HYDIFF

on the password checking example. The experiments have been executed with a
time bound of 5 min and have been repeated 30 times. The number of executed
bytecode instructions are used as cost metric, which is an alternative to measure the
real runtime of the algorithm. Other processes running on the machine are expected
to influence the actual real-time measurement, and hence, counting the executed
bytecode instruction is a more robust metric.

Table 2 Results for the unsafe password checking example (t = 300 s = 5 min, 30 runs)

Technique δ̄ δmax t̄ : δ > 0

Differential fuzzing (DF) 34.30 (+− 3.11) 47 4.20 (+− 1.53)

Parallel differential fuzzing (PDF) 40.93 (+− 1.84) 47 2.33 (+− 0.63)

Differential dynamic symbolic execution (DDSE) 47.00 (+− 0.00) 47 13.27 (+− 0.24)

HYDIFF 47.00 (+− 0.00) 47 4.43 (+− 1.00)

Listing 5 Input for maximum cost difference after 5 min

pub=[16,0,108,108,111,32,67,97,72,101,108,108,111,32,67,97]
sec_1=[114,110,101,103,105,101,32,77,101,108,114,110,101,103,

105,101]
sec_2=[16,0,108,108,111,32,67,97,72,101,108,108,111,32,67,97]

�

For this experiment, the maximum input size was set to 16 bytes, which allows a
maximum cost difference of 47 bytecode instructions. Listing 5 shows an input,
which triggers the maximum cost difference.

188 Y. Noller

Fig. 8 Results for DF, PDF,
DDSE, and HYDIFF on the
password checking example
(lines and bands show
averages and 95% confidence
intervals across 30
repetitions)

0 50 100 150 200 250 300
0

10

20

30

40

50

time (seconds)

#
in
st
ru

ct
io
n
s

DF
95% CI
PDF

95% CI
DDSE
95% CI
HyDiff
95% CI

All of the four experiment setups (DF, PDF, DDSE, and HYDIFF) have been able
to reach the maximum value at least once (see δmax column in Table 2). The values
in the table also show that DF and PDF cannot reliably generate this maximum
value within the time bound of 5 min. However, the fuzzing techniques show a
better performance in identifying the first input for an improved δ value (see column
t : δ > 0). Figure 8 shows the temporal development. DF, PDF, and HYDIFF

perform quite similar in the beginning, whereas DDSE takes longer to generate
an interesting input. After approximately 13 s, DDSE jumps almost directly to the
actual maximum cost difference. HYDIFF follows quickly, whereas DF and PDF
take longer to get to this maximum value.

Summary of Evaluation The evaluation of application side-channel analysis
includes subjects from the evaluation of two state-of-the-art static analysis tools
BLAZER [17] and THEMIS [18]. Additionally, the evaluation includes more subjects
from the STAC program [42] and the modular exponentiation known from the RSA
encryption technique [47].

Although HYDIFF shows some peaks in the evaluation, it is usually not much
better than the naive combination of the results from both components. Nevertheless,
HYDIFF represents a well-balanced combination. As it combines both techniques,
it can identify a cost difference very fast and is able to assess the severity of
side-channel vulnerabilities very well because it can quickly identify large δ

values. For all subjects HYDIFF and its components can efficiently detect side-
channel vulnerabilities. Furthermore, the comparison between differential fuzzing
and BLAZER/THEMIS shows that HYDIFF can keep up with state-of-the-art static
analysis tools for the detection of side-channel vulnerabilities. Additionally, HYD-
IFF’s fuzzing component has been used to reveal multiple new vulnerabilities, which
later got fixed by the developers (as presented in [2]).

Hybrid Differential Software Testing 189

6.4 Robustness Analysis of Neural Networks (A4)

Robustness analysis of neural networks is a relatively novel application of dif-
ferential program analysis where the goal is to identify vulnerabilities in neural
networks with regard to their robustness. It requires reasoning about multiple
network executions, which makes it very expensive, and hence, serves as a stress
testing application of HYDIFF and its components. HYDIFF is specifically used to
find adversarial inputs for an image classification network. Since HYDIFF performs
the analysis of JAVA bytecode, the first step is to rewrite a given neural network
model into a JAVA program [48]. Similarly to the side-channel analysis, the idea for
the differential analysis is to allow changes in the input and observe differences in
the network’s behavior. More precisely, the proposed analysis changes up to x% of
the pixels in the input image and checks whether there can be any difference in the
output.

Some preliminary experiments have shown that with HYDIFF in its default
setup (i.e., differential fuzzing and differential dynamic symbolic execution start
at the same time), both components do not synchronize with each other because
they are busy with their own analysis due to the expensive program execution.
Therefore, the execution setup for the neural network analysis is different: the
experiments start with differential symbolic execution for 10 min. After this time
bound the differential fuzzing component is started with the already generated inputs
by the differential symbolic execution component as additional seed inputs and
both component run in parallel for the remaining time. The 10 min delay provides
sufficient time to the DDSE component to generate a first interesting input.

Example Listing 6 shows an extract of the JAVA program, which represents the
transformed neural network model for the experiments for this case study. The
program takes a double array as input, which represents a normalized 28 × 28
grayscale image. The image is expected to include a handwritten digit and the
network has been trained to recognize such digits. Each compartment of this
program denotes a layer of the neural network. The final layer shows the final
classification of the hand-written digits into the numbers 0–9.

The implemented analysis tries to identify two images that differ only up to a
given threshold and that are differently classified by the neural network. In order
to illustrate the effect of this approach, consider Fig. 9. It shows two inputs that
have been generated by differential fuzzing after 1375 s. The image on the left
side is classified as the digit 6 and the image on the right side is classified as
the digit 5. The generated images are not necessarily representative as adversarial
inputs as they do not fulfill the assumption of the neural network, namely that it
expects handwritten digits. Due to the analysis implementation, the search process
can change the complete image, and so, these images look randomly generated.
Note that this case study is used as stress testing for HYDIFF and its components.
Therefore, it is fair enough to identify images that differ slightly and lead to different
classifications in order to assess the robustness of the neural network.

190 Y. Noller

Listing 6 Extract of the transformed neural network model as JAVA program

1 int runDNN(double[][][] input) { // input image is of shape 28x28x1
2 // layer 0: convolution
3 double[][][] layer0 = new double[26][26][2];
4 for (int i = 0; i < 26; i++)
5 for (int j = 0; j < 26; j++)
6 for (int k = 0; k < 2; k++) {
7 layer0[i][j][k] = biases0[k];
8 for (int I = 0; I < 3; I++)
9 for (int J = 0; J < 3; J++)

10 for (int K = 0; K < 1; K++)
11 layer0[i][j][k] += weights0[I][J][K][k] *
12 input[i + I][j + J][K];
13 }
14

15 // layer 1: activation
16 double[][][] layer1 = new double[26][26][2];
17 for (int i = 0; i < 26; i++)
18 for (int j = 0; j < 26; j++)
19 for (int k = 0; k < 2; k++)
20 if (layer0[i][j][k] > 0)
21 layer1[i][j][k] = layer0[i][j][k];
22 else
23 layer1[i][j][k] = 0;
24

25 // layer 2: convolution
26 double[][][] layer2 = new double[24][24][4];
27 for (int i = 0; i < 24; i++)
28 for (int j = 0; j < 24; j++)
29 for (int k = 0; k < 4; k++) {
30 layer2[i][j][k] = internal.biases2[k];
31 for (int I = 0; I < 3; I++)
32 for (int J = 0; J < 3; J++)
33 for (int K = 0; K < 2; K++)
34 layer2[i][j][k] += weights2[I][J][K][k] *
35 layer1[i + I][j + J][K];
36 }
37

38 ... // layer 3 - 8
39

40 // layer 9: activation
41 int ret = 0;
42 double res = -100000;
43 for (int i = 0; i < 10; i++) {
44 if (layer8[i] > res) {
45 res = layer8[i];
46 ret = i;
47 }
48 }
49 return ret;
50 }

�

Hybrid Differential Software Testing 191

However, it is also possible to update the analysis to perform a more realistic
scenario. If the original input is kept and the process searches only the pixel
locations and values, then the result can be used as adversarial inputs. This analysis
would be much harder because there are not so many ways to change an existing
image. Figure 10 shows an exemplary result of performing such an analysis with
differential fuzzing. The left side shows the original image that is classified as 6.
The right side shows an image with 50% changed pixel that is classified as 8. In the
experiment, differential fuzzing needed more than 60 h to generate the adversarial
input.

classified as 6 classified as 5

Fig. 9 Inputs identified by DF after 1375 s by fuzzing two images that differ in up to 1% of the
pixels. The learned model classifies the left image as a 6, while it classifies the right image as a 5.
The images differ only in 7 pixels

classified as 6 classified as 8

Fig. 10 Adversarial changes identified by DF after 60.89 h by fuzzing up to 50% pixel changes
for a fixed image. The learned model classifies the left (original) image as a 6, while it classifies
the right image as an 8. The images differ in 314 pixels

Summary of Evaluation The results for this experimental setup show the different
benefits of the two different approaches (fuzzing and symbolic execution) and why it
is important to combine them! HYDIFF leverages its differential symbolic execution
component to quickly generate a first output difference and further leverages
differential fuzzing to identify even more output differences. HYDIFF does not only
combine the results of both components, but the components can benefit from each
other’s inputs to further improve the outcome. Overall, the evaluation for the neural
network subjects has shown that all three techniques (DF, DDSE, and their hybrid
combination HYDIFF) can be used to find adversarial inputs for neural networks.
Although this scenario shows the limitation of all approaches, output differences
have been generated.

192 Y. Noller

7 Conclusion and Future Work

This work contributes the concept of hybrid differential software testing (HYDIFF)
as a combination of differential fuzzing (DF) and differential dynamic symbolic
execution (DDSE). HYDIFF’s fuzzing component employs a search-based differen-
tial exploration implemented by a genetic algorithm. Its benefit is the inexpensive
generation of inputs as well as the generation of unexpected inputs due to the
random mutation strategies. HYDIFF’s symbolic execution component performs
a systematic exploration guided by several differential heuristics. Because it can
incorporate concrete inputs at runtime, it also can be driven by the inputs of the
fuzzing component. It further can overcome specific constraints due to its constraint-
solving capabilities. This supports fuzzing, which might not reach deep program
behaviors due to its random nature. Overall, HYDIFF strengthens the presented
differential fuzzing technique by combining it with the heuristic-based, systematic
exploration in symbolic execution. As combination this supports a wide spectrum of
differential testing applications and contributes a generally usable testing technique.

For evaluation purpose, this work showed its applicability on several application
scenarios: regression analysis, worst-case complexity analysis, side-channel analy-
sis, and robustness analysis of neural networks. This multifaceted evaluation shows
that HYDIFF can be applied in numerous testing disciplines, and so, contributes
to the overall research interest of software testing. Additionally, the application of
fuzzing for side-channel vulnerability detection already had a direct impact outside
of the research community, namely on the development of more fuzzing tools with
SIDEFUZZ [49]. HYDIFF complements the existing work on hybrid testing and
provides a baseline for future research. In summary, the contributions made by this
work (especially the technical abilities to reveal behavioral differences) represent
an important step in the direction of better (i.e., more secure and more reliable)
software, and hence, support the overall goal of software engineering.

The conducted research also has revealed interesting future research directions.
First of all, the application section mentioned the parallel variant HYDIFF’s fuzzing
component. It would be interesting to further analyze its performance, which
could lead to corresponding parallel fuzzing guidelines, and furthermore, it would
be interesting to develop a parallel symbolic execution variant. Additionally, the
research around HYDIFF aims at the generation of test inputs, which can be
continued to perform actual debugging and repair of the identified errors and
vulnerabilities. Therefore, an interesting future work could be the automated repair
in the areas of software evolution and security vulnerabilities and their combination
with the techniques proposed in this work.

Acknowledgments I want to thank my family and friends for supporting me during my PhD.
My great appreciation goes to all my co-authors and my particular gratitude to Lars Grunske and
Corina Păsăreanu for their great support.

Hybrid Differential Software Testing 193

References

1. Noller, Y.: Hybrid differential software testing. Ph.D. Thesis, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät (2020). https://doi.org/10.18452/21968

2. Nilizadeh, S., Noller, Y., Păsăreanu, C.S.: Diffuzz: differential fuzzing for side-channel
analysis. In: Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, pp. 176–187. IEEE Press, Piscataway (2019). https://doi.org/10.1109/ICSE.2019.00034

3. Noller, Y.: Differential program analysis with fuzzing and symbolic execution. In: Proceedings
of the 33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, pp. 944–947. ACM, New York (2018). https://doi.org/10.1145/3238147.3241537

4. Noller, Y., Kersten, R., Păsăreanu, C.S.: Badger: complexity analysis with fuzzing and
symbolic execution. In: Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2018, pp. 322–332. ACM, New York (2018). https://
doi.org/10.1145/3213846.3213868

5. Noller, Y., Nguyen, H.L., Tang, M., Kehrer, T.: Shadow symbolic execution with java
pathfinder. SIGSOFT Softw. Eng. Notes 42(4), 1–5 (2018). https://doi.org/10.1145/3149485.
3149492

6. Noller, Y., Nguyen, H.L., Tang, M., Kehrer, T., Grunske, L.: Complete shadow symbolic
execution with java pathfinder. SIGSOFT Softw. Eng. Notes 44(4), 15–16 (2019). https://doi.
org/10.1145/3364452.33644558

7. Noller, Y., Păsăreanu, C.S., Böhme, M., Sun, Y., Nguyen, H.L., Grunske, L.: Hydiff: Hybrid
differential software analysis. In: Will appear in: Proceedings of the 42nd International
Conference on Software Engineering, ICSE ’20 (2020)

8. ISO/IEC/IEEE International Standard—Systems and software engineering–Vocabulary.
ISO/IEC/IEEE 24765:2017(E), pp. 1–541 (2017). https://doi.org/10.1109/IEEESTD.2017.
8016712

9. DeRemer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the-small. IEEE
Trans. Softw. Eng. 2(2), 80–86 (1976). https://doi.org/10.1109/TSE.1976.233534

10. Vliet, H.V.: Software Engineering: Principles and Practice, 3rd edn. Wiley, London (2008)
11. Orso, A., Rothermel, G.: Software testing: A research travelogue (2000–2014). In: Proceedings

of the on Future of Software Engineering, FOSE 2014, pp. 117–132. Association for
Computing Machinery, New York (2014). https://doi.org/10.1145/2593882.2593885

12. Fraser, G., Arcuri, A.: A large-scale evaluation of automated unit test generation using evosuite.
ACM Trans. Softw. Eng. Methodol. 24(2) (2014). https://doi.org/10.1145/2685612

13. Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a doubt: testing for divergences between soft-
ware versions. In: 2016 IEEE/ACM 38th International Conference on Software Engineering
(ICSE), pp. 1181–1192 (2016). https://doi.org/10.1145/2884781.2884845

14. Person, S., Dwyer, M.B., Elbaum, S., Păsăreanu, C.S.: Differential symbolic execution. In:
Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, SIGSOFT ’08/FSE-16, pp. 226–237. ACM, New York (2008). https://doi.org/10.
1145/1453101.1453131

15. Luckow, K., Kersten, R., Păsăreanu, C.S.: Symbolic complexity analysis using context-
preserving histories. In: 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pp. 58–68 (2017). https://doi.org/10.1109/ICST.2017.13

16. Petsios, T., Zhao, J., Keromytis, A.D., Jana, S.: Slowfuzz: Automated domain-independent
detection of algorithmic complexity vulnerabilities. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, pp. 2155–2168. ACM, New
York (2017). https://doi.org/10.1145/3133956.3134073

17. Antonopoulos, T., Gazzillo, P., Hicks, M., Koskinen, E., Terauchi, T., Wei, S.: Decomposition
instead of self-composition for proving the absence of timing channels. SIGPLAN Not. 52(6),
362–375 (2017). https://doi.org/10.1145/3140587.3062378

18. Chen, J., Feng, Y., Dillig, I.: Precise detection of side-channel vulnerabilities using quantitative
Cartesian Hoare logic. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer

https://doi.org/10.18452/21968
https://doi.org/10.1109/ICSE.2019.00034
https://doi.org/10.1145/3238147.3241537
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3149485.3149492
https://doi.org/10.1145/3149485.3149492
https://doi.org/10.1145/3364452.33644558
https://doi.org/10.1145/3364452.33644558
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/TSE.1976.233534
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1145/2685612
https://doi.org/10.1145/2884781.2884845
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1145/1453101.1453131
https://doi.org/10.1109/ICST.2017.13
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3140587.3062378

194 Y. Noller

and Communications Security, CCS ’17, pp. 875–890. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3133956.3134058

19. Păsăreanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run side-channel analysis using symbolic
execution and Max-SMT. In: 2016 IEEE 29th Computer Security Foundations Symposium
(CSF), pp. 387–400 (2016). https://doi.org/10.1109/CSF.2016.34

20. Sun, Y., Wu, M., Ruan, W., Huang, X., Kwiatkowska, M., Kroening, D.: Concolic testing
for deep neural networks. In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, pp. 109–119. Association for Computing
Machinery, New York (2018). https://doi.org/10.1145/3238147.3238172

21. Tramer, F., Boneh, D.: Adversarial training and robustness for multiple perturbations. In: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances
in Neural Information Processing Systems, vol. 32, pp. 5858–5868. Curran Associates, Red
Hook (2019)

22. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples
(2014). arXiv preprint arXiv:1412.6572

23. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing mayhem on binary code. In:
2012 IEEE Symposium on Security and Privacy, pp. 380–394 (2012). https://doi.org/10.1109/
SP.2012.31

24. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., Vigna, G.: Driller: augmenting fuzzing through selective symbolic execution. In:
23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21–24, 2016 (2016). https://doi.org/10.14722/ndss.2016.23368

25. Harrold, M.J.: Testing evolving software. J. Syst. Softw. 47(2), 173–181 (1999). https://doi.
org/10.1016/S0164-1212(99)00037-0

26. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey.
Softw. Testing Verif. Reliab. 22(2), 67–120 (2012). https://doi.org/10.1002/stvr.430

27. Brennan, T., Saha, S., Bultan, T., Păsăreanu, C.S.: Symbolic path cost analysis for side-channel
detection. In: Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2018, pp. 27–37. ACM, New York (2018). https://doi.org/10.
1145/3213846.3213867

28. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of Unix utilities.
Commun. ACM 33(12), 32–44 (1990). https://doi.org/10.1145/96267.96279

29. Godefroid, P., Klarlund, N., Sen, K.: Dart: Directed automated random testing. In: Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’05, pp. 213–223. Association for Computing Machinery, New York (2005). https://
doi.org/10.1145/1065010.1065036

30. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976).
https://doi.org/10.1145/360248.360252

31. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as Markov chain.
In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pp. 1032–1043. ACM, New York (2016). https://doi.org/10.1145/2976749.
2978428

32. Pham, V.T., Böhme, M., Santosa, A.E., Căciulescu, A.R., Roychoudhury, A.: Smart greybox
fuzzing. IEEE Trans. Softw. Eng. 1–17 (2019)

33. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox fuzzing. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pp. 2329–2344. ACM, New York (2017). https://doi.org/10.1145/3133956.
3134020

34. Website: American fuzzy lop (AFL)—a security-oriented fuzzer (2014). http://lcamtuf.
coredump.cx/afl/

35. Zeller, A., Gopinath, R., Böhme, M., Fraser, G., Holler, C.: The fuzzing book. In: The Fuzzing
Book. Saarland University (2019). https://www.fuzzingbook.org/

36. Person, S., Yang, G., Rungta, N., Khurshid, S.: Directed incremental symbolic execution. In:
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and

https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1109/CSF.2016.34
https://doi.org/10.1145/3238147.3238172
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.14722/ndss.2016.23368
https://doi.org/10.1016/S0164-1212(99)00037-0
https://doi.org/10.1016/S0164-1212(99)00037-0
https://doi.org/10.1002/stvr.430
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://www.fuzzingbook.org/

Hybrid Differential Software Testing 195

Implementation, PLDI ’11, pp. 504–515. ACM, New York (2011). https://doi.org/10.1145/
1993498.1993558

37. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In: Proceedings of the
2012 International Symposium on Software Testing and Analysis, ISSTA 2012, pp. 144–154.
ACM, New York (2012). https://doi.org/10.1145/2338965.2336771

38. Majumdar, R., Sen, K.: Hybrid concolic testing. In: 29th International Conference on Software
Engineering (ICSE’07), pp. 416–426. IEEE Computer Society, Los Alamitos (2007). https://
doi.org/10.1109/ICSE.2007.41

39. Website: Software-artifact infrastructure repository (2019). http://sir.unl.edu
40. Just, R., Jalali, D., Ernst, M.D.: Defects4j: A database of existing faults to enable controlled

testing studies for java programs. In: Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pp. 437–440. ACM, New York (2014). https://
doi.org/10.1145/2610384.2628055

41. Website: Commons CLI (2019). https://commons.apache.org/proper/commons-cli/
42. Website: DARPA’s Space/Time Analysis for Cybersecurity (STAC) program (2015). https://

www.darpa.mil/program/space-time-analysis-for-cybersecurity
43. Website: Debian bug report log 800564—php5: trivial hash complexity DoS attack (2015).

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=800564
44. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J., Mangard, S.,

Kocher, P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: reading kernel memory from user
space. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 973–990. USENIX
Association, Baltimore (2018)

45. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: exploiting speculative
execution. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 1–19 (2019). https://
doi.org/10.1109/SP.2019.00002

46. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition. In:
Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004, pp. 100–114 (2004).
https://doi.org/10.1109/CSFW.2004.1310735

47. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) Advances in Cryptology—CRYPTO ’96, pp. 104–113. Springer,
Berlin, Heidelberg (1996)

48. Website: Deep learning test toolset (2020). https://github.com/theyoucheng/DLTT
49. Website: SideFuzz: Fuzzing for side-channel vulnerabilities (2018). https://github.com/phayes/

sidefuzz

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/2338965.2336771
https://doi.org/10.1109/ICSE.2007.41
https://doi.org/10.1109/ICSE.2007.41
http://sir.unl.edu
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://commons.apache.org/proper/commons-cli/
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=800564
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1109/CSFW.2004.1310735
https://github.com/theyoucheng/DLTT
https://github.com/phayes/sidefuzz
https://github.com/phayes/sidefuzz
http://creativecommons.org/licenses/by/4.0/

Ever Change a Running System:
Structured Software Reengineering Using
Automatically Proven-Correct
Transformation Rules

Dominic Steinhöfel

Abstract Legacy systems are business-critical software systems whose failure can
have a significant impact on the business. Yet, their maintenance and adaption
to changed requirements consume a considerable amount of the total software
development costs. Frequently, domain experts and developers involved in the
original development are not available anymore, making it difficult to adapt a
legacy system without introducing bugs or unwanted behavior. This results in
a dilemma: businesses are reluctant to change a working system, while at the
same time struggling with its high maintenance costs. We propose the concept of
Structured Software Reengineering replacing the ad hoc forward engineering part of
a reengineering process with the application of behavior-preserving, proven-correct
transformations improving nonfunctional program properties. Such transformations
preserve valuable business logic while improving properties such as maintainability,
performance, or portability to new platforms. Manually encoding and proving such
transformations for industrial programming languages, for example, in interactive
proof assistants, is a major challenge requiring deep expert knowledge. Existing
frameworks for automatically proving transformation rules have limited expres-
siveness and are restricted to particular target applications such as compilation
or peep-hole optimizations. We present Abstract Execution, a specification and
verification framework for statement-based program transformation rules on JAVA

programs building on symbolic execution. Abstract Execution supports universal
quantification over statements or expressions and addresses properties about the
(big-step) behavior of programs. Since this class of properties is useful for a plethora
of applications, Abstract Execution bridges the gap between expressiveness and
automation. In many cases, fully automatic proofs are in possible. We explain
REFINITY, a workbench for modeling and proving statement-level JAVA transfor-
mation rules, and discuss our applications of Abstract Execution to code refactoring,

D. Steinhöfel (�)
CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Software Engineering Group, TU Darmstadt, Darmstadt, Germany
e-mail: dominic.steinhoefel@cispa.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_10

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_10&domain=pdf
mailto:dominic.steinhoefel@cispa.de
https://doi.org/10.1007/978-3-030-83128-8_10

198 Dominic Steinhöfel

cost analysis of program transformations, and transformations reshaping programs
for the application of parallel design patterns.

1 Introduction

“When Companies Become Prisoners of Legacy Systems”: this title of a Wall
Street Journal article [41] well describes the predominant perception of legacy
software systems in academia. Indeed, legacy systems are often associated with
high maintenance costs [12, 13, 40], ranging between 67% and 90% of the total
software costs [13]. In a more recent case study [12], an amount of 75% was reported
for a financial services company. Interestingly, this perception is not always shared
in industry. In an interview with 26 industry practitioners [26], they describe their
legacy systems as businesses-critical, reliable, and proven systems. The same survey
names the loss of expert knowledge about the software, high maintenance costs, and
the desire to increase flexibility as main drivers formodernization of legacy systems.

Practitioners are facing a dilemma: they are reluctant to “change a running
system” encoding valuable domain knowledge and representing high business value,
while struggling with the costs to keep it running. The stakes are high, and the
risks to introduce bugs or unwanted behavior during legacy system modernization
are considerable [19]. A major challenge is that the original source code has
been evolving substantially, documentation might be missing, and domain experts
as well as developers involved in past developments might not be available any
more [19, 52]. Therefore, even minor modifications present high risk [52].

Software Reengineering is the “examination and alteration of a subject system
to reconstitute it in a new form” [11]. The goal is to preserve domain knowledge
encoded in existing software, while improving desirable nonfunctional properties
like maintainability, performance, and flexibility. In the case of business-critical
legacy systems, reengineering efforts must be especially careful to maintain the
essential semantics of the subject system, for example, through the introduction
of automated tests [16]. While automated testing should be part of any serious
software development, it bears two problems: first, writing meaningful, fine-
granular tests for legacy systems is nontrivial in presence of missing documentation
and domain experts. Second, post hoc verification only informs about a failure after
its introduction.

Regression Verification [20] allows automatically verifying the equivalence
of closely related versions of the same program. If the changes applied during
reengineering are small enough, regressions can in principle be excluded using this
methodology. However, this requires analyzing whole methods after each change,
and side effects or irregular completion (e.g., exceptions) are not considered.

We propose structured software reengineering as an alternative. Following
Chikofsky and Cross [11], reengineering (1) starts with a reverse engineering
phase to achieve a more abstract description of the system, followed by (2) a
forward engineering or restructuring phase. Structured reengineering does not

Structured Software Reengineering Using Proven-Correct Transformation Rules 199

impose requirements on phase (1), which aims to carve out reengineering goals and
concrete suggestions for code modifications. Instead of then proceeding with the
usual procedure interleaving manual changes and post hoc verification (using testing
or more heavyweight techniques), structured reengineering consists of applying
sequences of proven-correct program transformation rules to the legacy system.
Such rules consist of a schematic description of code fragments on which they
are applicable and of a set of preconditions. Each rule has been certified in
advance to guarantee that for all applicable input programs, an application of the
rule results in a semantically equivalent program. Such proofs only have to be
conducted once per rule; whenever applying it to a concrete program matching the
schematic description, one merely has to show that the preconditions are satisfied.
Additionally, a rule can be equipped with nonfunctional guarantees, for instance, on
the execution time of the transformed result or with an informal description of its
intention.

This approach has the following advantages:

1. It guarantees the preservation of the business logic contained in the original
legacy system, even in the absence of domain experts and documentation.

2. The preconditions which have to be checked prior to the execution of the
transformation are local to the transformed piece of code. This is especially
beneficial during applications in huge (method/class/module) contexts.

3. If the applied rules guarantee additional (nonfunctional) properties on top of
semantic preservation, such properties of the resulting system are obtained on
the fly. This also helps to assure that the transformation process proceeds toward
the reengineering goals, and to select rules accordingly.

To be practical, structured reengineering requires catalogs of transformation
rules as well as tool support, such as the integration into an IDE. While this seems
to be an obstacle, it turns out that documentation and tool support already exist for
a popular class of code transformations, namely refactoring rules. Refactoring aims
to improve the internal structure of code while maintaining its semantics [18]; the
goal is to make the code better to read and maintain by humans. Fowler published
a well-organized catalog of refactoring techniques [17, 18]. Many of them, such
as Extract Method and Slide Statements, are implemented in major IDEs (e.g.,
Eclipse or IntelliJ IDEA). The intention of each refactoring technique is thoroughly
documented and motivated along examples. However, the set of preconditions
necessary for semantic preservation is almost always incomplete, and naively using
refactorings offered by an IDE can easily break the input program [14, 44]. We
discuss this in Sect. 4.

To illustrate the application of structured reengineering, we consider an example
from [18] computing the total salary and average age of the employees of a company.
The corresponding code is depicted in Fig. 1, Listing 1. Observe that the loop in
Lines 4–7 performs two different tasks: it (1) computes the average age, operating
on the variable avgAge and reading the age field of the elements in the people
array, and (2) computes the total salary, operating on the variable totalSalary
and reading the salary field of the elements in the people array. The Split Loop

200 Dominic Steinhöfel

Fig. 1 Computing average age and total salary for a list of employees

refactoring technique [18] suggests to split a loop doing two different things into
two loops (see Fig. 1, Listing 2). If code readability is a chosen reengineering goal,
it makes sense to apply this technique. Additionally, this makes it easier to apply
further optimizations, such as converting the loops to map-reduce transformations
using (parallel) streams.

Program transformations can be expressed as input-output pairs of programs
containing placeholders representing arbitrary expressions or statements. After
instantiating the placeholders s.t. the input program matches the program fragment
to transform, the original fragment is replaced by the output program with the same
instantiations. Thus, the Split Loop transformation can be expressed as

for (itExpr) { PQ } ù for (itExpr) { P } for (itExpr) { Q }

However, this simple rule comes with strings attached. The most common obsta-
cle is that locations written and accessed by statements P and Q are overlapping;
in this case, the loop must not be split. Apart from preconditions on written and
accessed locations, abrupt completion has to be regarded: P and Q might complete
abruptly because of a (labeled) break and continue, a return, or because of a
thrown exception. The latter also applies for itExpr. In Sect. 4, we present certified
preconditions for refactoring techniques which we derived using a refinement loop
based on feedback from failed proof attempts. For our example, Listing 2 shows the
result of the application of Split Loop on Listing 1. In addition, we also moved the
division in Line 8 from Listing 1 to before the second loop using a Slide Statements
refactoring. This keeps together the code concerned with the computation of the
average age, which one could now extract into a new method using an Extract
Method refactoring. Those techniques are also discussed in Sect. 4.

A critical part in the development of transformation rule catalogs is the effort
that needs to be invested to prove the desired properties of the rules. Formalizing
and proving the rules in interactive proof assistants like Isabelle [37] or Coq [8]
requires substantial effort for manually writing proof scripts, as can be observed
in the work on verified compilers [29, 31, 51]. Previously proposed approaches for
proving program transformations automatically (e.g., [9, 20, 33, 49]) are tailored
to a particular target application (e.g., symbolic execution rules or peephole

Structured Software Reengineering Using Proven-Correct Transformation Rules 201

optimizations) and have a limited expressiveness (e.g., only abstract statements or
expressions, no loops, no specification of written and accessed locations).

We developed Abstract Execution (AE) [47, 50], a specification and verification
framework based on Symbolic Execution (SE). AE trades off the flexibility of
interactive proof assistants with the automation offered by specialized techniques: it
restricts the properties of transformations that can be proved to universal, behavioral
properties on statement level (no existential quantifiers, no reasoning about internal
structure of placeholders, no transformations on class level), and offers an expressive
specification language for describing represented concrete programs. The result is a
system in which many meaningful transformations (such as all refactoring rules in
Sect. 4) can be proven fully automatically.

We implemented AE for the JAVA language as an extension of the KeY program
prover [2]. As KeY allows manual inspection of generated proof trees, we can draw
feedback from failed proof attempts that lets us further refine our transformation
models in an iterative manner. To further increase the usability of our approach, we
developed REFINITY [48] (available at http://www.key-project.org/REFINITY),
presented in Sect. 3. REFINITY offers editor support dedicated to developing
transformation rules in AE and greatly simplifies the interaction with the KeY
system.

To kick-start the creation of a catalog of transformation rules suitable for
structured reengineering, we formalized and proved three types of transforma-
tion rules:

1. We prove nine statement-level refactoring rules from Fowler’s textbooks [17,
18], including two with loops (Sect. 4). In all cases, full semantic equivalence of
programs before and after the transformation is proved.

2. Three rules for restructuring sequential code for subsequent parallelization [22]
are discussed in Sect. 5. This comprises two complex loop transformations, for
which we still achieve more than 99.7% proof automation. We prove semantic
equivalence and further properties needed for parallel execution of the code.

3. In Sect. 6, we derive results about the cost impact of seven loop transformation
rules, interacting with an external cost analysis tool. The resulting Quantitative
AE framework [4] is the first approach to—fully automatically—analyze and
certify the cost of schematic programs, and the first to reason about the cost
impact of transformation rules.

Structure of This Chapter
We explain our Abstract Execution framework in Sect. 2. The REFINITY work-
bench for modeling and proving JAVA code transformation rules is presented in
Sect. 3. Our applications on refactoring rules, restructuring for parallelization, and
cost analysis of transformations are presented in Sects. 4–6. We conclude and
mention promising future work in Sect. 7.

The contents of this chapter are derived from two main chapters of the PhD
thesis of the author [47, Chapters 4 and 6], the original publication on Abstract
Execution [50], and from three follow-up publications [4, 22, 48].

http://www.key-project.org/REFINITY

202 Dominic Steinhöfel

2 Abstract Execution

Abstract programs contain schematic placeholders representing many concrete
statements or expressions. They naturally occur in many areas of computer science.
Program synthesis [42, 46], for example, can be phrased as “show that there exists
an instantiation of a scaffold satisfying my desired property.” The scaffold is an
abstract program, and the instantiation the result of the synthesis process. Consider,
for example, the abstract program

int f(int[] a) { P return a[0]; }

containing an abstract statement P . To synthesize a version of method f returning
the smallest element of array a (assuming that a is non-empty), we can instantiate
P with “Arrays.sort(a);”, and thus prove that there is a concrete program
matching the scaffold and satisfying the desired specification.

Universal properties quantifying over programs are traditionally proven by
structural induction [10]. Early work relied on pen-and-paper proofs [32, 36].
Recently, interactive theorem provers are used to mechanize correctness proofs,
for example, in the CompCert verified compiler [31] or in the verification of the
seL4 microkernel [28]. To prove, for example, that after executing “int x=1; P ”
the value of x is 1, one should differentiate the cases of P being an assignment,
conditional statement, loop, etc. In the case of industrial programming languages
like JAVA, this approach quickly gets out of hand. The core idea of Abstract
Execution [47, 50] is that it does not matter what kind of statement P is instantiated
with, as long as it does not write to variable x and completes normally (e.g., does not
throw an exception). In other words, we are concerned with the observable behavior
of the possible instantiations.

We implemented this kind of reasoning as an extension of Symbolic Execution [6,
10, 27]. The principle of SE is to explore all paths in a program by replacing
concrete inputs by symbols. Whenever the execution depends on the concrete value
of an input (as for an if statement with symbolic guard), SE performs a case
distinction and follows each path separately. During the execution, assignments are
tracked in a symbolic store, while case distinctions update the path condition. A
symbolic state is a pair (PC, Store) consisting of a path conditionPC and a symbolic
store Store. For example, executing an if statement with condition “a>=0” creates
two successor states, one where a ≥ 0 is added to the path condition, and one
where a < 0 is added. A symbolic store is, in the simplest case, a sequence of
assignments such as (a := b,b := −b). This represents all (infinitely many) states
where a attains the initial value of b, and b attains its negated initial value. In a state
(PC, Store), all right-hand sides in Store are constrained by the conditions in PC:
the state ({b < 0}, (a := b,b := −b)) represents all concrete states where a attains
the initial, negative value of b, and b the positive inverted value. For example, the
concrete states a �→ −1,b �→ 1 and a �→ −17,b �→ 17 are elements of this set of
concretizations. We refer to [47, Chapter 3] for a discussion of SE and its semantics.

But how can we symbolically execute an abstract statement or expression?
Our solution (1) reflects the abstractness on the level of symbolic stores and path

Structured Software Reengineering Using Proven-Correct Transformation Rules 203

conditions, and (2) performs a case distinction for all completion modes (normal
completion, abrupt completion due to a thrown exception, break, etc.) in separate
SE branches.

The central concept are abstract (store) updates. If an abstract statement P

depends on a set of locations footprintP and may write to a set of locations frameP,1

executing P in a state (PC, Store) leads, for the case of normal completion, to a
state

(PC, Store ◦ UP (frameP :≈ \value(footprintP)))

where UP (frameP :≈ \value(footprintP)) is the abstract update and ◦ a
concatenation operator for symbolic stores. The semantics of the abstract update
is a collection of nonabstract updates with left-hand sides in frameP, and all right-
hand sides depend at most on the values of locations in footprintP. Thus, an abstract
store containing abstract updates represents up to infinitely many nonabstract stores,
each representing up to infinitely many concrete assignments. The concatenation
is resolved by interpreting the locations in footprintP in the context of Store;
assignments by the abstract update of locations in frameP overwrite already existing
ones in Store.

Abstract Execution provides a versatile specification framework allowing to
precisely and, at the same time, abstractly specify assigned and read locations, and
conditions for abrupt completion. Moreover, one can define functional assertions on
the resulting symbolic state. Subsequently, we expound our specification language
in Sect. 2.1. In Sect. 2.2, we show how to symbolically execute abstract programs.

2.1 Specifying Abstract Programs

AE extends the JAVA language with two keywords: “\abstract_statement
P ;” and “\abstract_expression Type e;” for declaring an abstract state-
ment with identifier P and an abstract expression of type Type with identifier e,
respectively. We use the term Abstract Program Element (APE) to refer to both
abstract statements and expressions. If two APEs with the same identifier appear in
a program (or a context of two programs), they are assumed to have the same seman-
tics. This is especially useful for expressing transformations: two APEs on the left-
and right-hand sides of a transformation rule represent the same concrete programs.

To specify frame, footprint, and abrupt completion behavior of APEs, we use
JAVA Modeling Language (JML) [2, 30] specification comments starting with “@”.
For example, the abstract statement

//@ assignable x, y;

//@ accessible \nothing;

\abstract_statement P ;

1 We adopt the convention to call locations changed by a program its frame and locations that may
be read by a program its footprint (see, e.g., [2, 25]).

204 Dominic Steinhöfel

Table 1 Problematic cases for Slide Statements

Statement 1 Statement 2 Counterexample

Inputs Result before Result after

(1) x++; y = 2*z;

(2) x++; y = 2*x; x = 1, y = 1 x = 2, y = 4 x = 2, y = 2

(3) x++; x = y; x = 1, y = 1 x = 1 , y = 1 x = 2 , y = 1

(4) x = 20 / y; y = 5; x = 1, y = 0 x = 1 , y = 0 , Exc. x = 4 , y = 5

(5) x = 20 / 0; y = 5; x = 1, y = 0 x = 1, y = 0 , Exc. x = 1, y = 5 , Exc.

represents all concrete statements assigning at most variables x and y, while having
no access to the state at all. Thus, “x=17;” is an instance of P , while “x=y;”
is not (it reads y). There also exists the option to enforce some assignment of a
location: “assignable x, \hasTo(y);” specifies that y has to be assigned.
Then “x=17;” would no longer be an instance of P (but, e.g., “x=17; y=17;”
is).

When modeling transformation rules, concrete frames and footprints (such as x
and y) are usually insufficient: a transformation should be applicable regardless of
the names (and numbers) of variables and fields available in a particular context.
We leverage the theory of dynamic frames [25] to that end. A dynamic frame is a
set-valued specification variable representing an unknown set of concrete locations.
Instead of enumerating variables in a frame as we did above, a placeholder symbol
is used, for example, frameP or footprintP. If needed, the meaning of these symbols
can be refined in specifications using usual set operations. For example, one can
specify x ∈ frameP, or frameP ⊆ frameQ. These operations have corresponding
representatives in JML; for simplicity, we continue using the mathematical notation.

We explain how to express constraints about frames and footprints along a refac-
toring technique from Sect. 4: Slide Statements, which we already mentioned in the
introduction. The purpose of this refactoring is to bring statements closer together
which participate in a common task, contributing to better understandability and
preparing for subsequent refactorings like Extract Method.

To motivate the constraints which we are going to define, we present some
example cases with counterexamples in Table 1. The two statements in Line 1 of
the table can be swapped without problems: Their behavior is fully independent. In
Line 2, the frame of the first statement intersects with the footprint of the second
statement. Thus, applying Slide Statements leads to different results for variable y
before and after the application: frames and footprints of both statements must be
disjoint. This is not enough: a later occurring statement can overwrite changes of
an earlier one. An example for this is shown in Line 3, where the overall result
equals the result of the statement occurring last: the frames of both statements must
be disjoint.

Figure 2 depicts an abstract program model for the Slide Statements refactoring
including the two constraints on frames and footprints. The abstract statements
A and B from the input model (Listing 3) occur in reverse order in the output

Structured Software Reengineering Using Proven-Correct Transformation Rules 205

Fig. 2 Abstract program model for Slide Statements ignoring abrupt completion

model (Listing 4). Both abstract statements are annotated with dynamic frame sym-
bols frameA/footprintA and frameB/footprintB, respectively, for their frames and
footprints. Our constraints on them are implemented using an ae_constraint
declaration in Lines 1–4: the constraints in Lines 2 and 3 enforce disjointness of
frames and footprints, while the constraint in Line 4 enforces disjointness of the
frames. Assuming normal completion, AE can prove these constraints sufficient.

In the JAVA language, we however have to take abrupt completion (here,
exceptions and returns) into account. Line 4 in Table 1 shows an example
where the order of the statements determines not only the result values of the
considered variables but also the resulting completion mode (exception vs. normal
completion) for the shown test case. These statements would, though, anyway not be
amenable for Slide Statements since the requirement on the disjointness of frames
and footprints is not met. In the scenario shown in Line 5, frames and footprints
are disjoint; the outcome is still different before and after transformation, since
early exceptional termination of the first statements impedes the assignment of 5
to y before, but not after the swap. This leads us to the additional requirement
for semantic preservation in the presence of abrupt completion: if one statement
completes abruptly, the assignments by the other statement must not be “relevant.”
If we are not concerned about the final value of variable y, we may reorder these
statements. Furthermore, abrupt completion must be mutually exclusive, because
otherwise (1) the assignments by both statements would have to be irrelevant, and
(2) there could be different reasons for abrupt completion (return vs. thrown
exception, different thrown exception types/objects).

Figure 3 shows the extension of the Slide Statements transformation model
considering exceptions. For space reasons, we ignore returns here; the full
model is available in [47, Appendix E]. If no conditions on abrupt completion
behavior of APEs is provided, as in Fig. 2, AE automatically explores all paths
corresponding to each possible completion mode. In Fig. 3, we bind exceptional
behavior, using the “exceptional_behavior requires . . .;” keyword, to
uninterpreted predicates throwsExcA/throwsExcB (Lines 15–16 and 21–22). The

206 Dominic Steinhöfel

Fig. 3 Model for Slide Statements with exceptions, extensions highlighted in gray

intended meaning is “the abstract statement A/B throws an exception if, and only
if, the predicate throwsExcA/throwsExcB holds.” Since whether or not a statement
throws an exception is usually determined by its footprint (e.g., “x/y” throws
an arithmetic exception iff y is zero), we define these predicates parametric in
the values of the footprints: the dynamic frame footprintA represents a set of
locations, while the expression \value(footprintA) represents the values of this
set. Analogously to our usage of dynamic frame specification variables, we can now
use these predicates in constraints (Lines 5–11 in Fig. 3). In Lines 5–7, we stipulate
that either statement A or statement B may throw an exception (but not both) using
the “\mutex” keyword. Assuming an abstract location set relevant representing
relevant locations, we subsequently impose that if one statement completes abruptly
due to a thrown exception, the frame of the other statement only contains irrelevant
locations (Lines 8–11).

Our implementation of AE automatically proves semantic equivalence of the full
model (including the specifications for returns, which work similarly to the ones
for exception) in less than 20 s—once and for all, for all input programs satisfying
the specified constraints. Given such a proof, we can be sure that our specified
constraints are sufficient for a safe application of the refactoring rule.

In addition to “exceptional_behavior”, the keywords “return_
behavior” for abrupt completion due to a return and, for loop bod-
ies, “break_behavior” for breaks and “continue_behavior” for
continues are supported. For labeled breaks, one writes
“break_behavior (lbl)” (similarly for labeled continues). Moreover,

Structured Software Reengineering Using Proven-Correct Transformation Rules 207

“requires” can be replaced by “ensures” to specify a postcondition on the
resulting state. While this is rarely needed for transformation rules, it can be useful,
for example, in incremental, “correct-by-construction” program development.2

The specification framework we have just presented is designed with real
applications and automatic proofs in mind. In Sects. 4–6, we demonstrate that it
is strong enough to model interesting transformations from different areas of code
optimization. Next, we introduce our Symbolic Execution rules for AE.

2.2 Symbolic Execution of Abstract Program Elements

Symbolic execution of an APE results in separate execution branches for each
possible abrupt completion mode. Figure 4a visualizes the relevant part of the exe-
cution tree for an abstract statement (we omitted labeledbreaks and continues).
Assuming that we start in a symbolic state (PC, Store), we produce symbolic output
states snormal for normal completion, sexc for abrupt completion due to a thrown
exception, and so on. In the figure, symbolic states are input states for the execution
of the annotated statement. The variables res and exc of types Object and
Throwable, respectively, are created fresh, that is, they are not declared anywhere
else in the context program. The execution tree for an abstract expression (Fig. 4b)
looks similarly, but as expressions can only complete normally or due to a thrown
exception, an abstract expression node only has two successors. We point out that
also expressions can have a non-empty frame, as in “x > y++”.

In the remainder of this section, we show how the states snormal, sexc etc. are
formally constructed. This is an important part of our framework, but not required
for understanding the sections that follow. Readers not interested in the formalism
can therefore safely skip to Sect. 3, where we describe how to use AE in practice.

Our central concept is the abstract update: for an APE P with frame frameP and
footprint footprintP, an abstract update UP(frameP :≈ \value(footprintP)) has
the same effect on the state as P. However, while P may complete abruptly (e.g.,
throw an exception), the abstract update always completes normally.

To express the symbolic input states for successors of APEs in the execution
tree, we need to apply symbolic stores to formulas: we write �Store�formula for
the transformation of formula according to Store. For example, �x := 17�x ≥ 0 is
equivalent to 17 ≥ 0 and thus to true.

Subsequently, we define the symbolic states resulting from the execution of
an abstract statement “\abstract_statement P;” in the symbolic state
(PC, Store). We write normalPost, excPre, excPost, etc., for the pre- and postcon-
ditions specified using JML “requires” and “ensures” clauses in the scope of
the respective behavior (“normal_behavior”, “exceptional_behavior”,
etc.).

2 The use of AE for Correctness-by-Construction has been explored in a Master’s thesis [53].

208 Dominic Steinhöfel

Fig. 4 Execution tree fragments for abstract statements and abstract expressions. Symbolic input
states for tree nodes ((PC, Store), sexc, etc.) are annotated on the left-hand side of the nodes. (a)
Execution tree fragment for an abstract statement. (b) Execution tree fragment for an abstract
expression

Normal Completion
We use the abbreviation completesNormally to denote the negated disjunction
of the preconditions for all other completion modes: completesNormally ⇐⇒
¬(excPre ∨ returnPre ∨ breakPre ∨ continuePre). This precondition is evaluated
in the initial store Store, while the postcondition normalPost is evaluated in the
resulting store after the application of the abstract update (and can thus represent
constraints on the resulting state). In case the abstract statement is specified to
always complete abruptly in Store, the precondition �Store�(completesNormally)
evaluates to false. Then, this symbolic execution branch becomes infeasible and is
not followed any further. This holds similarly for all other branches discussed below.

Formally, we define the symbolic state snormal as

snormal := (PC ∪ {

�Store�(completesNormally),

�Store ◦ UP(frameP :≈ \value(footprintP))�(normalPost)
}

,

Store ◦ UP(frameP :≈ \value(footprintP)))

Structured Software Reengineering Using Proven-Correct Transformation Rules 209

Abrupt Completion Due to a Thrown Exception
The state sexc for completion due to a thrown exception is constructed similarly
to snormal, just with the appropriate pre- and postconditions. There is one
addition: we initialize the exception variable exc (see Fig. 4a) to a value
excP(\value(footprint)), where “excP” is a unary function symbol exclusively
introduced in symbolic execution of the abstract statement P: it is generated fresh
when first encountering P, but is re-used whenever another occurrence of P is
executed. We follow the same procedure for abstract update symbols UP. This is
especially useful for equivalence proofs, since abstract statements with the same
identifiers exhibit the same behavior—when executed in the same state. It is thus
essential to pass the current value of P’s footprint to the excP function, since P
might throw different exception objects for different initial execution states. The
variable exc can be referred to in the postcondition excPost to constrain the values
of the thrown exception object.

sexc := (

PC ∪ {

�Store�(excPre),

�Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(exc := excP(\value(footprint))) �(excPost)

}

,

Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(exc := excP(\value(footprint)))

)

Abrupt Completion Due to a Returned Result
The symbolic state sret for a return statement of a result is constructed exactly
the same way as sexc for a thrown exception. If the abstract statement is executed in
the context of a void method, the initialization of the res variable is omitted (and
the execution tree contains a “return;” instead of a “return res;” node). As
in the exceptional case, the postcondition returnPost can refer to the res variable
to characterize the returned result (in the context of a non-void method).

sret := (

PC ∪ {

�Store�(returnPre),

�Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(res := resultP(\value(footprint)))�(returnPost)

}

,

Store ◦ UP(frameP :≈ \value(footprintP)) ◦
(res := resultP(\value(footprint)))

)

210 Dominic Steinhöfel

Abrupt Completion Due to a Break or Continue Statement
The state sbreak for abrupt completion due to a break looks exactly like snormal
for normal completion with different pre- and postconditions, as initialization of a
returned or thrown object is not required. If the abstract statement occurs outside
any loop, we omit this state and the corresponding node in the execution tree.

sbreak := (

PC ∪ {

�Store�(breakPre),

�Store ◦ UP(frameP :≈ \value(footprintP))�(breakPost)
}

,

Store ◦ UP(frameP :≈ \value(footprintP))
)

The continue case is analogous. For abstract expressions, snormal has a simpler
completesNormally condition (i.e., ¬excPre) and contains an initialization of the
res variable similar to sret for abstract statements; sexc is identical.

To reason about the symbolic states arising from the execution of APEs, we
provide a number of simplification and normalization rules for symbolic stores
with abstract updates. We refer to [47, Sec. 4.3.2] for their full definitions. We
demonstrate some of these rules in the following example.

Example 1 (Execution of the Slide Statements Model) We investigate the “normal
completion” case of the output model for the Slide Statements refactoring from
Listing 6, Fig. 3 on Page 206. The final state after executing the abstract statements
is

({frameA∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA∩ frameB = ∅,

mutexFormula,

¬throwsExcB(\value(footprintB)),

¬�UB(frameB :≈ \value(footprintB))�throwsExcA(\value(footprintA))},
(UB(frameB :≈ \value(footprintB)) ◦ UA(frameA :≈ \value(footprintA)))

)

For simplicity, we omit conditions on abrupt completion due to other reasons than
a thrown exception. The first four elements in the path condition stem from the
ae_constraint specification in Lines 1–11 in Listing 6, where mutexFormula
abbreviates the condition on mutual exclusion of abrupt completion (Lines 5–11).

First, we apply the abstract update UB(. . .) to the throwsExcA expression in
the path condition and resolve the update concatenation in the store by the rule
transforming (Store1 ◦ Store2) to (Store1, �Store1�Store2), resulting in

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,

mutexFormula,

¬throwsExcB(\value(footprintB)),

¬throwsExcA(�UB(frameB :≈ \value(footprintB))�\value(footprintA))},

Structured Software Reengineering Using Proven-Correct Transformation Rules 211

(UB(frameB :≈ \value(footprintB)),

�UB(frameB :≈ \value(footprintB))�(UA(frameA :≈ \value(footprintA))))
)

Next, we simplify the application �UB(. . .)�UA(. . .) in the store to

UA(frameA :≈ �UB(frameB :≈ \value(footprintB))�(\value(footprintA))).

The expression �UB(frameB :≈ \value(footprintB))�(\value(footprintA))

occurs two times in the resulting state: once in the path condition and once in
the symbolic store. Since the path condition contains the assumption frameB ∩
footprintA = ∅, we know that the assignments due to UB(. . .) are irrelevant for
\value(footprintA); we deduce that we can drop �UB(. . .)� and obtain the much
simpler state

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,

mutexFormula,

¬throwsExcB(\value(footprintB)), ¬throwsExcA(\value(footprintA))},
(UB(frameB :≈ \value(footprintB)),UA(frameA :≈ \value(footprintA)))

)

There is one more rule we are going to apply; this time, it is not a simplification
but a normalization rule. The state we obtain by executing the input model for Slide
Statements in Listing 5 equals the one from above for the output model, with one
exception: the order of the abstract updates in the store. Indeed, we cannot simply
swap elements of a store, since a later element might overwrite assignments by an
earlier one. However, we know from the path condition that frameA ∩ frameB = ∅.
Therefore, we can apply a normalization rule reordering abstract updates according
to the lexicographic order of their identifiers. Our final result is

({frameA ∩ footprintB = ∅, frameB ∩ footprintA = ∅, frameA ∩ frameB = ∅,

mutexFormula,

¬throwsExcB(\value(footprintB)), ¬throwsExcA(\value(footprintA))},
(UA(frameA :≈ \value(footprintA)),UB(frameB :≈ \value(footprintB)))

)

This state is equivalent to the final state for the input model (as the path condition
is a set, the order of path constraints is irrelevant). Assuming that this also holds
for the abrupt completion cases, we conclude the equivalence of the input and
output models for Slide Statements, and follow that applying this transformation
is semantics-preserving for all concrete instantiations satisfying the constraints
we formalized.

212 Dominic Steinhöfel

3 The REFINITY Workbench

We implemented AE by extending the KeY [2] program prover. The extension
consists of ∼5.5k lines of JAVA and ∼400 lines of Taclet code. Taclets are KeY’s
language for SE rules, which we had to significantly extend for our AE taclets. More
implementation details are available in [47, Sec. 4.4].

Using this implementation, one can reason about programs containing APEs.
However, symbols such as dynamic frames and abstract predicates have to be
declared in KeY input files separately from the JAVA code. Proof obligations for
showing the equivalence of two abstract program fragments (which is the prime
application of AE and needed for our case studies described in Sects. 4 and 5) have to
be manually defined. Those proof obligations are all structurally similar, but tedious
to write from scratch. Additionally, there is no editing support for abstract programs,
which require a significant amount of JML specification lines.

Addressing these issues, we developed REFINITY [48], a workbench for
specifying and proving properties of statement-level JAVA code transformation
rules. A major driver for the development of REFINITY was an invited talk in
a tutorial session at iFM’19,3 where participants without any background in using
KeY successfully applied REFINITY to prove the correctness of two refactoring
techniques.

Figure 5 shows the REFINITY GUI. Input and output models for a transforma-

tion rule are written to the two text fields at marker 1 . When editing, one can

1

2

3

4
5 6

Fig. 5 The REFINITY window

3 https://ifm2019.hvl.no/refa/#pcrr.

https://ifm2019.hvl.no/refa/#pcrr

Structured Software Reengineering Using Proven-Correct Transformation Rules 213

use a number of keyboard shortcuts for creating stubs for APEs and transformation

constraints. Field 2 contains global program variables which can be referred

to in the input and output model. In the compartment labeled 3 , we define
dynamic frame variables used in the model (“LocSet” is the sort for abstract location
sets, i.e., dynamic frames). REFINITY models include by default an additional
location set “relevant” representing all relevant locations. If we do not impose
further constraints, for example, exclude some locations from relevant, correctness
has to be proven under the assumption that all locations are in this set. Abstract
predicates (like throwsExcA(. . .) in the previous section) and functions are declared

in input field 4 .

Fields 5 and 6 specify global assumptions and proof objectives. The effects

of the abstract programs specified in field 1 are recorded in two sequences
\result_1 and \result_2 for the input and output model. Their elements can
be accessed using array syntax, for example, \result_1[0]. Positions 0 and 1
are reserved for returned results and thrown exceptions. Starting from position 2,

the final values of “relevant locations” declared in fields 5 (with the dynamic
frame relevant being the default) are stored. The standard postcondition, which

we see in field 6 , is \result_1==\result_2. Without constraints about
relevant, this specifies that returned values, thrown exceptions, and the whole
memory after termination have to be identical. More fine-grained postconditions
can also be specified: for example, if the first relevant location is an integer variable,
“\result_1[2]>2*\result_2[2]” is admissible. The global “Relational

Precondition” (6) has access to the initial values of free program variables

(field 2) and abstract location sets (field 3).
Pressing � transforms the model into a KeY proof obligation and starts the

automatic proof search. If KeY reports success, the specified model is correct. Saved
proof certificates can be validated against the loaded model using the � button.

During development of a new model, KeY will usually finish unsuccessfully,
leaving one or more proof goals open. In rare cases and for highly complicated
models, the reason could be that KeY needs more time or is not able to close
the proof although the model is valid—we hit a prover incapacity. In the latter
case, one can try to close the proof by interacting with the prover. More likely,
though, are problems in the model. Inspecting the open goals provides feedback
on how to refine the model to make it sound. Possible refinements include (1)
declaring the disjointness of dynamic frames, (2) imposing mutual exclusion on
abrupt completion behavior, (3) declaring a functional postcondition for APEs, and
(4) refining the relational postcondition or (4) adding a relational precondition.

The proof obligationREFINITY generates for KeY consists of a JAVA class with
two methods left(. . .) and right(. . .) containing the abstract program frag-
ments, and a problem description file containing proof strategy settings, declarations

214 Dominic Steinhöfel

of variable, function, predicate, and abstract location set symbols and the proof goal
(expressed in KeY’s program logic “JAVA Dynamic Logic” [2]). Such proof goals
easily span around 40 lines in concrete syntax.

REFINITY spares the user from having to deal with such technicalities,
simplifying the modeling process. It automatically creates the mentioned files, starts
a KeY proof with reasonable presets, and displays proof status information in its
status bar. Additionally, it supports syntactic extensions unsupported by KeY.

Execution of Abstract Loops
Symbolic execution of loops requires advanced techniques: when loop guards are
symbolic, we cannot know the number of iterations after which the loop will
terminate. Frequently, loop invariants are employed to abstract loop behavior. A
loop invariant is a specification respected by every loop iteration, which can be used
to abstract away from the concrete loop regardless of the number of iterations. It
is generally hard to come up with suitable invariants; indeed, specifications have
been identified as the “new bottleneck” of formal verification (see, e.g., [2]). In
program equivalence proofs using functional verification techniques, one even needs
the strongest possible invariant for each occurring loop ([7], [47, Sec. 5.4.2]).

Luckily, there is a way to generically specify abstract strongest loop invariants
which we can use in AE. Assume a loop with guard g(x) operating on a single
variable x. The formula Inv(x) is a strongest loop invariant for that loop if it is (1)
preserved by every run, and (2) there is exactly one value v s.t. Inv(v) holds and
g(v) does not hold. Condition (2) means that there remains no degree of freedom
in the choice of the value of x after loop termination: Inv describes the exact, final
value. We can rewrite the condition to ∃v; ∀x; ((Inv(x) ∧ ¬g(x)) → x = v).

Generalizing this to a loop with an abstract expression as guard and dynamic
frame specification variables as frame and footprint yields a condition constraining
instantiations of abstract invariant formulas to abstract strongest ones. We can
add this condition as a precondition in REFINITY and use the abstract invariant
formula in our program. We refer to [47, Sec. 6.2] for a full account.

REFINITY can be downloaded at key-project.org/REFINITY/. It
comes with a number of examples to get started with modeling transformation rules.
The next three sections are devoted to particular applications of REFINITY and
AE.

4 Correctness of Refactoring Rules

Refactoring aims to change code in a way that does not alter its external behavior,
yet improves its internal structure [18]. In the context of software reengineering,
refactoring can contribute to better understandability, and thus to the maintainability
of a legacy system. Generally, refactoring is a risky process, especially for poorly
understood legacy systems. It has been shown that common refactorings can easily,
and accidentally, change a program’s behavior [15]. Most refactorings come with

https://www.key-project.org/REFINITY/

Structured Software Reengineering Using Proven-Correct Transformation Rules 215

preconditions. If those are not met, the transformed program might not compile,
or—which is worse—compile, but behave in a different way. Testing contributes to
safe refactoring, but can be misleading for insufficiently robust test suites [5].

In contrast to other code transformations, code refactoring is well supported in
modern IDEs. Unfortunately, relying on refactoring tools does not automatically
guarantee the preservation of program behavior [14, 44], as these tools typically
do not implement all preconditions [45]. Indeed, documentation of preconditions
for safe refactoring in literature is vastly incomplete, as we discovered in our case
study.

Using REFINITY [48], we modeled nine statement-level refactoring techniques
from [17, 18], including two with loops. In an iterative process, we refined the
models by adding additional constraints, until we could prove them semantically
equivalent.

Most practically applied refactorings are confined to method bodies [43].
However, existing work on correctness of code refactoring almost exclusively
regards high-level techniques such as “move field” or “pull up method.” AE and
REFINITY thus focus on a significant blind spot by addressing statement-level
transformations.

By documenting precise preconditions for safe, statement-level refactoring, we
contribute insights useful for building more robust refactoring tools. Those can
eventually be adopted for structured reengineering of legacy systems.

In the remainder of this section, we outline our derived preconditions for
safe applications of the nine considered refactoring techniques. Note that since
we prove equivalence of input and output models, we simultaneously consider
dual refactoring techniques (such as Inline Method for Extract Method). A more
detailed account and full abstract program models are provided in [47, Sec. 6.3 and
Appendix E].

Slide Statements
We already discussed Slide Statements in Sect. 2.1. The idea of this technique is to
reorder statements to keep those together which fulfill a common purpose [18]. Let
frameA/frameB and footprintA/footprintB be the frames and footprints of the par-
ticipating statements A and B, respectively. We derived the following preconditions
(only the first three of which are documented in [18]):

1. frameA and frameB have to be disjoint.
2. frameA and footprintB have to be disjoint.
3. frameB and footprintA have to be disjoint.
4. A may only complete abruptly if B completes normally, and vice Versa.
5. if A completes abruptly, B performs no assignments relevant to the outside, and

vice versa.

Consolidate Duplicate Conditional Fragments
This variation of Slide Statements consists in moving code that is executed in all
branches of a conditional statement to outside that conditional. We modeled four
variants: extracting (1) a common prefix from an if statement, (2) a common

216 Dominic Steinhöfel

postfix from an if statement, (3) a common postfix from a try-catch statement
to after the try-catch, (4) a common postfix from a try-catch statement
to the finally branch of the try- catch. The two variants (3) and (4) are
distinguished due to an ambiguity in the refactoring’s description (“(moving) to the
final block” [17]).

Variant (1) comes with the very same preconditions as Slide Statements. Vari-
ant (2) can be applied without preconditions. The extraction of a postfix from
a try statement (variant (3)) to after that statement can be applied under the
assumption that P does not throw an exception, which also can be deduced from
the description in [17]. Furthermore, P must not access the caught exception object.
Those restrictions also apply for variant (4). For this variant of the refactoring,
schematically

try { Q1 P } catch (T e) { Q2 P }

ù try { Q1 } catch (T e) { Q2 } finally { P }

we derived the additional, unmentioned precondition that Q1 must not complete due
to a return. Otherwise, P would be executed after, but not before the refactoring.

Consolidate Conditional Expression
For the case of sequential or nested conditionals with “the same result” [17], this
refactoring proposes to merge these into a single check to improve clarity. The two
variants of this technique are schematically represented as

if (expr1) { P } if (expr2) { P } if (expr1) { if (expr2) { P } }

ù if (expr1 || expr2) { P } ù if (expr1 && expr2) { P }

Our interpretation of “have the same result” is that P always returns or throws
an exception (as in all examples in [17]). Thus, P is never executed twice in the
sequential case. In the case of nested if statements, P can complete arbitrarily.

Both variants can be applied without additional preconditions. Fowler mentions
that conditionals must not have any side effects, which is, however, only necessary
for logical connectors without short-circuit evaluation (i.e., “|” and not “||”, etc.).

Extract Method, Decompose Conditional, and Move Statements to Callers
Method extraction is a well-known refactoring technique implemented in many
IDEs. According to [17], it may be applied if the extracted code does not assign
more than one local variable referenced in the outside context. We discovered two
additional, unmentioned constraints: (1) The extracted fragment must not return,
since this changes control flow. (2) If the newly created method is a query and the
extracted fragment throws an exception, it must not change the value of the returned

Structured Software Reengineering Using Proven-Correct Transformation Rules 217

query result variable before. For the second precondition, consider the following
example:

1 int avg = ERROR;
2 try {
3 avg = sumOfElems(intList);
4 avg /= intList.size();
5 } catch (ArithmeticException ae) {}
6 averages.add(avg);

ù

int avg = ERROR;
try {

avg = average(intList);

} catch (ArithmeticException ae) {}
averages.add(avg);

When presented an empty list, the computation of the average in Line 4 will
complete abruptly because of a division by 0. Thus, the value of avg will be 0
(the sum of no elements) at Line 6 before the refactoring, while its value after the
transformation is that of the constant ERROR: The method average completes
abruptly and avg is not assigned in Line 3. One might argue that this is an
improvement; still, it is not semantics-preserving. What is more, as we always
prove semantic equivalence, the reverse direction Inline Method is also covered.
In the example, one would introduce a bug when following the reverse direction and
inlining method average.

Decompose Conditional [17] is a variant where condition and both branches of an
if statement are extracted to individual methods. For the branches, this is identical
to Extract Method; there is no precondition for the extracted condition.

Move Statements to Callers [18] is a variant of Inline Method where a prefix
(and not the whole body) of a method is moved to the callers. Conversely, Move
Statements into Method moves statements before an invocation to inside the called
method. The same restrictions as for Extract Method/Inline Method apply.

Replace Exception with Test
In our example for Extract Method above, we used a try statement to react to
the expected behavior that a list can be empty. Instead, we could have tested
the list for emptiness, and reserved exceptions for unexpected behavior. Observe
that then, method extraction of the two statements computing the list’s average
would even have been safe. This observation, on the other hand, suggests that
the Replace Exception with Test is not generally semantics-preserving, though
no restrictions are mentioned in literature. Assume a statement P throws an
exception if the condition cond holds. Replace Exception with Test transforms
“try { P } catch (. . .) { Q }” to “if (!(cond)) { P } else { Q }”.
In our first proof attempt, we found the problem that if P throws an exception, it
might change the relevant state before completing. After the refactoring, this is no
longer the case (cf. the change to the variableavg above). We derived four scenarios
under which this refactoring is safe:

One can safely apply Replace Exception with Test if it either holds that (1) the
frame of P is disjoint from the set of relevant locations and from the frame of Q

(it may still influence Q’s behavior by writing to its footprint), or (2) the frames of
P and of Q are disjoint from the set of relevant locations, and Q always completes
normally, or (3) the frame of P is disjoint from the footprint of Q, and Q has
to assign all locations assigned by P , or (4) statement Q starts with a “rollback”

218 Dominic Steinhöfel

resetting all locations in the frame of P to independent values. None of these
conditions have been mentioned before.

Split Loop
Loop splitting is a common optimization technique which we also address in
Sect. 5 and 6. Apart from being useful for, for example, code parallelization,
it contributes to readability by dividing loops with separate concerns, and
by clearing the way for subsequent optimizations such as the replace-
ment by stream operations. Schematically, “while (g) { P Q }” gets
“while (g) { P } while (g) { Q }”. We isolated the following
sufficient preconditions: (1) The frames of P and Q have to be disjoint from
the footprint of g, and the frame of g is empty, (2) the frames of P and Q have to
be disjoint, (3) the frame of P must be disjoint from the footprint of Q, and vice
versa, (4) the guard g and statement P must not complete abruptly, and (5) Q must
not complete abruptly before g and P committed their final results (or, established
their invariants). None of these have been documented in [17, 18].

Observe that loops over an iterator (with a guard like “it.hasNext()”) do
not satisfy these preconditions: a call to “it.next()” in P or Q changes the state
on which the evaluation of g depends, which is not allowed due to condition (1).
Therefore, it is not safe to apply Split Loop to such loops.

Remove Control Flag
Instead of using a “control flag” for deciding when to terminate a loop, this refactor-
ing suggests to resort to break or continue statements to better communicate
the intended control flow. The shortcut associated by the introduction of abrupt
completion, however, generally breaks semantic equivalence. Any code that would
have been executed after setting the control flag (which is skipped by the shortcut)
must not have effects visible outside the loop. Otherwise, it has to be duplicated:

while (!done && g) { if (cond) { P done=true; } Q }

ù while (g) { if (cond) { P Q break; } Q }

Relying on the mechanics described in [17] likely produces incorrect results.
We proved both Slide Statements and Remove Control Flag using abstract

strongest invariants. For Remove Control Flag, we apply an even stronger type of
loop invariant also considering abrupt completion (standard invariants only have to
hold at loop entry, and not after (abruptly) leaving the loop).

In the subsequent two sections, we regard code transformations from an opti-
mization point of view: how can we transform code such that it can be better
parallelized (Sect. 5), and what is the effect of a transformation on execution cost
(Sect. 6)?

Structured Software Reengineering Using Proven-Correct Transformation Rules 219

5 Restructuring for Parallelization

Legacy systems were typically developed before the widespread use of modern
software engineering techniques [40] like parallel programming interfaces such as
OpenMP. Adapting existing sequential legacy software to parallel environments can
save time and money, while avoiding the loss of domain knowledge. One powerful
method to parallelize programs are parallel design patterns [24, 34] embodying best
practices and correct as well as efficient usage of parallelization interfaces. This even
yields a semi-automatic approach [38] for migrating sequential to parallel code.

As legacy code was not written with parallel patterns in mind, it often does not
allow immediate application of a pattern: a certain amount of prior code restructur-
ing is unavoidable in most cases. The DiscoPoP [38] framework implements a small
number of sequential code transformation schemata that frequently suffice to bring
sequential code into the form required for the application of a parallel pattern. To
ensure that the parallelized program retains the functionality of the original legacy
code, it is essential to ensure the correctness of the sequential restructuring rules.

In [22], we focused on three representative restructuring techniques, isolated con-
ditions under which they are safe to apply, and proved—using Abstract Execution
and REFINITY—that these conditions are sufficiently strong. Those schemata,
previously developed within the DiscoPoP framework, are (1) Computational Unit
(CU) Repositioning, (2) Loop Splitting, and (3) Geometric Decomposition. The
latter two are loop transformations using an advanced memory layout specification
mechanism. The corresponding proofs are, for a change, not fully automatic but
require a small number of manual rule applications (<0.3% of all applications).
We brief the most relevant aspects of the formalizations and proofs for these three
schemata.

CU Repositioning
A CU is a piece of code with little to no internal parallelism, and the basic unit of
dependence graphs generated by DiscoPoP. CU Repositioning prepares code for an
application of the pipeline pattern. In a pipeline, each unit can depend on units in
prior stages, but not in later stages [35]. To enable this pattern, it is sometimes
required to reposition a later occurring CU to the first CU, merging those into
a single CU. In practice, this usually means to move statements occurring after
a loop or call to before that loop/call. CU Repositioning is an instance of Slide
Statements (cf. Sect. 4) with the same preconditions. This is a notable connection
between refactoring and parallelization: the same transformation can serve different
purposes.

Loop Splitting
Loop Splitting is an optimization splitting one into several loops. Here, it is used
to enable the Do-All parallel design pattern, which requires that there are no data
dependences between different loop iterations. When an initial segment of iterations
does have external dependences, we can factor out this segment and apply Do-All to

220 Dominic Steinhöfel

Fig. 6 Abstract memory
layout for Loop Splitting of a
loop with t iterations at index
D

the remaining iterations. Loop Splitting is a special case of the Split Loop refactoring
additionally requiring that the parts that are to be parallelized are independent.

Our REFINITY model thus sets up a more advanced memory layout, as
depicted in Fig. 6. Each of the t loop iterations operate on their own set of memory
locations subFrame(i). Assuming that we factor out the first D + 1 iterations,
the precondition on the correctness of the restructured sequential code is that
subFrame(0) to subFrame(D) (the part pulled out) are disjoint from subFrame(D +
1) to subFrame(t − 1) (the subjects to Do-All). In addition, the location sets
subFrame(D+ 1) to subFrame(t− 1) have to be disjoint from each other, which is
a prerequisite for Do-All.

This modeling technique using a family of location sets required extensions of
AE and REFINITY. The existing proof strategies are yet lacking dedicated support
for the arising constraints, which is why we had to perform 7 simple and 16 non-
trivial proof steps (out of a total of 15,600 steps) manually, which amounts to 0.1%.

Geometric Decomposition
If a program can be understood as a sequence of operations on a main data
structure, often the best way of parallelization is to decompose this structure.
Lists, for example, can be decomposed into substructures in a similar manner as
dividing a geometric region into subregions—hence the name. We focused on the
decomposition of a loop with t iterations into N loops of size t/N. These N loops
can then be run in parallel.

Geometric Decomposition is a generalization of Loop Splitting: instead of
dividing a loop into two parts, it is split into N > 1 parts. Our model uses
a similar abstract memory setup as for Loop Splitting. The essential correctness
precondition is that each bundle of iterations of size t/N has to operate on a separate
memory region.

This transformation is the most complex one proven with AE up to now. The
proof consists of ~84k rule applications, of which 215 are manual (0.26%).

6 Cost Analysis of Transformation Rules

Apart from running previously sequential code in parallel, one can aim at reducing
the execution cost of sequential code by applying optimizing transformations, as
exercised by many compilers [1]. What is more, when transforming code for
different reasons (e.g., during code refactoring), one may be concerned about

Structured Software Reengineering Using Proven-Correct Transformation Rules 221

the impact on execution cost. A good example is Split Loop: naively, one could
use performance as an argument against dividing one loop into two, disregarding
understandability of the resulting code. However, the overhead attached to loop
splitting merely consists in double evaluations of the loop guard, which often is
negligible.

Cost analysis for individual programs has been addressed by a plethora of tools
(e.g., [3, 21, 23]). The relative cost of different concrete programs has been subject to
formal analyses (e.g., [39]). However, the cost impact of program transformations,
which can be coined as the relative cost of two schematic programs, has not been
studied before. We proposed Quantitative Abstract Execution (QAE) [4], the first
approach to analyze the cost of schematic programs and thus of transformations.

Our technique combines a new frontend to the COSTA cost analyzer [3] and an
extension of the AE framework implemented in KeY to a fully automatic toolchain.
Its workflow is visualized in Fig. 7. One starts with an abstract program and a cost
model (number of instructions, allocated memory, etc.) which are input to the cost

analyzer 1 . Each cost model comes in three flavors differing in their strength.
Those are, in descending order, exact, upper bound, and asymptotic cost. Generally,
we try to derive exact bounds first. The output of the analyzer is a cost bound w.r.t.
the chosen cost model and a set of cost invariants and ranking functions for each
loop in the program. We enrich the initial transformation model by translating this
quantitative information to the QAE specification framework. The result of this is

given to the QAE implementation on top of KeY 2 . We use a proof strategy
specifically tailored to the kinds of constraints arising in QAE to obtain a certificate
for the correctness of the cost bounds in the chosen strength. If the certification

process succeeds, we save the certificate and output the bounds 3 . Otherwise,
we weaken the strength of the cost model: from exact cost we descend to upper

bound and later to asymptotic cost. Then, we continue at 1 . Alternatively, one can

inspect the failed proof attempt to obtain feedback for improving components 1

or 2 .

Fig. 7 Workflow of our approach to cost analysis of transformation rules

222 Dominic Steinhöfel

We implemented our toolchain as a command-line application. Excluding the
libraries, and not counting blank lines and comments, it consists of 1,803 lines of
PYTHON code (the extension of the cost analyzer), 703 lines of JAVA code (the
conversion tool transforming the output of the cost analyzer to input files for KeY),
and a 389-line bash script implementing the overall workflow.

We evaluated our approach for seven typical code optimization rules. In six cases,
we used the number of executed instructions as a cost model, and in one case the
heap consumption. The result consists of abstract cost bounds parametric in the
concrete cost of the schematic elements from the transformation model. For the
case of Split Loop, for example, we obtain a bound like (#it + 1) · (2 · costg(fpg) +
costP (fpP) + costQ(fpQ)

)

after the transformation, where #it is the number of
iterations, and costx /fpx the abstract cost placeholder symbol and cost footprint for
APE x, respectively.

Cost analysis took about 50 ms for each problem, while performing the proofs
took between 13 s and 30 s. All proofs worked fully automatically and did not
require manual auxiliary specifications, which was possible for three reasons: (1)
We focused exclusively on quantitative aspects, leaving aside semantic equivalence
(which can be verified separately). Dynamic frames are replaced by representative
sets of program variables that can be handled by the cost analyzer. (2) The cost
analyzer automatically produced cost invariants for loops and ranking functions
needed to show termination. (3) Our new proof strategy, integrating external SMT
solvers and different strategies for handling arithmetic problems, proved to be
effective for all problems at hand.

7 Conclusion and Future Work

Legacy software systems are challenging both researchers and practitioners with
an intricate problem: Transform substantial code bases of high value, but poorly
performing, insufficiently documented, and abandoned by most of their original
developers, into a system implementing the same functionality, but making use of
modern software engineering techniques and best practices.

Software reengineering addresses this problem. It generally consists of two
phases: (1) A requirements extraction and reverse engineering phase aiming for
a better understanding of the legacy system and the reengineering goals; and (2) a
forward engineering phase carrying out the actual transformation.

Phase (2) constitutes the critical step: here, behavior can be altered, and domain
knowledge and ultimately money can be lost. Testing alone is generally insufficient
in the presence of sparse existing test suits, as writing meaningful new test cases
requires insight into the legacy system and the domain knowledge it implements.

We addressed this by proposing structured software reengineering: instead of
changing code arbitrarily and relying on tests (or good luck), we suggest to use
proven-correct code transformations from a predefined catalog for incrementally

Structured Software Reengineering Using Proven-Correct Transformation Rules 223

changing a legacy system. Correctly applied, this approach guarantees the preserva-
tion of all functional behavior of the input system. Furthermore, transformations
can have clear nonfunctional objectives, such as improving readability, runtime
performance, or amenability to parallelization.

To kick-start a catalog of proven transformation techniques, we developed
Abstract Execution (Sect. 2), the first general-purpose framework for automatic rea-
soning about statement-level JAVA code transformations, and REFINITY (Sect. 3),
a workbench for encoding and proving transformations. We used these tools to (1)
derive preconditions for safe code refactoring and prove them sufficient (Sect. 4),
(2) prove the safety of transformations used by code parallelization tools to prepare
sequential code for the application of parallel design patterns (Sect. 5), and (3)
develop an automatic approach to assess the cost impact of program transformations
(Sect. 6).

There are many directions for future work on structured software reengineer-
ing: (i) Extending the catalog of proven-correct transformation techniques. For
transformations above statement level, other techniques could be leveraged. (ii)
Efficient checks for whether a transformation specified in AE is applicable for a
program remain to be implemented (a prototypical demonstrator is contained in
REFINITY). (iii) The AE approach could be adapted to different programming
languages, or even to differing languages for source and target of a transformation,
to address, for example, Cobol programs which the financial industry still relies on.
The feasibility of this is demonstrated by an earlier work addressing the translation
of JAVA to LLVM IR using a simple version of abstract statements and updates [49].
(iv) To find its way into industrial practice, structured software reengineering
needs robust, usable tool support. We envision an IDE with drag’n’drop support
of transformations from a catalog (including documentation) onto the code, with
automatic sanity checks, or, where this is not possible, automatically generated
test cases or at least appropriate warnings. One could even think of automating the
process by automatically matching and applying transformations contributing to a
selected optimization goal.

Software has come to stay. Structured software reengineering contributes to
sustainable software life cycles whenever it stays longer than expected.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools. Addison-
Wesley, Reading (1986)

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.): Deductive
Software Verification—The KeY Book. LNCS, vol. 10001. Springer, Berlin (2016). https://doi.
org/10.1007/978-3-319-49812-6

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost analysis of object-oriented
bytecode programs. Theor. Comput. Sci. 413(1), 142–159 (2012). https://doi.org/10.1016/j.tcs.
2011.07.009

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1016/j.tcs.2011.07.009
https://doi.org/10.1016/j.tcs.2011.07.009

224 Dominic Steinhöfel

4. Albert, E., Hähnle, R., Merayo, A., Steinhöfel, D.: Certified abstract cost analysis. In:
E. Guerra, M. Stoelinga (eds.) Proc. 24th Intern. Conf. on Fundamental Approaches to
Software Engineering (FASE). LNCS, vol. 12649, pp. 24–45. Springer, Berlin (2021). https://
doi.org/10.1007/978-3-030-71500-7_2

5. Alves, E.L.G., Massoni, T., de Lima Machado, P.D.: Test coverage of impacted code elements
for detecting refactoring faults: an exploratory study. J. Syst. Softw. 123, 223–238 (2017).
https://doi.org/10.1016/j.jss.2016.02.001

6. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of symbolic
execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018). https://doi.org/10.1145/
3182657

7. Beckert, B., Ulbrich, M.: Trends in relational program verification. In: Principled Software
Development—Essays Dedicated to Arnd Poetzsch-Heffter on the Occasion of his 60th
Birthday, pp. 41–58 (2018). https://doi.org/10.1007/978-3-319-98047-8_3

8. Bertot, Y., Castéran, P.: Interactive theorem proving and program development—Coq’Art: the
calculus of inductive constructions. Texts in Theoretical Computer Science. An EATCS Series.
Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-07964-5

9. Bubel, R., Roth, A., Rümmer, P.: Ensuring the correctness of lightweight tactics for JavaCard
dynamic logic. Electr. Notes Theor. Comput. Sci. 199, 107–128 (2008). https://doi.org/10.
1016/j.entcs.2007.11.015

10. Burstall, R.M.: Program proving as hand simulation with a little induction. In: Information
Processing, pp. 308–312. Elsevier, Amsterdam (1974)

11. Chikofsky, E.J., Cross, J.H.II..: Reverse engineering and design recovery: a taxonomy. IEEE
Softw. 7(1), 13–17 (1990). https://doi.org/10.1109/52.43044

12. Crotty, J., Horrocks, I.: Managing legacy system costs: a case study of a meta-assessment
model to identify solutions in a large financial services company. Appl. Comput. Inform. 13(2),
175–183 (2017). https://doi.org/10.1016/j.aci.2016.12.001

13. Cuadrado, F., García, B., Dueñas, J.C., G., H.A.P.: A case study on software evolution towards
service-oriented architecture. In: Proc. 22nd Inter. Conf. on Advanced Information Networking
and Applications (AINA), pp. 1399–1404. IEEE Computer Society, Silver Spring (2008).
https://doi.org/10.1109/WAINA.2008.296

14. Daniel, B., Dig, D., Garcia, K., Marinov, D.: Automated testing of refactoring engines. In:
6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pp. 185–194 (2007)

15. Eilertsen, A.M., Bagge, A.H., Stolz, V.: Safer refactorings. In: Margaria, T., Steffen, B. (eds.)
Proc. 7th ISoLA. LNCS, vol. 9952 (2016). https://doi.org/10.1007/978-3-319-47166-2_36

16. Feathers, M.C.: Working effectively with legacy code. In: Zannier, C., Erdogmus, H., Lind-
strom, L. (eds.) Proc. 4th Conf. on Extreme Programming and Agile Methods. LNCS, vol.
3134, p. 217. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-27777-4_42

17. Fowler, M.: Refactoring: Improving the Design of Existing Code. Object Technology Series.
Addison-Wesley, Reading (1999)

18. Fowler, M.: Refactoring: Improving the Design of Existing Code, 2nd edn. Addison-Wesley
Signature Series. Addison-Wesley, Reading (2018)

19. Fürnweger, A., Auer, M., Biffl, S.: Software evolution of legacy systems—a case study of soft-
migration. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M., Camp, O., Cordeiro, J. (eds.)
Proc. 18th Intern. Conf. on Enterprise Information Systems (ICEIS), pp. 413–424. SciTePress,
Setúbal (2016). https://doi.org/10.5220/0005771104130424

20. Godlin, B., Strichman, O.: Regression verification: proving the equivalence of similar pro-
grams. Softw. Test., Verif. Reliab. 23(3), 241–258 (2013). https://doi.org/10.1002/stvr.1472

21. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static estimation of
program computational complexity. In: Shao, Z., Pierce, B.C. (eds.) Proc. 36th POPL. ACM
(2009). https://doi.org/10.1145/1480881.1480898

https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1007/978-3-030-71500-7_2
https://doi.org/10.1016/j.jss.2016.02.001
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-319-98047-8_3
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1016/j.entcs.2007.11.015
https://doi.org/10.1016/j.entcs.2007.11.015
https://doi.org/10.1109/52.43044
https://doi.org/10.1016/j.aci.2016.12.001
https://doi.org/10.1109/WAINA.2008.296
https://doi.org/10.1007/978-3-319-47166-2_36
https://doi.org/10.1007/978-3-540-27777-4_42
https://doi.org/10.5220/0005771104130424
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1145/1480881.1480898

Structured Software Reengineering Using Proven-Correct Transformation Rules 225

22. Hähnle, R., Heydari Tabar, A., Mazaheri, A., Norouzi, M., Steinhöfel, D., Wolf, F.: Safer
parallelization. In: Margaria, T., Steffen, B. (eds.) Proc. 9th Intern. Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA): Engineering Principles,
Part II. LNCS, vol. 12477. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-61470-
6_8

23. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial potential. In:
Gordon, A.D. (ed.) 19th European Symposium Programming Languages and Systems (ESOP).
LNCS, vol. 6012. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-11957-6_16

24. Huda, Z.U., Jannesari, A., Wolf, F.: Using template matching to infer parallel design patterns.
TACO 11(4), 64:1–64:21 (2014). https://doi.org/10.1145/2688905

25. Kassios, I.T.: The dynamic frames theory. Formal Asp. Comput. 23(3) (2011). https://doi.org/
10.1007/s00165-010-0152-5

26. Khadka, R., Batlajery, B.V., Saeidi, A., Jansen, S., Hage, J.: How do professionals perceive
legacy systems and software modernization? In: Jalote, P., Briand, L.C., van der Hoek, A.
(eds.) 36th Intern. Conf. on Software Engineering (ICSE), pp. 36–47. ACM, New York (2014).
https://doi.org/10.1145/2568225.2568318

27. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–394 (1976)
28. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elkaduwe, D.,

Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: formal
verification of an operating-system kernel. Commun. ACM 53(6), 107–115 (2010). https://doi.
org/10.1145/1743546.1743574

29. Klein, G., Nipkow, T.: A machine-checked model for a java-like language, virtual machine,
and compiler. ACM Trans. PLS 28(4), 619–695 (2006)

30. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P., Kiniry, J., Chalin,
P., Zimmerman, D.M., Dietl, W.: JML Reference Manual (2013). http://www.eecs.ucf.edu/~
leavens/JML//OldReleases/jmlrefman.pdf. Draft revision 2344

31. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)
32. London, R.L.: Correctness of a compiler for a lisp subset. In: Proc. ACM Conf. on Proving

Assertions About Programs, pp. 121–127. ACM, New York (1972). https://doi.org/10.1145/
800235.807080

33. Lopes, N.P., Menendez, D., Nagarakatte, S., Regehr, J.: Practical verification of peephole opti-
mizations with alive. Commun. ACM 61(2), 84–91 (2018). https://doi.org/10.1145/3166064

34. Massingill, B.L., Mattson, T.G., Sanders, B.A.: Parallel programming with a pattern lan-
guage. Int. J. Softw. Tools Technol. Transf. 3(2), 217–234 (2001). https://doi.org/10.1007/
s100090100045

35. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for parallel programming. Pearson
Education, London (2004)

36. McCarthy, J., Painter, J.: Correctness of a compiler for arithmetic expressions. Mathematical
Aspects of Computer Science, vol. 1 (1967)

37. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order
Logic. LNCS, vol. 2283. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45949-9

38. Norouzi, M.A., Wolf, F., Jannesari, A.: Automatic construct selection and variable classifica-
tion in OpenMP. In: Eigenmann, R., Ding, C., McKee, S.A. (eds.) Proc. ACM Intern. Conf. on
Supercomputing (ICS). ACM, New York (2019). https://doi.org/10.1145/3330345.3330375

39. Radicek, I., Barthe, G., Gaboardi, M., Garg, D., Zuleger, F.: Monadic refinements for relational
cost analysis. Proc. ACM Program. Lang. 2(POPL), 36:1–36:32 (2018). https://doi.org/10.
1145/3158124

40. Ransom, J., Sommerville, I., Warren, I.: A method for assessing legacy systems for evolution.
In: Proc. 2nd Euromicro Conference on Software Maintenance and Reengineering (CSMR),
pp. 128–134. IEEE Computer Society, Silver Spring (1998). https://doi.org/10.1109/CSMR.
1998.665778

41. Schneider, A.: When companies become prisoners of legacy systems. Wall Street J. (2013).
https://deloitte.wsj.com/cio/2013/10/01/when-companies-become-prisoners/

https://doi.org/10.1007/978-3-030-61470-6_8
https://doi.org/10.1007/978-3-030-61470-6_8
https://doi.org/10.1007/978-3-642-11957-6_16
https://doi.org/10.1145/2688905
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1145/2568225.2568318
https://doi.org/10.1145/1743546.1743574
https://doi.org/10.1145/1743546.1743574
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1145/800235.807080
https://doi.org/10.1145/800235.807080
https://doi.org/10.1145/3166064
https://doi.org/10.1007/s100090100045
https://doi.org/10.1007/s100090100045
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/3158124
https://doi.org/10.1145/3158124
https://doi.org/10.1109/CSMR.1998.665778
https://doi.org/10.1109/CSMR.1998.665778
https://deloitte.wsj.com/cio/2013/10/01/when-companies-become-prisoners/

226 Dominic Steinhöfel

42. Smith, D.R.: KIDS: a semiautomatic program development system. IEEE Trans. Softw. Eng.
16(9), 1024–1043 (1990). https://doi.org/10.1109/32.58788

43. Soares, G., Catao, B., Varjao, C., Aguiar, S., Gheyi, R., Massoni, T.: Analyzing refactorings on
software repositories. In: Proc. 25th Brazilian Symposium on Software Engineering (SBES),
pp. 164–173. IEEE Computer Society, Silver Spring (2011). https://doi.org/10.1109/SBES.
2011.21

44. Soares, G., Gheyi, R., Massoni, T.: Automated behavioral testing of refactoring engines. IEEE
Trans. Software Eng. 39(2), 147–162 (2013). https://doi.org/10.1109/TSE.2012.19

45. Soares, G., Gheyi, R., Serey, D., Massoni, T.: Making program refactoring safer. IEEE Softw.
27(4), 52–57 (2010). https://doi.org/10.1109/MS.2010.63

46. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program synthesis. In:
Proc. 37th POPL, pp. 313–326 (2010). https://doi.org/10.1145/1706299.1706337

47. Steinhöfel, D.: Abstract execution: automatically proving infinitely many programs. Ph.D.
Thesis, TU Darmstadt, Dept. of Computer Science, Darmstadt, Germany (2020). https://doi.
org/10.25534/tuprints-00008540. http://tuprints.ulb.tu-darmstadt.de/8540/

48. Steinhöfel, D.: REFINITY to model and prove program transformation rules. In: Oliveira,
B.C.D.S. (ed.) Proc. 18th Asian Symposium on Programming Languages and Systems
(APLAS). LNCS, vol. 12470. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-
64437-6_16

49. Steinhöfel, D., Hähnle, R.: Modular, correct compilation with automatic soundness proofs. In:
Margaria, T., Steffen, B. (eds.) Proc. 8th ISoLA. LNCS, vol. 11244, pp. 424–447. Springer,
Berlin (2018). https://doi.org/10.1007/978-3-030-03418-4_25

50. Steinhöfel, D., Hähnle, R.: Abstract execution. In: Proc. Third World Congress on Formal
Methods—The Next 30 Years (FM) (2019). https://doi.org/10.1007/978-3-030-30942-8_20

51. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A., Owens, S., Norrish, M.: A new verified compiler
backend for CakeML. In: Proc. 21st ICFP. ACM, New York (2016). https://doi.org/10.1145/
2951913.2951924

52. Vijaya, A., Venkataraman, N.: Modernizing legacy systems: a re-engineering approach. Int. J.
Web Portals 10(2), 50–60 (2018). https://doi.org/10.4018/IJWP.2018070104

53. Winterland, D.: Abstract Execution for Correctness-by-Construction. Master’s thesis, Technis-
che Universität Braunschweig (2020)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1109/32.58788
https://doi.org/10.1109/SBES.2011.21
https://doi.org/10.1109/SBES.2011.21
https://doi.org/10.1109/TSE.2012.19
https://doi.org/10.1109/MS.2010.63
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.25534/tuprints-00008540
https://doi.org/10.25534/tuprints-00008540
http://tuprints.ulb.tu-darmstadt.de/8540/
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-64437-6_16
https://doi.org/10.1007/978-3-030-03418-4_25
https://doi.org/10.1007/978-3-030-30942-8_20
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.1145/2951913.2951924
https://doi.org/10.4018/IJWP.2018070104
http://creativecommons.org/licenses/by/4.0/

Static Worst-Case Analyses and Their
Validation Techniques for Safety-Critical
Systems

Peter Wägemann

Abstract The reliable operation of systems with both timing and energy require-
ments is a fundamental challenge in the area of safety-critical embedded systems.
In order to provide guarantees for the execution of tasks within given resource
budgets, these systems demand bounds of the worst-case execution time (WCET)
and the worst-case energy consumption (WCEC). While static WCET analysis
techniques are well established in the software development process of real-time
systems nowadays, these program analysis techniques are not directly applicable to
the fundamentally different behavior of energy consumption and the determination
of the WCEC. Besides the missing approaches for WCEC bounds, the domain
of worst-case analyses generally faces the problem that the accuracy and validity
of reported analysis bounds are unknown: Since the actual worst-case resource
consumption of existing benchmark programs cannot be automatically determined,
a comprehensive validation of these program analysis tools is not possible.

This summary of my dissertation addresses these problems by first describing
a novel program analysis approach for WCEC bounds, which accounts for tem-
porarily power-consuming devices, scheduling with fixed real-time priorities, syn-
chronous task activations, and asynchronous interrupt service routines. Regarding
the fundamental problem of validating worst-case tools, this dissertation presents
a technique for automatically generating benchmark programs. The generator
combines program patterns so that the worst-case resource consumption is available
along with the generated benchmark. Knowledge about the actual worst-case
resource demand then serves as the baseline for evaluating and validating program
analysis tools. The fact the benchmark generator helped to reveal previously
undiscovered software bugs in a widespread WCET tool for safety-critical systems
underlines the relevance of such a structured testing technique.

P. Wägemann (�)
Friedrich-Alexander University Erlangen-Nürnberg (FAU), Chair in Distributed Systems and
Operating Systems, Erlangen, Germany
e-mail: wagemann@cs.fau.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_11

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_11&domain=pdf
mailto:wagemann@cs.fau.de
https://doi.org/10.1007/978-3-030-83128-8_11

228 P. Wägemann

1 Introduction

One central challenge of the 2020s in the domain of embedded computing systems
is the reliable operation of systems that face energy constraints due to harvesting
energy from the environment [4]. Additional to the existence of energy constraints,
applications increasingly come up with both energy and timing constraints, such as
medical devices (like implantable defibrillators) with harvesting mechanisms [16].
Such systems have to meet real-time guarantees on the timely execution of tasks,
and additionally, tasks have to be executed within given energy budgets due to
being battery-operated and dependent on energy-harvesting techniques. In order to
enable safe scheduling under consideration of available time and energy resources,
developers require the values of the worst-case execution time (WCET) as well as
the worst-case energy consumption (WCEC) of each task.

Static program analysis tools of the system’s program code are the fundamental
means in the domain of real-time systems to determine the tasks’ bound of the
WCET [32]. While practical analyses for the timing-related problem exist for
systems with fixed real-time priorities [1, 5], these techniques are not directly
applicable to the fundamentally different problem of energy consumption and the
assessment of WCEC values. For example, for the WCEC-related problem, analyses
that only consider the real-time priorities of tasks are insufficient: Tasks with a
low real-time priority have the possibility to temporarily activate power-consuming
devices (e.g., transceivers). The activation of a device, in turn, influences the power
demand (and likewise the energy demand over time) of each task in the system
irrespective of their priority. Thus, worst-case energy-consumption analyses need to
consider such mutual influences between tasks in the whole system.

Besides the missing approaches for WCEC values, static worst-case analysis
tools generally face the fundamental problem of missing evaluations and validations
of the reported worst-case bounds: Based on sound abstraction, analysis tools yield
safe resource-consumption bounds. However, the actual WCET and likewise the
actual WCEC of arbitrary (benchmark) programs are unknown since such nontrivial
properties cannot be automatically extracted from existing programs [12, 20]. Due
to this missing knowledge, the assessment of the analysis tool’s accuracy (i.e., the
distance between reported bound and actual worst case) is not possible, and the
analysis pessimism remains unknown. Furthermore, the lack of the actual worst
case leaves the question unanswered whether the implemented analysis contains
software bugs since the actual baseline is not available.

The dissertation [33] addresses the mentioned problems of (1) determining
WCEC bounds, (2) validating static worst-case analyzer, and (3) operating energy-
and time-constrained embedded systems. Figure 1 illustrates the conceptual struc-
ture of the dissertation. The following three solutions are the main contributions of
the dissertation:

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 229

Application

Guarantee

requires

Analyzer:
Upper Bound
(see Section 2)

requires

ECRTS ’15
ECRTS ’18
DARTS ’18

Pessimism
involves Generator:

Benchmarks
(see Section 3)

reveals

WCET ’15
RTSS-WiP ’16

RTAS ’17

Operating System:
Scheduling

RTAS ’16
TECS ’18

used byenables

Fig. 1 Conceptual structure of the dissertation: Runtime guarantees demand upper resource-
consumption bounds, which are determined by static worst-case tools. A benchmark-generation
technique reveals the expected degree of analysis pessimism and thereby validates the reported
results of the analysis tools. An operating-system kernel, which makes use of resource bounds,
eventually enables applications to operate safely

1. The WCEC analyzer SysWCEC determines upper bounds of the energy con-
sumption of tasks in systems that are scheduled with fixed priorities [24, 25,
27] (see Sect. 2).

2. The benchmark generator GenE allows for the first time comprehensive evalua-
tions and validations of static worst-case tools based on automatically generated
benchmarks, whose actual worst case is known [26, 28, 31] (see Sect. 3).

3. The operating-system kernel EnOS supports the reliable operation of systems
with both timing and energy constraints based on a priori knowledge of WCET
and WCEC bounds [29, 30].

While this chapter gives insight into the first two main contributions with the
focus on system-software engineering, the third aspect goes beyond the scope of
this chapter. The chapter is structured as follows: Sect. 2 first presents background
information on the problem of WCEC analyses and gives insight into the analyzer
SysWCEC. The fundamental problem of validating worst-case tools is discussed in
Sect. 3, along with the solution of GenE for this problem. Sect. 4 concludes this
chapter.

2 Worst-Case Analyses

The following Sect. 2.1 presents background information on static worst-case
analyses and the system model of the dissertation. The main problem statement
for WCEC analyses is discussed in Sect. 2.2. Section 2.3 introduces SysWCEC, an
analyzer for system-wide WCEC analyses.

230 P. Wägemann

2.1 Background and System Model

Besides the analysis results’ validity, analysis pessimism is a core problem of static
worst-case analyses. The causes of this problem are outlined as follows.

2.1.1 Analysis Pessimism

Figure 2 depicts the resource consumption (either energy or execution time in this
scenario) for an example task. The resource consumption of the task varies, for
example, with different input data or different initial hardware states when starting to
execute the task. Static worst-case tools rely on pessimistic assumptions during their
analyses that eventually yield safe, however, overestimating bounds. The distance
between the actual worst case and the reported upper bound describes the analyzer’s
pessimism for a safe execution of the task. Static worst-case analysis techniques are
subdivided into the phase of (1) program-flow analysis and (2) hardware analysis.
The first phase, which also known as path analysis, explores the possible program
paths, determines value constraints of variables, and assigns loop bounds in order
to yield upper bounds on executed paths. For example, a mediocre path analysis
without the ability to precisely model path constraints is forced to pessimistically
include all branches with the highest resource demand, irrespective of whether the
combination of these branches is an actually feasible program path. The second
phase of hardware analysis uses the executable machine code of the application and
determines (under consideration of the target’s caching and pipelining behavior) the
actual cost (e.g., in mJ for WCEC or in ms for WCET) of each executed basic block.
Both the path- and hardware-analysis phase contribute to the overall pessimism of
this analysis. Section 3 gives further details on how to isolate and assess the factors
that contribute to an analyzer’s pessimism. Both analyses phases model the runtime
behavior of the executed program on the target platform; thus, analyses demand
detailed knowledge about the targeted system model, which is outlined as follows.

Fig. 2 Histogram of an example task’s resource consumptions

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 231

2.1.2 System Model

All executed code of the application is available for the analysis. As usual for
embedded systems, the number of tasks is statically known. Due to the scenario
of resource-constrained embedded systems, the systems execute the (single) appli-
cation on one processing core as part of a microcontroller unit. In contrast to desktop
machines, these processing cores have limited complexity, which is a beneficial
property for static worst-case analyses and allows determining precise hardware
models. All tasks in the system are handled by the scheduler according to their fixed
priorities. The tasks have the possibility to acquire operating-system resources (e.g.,
mutexes) for synchronization purposes. These resources as well as their associated
users are statically known. Asynchronous interrupts are common in the targeted
systems, for example, in the case of timer interrupts for deadline monitoring. For
static worst-case analyses, these interrupts pose a considerable challenge since
analysis techniques have to encompass the possible dynamic behavior by static
means. A requirement for bounding the occurrence of interrupts is that their arrival
is bounded by a minimum inter-arrival time (i.e., the minimum timespan between
two successive interrupts). For the power consumption of the system (and thus
the energy demand over time), software-controlled devices play an essential role.
Devices are not necessarily external to the microcontroller unit, such as transceiver
devices for communication. Instead, numerous internal devices, such as timer
subsystems or analog-to-digital converters, are usually available. Both internal and
external devices have the same power-consumption behavior in view of a static
analysis tool: The activation of a device leads to an increase of the whole system’s
power demand and the deactivation, in turn, reduces the power, which is further
discussed as follows.

2.2 Problem Statement of WCEC Analysis

For the purpose of energy savings, devices are kept active only for the duration while
their service is required. Figure 3 illustrates such a temporary device activation,
for example, for sending out a packet via a transceiver device. This temporary
device activation is executed by the task τLOW with low priority in contrast to
the second task with higher priority τHIGH . The task τHIGH is, in turn, activated
through an interrupt service routine (ISR). ISRs generally preempt running tasks,
regardless of the tasks’ real-time priority. In the example, the low-priority task’s
device activation leads to an increase of the systems power demand from 5 mW to
35 mW. As illustrated on the right part of Fig. 3, two possible runtime scenarios
exist in view of the energy demand from the start until the completion of τLOW :
In scenario a (see Ea in Fig. 3), the interrupt occurs in the system state of lower
power demand (i.e.,5 mW). In contrast, the ISR is serviced in scenario b (Eb) in the
state of the higher power demand. This second scenario is the worst case in terms
of the energy demand (i.e., area under the power demand). This worst-case scenario

232 P. Wägemann

Fig. 3 The system-state–dependent power demand of the whole system influences the energy
demand of each task

is indeed the worst case for both τLOW (whole area) as well as for τHIGH (red
area below H). The worst case of τHIGH is initiated by the fact that the task starts
executing with a higher initial power demand (caused by τLOW). For the analysis of
the WCET, these context-sensitive power states are irrelevant, and only the unilateral
influence of lower- tasks by higher-priority tasks is of interest. In contrast, WCEC
analyses must account for system-wide de-/activations of devices as well as the
system’s total power state. When reconsidering the example, τHIGH influences
the energy demand of τLOW by a prolonged execution time. However, also τLOW

influences τHIGH due to τLOW ’s responsibility for τHIGH ’s higher power state.
To summarize the observations: WCEC analyses have to consider all device de-
/activations along the system-wide program paths in order to account for the mutual
influences between all tasks in the system.

2.3 SysWCEC: Whole-System WCEC Analysis

The dissertation proposes the SysWCEC approach [25] for solving the problems
mentioned above. In a nutshell, SysWCEC consists of four steps:

1. Decomposition: The code of the application is decomposed into blocks with a
common set of active devices and, thereby, a common power state.

2. Path Exploration: Based on the result of the decomposition, SysWCEC conducts
an explicit enumeration of all possible system-wide program paths.

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 233

3. Problem Formulation: The knowledge about the program paths is the foundation
for the formulation of an integer linear program (ILP).

4. WCEC Determination: Solving the ILP, with its objective of the worst-case
behavior, eventually yields a WCEC bound of the analyzed task.

The following section gives further insight into SysWCEC’s working principle,
based on the example illustrated in Fig. 3.

2.3.1 Decomposition: Power Atomic Basic Blocks

The left part of Fig. 4 illustrates the original system with the three components of
τLOW , τHIGH , and the ISR. The step of the decomposition relies on the existing
technique of atomic basic blocks (ABBs) [21, 22]. The core concept of ABBs is
to split up the application’s code at a system-call location (e.g., task activation,
acquisition of mutex). In other words, each system call forms a terminator in the
atomic–basic-block graph. Each ABB thereby forms an atomically schedulable unit
from the perspective of the system’s real-time scheduler, whereas each ABB may be
executed inside a different system state. The SysWCEC approach extends this notion
of atomic basic blocks to support power-aware considerations. That is, SysWCEC
uses the device-related system calls (i.e., the calls that change the system’s active
device configuration) as additional terminators, which results in the graph of power
atomic basic blocks, or PABBs for short. As a result, the PABB graph holds blocks
with a common set of active devices and, thus, a common state of the power demand.
When considering the result of this decomposition in the running example (see right

Fig. 4 Decomposition into PABB Graph: The original system is decomposed into blocks with a
common set of active devices

234 P. Wägemann

part in Fig. 4), the low-priority task τLOW now consists of three parts: the PABBa

with the code prior to the device activation, PABBb with the code with the active
device, and PABBc with the code after the device deactivation.

2.3.2 Path Exploration: Power-State–Transition Graph

The subsequent step after the decomposition of the original system into the
PABB graph is the path exploration. The input of this analysis step is the PABB
graph, and the output is a power-state–aware graph, named power-state–transition
graph (PSTG). Figure 5 illustrates the working principle of this path exploration
based on the running example: The algorithm starts with the initial power state of
the lower power consumption of 5 mW. The path-exploration algorithm accounts for
the operating-system semantics (e.g., the fixed-priority scheduling strategy) and the
potentially occurring interrupts. For each possible state transition, the PSTG inserts
an edge to a corresponding PSTG node that describes the system state. Regarding
the handling of varying power demands, the algorithm accounts for device-state
changes and for the associated power-demand changes. If no power-state change
happens alongside a transition, the path exploration propagates the current power
state. The algorithm terminates when all possible states are visited, which is possible
due to the bounded number of system states in embedded systems with their fixed
number of tasks. As illustrated on the right side of Fig. 5, the PSTG finally holds
all context-sensitive program paths with their power consumptions. The knowledge

τ
LO

W

Fig. 5 Path Exploration: The SysWCEC approach uses the decomposed system (i.e., PABB graph)
and conducts an explicit enumeration of all possible system paths, which results in the power-state–
transition graph

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 235

about these possible system-wide program paths enables SysWCEC to tackle the
problem of mutual influences between tasks.

2.3.3 ILP Formulation

The PSTG is the main input for the third analysis step in SysWCEC, the formulation
of an integer linear program. SysWCEC exploits the main technique for formulating
maximum flow problems from the well-established approach of the implicit path
enumeration technique (IPET) [14]. The IPET targets single-threaded executions
and uses the program’s control-flow graph as input. Based on the control-flow
graph’s branches, the IPET inserts constraints from the program’s flow into an ILP
formulation. With the same purpose of finding an upper bound of the cost through a
flow graph, the SysWCEC approach leverages the IPET’s single-threaded approach
to the system-state level. SysWCEC now uses the PSTG’s paths as constraints for
an ILP formulation. The objective function of the ILP is shown in the following
Eq. 1, which determines the maximum flow through the system’s state graph of the
analyzed task with its nodes (ν ∈ V) and transitions in between (ε ∈ E):

max
(

(
∑

ν∈V
WCEC(ν) · f (ν))

︸ ︷︷ ︸

nodes

+ (
∑

ε∈E
WCEC(ε) · f (ε))

︸ ︷︷ ︸

edges

)

(1)

The variables f (ν) and f (ε) denote the execution frequencies of the correspond-
ing nodes and edges. Finally, SysWCEC directs this problem formulation to an
optimizing solver (e.g., gurobi, lp_solve), which determines bounds on these
execution frequencies and yields the final WCEC bound for the analyzed task.

2.3.4 Cost Modeling

As shown in Eq. 1, the SysWCEC approach demands for the context-sensitive
costs of each node and each edge in the PSTG. Edge costs are often known
from documentation, such as the time and energy demand for the activation of
an analog-to-digital converter or transceiver. For the nodes V , SysWCEC extracts
the costs from the executed code within the PSTG node. For this cost modeling
of executed code, SysWCEC benefits from a synergy between WCET and WCEC
analysis: The multiplication of the maximum (context-sensitive) power demand,
which is available for each PSTG node, with the worst-case execution time of the
respective node results in an energy-consumption bound for the node. That is, the
cost modeling relies on the subsequent Eq. 2:

WCEC(ν) = Pmax(ν) · WCET (ν) (2)

236 P. Wägemann

That way, the WCEC(ν) value is indirectly determined by means of the max-
imum power, instead of a direct instruction-level energy-consumption modeling
technique [17, 23]. For the determination of WCET (ν), existing timing-analysis
approaches are applied, which also account for the microarchitectural temporal
behavior (i.e., caching and pipelining behavior) on the target machine [19].

By employing these techniques, SysWCEC determines upper bounds on the
energy consumption of a task while considering all other tasks and power-related
activities. However, the question on the accuracy of these resource-consumption
estimates, from the view of the actual worst case, is left unanswered. The following
Sect. 3 focuses on the problem of the analysis accuracy of WCET (ν) values, which,
in turn, contribute to the overall energy-related analysis pessimism according to
Eq. 2.

3 Validation of Worst-Case Analyses

The following Sect. 3.1 outlines the main problems of assessing the accuracy of
static worst-case analysis tools. One solution for these problems is GenE, which is
presented in Sect. 3.2.

3.1 Problem Statement of Validating Worst-Case Analyses

As previously illustrated in Fig. 2, the bound reported by the worst-case analysis
tool overestimates the actual worst-case resource consumption of the analyzed task.
This overestimating scenario assumes a bug-free implementation of the analysis
algorithm, which employs abstractions that make pessimistic assumptions on the
dynamic runtime behavior. Existing approaches for assessing the degree of analysis
pessimism use benchmark suites, which are written on the level of source code (e.g.,
C). The fundamental problem with this type of evaluation is that the actual baseline
is missing, which is the actual worst case serving as ground truth. This problem of
missing baselines also prevails when trying to validate if the reported bound actually
overestimates the actual worst case.

Unfortunately, the actual worst case as well as all relevant program facts, such as
loop bounds or mutually exclusive program paths, cannot be automatically extracted
from existing benchmark programs [12, 20]. Moreover, the manual extraction of
these program facts is labor-intensive and error-prone. Due to the lack of knowledge
on the actual baseline, existing evaluation and validation techniques have limited
significance since the absolute degree of over- or—in the presence of software
bugs—underestimation on a global scale is unknown.

A further problem when conducting evaluations based on existing benchmark
suites is that these programs usually consist of numerous challenges for the static

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 237

analyzer. The task τsort in the following Listing 1 serves as an example to illustrate
this problem. This task’s code sorts the numbers held in the array values.

Listing 1 Listing with several program components that cause the analysis to potentially
overestimate the actual worst-case resource consumption

1 const size_t N = 1024;
2 int32_t values[N];
3

4 TASK(τsort){
5 ...
6 for(i = 0; i < N-1; i++){
7 for(j = 0; j < N-1-i; j++){
8 if(compare(values[j], values[j+1]))
9 swap(&values[j], &values[j+1]);

10

11 }
12 }
13 }

The outer loop in Line 6 has a constant iteration bound, while the inner loop’s bound
in Line 7 is decremented with each iteration of the outer loop. Thereby, this nested
loop has a rectangular loop shape (i.e., N-1·N-1). If analyzers are not able to
precisely bound this type of loop, a pessimistic assumption is a rectangular loop
shape, which overestimates the actual worst case. Furthermore, input-dependent
computations (as outlined in Line 8) cause overestimations if the analyzer cannot
automatically determine value constraints. Eventually, the task τsort is executed
on a hardware platform. Thus, the analyzer has to model the dynamic hardware
behavior (i.e., pipelining, caching) in order to report an accurate bound. All these
factors contribute to the overall analysis pessimism. When having a poor analysis
result, system developers face the problem that the individual causes for the high
degree of overestimation are unknown.

3.2 GenE: Benchmark Generator for WCET Tools

TheGenE benchmark [26, 28] is one possible solution for the problem of conducting
comprehensive evaluations and validations of worst-case tools. GenE generates
benchmarks in a way that all program facts are known. Based on this knowledge
about these facts, GenE is able to determine the actual WCET, which, in turn, serves
as ground truth for the validation of static analyzers.

The basic principle of GenE is explained best by using a metaphor: Benchmarks
are like mazes for analyzers, which need to find a way possible through the maze.
However, even if an analyzer finds a way (i.e., solution), it is still unknown if this
way is the optimal path. GenE follows a different approach: First, GenE predefines a
path and then successively inserts branches around this path. Thereby, GenE builds
the maze around this path. Due to GenE’s generative approach, the optimal (i.e.,
actual worst-case) path is known by construction.

238 P. Wägemann

3.2.1 Program Pattern

For the process of benchmark generation, GenE relies on numerous program pat-
terns. These patterns are implemented inside the generator and have the following
properties and objectives:

• Worst-Case–Aware: The patterns have awareness of their worst-case path and
all relevant program facts, such as possible value constraints on introduced
variables.

• Composable: Patterns have so-called insertion points that offer the possibility to
insert further program patterns in order to generate new, complex benchmarks.

• Realistic: Although GenE produces synthetic benchmarks, it aims to output
realistic benchmark scenarios that pose realistic challenges for worst-case tools.
To solve this problem, GenE uses patterns from existing WCET benchmarking
suites [8, 9]. Other patterns originate from industry applications or from patterns
that are documented in literature to be challenging [3].

• Resilient: Compilers have the possibility to decisively change the programs’
structure when conducting aggressive optimizations. In order to account for such
optimizations, GenE uses patterns that already resemble optimized code.

GenE implements these patterns on the level of the LLVM intermediate representa-
tion [13]. However, for the sake of readability, the following Listing 2 illustrates a
pattern of GenE using the C programming language. This pattern, named init
-once, mimics a lazy initialization of components, which is often found in
embedded systems to initialize hardware components.

Listing 2 Pseudo code of GenE pattern with insertion points. The actual implementation of
program patterns relies on a lower abstraction level (i.e., LLVM intermediate representation).

1 static bool initialized = false;
2 void use_hardware(){
3 if (!initialized){
4 // init hardware
5 init(); // insertion point I1
6 initialized = true;
7 }
8 // use hardware:
9 ... // insertion point I2

10 }

The worst-case analyzer faces the challenge to model the global variable
initialized. If the analysis is not able to handle such value constraints, it
has to pessimistically include the (expensive) call of the function init(), which,
in turn, causes an overestimating WCET estimate.

Line 5 and 9 in this pattern highlight the two insertion points I1 and I2. At
these points in the benchmark, further possible patterns are inserted, which are
summarized in the following enumeration:

• Atomic Patterns: This class of patterns includes arithmetic operations and
assignments of constant or computed values.

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 239

• Loop Patterns: GenE implements several shapes of loops, such as nested loops
or loops with an input-dependent/constant iteration count.

• Path Patterns: The pattern of Listing 2 is part of the path-pattern class. Addition-
ally, this class contains patterns with mutually exclusive paths due to the value
constraints or infeasible paths (i.e., dead code).

The fact that GenE implements these patterns on the low abstraction level of LLVM
intermediate representation gives GenE reasonable control over the generated code
on the machine-code level without the need to implement patterns directly with
a target-specific assembly language. For the mapping between the machine-code
representation and the LLVM representation, GenE relies on the technique of
control-flow–relation graphs [10], which are implemented in the Platin toolkit
for static analyses [18].

3.2.2 Pattern Suites

In order to tackle the problem of monolithic benchmarks, GenE has the notion of
pattern suites. These suites consist of a subset of all available patterns in GenE’s
pattern library. For example, the pattern suite hardware analysis voids the
influence of overestimations due to challenging loops or path constraints. Specifi-
cally, GenE produces here a single program path with the available patterns (i.e.,
introduction of variables, arithmetic operations) in the benchmark. This benchmark
then challenges the analyzers’ ability to model the target’s hardware behavior (i.e.,
caching, pipelining). Regarding the analysis stage of value analysis, GenE supports
a dedicated suite that inserts variables, arithmetic operations on these variables, and
branches based on the value constraints of the computed variables. This suite targets
the analyzers’ performance in view of the value-range–modeling problem. The main
benefit of the pattern suites is the possibility to have benchmarks that are tailored
toward a specific scenario (i.e., hardware or path analysis). These scenarios then
help developers to reveal individual strengths and weaknesses of analyzers.

3.2.3 Inputs and Outputs of GenE

The configuration of the pattern-suite type is one input to the GenE generator,
as shown in Fig. 6. Besides the suites, GenE demands a path budget, which
approximates the number of instructions (on level of the LLVM intermediate
representation) along the generated worst-case path. Increasing the value of the path
budget leads to an increase of the benchmark’s complexity since a higher budget
allows GenE to insert more and longer patterns. A further input is the value for the
worst-case input value. This value is especially important for the generator because
using this value as input for the generated benchmark leads to an execution of the
designated worst-case path. This worst-case input value is an integer and also fulfills
the purpose of the generator’s seed value. That is, varying the worst-case input value

240 P. Wägemann

Pattern-Suite
Type

Worst-Case
Input Value

Path
Budget

Target-Platform
Information

GenE

Pattern
Library

Hardware
Execution

Actual WCETBenchmarkFlow Facts

Benchmark Weaving

Pattern
Selection

Pattern
Weaving

Flow-Fact
Tracking

1. Next pattern

2. Updated program

3. Budget
Program

Input

Patterns

Fig. 6 GenE generates benchmarks such that the actual WCET is available along with the
generated benchmark. This actual WCET value is necessary for comprehensive evaluations and
validations of static analysis tools

also changes the selection of the patterns in a pseudo-random way. By measuring
the execution of the worst-case path (either on the target platform or by means of
a cycle-accurate simulator), GenE determines the actual WCET for the generated
benchmark. Thus, GenE requires information about the selected target-hardware
platform. Besides this actual WCET value, GenE provides the generated program
along with the relevant flow facts (e.g., loop bounds).

3.3 Benchmark Weaving

As illustrated in Fig. 6, the benchmark-weaving algorithm selects a pattern from the
available subset of GenE’s pattern library. After inserting the next pattern into the
benchmark under construction, the algorithm updates the related flow facts.

An important aspect of the benchmark-weaving algorithm is the mechanism for
guaranteeing that the designated worst-case path is—in any case—longer than other
(non–worst-case) program paths through the benchmark. Specifically, GenE uses a
substantially larger path budget for the worst-case path when inserting a branch in

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 241

the control flow. For example, along the worst-case path, GenE uses a factor of 25
more instructions compared to any other non-worst-case path. With that approach
of overweighting the branches of the worst-case path, GenE also compensates
for varying instruction times due to the target’s caching and pipelining behavior.
GenE supports the configuration of this overweighting factor as a target-specific
parameter.

3.4 MetricsWCA: Validation of GenE’s Benchmarks

The generation of synthetic benchmarks brings up the question of whether the
benchmarks are realistic and comparable, for example, with existing benchmark
suites in the context of WCET-analysis research. In order to assess the com-
plexity of GenE’s benchmarks with other benchmarks, the dissertation presents
MetricsWCA [31], code metrics for worst-case analyses. MetricsWCA relies on several
existing complexity measures (CM), which have partly been used in the context
of WCET analysis [9]. Some examples of these complexity measures are the
number of loops (including their nesting depths) CMloops, the depth of the longest
call chain CMcall, or McCabe’s cyclomatic complexity CMcc [15]. A novelty of
MetricsWCA is their property of accounting for the impact of compiler optimizations
on the benchmark under evaluation. That is, MetricsWCA compare the complexity
measures of an optimized version of the benchmark with its original (unoptimized)
variant. The result of this comparison is a resilience factor R for a specific
complexity measure CM:

RCM = CMafter optimization

CMbefore optimization
(3)

As an example, a benchmark has 12 loops (CMloops = 12) and all loops are
optimized out due to the compiler’s loop-unrolling optimization (i.e., CMloops = 0
in the optimized variant). As a consequence, this benchmark has a resilience of
Rloops = 0% against the loop-unrolling optimization. From the perspective of
assessing an analyzer’s performance for determining loop bounds, this benchmark
with zero resilience is unsuited since the problem of loop bounds is already
straightforward to solve for optimizing compilers. The main observations [26] when
applying MetricsWCA to GenE’s benchmarks are (1) a high resilience against com-
piler optimizations and (2) comparable complexities with respect to a benchmark
suite for WCET analysis [8]. These experiments used the standard configuration of
GenE’s path budget. A benefit of GenE’s generative approach is that an increase
of this configuration value leads to benchmarks with larger complexity measures.
Thus, the automatically generated benchmark’s complexity can be tuned in contrast
to existing benchmarks.

242 P. Wägemann

Table 1 GenE detects individual strengths and weaknesses of the tools’ loop-bound analyses

constant input-dependent down-sampling triangular

loop loop loop loop

Analyzer aiT ✓ ✓ ✓ ✗
Analyzer Platin ✓ ✓ ✗ ✓

3.5 Determining Individual Strengths and Weaknesses of
Analyzers with GenE

GenE’s notion of pattern suites enables developers to identify the individual
strengths and weaknesses of analyzers. Table 1 shows results of GenE’s loop-related
suites. The symbol ✓ expresses a successful solution to the respective loop-bound
challenge and ✗ indicates that the analyzer reported unbounded loops.

The constant loop suite inserts the patterns of variables, arithmetic
expressions, and loops with a constant iteration bound. Both WCET analyzers
Platin [18] and aiT [1] can solve this challenge. In the input-dependent
loop suite, the iteration bound is computed based on the benchmark’s input

value, and both analyzers find value constraints to bound these loops. The down
-sampling loop is a loop that decrements the iteration variable in the loop’s
body in addition to the loop’s header. That way, the iteration variable can no
longer be described as a closed-form expression. aiT solves this challenge while
Platin fails. The situation is inverted in the triangular loop suite: Platin
internally makes use of the LLVM compiler infrastructure, which supports scalar-
evolution expressions [2]. Due to the scalar-evolution analysis, Platin is able to
solve the challenge of the triangular loop suite.

3.6 Validation of the aiTWCET Analyzer

With knowledge of the ground truth, the actual WCET, GenE evaluates the
overestimation of analyzers and likewise validates that the reported estimate indeed
bounds the worst case. In order to conduct such evaluations, GenE generated 10,000
benchmarks for an ARM Cortex-M4 platform (Infineon XMC4500) and compared
the actual WCET with the value reported by the commercial analyzer aiT. Figure 7
shows a histogram of the occurrences of the overestimations. In these experiments,
the geometric mean of all overestimations is 23%. An overestimation of 0% would
indicate that all reported bound are equal to the respective actual worst case.
However, these experiments also revealed reported values where aiT erroneously
underestimated the actual WCET. Based on these benchmarks, AbsInt, the company
behind aiT, could confirm these underestimations. According to AbsInt, these
bugs were caused by an erroneous hardware model for memory accesses and the
pipelining behavior. Subsequently, AbsInt released a revised version of aiT, where

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 243

200 250
0

50

100

150

200

250

300

350

400

450

Geometric
Mean

Opti-
mum

Fig. 7 Histogram of over- and underestimations reported by aiT based on 10,000 automatically
generated benchmark programs. A value of 0% indicates the optimum (i.e., no analysis pessimism).
All (red) values smaller than 0% are underestimations and, consequently, show erroneous analysis
reports

no underestimation could be found with the help of GenE. With regard to the fact
that developers use static WCET analyses for highly safety-critical systems, the
benchmark generator GenE is a suitable software tool for testing analyzers and
increasing their quality.

3.7 Related Work and Generators in the GenE Family

The original idea for the development of the GenE benchmark generator is based
on the Csmith tool [34]: Csmith generates programs in the C programming
language (i.e., C99) for the purpose of stress-testing compilers. Using the bench-
marks generated by Csmith, 325 previously unknown bugs were revealed in both
open-source and commercial C compilers. These results emphasize the relevance of
such structured testing tools. With the same intention and the focus on evaluating
bug-detection tools, the program Bug-Injector [11] produces benchmarks by
relying on bug templates. In contrast to these tools, GenE targets comprehensive
evaluations of static WCET analyzers.

Besides the originalGenE tool for the main aim of WCET analysis, we developed
GenEE, a benchmark generator that specifically targets WCEC analyses [7].
Furthermore, we proposed Taskers, a generator for whole real-time systems with
multiple tasks [6].

244 P. Wägemann

3.7.1 Making Use of Analysis Pessimism on System Level

GenE supports with its specific pattern suites the assessment of individual strengths
and weaknesses of WCET analyzers. Although this assessment shows the specific
optimization potential of analysis techniques, pessimism remains in the safe upper
bounds. Analysis and runtime pessimism (due to not always executing the worst
case) then lead to slack resources during the system’s runtime (i.e., unused execution
time or energy resources). Slack is an undesired property of resource-constrained
systems since these systems aim to exploit best the available resources. In order
to mitigate this problem of slack and support efficient operation, the dissertation
presents the EnOS operating-system kernel [29, 30]. The basic idea of EnOS
is the awareness of mentioned analysis pessimism. That way, EnOS supports
optimistic scheduling for uncritical tasks (with the use of monitoring techniques)
and guarantees the reliable execution under both timing and energy constraints of
critical tasks.

4 Conclusion

The dissertation [33] targets the reliable operation of safety-critical systems with
both timing and energy constraints. The first main contribution is the program
analyzer SysWCEC that determines upper energy-consumption bounds of tasks.
SysWCEC implements an analysis technique for the modeling of temporarily active
power consumers. Furthermore, the analyzer accounts for the scheduling semantics
with fixed priorities, the tasks’ use of operating-system resources (e.g., mutexes),
synchronous task activations, and asynchronous interrupts.

Determining the degree of analysis pessimism is a fundamental problem in the
domain of worst-case analyses. The dissertation solves the problem of evaluating
and validating WCET analysis tools by means of the GenE benchmark generator.
GenE combines small program patterns while keeping track of program-flow facts
and, thereby, generates new complex benchmarks, whose worst-case behavior is
known. The fact that GenE’s generated benchmarks helped to discover previously
undetected software bugs in a commercial WCET analysis tool emphasizes the
relevance of such structured analysis-testing tools.

The source-code repositories of SysWCEC, GenE, MetricsWCA, and EnOS are
available online:
https://gitlab.cs.fau.de/syswcec
https://gitlab.cs.fau.de/gene
https://gitlab.cs.fau.de/enos

(continued)

https://gitlab.cs.fau.de/syswcec
https://gitlab.cs.fau.de/gene
https://gitlab.cs.fau.de/enos

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 245

Dataset that helped to reveal software bugs in the aiT tool:
https://www4.cs.fau.de/Research/GenE/

References

1. AbsInt: aiT WCET analyzers. https://www.absint.com/ait/
2. Bachmann, O., Wang, P.S., Zima, E.V.: Chains of recurrences—a method to expedite the

evaluation of closed-form functions. In: Proceedings of the International Symposium on
Symbolic and Algebraic Computation (ISSAC ’94), pp. 1–8 (1994)

3. Chu, D.H., Jaffar, J.: Symbolic simulation on complicated loops for WCET path analysis. In:
Proceedings of the 9th International Conference on Embedded Software (EMSOFT ’11), pp.
319–328 (2011)

4. Cohen, A. et al.: Inter-disciplinary research challenges in computer systems for the 2020s.
Tech. rep., USA (2018)

5. Dietrich, C., Wägemann, P., Ulbrich, P., Lohmann, D.: SysWCET: Whole-system response-
time analysis for fixed-priority real-time systems. In: Proceedings of the 23nd Real-Time and
Embedded Technology and Applications Symposium (RTAS ’17), pp. 37–48 (2017)

6. Eichler, C., Distler, T., Ulbrich, P., Wägemann, P., Schröder-Preikschat, W.: TASKers: A whole-
system generator for benchmarking real-time-system analyses. In: Proceedings of the 18th
International Workshop on Worst-Case Execution Time Analysis (WCET ’18), pp. 6:1–6:12
(2018)

7. Eichler, C., Wägemann, P., Schröder-Preikschat, W.: GenEE: a benchmark generator for
static analysis tools of energy-constrained cyber-physical systems. In: Proceedings of the 2nd
Workshop on Benchmarking Cyber-Physical Systems and Internet of Things (CPS-IoTBench
’19) (2019)

8. Falk, H., Altmeyer, S., Hellinckx, P., Lisper, B., Puffitsch, W., Rochange, C., Schoeberl, M.,
Sørensen, R., Wägemann, P., Wegener, S.: TACLeBench: a benchmark collection to support
worst-case execution time research. In: Proceedings of the 16th International Workshop on
Worst-Case Execution Time Analysis (WCET ’16), pp. 1–10 (2016)

9. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET benchmarks:
Past, present and future. In: Proceedings of the 10th International Workshop on Worst-Case
Execution Time Analysis (WCET ’10), pp. 137–147 (2010)

10. Huber, B., Prokesch, D., Puschner, P.: Combined WCET analysis of bitcode and machine
code using control-flow relation graphs. In: Proceedings of the 14th Conference on Languages,
Compilers and Tools for Embedded Systems (LCTES ’13), pp. 163–172 (2013)

11. Kashyap, V., Ruchti, J., Kot, L., Turetsky, E., Swords, R., Pan, S.A., Henry, J., Melski, D.,
Schulte, E.: Automated customized bug-benchmark generation. In: Proceedings of the 19th
International Working Conference on Source Code Analysis and Manipulation (SCAM ’19),
pp. 103–114 (2019)

12. Knoop, J., Kovács, L., Zwirchmayr, J.: WCET squeezing: On-demand feasibility refinement for
proven precise WCET-bounds. In: Proceedings of the 21st Conference on Real-Time Networks
and Systems (RTNS ’13), pp. 161–170 (2013)

13. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program analysis &
transformation. In: Proceedings of the International Symposium on Code Generation and
Optimization (CGO ’04), pp. 75–86 (2004)

14. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit path enumer-
ation. In: ACM SIGPLAN Notices, vol. 30, pp. 88–98 (1995)

15. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)

https://www4.cs.fau.de/Research/GenE/
https://www.absint.com/ait/

246 P. Wägemann

16. Ouyang, H., Liu, Z., Li, N., Shi, B., Zou, Y., Xie, F., Ma, Y., Li, Z., Li, H., Zheng, Q., Qu, X.,
Fan, Y., Wang, Z.L., Zhang, H., Li, Z.: Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821
(2019)

17. Pallister, J., Kerrison, S., Morse, J., Eder, K.: Data dependent energy modeling for worst case
energy consumption analysis. In: Proceedings of the 20th International Workshop on Software
and Compilers for Embedded Systems (SCOPES ’17), pp. 51–59 (2017)

18. Puschner, P., Prokesch, D., Huber, B., Knoop, J., Hepp, S., Gebhard, G.: The T-CREST
approach of compiler and WCET-analysis integration. In: Proceedings of the 9th Workshop
on Software Technologies for Future Embedded and Ubiquitious Systems (SEUS ’13), pp.
33–40 (2013)

19. Raffeck, P., Eichler, C., Wägemann, P., Schröder-Preikschat, W.: Worst-case energy-
consumption analysis by microarchitecture-aware timing analysis for device-driven cyber-
physical systems. In: Proceedings of the 19th International Workshop on Worst-Case Execution
Time Analysis (WCET ’19), pp. 6:1–6:12 (2019)

20. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. Am.
Math. Soc. 74(2), 358–366 (1953)

21. Scheler, F.: Atomic Basic Blocks: Eine Abstraktion für die gezielte Manipulation der
Echtzeitsystemarchitektur. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Technische Fakultät (2011)

22. Scheler, F., Schröder-Preikschat, W.: The real-time systems compiler: migrating event-
triggered systems to time-triggered systems. Softw. Practice Exp. 41(12), 1491–1515 (2011)

23. Sieh, V., Burlacu, R., Hönig, T., Janker, H., Raffeck, P., Wägemann, P., Schröder-Preikschat,
W.: An end-to-end toolchain: from automated cost modeling to static WCET and WCEC
analysis. In: Proceedings of the 20th International Symposium on Real-Time Distributed
Computing (ISORC ’17), pp. 1–10 (2017)

24. Wägemann, P., Dietrich, C., Distler, T., Ulbrich, P., Schröder-Preikschat, W.: Whole-system
WCEC analysis for energy-constrained real-time systems (artifact). Dagstuhl Artifacts Series
4(2), 7:1–7:4 (2018)

25. Wägemann, P., Dietrich, C., Distler, T., Ulbrich, P., Schröder-Preikschat, W.: Whole-system
worst-case energy-consumption analysis for energy-constrained real-time systems. In: Pro-
ceedings of the 30th Euromicro Conference on Real-Time Systems (ECRTS ’18), vol. 106,
pp. 24:1–24:25. Dagstuhl (2018)

26. Wägemann, P., Distler, T., Eichler, C., Schröder-Preikschat, W.: Benchmark generation for
timing analysis. In: Proceedings of the 23rd Real-Time and Embedded Technology and
Applications Symposium (RTAS ’17), pp. 319–330 (2017)

27. Wägemann, P., Distler, T., Hönig, T., Janker, H., Kapitza, R., Schröder-Preikschat, W.: Worst-
case energy consumption analysis for energy-constrained embedded systems. In: Proceedings
of the 27th Euromicro Conference on Real-Time Systems (ECRTS ’15), pp. 105–114. IEEE,
Piscataway (2015)

28. Wägemann, P., Distler, T., Hönig, T., Sieh, V., Schröder-Preikschat, W.: GenE: A benchmark
generator for WCET analysis. In: Proceedings of the 15th International Workshop on Worst-
Case Execution Time Analysis (WCET ’15), vol. 47, pp. 33–43 (2015)

29. Wägemann, P., Distler, T., Janker, H., Raffeck, P., Sieh, V.: A kernel for energy-neutral real-
time systems with mixed criticalities. In: Proceedings of the 22nd Real-Time and Embedded
Technology and Applications Symposium (RTAS ’16), pp. 25–36 (2016)

30. Wägemann, P., Distler, T., Janker, H., Raffeck, P., Sieh, V., Schröder-Preikschat, W.: Operating
energy-neutral real-time systems. ACM Trans. Embedded Comput. Syst. 17(1), 11:1–11:25
(2018)

31. Wägemann, P., Distler, T., Raffeck, P., Schröder-Preikschat, W.: Towards code metrics for
benchmarking timing analysis. In: Proceedings of the 37th Real-Time Systems Symposium
Work-in-Progress Session (RTSS WiP ’16) (2016)

32. Wilhelm, R. et al.: The worst-case execution-time problem—overview of methods and survey
of tools. ACM Trans. Embedded Comput. Syst. 7(3), 1–53 (2008)

Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical. . . 247

33. Wägemann, P.: Energy-constrained real-time systems and their worst-case analyses. Ph.D. The-
sis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2020). https://nbn-resolving.
org/urn:nbn:de:bvb:29-opus4-146935

34. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in C compilers. In:
Proceedings of the 32nd Conference on Programming Language Design and Implementation
(PLDI ’11), pp. 283–294 (2011)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-146935
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-146935
http://creativecommons.org/licenses/by/4.0/

Improving the Model-Based Systems
Engineering Process

Michael von Wenckstern

Abstract Modern embedded software systems are becoming more and more com-
plex. Engineering embedded systems raise specific challenges that are rarely present
in other software engineering disciplines due to the systems’ steady interactions
with their environment. Research and industry often describe embedded systems
as component and connector models (C&C). C&C models describe the logical
architecture by focusing on software features and their logical communications.
In C&C models, hierarchical decomposed components encapsulate features, and
connectors model the data flow between components via typed ports. As extra-
functional properties, for example, safety and security, are also key features of
embedded systems, C&C models are mostly enriched with them. However, the
process to develop, understand, validate, and maintain large C&C models for
complex embedded software is onerous, time consuming, and cost intensive. Hence,
the aim of this chapter is to support the automotive software engineer with: (i)
automatic consistency checks of large C&C models, (ii) automatic verification of
C&C models against design decisions, (iii) tracing and navigating between design
and implementation models, (iv) finding structural inconsistencies during model
evolution, (v) presenting a flexible approach to define different extra-functional
properties for C&C models, and (vi) providing a framework to formalize constraints
on C&C models for extra-functional properties for automatic consistency checks.

1 Introduction

The industry area of embedded and cyber-physical systems is one of the largest and
it influences our daily life. The global embedded systems marked are getting up to
225 billion US dollar by end of 2021 [24]. Example domains of embedded systems

M. von Wenckstern (�)
Software Engineering, RWTH Aachen University, Aachen, Germany
e-mail: vonwenckstern@se-rwth.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_12

249

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_12&domain=pdf
mailto:vonwenckstern@se-rwth.de
https://doi.org/10.1007/978-3-030-83128-8_12

250 M. von Wenckstern

are automotive, avionics, robotics, railway, production industry, telecommunication,
consumer electronics, and much more.

Model-based engineering, especially component and connector (C&C) models
to describe logical architectures, is one common approach to handle the large
complexity of embedded systems. Components encapsulate software features; the
hierarchical decomposition of components enables formulating logical architectures
in a top-down approach. Connectors in C&C models describe the information
exchange via typed ports; they model black-box communication between software
features.

The current development of complex C&C-based embedded systems in industry
mostly involves the following steps [1, 6]: (1) formulating functional and extra-
functional requirements as text in IBM Rational DOORS; (2) creating a design
model of the software architecture including its environment interactions in SysML;
(3) developing a complete functional/logical model to simulate the embedded
system in Simulink; and (4) system implementation based on available hardware
in C/C++ satisfying all extra-functional properties.

This current development process has the following disadvantages [9]: (a) SysML
models do not follow a formalized approach leading to misunderstandings; (b) the
check between the informal SysML architecture design and the Simulink model
is done manually, and thus, error prone and time consuming; (c) refactoring of
Simulink models (e.g., dividing a subsystem) needs manual effort in updating the
design model; and (d) most tools do not support a generic approach for different
extra-functional property kinds, and thus, these properties are modeled as comments
or stereotypes where consistency checks can only be done manually.

My research [23] aims to improve the development process of large and complex
C&C models for embedded systems by providing model-based methodologies to
develop, understand, validate, and maintain these C&C models. Concretely, my
concepts support the embedded software engineer with: (i) automatic consistency
checks of C&C models; (ii) automatic verification of logical C&C models against
their design decisions; (iii) automatic addition of traceability links between design
and implementation models; (iv) finding structural inconsistencies during model
evolution; (v) providing a flexible framework to define different extra-functional
property types; (vi) presenting an OCL framework to specify (company-specific)
constraints about structural or extra-functional properties for C&C models; and (vii)
generation of positive or negative witnesses to explain why a C&C model satisfies
or violates its extra-functional or structural constraints or its design decisions.

Prototype implementations of above-mentioned concepts and an industrial case
study in cooperation with Daimler AG show promising results in improving the
model-based development process of embedded and cyber-physical systems in
industry.

This chapter is a summary of the PhD thesis Verification of Structural and
Extra Functional Properties in Component and Connector Models for Embedded
and Cyber Physical Systems [23]. This chapter focuses on examples how the
development process for the left part of the V-model can be improved. Detailed
related work analyses comparing different tools and concepts like Mentor Capital,

Improving the Model-Based Systems Engineering Process 251

Polarsys Arcadia, PREEvision [23, Section 2.3], as well as related C&C (modeling)
languages such as AADL, ACME, Ada, AutoFOCUS, AUTOSAR, LabView, MARTE,
Modelica, SysML, SystemC, Verilog, and more [23, Section 3.2 and Section 5.2] are
discussed in the PhD thesis.

2 Systems Engineering Process at Daimler AG

This section presents results of our case study with Daimler AG in 2017 [1].
The case study included several interviews with an employee at Daimler AG to
understand the current model-based and component-based development process as
well as the challenges engineers are facing.

2.1 Current Development Process at Daimler AG

Both ISO 26262 Road vehicles—Functional safety and ISO/SAE 21434 Road
vehicles—Cybersecurity engineering follow the V-model and are the international
standards for automotive industry. The steps on the left side of the V-model from top
to bottom are system design, specification of software safety/security requirements,
software architectural design, and software unit design and implementation; the
steps on the right side from bottom to top are software unit testing, software
integration testing, verification of software safety/security requirements, and item
integration and testing [3].

The design of a system is mostly described as textual requirements with links
to each other; one famous requirement management tool is IBM Rational DOORS
(short DOORS). Later extra-functional requirements for safety or security of a
system’s design are identified; examples for safety (security process is based on the
safety one) are functional safety concept, technical safety concept, system safety,
and hardware failures. These extra-functional and stakeholder requirements are
integrated into existing requirements of a system’s design.

The design of a software architecture is mostly modeled in SysML block diagram
definitions. Common SysML tools in industry are Enterprise Architect, ArchiMate,
Metropolis, Cameo Systems Modeler, and PTC Integrity Modeler. The requirements
are modeled separately in these tools and are linked to the corresponding modeling
elements, so that traceability is always given [19].

After the design (high-level interaction between components themselves and
their environment) is modeled in SysML, engineers at Daimler AG create manually
an executable model in Simulink regarding to the previously defined design deci-
sions. To have the traceability between requirements, SysML design models, and
Simulink implementation models, engineers at Daimler AG add to every subsystem
in SysML and in Simulink an information block containing a link to the requirement

252 M. von Wenckstern

specification in DOORS [1]. Adding and maintaining these links manually is time
consuming and error prone.

This development process has the following disadvantages:

• The check between the informal SysML architecture design and the Simulink
model is done manually.

• The requirement links must be created manually for architectural design model
and for the Simulink model.

• There exists no automatic check in finding outdated Simulink subsystems after
updating SysML design models (e.g., due to model evolution).

• If Simulink models are refactored (e.g., subsystem is split into several ones), it
may occur that the SysML design model is not updated, and then the architecture
model becomes obsolete.

• Early inconsistencies in the SysML software architecture design, created by
different persons or even different teams in large companies, must be detected
manually.

2.2 Improving the Development Process at Daimler AG

To mitigate most of these above-mentioned disadvantages, this subsection presents
a slightly modified development process and verification tools, as shown in Fig. 1.
The advantage of this new process is that it is completely compatible to existing
tools (cf. right side of Fig. 1). The general workflow of this new process including
existing tools is:

1. DOORS requirements are automatically extracted to a set of textual require-
ments.

2. Engineers create manually for each requirement a C&C high-level design
model.

3. C&C design models are automatically transferred to graphical SysML diagrams.
4. The links between DOORS requirement IDs and C&C design models enable

to automatically derive tracing information between DOORS and SysML
diagrams.

5. Synthesis algorithms automatically check against structural inconsistencies in
high-level C&C design models.

6. Engineers add manually extra-functional properties to the C&C high-level
design model based on the textual requirements.

7. The OCL (Object Constraint Language) framework checks automatically the
consistence of the added extra-functional requirements of the high-level design.

8. Engineers create manually the functional C&C model based on textual require-
ments and the C&C high-level design models.

9. Verification automatically checks whether the functional C&C model satisfies
all C&C high-level design models.

Improving the Model-Based Systems Engineering Process 253

10. The functional C&C model is automatically transformed to a Simulink model.
11. The result of step 9 enables to automatically derive tracing information between

all SysML diagrams and the one Simulink model as well as tracing information
between all DOORS requirements and the one Simulink model.1

12. The Simulink model is executed. Measured runtime information (e.g., timing)
automatically enriches the C&C model via extra-functional properties.

13. Engineers enrich manually the C&C model with extra-functional properties
based on user manuals of software or hardware components, for example, price
or ASIL.

14. The OCL framework checks automatically the consistency of the extra-
functional properties added in steps 12 and 13 to the functional C&C model.

15. The OCL framework in combination with the verification in step 9 validates
automatically whether all extra-functional properties in the functional C&C
model satisfy all extra-functional requirements in all C&C design models.

Even though the new toolchain is larger, there are less manual steps needed due to
the higher automation of the steps in this new toolchain. Creating SysML diagrams

Fig. 1 Modified development process, compatible to V-model (only left side of V-model is shown
here)

1 Due to existing tracing information between SysML and DOORS due to steps 2 and 3.

254 M. von Wenckstern

based on textual requirements needs one manual step in the existing approach:
DOORS →2 SysML diagrams. The improved toolchain also needs only one manual
step to translate textual requirements to C&C high-level design models as shown
in Fig. 1: DOORS ⇒ Textual Requirements → C&C High-Level Design Models
⇒ SysML diagrams. The same holds to create Simulink models based on DOORS
requirements and SysML diagrams, where the additional manual step in the existing
approach is to create Simulink models manually, whereas in the new toolchain the
functional C&C models are created manually: DOORS → SysML diagrams →
Simulink model ≡ DOORS ⇒ Textual Requirements → C&C High-Level Design
Models → Functional C&C Model ⇒ Simulink model.

In the existing approach, the tracing between DOORS and SysML diagrams,
between DOORS and Simulink model, as well as between SysML diagrams and
Simulink model is done manually. In contrast, the new toolchain does the
tracing between C&C high-level design models and functional C&C model
automatically. Thus, only the tracing between textual requirements and C&C high-
level design models is done implicitly manually as each C&C design model belongs
to one requirement. Based on this implicit relation between textual requirements
and C&C high-level design models as well as the automatically generated tracing
between C&C high-level design models and functional C&C model, the tracing for
textual requirements and functional C&C model can also be done automatically. The
two automatic transformations enable to automatically derive the tracing between
DOORS requirements and the Simulink model. This means three manual tracing
relations in the old approach are equivalent to only one manual tracing relation in
the new toolchain. Thus, the new toolchain saves a lot of work, especially in agile
systems engineering, and it prevents manual tracing errors.

Furthermore, the new toolchain adds due to its unique semantics many
additional automatic verifications to ensure better model quality and to prevent
modeling errors as early as possible: steps 5, 7, 9, 14, and 15.

C/C++ compiler/linker toolchains create one executable file based on many
C/C++ source code text files. In a similar way, the EmbeddedMontiArc toolchain
creates one C&C high-level design based on multiple textual text input files. The
combined C&C high-level design can be graphically displayed and/or logged into
one “merged” larger text file. The advantage of splitting up the design decisions
into several textual files (similar as programming languages do it) is the ability to
version and merge changes in these files separately. Commercial SysML tools such
as PTC Integrity Modeler (short PTC IM) use a database approach, which supports
to version only the entire (design) model including all SysML elements used by
different development teams. In PTC IM different teams work in one database
model, as otherwise (tracing) links between elements—created in different layers or
by different teams—are not possible. In contrast to the database linking approach,
the presented textual C&C modeling language family (cf. Sect. 4) to specify C&C
high-level designs as well as functional C&C models uses readable full qualified

2 ⇒: automatic transformation; →: manual transformation.

Improving the Model-Based Systems Engineering Process 255

names (instead of generated encrypted IDs by PTC IM) to establish the linking
process.

The synthesis algorithm enables to check the C&C high-level design against
inconsistencies [10, 12]. If this algorithm generates a functional C&C model based
on the specified high-level design, then the design is consistent; otherwise the
specified design is inconsistent. For inconsistent designs, the synthesis algorithm
generates user-friendly error messages, which include a natural text of the problem
description, and a minimal C&C witness containing the involved components
causing the conflict. Since these checks are completely automatic, they can be
integrated in a commit-based or nightly continuous integration process. These
algorithms are described by Maoz and Ringert [15].

The high-level design can be enriched with extra-functional properties such as
safety, performance, or security ones. The strong typed tagging mechanism allows
to tag only correct elements which reduces human errors (e.g., shifting a line
lower). An example of a check for the tagging mechanism is unit correctness: A
velocity tag of a car cannot be 9 kg. Since for each extra-functional property
consistency constraints can be defined, the validation framework (cf. Sect. 7) can
check full-automatically (no further user action is required) the correctness of the
design model with its enriched extra-functional properties. For example, the tool
can check whether the price of a component is larger than the sum of the prices of
its subcomponents.

EmbeddedMontiArc (cf. Sect. 6) is a textual modeling language extending
Simulink with new features such as complete unit support as well as component
and port arrays. These extensions facilitate an easier description of functional
C&C models: (1) Model references must not be copied to be used multiple times,
and (2) stronger types with units prevent inconsistencies when connecting ports.
Additionally, our textual approach is based on the modular Java class concept that
supports to split one model into several textual files to be modified and versioned
by different teams.

Furthermore, the layout algorithm [23, Subsection 8.5.1.] creates nice graphical
representations with boxes and lines of the textual model. These graphical represen-
tations enable an easier navigation between different components. Furthermore, the
layout algorithm avoids manually (and time-consuming) adaptions of the graphical
model when adding new ports.3 Based on the automatically calculated layout of
the textual model, a MATLAB script file containing Simulink API calls with x and
y coordinates of subsystems creates the Simulink model. Hence, the here presented
workflow can be easily integrated into the existing workflow of Daimler AG being
based on SysML and Simulink tools.

Additionally, my PhD thesis [23, Section 7.4f] also defines formally when a
functional model satisfies all its design models. If the design verification was
successful, then the tooling infers automatically all tracing information/links. In

3 Simulink does not have a layout algorithm, yet [7]. But other modeling tools such as Ptolemy II
[4] and LabView [18] have one.

256 M. von Wenckstern

case the functional model does not satisfy the design model, then non-satisfaction
witnesses with user-friendly error messages pointing directly to the error locations
are generated.

Besides the case study focusing on structural consistency checks which is
explained in this chapter, there exist also case studies with Daimler AG [21],
BMW Group [9], and FEV GmbH [20] with focus on behavioral parts of C&C
and Simulink models. All these case studies in the automotive domain helped
to understand the model-based systems engineering process in detail and how to
improve it.

3 Creating C&C High-Level Designs Based on Requirements

In step 2 in Sect. 2.2 the engineer creates for each textual requirement, a C&C high-
level design model. The top part of Fig. 2 shows one requirement of the ADAS
(advanced driver assistant system) requirement FA-6 based on our case study with
Daimler AG. The prefix FA is an abbreviation of Fahrerassistenzsystem
which is the German word for ADAS. The requirementFA-6 is part of the functions
describing the Distronic feature.

The bottom part of Fig. 2 shows the manual created C&C view. The word C&C
view is used as synonym for C&C high-level design in this chapter. This view views

Fig. 2 Requirement FA-6 of unit Distronic of ADASv4 (top) and the view created for this
requirement by the domain experts (bottom); copied from [1, Fig. 5].

Improving the Model-Based Systems Engineering Process 257

the high-level architectural design model for this specific requirement, for example,
how the dataflow between different C&C model should be. The colors in the text and
in the C&C view illustrate the mapping between both. The names in the if condition
phrase are mapped to input ports, as the Distronic component needs to read
these values to produce the correct reaction.

The solid arrows in Fig. 2 represent abstract connectors. The left top abstract
connector going from Vehicle to the Distance_Object_m abstract port
of the Distronic components states that the Vehicle component has an
input port which delegates its value without modifying it to an input port of
the Distronic subsystem having the signal name Distance_Object_m.
As the view shows only an abstraction (one viewpoint), the hierarchy between
Vehicle and Distronic is not direct; thus, in the Functional C&C Model
the vehicle may have the subcomponent AdaptiveCruiseControl, and
AdaptiveCruiseControl has as one subcomponent Distronic.

The dashed arrows in Fig. 2 represent abstract effectors. The top right
abstract effector going from the abstract port Deceleration_pc of the
Distronic component to Acceleration_pc of the Vehicle component
states that the output port with the signal name Deceleration_pc of the
Distronic component influences the value of the output port with the signal
name Acceleration_pc of the Vehicle component. Influence means that
value of Deceleration_pc may be modified by other components.

The abstract port Deceleration_pc is not mentioned in the FA-6 require-
ment. However, the domain experts4 included this abstract port in the C&C view as
the deceleration value (100% deceleration means the car is not accelerating at all,
0% deceleration means that the car accelerates with its maximal acceleration) is a
limiting factor of the vehicle’s acceleration, and the domain experts meant that this
port is crucial to understand the implementation of this requirement.

4 Automatic Structural Consistency Checks for Design
Models

An advantage of the improved development process is the automatic consistency
check in step 5 between two C&C high-level design models.

Figure 3 shows two further created C&C design models by two different
engineers. The synthesis algorithm [16] throws an exception as it cannot generate
a valid functional C&C model based on the given three views: view FA-6 in
Fig. 2 as well as view FA-31 and view FA-32 in Fig. 3. The exception message
would be similar to Design conflict between view FA-31 andview FA-32: The

4 The word domain expert in this chapter refers to the domain expert (an employee at Daimler
AG in 2017) who created the C&C high-level designs based on the textual requirements in the
industrial case study together with Daimler AG.

258 M. von Wenckstern

Fig. 3 Conflict in C&C high-level design models view FA-31 and view FA-32

port VMax_kmh of VelocityControl component can only progress a single
value for each time step. However it receives two different values: (1) one value
from the Limiter component in view FA-31 and (2) another value from the
BrakeAssistent component in view FA-32.

These precise exception messages of the synthesis algorithm help the architects
who are creating the C&C high-level design models to resolve inconsistencies in the
architecture while they are creating their view design models for each requirement.

5 Satisfaction Verification Between Design and Functional
Model

In step 8 in Sect. 2.2 the engineer creates the functional C&C model based on all
textual requirements and based on all C&C high-level design models. In our case
study with Daimler AG, the ADAS part contained of 68 requirements [1, Table
1] and the corresponding C&C model had over 1 000 C&C components and over
3 500 C&C ports [23, Table 8.17]. For such a large functional model it is very
time consuming to verify manually whether it satisfies the previously in step 2
defined architecture containing of many C&C high-level design models. Therefore,
the Software Engineering chair including the author of this chapter developed a
verification tool to automatically check the satisfaction verification between all
C&C design models and the one C&C functional model. To increase the trust of

Improving the Model-Based Systems Engineering Process 259

the result provided by the verification tool, the tool generates for each C&C design
model one satisfaction witness illustrating why the functional model satisfies this
C&C design model.

Figure 4 presents the generated satisfaction witness reasoning why the C&C
functional model5 satisfies the C&C design model in Fig. 2. The verification
algorithm only creates textual output of witnesses; the layout tool, which also
transforms the textual C&C functional models to graphical Simulink models in
step 10, generates good understandable graphical witnesses such as the one shown
in Fig. 4.6

The blue highlighted connectors in the bottom left part of Fig. 4 belong to the
connector chain of the witness representing the abstract connector going from
Vehicle (unknown port) to Distronic’s V_Obj_rel_kmh port in the C&C
high-level design. Additionally, Fig. 4 highlights the witness elements (i.e., upper
colored atomic blocks and signal lines in the C&C functional model) belonging
to the abstract effector starting at the Distance_Object_m port and ending at
Deceleration_pc port of the Distronic subsystem.

Figure 4 shows all elements of the generated satisfaction witness, that is, it
contains all components, ports, and connectors so that all elements of the C&C high-
level design in Fig. 2 are matched at least once. Note that the satisfaction witness
shows for each abstract connector and abstract effector only the shortest path in the
C&C functional model. In contrast, the tracing witness contains ALL paths of the
C&C functional model which match any element described in the C&C high-level
design. The verification witness is used as argument to reason why or also why not
a functional model satisfies a specific design model.

The purpose of a tracing witness7 is to trace down to all components, ports and
connectors in the functional model based on a design model. A practical use case for
the tracing witness is the following: Due to a product update some requirements and,
thus also, some high-level design models are updated. The generated tracing witness
identifies all elements in the functional C&C model which are affected by the design
and requirement updates. The size and complexity of the generated tracing witness
enables a first effort and price estimation for the product update. Furthermore, the

5 The complete graphical C&C model is available from:https://embeddedmontiarc.github.
io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.
dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html.
6 The generated graphical output of the layout tool is available from
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.
oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.
dEMO_FAS_Funktion_extended.html. Figure 4 shows a manually and slightly modified layout
which is space and color optimized for this chapter.
7 The generated layout of the tracing witness for requirement FA-6 is available from
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.
v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.
dEMO_FAS.dEMO_FAS_Funktion_extended.html.

https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/daimler.v4.oeffentlicher_Demonstrator_FAS_v04.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_Witness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html
https://embeddedmontiarc.github.io/webspace2/svg/vis/v4/FA6_TracingWitness/daimler.v4.oeffentlicher_Demonstrator_FAS_v04FA6Tracing.dEMO_FAS.dEMO_FAS.subsystem.dEMO_FAS.dEMO_FAS_Funktion_extended.html

260 M. von Wenckstern

F
ig

.4
Sa

ti
sf

ac
ti

on
w

it
ne

ss
of

vi
ew

FA
-6

Improving the Model-Based Systems Engineering Process 261

components inside the generated tracing witness supports management in booking
the needed teams for this product update.8

6 Creating C&C Functional Models Efficiently with
EmbeddedMontiArc

EmbeddedMontiArc is a textual domain-specific language to create functional C&C
models for cyber-physical systems in an efficient way. Therefore, EmbeddedMon-
tiArc supports the international systems of units, generics, component libraries,
configuration parameters, as well as arrays of ports and component instantiations
to facilitate modular and reusable functional architectures.

EmbeddedMontiArc is a textual modeling family to describe both structural
(as already shown in the previous sections) and also behavior models. Behavioral
languages part of EmbeddedMontiArc family are: automata, MontiMath (typed
version of MATLAB), MontiMathOpt (math plus nonlinear optimization problems),
CNNArch (convolutional networks for deep learning), and OCL (object constraint
language for logical declarative description of components). This chapter does not
focus on the behavioral languages. However, the publications of Kusmenko and
von Wenckstern [8, 9, 11–13] contain behavioral models describing the logic of
self-driving cars created with EmbeddedMontiArc. A complete behavioral Embed-
dedMontiArc model for the logic of PacMan to escape four ghosts including a
simulator and a debugger exists as online demonstrator.9

The functional C&C model in Fig. 4 shows the OEM perspective, where the
Vehicle component receives the distance to the preceding vehicle as number
input directly from a smart sensor doing already the image capturing as well as the
object recognition. The smart sensor (developed by an automotive tier-1 supplier
for different OEMs) receives as input an image matrix of the front car camera,
performs spectral clustering to divide the images into segments, the object detector
can separate the objects to identify the car in front and to measure the distance to it.

This section explains the features and the syntax of EmbeddedMontiArc on an
image spectral cluster component [14] which could be part of the smart sensor.

The basic idea is depicted as a functional C&C model in Fig. 5 and can be
summarized as follows. Let xij ∈ [0, 255]3 be the three-dimensional pixel value
of an image at position (i, j) encoding a point in the HSV (hue, saturation, value)
color space. For better handling, an N × M image is represented as a vector,
mapping a position (i, j) to the vector index M · i + j , where N and M are

8 Mostly subcomponents can be matched to teams; for example, team one is respon-
sible for Tempomat and VelocityControl, and team two works on Distronic,
Distancewarner, and EmergencyBrake.
9 The online demonstrator is available from: https://embeddedmontiarc.github.io/webspace/
InteractiveSimulator/indexPacman.html.

https://embeddedmontiarc.github.io/webspace/InteractiveSimulator/indexPacman.html
https://embeddedmontiarc.github.io/webspace/InteractiveSimulator/indexPacman.html

262 M. von Wenckstern

Fig. 5 C&C architecture of the SpectralClusterer

the height and the width of the image, respectively. First, a symmetric similarity
matrix W ∈ RNM×NM is computed. Consequently, the entry of W at position (h, k)

provides information on the similarity of the two pixels corresponding to the indexes
h and k. Pixel similarity may be defined in terms of distance, color, gradients, etc.
Second, the so-called graph Laplacian is computed as L = D − W where D is
the so-called degree matrix defined as D = diag (W1N×M) with 1NM being an
N · M dimensional column vector full of ones. Often it is advantageous to use the
symmetric Laplacian

Lsym = D− 1
2 LD− 1

2 = diag (1NM) −D− 1
2 WD− 1

2 (1)

as outlined in [22]. For efficiency reasons, as they do not carry valuable cluster
information the identity matrix and the minus depicted in red are often dropped in
concrete implementations obtaining the simplified term highlighted in blue. Note
that computing Lsym requires a matrix inversion on the diagonal matrix D as well
as two matrix multiplications. Now the eigenvectors corresponding to the k smallest
eigenvalues of Lsym have to be computed where k is the number of clusters we
want to detect. If this number is unknown, an index can be used to estimate it [5].
Furthermore, let U be an NM × k matrix with the k eigenvectors as its columns.
Each row of this matrix represents one pixel in a feature space which should be
easier to cluster by the standard k-means algorithm.

EmbeddedMontiArc is a textual domain-specific language to model logical
functions in a C&C based manner. EmbeddedMontiArc places emphasis on the
needs of the embedded, cyber-physical systems, as well as the automotive domains
and is particularly used for controller design [9]. As an example, the elaborate
numeric type system allows declarations of variable ranges as well as accuracies.
Furthermore, units are an inherent part of signal types, and hence tedious and error-
prone tasks like checking the physical compatibility of signals (weights cannot be
added to lengths) as well as unit or prefix conversion (feet to meters, km to m) are
delegated to the EmbeddedMontiArc compiler.

Improving the Model-Based Systems Engineering Process 263

component NormalizedLaplacian
<N1 n> {

ports in diag Q^{n,n} degree,
Q^{n, n} similarity,

out Q^{n,n} nLaplacian;
implementation Math{
nLaplacian=degree^-.5*
similarity*degree^-.5;

}
}

1
2
3
4
5
6
7
8
9
10

component SpectralClusterer
<N1 n, N1 k=4, N1 maxCls=1> {

ports in Q^{n, n} img[3],
out (-1, 4)^{n*n, maxCls} cluster;

instance Similarity<n> sim;
instance NormalizedLaplacian<n*n> nL;
instance EigenSolver<n*n,k> eS;
instance KMeansClustering
<n*n, k, maxCls> kMC;

connect img[:] -> sim.img[:];
connect sim.degree -> nL.degree;
connect sim.similarity -> nL. similarity;
connect nL.nLaplacian -> eS.matrix;
connect eS.eigenVectors -> kMC.vectors;
connect kMC.cluster -> cluster;

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

1
2
3

Model-Paths: [img, lib/math]
Main-Component-Instantiation:

SpectralCluster<n=50>;

Fig. 6 Textual EmbeddedMontiArc code of the graphical C&C SpectralClusterer com-
ponent shown in Fig. 5. (a) EmbeddedMontiArc model of SpectralClusterer. (b) Embed-
dedMontiArc model of atomic component NormalizedLaplacian. (c) Main component
instantiation

Figure 6 shows how the spectral cluster in Figure 5 is modeled in Embedded-
MontiArc. Figure 6b represents one subcomponent of (a). As EmbeddedMontiArc is
inherent to C&C languages, the main language elements of EmbeddedMontiArc are
component and connect. While the former defines a new component followed
by its name, for example, in line 1 of Fig. 6a, the latter connects two ports of
subcomponents with each other, for example, in lines 10–15 in Fig. 6a.

The behavior of a component can be either defined by a hierarchical decompo-
sition into subcomponents as in the case of Fig. 6a or using an embedded behavior
description language.

The behavioral language shown in this code example is a matrix-based math
language, used in lines 6–8 of Fig. 6b respectively. As EmbeddedMontiArc is
strongly typed, errors like wrong matrix dimensions are caught at compile-time, in
contrast to MATLAB/Simulink where this is a runtime exception. A matrix property
system leverages performance optimizations as well as further compatibility checks
in the compilation phase. If a matrix is declared to be diagonal, both memory and
computational complexity of the generated code can be reduced dramatically. If
furthermore, the domain of the matrix is constrained to non-negative entries, it can
be inferred that the matrix is positive-semidefinite allowing the inversion function
to be used on it and guaranteeing that the result will be positive-semidefinite again
[2].

As this spectral clustering example shows each EmbeddedMontiArc component
resides in its own text file so that multiple users or teams can work on one large C&C
modeling project simultaneously. Compared to other C&C languages where models
are stored in a proprietary binary format in one single file, such as Simulink’s slx
format, this facilitates the usage of version control systems, merging, and conflict
solving but also textual searching in model repositories.

264 M. von Wenckstern

The next paragraphs explain EmbeddedMontiArc textual modeling language
more in detail. The modeling paradigm of EmbeddedMontiArc is based on Java
with language elements from Ada. The Main.txt file in Fig. 6c is similar
to Java’s manifest file. Line 1 defines model paths where the parser looks for
component type definitions; in this example it includes the img (for image)
and the library/mathamatics folders to find the SpectralCluster and the
NormalizedLaplacian type. Lines 2 and 3 specify the top level component
by creating one component instance of the SpectralCluster component type
whereby it bounds the generic parameters with the following values n=50, k=4,
and maxCls=1. The last two parameters may not be specified as shown in line 3
in (c), as k and maxCls have default values. The general generic concept is based
on Java, and the concepts to have default parameters and to also enable parameter
binding by name and not only via position are borrowed from Ada.

The support of generics in EmbeddedMontiArc enables high reusage which is not
possible in Simulink yet. For example, for applying the same clustering algorithm
on a 100 × 100 image instead of the small 50 × 50, one requires only to replace the
expression n=50 to n=100 in line 3 in (c).

Lines 1 and 2 in Fig. 6a define the SpectralClusterer component type
which has three input and one output ports as well as three generic parameters.
The three generic parameters are of type N1 representing the mathematical type N1
accepting values 1, 2, 3,

Line 3 defines the three input ports by applying port array notation. The names
of the input ports are img[1], . . ., img[3] for the three color channels HSV. All
three ports accept as values n×n (which is in our example 50×50) rational matrices
which is defined as Q^{n, n} in EmbeddedMontiArc; Q represents the math type
Q. All three ports could be used independently, for example, by connecting each of
them to different subcomponents. The SpectralClusterer produces as output
a n·n×maxCls matrix (which is in this example a vector with 2 500 elements) with
the cluster id of the pixel; all elements of the cluster matrix are in the interval
from −1 to +4 (including both end points).

Line 5 instantiates one Similarity subcomponent instance which accepts as
input a 50×50 (n = 50) matrix and produces as output the similarity and the degree
matrix of type Q2 500×2 500.

Line 6 instantiates the NormalizedLaplacian subcomponent instance and
bounds the valueNormalizedLaplacian.n to 2500 (SpectralClusterer
.n = 50) which is defined in Fig. 6b.

Lines 7 and 8 instantiate the two further subcomponents. Lines 10 to 15 connect
the ports of the defined subcomponents as shown in Fig. 5.

EmbeddedMontiArc also supports to add algebraic information for matrix types
as shown in line 3 in Fig. 6b with the keyword diagonal.

Additionally, EmbeddedMontiArc supports units. For example, port
in (0 km/h : 250 km/h) V_Obj_rel_km defines the input port
V_Obj_rel_kmh of the Distronic component as shown in Fig. 4. The strong
type system with units prevents errors like connecting ports with incompatible
units such as Distance_Object_m having port type (0m : 500m) with port
V_Obj_rel_kmh.

Improving the Model-Based Systems Engineering Process 265

The textual syntax for C&C design models for step 2 in Sect. 2.2 is very
similar to the textual syntax of EmbeddedMontiArc shown in Fig. 6a. For example,
the port definition in design models support a question mark as port type to
express underspecification: port out ? cluster. Detailed information about
the concrete and abstract syntax of the textual C&C high-level design and functional
modeling languages is available in my PhD thesis [23, Chapters 3, 4, 7].

7 Enriching C&C Functional Models with Extra-Functional
Properties in a Consistent Way

Section 6 showed the textual modeling languages for C&C high-level design models
and for C&C functional models. Section 3 presented the concept how to derive the
high-level design models from textual requirements and how to create one functional
C&C model based on the high-level designs and the requirements. These both
sections covered the steps 1–11 of Sect. 2.2.

This section continues with step 13 how the engineer enriches the functional
C&C model with extra-functional properties. Therefore, this section shows first how
to define a new tag schema to enrich C&C components with ASIL (automotive
safety integrity level) information. Later, this section presents a tag model which is
to conform to the previously defined tag schema to tag the Vehicle subcompo-
nents of Fig. 4 with concrete ASIL levels. At the end this section explains how to
formulate the extra-functional constraint for ASIL in OCL: A composed component
cannot have higher ASIL than its subcomponents.

Figure 7 shows how to define a new tag schema and how to enrich it with
functional C&C models. Line 1 in (a) gives the tag schema a name so that it can
be used in tag models. Line 2 in (a) creates the new tag type asil which accepts as

tagschema EFP1Schema {
// enumeration type: asil can have one of the values QM, ..., ASIL-D
tagtype asil: [QM | ASIL-A | ASIL-B | ASIL-C | ASIL-D] for Component;

}

1
2
3
4

conforms to EFP1Schema;
tags AsilTags{
tag AdaptiveCruiseControl with asil = QM;
tag Tempomat with asil = ASIL-C;
tag VelocityControl with ASIL-D;
tag Distronic with asil = ASIL-B;

}

1
2
3
4
5
6
7

Fig. 7 ASIL tag schema and tag model example. (a) Tag schema definition of extra-functional
property asil. (b) Tag model enriching components with extra-functional property asil

266 M. von Wenckstern

Fig. 8 OCL code to force that composed component cannot have higher ASIL than its subcom-
ponents. The right part shows the class diagram of the abstract syntax of EmbeddedMontiArc with
gray background merged with the abstract syntax defined by the tag schema in Fig. 7a with white
background. Detailed information about the abstract syntax is available in my PhD thesis [23,
Chapter 4]

values QM (not safety relevant), ASIL-A, . . ., ASIL-D (highest safety level). One
tag schema can contain multiple tag types to build up tag libraries. For example, a
tag schema SafetySecurity could contain the tag types asil, reliability, encryption,
and firewallConfig.

Figure 7b presents how to tag the componentsAdaptiveCruise,Tempomat,
and VelocityControl in Fig. 4 with the asil levels QM, ASIL-B, ASIL-C,
and ASIL-D.

Figure 8 shows the OCL code checking that the ASIL of all subcomponents must
be higher or equal than the ASIL of the composed component. Lines 3 and 4 define
the asilNb helper list. This list maps each ASIL to a number so that a comparison
of ASILs is possible. The expression asilNb.indexOf(x) returns 0 for QM, 1
for ASIL_A, 2 for ASIL_B, 3 for ASIL_C, and 4 for ASIL_D.

The indexOf10 function is extended to accept a set as parameter by
applying the Java indexOf operator to each element of the set; for example,
asilNb.indexOf({QM, ASIL_C}) returns {0, 3}. OCL extends all
Java operators to set and list operators when applying it element-wise makes
sense; this way OCL expressions—often dealing with sets due to its navigations of
associations—come along with less forall or exists statements, which makes
the code easier to read.

Line 7 takes the lowest number of an ASIL when a component is tagged with
two different ASIL values, and it takes 0 for QM when the subcomponent has not
been tagged at all. Line 12 does the comparison.

Figure 9 shows the graphical representation of the generated positive consistency
witnesses of the ASIL constraint for the AdaptiveCruisteControl subcom-
ponent in the Vehicle example in Fig. 4. Every witness shows (a) the context
(which is the AdaptiveCruiseControl component instance being matched by

10 cf. http://mbse.se-rwth.de/book2/index.php?c=chapter3-2.

http://mbse.se-rwth.de/book2/index.php?c=chapter3-2

Improving the Model-Based Systems Engineering Process 267

Fig. 9 Positive consistency witness of asil constraint for AdaptiveCruiseControl exam-
ple in Fig. 4 enriched with the values shown in Fig. 7b.

line 1 in Fig. 8), (b) all elements stored in the selection variable (which are the
three subcomponents Distronic, Tempomat, and VelocityControl being
matched by line 5 in Fig. 8), (c) filling elements to understand the witness (e.g., if a
port is part of (a) or (b), then also the corresponding component to which this port
belongs to is shown in the witness), and (d) all extra-functional properties being
addressed in the OCL constraint (which is in this case only the asil one being
used in lines 7 and 10 in Fig. 8).

The generated positive (or negative) consistency witnesses are as minimal as
possible. Thus, it is very easy for the engineer to understand why (or also why not)
a large functional C&C model satisfies a specific consistency constraint rule as the
ASIL one in this example.

This section presented a model-driven approach for adding extra-functional
properties to functional C&C models. The here shown tagging mechanism enables
noninvasive extensions of functional C&C models and also C&C high-level design
models (shown in the next section) with attributes for extra-functional properties.
Importantly, this concept provides means for integrated formal analyses of the
consistency of tagged values. Consistency ranges from type-safety and units of
quantitative measures to complex dependencies across component hierarchies as
well as between component definitions and their instances. The OCL framework
provides a way to define and to check rich consistency rules of extra-functional
property values based on selection (line 5 in Fig. 8), aggregation (lines 6–8), and
comparison (line 12) operators. This work allows for independent definition and
organization of tagged properties to support reuse across models and development
stages.

More OCL consistency examples for real-life problems are available in my PhD
thesis [23, Chapter 6] and in the paper [17].11

11 The OCL verification tool is available under https://git.rwth-aachen.de/monticore/publications-
additional-material/-/tree/master/OCLVerifyTool.

https://git.rwth-aachen.de/monticore/publications-additional-material/-/tree/master/OCLVerifyTool
https://git.rwth-aachen.de/monticore/publications-additional-material/-/tree/master/OCLVerifyTool

268 M. von Wenckstern

8 Automatic Extra-Functional Property Verification Between
Design and Functional Models

The previous section illustrated how easy it is to enrich functional C&C models with
extra-functional properties. Additionally, Sect. 3 presented how company specific
consistency constraints can be easily defined with our OCL framework and how the
generated positive consistency witness looks like.

This section shortly introduces the last step 15 of the improved model-based
development process elucidated in Sect. 2.2. This section explains the general idea
how to check whether all extra-functional properties in the functional C&C model
satisfies all extra-functional requirements specified in all C&C high-level design
models.

The top part of Fig. 10 presents an extra-functional requirement about the worst
case execution time for the critical path inside the Distronic component: If the
distance to the preceding vehicle decreases, distronic decelerates within 20 ms.

The bottom left part shows the corresponding graphical C&C high-level
design model; the effector from the Distance_Object_m port to the
Deceleration_pc port has been tagged with the extra-functional requirement:
wcet ≤ 20ms

The bottom right part reprints the Distronic component of Fig. 4. Based on
the measured runtime information (cf. step item 12), the atomic subcomponents of
Distronic have been enriched with the extra-functional propertyexecutiontime
values: (i) both multiplication blocks mult1 and mul2 need 7 ms; (ii) the linear
and saturate need 10 ms, as well as the sum block needs only 5 ms.

Figure 11 defines the tag types et (execution time) for Components and wcet
(worst case execution time) for Effectors. Both the tag schema and the model
language support all SI units completely as shown in lines 4 and 7: the execution
time of a component can only have a value between 0 ms and 1 min.

Fig. 10 ASIL tag schema and tag model example

Improving the Model-Based Systems Engineering Process 269

tagschema ExecutionTime {
// number type of unit time: et (execution time) can be b/w 0 ms and 1 min
// only components in the functional C&C model can be tagged with et
tagtype et: (0ms : 1 min) for Component;
// only effectors in C&C high-leve desing model can be tagged with wcet
// (worst case execution time)
tagtype wcet: <= (0ms : 1 min) for Effector;

}

1
2
3
4
5
6
7
8

et wcet.

Fig. 11 ASIL tag schema and tag model example

conforms to ExecutionTime;
tags WcetTags{
within Distronic {

tag effector Distance_Object_m -> Deceleration_pc with wcet <= 20ms;
}

}

1
2
3
4
5
6

conforms to ExecutionTime;
tags EtTags{
within Distronic_Enabled {

tag sum with et = 5ms;
tag saturate, linear with et = 10ms;
tag mult1, mult2 with et = 7ms;

}
}

1
2
3
4
5
6
7
8

Fig. 12 ASIL tag schema and tag model example. (a) Tag model enriching C&C high-level design
view FA-146 with extra-functional property wcet. (b) Tag model enriching C&C high-level
design view FA-146 with extra-functional property wcet

Tag types to enrich the functional C&C model, as already presented in Sect. 3,
represent concrete extra-functional property values. Therefore, these always have an
assignment operator (=), which can be skipped as shown in line 4.

Tag types to enrich the C&C high-level design model represent underspecified
extra-functional requirements expressing a Boolean constraint. For this reason the
Boolean comparison operator (such as <, ≤, ⊆, ∈, ⊃, ≥, >) must be specified as
shown with <= in line 7.

Figure 12a shows that C&C high-level design models can be enriched
with extra-functional requirements nearly in the same way as functional
C&C models with extra-functional properties. Ports are identified via their
component name and their port name, because different components may have
the same port name. The within keyword in line 3 is syntactic sugar to
express that all expressions inside it refer to the component specified. Line
4 enriches the effector with the extra-functional requirement as illustrated
in the bottom left part of Fig. 10. An equivalent notation of lines 3–5 is

270 M. von Wenckstern

the following: tag effector Distronic.Distance_Object_m ->
Distronic.Deceleration_pc with wcet <= 20ms;.

Figure 12b displays the textual code how to enrich the functional C&C model
with the measured execution times as illustrated in the bottom right part of Fig. 10.
The tag model language supports to enrich multiple C&C elements at once with the
same value as shown in lines 5 and 6.

In our example, we assume that the (here not shown OCL) constraint does the
following: First, it selects all components of the C&C subcomponent which are
matched by effector shown in view FA-146 in Fig. 10. These are the components
Distronic, Distronic_Enabled, sum, saturate, and mult2. Second, it
aggregates all the execution time values of these components whereby a missing et
tag is interpreted as 0 ms. The aggregation result is 22ms = 0ms + 0ms + 5ms +
10ms + 7ms. Third, it compares whether the aggregation result of the functional
C&C model is smaller or equal to the wcet (worst case execution time) requirement
of the enriched effector. In this example, the aggregation result is 22ms and is NOT
smaller or equal to the requested worst case execution time of 20ms of the enriched
effector in the view FA-146. Thus, the functional C&C model in the bottom
right part of Fig. 10 does not satisfy the view as well as it violates the FA-146
requirement.

The verification tool does not only automatically check whether all extra-
functional properties of the functional C&C model satisfy all extra-functional
requirements specified in all C&C high-level designs, it also generates useful
witnesses directly pointing to the mismatch. Figure 13 shows the graphical rep-
resentation provided by the verification algorithm for this concrete example. The
satisfaction witness creation algorithm for extra-functional properties is similar to
the consistency witness creation algorithm presented in the previous section.

Fig. 13 ASIL tag schema and tag model example

Improving the Model-Based Systems Engineering Process 271

9 Conclusion

This chapter showed the developed methodology to improve the model-based
systems engineering process of large and complex C&C models for embedded and
cyber-physical systems, especially in the automotive domain. The here presented
approach extends the current model-based development process of large car manu-
factures identified during common case studies.

The main achievements of this work are concepts and tools for automatic
consistency checks between requirements, high-level design models, functional
C&C models, and extra-functional properties. These automatic checks with its user-
friendly witness generations prevent errors at design and implementation phase, and
thus, provide a way to improve quality, to increase development speed, and to save
money.

This chapter demonstrated the capabilities and benefits of the proposed model-
based process improvements on a running example of an advanced driver assistant
system.

References

1. Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Component
and connector views in practice: an experience report. In: Conference on Model
Driven Engineering Languages and Systems (MODELS’17), pp. 167–177. IEEE, Pis-
cataway (2017). http://www.se-rwth.de/publications/Component-and-Connector-Views-in-
Practice-An-Experience-Report.pdf

2. Borgmann, M.: Matrix taxonomy (2006). https://www.nari.ee.ethz.ch/teaching/ha/handouts/
linalg3p.pdf

3. Brenner, C.: How to ensure functional safety, according to ISO 26262 (2013). https://blogs.
itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262. Accessed 29 April
2021

4. Cheng, C.H.: autoCode4 integrated inside Ptolemy II (ver. 11.0.devel) (2016). https://youtu.be/
ImSHmsnUyeA?t=34s. Accessed 31 July 2018

5. Desgraupes, B.: Clustering indices. Univ. Paris Ouest-Lab Modal’X 1, 34 (2013)
6. Drave, I., Greifenberg, T., Hillemacher, S., Kriebel, S., Kusmenko, E., Markthaler, M., Orth,

P., Salman, K.S., Richenhagen, J., Rumpe, B., Schulze, C., Wenckstern, M., Wortmann, A.:
SMArDT modeling for automotive software testing. Softw. Practice Exp. 49(2), 301–328
(2019)

7. Goser, A.: MATLAB Answers: Clean up Simulink block diagram (2012). https://de.
mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram. Accessed
31 July 2018

8. Grazioli, F., Kusmenko, E., Roth, A., Rumpe, B., von Wenckstern, M.: Simulation framework
for executing component and connector models of self-driving vehicles. In: Proceedings of
MODELS 2017. Workshop EXE, CEUR 2019 (2017). http://www.se-rwth.de/publications/
Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-
Vehicles.pdf

9. Hillemacher, S., Kriebel, S., Kusmenko, E., Lorang, M., Rumpe, B., Sema, A., Strobl, G., von
Wenckstern, M.: Model-based development of self-adaptive autonomous vehicles using the
SMARDT methodology. In: Proceedings of the 6th International Conference on Model-Driven

http://www.se-rwth.de/publications/Component-and-Connector-Views-in-Practice-An-Experience-Report.pdf
http://www.se-rwth.de/publications/Component-and-Connector-Views-in-Practice-An-Experience-Report.pdf
https://www.nari.ee.ethz.ch/teaching/ha/handouts/linalg3p.pdf
https://www.nari.ee.ethz.ch/teaching/ha/handouts/linalg3p.pdf
https://blogs.itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262
https://blogs.itemis.com/en/how-to-ensure-functional-safety-according-to-iso-26262
https://youtu.be/ImSHmsnUyeA?t=34s
https://youtu.be/ImSHmsnUyeA?t=34s
https://de.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram
https://de.mathworks.com/matlabcentral/answers/30016-clean-up-simulink-block-diagram
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf
http://www.se-rwth.de/publications/Simulation-Framework-for-Executing-Component-and-Connector-Models-of-Self-Driving-Vehicles.pdf

272 M. von Wenckstern

Engineering and Software Development (MODELSWARD’18), pp. 163–178. SciTePress,
Setúbal (2018)

10. Kriebel, S., Kusmenko, E., Rumpe, B., von Wenckstern, M.: Finding inconsistencies in design
models and requirements by applying the SMARDT process. In: Tagungsband des Dagstuhl-
Workshop MBEES: Modellbasierte Entwicklung eingebetteter Systeme XIV (MBEES’18).
Univ. Hamburg (2018). http://www.se-rwth.de/publications/Finding-Inconsistencies-in-
Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf

11. Kusmenko, E., Pavlitskaya, S., Rumpe, B., Stüber, S.: On the engineering of AI-powered
systems. In: O’Conner, L. (ed.) ASEW19. Software Engineering Intelligence Workshop
(SEIW19), pp. 126–133. IEEE, Piscataway (2019). http://www.se-rwth.de/publications/On-
the-Engineering-of-AI-Powered-Systems.pdf

12. Kusmenko, E., Ronck, J.M., Rumpe, B., von Wenckstern, M.: EmbeddedMontiArc: textual
modeling alternative to simulink. In: Proceedings of MODELS 2018. Workshop EXE (2018)

13. Kusmenko, E., Rumpe, B., Schneiders, S., von Wenckstern, M.: Highly-optimizing and multi-
target compiler for embedded system models: C++ compiler toolchain for the component
and connector language EmbeddedMontiArc. In: Conference on Model Driven Engineering
Languages and Systems (MODELS’18). IEEE, Piscataway (2018)

14. Kusmenko, E., Rumpe, B., Strepkov, I., von Wenckstern, M.: Teaching playground
for C&C language EmbeddedMontiArc. In: Proceedings of MODELS 2018. Workshop
ModComp (2018). http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-
Language-EmbeddedMontiArc.pdf

15. Maoz, S., Pomerantz, N., Ringert, J.O., Shalom, R.: Why is my component and connector
views specification unsatisfiable? In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 134–144 (2017). https://doi.org/
10.1109/MODELS.2017.26

16. Maoz, S., Ringert, J.O., Rumpe, B.: Synthesis of component and connector models
from crosscutting structural views. In: Meyer, B., Baresi, L., Mezini, M. (eds.) Joint
Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE’13), pp. 444–454.
ACM, New York (2013). http://www.se-rwth.de/publications/Synthesis-of-Component-and-
Connector-Models-from-Crosscutting-Structural-Views.pdf

17. Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Consistent extra-functional properties
tagging for component and connector models. In: Workshop on Model-Driven Engineering
for Component-Based Software Systems (ModComp’16), CEUR Workshop Proceedings, vol.
1723, pp. 19–24 (2016). http://www.se-rwth.de/publications/Consistent-Extra-Functional-
Properties-Tagging-for-Component-and-Connector-Models.pdf

18. National Instruments: Automatische Bereinigung von LabVIEW-Blockdiagrammen (2009).
http://www.ni.com/tutorial/7386/de/. Accessed 31 July 2018

19. Plataniotis, G., Ma, Q., Proper, E., de Kinderen, S.: Traceability and modeling of requirements
in enterprise architecture from a design rationale perspective. In: Research Challenges in
Information Science (RCIS), 2015 IEEE 9th International Conference on, pp. 518–519. IEEE,
Piscataway (2015)

20. Richenhagen, J., Rumpe, B., Schloßer, A., Schulze, C., Thissen, K., von Wenckstern, M.:
Test-driven semantical similarity analysis for software product line extraction. In: International
Systems and Software Product Line Conference (SPLC ’16), pp. 174–183. ACM, New York
(2016). http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-
Software-Product-Line-Extraction.pdf

21. Rumpe, B., Schulze, C., von Wenckstern, M., Ringert, J.O., Manhart, P.: Behav-
ioral compatibility of simulink models for product line maintenance and evolution.
In: Software Product Line Conference (SPLC’15), pp. 141–150. ACM, New York
(2015). http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-
for-Product-Line-Maintenance-and-Evolution.pdf

22. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

http://www.se-rwth.de/publications/Finding-Inconsistencies-in-Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf
http://www.se-rwth.de/publications/Finding-Inconsistencies-in-Design-Models-and-Requirements-by-Applying-the-SMARDT-Process.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/On-the-Engineering-of-AI-Powered-Systems.pdf
http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-Language-EmbeddedMontiArc.pdf
http://www.se-rwth.de/publications/Teaching-Playground-for-C-and-C-Language-EmbeddedMontiArc.pdf
https://doi.org/10.1109/MODELS.2017.26
https://doi.org/10.1109/MODELS.2017.26
http://www.se-rwth.de/publications/Synthesis-of-Component-and-Connector-Models-from-Crosscutting-Structural-Views.pdf
http://www.se-rwth.de/publications/Synthesis-of-Component-and-Connector-Models-from-Crosscutting-Structural-Views.pdf
http://www.se-rwth.de/publications/Consistent-Extra-Functional-Properties-Tagging-for-Component-and-Connector-Models.pdf
http://www.se-rwth.de/publications/Consistent-Extra-Functional-Properties-Tagging-for-Component-and-Connector-Models.pdf
http://www.ni.com/tutorial/7386/de/
http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-Software-Product-Line-Extraction.pdf
http://www.se-rwth.de/publications/Test-Driven-Semantical-Similarity-Analysis-for-Software-Product-Line-Extraction.pdf
http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-for-Product-Line-Maintenance-and-Evolution.pdf
http://www.se-rwth.de/publications/Behavioral-Compatibility-of-Simulink-Models-for-Product-Line-Maintenance-and-Evolution.pdf

Improving the Model-Based Systems Engineering Process 273

23. von Wenckstern, M.: Verification of Structural and Extra Functional Properties in Component
and Connector Models for Embedded and Cyber Physical Systems. Aachener Informatik-
Berichte, Software Engineering, Band 44. Shaker Verlag (2020). http://www.se-rwth.de/
phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-
in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf

24. Zion Market Research: Global Embedded Systems Market Will Reach USD 225.34 billion by
2021 (2017). https://tinyurl.com/ofetbpzw. Accessed 14 February 2021

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
http://www.se-rwth.de/phdtheses/Diss-von-Wenckstern-Verification-of-Structural-and-Extra-Functional-Properties-in-Component-and-Connector-Models-for-Embedded-and-Cyber-Physical-Systems.pdf
https://tinyurl.com/ofetbpzw
http://creativecommons.org/licenses/by/4.0/

Understanding How Pair Programming
Actually Works in Industry:
Mechanisms, Patterns, and Dynamics

Franz Zieris

Abstract During pair programming (PP), two software developers work closely
together on a technical task on one computer. Practitioners expect a number of
benefits, such as faster progress, higher quality, and knowledge transfer. Much of
prior research focused on directly measurable effects from laboratory settings, but
could not explain the large variations observed. My research follows the Grounded
Theory Methodology and is aimed at understanding how PP actually works by
uncovering the underlying mechanisms to ultimately formulate practical advice for
developers. The main findings from my qualitative analysis of recordings of 27
industrial PP sessions are: Task-specific knowledge about the software system is
crucial for pair programming. Pairs first make sure they have a shared understanding
of the relevant parts before they acquire lacking knowledge together. The transfer
of general software development knowledge plays a rather small role and only
occurs after the pair dealt with its need for system knowledge. Pairs who maintain a
shared understanding may have short, but highly-productive Focus Phases; if their
Togetherness gets too low, however, a Breakdown of the pair process may occur.

1 Introduction

The idea of pair programming (PP) is probably as old as programming itself: Instead
of dealing with a technical problem alone, two software developers sit down on
one machine and work on the task together. In the 1990s, Coplien described this
idea with his Pair Design pattern [6, p. 294], and it has become widely known
under its current name in the context of Beck’s agile development method eXtreme
Programming [2], where it is one of the twelve core practices.

As Beck puts it, “pair programming is a dialog [...] a conversation at many
levels” [2, p. 100]. It is a universal development practice that can be applied

F. Zieris (�)
Freie Universität Berlin, Berlin, Germany
e-mail: zieris@inf.fu-berlin.de

© The Author(s) 2022
M. Felderer et al. (eds.), Ernst Denert Award for Software Engineering 2020,
https://doi.org/10.1007/978-3-030-83128-8_13

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-83128-8_13&domain=pdf
mailto:zieris@inf.fu-berlin.de
https://doi.org/10.1007/978-3-030-83128-8_13

276 F. Zieris

to technical tasks beyond mere implementation, such as specifying requirements,
architectural and lower-level design, debugging, and testing. It is independent of
software domains and technology stacks. With screensharing or dedicated tools,
the pair members do not even need to share the same physical workspace [11].
Consequentially, PP is widely used: Estimated conservatively, about 30% of all
developers pair-program at least sometimes [13]. Surveys show that practitioners
expect a range of benefits [3]:

• Two developers combine their knowledge to produce more ideas and work on
more complicated tasks than either pair member could alone and produce better
designs in less time.

• They build up lacking knowledge for debugging or system understanding faster
and more reliably, which also helps them catch defects in the making.

• They may learn from each other or acquire new knowledge together, which helps
them with future tasks and avoids knowledge silos in the team.

In industrial contexts, the transfer of knowledge is particularly important, which
is why companies such as Pivotal (now part of VMware) use “continuous pair
programming” and “overlapping pair rotation” for its long-term effects [12].

Although pair programming has been a research subject since the 1990s, it is still
not clear to which degree and under which conditions it holds up to these expecta-
tions. Through my research, I want to provide actionable advice for practitioners
by understanding how PP actually works, which prior research mostly failed to
explain (see Sect. 2): Laboratory experiments disregard the complex process that
is the pairs’ interactions and rely on unrealistically small and simple tasks which do
not come close to the knowledge demands of industrial software development. To
close that gap, I collected data in industry—mostly video-recordings of everyday PP
sessions, along with field observations and interviews—and analyzed it qualitatively
(see Sect. 3). I provide a short overview of parts of my findings and how I validated
them with practitioners in Sect. 4 before I conclude in Sect. 5. This chapter is based
on four peer-reviewed publications [20–22, 24] and my PhD thesis [19].

2 Overview of Pair Programming Research

There are two main categories of pair programming studies. On the one hand
are quantitative studies that compare, under controlled conditions, the results of
developers working in pairs to those working alone (Sect. 2.1). Here, the pairs are
often formed by researchers and work on carefully chosen tasks. On the other hand
are qualitative analyses of natural situations where developers form pairs in a self-
decided, often spontaneous manner to work on complex issues (Sect. 2.2).

In the following discussion, I exclude the plethora of studies on pair program-
ming in educational settings where the worked-on tasks are merely a means to
an end such as homework assignments or small student projects. I also exclude

Understanding How Pair Programming Actually Works in Industry 277

PP studies that are based solely on questionnaires and interviews, as the subjects’
reports do not necessarily reflect real events accurately and in detail.

2.1 Quantitative Pair Programming Studies: Findings and
Problems

There has been a number of controlled experiments in which the quality and speed
of programming pairs is compared to solos. The meta-analysis by Hannay et al. [7]
covers 18 such experiments and finds small and medium positive PP effects on
quality and (wall-clock) time,1 but no significant effect on effort:2 Pairs appear to be
faster, but not twice as fast to outweigh the immediate cost of paying two developers.
More noteworthy, however, is the large between-study variance, or heterogeneity,
which indicates that the experiments actually measured different effects rather than
the same effect with some added random noise. Future work should thus focus “on
untangling the moderating factors” such as task complexity, developer experience
(in programming and in pair-programming), motivation, and team climate [7].

The large experiment by Arisholm et al. [1] attempted to understand the influence
of two of these factors on quality and time by hiring 295 professional software
developers to work either alone or in pairs on a set of corrective maintenance tasks.
To test the impact of developer experience, the groups were split according to their
level of expertise (junior, intermediate, senior). Additionally, half of the subjects
worked in either a “simple system” or a “complex” one in order to investigate the
role of task complexity. The researchers identified a few tendencies (such as simple
tasks get done faster with PP and juniors appear to produce higher quality with PP),
but could not explain the moderating effect of either task complexity or experience
because many differences between the respective subgroups were not statistically
significant or even contradictory. In the words of the authors: “we are still far from
being able to explain why we observe the given effects.”

The recurring problems of many, even high-profile quantitative PP studies are:

1. There are simply too many potential moderator variables to be tested in con-
trolled experiments with reasonable effort. The above experiment by Arisholm
et al. [1] failed to understand just two and failed despite tremendous effort and
cost.

2. The experimental situations differ from industrial practice in a number of
relevant ways, including the following (illustrated with aspects of Arisholm
et al.’s experiment): The subjects have little prior experience with the practice
of working in pairs (93 out of 98 pairs had no prior PP experience); the systems

1 Note that the 95% confidence intervals of the standardized effect sizes are quite large: Hedge’s
g = [0.07, 0.60] for the effect on quality and g = [0.13, 0.94] for time.
2 The 95% confidence interval accordingly spans negative and positive values: g = [−1.18, 0.13]

278 F. Zieris

are rather small (even the “complex system” comprised merely 12 classes and
287 lines of code); the tasks are small, too, and span only short time periods
(the average pair completed all their three tasks in 1 h); developers have no say
in with whom to pair or whether to pair at all for the given task (researchers
formed only pairs with the same level of expertise); common quality metrics
only account for short-term effects (e.g., number of passed test cases, or just
a single binary correctness value). Additionally, the subjects work in systems
completely unknown to them, which does not at all represent everyday practice
where developers usually build up a mental model of their system over months
or even years.

All these constraints are in service of keeping measurements comparable
between subjects and the extent of the experiments manageable. At the same
time, they reduce the complexity of software development to mere programming
contests—and are still not able to explain the observed effects.

3. In effect, pair programming is considered to be something canonical which
developers simply do when told to do so. But how to pair-program “right”? Do
the pair members discuss several ideas upfront and carefully select the best? Do
they assume the often proposed roles of active “driver” who writes the code, and
“navigator” who watches out for defects and larger implications (e.g., Williams
and Kessler [17])? Or do they follow the idea of one partner until they hit a dead-
end and then switch places? Or does one partner remain silent until she notices a
problem? Different pairs will probably follow different approaches.

Overall, quantitative comparisons of solo and pair programming in contrived
settings based solely on summative metrics and short-term outcomes are of limited
scientific value. To gain a deeper understanding of how and when PP actually works,
the underlying process needs to be studied using qualitative research approaches
that observe and analyze the practice under natural conditions in real industrial
contexts.

2.2 Qualitative Pair Programming Studies: Findings and
Problems

A few qualitative-quantitative studies recorded PP sessions in industrial contexts
(e.g., [5]) or at least involved professional developers (e.g., [16]), transcribed and
labeled the pairs’ dialogs following some coding scheme, and then calculated
different statistics. These studies show that there is constant communication during
pair programming and that there are no systematic differences between the type
of utterances of supposed “drivers” and “navigators”—at least for developers with
more than 6 months of pair programming experience [4]. However, these studies
use cumulative metrics which only reflect the total number of occurrences of certain
events, but not their temporal and causal order. Whether a pair member does X twice
in the middle of the session, or once in the beginning and once again in the end—

Understanding How Pair Programming Actually Works in Industry 279

it is counted as two Xs either way. Without considering the process, such research
approaches are also not well suited to explain pair programming.

Purely qualitative studies focus on building theories rather than testing hypothe-
ses. They characterize PP processes on a conceptual level and show that good pairs
follow certain communication patterns (e.g., explicit and implicit teaching [8], or
Restarting, Planning, Action [18]). A central problem of many such studies is that
they often result in loose collections of labels concerning some PP aspect, rather
than aiming for an integrated theory of PP as a whole. To give one example, Plonka
et al. [8] list six “teaching strategies” but do not investigate their relationships,
e.g., how developers decide which one to use, whether there are preferred ones,
or whether they are a matter of conscious decision at all. These studies do not
provide obvious starting points for further research. Furthermore, a practitioner
perspective—which would at least hint at possible applications in industry—is often
missing.

3 Research Goal, Data, and Method

The goal of my research is to understand how pair programming, and in particular,
knowledge transfer in pair programming, actually works. This is not about deciding
whether pair programming is “better.” Rather, I want to provide actionable advice
for practitioners who want to pair-program, allowing them to avoid problems and
reap the potential benefits.

My qualitative research follows the Grounded Theory Methodology (GTM) as
formulated by Strauss and Corbin [14] and builds on the groundwork of Salinger
and Prechelt [10], who developed a “vocabulary” of base activities to characterize
the fundamental building blocks of a PP process.

The basis for my analyses is data which colleagues and myself have been
collecting in industry since 2007. So far, we recorded 67 sessions of professional
software developers in 13 companies working on their everyday tasks in pairs
(sometimes also in groups of three or four). The recordings consist of a screencast,
webcam video, and audio of the pair’s dialog (see Fig. 1). We also conducted
reflective interviews with the developers the day after their recording and organized
group discussions and workshops to achieve a better understanding of the teams’
contexts and to evaluate our findings. All data collection activities are detailed in a
technical report [23].

In the manner of theoretical sampling [14], I iteratively selected material from the
already available repository and established new contacts with three companies to
collect additional data. For my analysis, I selected sessions with different contexts
(e.g., application domains and technology stacks) and with developers at varying
experience levels in both homogenous and heterogenous pair constellations. In total,
I analyzed 27 sessions from 10 companies with 29 developers (see Table 1).

I did not perform my analyses on transcripts, but directly on the video mate-
rial. Notes from field observations and reflective developer interviews provided

280 F. Zieris

Table 1 Analyzed sessions, some of which continue earlier ones (è). Sessions JA1 and JA2 were
distributed, all others colocated; MA1, OA1, OA2, OA5, and OA8 are in English, all others in
German. Developers C4, C6, and O3 are female, all others are male. See [23] for more details

ID Length Developers Session content

Company A: Content Management System (Java, Objective-C, SQL)
AA1 2h 22min A1 A2 Fix five similar bugs touching both frontend and

backend
Company B: Social Media (PHP, JavaScript, SQL, HTML, CSS)

BA1 1h 46min B1 B2 Read foreign code, implement cache, discuss
specification

BB1 1h 21min B1 B2 New feature from scratch (template); discuss
requirements

BB2 1h 51min B1 B2 èimpl. model, controller, template; discuss
requirements

BB3 1h 32min B1 B2 èimplement template, controller; discuss
requirements

Company C: Graphical Geo Information System (Java)
CA1 1h 18min C1 C2 Implement new form in GUI (C1 already started)
CA2 1h 24min C2 C5 Architecture discussion (C5 already started),

refactoring
CA3 2h 10min C6 C7 Implement context menu entry, incl. test case &

refactoring
CA4 1h 34min C4 C7 Implement selection feature w/ special

key-binding
CA5 1h 23min C3 C4 Implement feature to split graphical elements

Company D: Estate Customer Relationship Management (Java, XML)
DA2 2h 24min D3 D4 Planned feature impl., turned to widespread

refactoring
Company E: Logistics and Routing (C++, XML)

EA1 1h 17min E1 E2 Step-by-step debugging of display error in the
GUI

Company J: Data Management for Public Radio Broadcast (Java)
JA1 1h 7min J1 J2 Walkthrough of J2’s code, discuss possible

refactorings
JA2 1h 15min J1 J2 Review of J2’s new API, define requirements

Company K: Real Estate Platform (Java, SQL, CoffeeScript)
KA1 1h 59min K1 K2 Set up dev. env. discuss inter-system API

design, 1st impl.
KB1 53min K2 K3 Add new class to model, write and debug

database migration
KC1 59min K2 K3 Set up test env., discuss test approaches for GUI

feature
KC2 2h 1min K2 K3 ètrying diff. test approaches, struggling w/

debugger

(continued)

Understanding How Pair Programming Actually Works in Industry 281

Table 1 (continued)

ID Length Developers Session content

Company M: Data Analysis in Energy and Transportation Sector (SQL)
MA1 25min M1 M2 Explanation of table model

Company O: Online Project Planning (CoffeeScript)
OA1 1h 24min O3 O4 Understand foreign component, try to read state

for testing
OA2 1h 32min O3 O4 ètry to set up (parts of) the component for

testing
OA5 1h 9min O1 O3 Bug fix: amend test cases, refactor prod. code,

fix the bug
OA8 1h 16min O3 O4 Failing test: Investigate prod. and test code,

correct mocks
Company P: Online Car Part Resale (PHP, SQL)

PA1 58min P1 P2 Walkthrough of DB migration (written by P1),
discuss req.

PA2 1h 30min P1 P2 ètest of migration, debugging, refactor test
cases

PA3 1h 31min P1 P3 Implement new API endpoint w/ tests (P3
already started)

PA4 1h 42min P1 P3 èimplement DB access with OR-mapper

Fig. 1 Still frame of a recorded pair programming session (webcam video in bottom right corner)

282 F. Zieris

Table 2 Member reflection activities with their format and roles of participants (SM—Scrum
Master, PO—Product Owner, TM—Technical Manager, D—Developer)

Context Format Participants

Company K Presentation and discussion ∼50 (div. roles)
Company O Workshop 2×SM, 1×PO
Company P 1-on-1 interview 1×SM
Company P Workshop 6×D, 1×SM, 1×PO
Company P Post-recording interview (3×) 2×D per interview (3×D in total)
Company Q 1-on-1 interview 1× TM
Company R Workshop 10×D, 2×TM, 1×SM

additional context information. I applied the GTM practices of open, axial, and
selective coding [14] by starting at the level of thousands of individual utterances,
and working my way up over hundreds of knowledge transfer episodes (running
between a couple of seconds and a few minutes), to clusters of episodes, and to the
overall dynamic of whole sessions, until my concepts reached theoretical saturation
[14].

I evaluated my findings through different member reflection activities [15]:
1-on-1 interviews with Scrum Masters and workshops consisted of a short pre-
sentation of my research findings followed by reflections on the participants’
personal experiences; post-recording interviews were more concrete, as I framed
the developers’ own most recent PP experience in terms of my concepts. Through
the activities summarized in Table 2, I made sure my concepts and observations
resonate with the practitioners. In the following section, I provide a brief overview
of parts of my findings.

4 Results: How Does Pair Programming Work?

Here, I present two types of findings. In Sect. 4.1, I describe low-level differences in
the way how pairs interact and work together. Although my research was originally
only focused on knowledge transfer, deciphering these basic mechanisms and
behavioral patterns occurred to me as relevant for understanding all higher-level
aspects of pair programming.

I then skip over a few conceptual layers and take a bird’s-eye view on pair
programming sessions as whole in Sect. 4.2. I characterize how available knowledge
and knowledge gaps affect developers in a pair situation and investigate the general
dynamics that arise from this.

Section 4.3 then summarizes concrete ideas for how software development teams
can apply my findings in their daily routine.

Understanding How Pair Programming Actually Works in Industry 283

4.1 Fluency and Togetherness

Among the analyzed pairs, I noticed considerable differences in how fluent their
respective processes were. Most pairs have a continuous flow of conversation where
they introduce new topics (which I mark with a ‹), refer back to these topics
to evaluate or extend them (marked with either or , in case the partner has
yet to “arrive” at the same topic), and clear up the occasional misunderstanding
through meta-communication ()—just like in any normal conversation. But a
pair’s Fluency can also take one of two extreme forms.

On the one hand, some pairs have high-paced Focus Phases during which there
are practically no speech pauses and where the partners complete each other’s
thoughts, sentences, and even code lines: There is a quick succession of ‹s and

s. The developers may speak at the same time and in incomplete sentences, but
nevertheless understand each other perfectly, such that corrective s are rare. It is
impossible to grasp the dynamic of a Focus Phase by reading a transcript alone. As
an approximation, I compiled all the activities of one Focus Phase in Fig. 2: Within
60 seconds, the pair discusses 11 (!) different topics, constantly talking and editing.

On the other hand, the pair process may also suffer from a Breakdown, where the
developers do not evaluate each other’s ideas and proposals (more self-referential s
than pair-referential s) or may even fall into embarrassed silence (a communicative
defect, marked with):

O3: “Ah, it expects a number, but we pass an object.” ‹

O4: [looks puzzled at O3]
O3: “It’s an object, it’s a key-value pair.”
O4: [silently moves mouse cursor aimlessly across the screen for 30 seconds]

The Fluency of a PP process comes from the ease with which the two developers
can understand the content and intentions of each other’s actions and utterances. I
call this a pair’s momentary Togetherness. Through analyzing situations of both
high and low Fluency, of close and little Togetherness, I identified the following five
contributing factors:

1. A shared understanding of the software system allows for efficient commu-
nication (e.g., by speaking of “Factory” instead of “FeatureLayerAttributeTable-
CellRendererFactory” and still be perfectly understood by the partner). Where
such shared understanding is lacking, more wordy explanations are necessary or
more misunderstandings need to be cleared up.

2. A shared understanding of software development in general has a similar
influence. Knowing about common architectural styles, design patterns, and
typical ways to approach certain problems allows for efficient communication
and discussion of ideas. Otherwise, it is more difficult to evaluate the partner’s
proposals which puts a strain on a pair’s Togetherness (e.g., “Erm, okay? Go on
then. I’m quite out of my depths here.”).

3. One shared plan, e.g., in the form of a strategic decision made earlier, provides
a backdrop for quickly understanding and amending tactical proposals:

284 F. Zieris

Fig. 2 A Focus Phase of 60 seconds (time runs from top to bottom; columns 1 and 2 contain the
pair’s utterances, and column 3 the editing activities). The pair starts new topics, furthers them,
and repairs potential misunderstandings in quick succession. Overall, they discuss eleven topics
(indices A–K), while one partner performs code changes on-the-fly

Understanding How Pair Programming Actually Works in Industry 285

C3: “Shall we copy the code and check line-by-line whether it makes sense?”
C4: “OK, let’s see what we need.”
[... two minutes later ...]
C3: “[opens file] Ok, there are lot of things we don’t need.”
C4: [pointing at existing code] “You can just use return here.”

Without such an understanding, misunderstandings are more common because
one developer may have difficulties understanding how their partner’s actions fit
in the big picture.

O3: “Maybe durationInDays is not defined.”
O4: “It is defined. Here.”
O3: “Can we debug this?”
O4: “We already did!”

4. Workspace awareness is reduced in distributed pair programming due to the
spatial separation of the two developers, but can also be a problem in colocated
settings, e.g., with too-small font sizes (“Where are you right now, which
class?”).

5. A language barrier can come from using a foreign language (e.g., in a
discussion of two non-native English speakers: “An ‘offset’ is a duration?”) and
from idiosyncrasies in one’s way of speaking (e.g., saying “Wait a second” while
meaning “I’m now going to take mouse and keyboard.”).

The following short exchange illustrates how several of these factors come together.

A Pair’s Moment of High Togetherness
The pair agreed on changing the signature of an interface method, and
developer C5 asks his partner C2:

C5: “Erm, do you know the–” [right-clicks on method name to open context menu]
“How I access the feature to change a method?”
C2: “That doesn’t get you anywhere.”

While C2 does not answer C5’s question, his reaction reveals that he very well
understood what his partner intends to do. In particular, four factors help C2
understand the following aspects, allowing him to react so promptly:

• No language barrier: C5’s utterance is a question to which he expects an
answer.

• Workspace awareness: C5 wants to apply a refactoring (opened context
menu) on some method (cursor position).

• Shared understanding of software development: C5 refers to the refac-
toring “Change Method Signature,” which is known to both developers
for changing a method’s signature in all places where it is declared,
implemented, or called.

(continued)

286 F. Zieris

• One shared plan: C5 wants to apply this particular refactoring probably
with the expectation to save some manual editing on their way to change
the interface.

This exchange also illustrates that high Togetherness is not the same as
agreeing with the partner: C2 apparently disagrees with the C5’s assessment
of how much time and effort can be saved by applying the automatic
refactoring.

The five factors are not independent from another and problems from one
factor may also add to the difficulties of another (e.g., a language barrier and
reduced workspace awareness). Good pairs become aware of their shortcomings
and find ways to cope with them, e.g., compensating reduced workspace awareness
by more verbose commentary of their editing activities (factor 4), or taking the
time to explain some programming idiom which puzzled the partner (factor 2).
A pair’s Togetherness may change over the course of a session. The partners may
(inadvertently or consciously) reduce their Togetherness (“You go on. I say when I’m
back on track.”) or maintain their Togetherness through repair activities (“Why did
you just do this?”).

The not-explained variance of the effects measured in PP experiments (see
Sect. 2.1) could be due to differences in Togetherness among the subject pairs and
different competencies to deal with them. Factors 2 and 3 (shared understanding
of software development and one shared plan) may play an important role even
in contrived experimental situations. But there is no telling in hindsight. This
observation emphasizes the importance of understanding the underlying processes
rather than just reducing PP to time spent and lines of code produced. With such
a narrow perspective, pair properties such as Fluency and Togetherness remain
hidden.

4.2 Knowledge Wants, Knowledge Needs, and Prototypical
Dynamics

At the heart of my research is the question of how pair programmers transfer and
acquire knowledge. A central observation is that knowledge transfer happens in
every session—be it as the decided goal to introduce the partner to a part of the
system she has never seen before, or as a side-effect of closing a gap in each other’s
system or programming understanding (maintaining Togetherness, see Sect. 4.1).

In the course of a pair programming session, a developer will sooner or later
perceive a Knowledge Want, which could be paraphrased as I want to know this
(internal Knowledge Want), I want you to know this (external), or We want to
know this (collective). This is what motivates episodes of knowledge transfer during

Understanding How Pair Programming Actually Works in Industry 287

Fig. 3 Initial constellations
of Knowledge Needs in the
analyzed pair programming
sessions. One-sided S gap and
Two-sided S gap are quite
common (“normal” software
development); No relevant
gaps and Too-large, two-fold
gap are rare (greenfield
development, and impossible
task); Complementary gaps
can lead to a mutually
satisfying teaching and
learning experience

N
ee

d
fo

rS
kn

ow
le

dg
e

(s
ys

te
m

-s
pe

ci
fic

)

Need for G knowledge (general software development)
high

hi
gh

medium

m
ed

iu
m

low

lo
w

No relevant gaps

One-sided G gap

Complementary gaps

One-sided S gap

Two-sided S gap

Too-large, two-fold gap

BB1
BB2
BB3KC2

PA3
PA4

CA1DA2
KB1

JA1
JA2

EA
1

CA
2

CA
4

M
A1 PA
1

KC
1

AA1
BA1
CA5

CA3
OA5

PA2KA1
OA8

OA1
OA2

which she asks her partner, provides her with explanations, or involves her in the
acquisition of new knowledge through reading source code until her Knowledge
Want is satisfied.

In contrast to local Knowledge Wants, a developer is not necessarily aware of
the extent of her global Knowledge Need, which are her knowledge gaps regarding
to the specific demands of the task. The same task may be easy for someone with
all the relevant knowledge available (low Knowledge Need), or rather difficult if the
system or technology are unfamiliar (high Knowledge Need). Conversely, the same
developer will have to deal with different Knowledge Needs for different tasks.

Based on the analysis of hundreds of knowledge transfer episodes, I distinguish
two types of knowledge that are relevant in industrial pair programming sessions:
System-specific S knowledge, which includes knowledge about requirements, the
architecture and low-level design, concrete usage of technologies, and behavior of
the system and defects; and generic G knowledge about software development as
such, which covers design patterns, programming languages, tools, and libraries.

Pair programming sessions can now be characterized by the extent of the
partners’ initial Knowledge Needs regarding the S- and the G-dimension and the
trajectory they take by pursuing their Knowledge Wants. I identified six recurring
initial pair constellations (Fig. 3), including pairs with Complementary Gaps, where
one partner possesses more task-relevant G knowledge (e.g., about design patterns
and refactorings) while the other has more task-relevant S knowledge (e.g., because
she originally implemented that part of the system). Others may have a One-Sided
S Gap, which occurs often when one partner built up an S advantage through prior
work.

288 F. Zieris

Fig. 4 Three session
dynamic prototypes. Pairs
first address differences in
system understanding
(Primary Gap) before
acquiring lacking system
understanding together
(Secondary Gap). A
difference in software
development knowledge then
poses an Opportunity

N
ee

d
fo

rS
K

no
w

le
dg

e
hi

gh
lo

w

Need for G Knowledge lowhigh

A

B

P
rim

a
ry

G
a
p

S
e
c
o
n
d
a
ry

G
a
p

G Opportunity

Considering the knowledge trajectories taken by the pairs in all sessions, I discov-
ered the following three prototypical session dynamics (see also Fig. 4):

1. Closing the Primary Gap, which is the difference in task-specific system
understanding between the pair members. There might be no such gap, if both
developers worked on the task before. Quite often, however, a developer joins
another who already worked on the task. This is the case in this example, where
one developer has a fresh mental model of the system and his partner does not:

C1: “I already started and programmed for an hour. I started with the GUI. I’ll show
you quickly” [opens overview of recent changes]

In another scenario, one partner’s last encounter with a piece of software was
several months ago, but he still has an S knowledge advantage because his partner
has never seen it:

J2: “Do you know the plugin, or don’t you know it?”
J1: [exhales audibly] “Just show to it me again.”
J2: “OK, I can give you the big picture of what this plugin does, overall.”

If there is a Primary Gap, pairs address it early in their session. Not dealing with
this gap properly is an impediment to the pair’s Togetherness (factor 1, shared
system understanding, see Sect. 4.1).

2. Closing the Secondary Gap, which consists of acquiring task-relevant system
knowledge which neither developer possesses. This is common in debugging
scenarios but can also happen in the context of feature implementations where
the pair needs to find the right spot to add new logic. Pair programmers may
acquire such understanding together by reading source code or using a debugger.
Good pairs make sure to maintain their Togetherness in this phase, too: If one
partner pulls ahead, she helps her partner take the ental steps. Note that in some

Understanding How Pair Programming Actually Works in Industry 289

situations, it may not be necessary for both partners to understand the system to
the same degree, e.g., if only one of them is expected to continue working on it
in the future.

3. A G Opportunity arises when one partner possesses more G knowledge than
the other. Unlike a difference in S knowledge, a G knowledge difference was
never a problem in the analyzed sessions. In all instances, however, pairs only
seized this opportunity after closing their Primary and Secondary Gaps. Even
if the Knowledge Need was already there, pairs do not appear to develop a
Knowledge Want regarding G knowledge until their S Knowledge Wants are
satisfied. Therefore, exchanges like this one tend to happen only late in the
session:

[... 1:30 hours into session DA2 ...]
D4: “Do you know about OSGi class loading?”
D3: “Class-what? Not really, no.”
D4: “Should I tell you?”
D3: “Sure.”

These three dynamics characterize the majority of all analyzed PP sessions: Pairs
first address their Primary Gap, then their Secondary Gap, before potentially seizing
their G Opportunity.

The special case are pairs where both partners lack relevant G knowledge. A
moderate deficit is not problematic, as the developers simply try to complete their
task with the means available. If the pairs lack a lot of G knowledge, however, their
task gets much more difficult because they cannot build up the necessary system
understanding, as one developer exclaims after an hour of trying to understand a
single source file:

O3: “Type? Function? I don’t even know what this is!”

Such situations should be rare, though, as practitioners appear to avoid such massive
overtaxation by choosing partners and tasks that match their existing knowledge.

Overall, knowledge transfer in pair programming in industry is mostly about
system understanding. Not only does the vast majority of knowledge transfer
episodes pertain to system-specific S knowledge rather than generic G knowledge;
pair programmers also deal with their S knowledge gaps first, before they may look
for G Opportunities to explain general software development concepts.

4.3 Practical Applications

I developed the following three practices for software development teams to make
use of my findings in their everyday practice:

1. Pair Forming: Teams can use the G-S chart (Fig. 3) to discuss the Knowledge
Needs of all team members for an upcoming task and find a favorable constella-
tion, e.g., one with a G Opportunity.

290 F. Zieris

2. Set Session Goal: Do both pair members need to understand the task-relevant
system parts enough to continue the work, or is some Primary Gap tolerable? Is
there a G Opportunity that could be seized?

3. Reflect on Session: After the session, the pair may consider questions like: Did
we underestimate our Knowledge Needs, i.e., are there lacking pieces of S or G
knowledge whose relevance we were not aware of? Should we discuss these with
the rest of the team?

I evaluated my findings and the practice ideas in four companies through workshops
and interviews. Overall, concepts presented in this chapter were well received by the
practitioners. Due to practical constraints such as team size, developer availability,
and tasks with a rigid scope, I was only able to test the third practice Reflect on
Session in the field. It helped the developers remember and appreciate pieces of
knowledge that they transferred or acquired in their session:

P1: “I guess that [P3] learned in both dimensions, even technologically [G knowledge]
since we now use more PHP7–”
P3: “Right! I totally forgot about that. That was actually really cool.”

Although I had no chance to observe it, the practitioners also expected the other
two practices (Pair Forming and Set Session Goal) to have positive effects, if their
context allowed them more degrees of freedom.

5 Summary and Outlook

Pair programming is a way of developing software that is amendable to every
aspect of software development in all application domains, regardless of concrete
technology. It is widely used in industry with the expectation to speed up develop-
ment, lead to higher quality, and spread knowledge in development teams. Prior
research focused too much on directly measurable effects and too little on the
processes and mechanisms that are at work when two software developers tackle
a complex problem together in a real environment. My qualitative analysis of 27
industrial pair programming sessions from 10 companies lead to the following
central observations:

• Despite what has been proclaimed for many years, the typical programmer pair
in industry does not consist of an active “driver” and a strategically thinking
and defect-hunting “navigator,” but of two software developers who are engaged
in a dialog, discussing ideas and building up a shared understanding of task and
system. Admittedly, one of them usually does happen to use keyboard and mouse
to interact with the computer for some time span, but that is not what makes pair
programming work.

• What allows pairs to a have fluent process is a high degree of Togetherness
which enables them to understand each other’s ideas and arguments. In particular,
pairs need to maintain a shared understanding of their software system and of

Understanding How Pair Programming Actually Works in Industry 291

software development in general. Having one shared plan also helps a long
way. Additionally, pairs may need to cope with reduced workspace awareness
or language barriers of sorts. Doing all of the above may lead to short, but highly
productive Focus Phases; if their Togetherness drops too low, a Breakdown of
their process may ensue.

• Two main types of knowledge are relevant in industrial pair programming
sessions: Pairs mostly deal with (lacks of) specific knowledge about their
software system (S knowledge) and to a lesser degree with (lacks of) generic
knowledge about software development general (G knowledge). Transfer of S
knowledge practically happens in all pair programming sessions.

• There is a number of recurring pair constellations which result from the individ-
ually different levels of applicable pre-existing knowledge. A pair’s constellation
is highly task-dependent: The same two developers may have their supposed
“expert” and “novice” labels reversed when they work in different parts of the
system or happen to need certain technology skills. Amending the task’s scope
therefore can put both developers in the position to teach the other something
new.

My work focused primarily on two of the five factors that influence a pair’s
Togetherness: Their shared understanding of the software system and of software
development in general (factors 1 and 2, see Sect. 4.1). Other research by Schenk
et al. [11] already looked at how good pairs deal with reduced workspace awareness
(factor 4). This leaves an in-depth analysis of decision making, i.e., how pairs come
up with one shared plan (factor 3), as important future work. Although I did not
encounter it in my data, practitioner literature suggests that they are also more ways
for a pair’s process to have a Breakdown, e.g., due to power dynamics [9].

I was personally involved in collecting primary data in four companies (K, M, O,
and P; see also Table 1) and evaluated the above findings in five contexts (Table 2),
where they were met with great resonance, which is an important quality criterion
of qualitative research besides the rigorous analysis of rich data [15]. Beyond the
“scientific” results already discussed, my interactions with the practitioners were
fruitful, because it made the teams aware of how little thought they had previously
put into what their implementation of the pair programming practice actually
entails:

• Company O, for example, considered themselves an “all-PP company.” They
could not organize a structured onboarding process and mandated pair program-
ming and regular team rotations instead. However, during my 4-week observation
period, there were only a few PP sessions, but a widespread lack of technology
knowledge, which the Scrum Masters only became aware of through my research
activities.

• The product owner and developers in company P expected pair programming to
yield “all the benefits,” but had no priority: Better design, fewer defects, faster
progress, transfer of knowledge, and enjoyable work were all equally important,
and each PP session was expected to have these effects. My workshop made them
reconsider their priorities.

292 F. Zieris

It is my impression that my discussions with the practitioners made them reflect on
their work, motivated discussions on which PP effects they actually care about, and
made them see forming pairs considerately, setting sessions goals, and reflecting on
recent PP sessions as opportunities to achieve these effects.

I try to keep in touch with the companies even years after the initial data
collection (in particular through their Scrum Masters) and continue to seek the
exchange with more practitioners to make my findings more widely known.

References

1. Arisholm, E., Gallis, H., Dybå, T., Sjøberg, D.I.: Evaluating pair programming with respect to
system complexity and programmer expertise. IEEE Trans. Softw. Eng. 33(2), 65–86 (2007).
https://doi.org/10.1109/TSE.2007.17

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(1999)

3. Begel, A., Nagappan, N.: Pair programming: What’s in it for me? In: Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement,
pp. 120–128. ACM, New York (2008). https://doi.org/10.1145/1414004.1414026

4. Bryant, S.: Double trouble: Mixing qualitative and quantitative methods in the study of extreme
programmers. In: IEEE Symposium on Visual Languages and Human Centric Computing,
VL/HCC ’04, pp. 55–61. IEEE, Piscataway (2004). https://doi.org/10.1109/VLHCC.2004.20

5. Bryant, S., Romero, P., du Boulay, B.: Pair programming and the mysterious role of the
navigator. International Journal of Human-Computer Studies 66(7), 519–529 (2008). https://
doi.org/10.1016/j.ijhcs.2007.03.005

6. Coplien, J.: A generative development-process pattern language. In: Rising, L. (ed.) The Pat-
terns Handbook: Techniques, Strategies, and Applications, pp. 243–300. Cambridge University
Press, Cambridge (1998)

7. Hannay, J.E., Dybå, T., Arisholm, E., Sjøberg, D.I.: The effectiveness of pair programming:
a meta-analysis. Inform. Softw. Technol. 51(7), 1110–1122 (2009). https://doi.org/10.1016/j.
infsof.2009.02.001

8. Plonka, L., Sharp, H., van der Linden, J., Dittrich, Y.: Knowledge transfer in pair programming:
an in-depth analysis. International Journal of Human-Computer Studies 73, 66–78 (2015).
https://doi.org/10.1016/j.ijhcs.2014.09.001

9. Pyhäjärvi, M.: Power dynamics in pairs and mobs (2018). https://visible-quality.blogspot.com/
2018/05/power-dynamics-in-pairs-and-mobs.html

10. Salinger, S., Prechelt, L.: Understanding Pair Programming: The Base Layer. Books on
Demand (2013). http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf

11. Schenk, J., Prechelt, L., Salinger, S.: Distributed-pair programming can work well and is not
just distributed pair-programming. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE ’14, pp. 74–83. ACM Press, New York (2014). https://doi.org/10.
1145/2591062.2591188

12. Sedano, T., Ralph, P., Péraire, C.: Sustainable software development through overlapping
pair rotation. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM ’16, pp. 19:1–19:10. ACM Press, New York
(2016). https://doi.org/10.1145/2961111.2962590

13. StackOverflow: 2018 stack overflow developer survey (2018). https://insights.stackoverflow.
com/survey/2018

14. Strauss, A., Corbin, J.: Basics of Qualitative Research. Grounded Theory Procedure and
Techniques. Sage Publications, New York (1990)

https://doi.org/10.1109/TSE.2007.17
https://doi.org/10.1145/1414004.1414026
https://doi.org/10.1109/VLHCC.2004.20
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.infsof.2009.02.001
https://doi.org/10.1016/j.ijhcs.2014.09.001
https://visible-quality.blogspot.com/2018/05/power-dynamics-in-pairs-and-mobs.html
https://visible-quality.blogspot.com/2018/05/power-dynamics-in-pairs-and-mobs.html
http://www.inf.fu-berlin.de/inst/ag-se/pubs/SalPre13-baseconbook.pdf
https://doi.org/10.1145/2591062.2591188
https://doi.org/10.1145/2591062.2591188
https://doi.org/10.1145/2961111.2962590
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018

Understanding How Pair Programming Actually Works in Industry 293

15. Tracy, S.J.: Qualitative quality: eight “big-tent” criteria for excellent qualitative research. Qual.
Inq. 16(10), 837–851 (2010). https://doi.org/10.1177/1077800410383121

16. Walle, T., Hannay, J.E.: Personality and the nature of collaboration in pair programming.
In: Proceedings of the 3rd International Symposium on Empirical Software Engineering and
Measurement, pp. 203–213. IEEE, Piscataway (2009). https://doi.org/10.1109/ESEM.2009.
5315996

17. Williams, L., Kessler, R.R.: Pair Programming Illuminated. Addison-Wesley, Reading (2002)
18. Zarb, M., Hughes, J., Richards, J.: Industry-inspired guidelines improve students’ pair

programming communication. In: Proceedings of the 18th ACM Conference on Innovation
and Technology in Computer Science Education, pp. 135–140 (2013). https://doi.org/10.1145/
2462476.2462504

19. Zieris, F.: Qualitative analysis of knowledge transfer in pair programming. Ph.D. Thesis,
Fachbereich Mathematik und Informatik, Freie Universität Berlin (2020). https://doi.org/10.
17169/refubium-28718

20. Zieris, F., Prechelt, L.: On knowledge transfer skill in pair programming. In: Proceedings
of the 8th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM ’14, pp. 11:1–11:10. ACM, New York (2014). https://doi.org/10.1145/
2652524.2652529

21. Zieris, F., Prechelt, L.: Observations on knowledge transfer of professional software developers
during pair programming. In: Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE ’16 (SEIP), pp. 242–250. ACM, New York (2016). https://doi.
org/10.1145/2889160.2889249

22. Zieris, F., Prechelt, L.: Explaining pair programming session dynamics from knowledge gaps.
In: Proceedings of the 42nd International Conference on Software Engineering, ICSE ’20, pp.
421–432. ACM, New York (2020). https://doi.org/10.1145/3377811.3380925

23. Zieris, F., Prechelt, L.: PP-ind: Description of a repository of industrial pair programming
research data (2020). https://arxiv.org/abs/2002.03121v5

24. Zieris, F., Prechelt, L.: Two elements of pair programming skill. In: Proceedings of the
43rd International Conference on Software Engineering, ICSE ’21 (NIER). IEEE, Piscataway
(2021). https://arxiv.org/abs/2102.06460

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1177/1077800410383121
https://doi.org/10.1109/ESEM.2009.5315996
https://doi.org/10.1109/ESEM.2009.5315996
https://doi.org/10.1145/2462476.2462504
https://doi.org/10.1145/2462476.2462504
https://doi.org/10.17169/refubium-28718
https://doi.org/10.17169/refubium-28718
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2652524.2652529
https://doi.org/10.1145/2889160.2889249
https://doi.org/10.1145/2889160.2889249
https://doi.org/10.1145/3377811.3380925
https://arxiv.org/abs/2002.03121v5
https://arxiv.org/abs/2102.06460
http://creativecommons.org/licenses/by/4.0/

	Contents
	Ernst Denert Software Engineering Award 2020
	1 Introduction
	2 Overview of the Nominated PhD Theses
	3 The Work of the Award Winner
	4 Structure of the Book
	Thanks
	References

	Some Patterns of Convincing Software Engineering Research, or: How to Win the Ernst Denert Software Engineering Award 2020
	1 Introduction
	2 Be in Scope
	3 Enumerate Your Assumptions
	4 Delineate Your Contribution
	5 Honestly Discuss Limitations
	6 Show Usefulness and Practical Applicability
	7 Have a Well-Prepared Nutshell
	8 Be Timeless

	What You See Is What You Get: Practical Effect Handlers in Capability-Passing Style
	1 Introduction
	2 Effect Handlers
	2.1 Aborting the Computation
	2.2 Dynamic Dependencies
	2.3 Advanced Control Flow

	3 Effect Handlers and Object-Oriented Programming
	3.1 Capability Passing

	4 Lexically Scoped Effect Handlers: What You See Is What You Get
	4.1 Dynamically Scoped Effect Handlers
	4.2 Dynamic vs. Lexical Scoping
	4.3 Lexically Scoped Effect Handlers
	4.3.1 Effect Types Carry Meaning

	4.4 Effect Parametricity
	4.5 Effect Polymorphism
	4.5.1 The Traditional Reading
	4.5.2 The Contextual Reading
	4.5.3 Parametric vs. Contextual Effect Polymorphism
	4.5.4 Contextual Effect Polymorphism

	4.6 What You See Is What You Get

	5 Improving the Performance of Effect Handlers
	5.1 Optimizing Handler Search
	5.1.1 Optimizing Tail Resumptions

	5.2 Optimizing Continuation Capture
	5.3 Full Elimination of Control Abstractions
	5.4 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Directions
	7.1 Future Directions

	References

	How to Effectively Reduce Failure Analysis Time?
	1 Introduction
	2 Failure Clustering
	2.1 Clustering Approach
	2.1.1 Failure Clustering with Coverage
	2.1.2 Failure Clustering Without Coverage

	2.2 Industry Impact

	3 Fault Localization
	3.1 Syntactic Block Granularity
	3.2 Re-ranking Program Elements
	3.3 Evaluation
	3.4 Predicting the Quality of SBFL

	4 Contribution and Limitation
	5 Summary and Outlook
	References

	Open Source Software Governance: Distilling and Applying Industry Best Practices
	1 Introduction
	2 Distilling Industry Best Practices
	2.1 Getting Started with FLOSS Governance
	2.2 Supply Chain Management

	3 Applying Industry Best Practices
	3.1 Case Study A
	3.2 Case Study B

	4 Conclusion
	References

	Dynamically Scalable Fog Architectures
	1 Introduction
	2 xFog: An Extension for Fog Computing
	2.1 Fog Component
	2.2 Fog Visibility
	2.3 Fog Horizon
	2.4 Fog Reachability
	2.5 Fog Set
	2.6 Service Constraints
	2.7 Communication Set

	3 xFogPlus: Dynamic and Scalable Fog Architectures
	3.1 Dynamic Reconfigurability
	3.2 Scalability
	3.3 Handling Complexity

	4 xFogStar: A Workflow for Service Provider Selection
	5 Validation
	6 Conclusion
	References

	Crossing Disciplinary Borders to Improve Requirements Communication
	1 Introduction
	2 Background and Improvement Goals
	2.1 Requirements Artifacts
	2.2 Practical Improvement Goals
	2.3 Literature Review Activities

	3 Solution Idea and Research Approach
	4 Empirical Studies
	4.1 Research Goals and Agenda
	4.2 Analysis of Individual Studies: Empirical Baseline
	4.2.1 Data Analysis Strategy: An Example
	4.2.2 Data Interpretation

	4.3 Secondary Data Analysis: Role-Specific Views
	4.3.1 Data Analysis Strategy: An Example
	4.3.2 Data Interpretation
	4.3.3 Data Utilization

	5 Limitations and Future Work
	6 Summary
	References

	DevOpsUse: A Community-Oriented Methodology for Societal Software Engineering
	1 Introduction
	2 Motivation
	2.1 Central Hypothesis
	2.2 Research Background

	3 DevOpsUse Methodology
	3.1 Continuous Innovation
	3.2 Collaborative Modeling
	3.3 Monitoring
	3.4 Connecting the DevOpsUse Life Cycle

	4 Methodological and Technical Evaluation
	4.1 Technology Evolution
	4.2 Best Practice Guidelines
	4.3 Application in Industry 4.0

	5 Conclusion
	References

	Hybrid Differential Software Testing
	1 Introduction
	2 Hybrid Differential Testing: Assumptions and Concept
	3 Differential Fuzzing
	4 Differential Dynamic Symbolic Execution
	5 General Framework for Hybrid Differential Software Testing
	6 Applications
	6.1 Regression Analysis (A1)
	6.2 Worst-Case Complexity Analysis (A2)
	6.3 Side-Channel Analysis (A3)
	6.4 Robustness Analysis of Neural Networks (A4)

	7 Conclusion and Future Work
	References

	Ever Change a Running System: Structured Software Reengineering Using Automatically Proven-Correct Transformation Rules
	1 Introduction
	2 Abstract Execution
	2.1 Specifying Abstract Programs
	2.2 Symbolic Execution of Abstract Program Elements

	3 The REFINITY Workbench
	4 Correctness of Refactoring Rules
	5 Restructuring for Parallelization
	6 Cost Analysis of Transformation Rules
	7 Conclusion and Future Work
	References

	Static Worst-Case Analyses and Their Validation Techniques for Safety-Critical Systems
	1 Introduction
	2 Worst-Case Analyses
	2.1 Background and System Model
	2.1.1 Analysis Pessimism
	2.1.2 System Model

	2.2 Problem Statement of WCEC Analysis
	2.3 SysWCEC: Whole-System WCEC Analysis
	2.3.1 Decomposition: Power Atomic Basic Blocks
	2.3.2 Path Exploration: Power-State–Transition Graph
	2.3.3 ILP Formulation
	2.3.4 Cost Modeling

	3 Validation of Worst-Case Analyses
	3.1 Problem Statement of Validating Worst-Case Analyses
	3.2 GenE: Benchmark Generator for WCET Tools
	3.2.1 Program Pattern
	3.2.2 Pattern Suites
	3.2.3 Inputs and Outputs of GenE

	3.3 Benchmark Weaving
	3.4 MetricsWCA: Validation of GenE's Benchmarks
	3.5 Determining Individual Strengths and Weaknesses of Analyzers with GenE
	3.6 Validation of the aiT WCET Analyzer
	3.7 Related Work and Generators in the GenE Family
	3.7.1 Making Use of Analysis Pessimism on System Level

	4 Conclusion
	References

	Improving the Model-Based Systems Engineering Process
	1 Introduction
	2 Systems Engineering Process at Daimler AG
	2.1 Current Development Process at Daimler AG
	2.2 Improving the Development Process at Daimler AG

	3 Creating C&C High-Level Designs Based on Requirements
	4 Automatic Structural Consistency Checks for Design Models
	5 Satisfaction Verification Between Design and Functional Model
	6 Creating C&C Functional Models Efficiently with EmbeddedMontiArc
	7 Enriching C&C Functional Models with Extra-Functional Properties in a Consistent Way
	8 Automatic Extra-Functional Property Verification Between Design and Functional Models
	9 Conclusion
	References

	Understanding How Pair Programming Actually Works in Industry: Mechanisms, Patterns, and Dynamics
	1 Introduction
	2 Overview of Pair Programming Research
	2.1 Quantitative Pair Programming Studies: Findings and Problems
	2.2 Qualitative Pair Programming Studies: Findings and Problems

	3 Research Goal, Data, and Method
	4 Results: How Does Pair Programming Work?
	4.1 Fluency and Togetherness
	4.2 Knowledge Wants, Knowledge Needs, and Prototypical Dynamics
	4.3 Practical Applications

	5 Summary and Outlook
	References

