
Christian Hummert
Dirk Pawlaszczyk Editors

Mobile
Forensics –
The File Format
Handbook
Common File Formats and File Systems
Used in Mobile Devices

Mobile Forensics – The File Format Handbook

Christian Hummert • Dirk Pawlaszczyk

Mobile Forensics –

Common File Formats and File Systems

Used in Mobile Devices

The File Format
Handbook

Editors

ISBN 978-3-030-98466-3 ISBN 978-3-030-98467-0 (eBook)

https://doi.org/10.1007/978-3-030-98467-0

© The Editor(s) (if applicable) and The Author(s) 2022. This book is an open access publication.

Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0), which permits use, sharing, adaptation, distribution

and reproduction in any medium or format, as long as you give appropriate credit to the original author(s)

and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this book are included in the book’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s

Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the

permitted use, you will need to obtain permission directly from the copyright holder.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication

does not imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book

are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or

the editors give a warranty, expressed or implied, with respect to the material contained herein or for any

errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional

claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Christian Hummert

Dirk Pawlaszczyk

Fachgruppe Informatik

Hochschule Mittweida

Mittweida, Germany

Agentur für Innovation in der Cybersicherheit

Halle (Saale), Germany

Editors

https://doi.org/10.1007/978-3-030-98467-0
http://creativecommons.org/licenses/by/4.0

Preface

One of the biggest challenges in digital forensics is to gain a deep understanding of
file systems and file formats. This knowledge is needed to recover files from corrupt
file systems or reveal artefacts of former states of a computer system. For most file
systems, it is easy to find resources that describe file systems at a high level. But
for the detailed knowledge on the Hex-code level that is needed for digital forensics
there are only few sources.

Brian Carrier did a great job in his book: “File System Forensic Analysis” [10].
This book was definitely a model for this work. When I started digital forensics, I
really devoured this book. Reading Carrier I understood in detail how files are stored
on computers and how to recover deleted files. “File System Forensic Analysis” gives
deep insights into FAT, NTFS, EXT2, EXT3 and UFS. However, there are more file
systems to discover: In my further work, I learned about EXT4, HFS+ and APFS.
Concentrating on mobile forensics, there are even more file systems to explain.

In addition, there is more than file systems. Especially in mobile forensics, there
are new file formats to encounter, which have a broader and more universal scope.
File Formats like the SQLite database format are used in nearly every mobile device
by millions of different Apps.

In January 2018, I started to write the proposal for the EU project FORMOBILE1.
I aimed to provide an end-to-end mobile forensic investigation chain. I succeeded
to build an outstanding consortium with 19 partners from 11 countries. Together we
created a work plan that delivers novel tools to support mobile forensics, builds a
new standard for mobile forensics and offers novel training for the forensic experts
in this area. Happily, the project was funded and started in May 2020.

At the beginning of the proposal creation phase, we agreed to write a File Format
Handbook that summarizes knowledge about various file formats and file systems
common inmobile devices. I ammore than happy to provide this file format handbook
as a deliverable to the European Commission and a broader audience of forensic
experts.

1 https://formobile-project.eu

v

vi Preface

However, this book is not only a toolbox for experienced investigators that have
learned about digital investigations from real cases and using analysis tools. The
other target audience is students. Moreover, the book is aimed at people who are
new to digital forensics and are more interested in the general theory of file recovery
and file systems. It has to be admitted that this work is not a tutorial on how to use a
specific tool but has a broader idea.

Roadmap

This book is organized into two distinct parts (Fig. 1). Part I describes several
different file systems that are commonly used in mobile devices. APFS is the file
system that is used in all modern Apple devices. This includes the iPhones, iPads
but also the Apple Computers like the MacBook Series. At the same time, Ext4 is
very common in Android devices. Ext4 is the successor of the Ext2 and Ext3 file
systems that were commonly used on Linux-based computers. The Flash-Friendly
File System (F2FS) is a Linux system designed explicitly for NAND Flash memory.
This type of memory is common in removable storage devices and mobile devices.
Samsung Electronics developed the system in 2012. The QNX6 filesystem is present
in Smartphones delivered by Blackberry (e.g. Devices that are using Blackberry 10)
and modern vehicle infotainment systems that use QNX as their operating system.

Fig. 1: Structure of the book

Preface vii

Part II describes five different file formats that are commonly used onmobile devices.
SQLite is nearly omnipresent in mobile devices. The overwhelming majority of all
mobile applications (Apps) store their data in such databases. Another important
file format in the mobile world are Property Lists. They are especially frequent on
Apple devices. Java Serialization is a popular technique for storing object states in
the Java programming language. In the field of mobile forensics, we come across
such artefacts. App developers very often resort to this technique to make their
application state persistent. The Realm database format has emerged over recent
years as a possible successor to the now ageing SQLite format and has a growing use
on mobile devices. Protocol Buffers provide a format for taking compiled data and
serializing it by turning it into bytes represented in decimal values. This technique
is also often used in mobile devices.

Scope of the Book

After the Roadmap shows the forthcoming chapters’ names, it is time to summarize
what is not included in this book. The book summarizes four file systems and five
commonly used file formats. Next to the fundamental description of the formats, there
are hints about the forensic value of possible artefacts and tools that can decode the
files or file systems.

This book is not a step-by-step guide to investigating mobile devices, reconstruct-
ing file systems, or decoding file formats. In addition, the book does not describe
what files a specific OS or application creates. So you want to gather information
about which files to examine if a specific app or OS is given.

The book is appropriate for forensic experts who need knowledge about a specific
file system or file format or students who want to become forensic experts. This
book requires some knowledge about computers, mobile devices, file systems and
file formats, so this is not an absolute beginners guide.

Conventions Used in This Book

We cite numerous books, articles, and websites throughout the book. These citations
appear in the text using square brackets [999]. All references can be found at the end
of this book. The reader should further pay special attention to annotations that are
marked with the following symbols from the text:

•! Attention

Certain things should not be done to avoid mistakes. At one point or another, the
reader will be warned of possible mistakes during a forensic investigation.

viii Preface

•> Important

This hint field is used whenever we think something is significant.

Tips

If you find such a box in the text, we would like to give the reader an important hint.
Taking these tips to heart can save much time in practice.

Acknowledgements

The project has received funding from the European Union’s Horizon 2020 Research
and Innovation Program under Grant Agreement No. 832800.

We would wish to thank everyone who has participated in any way and made this
book possible. In particular, we would like to thank Georgina Humphries, without
whose help the project would certainly not have gotten this far for their valuable
comments and corrections, as well as Phil Cobley and Chris Currier, who have
proofread the text.

Mittweida, Germany Christian Hummert
December 2021 Dirk Pawlaszczyk

Contents

Part I Mobile File System Formats

1 APFS . 3
Rune Nordvik
1.1 Introduction . 3
1.2 APFS - File system category . 4

1.2.1 Finding the APFS container . 4
1.2.2 Object header . 5
1.2.3 Superblocks . 8
1.2.4 Checkpoint mapping . 11
1.2.5 Volumes . 15

1.3 APFS - Metadata Category . 26
1.4 APFS - File Name category . 32
1.5 APFS - Content Category . 34
1.6 APFS - Application Category . 38
1.7 Comparing our results with a commercial tool 38

2 Ext4 . 41
Rune Nordvik
2.1 Introduction . 41
2.2 Ext4 - File system category . 42
2.3 Superblock . 43

2.3.1 Temporary data about the File system 43
2.3.2 Supported features . 45
2.3.3 The group descriptor . 51

2.4 Ext4 - Metadata Category . 55
2.4.1 The inode . 55
2.4.2 User privileges and type of file . 56
2.4.3 Temporary metadata describing inodes 57
2.4.4 Temporary metadata manipulations 58
2.4.5 Links count . 59

ix

x Contents

2.5 Ext4 - File Name category . 65
2.6 Ext4 - Content Category . 66

2.6.1 Recovery of files . 66
2.6.2 Generic metadata time carving . 67
2.6.3 Additional file content . 67

2.7 Ext4 - Application Category . 68

3 The Flash-Friendly File System (F2FS) . 69
Chris Currier
3.1 Introduction . 69

3.1.1 NAND (Not And) Flash Memory . 69
3.1.2 Flash Translation Layer (FTL) . 71

3.2 Flash Filesystems . 71
3.2.1 The Log-Structured File System (LSFS) or (LFS) 72
3.2.2 Flash-Friendly File System (F2FS): Enter F2FS 72
3.2.3 Wandering Tree Problem . 73

3.3 On-Disk Layout of F2FS . 73
3.3.1 Creation of F2FS partitions with Mkfs.f2fs 75
3.3.2 F2FS on Disk . 76

3.4 File Structure of F2FS . 81
3.4.1 Node Structure . 81
3.4.2 File Creation and Management . 83
3.4.3 Fsck.f2fs Identifying Files . 85
3.4.4 Metadata . 86
3.4.5 Multi-Head Logging . 87
3.4.6 Cleaning . 88

3.5 Forensic Analysis . 91
3.5.1 F2FS Sample Dataset . 91
3.5.2 F2FS and Windows . 92
3.5.3 Data-Extraction with XRY . 93
3.5.4 Superblock Examination . 94
3.5.5 Examine NAT, SIT & SSA with Linux 95
3.5.6 Carving for artefacts with XAMN . 101
3.5.7 Node Allocation Table (NAT) Comparisons 105

3.6 F2FS - Application fields . 108
3.7 Conclusion . 108

4 QNX6 . 109
Conrad Meyer
4.1 Introduction . 109
4.2 QNX6 Filesystem Structure . 110

4.2.1 Superblock . 111
4.2.2 Bitmap . 114
4.2.3 Inode . 115
4.2.4 Directories . 117
4.2.5 Long Filenames Inode . 119

Contents xi

4.3 Example: Construction of a file . 119
4.4 Deleted Files . 122
4.5 Forensic Tools supporting QNX6 filesystems 125

Part II Mobile File Formats

5 SQLite . 129
Dirk Pawlaszczyk
5.1 Introduction . 129
5.2 The SQLite File Structure . 130

5.2.1 The Database Header . 132
5.2.2 Storage Classes, Serial Types and Varint-Encoding 135
5.2.3 Decoding The SQLite_Master Table 136
5.2.4 Page Structure . 138
5.2.5 Recovering Data Records . 141

5.3 Accessing The Freelist . 144
5.4 More Artefacts . 146

5.4.1 Temporary File Types . 146
5.4.2 Rollback Journals . 148
5.4.3 Write-Ahead Logs . 151

5.5 Conclusions . 154

6 Property Lists . 157
Christian Hummert and Georgina Louise Humphries
6.1 Introduction . 157
6.2 Binary plist Structure . 158
6.3 Example . 161
6.4 Forensic Tools Supporting plists . 163
6.5 Conclusions . 165

7 Java Serialization . 167
Dirk Pawlaszczyk
7.1 Introduction . 167
7.2 Object Serialization in Java . 168

7.2.1 Serialization Techniques in Java . 168
7.2.2 Serialization by Example . 169

7.3 Java Object Serialization Protocol Revealed 172
7.4 Pitfalls and Security Issues . 177

7.4.1 Hands on Serialized Objects . 178
7.4.2 Beware of Gadget Chains . 178

7.5 Conclusions . 180

xii Contents

8 Realm . 181
Phil Cobley and Ginger Geneste
8.1 Organisation of this Chapter . 181
8.2 Introduction . 182
8.3 SQLite, It is Not! . 183

8.3.1 Relational Databases . 183
8.3.2 SQLite as a Relational Database . 185
8.3.3 SQLite Schema . 186
8.3.4 Temporary SQLite Files . 186
8.3.5 SQLite File Format . 188

8.4 How Realm Works . 189
8.4.1 Realm Database Fundamentals . 189
8.4.2 Common Concepts and Terminology 189

8.5 File Storage and Structures . 196
8.5.1 Realm Files and Folders . 196
8.5.2 The Realm File . 196
8.5.3 Creating Realm Test Instance . 198
8.5.4 The Realm Database File Structure 204
8.5.5 Realm File Header . 205
8.5.6 Realm File Arrays . 210
8.5.7 Realm Array Header . 211
8.5.8 Checksum . 212
8.5.9 Flags . 212
8.5.10 Size . 215
8.5.11 Realm Array Payload . 216
8.5.12 Size Calculation Example . 217
8.5.13 Array Example - Header . 218
8.5.14 Array Example - Flags . 218
8.5.15 Array Example - Size . 219

8.6 Conclusion . 220

9 Protocol Buffers . 223
Chris Currier
9.1 Introduction . 223

9.1.1 What is a Protocol Buffer? . 223
9.1.2 Why are Protocol Buffers Used? . 225

9.2 Using Protocol Buffers . 226
9.2.1 The Schema Defintion . 231
9.2.2 Compiling Your Protocol Buffer . 238
9.2.3 Creation of a Protobufs with Python 242
9.2.4 Reversing Proto Buffer Messages . 245

9.3 Practical Analysis of different Proto Buffers 248
9.3.1 Mobile Device Artifact Examples . 249
9.3.2 Yet another example: Apply Property List (PLIST) Files . 256
9.3.3 Suggested Examination Process of a File 257

Contents xiii

9.3.4 Tools . 259
9.4 Conclusion . 260

References . 261

Index . 267

Part I
Mobile File System Formats

File system analysis examines one volume of a disk respective disk image. The data
contained in the volume is interpreted as a file system. Typically an interpreted file
system offers a listing of files organized in directories (at least this is true for the
four described file systems in this book). One aim of file system analysis is usually
recovering deleted files. In contrast to files that have been restored by a carving
process and lack all formerly available metadata, files that have been undeleted via
the file system may contain at least some metadata.

In this part of the book, the general design of four common file systems in
mobile devices is described, and different analysis techniques are presented. This
part abstractly approaches the topic and is not limited to how a specific tool analyzes
a file system.

File systems are used by the operating system and provide mechanisms to store
data in a hierarchy of files and directories. File systems organize metadata and user
data such that the operating system can use this. Some operating systems rely on
one specific file system, whereas others can handle many different file systems. The
described file systems in this part are typically used in mobile devices.

Chapter 1
APFS

Rune Nordvik

Abstract The Apple File System (APFS) has been the standard FS for Apple devices
since 2017. At that time, no digital forensic tools supported it, leaving tool dependent
digital or mobile forensic investigators without the ability to investigate this file
system properly. The APFSwas first enabled on iOS, the operating system of iPhone,
and later that same year on MacOS. APFS replaced the HFS+ FS. This chapter will
document the important metadata structures of APFS, which is based on state of the
art research, and we are focusing on the investigative meaning of the structures.

1.1 Introduction

Apple developed the APFS , and the main architect was Dominic Giampaolo [33].
Hansen and Toolan [33] started reverse engineering of the APFS for investigation
purposes using pre-releases of the APFS as early as 2016, which were included for
educational and development purposes in MacOS v 10.12 (Sierra) in September
2016. In March 2017, APFS was deployed on iPhone and iPad [33]. Recently, Apple
has released developer documentation for APFS [4], and we use this accurate docu-
mentation. In order to develop offset tables that can be used when interpreting hex
dumps, we scrutinize the C-structures from the APFS Developer documentation [4]
and the type of the fields found in these structures.

We found research on how the APFS uses encryption on the user data partition
of an iPhone and that users can not disable the encryption [17]. In this chapter, we
have decided to use an image of an iPhone using iOS v 13.3 to see if there could be
other partitions that are not encrypted.

Rune Nordvik
The Norwegian Police University College (Politihøgskolen), Slemdalsveien 5, 0369 Oslo, Norway,
e-mail: rune.nordvik@phs.no

3© The Author(s) 2022

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook,

https://doi.org/10.1007/978-3-030-98467-0_1

, Mobile Forensics

https://doi.org/10.1007/978-3-030-98467-0_1
mailto:rune.nordvik@phs.no
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_1&domain=pdf

4 Rune Nordvik

•> Important

Other partitions can contain information that are relevant for the investigation. There
could be logs that describe activated features, or information about when a device
was rebooted, etc.

1.2 APFS - File system category

A new feature for APFS is how it structures volumes, and it does not use a typical
partition table to divide the storage into partitions, each with its own FS volume.
Instead, it uses storage or a partition to set up a container. This container will contain
both container metadata, metadata for snapshots and volumes, and data blocks. This
is illustrated in Fig. 1.1.

From an investigative perspective, this means it is not enough to document the
partition systems like the Master Boot Record (MBR) and the Globally Unique
Identifier (GUID) Partition Table (GPT). Now it is also a need to scrutinise the
APFS container.

Fig. 1.1: APFS Container.

•! Attention

Files located on one volume may share the identical data blocks with files located
on another volume within the same APFS container.

1.2.1 Finding the APFS container

In order to find the APFS container, it is necessary to parse the GUID partition table
(GPT) and a partition with the type 7C3457EF-0000-11AA-AA11-00306543ECAC
(APFS_GPT_PARTITION_UUID) is an APFS container. How to read the GPT is

1 APFS 5

described by Nikkel, 2009 [51]. The easiest way is to skip directly to the partition
table starting on sector 2 of the disk. Each partition described in this table is 128
bytes (0x80), and it starts with the partition type (its first 16 bytes), followed by a
globally unique identifier for this specific partition (also 16 bytes). From relative
offset 32 (0x20), we find the start sector of the partition, and it is from that location
we find the container.

We used an image from an iPhone 7 running iOS v 13.3, which should have one
of the first implementations of the APFS. The first thing we noticed is that the default
sector size is 4096 bytes, not the usual 512 bytes. In Fig. 1.2 we show with green
background the GUID type of this partition as it is shown in a hex dump. We need
to read this data in a special way in order to compare it to the APFS partition type
GUID (7C3457EF-0000-11AA-AA11-00306543ECAC). The first four bytes need
to be read as little-endian (LE), and therefore ef57347c is read from right to left
(backwards) as 7c3457ef, which matches the first part of the APFS partition type.
Then we continue with the next two bytes, and they are only zeros, meaning it does
not change just because we read it backwards. The next two bytes are aa11, and must
be read as 11aa. The next two bytes are not a multi-byte, and the endianness does not
matter. They need to be read as single bytes, meaning aa11, then the final six bytes is
also not a multi-byte, and must be read as they are, meaning 00306543ECAC. Now
we have identified this partition as an APFS container.

Fig. 1.2: APFS Container within GUID partition table.

The field with black background is the eight bytes describing the start sector of this
APFS container, and since this is a multi-byte field, it must be read as LE, meaning
0x8 (8 in decimal). That is the sector we need to show in order to find the APFS
Container. Highlighted with the yellow background, we can see the Unicode string
"Container", which is the name of this partition.

1.2.2 Object header

Every object in APFS has an object header, shown in Fig. 1.3, which consists of the
fields as described in Table 1.1.

6 Rune Nordvik

Fig. 1.3: Object Header.

Table 1.1: obj_phys_t

Offset Size Name Description

0x0 0x8 o_cksum Fletcher 64 bit checksum
0x8 0x8 o_oid The object id
0x10 0x8 o_xid The transaction id
0x18 0x4 o_type The object type
0x1C 0x4 o_subtype The object subtype

The object type field low 16 bits indicate a specific object type, while the high 16
bits are used for object type flags:

Object type, some examples
• OBJECT_TYPE_NX_SUPERBLOCK, 0x00000001
• OBJECT_TYPE_BTREE, 0x00000002
• OBJECT_TYPE_OMAP, 0x0000000b
• OBJECT_TYPE_FS, 0x0000000d
• OBJECT_TYPE_FSTREE 0x0000000e
• OBJECT_TYPE_INVALID, 0x00000000

Object type masks
• OBJECT_TYPE_MASK, 0x0000ffff
• OBJECT_TYPE_FLAGS_MASK, 0xffff0000

Object type flags
• OBJ_VIRTUAL, 0x00000000
• OBJ_EPHEMERAL, 0x80000000
• OBJ_PHYSICAL, 0x40000000
• OBJ_NOHEADER, 0x20000000
• OBJ_ENCRYPTED, 0x10000000
• OBJ_NONPERSISTENT, 0x08000000

In Fig. 1.3 we can see the object header, which is 32 bytes in size. The first eight
bytes 0x43dea12df86ffd15 (LE) is the Fletcher checksum (highlighted in dark blue),
the object id is 0x1 (highlighted in light green), and the transaction id is 0x58810e
(highlighted in yellow). The object id and transaction id combined specify a specific
state in time.

$1 942C)H?4 = >_CH?4 & $����)_).%�_"�(

1 APFS 7

$1 942C) H?4�;06B = >_CH?4 & $����)_).%�_�!��(_"�(

The object type is 80000001 (highlighted in red), and after computing the object
type and flags, we found that the object type value is 0x00000001, and the object
type flags is 0x80000000 (OBJ_EPHEMERAL). We can also see the subtype has
the value 0x0000 (highlighted in purple), and here we can use the same approach
computing the subtype and flags. However, when the o_subtype value is 0x0 it means
no subtype. Based on our header interpretation, we can see that this superblock is an
ephemeral object.

Fig. 1.4: APFS use of the ephemeral, physical, and virtual objects.

Ephemeral Objects

Objects that should be in memory (ephemeral) and are changed in memory when
needed, and will be written to disk as a part of a checkpoint.

Physical Objects

Objects that are stored in a known block address, and change needs to be written to
another location because of the Copy-On-Write (COW) feature. The object id is the

8 Rune Nordvik

same as the block address, and therefore any change means saving to a new block
address, this also means a new object id.

Virtual Objects

Virtual objects stored at a block address that can be found by looking up in a object
map (often a B-Tree). However, the object id is the same after updating a virtual
object. When we look up a virtual object, we use its object id and the transaction id to
specify the object at a specific time. This means that when a virtual object changes,
it will be written to another physical block (COW), but the virtual object id is still
the same in the object header o_oid field.

1.2.3 Superblocks

APFS uses different kinds of superblocks, and the first we find is the Container
Superblock (CSB), a nx_superblock_t structure. Addresses that point to locations
on the disk are in 64bits, meaning eight bytes. These addresses point to ephemeral,
physical or virtual objects. The latter objects need an object map in order to find the
physical address where the object is located. The difference between these object
types is illustrated in Fig. 1.4. In Fig. 1.6 we show a simplified overview of how we
plan to go through the File System Category for the APFS.

Fig. 1.5: APFS first superblock in block 0 of the partition.

In Fig. 1.5 we find the magic key NXSB (0x4e585342), which identifies this as a
superblock. The next field (4 bytes) with blue background is the block size used, here
0x1000 (4096) bytes1. With black background, we have an 8-byte field describing

1 The minimum block size is 4096 (default), and the maximum is 65536

1 APFS 9

how many blocks this container contains, here 0x1dcd640 (31249984). We can
multiply this with the block size if we want the size in bytes. We want the size in
GiB2, and use this computation.

�8� =
31249984 ∗ 4096

10243 = 119.2

In light green background we can see the GUID, which uniquely identifies this
container. It has the value A7A44B1A-9F6D-0348-9FA1-27A6D9C656C1.

Fig. 1.6: Overview of how to manually read an APFS file system.

2 The smallest supported container size is 1 MiB

10 Rune Nordvik

Table 1.2: nx_superblock

Offset Size Name Description

0x20 0x4 magic Container Magic
0x24 0x4 nx_block_size Block Size in bytes
0x28 0x8 nx_block_count Block count
0x30 0x8 nx_features Features
0x38 0x8 nx_read_only_compatible_features Read only compatible features
0x40 0x8 nx_incompatible_features Incompatible features
0x48 0x10 nx_uuid Container UUID
0x58 0x8 nx_next_oid Next Object ID (OID)
0x60 0x8 nx_next_xid Next Transaction ID (XID)
0x68 0x4 nx_xp_desc_blocks Blocks used by the Checkpoint Descriptor Area
0x6C 0x4 nx_xp_data_blocks Blocks used by Checkpoint Data Area
0x70 0x8 nx_xp_desc_base Base address of Checkpoint Descriptor Area or Physical OID
0x78 0x8 nx_xp_data_base Base address of Checkpoint Data Area or Physical OID
0x80 0x4 nx_xp_desc_next Next index for Checkpoint Descriptor Area
0x84 0x4 nx_xp_data_next Next index for Checkpoint Data Area
0x88 0x4 nx_xp_desc_index Index for first item in Checkpoint Descriptor Area
0x8C 0x4 nx_xp_desc_len Number of blocks used in Checkpoint Descriptor Area
0x90 0x4 nx_xp_data_index Index for first item in Checkpoint Data Area
0x94 0x4 nx_xp_data_len Number of blocks used in Checkpoint Data Area
0x98 0x8 nx_spaceman_oid Space Manager Object ID (OID)
0xA0 0x8 nx_omap_oid Container Object Map Object ID (OID)
0xA8 0x8 nx_reaper_oid Reaper Object ID (OID)
0xB0 0x4 nx_test_type Reserved for testing
0xB4 0x4 nx_max_file_systems Maximum number of volumes in this container
0xB8 0x8 nx_fs_oid[0] Start of array of OIDs for volumes in this container

We need to find the latest checkpoint superblock, an eight-byte address starting from
offset 0x70 (the nx_xp_desc_base field), here in yellow background. Here we can
see that this points to block 1, relative to the start of this container. At that location,
we will either find a new superblock object, or a B-tree map in case this checkpoint
superblock is not contiguous. This may or may not be the latest checkpoint.

The documentation from Apple [4] describes that we need to parse through all
the blocks in the Checkpoint Descriptor Area, and find the block with the highest
transaction id (XID) with the same object id (OID). If this block includes the magic
key and theFletcher checksum can be verified, then this block is the latest checkpoint.

In our example, the nx_xp_desc_blocks field highlighted in light brown at offset
0x68 has the value 0x118 (280). This means the checkpoint descriptor area consists
of 280 blocks.

When going through each of these 280 blocks, we noticed that the magic key
was only present in every second block, and this is correct since each additional
superblock had the value 0x2 in the field nx_xp_desc_len at offset 0x8C. This field
describes the number of blocks this checkpoint used in the Checkpoint Descriptor
Area. We found that the superblock with the highest value in XID was, in our
example, located at block 19 relative to the start of the container.

Fig. 1.7 is similar to the superblock we found in the first sector (sector 0) of
the container. However, it has the highest transaction number of all the checkpoint

1 APFS 11

Fig. 1.7: Latest checkpoint Superblock in the Checkpoint Descriptor Area.

superblocks, and is, therefore, the current (latest) checkpoint. Two other requirements
must be fulfilled:

• The NXSB magic must be found.
• The checksummust verify, or else there is something wrong with the checkpoint
superblock.

•> Important

Finding the latest checkpoint is important since this is the last state for this file
system. However, the other previous checkpoints may be interesting in order to
recover files that are deleted in the latest checkpoint.

1.2.4 Checkpoint mapping

We need to scrutinise the second block in this checkpoint descriptor. This block
starts in the block after the superblock, as seen in Fig. 1.8.

There could be multiple checkpoint mapping blocks in a checkpoint, but in our
example case it was just one superblock and one checkpoint mapping block for each
checkpoint.

The 0x20 (32) bytes highlighted in yellow is the usual object header, but
here the field is called cpm_o, and cpm is an abbreviation for checkpoint map-
ping. If we interpret the o_type, we can see that the object type is 0x0000000C
(OBJECT_TYPE_CHECKPOINT_MAP), and this object type flag is 0x40000000
(OBJ_PHYSICAL). The last mapping block is always marked as the last, using the
cpm_flags field, highlighted in blue. In this case, it is 0x01, since we only have one
such mapping block. In our mapping, we have 0x5 records in an array (highlighted in

12 Rune Nordvik

Fig. 1.8: Checkpoint mapping block in the Checkpoint Descriptor Area.

Table 1.3: checkpoint_map_phys_t

Offset Size Name Description

0x0 0x20 cpm_o Object header
0x20 0x4 cpm_flags Checkpoint flags
0x24 0x4 cpm_count Records in this mapping
0x28 var cpm_map[cpm_count] Array of Checkpoint mappings

green). The records are 0x28 bytes long, and we have only highlighted the important
fields of the first record. Then we highlight the next records with either grey or white
background. This shows we have a total of five records.

Table 1.4: checkpoint_mapping_t

Offset Size Name Description

0x0 0x4 cpm_type Low 16 bits for object type, and high 16 bits for object type flags
0x4 0x4 cpm_subtype The object’s subtype
0x8 0x4 cpm_size The object size in bytes
0xC 0x4 cpm_pad Not in use, padding
0x10 0x8 cpm_fs_oid Virtual FS OID that this object is associated with
0x18 0x8 cpm_oid Ephemeral object id
0x20 0x8 cpm_paddr The address in the checkpoint data area where this object is stored

The first record cmp_type highlighted in black colour is after mapping 0x00000005
(OBJECT_TYPE_SPACEMAN), and the object type flag is 0x80000000(OBJ_
EPHEMERAL). The size of the object is described by the cpm_size (highlighted
in orange) is 0x1000 (4096), or the same as the size of a block. The virtual ob-
ject id of the fs volume that this object is associated with is defined in the field

1 APFS 13

cpm_fs_oid, and has the value 0x0 (highlighted in red). In the fields cpm_oid, we
will find the ephemeral object id, 0x400 (highlighted in purple). Finally, we find
the field cpm_paddr, which contains the value 0x545e (21598), the address to the
checkpoint data area where this object is stored (highlighted in dark blue).

Table 1.5: Actual checkpoint mapping

Record Type Subtype Ephemeral OID Phys Address

1 SPACEMAN Not used 0x400 0x545e (21598)
2 BTREE SPACEMAN_FREE_QUEUE 0x403 0x545f (21599)
3 BTREE SPACEMAN_FREE_QUEUE 0x405 0x5460 (21600)
4 NX_REAPER Not used 0x401 0x5461 (21601)
5 NX_REAP_LIST Not used 0x0 0x446f3 (280307)

All the records describe an object with the size 4096, and they all use the FS virtual
object 0x0. The other values for these five records are listed in Table 1.5. We can
follow the address of the first record to get statistics about the container and its
internal pool bitmap. The bitmap describes which blocks are allocated (used) or
unallocated (free). Table 1.6 can be used to interpret the space manager.

Table 1.6: spaceman_phys_t

Offset Size Name Description

0x0 0x20 sm_o Object header
0x20 0x4 sm_block_size Block size
0x24 0x4 sm_blocks_per_chunk Blocks per chunk
0x28 0x4 sm_chunks_per_cib Chunks per cib
0x2C 0x4 sm_cibs_per_cab Cibs per cab
0x30 0x60 spacdev[2] Special structure
0x90 0x4 sm_flags Flags
0x94 0x4 sm_ip_bm_tx_multiplier Bitmap multiplier
0x98 0x8 sm_ip_block_count Block count
0xA0 0x4 sm_ip_bm_size_in_blocks Bitmap size in Blocks
0xA4 0x4 sm_ip_bm_block_count Bitmap block count
0xA8 0x8 sm_ip_bm_base Address to Bitmap base
0xB0 0x8 sm_ip_base Address to ip base
0xB8 0x8 sm_fs_reserve_block_count FS reserved block count
0xC0 0x8 sm_fs_reserve_alloc_count FS reserved allocation count
0xC8 0x78 spacemanfreequeue[3] Free queues
0x140 0x2 sm_ip_bm_free_head bitmap free head
0x142 0x2 sm_ip_bm_free_tail bitmap free tail
0x144 0x4 sm_ip_bm_xid_offset Transaction id offset
0x148 0x4 sm_ip_bitmap_offset bitmap offset
0x14C 0x4 sm_ip_bm_free_next_offset Next bitmap free offset
0x150 0x4 sm_version Spacemanager version

14 Rune Nordvik

Fig. 1.9: SPACEMAN block, for finding the internal pool bitmap.

We use Table 1.6 to interpret the Fig. 1.9. The easiest way to identify the block
where the current bitmap starts is to add the fields sm_ip_bm_base (0x6D31), which
is pointed to by the first spaceman device in the field sm_addr_offset at 0x50 (0xa08,
relative to the start of the block), and the sm_ip_bitmap_offset (0x9E0) and then
subtract with sm_ip_bm_size_in_blocks (0x1). This gives the block 0x7710. The
fields mentioned above depend on the number of spaceman devices, each occupying
0x30 bytes (in our case, there were two spaceman devices).

Fig. 1.10: Internal pool bitmap, if bit is 1 then the block is allocated, or if it is 0 then
the block is free.

1 APFS 15

In Fig. 1.10we see the start of the bitmap. Every bytemust be converted to binary, and
each bit represents the allocation status of one block (1=allocated, 0=unallocated).
The first byte is 0x0, meaning the block 0-7 is defined as not allocated. The following
byte is 0xFE (binary: 1111 1110). We start reading from the least significant bit.
Moreover, since this is the second byte, the first bit represents block 8 (not allocated)
but blocks 9-15 is allocated.

•! Attention

The SPACEMAN is poorly documented in the APFS developer documentation,
which means there could be more accurate methods to identify the bitmap.

1.2.5 Volumes

Themaximum number of possible volumes are defined in field nx_max_file_systems
found in the checkpoint superblock, and in this case, the number is 0x64 (100)3.
However, not all of them are in use. From offset 0xB8 we find an array of fs volume
virtual object ids, of which the first has the value 0x402. Only a few of them have a
value different from zero. Each of these are virtual object ids that eventually will lead
us to a file system tree. In order to identify the location of the volume boot record
(VBR) for a file system, we need to map the virtual object id with the one found in the
Container ObjectMap, where we can find the block, which is the address to the VBR.
The Container Object Map object id can be found in the checkpoint superblock at
byte offset 0xA0 (nx_omap_oid) and is a 64-bit value, here 0x1D56898 (30763160).
However, this block consists of a B-Tree that needs to be parsed. Before we do the
actual mapping, we need to learn the structure of the B-Tree.

Fig. 1.11: The structure of aB-Tree node block (source:Apple File SystemReference)

We can see fromFig. 1.11 that the first part of the block contains the btree_node_phys_t
structure, which we also have described in Table 1.7, and both include the object
header (0x20 in size) and the node header (0x18 in size). The data area is everything
after the headers. This data area contains the table of content (TOC), keys, free space
and the values.

3 The maximum number of volumes is defined as 100

16 Rune Nordvik

Fig. 1.12: Container FS Volume Object Map.

Table 1.7: btree_node_phys_t

Offset Size Name Description

0x0 0x20 btn_o Object header of the B-Tree block
0x20 0x2 btn_flags Flags for this B-Tree
0x22 0x2 btn_level Number of child levels under this node
0x24 0x4 btn_nkeys Number of keys stored in this node
0x28 0x4 btn_table_space Location(16 bits offset, 16 bits length) of Table of Content(TOC)
0x2C 0x4 btn_free_space Location for shared free space for keys and values
0x30 0x4 btn_key_free_list A linked list that tracks free key space
0x34 0x4 btn_val_free_list A linked list that tracks free value space
0x38 0x8 btn_data[var] The nodes storage area (toc, keys, free space, and values)

From the B-tree object header in Figure 1.12 we can see that the o_type describe a
physical (0x40000000) B-tree (0x2). The o_subtype is a object map (0xb). Then we

interpret the B-tree node header:

• btn_flags: 0x7,
BTNODE_ROOT, BTNODE_LEAF, BTNODE_FIXED_KV_SIZE

1 APFS 17

Table 1.8: B-Tree Node Flags

Define Name Define Value Description

BTNODE_ROOT 0x0001 The root node
BTNODE_LEAF 0x0002 A leaf node

BTNODE_FIXED_KV_SIZE 0x0004 Only use the offset for keys-value pairs
BTNODE_HASHED 0x0008 Contains child hashes

BTNODE_NOHEADER 0x00010 Object header consist of zeros
BTNODE_CHECK_KOFF_INVAL 0x8000 Will never appear on disk

• btn_level: 0x0, There is no level under this one.
• btn_nkeys: 0x05, there are 5 records.
• btn_table_space: 0x00 offset, 0x1c0, meaning TOC starts after the node header
at 0x38, and is 0x1c0 in length. This also means the key are starts at 0x1f8,
directly after the TOC.

• The shared free space starts at 0x60 in the key area, meaning 0G1 5 8 + 0G60 =

0G258, and it is 0xd20 in length, meaning it end at 0x258+0xd20=0xf78, where
it meet the last part of the value area (the top of value area, where the free space
ended).

From the TOC, we can find the key-value pairs. If BTNODE_FIXED_KV_SIZE flag
is set, only offsets to keys and values are used. If not, both offset and length are used.
All offsets for keys are relative to the start of the key area, and all offsets for values
are relative from the end of the value area (the bottom of the value area). At the end
of the Root node block, we have the btree_info_t structure, which can be interpreted
using Table 1.9. Only Root nodes should have this additional structure. For instance,
the value 0x1, 0x3, 0x7 are also Root nodes, which have a btree_info_t structure at
the end.

Table 1.9: btree_info_t

Offset Size Name Description

0xfd8 0x4 bt_flags The B-tree’s flags
0xfdc 0x4 bt_node_size The B-tree’s node size
0xfe0 0x4 bt_key_size The B-tree’s key size
0xfe4 0x4 bt_val_size The B-tree’s value size
0xfe8 0x4 bt_longest_key The B-tree’s longest key ever stored
0xfec 0x4 bt_longest_val The B-tree’s longest value ever stored
0xff0 0x8 bt_key_count Number of keys in the B-tree
0xff8 0x8 bt_node_count Number of nodes in the B-tree

It is important to interpret the key-value offsets in the TOC in a special way. Since
the offsets, in this case, have a static length (the BTNODE_FIXED_KV_SIZE flag
was set), the key and value are represented as 16-bit offsets. If the key value is not

18 Rune Nordvik

fixed, the key and the value both use 32 bits (the first 16 bits is the offset, and the
following 16 bits is the length). The key-value offsets occur in the TOC directly after
the headers, but this can be deviated by the btn_table_space field.

When we read the offset for the key, we need to consider that the offset is relative
to the start of the key area. However, when we read the offset for the value, it is
relative from the end of the value area and backwards in the direction of the free
space area. This is also why the key area in the illustration in Fig. 1.11 show Keys
1,2,3,..., while the Values are listed as ..., 3,2,1.

The last structure of the B-tree Root node is the btree_info_t, which we can
use the Table 1.9 to interpret. The bt_flags are 0x12, which consist of 0x10
(BTREE_PHYSICAL) and 0x2 (BTREE_SEQUENTIAL_INSERT) which means
avoiding splitting nodes in half during sequential inserts, avoiding a lot of half-
full nodes [4, p. 130]. The bt_node_size (node size) is 0x1000 (4096) bytes. The
bt_key_size (key size), bt_value_size (value size), bt_longest_key (longest key size),
and the bt_longest_val (longest value size) are all 0x10 (16) bytes. Both the key and
value sizes are necessary to know when using fixed sizes for keys and values. The
bt_key_count (keys in this B-tree) is 0x5, and bt_node_count (nodes in this B-tree)
is 0x1. The value 1 for node count means that this node is both the root and the leaf
node.

Finding the Volume

In Fig. 1.13 we have the object header in light yellow, followed by the node header
in grey background, interpreted in the previous section.

The first record key-pair is highlighted in blue from offset 0x38, the first 16 bits
key value 0x20 points to the key, while the second 16 bits value 0x30 points to the
value. We know the key area starts at offset 0x1f8, and the value area starts before
the btree_info_t structure, and if we count 0x30 backwards we find the start of the
value that is in this case 0x10 bytes long, also highlighted in blue. The key can be
found counting 0x20 from the start of the key area, and it is also in this case 0x10 in
size. The key is also highlighted in blue. It is important to read the keys and values
as 0x10 (16 bytes) each, as described in the btree_info_t structure.

In this case the key OID (the first 8 bytes) is 0x402 (LE), and the key XID (the
next 8 bytes) is 0x58810e (LE), and its corresponding value physical OID address
(the last 8 bytes in the value) is 0x1d562f2 (LE). The same can be done for all the
other volumes in this node, highlighted using different highlight colours. We have
finished this mapping in Table 1.10.

Showing the Volume (APSB)

A volume in APFS uses the magic key APSB, which is a superblock that describes
one volume. This is similar to a VBR in traditional file systems. It contains an FS,

1 APFS 19

Fig. 1.13: Mapping of FS Volumes, from virtual to physical block.

Table 1.10: FS Volume mapping

Virtual OID XID Physical Address

0x402 0x58810e 0x1d562f2
0x41661 0x588112 0x1d578f1
0x56d093 0x5882c3 0x1d56860
0x7a7e42 0x588124 0x1d5727b
0x7a7eb5 0x588109 0x1d56541

files, metadata, and object map. In this section, we will be using the file system
example for the virtual object id 0x402, physical address 0x1d562f2.

We can use Table 1.11 to interpret the values of the APFS volume superblock
(APSB) shown in Fig. 1.14. We have not included all fields in this structure, only
fields that we assume are important. Please refer to the complete apfs_superblock_t
structure as found in the Apple developer documentation [4].

The magic of this apfs volume superblock has the signature APSB is ASCII
values, found int the apfs_magic field. This value can be used when searching for
APFS volumes in a corrupted file system. In the checkpoint superblock in Fig. 1.7

20 Rune Nordvik

Fig. 1.14: The APFS Superblock for the volume.

we had an array of file system object identifiers, and we can decide which of these
file systems this volume belongs to by reading the apfs_index value, here it is 0,
meaning the first file system.

One very important field is the apfs_unmount_time, which must be interpreted as
nanoseconds since January 1, 1970 at 0:00 UTC, not including leap seconds. In this
case is the unmount time, 0x167bd1cf02cafef4, or Tuesday, 4 May 2021 09:06:18.
We converted to decimal and divided with 109 to get the value as seconds. Then we
used a UNIX epoch converter to translate it to a human-readable time format.

•! Attention

The apfs_unmount_time is updated whenever unmounted, and this will normally
mean at the reboot of the device, especially for the system volume. This also mean
if an investigator reboots the device, then this value is modified.

There is also another timestamp in the APFS volume superblock, in the field 0x100
(apfs_last_mod_time) we find the 64 bit value 0x0x15E3C994B2AF9600, or Thurs-
day, 26 December 2019 02:05:35. This is when the volume was last modified, and
as it seems, modifying the metadata does not update this timestamp. One hypoth-
esis is that only modifying file content or metadata related to files will update this
timestamp.

1 APFS 21

Table 1.11: apfs_superblock_t

Offset Size Name Description

0x0 0x20 apfs_o The object header
0x20 0x4 apfs_magic The magic signature for an APSB
0x24 0x4 apfs_index The FS index in the container list of file systems
0x40 0x8 apfs_unmount_time Last time this FS was unmounted (last reboot?)
0x58 0x8 apfs_alloc_count Blocks allocated to this FS
0x60 0x14 apfs_meta_crypto Information about encryption
0x74 0x4 apfs_root_tree_type Root tree type
0x78 0x4 apfs_extentref_tree_type Type of the extent-reference tree
0x7C 0x4 apfs_snap_meta_tree_type Type of the snapshot metadata tree
0x80 0x8 apfs_omap_oid Object id of the object map
0x88 0x8 apfs_root_tree_oid Virtual Object id of the root file system tree
0x90 0x8 apfs_extentref_tree_oid Object id of the extent-reference tree
0xB8 0x8 apfs_num_files Number of regular files in the volume
0xC0 0x8 apfs_num_directories Number of directories in the volume
0xD8 0x8 apfs_num_snapshots Number of snapshots in the volume
0xE0 0x8 apfs_tot_blocks_alloced Total number of blocks that have been allocated by this volume
0xF0 0x10 apfs_vol_uuid Universal Unique identifier for the volume
0x100 0x8 apfs_last_mod_time The time when this volume was last modified
0x108 0x8 apfs_fs_flags Volume flags
0x110 0x8 apfs_formatted_by Software created this volume
0x2c0 0x100 apfs_volumename Name of the volume
0x3c0 0x4 apfs_next_doc_id Todo
0x3c4 0x2 apfs_role Role
0x3c6 0x2 reserved Reserved

•! Attention

The apfs_last_mod_time is updated when the volume is modified. If what is relevant
for the investigation is after this time, it may not be worth analysing this volume.

The apfs_alloc_count field yields the currently allocated blocks for this file sys-
tem, 0x13e881 blocks, or 4.98 GiB of the storage is used. Later, another field
describes the total number of blocks ever allocated, which increase for every new
block allocated but do not decrease when a block is freed. This field is named
apfs_tot_blocks_alloced. Do not use this field when computing the currently used
size of a volume.

Then there is some information about encryption in the field apfs_meta_crypto,
which is for encryption purposes. We need to check in the apfs_fs_flags to see if the
fs utilise encryption. The field apfs_root_tree_type describes the type of tree. Here it
is a B-tree. This is followed by the field apfs_extentref_tree_type, which is described
as a physical B-tree. The next field is the apfs_snap_meta_tree_type, and it is also
described as a physical B-Tree.

We need an object map because we need to map virtual object ids to physical
object ids. We can find the object map object identifier in the apfs_omap_oid, and
we depend on this field and the next field (apfs_root_tree_oid) to find objects for

22 Rune Nordvik

files and directories. The virtual object id for the root tree can be found in the field
apfs_root_tree_oid, and since this is a virtual object id, we need to map it to the
physical object id using the apfs_omap_oid, see sect. 1.2.5.

The apfs_num_files describes the number of files in the volume, here 0x245e6
(148966) files.We canfind the number of directories in the field apfs_num_directories,
here 0x10ef9 (69369) directories. This volume contains 1 snapshot, described in the
field apfs_num_snapshots. The apfs_vol_uuid is a unique identifier for this volume,
in this case it is EC639B93-C4D6-4639-8910-5E6839BF0530. At offset 0x108, we
find the volume Flags (apfs_fs_flags), and here it is 0x01, meaning this volume is
not encrypted.

•> Important

Not all volumes on an iOS are encrypted.

The first entry starting from offset 0x110 is the name of the software that format-
ted this APFS volume, and it can be seen that it has been converted from HFS
(hfs_convert(apfs-249.60.20)). Finally, we have included the name of this volume,
with grey background starting at offset 0x2c0. Here it is Corry14C92.D10D101OS.

Volume Object mapping

The object mapping block (apfs_omap_oid) is shown in Fig. 1.15, and can be inter-
preted using the Table 1.12.

Fig. 1.15: Physical mapping of FS B-trees.

As usual, we can find the object header in the first 0x20 (32) bytes, which describes
this as a physical object map. There are no flags used (om_flags), and there is one
snapshot in this object map (om_snap_count). The root object tree is a physical
B-tree (om_tree_type), and the same is the snapshot tree. We will focus on the
current object map B-tree (om_tree_oid), where we find its physical object id, here
0x1d565a3. In this case, we want to map the virtual object id for the FS root B-tree,
which is 8b87 7a00 0000 0000 (0x7a878b), to its physical object id.

At block 0x1d565a3 we find the top of the object map B-tree. However, in order
to find the virtual object id we are searching for, we need to parse the B-tree, and in

1 APFS 23

Table 1.12: omap_phys_t

Offset Size Name Description

0x0 0x20 om_o The object header
0x20 0x4 om_flags Flags used by omap
0x24 0x4 om_snap_count Number of snapshots within omap
0x28 0x4 om_tree_type Type of B-tree
0x2C 0x4 om_snapshot_tree_type Type of snapshot B-tree
0x30 0x8 om_tree_oid Object id of current B-tree
0x38 0x8 om_snapshot_tree_oid Object id of snapshot tree
0x40 0x8 om_most_recent_snap Transaction id of most recent snapshot
0x48 0x8 om_pending_revert_min Smallest transaction id for a in-progress revert
0x50 0x8 om_pending_revert_max Largest transaction id for a in-progress revert

our case, by using the 7th record number, we found the block that will contain the
virtual object we are searching for, and now it is time to ask: Why did we select this
record?

In Fig. 1.16 we show the hex dump of the object map root B-tree. The 7th key,
and its value is highlighted in dark blue. The 8th key and value is highlighted in
red. The 7th key is 0x6b9a81 (OID part), and the 8th key is 0x7ab7d6 (OID part).
The key we are searching for (0x7a878b) is between these two keys. Therefore the
virtual object id (key) we are searching for can be found by focusing on the former
key (7th). This 7th value is found in the value area 0x18 bytes before the end of the
value area, and it has the physical object id address 0x1d7309f. This is the physical
OID address of the child node that should contain the virtual object id (0x7a878b)
in one of the node’s key or a key of a sub-node that we are searching for. Before
we continue to this object, we need to check the object node header of the current
object. Its node header is interpreted below.

• btn_flags: 0x5, BTNODE_ROOT, BTNODE_FIXED_KV_SIZE
• btn_level: 0x2, There are two levels of child nodes under this one.
• btn_nkeys: 0x0a, there are 0xa (10) records.
• btn_table_space: 0x00 offset, 0x240, meaning TOC starts after the node header
at 0x38, and is 0x240 in length. This also means the key are starts at 0x278,
directly after the TOC.

• The shared free space starts at 0x120 in the key area, meaning 0G278 + 0G120 =

0G398, and it is 0xbb0 in length, meaning it end at 0x398+0xbb0=0xf48, where
it meet the last part of the value area.

This means we are located on the top of the tree, the Root node, and we can expect
two levels of child nodes under this root level. We continue to the physical location
0x1d7309f, as previously mapped, here we find the next level in this B-tree, shown
in Fig. 1.17. This object node header is interpreted below.

• btn_flags: 0x4, BTNODE_FIXED_KV_SIZE, must be an index node.
• btn_level: 0x1, There is one level of child nodes under this one.

24 Rune Nordvik

Fig. 1.16: The root of the object map B-Tree.

• btn_nkeys: 0x8e, there are 0x8e (142) records.
• btn_table_space: 0x00 offset, 0x240, meaning TOC starts after the node header
at 0x38, and is 0x240 in length. This also means the key area starts at 0x278,
directly after the TOC.

• The shared free space starts at 0x900 in the key area, meaning 0G278 + 0G900 =

0G�78, and it is 0x8 in length, meaning it end at 0xB78+0x8=0xB80, where it
meet the last part of the value area. The value area is not shown completely in
Fig. 1.17.

1 APFS 25

Fig. 1.17: An index node in the object map B-Tree containing the virtual object id
searched for.

The object map index node can be seen in Fig. 1.17, where the 32nd key show offset
0x10 for key and 0x10 for value. In the key area, which starts at offset 0x278, we find
this key 0x10 bytes further down. Here we find the virtual object id we are looking
for (0x7a878b) and its transaction id 0x5800e9. However, since this is the only key
with this OID value in the node, we know we have the latest one. The physical object
id to which it is connected can be found 0x10 bytes from the end of this node, and
where the value is 0x1d730b2. This is the physical address to the leaf node in this
omap B-tree. Reading this object id (0x1d730b2), we can see in Fig. 1.18 the object
map leaf node. As usual, we need to interpret the object node header.

• btn_flags: 0x6, BTNODE_LEAF, BTNODE_FIXED_KV_SIZE.
• btn_level: 0x0, There are no levels of child nodes under this one.
• btn_nkeys: 0x47, there are 0x47 (71) records.
• btn_table_space: 0x00 offset, 0x1c0, meaning TOC starts after the node header
at 0x38, and is 0x1c0 in length. This also means the key are starts at 0x1F8,
directly after the TOC.

• The shared free space starts at 0x700 in the key area, meaning 0G1�8+ 0G700 =

0G8�8, and it is 0x8 in length, meaning it end at 0x8F8+0x8=0x900, where it
meet the last part of the value area. The value area is not shown completely in
Fig. 1.18.

The first record points to the root virtual object id 0x7a878b, which can be found at
physical object id 0x1d66e7f (last 8 byte of value).

26 Rune Nordvik

Fig. 1.18: Omap Leaf Node where we found the virtual object we searched for, which
can be mapped to physical address 0x1d66e7f.

The physical address 0x1d66e7f, found in Fig. 1.18 is the physical address to the
apfs_root_tree_oid (the file system B-Tree) with virtual object id 0x7a878b. We
discuss this B-Tree more in sect. 1.3.

1.3 APFS - Metadata Category

Wehave already found the FSRoot B-tree, and nowwewill start explaining structures
that are related to files and directories.

In Fig. 1.19 we show the content of the physical object id block 0x1d66e7f, and
this block has the virtual object id 0x7a878b, found in byte 8 in the object header.
This is typical for a virtual object id when we read it from its physical address. The
virtual object id will still be stored from byte 8 in the object header. When we read
the object node header, we find the following information.

• btn_flags: 0x1, BTNODE_ROOT,
• btn_level: 0x3, There are three levels of child nodes under this one.
• btn_nkeys: 0x4, there are 4 records.
• btn_table_space: 0x00 offset, 0x40, meaning TOC starts after the node header at
0x38, and is 0x40 in length. This also means the key area starts at 0x78, directly
after the TOC.

• The shared free space starts at 0x5b in the key area, meaning 0G78 + 0G51 =

0G�3, and it is 0xee5 in length, meaning it end at 0xd3+0xee5=0xfb8, where it
meet the last part of the value area.

We have listed all the four entries in this block using different background colors.

• OBJ_ID_MASK (0x0fffffffffffffff)

1 APFS 27

Fig. 1.19: File System Root B-Tree.

• OBJ_TYPE_MASK (0xf000000000000000)
• OBJ_TYPE_SHIFT (60)

$1 942C � 3 = >1 9_83_0=3_C H ?4 & $��_��_"�(

$1 942C) H?4 = >1 9_83_0=3_C H ?4 & $��_). %�_"�(>> $��_). %�_(� ��)

The first 8 bytes of the first record key is 0x9000000000000001, andwhen computing
the object id we get 0x1. When computing the object type we get 0x9, which is a
APFS_TYPE_DIR_REC (found in Table 1.13). This means this record is a directory
record.

•! Attention

One FS object may have several records describing the object, and therefore there
could be multiple records with the same object id.

It seems like the value field of these four records only contains virtual object ids.
For the first record, this is file id 0x7ab2e6. This means we need to look up in the
apfs_omap_id (0x1d565a3) again to map this virtual address to the physical address.
The two highlighted keys in Fig. 1.16, show that the virtual object id we are searching
for is between them, and therefore we select the first record, and we continue down
the B-Tree until we find the correct physical address, which was 0x1d6558f.

28 Rune Nordvik

Table 1.13: j_obj_types

Enum Name Enum Value

APFS_TYPE_ANY 0
APFS_TYPE_SNAP_METADATA 1

APFS_TYPE_EXTENT 2
APFS_TYPE_INODE 3
APFS_TYPE_XATTR 4

APFS_TYPE_SIBLING_LINK 5
APFS_TYPE_DSTREAM_ID 6

APFS_TYPE_CRYPTO_STATE 7
APFS_TYPE_FILE_EXTENT 8

APFS_TYPE_DIR_REC 9
APFS_TYPE_DIR_STATS 10
APFS_TYPE_SNAP_NAME 11
APFS_TYPE_SIBLING_MAP 12
APFS_TYPE_FILE_INFO 13
APFS_TYPE_MAX_VALID 13

APFS_TYPE_MAX 15
APFS_TYPE_INVALID 15

Table 1.14: j_drec_key_t

Offset Size Name Description

0x0 0x8 hdr (objid and type) The header of this record (type: j_key_t)
0x8 0x2 name_len The length of the directory
0xA name[name_len] The name of this directory

Table 1.15: j_drec_val_t

Offset Size Name Description

0x0 0x8 file_id The node identifier
0x8 0x8 date_added Timestamp describing when directory was moved/created here
0x10 0x2 flags Flag describing inode file type (masked with DREC_TYPE_MASK)
0x12 var xfields[] Extended fields

Figure 1.20 shows that the directory with file name private-dir object id 0x1, and
from its value field we need to go to virtual address 0x7a87e8, so again we need to
look up in the volume object map to find the physical address, which was 0x1d563bc.
Fig. 1.21 shows the same record for the filename private-dir, still object id 1, and we
are now in the second index node, and we have 1 level of child nodes under this one,
and we want to see the child node for this record, which can be found at virtual object
id 0x7a878d. We look up in the volume object map, and we find that the physical
address is 0x1d5632b.

1 APFS 29

Fig. 1.20: File System B-Tree Index (level 1).

Fig. 1.21: File System B-Tree Index (level 2).

Fig. 1.22 shows files from the root directory, where also the private-dir is located,
highlighted in dark blue. When we interpret a directory key, we use the Table 1.14.
In the 8 bytes before the file name, we find the object id 0x1 and object type (0x9,

30 Rune Nordvik

Fig. 1.22: File System B-Tree Leaf, shows the files in the root directory.

APFS_TYPE_DIR_REC). The next two bytes 0xc (12) describe the directory name’s
size. The next 12 bytes are the directory name private-dir + null terminator byte.

Then we interpret the value of this directory record, found from offset 0xfee and
0x12 (18) bytes, highlighted in dark blue. We use Table 1.15 to interpret the value.
The node id (file_id) is 0x3, and the directory was added at 0x14c9739648b4ddb0
(Monday, 19 June 2017 06:57:20 UTC). The flags field yield the inode file type, here
0x0004. We use flags & DREC_TYPE_MASK (0x000f), and we get file data type 4
(DT_DIR). This means that this directory entry is describing a directory. This type
can be found in Table 1.16.

1 APFS 31

Table 1.16: File Type Flags

Define Name Define Value Description

DT_UNKNOWN 0 An unknown directory entry
DT_FIFO 1 A named pipe
DT_CHR 2 A character-special file
DT_DIR 4 A directory
DT_BLK 6 A block-special file
DT_REG 8 A regular file
DT_LINK 10 A symbolic link
DT_SOCK 12 A socket
DT_WHT 14 A whiteout

We continue with the third record, from Fig. 1.22, highlighted in black. The key
content is only 8 bytes, 0x3000000000000002, object id 2, and object type 3
(APFS_TYPE_INODE). Then we interpret the record value. The parent id is 0x01,
private id is 0x2 (unique for this data stream, previously found to be describing
the root filename (red highlight)). Then at 0xf80 we have four 8 byte fields that all
describe timestamps; create_time: 0x148D97C6339CE400 (Tuesday, 6 December
2016 06:45:30), mod_time: 0x1557ED8C60C3CA59 (Wednesday, 26 September
2018 10:49:44), change_time: 0x1557ED8C60C3CA59 (Wednesday, 26 Septem-
ber 2018 10:49:44), access_time: 0x148D987DAC12AC00 (Tuesday, 6 December
2016 06:58:38). From offset 0xf0 we find the 8-byte internal flags 0x8000 IN-
ODE_NO_RSRC_FORK, which means this inode does not have a resource fork. We
find the number of directory entries in this directory in offset 0xfa8, and the value
is 0x11 (17). This means we have 17 files or directories in the root directory. The
owner of this file is owner id 0, and group id 0x50 (80). From offset 0xfd4 we find
the name of this inode, which is root.

Table 1.17: j_inode_val_t

Offset Size Name Description

0x0 0x8 parent_id The parent node id
0x8 0x8 private_id This node id
0x10 0x8 create_time Creation time
0x18 0x8 mod_time Modification time
0x20 0x8 change_time Change time
0x28 0x8 access_time Access time
0x30 0x8 internal_flags Internal flags
0x38 0x4 nchildren Directory entries in this directory, or number sym links for a file
0x3C 0x4 default_protection_class Default protection class 4

0x40 0x4 write_generation_counter A counter which increase when node is modified
0x44 0x4 bsd_flags Inode’s BSD flags
0x48 0x4 owner The user id
0x4c 0x4 group Group id

32 Rune Nordvik

1.4 APFS - File Name category

We refer to the APFS metadata category, since the file names are part of the parsing
of the FS B-tree. The part of the key that contain the file names are related to this
category. Make sure to notice that in the Fig. 1.22 we can see typically directory

Fig. 1.23: How to browse for a file or directory in the File System Root B-Tree.

names found in the root directory; Trashes Applications, Developer, Library, System,
bin, cores, dev, etc, private, sbin, tmp, usr, var.

One of the files we found was the sbin directory. However, we do not see the
directory entries (files or directories) of this directory. We need to recognise the
node identifier of the sbin directory (here 0x18c60), and then look it up using
the File System Root B-Tree, and again we would need to use the volume object
map. An overview of how to browse the File System Root B-Tree (physical address
of apfs_root_tree_oid) is shown in Fig. 1.23. In order to find the files in the root
directory we already parsed the private-dir using the File SystemRoot B-tree, and the
resulting leaf node was shown in Fig. 1.22, which also includes the sbin directory we
now want to focus on. In Fig. 1.24 we show the same leaf node, but have highlighted
the sbin record. The key was found at offset 0x3be and is 0xf (15) bytes in size.
The object id is 0x2 (meaning it belongs to the parent id 2(root)), and the type is
0x9 (APFS_TYPE_DIR_REC). The size of the name is 0x5, and the name is sbin

1 APFS 33

Fig. 1.24: File System Root B-Tree, with the sbin record.

+ null terminator. The key value was found at offset 0xe74 and is 0x12 (18) bytes
in size. The node id is 0x18c60, the data added is 0x148d9849c03cb600 (Tuesday,
6 December 2016 06:54:55), and the flag is 0x4 (DT_DIR). In order to identify
the node id 0x18c60 for the sbin directory, we need to parse the Root File System
B-Tree. After parsing the File System B-Tree and using the node id 0x18c60 that
corresponds to the sbin directory, we found its physical address in 0x1d5ef8f, as
shown in Fig. 1.25. Since we already have explained how to parse the FS B-Tree and
the volume object map, we do not repeat this here.

34 Rune Nordvik

Fig. 1.25: File SystemRoot B-Tree, showing some of the content of the sbin directory.

1.5 APFS - Content Category

Directory entries found in the FS B-Tree have many different types, and we have
already scrutinised directories and inodes. However, a file needs somewhere to store
its content. APFS uses extents for this. The data stream type j_phys_ext_key_t and
j_phys_ext_val_t is normally used for this purpose. The private id (node id) from a
file record found in the FS B-tree (apfs_root_tree_oid) is used as an identifier in the
field owning_obj_id found in the structure j_phys_ext_val_t. If the file is fragmented,
we need to browse the Extents B-Tree (apfs_extentref_tree_oid) in order to identify
all the extents for the node id we are searching for.

There are also structures like j_file_extent_key_t and j_file_extent_val_t which
describe an extent for a file, including the length (measured in bytes) of the extent
and its physical block start address. However, sometimes a file can be compressed
(especially system files that are part of the iOS system partition). These files utilise

1 APFS 35

compression using extended attributes describing the resource fork and the compres-
sion algorithm used. If compression is used, then the files will have an empty data
fork [90]. Files created in the user data partition normally do not use compression,
but it is possible. In our example iOS image, the volume was converted from HFS+,
and contained compressed files. Some tools do not support reading these compressed
files.

We will focus on the entry highlighted in red from Fig. 1.25. From the key, we can
see that the object id is 0x18c60,whichmeans its parent directory is the sbin directory.
We can also see that it is a Directory Entry (0x9 - APFS_TYPE_DIR_REC), which
means it is a directory entry. The name of this directory entry is fsck. Moving to
the corresponding value we can see that the node id (file_id) is 0x10009c388, then
we have the date added value 0x15e2b3b573b9bef0 (Sunday, 22 December 2019
13:13:31 UTC+0). Then we have the last two bytes in the value describing the file
type, which is 0x8 (DT_REG). DT_REG is a regular file. We used Table 1.16 to
interpret the file type flags. Now we know this directory entry is a regular file.

•> Important

Even if the key describes that it is a directory entry, this does not mean it is a
directory. It is the last two bytes in the corresponding value field that yields the
file type (0xA=symbolic link, 0x4=Directory, 0x8=Regular file). File types can be
interpreted using Table 1.16.

We did not find more entries for this file in this node. Therefore, we should assume
that we will find additional directory entries for the fsck by browsing through the FS
B-tree for the specific object/node id. We used the FS B-tree (apfs_root_tree_oid)
and the Volume Object map to find the start block of the fsck file with node id
(file_id) 0x10009c388. We use this as an object id when browsing through the FS
B-tree. This node id is less than the start of the second entry in the FS B-tree root.
This means we will find it selecting the first entry.

Table 1.18: Addresses B-tree parsing

What Virtual Address Physical Address Description

Volume OMAP 0x1d565a3 Using APFS superblock
FS B-Tree Root (L0) 0x7a878b 0x1d66e7f Using APFS superblock and Volume OMAP
Index Node (L1) 0x7ab2e6 0x1d6558f Using Volume OMAP
Index Node (L2) 0x7aafd3 0x01d64365 Using Volume OMAP
Leaf Node (L3) 0x7ab04c 0x1d645fb Using Volume OMAP

Table 1.18 shows virtual addresses and the physical addresses that were found by
browsing the Volume OMAP each time we had a virtual address.

36 Rune Nordvik

Fig. 1.26: File System Root B-Tree, showing entries for the fsck file found in the sbin
directory.

Fig. 1.26 shows more directory entries for the file fsck, for its inode and for extended
attributes. In order to identify what is relvant of data content we first need to read
the inode, highlighted in red. We can see from the key that it is for the inode
0x10009c388, and it is of the object type 3 (inode). The value field is described in
Table 1.19, where we have included the first fields.
One of the most important inode fields for file content is the internal flags. In this
case, it describes that this inode has a resource fork (INODE_HAS_RSRC_FORK),
which means we should find directory entries describing extended attributes.

From Fig. 1.26 at offset 0x513 highlighted in dark blue, we find the first directory
entry for the extended attribute (APFS_TYPE_XATTR) for the fsck file, and it has
the name com.apple.ResourceFork. The corresponding value can be seen highlighted
in dark blue at offset 0x5e0.
From Table 1.20 we can see that the resource fork data stream points to another
inode (file_id), here 0x10009c389, which consists of 0x3000 bytes (3 blocks) and its
real size is 0x24d9. We need to find the directory entry and use its extent in order to
find the data belonging to this resource fork. At offset 0x534 highlighted in purple,

1 APFS 37

Table 1.19: Inode of fsck

Offset Length Field Value description

0x0 0x8 parent_id 0x18c60 (sbin)
0x8 0x8 private_id 0x10009c388 (fsck)
0x10 0x8 create_time 0x1481d4c132c85600 (Friday, 28 October 2016 23:07:59)
0x18 0x8 mod_time 0x1481d4c132c85600 (Friday, 28 October 2016 23:07:59)
0x20 0x8 change_time 0x15E2B3B574EA4039 (Sunday, 22 December 2019 13:13:31)
0x28 0x8 access_time 0x148B750278E50800 (Tuesday, 29 November 2016 07:45:56)
0x30 0x8 internal_flags 0x44008 (Uncompressed size, resource fork, explicit protection class)
0x38 0x4 nlink 0x1 (number of hardlinks)

Table 1.20: xattr_val_t

Offset Length Field Value description

0x0 0x2 flags 0x1 (XATTR_DATA_STREAM)
0x2 0x2 xdata_len 0x30
0x4 8 xdata 0x10009c389 (first 8 bytes)
0xC 8 xdata 0x24d9 (size)
0x14 8 xdata 0x3000 (allocated size)
0x1C 8 xdata 0x0 (crypto id)
0x24 8 xdata 0x24d9 (total bytes written)
0x24 8 xdata 0x0 (total bytes read)

we have the second extended attribute (APFS_TYPE_XATTR) for the fsck file, with
the name com.apple.decmpfs. This has to do with data compression.

From the corresponding value, we can see flags are 2 (XATTR_DATA_ EM-
BEDDED), which means the data is embedded into this value field. The data length
is 0x10 (16) bytes. The data starts with the fpmc name (cmpf when read as LE),
which is the 4-byte magic signature (compression_magic). The next 4 bytes is the
compression type used, here 0x4 (unknown, type 1 is uncompressed). Then the next
8 bytes are the uncompressed size, here 0xd210 (53776) bytes. There is no extra
data, and we assume that this means that the resource fork data stream 0x10009c389
is compressed.

At offset 0x550 highlighted in yellow, we have a directory entry for a file extent
for the inode id 0x10009c389, and this extent starts at logical address 0 (the start of
the file). Please note that this is the node number after the one assigned to fsck, and
is the same as the one identified as the data stream of the resource fork belonging to
fsck. We assume it is compressed.

The corresponding value starts at offset 0x5b4, and is highlighted in yellow. The
first 8 bytes is the field len_and_flags, and we can see the length is 0x3000 (number
of bytes in the assigned blocks, here 3 blocks), and flags are not in use. The next 8
bytes are the physical block number this extent starts, here 0x187c7d7. The last 8

38 Rune Nordvik

bytes are the encryption key or tweak used for the extent. Here it is 0x0 which means
encryption is not used.
Extracting the file content is just extracting the three blocks starting from physical
address 0x187c7d7. Then we will have an extracted file that is recognized as an
Apple HFS/HFS+ resource fork. Since we extract a compressed resource fork, we
will need to extract and decompress its data. However, to decompress the resource
fork data content, we need to extract the compressed data from the resource fork and
then decompress the data using the appropriate algorithm.

In most cases, we will be extracting non-compressed extents, and therefore it is
out of scope to describe the resource fork format in this chapter.

1.6 APFS - Application Category

The APFS does not use a journal, instead it uses a feature called Atomic Safe-Save
(ASS) to ensure that an FS operation is either completed, or it does not happen. This
is implemented by using Copy on Write (COW), and the use of checkpoints.

1.7 Comparing our results with a commercial tool

We selected EnCase 8 as the commercial tool to compare our results with, and also
to verify the accuracy and reliability of EnCase APFS support.

Fig. 1.27: EnCase v8.08.00.140

1 APFS 39

In Fig. 1.27 we can see that the directories and the file names are missing the first
two characters in the ot folder, which we assume should be the root directory, and
the stem directory should be the System, etc. EnCase used the correct volume name,
but the GUID for the Container is not exactly correct. The third section shows B348,
but should be 0348. Other than that the GUID from the superblock is correct.

The file we extracted in the content section had the name fsck and was in the sbin
directory. EnCase had this file in the in directory (should be sbin, but misses the
first two characters). Our file was 0x24d9 (9433) bytes in size, and it corresponds
to the Logical Size in the selected file in the right table view in the Fig. 1.27.
EnCase uses the selected timezone when showing the timestamps. File Creation
(create_time), the Entry Modified (mod_time), Last Written (change_time), and
Last Access (access_time) are identical to our results when taking the used timezone
(UTC+1) into consideration.

EnCase shows the file with a filename ck-Resource, and the first two characters
are missing. The "-Resource" is something EnCase have added to the file, which is
not a part of the real file name. It may be their approach to show that this is a resource
fork.

We can not validate this version of EnCase when it comes to APFS support,
especially because it does not show the accurate directory and file names. This can
be fixed in an updated version.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 2
Ext4

Rune Nordvik

Abstract The Ext4 file system is often used by Android cell phones and by Linux
distributions. As a mobile forensic expert, it is necessary to understand the structures
of this file system to recover data, verify tool results, and detect anti-forensics
techniques that may be present in the file system. In this chapter, we will have a deep
dive into topics important for an investigation. Many digital forensic tools do not
recover much from the Ext4 file system [52], and therefore we show some of the
most useful Ext4 recovery techniques proposed by current research.

The Ext4 file system is often used by Android1 operating systems, and also by
Linux desktop distributions [14], and this file system is open source. The Ext4 file
system replaces the Ext2 and Ext3, but it is mostly backwards compatible. Carrier
described Ext2 and Ext3 in his File System forensic analysis book [10], which
includes information also relevant for Ext4. Fairbanks describes the Ext4 file system
at a low level and from a Digital Forensics perspective. This chapter will describe
file system information important for mobile forensic investigators and other digital
forensic experts.

2.1 Introduction

This chapter will give in-depth knowledge about the Ext4 file system. We assume
the readers know how to use a hex editor and how to interpret multi-byte fields in a
structure. This includes how to read raw data based on the used endianness.

Even an open-source file system needs explanation because the source code is
not necessarily easy to understand and does not highlight what is important for

Rune Nordvik
The Norwegian Police University College (Politihøgskolen), Slemdalsveien 5, 0369 Oslo, Norway,
e-mail: rune.nordvik@phs.no

1 Android is an operating system developed by Google, which is based on the Linux operating
system

41© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_2

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:rune.nordvik@phs.no
https://doi.org/10.1007/978-3-030-98467-0_2
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_2&domain=pdf

42 Rune Nordvik

investigations. We will show how important structures look on disk and explain
how these structures should be interpreted. This chapter scrutinises the Ext4 file
system of a Samsung S8 and focuses on the system partition. Detailed information
about the Samsung S8 can be found at GSMArena [31]. The Samsung S8 system
partition contains an Ext4 file system and should not contain user data. The phone
was reset using the phone menus before acquisition to avoid including any personal
data. However, using the phone’s reset system is no guarantee for a complete wipe of
previous data. Therefore, the data set will not be shared to ensure the anonymity of
the device owner and that there is no possibility to identify any personal data from
any partition. We will see that the system partition has not been reformatted during
the reset. We do not know if this is also true for the user data partition because it is
encrypted. The use of encrypted user data partition is often mandatory [1], and on
the Samsung S8, it was enabled as default.

•! Attention

It is difficult to verify if a device is fully wiped without full access to the file system.
If the phones own reset process is very fast, you should assume the data is not wiped.
Even if the data was encrypted before resetting the device, it may be decrypted by
existing or future methods.

2.2 Ext4 - File system category

Fig. 2.1: Illustration of the elements of a block group.

The Ext4 contains multiple block groups, which have the same structure as shown
in Figure 2.1. The first part of the block group is 1024 bytes reserved that can be
used for boot code and form part of the first superblock [10, p. 402]. It is not a
requirement that each block group has a superblock . The feature flag sparse_super
is set by default [10, p. 400], and it will store superblocks and group descriptors
in block group 0, and then in block group 3G , 5G , and 7G . Another feature flag that

2 Ext4 43

organises superblocks is the feature flag sparse_super2. If set, the file system will
only contain two superblock backups. If none of the sparse_super flags is set, the
superblock and group descriptor can be found in each block group.

•! Tip: File system feature flags

Document the supported features of the file system under investigation. Do not
assume all Digital Forensic tools support all features.

Since the superblock describes the overall file system; any superblock can be used
to recover the file system. After the superblock we can find the group descriptor,
which describes the block group. It has location addresses, statistics, and checksums
about other mandatory elements in the block group. These other elements are the
data block bitmap (allocation status of data blocks in the block group), the inode
bitmap (allocation status of inodes in the inode table), the inode table, and finally, the
data blocks. Data blocks can be assigned to file or directory content. A file can have
any content, and a directory has directory entries. In order to include all metadata
related to a file, it is necessary to connect the directory entry describing the file and
its inode.

2.3 Superblock

The file system uses superblocks in order to describe important structures of the file
system. This includes information such as the number of total inodes and blocks,
how many inodes and blocks that are free, the size of inodes and blocks, information
about file system checks, which OS the file system was created on, features the file
system supports, a unique UUID (Universally Unique Identifier) for the file system
volume, etc.

2.3.1 Temporary data about the File system

The superblock contains its temporary information, such as when it was created, or
last mounted, or last written to. In the superblock, we can also find the first time an
error found place and even the time of the last error. All timestamps found in the
superblock are described as seconds since 1970 (Unix Epoch) and are defined as
32-bit fields that must be interpreted as little-endian.

From a mobile forensic expert view, it will be important to know when the file
system was created since we can expect to find user allocated files created between
the file system creation time and before the file system last written time. If we find

44 Rune Nordvik

Fig. 2.2: Timestamps found in the Ext4 superblock.

allocated files outside this time range, then this can be explained by one or more
theories (hypotheses):

• Files that are part of the OS system installation process may keep one or more
of their original timestamps.

• Apps may keep the timestamps when extracting container files, depending on
how they extract the files.

• The cell-phone has lost its date/time due to power failure.
• The user could have reset the cell-phone date/time manually.
• Someone has manipulated the timestamps using a tool.

It is also possible to find previous files from before the file system was created, unal-
located, from a previous file system. All these different theories about the reasoning
for why we can find timestamps out of range is not complete and which theory
(hypothesis) is the most likely should be tested.

Tip: Use Experiments

Scientifically testing theories (hypotheses) is part of Digital Forensics. When it
comes to file systems this can be done by performing experiments [35]. Do not base
your investigation on assumptions!

Whenwe reset the Samsung S8 device using themenus available, the system partition
file system was not re-formatted. Since the partition was encrypted, we could not be
certain if the user data partition file systemwas re-formatted. Figure 2.2 demonstrates

2 Ext4 45

the creation date is from 2008. This is 9 years before this device was available on
the market [31].

2.3.2 Supported features

The superblock defines the features supported in three different 32 bit fields;

• 0x5C s_feature_compat
• 0x60 s_feature_incompat
• 0x64 s_feature_ro_compat

All the features found in these fields are supported by the file system driver ver-
sion that created the file system. How the file system will be mounted depends
on these three different fields. If the feature that is unrecognisable is found in the
s_feature_compat, then the file system can be mounted with reading and writing
support. If the feature not recognised is found in the s_feature_incompat, then it
should not mount the file system. If the feature not recognised is found in the
s_feature_ro_compat, then the file system can be mounted as read-only.

Fig. 2.3: Feature flags in the Ext4 superblock.

Tip: Features have an impact

The features described in the superblock impacts how the inodes and directory
entries should be interpreted.

46 Rune Nordvik

Compatible features

Even if the kernel does not understand one of the flags in this 32 bit field, it will
mount the file system with read and write support. Table 2.1 can be used to interpret
this field, and Figure 2.3 demonstrates an example of interpretation.

Table 2.1: Compatible features

Value Description

0x1 Directory preallocation (COMPAT_DIR_PREALLOC)
0x2 Could mean the fs supports AFS magic directories. (COMPAT_IMAGIC_INODES)
0x4 Has a journal (COMPAT_HAS_JOURNAL)
0x8 Supports extended attributes (COMPAT_EXT_ATTR)
0x10 Has reserved GDT blocks for filesystem expansion (COMPAT_RESIZE_INODE)
0x20 Has directory indexes (COMPAT_DIR_INDEX)
0x40 “Lazy BG”. Not in Linux kernel (COMPAT_LAZY_BG)
0x80 “Exclude inode”. Not used. (COMPAT_EXCLUDE_INODE)
0x100 “Exclude bitmap”. Not used (COMPAT_EXCLUDE_BITMAP)
0x200 Sparse Super Block, v2 (COMPAT_SPARSE_SUPER2)

From an investigator’s perspective, not every compatible feature is relevant, however,
the flag COMPAT_SPARSE_SUPER2 is especially important when locating the
backup superblocks, in case the main one is partly corrupted or manipulated. If the
COMPAT_SPARSE_SUPER2 flag is set, the super block field s_backup_bgs, found
from superblock byte offset 0x24C, points to the twoblock groups that contain backup
superblocks. It may seem strange that one field can point to two blocks, but this is
because the field is an array of two 32 bits elements. In our example in Figure 2.3 the
flag was not set. Another important flag is the COMPAT_HAS_JOURNAL. If this
flag is set, recovery of data from the journal should be possible. Also note that when
the journal is full, it will start writing transactions from the beginning of the journal
file, effectively overwriting previous transactions [14]. More details about the Ext4
journal can be found in the sect. 2.7 at page 68. The feature COMPAT_EXT_ATTR
is important since it allows extended attributes to be saved within the inode. This
allows the user or programs to add extra information to individual files.

The flag COMPAT_RESIZE_INODE does not have a descriptive name, since it
describes the number of blocks reserved for the extra Group Descriptor Table (GDT).
These blocks are reserved for future file system expansion. These are important
because the mandatory fields in the block group will be found after the blocks
reserved GDT as illustrated in Figure 2.1, and this knowledge can be used for
manual recovery of the file system.

Some of the flags are supported by Linux, but not necessarily used. For instance
the COMPAT_DIR_PREALLOC which allows for pre-allocating a specific number
of blocks to directories, defined in field s_prealloc_dir_blocks at superblock byte
offset 0xCD. The field is currently not used by the Linux kernel [41].

2 Ext4 47

Incompatible features

If the kernel does not understand one of the flags in this 32 bit field, it should not
mount or repair the file system. Table 2.2 can be used to interpret this field, and
Figure 2.3 demonstrates an example of interpretation.

Table 2.2: Incompatible features

Value Description

0x1 Compression. Not implemented. (INCOMPAT_COMPRESSION)
0x2 Directory entries record the file type (INCOMPAT_FILETYPE)
0x4 Filesystem needs journal recovery. (INCOMPAT_RECOVER)
0x8 Filesystem has a separate journal device. (INCOMPAT_JOURNAL_DEV)
0x10 Meta block groups. See the earlier discussion of this feature. (INCOM-

PAT_META_BG)
0x40 Files in this filesystem use extents. (INCOMPAT_EXTENTS)
0x80 Enable a filesystem size over 232 blocks. (INCOMPAT_64BIT)
0x100 Multiple mount protection. Prevent multiple hosts from mounting the filesystem

concurrently (INCOMPAT_MMP)
0x200 Flexible block groups (INCOMPAT_FLEX_BG)
0x400 Inodes can be used to store large extended attribute values (INCOM-

PAT_EA_INODE)
0x1000 Data in directory entry. Feature still in development (INCOMPAT_DIRDATA)
0x2000 Metadata checksum seed is stored in the superblock (INCOM-

PAT_CSUM_SEED)
0x4000 Large directory >2GB or 3-level htree (INCOMPAT_LARGEDIR)
0x8000 Data in inode. Small files or directories are stored directly in the inode i_blocks

and/or xattr space. (INCOMPAT_INLINE_DATA)
0x10000 Encrypted inodes are present on the filesystem (INCOMPAT_ENCRYPT)

Fig. 2.4: Illustration of the elements of a flex group.

Flexible block groups are a unique way of organizing block groups into a set of flex
groups. The first block of a flex group will include the bitmaps and the inode table for
all groups within all the flex groups, and the other groups may contain super blocks

48 Rune Nordvik

and group descriptors depending on the sparse superblock feature, and will include
data blocks, as shown in Figure 2.4. The group descriptor is used to define where
the bitmaps and inode table should be located, which enables flex groups, meaning
they all point to the same bitmaps and inode locations as the first group descriptor.
This is important to understand, because it deviates from the standard organisation
of a block group as shown in Figure 2.5.

Tip: Metadata location

The investigator should assume and test that the data block bitmap, inode bitmap,
and inode table will exist in the first block group when flex groups are being used.
In this case the metadata is near co-located in the beginning of the file system.

When flex groups are not used, it will be necessary to parse all superblocks and
group descriptors in order to identify all bitmaps and the complete inode table.

Fig. 2.5: Illustration of superblocks and group descriptors in flex groups or not flex
groups when also the RO_COMPAT_SPARSE_SUPER is in use. Based on [5].

Read only compatible features

If the kernel does not understand one of the flags in this 32-bit field, it will mount
the file system as read-only. Table 2.3 demonstrates that if the file system has large
files, the superblock will use options like RO_COMPAT_LARGE_FILE (exist files
larger than 2 GiB), RO_COMPAT_BIGALLOC (extents are using clusters instead
of blocks) and RO_COMPAT_HUGE_FILE (file size is shown in logical blocks
instead of sectors). Large files can be of investigative value since they may contain
videos, file system containers, encrypted files, etc. It is important that these files are
investigated.

Tip: Large Files

Use tools that flag large files, or sort a file listing by file size.

2 Ext4 49

Fig. 2.6: Illustration of usage of extended metadata in inodes.

The default inode size was 128 bytes in Ext2 and Ext3, but in Ext4 it was typically
256 bytes. The option RO_COMPAT_EXTRA_ISIZE means that extended metadata
is utilised, which will allow Ext4 features such as nano second parts of timestamps,
the creation timestamp etc. The part after the extra inode size is still reserved for
extended attributes. Figure 2.6 demonstrates that the extra metadata is found directly
after the first 128 bytes of an inode, and that the extended attributes follow after
the extended metadata. If extended metadata is not in use, then this area will be
reserved for extended attributes. In our example Ext4 file system extended attributes
was supported, see Figure 2.3 at page 45.

Using checksums of metadata is a measure to protect the metadata from being
used if corrupted or manipulated. However, it does not protect metadata change if
the checksum is updated and verifies the manipulated metadata.

Another important feature for the investigator is to check if the file system con-
tains snapshots (a previous state of the file system). However, currently Ext4 in
Linux/Android does not support snapshots.

The verity feature (RO_COMPAT_VERITY) may be interesting for the investi-
gator, which means verity inodes may exist on the file system. These inodes have
content that is read-only, and can be verified using a Merkle tree-based hash. A
Merkle tree-based hash means that the file is divided into blocks that are hashed.
Then these hashes are concatenated and represent larger blocks of data and re-
hashed. This continues until there is one large block left, representing the complete
file, which is hashed. It is this final hash the read-only file is verified against. The
Figure 2.7 illustrates the Merkle tree hashes and is also explained by Merkle [50]
who describes that in order to verify the public key, you only need the hashes of the
first and second half of the public key and that you can compute half of the public
key by knowing their quarters.

50 Rune Nordvik

Fig. 2.7: Illustration of Merkle tree hash.

Fig. 2.8: Information about blocks in the Ext4 superblock.

The feature flag RO_COMPAT_READONLY means that this file system should only
be mounted as read only. Most implementation of Ext4 file system drivers complies

2 Ext4 51

Table 2.3: Read only compatible features

Value Description

0x1 Sparse superblocks. See the earlier discussion of this feature
(RO_COMPAT_SPARSE_SUPER)

0x2 This filesystem has been used to store a file greater than 2GiB
(RO_COMPAT_LARGE_FILE)

0x4 Not used in kernel or e2fsprogs (RO_COMPAT_BTREE_DIR)
0x8 This filesystem has files whose sizes are represented in units of logical blocks,

not 512-byte sectors (RO_COMPAT_HUGE_FILE)
0x10 Group descriptors have checksums (RO_COMPAT_GDT_CSUM)
0x20 Indicates that the old ext3 32,000 subdirectory limit no longer applies

(RO_COMPAT_DIR_NLINK)
0x40 Indicates that large inodes exist on this filesystem

(RO_COMPAT_EXTRA_ISIZE)
0x80 This filesystem has a snapshot (RO_COMPAT_HAS_SNAPSHOT)
0x100 Quota (RO_COMPAT_QUOTA)
0x200 This filesystem supports “bigalloc”, extents are tracked in units of clusters (of

blocks)(RO_COMPAT_BIGALLOC)
0x400 This filesystem supports metadata checksumming.

(RO_COMPAT_METADATA_CSUM)
0x800 Filesystem supports replicas. This feature is neither in the kernel nor e2fsprogs

(RO_COMPAT_REPLICA)
0x1000 Read-only filesystem image; the kernel will not mount this image read-write and

most tools will refuse to write to the image (RO_COMPAT_READONLY)
0x2000 Filesystem tracks project quotas (RO_COMPAT_PROJECT)
0x8000 Verity inodes may be present on the filesystem (RO_COMPAT_VERITY)

with this setting, but there may exist driver implementations or tools who allow
writing to the file system even if it is set to read only.

Tip: Test if a file system is read only

The investigator should perform experiments to test if it is possible to write to an
identical copy of the read only file system using the same driver or tools found on
the device under investigation.

2.3.3 The group descriptor

The group descriptor describes information about a particular group [14], for in-
stance, the locations of the block bitmap, inode bitmap, and the inode table. In order
to find the group descriptor, we need to know the block size, as shown in Figure 2.8.
The value in this field is 2, and the formula we need to use is 10(10+B_;>6_1;>2:_B8I4) .
We can find the group descriptor in the block following the superblock. In order to

52 Rune Nordvik

Fig. 2.9: Different designs for Group Descriptors

find the group descriptor, we, in this case, move 4096 bytes, one block, forward from
the start of the superblock, from byte offset 0, not from 1024.

If the Ext4 has the 64-bit feature (INCOMPAT_64BIT) enabled, then the location
of the bitmaps and the inodes table has two fields each. The first fields should
describe the lower bits for the location, while the last describes the upper bits. These
fields should describe the block location of the block bitmap. In our example, the
64-bit feature was not enabled, and therefore each group descriptor is only 32 bytes.
The inode table can be found in the block defined in bg_inode_table_lo at group
descriptor byte offset 0x08. The locations are relative to the start of the superblock.

2 Ext4 53

Fig. 2.10: Group descriptors in a flex group

The data block location is defined in field bg_block_bitmap_lo at offset 0x0, and
the inode bitmap is defined in field bg_inode_bitmap_lo at offset 0x4. All these
values are 32 bits and must be interpreted as little-endian, as shown in Figure 2.10.
However, in Figure 2.10 we see that there are multiple 32-byte units, where each
of them is a group descriptor, one for each block group in the flex group. A very
similar copy of this group descriptor block is found in all other group descriptor
blocks. However, bg_flags values may deviate. It is important to understand that
not all block groups have superblocks or group descriptors if either the superblock
RO_COMPAT_SPARSE_SUPER or the COMPAT_SPARE_SUPER2 feature flag
is set. The field bg_flags can have any combination of these values :

• 0x1 Inode table and bitmap are not initialized
• 0x2 Block bitmap is not initialized
• 0x4 Inode table is zeroed (on initialisation)

In Figure 2.10 the flags value is 0x4 for block group 0, 1. While it is 0x5 for the
rest of the block group descriptors in this descriptor block, which means that these
block groups have not initialized their inode table or inode bitmaps. We could verify
that there were only initialized inode tables in the first two locations (block 0x22 and
0x219).

54 Rune Nordvik

Table 2.4: Group descriptor

Offset Size Name Description

0x0 0x4 bg_block_bitmap_lo Location to data block bitmap
0x4 0x4 bg_inode_bitmap_lo Location to inode block bitmap
0x8 0x4 bg_inode_table_lo Location to the inode table
0xC 0x2 bg_free_blocks_count_lo Free blocks in block group
0xE 0x2 bg_free_inodes_count_lo Free inodes in block group
0x10 0x2 bg_used_dirs_count_lo Used directories in block group
0x12 0x2 bg_flags Important for bitmaps and inode tables
0x14 0x4 bg_exclude_bitmap_lo Location of snapshot exclusion bitmap
0x18 0x2 bg_block_bitmap_csum_lo Data block bitmap checksum
0x1A 0x2 bg_inode_bitmap_csum_lo Inode bitmap checksum
0x1C 0x2 bg_itable_unused_lo Unused inodes in group

Universal Unique Identifier

In the superblock the field, s_uuid, assigns a unique identifier for the file system
volume. This should be unique for every instance of a volume created, however, if
we flash a partition, the target may be assigned the same UUID for its file system as
the original source.

Fig. 2.11: Structure of the UUID v.2

The structures of the UUIDs are defined in RFC4122 [44], and the one used here is
version 2 as shown in Figure 2.11. It uses a 60-bit timestamp (in which the four least
significant bytes are overwritten with a security attribute) with an Epoch from 15th
of October 1582, and a node identifier (MAC address) at the last 6 bytes. How is
this important? Assuming the vendor is following the standard, it can approximate
the file system creation and be connected to a MAC address. The MAC address in
this example is globally unique and is a multicast address. However, the author is
not convinced that the vendor follows the standard for the following reasons (1) the
timestamp does not reflect the time of file system creation (2) the MAC address
organisational part (OUI) is not recognised as a known organisation/vendor.

2 Ext4 55

2.4 Ext4 - Metadata Category

Here we describe the inodes, inode bitmap, extended attributes.

2.4.1 The inode

The index node (inode) is defined in the structure ext4_inode, which defines most
of the metadata related to a file, except its file name. Previous versions of Ext used
a 128-byte size inode, while the Ext4 standard uses 256 bytes. However, the first
128 bytes are backwards compatible with previous versions of Ext. The information
in this section is based on the Ext4 source code and the interpretation found at
Kernel.org [41].

Table 2.5: Inode offset table

Offset Size Name Description

0x00 0x2 i_mode User privileges and type of file
0x02 0x2 i_uid Lower 16 bits of the owner id
0x04 0x4 i_size_lo Lower 32 bits of the file size
0x08 0x4 i_atime Last access time
0x0C 0x4 i_ctime Last inode change time
0x10 0x4 i_mtime Last data modification time
0x14 0x4 i_dtime Deletion time
0x18 0x2 i_gid Lower 16 bits of group id
0x1A 0x2 i_links_count Number of hard links pointing to this file
0x1C 0x4 i_blocks_lo Lower 32 bits of 512 byte blocks this file uses
0x20 0x4 i_flags Inode flags
0x24 0x4 i_osd1 For Linux this is the inode version
0x28 0x3C i_block[] Block map or Extent tree.
0x64 0x4 i_generation File version for NFS
0x68 0x4 i_file_acl_lo Lower 32 bit address of extended attribute block
0x6C 0x4 i_size_high Higher 32 bit address of file size
0x70 0x4 i_obso_faddr Obsolete fragment address
0x74 0xC i_osd2 OS descriptor 2
0x80 0x2 i_extra_isize Size of the used are of inode - 128
0x82 0x2 i_checksum_hi Upper 16-bits of the inode checksum
0x84 0x4 i_ctime_extra Extra change time bits
0x88 0x4 i_mtime_extra Extra modification time bits
0x8C 0x4 i_atime_extra Extra access time bits
0x90 0x4 i_crtime File creation time, in seconds since the Unix Epoch
0x94 0x4 i_crtime_extra Extra file creation time bits
0x98 0x4 i_version_hi Upper 32-bits for version number
0x9C 0x4 i_projid Project ID

56 Rune Nordvik

2.4.2 User privileges and type of file

Fig. 2.12: File type and privileges.

As illustrated in Figure 2.12 the i_modefield name 12 least significant bits are used for
user privileges. These privileges are important when investigating a file or directory
since it explains ownership and user privileges. However, it is also important to
understand that these privileges may be changed if the user has the privileges to
do so. Let us assume they are 000111101000. The 3 least significant bits describe
all others and are 000, which corresponds with r (read)-w(write)-x(execute). In this
case, none of them are set, which means that users not defined as the owner of the
file or not within the filegroup will not have privileges for this file. The second 3 least
significant bits are 101, and they describe the group. In this case, read and execute is
set, while the write is not. The third 3 least significant bits have the value 111, and
they describe the owner. The 3 most significant bits are special privileges. Here they
are 000, and it means the Set-UID, Set-GID, and the Sticky bit are not set. Set-UID
makes sure an executable uses the owner as the user executing the file and not the
actual user executing it.

Similarly, it is possible to force using the defined group id for this file as the
executable group instead of the real user group assigned to the user executing the
file. The least significant bit of the special bits is for the Sticky bit, which affects
directories. If it is set, it means that all files within this directory can only be modified
by the owner. The remainder 4 bits of the i_mode field are for describing the type
of file. An inode can describe a regular file, a directory, a device (character-based
or block-based), a symbolic link, a named pipe (FIFO) or a socket, as shown in
Table 2.6. Knowing the type of the file tells the investigator what kind of inode is
under investigation. This can give insight into if an inode describes a communication
socket (two-ways communication) or FIFO (one-way communication), or if it is just
a pointer (symbolic link) to another inode, or if the inode is used to access a storage
device (for instance a sd_card). All kinds of devices can be accessed through an inode
describing a device. There are twomain types of devices: block and character. A block
device stores data in predefined blocks that may be randomly accessed. A character

2 Ext4 57

device can be read from and written to and accessed as a sequential stream of bytes.
A file system is a block device, and most devices could also be character devices.
Hard disks could have interfaces for both block devices and character devices [55].

The difference between block device and character device is that the former is
describe data in predefined blocks, and these blocks may be randomly accessed.
A character device is accessed trough a stream of data in sequence, for instance a
network card (REF).

Table 2.6: Inode file types

4 MSb Meaning

0001 Special FIFO file (named pipe)
0010 Character device
0100 Directory
0110 Block device
1000 Regular file
1010 Symbolic link
1100 Socket

2.4.3 Temporary metadata describing inodes

Almost every inode has fields describing important timestamps. For backward com-
patibility, these are located from hex offset 0x08 from the start of the inode, and are
32-bit integers describing the number of seconds since 1970 (Unix Epoch). However,
extra 32 bit fields in the inode use the least significant 2 bits to expand the timestamp
to 34 bits. The remainder of the 30 bits is used for nanoseconds granularity.

We can only trust the timestamps if there is no malware installed on the device
or any other tools to manipulate the inode metadata. The mobile device clock also
needs to be accurate. The following section explains one method of manipulation.

When a file is created, the current time is set for all the timestamps in the inode.
This means that if all the timestamps are the same, the file has not been changed
after creation and it has not been accessed at a later time as long as the flags do not
contain the flag 0x80 (bit 7 is set, counting from bit 0), which means the file system
does not update the access date. If this flag is not set, the access date will update
when a user or a program access the file. The investigator should always check if
access times are close in time, indicating a program has accessed multiple files in
the session. For instance, an anti-virus program may have opened each of the files
without resetting the access time. A digital forensic logical extraction of selected
files will update the accessed timestamp if the accessed timestamps are updated,
assuming the tools requesting these files are using the operating system.

58 Rune Nordvik

2.4.4 Temporary metadata manipulations

•! Attention

It has been reported that it is possible to use the nano seconds part of a timestamp
to hide information in Ext4 [18].

It is difficult to detectmanipulations of the least significant parts of anExt4 timestamp
because most current listing tools do not show timestamps with the nanoseconds
granularity, and even if they do, it is difficult to detect these manipulations by the
user. The data hiding in the nanosecond part of a timestamp can easily get corrupted
if all timestamps fields are used for hiding data. Timestamps such as i_ctime and
i_mtime can be changed by user activity. However, the created timestamp (i_crtime)
will not change since it defines the creation of a file, and a delete operation will not
affect such a date [18]. Although, a deleted inode gets unallocated in the inode bitmap
and can therefore be reallocated by new inodes. This reallocation will destroy parts of
the hidden data, which requires error measures in order to recover hidden data [18].
To preserve secrecy, the user can utilize cryptography. [18] describe that they used
symmetric string cyphers in their proof of concept tool. They also repaired the inode
checksums for each manipulated inode. Therefore, the detection of manipulated
inodes is difficult to detect.

Tip: Detect Manipulation

Document the Apps, tools, or malware installed on a mobile device. Try to identify
their abilities from trusted sources. Investigate tools that have abilities to manipulate
metadata.

Some tools may have timestamp manipulation or steganography abilities. This is
one of the reasons why digital forensic experts should document the Apps, tools, or
malware installed on a mobile device.

Fortunately, modern mobile devices have protection mechanisms to avoid in-
stalling software that is not approved by the device provider. Apple uses the App-
Store, while Google uses the Google Play protect functionality. However, the latter
can be easily disabled by the user. In addition, devices can be jailbroken on iOS or
rooted on Android, allowing users to install anything.

•! Attention

Malware needs to survive a reboot, and therefore it will try to stay hidden in the file
system. Data hiding within file system metadata is a known approach [37].

2 Ext4 59

2.4.5 Links count

The field i_links_count shows the number of directory entries referring to this inode.
The directory entry has the inode number to which inode it points to. Multiple
directory entries could be pointing to the same inode that indicate hard links. When
the last directory entry pointing to an inode is deleted, this inode is marked as
unallocated in the inode bitmap [10, p. 426]. This is not the same with soft links.
Adding a soft link will not increase the links count of the inode it points to. Instead,
it will create a symbolic inode. This symbolic inode points to a file path (directory
entry), not to an inode [10, p. 426].

Blocks used by a file

The number of 512 byte blocks (sectors) used by a file is defined in the i_blocks_lo
field. However, if the inode i_flags has the EXT4_HUGE_FILE_FL file option set
and the the superblock has the huge file feature enabled then the field i_blocks_hi
needs to be added using this formula.

(i_blocks_lo + i_blocks_hi � 32)

If the i_flags has the EXT4_HUGE_FILE_FL inode but file system does not have
the huge file feature then field i_blocks_hi needs to be added using this formula.

i_blocks_lo + (i_blocks_hi � 32)

Inode flags

This field has several options describing special properties for the file. A few flags
that could be important for the investigation:

• 0x10 File is immutable, which means the file can not be changed.
• 0x20 File can only be appended.
• 0x80 Does not update access time. This is important because we know this
timestamp is no longer updated on access.

• 0x800 Encrypted inode, which means the file content is encrypted.
• 0x4000 File data must be written through the journal. This is important since
the previous content from this file may be found in the journal as long as the
journal has not been not overwritten with new transactions. This also depends
on what is being recorded to the journal.

• 0x40000 This is a huge file, which has special meaning when computing the
block size of a file.

• 0x80000 The file uses extents, which we explain in sect. 2.4.5. If this is not set
it may use direct or indirect block pointers.

60 Rune Nordvik

• 0x10000000 The inode contains inline data.
• 0x20000000 Create children with the same Project ID.

Block map, Extent tree or inline data

Fig. 2.13: Direct or indirect block pointers. Primarily used by previous Ext versions,
but still supported in Ext4.

As illustrated in Figure 2.13, previous versions of Ext used block maps (direct or
indirect blocks). However, Ext4 can still support it. Block maps are inefficient when
a file uses many blocks since a maximum of 15 block pointers is available. The first
12 should be direct block pointers, while the last three could be single, double, or
triple indirect block pointers [10].

For Ext4 it is more usual to find the use of extents, and they have their own
structure. Table 2.7 demonstrates the extent header. Figure 2.14 illustrate how extents
may be organised in an extent tree.

The 0xF30A (value interpreted as) can be used as a signature to find inodes,
which can be used to recover files and metadata. However, using the extents magic
to carve for inodes will not deviate between extent headers found within the inode
at inode offset 0x28 or extent headers found in data blocks used by an extent tree.

2 Ext4 61

Fig. 2.14: Illustration of Extents in Ext4. Extent trees are not really needed with only
4 leaf extents, but more than 4 leaf extents will need a tree. We do not need two index
entries, since the leafs could easily be included in one of the available 340 extents
in one 4096 byte block. Each extent will describe one fragment. Ext4 tries to avoid
fragments whenever possible, therefore, it is unusual to have many levels in the tree.

Table 2.7: Extent header

Offset Size Name Description

0x0 0x2 eh_magic Value 0xF30A
0x2 0x2 eh_entries Number of extent entries
0x4 0x2 eh_max Max number of entries
0x6 0x2 eh_depth Depth of this extent node, 0= points to data.
0x08 0x4 eh_generation Generation of the tree

This kind of recovery will not identify the file’s name since the name is not included
in the inode structure. However, some techniques can be used to connect the names
found in directory entries and inodes found in the inode table [52].

After the header, the extent entries will follow. These are either extents pointing
to new extent indexes or to the /data blocks containing the file content itself. If
the extent header eh_depth is larger than zero, the extent index entries will point

62 Rune Nordvik

to blocks containing other extent entries. If the eh_depth is equal to zero, then the
extent describes and points to the blocks containing the file content.
An Extent will define a contiguous number of blocks, and if the file is fragmented,
it will contain multiple extents. An extent header entry (ext4_extent_idx) have the
following structure, which is necessary to parse in order to find all blocks that a file
is using eventually.

Table 2.8: Extent index entry

Offset Size Name Description

0x0 0x4 ei_block Covers file blocks from block forward
0x4 0x4 eh_leaf_lo Lower 32 bits of the block containing next extent node in the tree
0x8 0x2 eh_leaf_hi Higher 16 bits of the block containing next extent node in the tree
0xA 0x2 eh_unused Not in use

If the extent header has the depth 0, it will contain the leaf extent node (ext4_extent),
which describe the blocks used for file content.

Table 2.9: Extent leaf entry

Offset Size Name Description

0x0 0x4 ee_block First logical file block of this extent
0x4 0x2 ee_len The length of the extent in blocks
0x6 0x2 ee_start_hi Higher 16 bits of the extent physical start block
0x8 0x4 ee_start_lo Lower 32 bits of the extent physical start block

The first block of a file will always start from logical block 0, but have a complete
different physical disk location. The logical start block (ee_block) is defined to the
extent, which is necessary in order to organize the fragments correctly. The start
of the first physical block, where this extent starts can be found in ee_start_hi
and ee_start_lo. The extent contains the blocks from this location and contains the
number of contiguous blocks defined in the length field (ee_len).

After the last extent entry, there is a checksum named eb_checksum which is
computed by using the file system uuid (from the superblock)+inum (from the direc-
tory entry)+igeneration (from the inode)+extent block (not including the checksum.
This checksum is not necessary since the inode is already checksummed [41]. This
checksum can be computed using the crc32c algorithm to identify manipulation
attempts [41]. A crc32c library can be used to test this checksum [19].

The 60 byte i_block can also contain inline data, as long as the file system supports
this and that the inode flag has defined that inline data is used. To create an Ext4 file
system that supports inline data, it has to be formattedwith themke2fs -O inline_data.
This area can also be used to store small extended attributes added by using the xattr

2 Ext4 63

tool. Large extended attributes will have a pointer to them (either direct or indirect
block pointer, or an extent).

Fig. 2.15: Example of a directory inode.

An example of an inode is shown in Figure 2.15. This inode is the second element in
the inode table. This means we are looking at inode number 2 (the root directory) [10,
p413]. If we look at the first two bytes of this inode, we can see the value 0x41ED
(LE). The four most significant bits are 0100, which means it is a directory (see
Table 2.6). The extent tree starts in inode byte offset 0x28, starting with a header.
The header includes the 0xF30A magic for extents, it contains one extent, and this
extent is a leaf node (depth is 0). The generation field is not in use. Directly after the
extent header, we find the only extent. It starts from logical block 0, has a length of
1 block, the location of the block is 0x1F92 (we do not need to think of the higher
16 bits address in the ee_start_hi since it is 0). Since every block is 0x1000 (4096
bytes long), we know the block can be found at byte 0x1F92000 relative to the start
of the Ext4 partition. This is demonstrated in 2.5.

File version

The i_generation is meant to be used for NFS (Network File System) and a random
value will be created for every new file created. This is described in the function
__ext4_new_inode found in the ialloc.c file. Note that the Ext2 and Ext3 file system
uses another approach where the generation is set on mount, and then it is increased
with 1 for every file created using the ext2_new_inode or ext3_new_inode function.

The value is not guaranteed to be unique, and the author observes that multiple
inodes may contain a zero value. If the value is not zero, and the creation date of the
two inodes are equal and found in the same file system, then they are both describing
the same inode. This must be considered when comparing inodes found outside the
inode table, for instance, in the journal. Correlating and interpreting different fields
in this way can be used to find all previous instances of the same inode, assuming
they are not overwritten. If we have found an inode that obviously is deleted in the
inode table, finding previous versions of this inode can give us the previous extents

64 Rune Nordvik

Fig. 2.16: Recovery of a file using a previous state of an inode.

in a non deleted state, allowing recovery of a previous state of this file. Knowing the
position of the inode in the inode table allows us to search for the directory entry
by parsing every directory. If the directory entry is found, it gives us the name and
location in the file system directory tree, assuming that the directory entry is not
overwritten. This recovery methodology for Ext4 is illustrated in Figure 2.16.

Operating System Descriptor 2

The osd_2 field has different content based on the OS used to create it, we describe
this when Linux (Android) is used as the OS.

The operating system descriptors must be used together with similar fields de-
scribed earlier in the inode. For instance, the higher value of the user id must be used
together with the lower value of the user id, and so on. Most forensic tools show the
owner or group of a file, but this can also be verified manually.

Project ID

The field i_projid is used for creating children with the same project id. This can be
used to define size quotas for a group of files; for example, setting how much space

2 Ext4 65

Table 2.10: Os Descriptor 2 (Linux)

Offset Size Name Description

0x0 0x2 l_i_blocks_high Upper 16-bits of the block count
0x2 0x2 l_i_file_acl_high Upper 16-bits of the extended attribute block
0x4 0x2 l_i_uid_high Upper 16-bits of the Owner UID
0x6 0x2 l_i_gid_high Upper 16-bits of the GID
0x8 0x2 l_i_checksum_lo Lower 16-bits of the inode checksum
0xA 0x2 l_i_reserved Unused

a user can save in the user directory. This requires that the superblock supports this
feature (RO_COMPAT_PROJECT).

2.5 Ext4 - File Name category

Directory entries are important since they include the name of a file or directory, and
contain the inode number of the file or directory. It is easy to find the byte location
in the inode table by multiplying the inode number with 256. This requires that the
investigator knows where the inode table starts, which we have shown can be located
by scrutinizing the first group descriptor. The directory entry depends on one of
the incompatible features for recording file types in directory entries defined in the
superblock . Figure 2.3 on page 45 demonstrated directory entries record file types.
Therefore, we need to use the following structure as defined in Table 2.11.

Table 2.11: Directory Entry

Offset Size Name Description

0x0 0x4 inode The inode this entry points to
0x4 0x2 rec_len Length of this entry
0x6 0x1 name_len Length of name
0x7 0x1 file_type The file type of this entry
0x8 Var name[name_len] ASCII name of file

If the superblock does not define the use of recording file names in directory entries,
then we use an almost identical structure. The only difference is that the name_len
and the file_type is merged into a 2 byte field that describes the name_len.

Figure 2.17 depicts all the directory entries found in the root directory. The
location can be found by scrutinizing the second inode in the inode table. From
this location, we can find every allocated file and directory in the file system, and
the deleted files in their directory entries have, if not overwritten. This is why some

66 Rune Nordvik

Fig. 2.17: Content of root directory.

digital forensic tools show that a specific file is deleted, but the content may be harder
to recover, discussed in sect. 2.6.

2.6 Ext4 - Content Category

The content of a file is pointed to by the inodes, as long as the file is allocated and
not deleted.

2.6.1 Recovery of files

When a file gets deleted, the file extents header zero out the number of extents and
depth of the tree. However, most of the extent entries may also be zeroed out. [14]
shows an extent index that is not zeroed out after deletion, and he shows that extent
leaves are zeroed out (except for the logical ei_block). This means that recovery of
an inode is most likely to succeed if the inode uses extent trees since it is possible

2 Ext4 67

to parse down the tree to the leaf extent(s) that describes the block addresses used
for data content [14]. The deleted timestamp is set to the time of deletion, and that
many deleted files have been modified and changed equally to the deleted timestamp
(Ext2, Ext3) [10, p. 420]. [14] also shows that on Ext4 the deleted inode’s accessed,
changed, and the modification time is set equal to the deletion time. On deletion, the
file size, link count, and the number of blocks used by the file is zeroed out. However,
it is possible to carve for file content only.

Inode Carving using extent magic signature

Since some of the extent information is wiped, recovery of deleted data in Ext4 is
more difficult than previous versions of ExtX. However, it is possible by performing
carving for previous inodes or other metadata structures. An inode does not have a
special static signature, even though it is possible to search for the eh_magic if the
inode uses extents [11]. [11] describe that themagic signature persist even for deleted
files, and that they used the type field (i_mode) 4 most significant bits to identify false
positives not corresponding to one of the 7 different file types, as seen in Table 2.6 at
page 57. Dewald and Seufert (2017) [11] also describes that it is possible to combine
further pattern testing; for instance, specific timestamp intervals, or a set of access
rights, in order to filter out even more false positives. However, this will not identify
inodes that do not use extents. This approach for inode metadata carving is very well
suited to identify and recover Ext4 inodes from a re-formatted partition (for instance,
an Ext4 file system re-formatted to NTFS). [11] did not manage to connect the file
names to the carved inodes when using the inode carving method.

2.6.2 Generic metadata time carving

Another approach for metadata carving is thinking that the timestamps near co-
located could act as a dynamic signature based on equality. File systems have struc-
tures describing their files’ metadata, and they usually have temporal information
near co-located. We can use equality to identify a set of timestamps based on their
known granularity. The scientific paper selected this approach Generic Metadata
Time Carving [52]. Using this technique, it is possible to find all inodes that match
the equality pattern, not only inodes using extents.

2.6.3 Additional file content

Even though different file types are part of the content category, they are not
filesystem-specific, and therefore not included in this chapter.

68 Rune Nordvik

2.7 Ext4 - Application Category

The Ext4 journal is used for recovery purposes when the file system becomes out
of sync. Modern file systems often use journals. Depending on the flags in the
superblock it can be used, but it does not need to. The journal is described as an
application-level feature [10, p. 437]

Fig. 2.18: Ext4 Journal transaction overview, based on an illustration from Carriers
file system forensic analysis book [10, p. 438]

The first interesting part of the journal is the journal superblock, which contains a
pointer to the first descriptor in the journal [14, 10]. The first descriptor may not
be in the beginning of the journal because of the circular writing of transactions.
When a transaction is stored at the end of the journal, the next transaction will be
written at the start of the journal (overwriting previous transactions) [14, 10]. Every
descriptor is followed by a set of metadata and/or data transactions and, finally, end
with a commit block. If a file system crashes before the commit block is written,
then the commit block is missing on the next mount of the file system, then a revoke
block is created. This points to the previous descriptor, effectively undoing any of
its transactions. Then the file system will be in a consistent state.

The journal is normally found in inode number 8, but can be placed in any other
inode defined in the superblock. If the INCOMPAT_JOURNAL_DEV is set, the
journal can be located on another device described by its UUID, defined in the
superblock.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 3
The Flash-Friendly File System (F2FS)

Chris Currier

Abstract The Flash-Friendly File System (F2FS) is used not just by removable
media but also by mobile devices and more. In this chapter, we look under the hood
to better understand the structure of and recognize this file system. From a forensic
perspective, we look for deleted files to see if we can retrieve them.

3.1 Introduction

The Flash-Friendly File System (F2FS) is a Linux system specifically designed
for NAND Flash memory. This type of memory is common in removable storage
devices and mobile devices. Samsung Electronics developed the system in 2012.
One thing to mention is that the resources for F2FS are minimal. Many books and
other resources, even regarding forensic examination, barely mention F2FS. Due to
its increasing importance in the field of mobile forensics, we want to address file
system information important to investigators.

3.1.1 NAND (Not And) Flash Memory

Universal Serial Bus (USB) flash drives (thumb drives), Solid State Drives (internal/
external storage), SD Cards, and even mobile devices use NAND Flash memory. For
a physical extraction, the chipset (flash memory) is what we are trying to get access
to and obtain data from. This flash memory also contains a processor.

Depending on the internal geometry or flash memory management, aka Flash
Translation Layer (FTL), NAND-based storage devices display different characteris-
tics where parameters are added for configuring on-disk layout, allocation selection

Chris Currier
MSAB, Hornsbruksgatan 28 SE-117 34 Stockholm Sweden e-mail: chris.currier@msab.com

69© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_3

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:chris.currier@msab.com
https://doi.org/10.1007/978-3-030-98467-0_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_3&domain=pdf

70 Chris Currier

and algorithms for cleaning [42]. NAND is not an acronym. It stands for ‘NOT
AND’. It is a Boolean operator and logic gate. Both NAND and NOR gates are
depicted in Fig. 3.1.

A

B
NAND

A

B
NOR

Fig. 3.1: NAND and NOR Gates

The NAND (!(� ∧ �)) logic yields FALSE when both input values (A and B) are
True and yields TRUE if any input value is False. In contrast, the NOR (!(� ∨ �))
operator yields TRUE if both input values (A and B) are False and yields FALSE if
any input value is True (see Table 3.1 below).

Table 3.1: NAND and NOR Gate Logic

A B !(�∧ �) !(�∨ �)

T T F F
T F T F
F T T F
F F T T

We can further compare NAND and NOR flash memory [88]. The differences are
as follows:

NAND flash memory
• contains an integrated circuit that uses NAND gates to store data in memory
cells.

• devices write and erase data faster.
• devices store more data than NOR flash memory of the same physical size.

NOR flash memory
• uses NOR gates to store data in memory cells.
• devices write data slower.
• devices read data faster.
• data storage is less efficient.

Memory cells of flash memory can store more than one bit per cell across different
voltages have a significantly limited lifetime of around 10000 write cycles. This
necessitates an even distribution (wear-levelling) of the write operations over the

3 The Flash-Friendly File System (F2FS) 71

entire flash memory. That is why flash mass storage is given an abstraction layer by
its controller, the Flash Translation Layer (FTL).

3.1.2 Flash Translation Layer (FTL)

A flash translation layer is located in the controller of flash memory. It is responsible
for the actual use of the memory. In doing so, it has to master a whole range of tasks:

“Unlike jffs2 and logfs, f2fs is not targeted at raw flash devices, but rather at specific
hardware that is commonly available to consumers – SSDs, eMMC, SD cards, and
other flash storage with FTL (flash translation layer) already built in.” [8]

This includes relying on the FTLfor the wear levelling. Meaning that writing to
the storage media is done evenly and not just to the first cells. Constant writing
and rewrites to just the first cells of this flash memory would eventually corrupt
the media. The FTL is a combination of hardware and software that can perform
a number of central tasks for memory use through this interaction. It essentially
ensures that writes are distributed evenly across the memory. This significantly
increases the lifespan of an SD card. However, the FTL offers a conventional block
device interface. It does not care about the erase-before-write property of a NAND
flash device. Flash write-only can write zeros. And Flash erase can write the ones.
Flash erase sets all bits to 1, so the flash write can leave the bit alone or switch it
to 0. Because of this, in addition to FTL, special file systems developed for flash
memory such as JFFS, Yaffs and Log FS are used further to increase the memory
cells’ lifetime and better address the erase-write problem.

3.2 Flash Filesystems

After taking a brief look at the hardware basics, we will now turn to the actual file
system. File systems Log FS take the special properties of SD cards into account
and operate as log-structured file systems. They write data sequentially to the flash
memory, similar to a cyclic logbook, thus ensuring that all cells are used evenly.
However, these file systems are exotic because they have an unfavourable side effect:
Data and metadata end up sequentially in multiple versions on the storage medium. It
is the task of an elaborate and relatively slow garbage collection to remove obsolete
and deleted data from the log.

The F2FS file system addresses this problem. A compromise is made: It structures
data for write operations like a log-structured file system in sequential series that
are as long as possible but leaves it to the flash translation layer to eliminate the
redundancies.

72 Chris Currier

3.2.1 The Log-Structured File System (LSFS) or (LFS)

As already discussed, NAND flash devices can have different characteristics depend-
ing on their internal geometry, and the flash management scheme (FTL) used. In
order to meet these, the new file system has several parameters with which it can be
optimally adjusted to the respective memory.

F2FS is based on the Log-Structured File System (LSFS). This structure uses
a block structure. The blocks are then written with data (files). The block/data is
mapped using index nodes referred to as inodes. When data in a block is updated,
the inode needs to be updated. Responsible for holding the location of the inodes is
the imap. The imap will have a 4-byte entry(or pointer) for each inode. The imap
will be written at the end. In the simplified example (see Fig. 3.2 below), we can
see Block 0 and Block 1. The pointer for the files here is in INODE A. New Data
is added to Block 2, and an INODE B is created to point to that data. The imap is
updated and at the end to point to INODE A and B.

Fig. 3.2: Simple representation of the Blocks in a Log-Structured File System (LSFS)

If we have a single file split up into multiple sections spanning across different areas
in a file system, this is fragmentation. Fragmentation causes issues with speed and
more. We want the file to be complete in the same physical area. After data has been
deleted, the Log-Structured File System takes the live data and brings them together
in sections, updating the inode(s) and imap:

“A log structured file system writes all modifications to disk sequentially in a log-like
structure, thereby speeding up both file writing and crash recovery. The log is the
only structure on disk; it contains indexing information so that files can be read back
from the log efficiently.” [75]

3.2.2 Flash-Friendly File System (F2FS): Enter F2FS

The F2FS file system is a bit more complex than the basic diagram (Fig. 3.2) and
information in sect. 3.2.1 with regards to the Log-Structured File System described
above. Similarly to other filesystems, F2FS is comprised of blocks; each block is
4K in size. Although, “the code implicitly links the block size with the system page
size.” [8]

3 The Flash-Friendly File System (F2FS) 73

F2FS block addresses are 32 bits. [8] records that “the total number of address-
able bytes in the file system is at most 2(32+12) bytes or 16 terabytes”. The author
acknowledges that this is unlikely to be a limitation for current flash hardware.

The name ‘Flash-Friendly File System’ derives from its design i.e., a filesystem
that is designed for the NAND flash memory-based storage. [42] documents that a
log structure file system approach was adopted while adapting to newer forms of
storage. In addition, the filesystem was designed to fox some issues of the aging
log-structured file system, such as the snowball effect of the wandering tree and the
heavy cleaning workload.

3.2.3 Wandering Tree Problem

The Wandering Tree issue for the Log-Structured File System is that there are so
many pieces when updating. When file data in LFS is updated and written to the end
of log, there are several things to consider:

• its location has changed, and its direct pointer block must be updated.
• as a consequence of the change to the direct pointer block, its indirect pointer
block must also be updated.

• upper index structures must recursively be updated (e.g. inode, inode map, and
checkpoint block).

Bityutskiy cited in [3] describes this as the wandering tree problem and “in order
to enhance the performance, it should eliminate or relax the update propagation as
much as possible”.

3.3 On-Disk Layout of F2FS

Aclassic hard disk stores information through remanence (remainingmagnetization),
unlike flash memory. Rotating circular disks are used for storage. In order to locate a
memory cell on such a medium, it is divided into different areas. The geometry of a
hard disk is the division of the hard disk into tracks and sectors. It is essential first to
introduce terms such as sector and partition. The former has to do with the geometry
of a block device. The second term is aimed more at the logical management of a
hard disk.

Sector

The term “Sector” refers to the physical sector or location on a physical disk. If you
think back to the mechanical hard drives that had a platter it was divided into sectors
or physical blocks (see Fig. 3.3). The starting position is Sector 0.

74 Chris Currier

Fig. 3.3: A Breakdown Representation Inside a Hard Disk Drive (HDD) [53]

Partitions

When you format a hard disk drive or flash memory; you prepare it with a file system.
In doing so you may have a single partition or create multiple partitions such as a
system partition, recovery partition, and/or a user partition. You may also create
additional partitions for different file systems i.e. HFS, NTFS, EXT, etc. Fig. 3.4 is
an example from Microsoft’s Disk Management showing multiple partitions for a
single hard disk drive.

Fig. 3.4: Disk Partitioned and on the C: Volume formatted with the New Technology
File System (NTFS)

•> Important

NAND flash memory-based storage devices have different characteristic according
to their internal geometry and compared to a traditional hard disk, which stores data
on rotating disks using a magnetic record.

3 The Flash-Friendly File System (F2FS) 75

3.3.1 Creation of F2FS partitions with Mkfs.f2fs

F2FS file systems are usually created with a special tool called Mkfs.f2fs. It can be
used to create a F2FS file system (usually in a disk partition).

“The mkfs.f2fs is for the use of formatting a partition as the f2fs filesystem, which
builds a basic on-disk layout.” [89]

It is normally operated from the command line. The most important parameters are
summarized in Table 3.2. If you prefer a graphical user interface, you can alternatively
use the gparted program under Linux to create an F2FS partition (see Fig. 3.5).

Fig. 3.5: Using GParted in Kali Linux to Format the USB Flash Drive to F2Fs

Table 3.2: Mkfs.f2fs Command Options

Command Option Description

-l [label] Give a volume label, up to 512 unicode name.
-a [0 or 1] Split start location of each area for heap-based allocation. 1 is set by

default, which performs this.
-o [int] Set overprovision ratio in percent over volume size. 5 is set by default.
-s [int] Set the number of segments per section. 1 is set by default.
-z [int] Set the number of sections per zone. 1 is set by default.
-e [str] Set basic extension list. e.g. “mp3,gif,mov”
-t [0 or 1] Disable discard command or not. 1 is set by default, which conducts

discard.

76 Chris Currier

Fig. 3.6: Flash-Friendly File System Representation of How it appears Physically on
the Disk [45]

3.3.2 F2FS on Disk

The F2FS is split into blocks that are 4K in size. Blocks are collected into segments.
A segment is 512 blocks or 2MB in size. Each section is comprised of several
consecutive segments. A zone is comprised of a series or set of sections. An area is
comprised of multiple sections. The default size when using the mkfs utility is 20.
Hence, there is one segment per section. A volume is comprised of six areas. The
structure is depicted in Fig. 3.6. As mentioned, F2FS is split into six areas in total.
Each is briefly described below and further discussed in this chapter:

• Superblock (SB): holds the partition information and F2FS parameters; it is
unchangeable.

• Check Point (CP): represents the file system status; bitmaps for SIT and NAT;
orphan inode list; summary entries of the active segment.

• Segment Information Table (SIT): contains the valid segments and bitmap
information in the Main Area.

• Node Address Table (NAT): a block address table.
• Segment Summary Area (SSA): summary entries representing the owner in-
formation including parent inode number and node/data offset.

• Main Area: node blocks store indices of data blocks; a data block contains
directory or user file data.

As pointed out, F2FS divides the drive into six different, consecutive areas. At
the beginning of the partition, we find the Superblock (SB). This is followed by a
second copy of the Superblock. It is used if the first Superblock becomes corrupt.
The Checkpoint (CP) region follows this. This region contains, among other things,
information on the active segments and orphaned or expired nodes. Next comes the
segment information table (SIT). It provides information about the blocks stored
in the main area and their status (active or inactive). It is in turn followed by the
Node Address Table (NAT), which can query the addresses of the respective active
nodes. The following Segment Summary Area (SSA) provides information about
which node owns which blocks. The first five blocks thus represent the metadata
of the partition. The Main Area (MA), as the sixth region, contains the actual data
blocks. Next comes the segment information table (SIT). It provides information

3 The Flash-Friendly File System (F2FS) 77

about the blocks stored in the main area and their status (active or inactive). It is in
turn followed by the Node Address Table (NAT), which can query the addresses of
the respective active nodes. The following Segment Summary Area (SSA) provides
information about which node owns which blocks. The first five blocks thus represent
the metadata of the partition. The Main Area as the sixth region contains the actual
data blocks with the files and directories.

Superblock

For the F2FS file system, the start of the logical partition is the Superblock. Fig. 3.6
identifies that there is superblock 0 and 1 that is in place as a redundancy in case
there is a failure. Like other terms (inode, dentry, etc.) in this chapter, Superblock is
based on Unix and not unique to F2FS. The Superblock (SB) [45]:

• is located at the beginning of the partitions.
• two copies exist, as redundancy for failure.
• includes basic partition information.
• includes several default parameters of F2FS.

The most important data fields of the Superblock are shown in Fig. 3.7. Like many
binary formats, the Superblock starts with aMagic (Header). An example taken from
a Huawei P9 is given in Fig. 3.8. In this case, it is Hex 1020F5F2.

0
Basic Partition and File System Information

File System Size, Size of Segments, Sections,
and Zoned, and other Meta Data

Next Valid Segment Address

Pointer to Valid Check Point

1 READ ONLY

Copy of Superblock 0

Fig. 3.7: F2FS Superblock the Starting Point and Backup Copy

78 Chris Currier

Fig. 3.8: Huawei P9 Extraction Showing the Start of a Superblock

Zone

A zone contains several sections for easier management. The default number of
sections in a zone is 1, but there may be any number of sections in a zone. The
purpose of zones is to separate into different parts of the device the six open sections
in the device. Flash drives are often made from a number of sub-devices. Each
sub-device can process Input/Output (IO) requests. These requests can be processed
independently and hence processed in parallel. Therefore, the six open sections can
process requests and write in parallel [8]. One of the issues with NAND Flash
memory is writing to an erase block first. F2FS uses zones, and each zone has its
own erase block.

Section and Segment

Fragmentation is an issue any file system wants to avoid. F2FS uses sections to
organize and keep blocks together in segments. 512 blocks make up a segment
(2MB). These segments contain such things as Checkpoint, Tables, and the Main
Area.

Check Point (CP)

If you have used and installed Microsoft Windows, then you may have seen the term
restore point before. The idea is you can have a restore point in case an application
install goes wrong, or there is some other issue. F2FS also has a built-in feature to
manage this called theCheckpoint. TheCheckpoint also hasNATandSIT Journaling,
which will be discussed in the Cleaning section (see 3.4.6).

3 The Flash-Friendly File System (F2FS) 79

0 LATEST STABLE VERSION

File System Status
BitMaps: Valid NAT & Valid SIT
Orphaned inode Lists
Active Segments

1 LAST STABLE VERSION

File System Status
BitMaps: Valid NAT & Valid SIT
Orphaned inode Lists
Active Segments

Fig. 3.9: F2FS Checkpoint Current and Last Stable Versions

Segment Information Table (SIT)

The Segment Info Table (SIT) assists in identifying blocks that are in use “Valid”
and those that are “Invalid” i.e. containing deleted data and may be cleaned. The SIT
also tracks when a segment is empty of valid blocks and can be reassigned with live
data.

Node Address Table (NAT)

The Node Address Table is for addressing the Main Area node blocks. The structure
of the NAT contains the latest version, the inode number and the block address. There
are three types of nodes: inode, direct node, and indirect node. Table 3.3 depicts the
concept of the Node Address Table (NAT), which is used to read from the device.
Each unique node is assigned a node ID (see sect. 3.4.1), which is recorded in the
table, along with the physical on-disk location (block address).

Table 3.3: NAT Example Table

node ID block address

0 addr0
. . . addr. . .
‚ N addrN

•> Important

The term inode stands for index node. This forms the basic data structure for
managing file systems with Unix-like operating systems. Each node is uniquely
identified within a file system by its inode number. Each name entry in a directory
refers to precisely one inode. This contains the file’s metadata and refers to the data
of the file or the file list of the directory.

80 Chris Currier

Segment Summary Area (SSA)

Like the NAT, the Segment Summary Area (SSA) is concerned with the Main Area
portion. The area deals with “Valid” Blocks of data in the Main Area. As was
mentioned with the Log-Structured File System, when data can be removed, i.e.
cleaned, this will probably cause fragmentation.

The valid blocks that may now be fragmented from each other can be copied and
moved so they are all together. Speeding up the process to get to the data as it is all
together and not spread across the drive in different locations.

“The Segment Summary Area (SSA) stores summary entries representing the owner
information of all blocks in the Main area, such as parent inode number and its
node/data offsets. The SSA entries identify parent node blocks before migrating valid
blocks during cleaning” [45].

Updates to the SIT and NAT

When data is updated it is not until a new check point is created that the changes
are made to the Node Address Table(NAT) and Segment Info Table (SIT). Until this
occurs, the updated information is;

• held in memory.
• if only a few updates, they can be written into Segment Summary blocks.
• updated info is written into the Checkpoint block for when the checkpoint is
created.

Shadow Copy

If you have been doing computer forensics, you are probably aware of, or at least
heard, the term shadow copy or Volume Shadow Copy. This saves data by creating a
snapshot as a safety net. F2FS does look for and use the last valid checkpoint. There
are two Checkpoints. One is for identifying the most recent live or valid data. The
second one is the shadow copy. Both the NAT and SIT also use shadow copies.

Main Area

The Main Area is where the blocks that contain file data are located. As F2FS uses
different sections, it allows for the data (e.g. directory or file content) to be kept
separate from the node (e.g. the indexing information) [8]. The six active logs in
the Main Area are managed using the following temperature-based categorisations,
which are based on several strategies (Fig 3.4, according to [45]):

Each block in the Main Area is 4KB, and each is allocated by its type: data or
node. In the Main Area, there are three data blocks and three node blocks. Data

3 The Flash-Friendly File System (F2FS) 81

blocks contain either a directory or user file data whereas a node block contains
either an inode or indices of the data blocks. Data/node blocks cannot be stored in
sections at the same time [45]. F2FS implements a search functionality i.e., a file
lookup operation using the following set of steps outlined by [45], which assumes
the file /dir/file. Fig. 3.10 and Table 3.5 identify the steps for the F2FS’s lookup
operation.

Fig. 3.10: F2FS File Lookup

Thus, we traverse through the file system tree with every file request. The starting
point of our search is always Node Address Table.

3.4 File Structure of F2FS

3.4.1 Node Structure

File systems like the Log-Structured FS (LFS) use the index node (to identify the
physical location of nodes), one large log, and updating direct and indirect nodes
caused issues, such as the Wandering Tree (see sect. 3.2.3).

F2FS uses the Node Allocation Table (NAT) for finding the physical location of
the nodes. The node blocks themselves have a Node ID. Following is a breakdown
of the three types of node blocks, as recorded by The Linux Kernel Archives [89]:

Table 3.4: Temperature-based Categorisations of Main Area Blocks

Temperature Node Block Data Block

Hot Direct node blocks of directories Dentry blocks
Warm Direct node blocks except those allocated as ‘Hot’ Data blocks except those allocated as ‘Hot’ and ‘Cold’
Cold Indirect node blocks Multimedia data or migrated data blocks

82 Chris Currier

Table 3.5: F2FS File Lookup Operation

Step Description

1 A block is read to obtain root inode. The block location is collected from the Node
Address Table (NAT).

2 Searches for a directory entry- dir- inside the root inode block from the data blocks. The
corresponding inode number for the directory is obtained.

3 The inode number is translated into a physical location. This location is obtained using
the Node Address Table (NAT).

4 The inode named dir is collected by reading the corresponding block.
5 The directory entry named file is identified in the dir inode. The inode for file is

translated into a physcial location and the corresponding block is read to obtain the inode
of file. The data stored in the Main Area, and various indices from the corresponding
file structure, can then be retrieved.

• inode: 4KB assigned to each inode block. Each comprises of 923 data block
indices.

• direct node: There are two direct node pointers.
• indirect node: There are two indirect node pointers and one double indirect
node pointer.

Whether it is a direct or indirect node: In both cases, these contain references to
1018 data blocks [89]. The NAT is used by F2FS to map all node blocks using
translation. The pointer-based file indexing system, which uses both direct and
indirect node blocks in addition to the Node Address Table, is considered to prevent
the ‘wandering tree’ problem [45, 89]. Unlike traditional LFS design, F2FS avoids
the problem by updating a single direct node block and its corresponding entry in
the Node Address Table. This update process prevents the “the propagation of node
updates caused by leaf data writes” [89]. This is dissimilar to the traditional LFS
design where both direct and indirect pointer blocks are updated recursively and
cause a snowball/chain (i.e. wandering tree) effect, which is inefficient [45]. The
comparisons are documented in Table 3.6.

Table 3.6: Comparison of an Updated File Between LSFS and F2FS

Description LSFS F2FS

Data is Updated Direct and Indirect pointer blocks
are updated recursively.

Only updates one direct node
block and its NAT entry.

If the file is larger than 4GB Updates one more pointer block
for a total of three.

Still updates only one.

The Index Node (inode) Block does not have the physical address for a file. Instead,
it has the points to direct or indirect pointers with the node number. Fig. 3.11

3 The Flash-Friendly File System (F2FS) 83

demonstrates the structure of the inode block. The figure also depicts the use of
several pointers in an inode block:

• direct pointers to the file’s data blocks.
• two single indirect pointers.
• two double-indirect pointers.
• one triple-indirect pointer.

F2FS also reserves 200 bytes in an inode block to store extended attributes. If a file
is very small, it can be saved directly in the inode. This procedure is also called
in-lining. In this case, however, the file size must be less than 3,692 bytes. We can
also inline extended attributes [45].

Fig. 3.11: Index Node (inode) Block

A Direct Node Block has the physical block address of the file and is updated when
a file is updated. This Direct Node address is updated in the Node Address Table
(NAT). When a file is updated, the Indirect Node Block is not, since it does not
have the physical address. Instead, indirect node blocks hold identifiers (node IDs)
that locate another node block, following the pointer-based structure.

3.4.2 File Creation and Management

File systems are different and use different ways of managing file locations. In
FAT32, a file name is altered when deleted, replacing the first character with a hex
�5 character. The filename itself is not part of the file but rather stored as a new
directory entry. At which the front of a real Library, you go to the card to look up the
book name or author. The card points you to where you will find the book. F2FS has
directory entries also, and these are called dentries. Like the Library analogy and
other file systems, the system has the file information, including the inode number.

84 Chris Currier

Directory Structure

Directory Entry or Dentry keeps track of the index nodes (inodes) and occupies 11
bytes. A dentry contains a bitmap and two arrays of slots and names (see Fig. 3.12).
A bitmap entry identifies if a slot is “Valid”. Each slot includes the (1) hash value
of the file name (1 byte), (2) inode number (4 bytes), (3) length of the file name (4
bytes) and (4) file type (directory, symlink, regular file . . . - 1 byte).

Fig. 3.12: F2FS Dentry Entry Structure

To manage a large volume of dentries and improve efficacy, multi-level hash tables
are utilised by the F2FS file system. Each level has a hash table with a dedicated
number of hash buckets. Several steps occur when F2FS looks up file names in a
directory (see Table 3.7).

Table 3.7: F2FS Multi-level Hash Tables

Step Description

1 Calculates the hash value of the file name.
2 Traverses the hash tables incrementally starting at level 0 until it reaches themaximum

level which has been allocated and recorded in the inode.
3 Scans one bucket at each level (level 0 through to level N), resulting in an O(log(# of

dentries)) complexity.
4 For speed and efficacy, F2FS compare the bitmap, hash value and file name to find a

dentry.

In addition, for example, there is a requirement for larger directories in server en-
vironments. The F2FS file system can be configured in the first instance to allocate
space for many dentries [45]. “With a larger hash table at low levels, F2FS reaches
to a target dentry more quickly.” [45] A bucket (see Fig. 3.13) consists of two or four
dentry blocks.

3 The Flash-Friendly File System (F2FS) 85

Fig. 3.13: F2FS Bucket Structure

A dentry block consists of 214 dentry slots and file names. In order to determine
whether a dentry is valid, a bitmap is used again. Due to the described properties, a
dentry block is always exactly 4 KB in size. This value is determined as follows:

Dentry Block (4 K) =
bitmap (27 bytes) + reserved (3 bytes) +
dentries (11 * 214 bytes) + file name (8 * 214 bytes).

Fig. 3.14 depicts the structure of a dentry block. To clarify, deleted directories and
entries can be recognised because they are marked as invalid in the bitmap. The
dentry concerned is thus free and can be used otherwise.

Fig. 3.14: F2FS Dentry Block Structure

3.4.3 Fsck.f2fs Identifying Files

In Kali Linux, using Fsck.f2fs on the USB Flash Drive, we could see the folder and
files that were not deleted. Note the inode identifiers in bold. Any deleted folder or
deleted files are not displayed. You should start to see terms that you are now familiar
with. In the example above, the file pngpicture.png was found with the inode id 0G6.
The Fsck.f2fs tool automatically scans for file system errors and corrects them [94].
The following listing shows an example of the output of the programme for a flash
stick:

(c c u r r i e r@k a l i) $ sudo f s c k . f 2 f s − t / dev / sdb1
I n f o : [/ dev / sdb1] Disk Model : F l a s h Disk
I n f o : Segments pe r s e c t i o n = 1
I n f o : S e c t i o n s pe r zone = 1
I n f o : s e c t o r s i z e = 512
I n f o : t o t a l s e c t o r s = 30717952 (14999 MB)
I n f o : MKFS v e r s i o n

" Linux v e r s i o n 5 .10 .0 − k a l i 3 −amd64 (deve l@ka l i . o rg) (gcc−10 (Debian 10 .2 . 1 −6)
1 0 . 2 . 1 20210110 "

86 Chris Currier

. . .
I n f o : s u p e r b l o c k f e a t u r e s = 0 :
I n f o : s u p e r b l o c k e n c r y p t l e v e l = 0 , s a l t = 00000000000000000000000000000000
I n f o : t o t a l FS s e c t o r s = 30717952 (14999 MB)
I n f o : CKPT v e r s i o n = 373 c4953
I n f o : Checked v a l i d n a t _ b i t s i n c h e c k po i n t
I n f o : c h e c k po i n t s t a t e = c5 : n a t _ b i t s c r c compacted_summary unmount
|−− f o l d e r < ino = 0x4 > , < e n c r y p t e d (0) >
| |−− p n g p i c t u r e . png < ino = 0x6 > , < e n c r y p t e d (0) >
| ‘−− t e x t s t a y s < ino = 0xa > , < e n c r y p t e d (0) >
|−− dump_s i t < i no = 0x5 > , < e n c r y p t e d (0) >
[FSCK] Unreachab l e n a t e n t r i e s [Ok . .] [0 x0]
[FSCK] SIT v a l i d b lock b i tmap check i ng [Ok . .]
[FSCK] Hard l i n k check i ng f o r r e g u l a r f i l e [Ok . .] [0 x0]
[FSCK] v a l i d _ b l o c k _ c o u n t ma tch ing wi th CP [Ok . .] [0 xa0]
[FSCK] v a l i d _nod e_ coun t ma tch ing wi th CP (de lookup) [Ok . .] [0 x5]
[FSCK] v a l i d _nod e_ coun t ma tch ing wi th CP (n a t lookup) [Ok . .] [0 x5]
[FSCK] v a l i d _ i n o d e _ c o u n t matched wi th CP [Ok . .] [0 x5]
[FSCK] f r e e segmen t_coun t matched wi th CP [Ok . .] [0 x1d0f]
[FSCK] nex t b l ock o f f s e t i s f r e e [Ok . .]
[FSCK] f i x i n g SIT t y p e s
[FSCK] o t h e r c o r r u p t e d bugs [Ok . .]
Done : 2 .829615 s e c s

3.4.4 Metadata

The term metadata should be familiar to forensic examiners, usually referred to
simply as data about data. Consider the properties of a file. In F2FS, three types of
nodes are used that hold information about actual files.

There are index nodes referred to as inodes , direct nodes and indirect nodes.
An inode consists of forensically important information, such as file size, allocated
blocks, ownership (e.g., UID andGID) andModified, Accessed and Changed (MAC)
times [95]. These three timestamps are important and can tell us the following
information when the file or directory is:

• Modified: updated when the file or directory is written.
• Accessed: updated when the file or directory is read.
• Changed: updated when the inode is modified.

The MAC-timestamps are all time specifications in ms (Unix epoch) and can easily
be converted to a readable format with an appropriate converter. In the below .png
file example, which we have already seen briefly in the last section, you can see some
of the metadata for the file to include timestamps, file name, and file size.

[print_node_info: 353] Node ID [0x6:6] is inode
i_mode [0x 81a4 : 33188]
i_links [0x 1 : 1]
i_size [0x 3c41f : 246815]
i_blocks [0x 3e : 62]
i_atime [0x606db122 : 1617801506]
i_atime_nsec [0x24990b38 : 614009656]
i_ctime [0x606db114 : 1617801492]
i_ctime_nsec [0x2bc016f9 : 734009081]

3 The Flash-Friendly File System (F2FS) 87

i_mtime [0x606b7024 : 1617653796]
i_mtime_nsec [0x ad1c7fa : 181520378]
i_generation [0xd0856627 : 3498403367]
i_namelen [0x e : 14]
i_name [pngpicture.png]

3.4.5 Multi-Head Logging

What is Multi-Head logging, and what does it have to do with Hot/Warm/Cold Data?
The historical origin of the terms "hot" and "cold" goes back to the different data
storage devices and their vibration. Hot data was located near the heat of spinning
drives and CPUs, while cold data was stored on a tape or drive far from the data
centre floor.

Wait, what is Hot/Warm/Cold Data? This involves the frequency of writes to
the Main Area to both the Node and Data segments (see Fig.3.15). In the case of
F2FS, the blocks that are updated particularly frequently are designated as warm.
The direct blocks reference a block by its actual physical address on the disk. On
the other hand, indirect blocks are assigned to the "cold" category. This is because
they have only logical NodeID. This logical address must be adjusted or changed
much less frequently during updates. Again, we distinguish between node blocks
(containing linking and meta information) and data blocks (the actual data content).
The Log-Structured File System uses a single log area, while F2FS splits this into
six types of logs in the Main area split between node segments and data. Refer back
to Table 3.4 for descriptions of Hot, Warm and Cold Node and Data Segments. See
Table 3.8 for further descriptions.

Fig. 3.15: Node and Data Segments in the Main Area [45]

In looking at F2FS resources, you will find benchmark testing that shows 2, 4, and
6 logs utilized for writing. You may be thinking of a standard log file, but this refers
to multiple writing schemes. Six logs are the default value.

88 Chris Currier

Table 3.8: Additional description of why Block Types are assigned a certain temper-
ature [45]

Description LSFS F2FS

Direct Node Blocks Hot Updated frequently as they have
the physical address.

Indirect Node Blocks Cold Has only the node number and are
only created or updated when a
dedicated node block is added or
removed.

Directory Direct Node and Data Blocks Hot Different write patterns compared
to blocks for regular files.

Data Blocks Cold Valid for extended period of time.

3.4.6 Cleaning

Deleted data is never meant to be stored permanently, no matter the operating
system. This data that is once allocated goes unallocated. This data is available to be
overwritten.

However, the F2FS file system allows the system to be cleaned. The idea behind
this is performance. So thatwhen data is deleted, the system can clean and defragment
the live or valid data. Cleaning could be initiated by the user in the device settings,
initiated due to a lack of free sections, or part of a regular background cleaning. The
cleaning process is divided into three steps (see Table 3.9). First of all, the section to
clean must be selected. Different selection strategies are used for this purpose. The
selection of the target section is followed by identifying the invalid blocks. For this,
the bitmap can inside the SIT is used. The cleanup process ends with the creation
of a new checkpoint to free the blocks that have been released in the meantime for
reallocation.

Adaptive Logging

You just read about the two, four, and six multi-head logging options to handle
different types of data based on their frequency of writes. The Adaptive logging has
to do with where the writes will occur and possibly involve the cleaning process in
F2FS. The Log Structured File System used two logging features:

• Normal: Uses clean segments, and the data is written in order.
• Threaded: Looks for invalid data areas to write data to.

So F2FS is using a dynamic approach with Adaptive Logging. There are two strate-
gies based on the presented circumstances. See Table 3.10 and the illustration (Fig.
3.16) below.

3 The Flash-Friendly File System (F2FS) 89

Table 3.9: Cleaning Process: Three Steps [45]

Step Title Description

1 Victim Selection Identify a victim section among non-empty sec-
tions. Two policies:
• Greedy Policy – foreground cleaning to mini-
mize the latency visible to applications. Selecting
section with the smallest number of valid blocks.
Migrating valid blocks.
• Cost Benefit Policy – Selects victim section not
only on its utilization but also its “age”*.

2 Valid Block
Identification &
Migration

Victim selected. Need to identify valid blocks in
the section quickly. A validity bitmap per segment
is in the SIT.
F2FS retrieves parent node blocks containing their
indices from the SSA information. If the blocks are
valid, F2FS migrates them to other free logs.
For background cleaning, F2FS does not issue ac-
tual I/Os to migrate valid blocks. Instead, F2FS
loads the blocks into page cache and marks them
as dirty. Then, F2FS just leaves them in the page
cache for the kernel worker thread to flush them to
the storage later.**

3 Post-Cleaning
Process

All valid blocks have been migrated. Victim se-
lection registered as a new free section, an F2FS
‘pre-free’ section. Checkpointing occurs where the
section is made a free section and it can be reallo-
cated. This process is used to manage any loss of
data referencing by checkpoints due to for example,
unexpected power outages that may result in pre-
free sections being reused before checkpointing.

As long as the data medium still has sufficient storage space, the append logging
known from LSF is used. In this mode, only clean segments that are not yet occupied
are written to. Remember: Sequential writes are always preferable to random writes
in flash memory. In Threaded Logging mode, the whole thing is reversed. Now
the remaining invalid blocks in dirty segments are collected, written. So now the
remaining gaps are being used. F2FS automatically switches between the two modes
depending on the remaining free memory. This is an attempt to achieve the best
possible write performance.

Roll-Back Recovery

F2FS uses checkpoints to ensure integrity in the event of power failures or other
disruptions. A Checkpoint uses not only the checkpoint but also both the Node
Address Table (NAT) and the Segment Info Table (SIT). There is NAT and SIT
journaling and bitmap addressing the valid NAT and SIT within the checkpoint.

90 Chris Currier

Table 3.10: F2FS Adaptive Logging [45]

Title Description

Append Logging Writing to clean segments.
Need cleaning operations if there is no free segment.
Cleaning causes mostly random read and sequential writes.
Node is always written with append logging policy.

Thread Logging Lower than %5 of total sections by default.
Writing to Dirty segments.
Reuse invalid blocks in dirty segments. No need to clean.
Cause random writes.
F2FS gracefully gives up normal logging and turns to threaded logging for
higher sustained performance.

Fig. 3.16: Threaded Logging is tactical in going after invalid blocks in a segment

Fig. 3.17: F2FS Index Structure (Source: [46])

If there is a disruption of a power issue then F2FS can do a rollback recovery using
the most recent valid Checkpoint (see Fig. 3.17). Earlier checkpoints were discussed,
and F2FS has two to maintain a stable one. The header and footer identify the stable

3 The Flash-Friendly File System (F2FS) 91

Checkpoint is the same. There is also a version number if both checkpoint headers
and footers match. In this instance, the file system will choose the most recent
Checkpoint. F2FS does not always need to rely on the Checkpoint for recovery when
fsync() is involved. F2FS focuses on the data blocks and direct node blocks (which
are marked). The Roll-Forward Recovery Procedure consists of the following steps
according to Lee et al. [45]:

1. Search marked Direct Node Blocks.
2. Per marked Node Block, identify old and new Data Blocks by checking the

difference between the current and previous node block.
3. Update SIT: Invalidate old Data Blocks.
4. Replay new data writes; update NAT and SIT accordingly.
5. Create Checkpoint.

•> Important

Under Linux/Unix, the C function fsync() from the standard library transfers changed
buffered data from the working memory to the file on the physical device. The call
blocks until the device have reported that the transfer is complete. Of course, the
buffer should only be flushed occasionally to avoid stress for the hardware.

3.5 Forensic Analysis

The Flash-Friendly File System (F2FS) is made for removable media and used with
some Android devices, or maybe changed over from another Android (Linux) based
File System such as EXT. You will find plenty of videos on how to change the File
System on an Android device and speed comparisons between F2FS and other file
systems. In this section, we want to turn to how to read and acquire F2FS-formatted
memory sticks or even SSDs. This section will talk about forensic analysis of the
different F2FS formatted devices.

3.5.1 F2FS Sample Dataset

The examples discussed in this chapter with the associated binaries can be found
at github.com under the following link: https://github.com/Xamnr/F2FS. For
the examples, three different drives were analysed: 1) the memory of a Huawei P9,
2) the content of a USB memory stick, and 3) an SSD. All three volumes were
formatted with F2FS. The volumes were filled with text documents, image and video
files. Afterwards, some of the files were deleted. The first example comes up with a
binary file of a HuaweiP9 Superblock <File:HuaweiP9Superblock> and Checkpoint
<File:HuaweiP9Checkpoint.zip>.

https://github.com/Xamnr/F2FS

92 Chris Currier

Beyond this, for USB flash drive three extracts had been made:

1. BASE: Formatted F2FS
2. ADDED: Two Folders created. One folder and four test files created. 2 png files

and 2 text files.
3. DELETED: 1 png (Moved) and 1 text file (copied). i png deleted and deleted

test folder.

The second example contains a sample of a USB flash drive. A total of 2 folders and
four files were added to the drive:

<ADDED EXTRACTION>
|-- folder
|-- Test

|-- pngpicture.png
|-- pngtodelete.png
|-- textstays
|-- texttodeletediconderoga

The third example contains the formerly added files, but this time some of them had
been deleted:
<DELETED EXTRACTION>

|-- folder
|-- pngpicture.png <moved>
|-- textstays <copied>

deleted:
|-- pngtodelete.png
|-- textstays
|-- texttodeletediconderoga

The example is completed by three dumps from the NAT, SIT and SSA region of the
flash drive.

3.5.2 F2FS and Windows

The main issue for forensics as it relates to F2FS is that Microsoft Windows does not
recognize F2FS formatted devices. Windows sees the USB Device itself but does
not recognize the partition.

Fortunately, at least forensic tools should recognize the device (as shown below
with MSAB’s XRY) and be able to do extractions. Best practice is to use a write
blocker for the media. Once the drive has been detected, the analysis process with
XRY is quite straightforward.

3 The Flash-Friendly File System (F2FS) 93

Fig. 3.18: F2FS formattedUSBdrive connected to aMicrosoftWindows 10 computer

Fig. 3.19: MSAB’s XRY 9.3 showing the Disk Connection Options

3.5.3 Data-Extraction with XRY

The first step is, of course, to establish a connection to the device and the storage
medium. For Android devices it will depend on whether the mobile device is sup-
ported by model or by a generic one (see Fig. 3.19). Mobile Device support may
not include all options such as Logical and Physical extraction, but rather only one.
Remember Micro SD Cards inserted into the mobile device should be removed at
some point and done separately.

The forensic tool(s) should be able to image the mobile device and/or the remov-
able media without an issue. Since F2FS is made for Flash memory it could be found
on Solid State Drives as well. After we have successfully read in the flash drive,
the next step is to analyse the data it stores. For an example, we read the internal
memory of a Huawei P9 that was formatted with F2FS. The actual extraction was

94 Chris Currier

carried out using the software XAMN. Fig. 3.20 shows the result for of our example
drive. Obviously, in addition to some regular files, deleted file artefacts were also
found during the scan process. The F2FS formatted Flash drive also had deleted
files that were retrieved as well. Remember recovering deleted files relies on a lot of
variables, but at least we know it is possible with the F2FS file system.

Fig. 3.20: MSAB’s XAMN Showing that the extraction did decode data from the
Huawei P9 cell phone Including deleted files

The header of the checkpoint area is initially less interesting from a forensic point
of view (see Table 3.12). It only contains information about the number of available
segments.

3.5.4 Superblock Examination

After successfully making a forensically sound copy of the medium to be examined,
we can begin the actual analysis. Our investigation should also begin here since an
F2FS partition starts with the Superblock(SB). In this region, important information
about the structure of the rest of the file system can be found.

As examiners we commonly see the file system as raw data with our tools as seen
in Fig. 3.21. Can we make sense of this data? In researching F2FS, a resource that
describes the Superblock data structure was found 1. This data was used to create
Tables 3.11 and 3.12 for the Superblock and the Checkpoint, respectively2.

1 www.programmersought.com/article/49182049693/
2 * Offset 3204+Kernel Information andmore: Linux version 5.10.0-kali3-amd64 (devel@kali.org)
(gcc-10 (Debian 10.2.1-6) 10.2.1 20210110, GNU ld (GNU Binutils for Debian) 2.35.1) #1 SMP
Debian 5.10.13-1kali1 (2021-02-08)

3 The Flash-Friendly File System (F2FS) 95

Fig. 3.21: Viewing the USB Flash Drive’s F2FS Superblock with MSAB’s XAMN

The Superblock (SB) provides us with important information about the structure
of the partition and the exact location of NAT, SIT, SSA and MAIN area. The
values given are to be understood as multiples of the block size. In our example,
the SIT starts at block no. 1536. The correct address is obtained when we multiply
this number by the block size. In our case, the SIT thus starts at byte 6,291,456
(1536*4096). The total size of the SIT can again be determined via the 4-byte value
at offset 56. In our case, this is ℎG02000000. Since this is a little-endian (LE) value
with the least significant bit on the far left, the size is 2. Incidentally, all other header
fields are also LE values. The node ID of the root directory can also be determined
in the superblock (offset 96).

If your forensic tool supports viewing the raw data then that is a start. Hopefully
the tool has options to translate the code such as showing the bit options i.e. 16 or 32,
Little or Big Endian, and others such as the GUID. If your tool does not have these
options then you can use the HxD Hex Editor/Viewer with the Inspector feature.
HxD can be found here mh-nexus.de/ or for English mh-nexus.de/en/.

•! Remember

HxD is an editor, so work off of a copy of the file.

3.5.5 Examine NAT, SIT & SSA with Linux

Since F2FSwas developed specifically for use with Linux or Android, it is obvious to
conduct an investigation with this system as well. This section will show the forensic
analysis of F2FS with open-source digital forensic tools if you are inclined to use
Linux, i.e. Kali, Santoku, or another forensic type, and command line. Then you may

Source: www.programmersought.com/article/49182049693/
Source: www.programmersought.com/article/37962049663

mh-nexus.de/
mh-nexus.de/en/
www.programmersought.com/article/49182049693/
www.programmersought.com/article/37962049663

96 Chris Currier

Table 3.11: Super Block (USB Flash Drive) Example Values

Offset
(deci-
mal)

Bytes Description Hex ASCII Value Format

0 4 Magic Number 10 20 F5 F2 10 20 F5
F2

1020F5F2 N/A

4 2 Major Version 01 00 .. 1 In 16 LE)
6 2 Minor Version 0E 00 .. 14 Int 16 LE
8 4 Log 2 Sector size in bytes 09 00 00 00 9 Int 32 LE
12 4 Log 2 Sectors per block 03 00 00 00 3 Int 32 LE
16 4 Log 2 Block Size in bytes 0C 00 00 00 12 Int 32 LE
16 4 Log 2 Block Size in bytes 0C 00 00 00 12 Int 32 LE
20 4 Log 2 Blocks per Segment 09 00 00 00 9 Int 32 LE
24 4 Segments per Sector 01 00 00 00 1 Int 32 LE
28 4 Sections per Zone 01 00 00 00 1 Int 32 LE
32 4 Checksum offset inside super

block
00 00 00 00 0 Int 32 LE

36 8 Total # of User Blocks 00 97 3A 00 00
00 00 00

.-:. 38397443 Int 64 LE

44 4 Total # of Sections 15 1D 00 00 7445 Int 32 LE
48 4 Total # of Segments 4A 1D 00 00 J. . . 7489 Int 32 LE
52 4 Segments for Checkpoint 02 00 00 00 2 Int32 LE
56 4 # of Segments for SIT 02 00 00 00 2 Int32 LE
60 4 # of Segments for NAT 22 00 00 00 “. . . 34 Int 32 LE
64 4 # of Segments for SSA 0F 00 00 00 15 Int 32 LE
68 4 # of Segments for Main 15 1D 00 00 7445 Int 32 LE
72 4 Start Block address of Segment

0
02 00 00 00 2 Int 32 LE

76 4 Start of block address for Check-
point

00 02 00 00 512 Int 32 LE

80 4 Start block address of SIT 00 06 00 00 1536 Int 32 LE
84 4 Start block address of NAT 00 0A 00 00 2560 Int 32 LE
88 4 Start block address of SSA 00 4E 00 00 .N.. 19968 Int 32 LE
92 4 Start block address Main 00 6C 00 00 .l.. 27648 Int 32 LE
96 4 Root inode number 03 00 00 00 3 Int 32 LE

want to (write-protected, of course) gather additional system information about the
removable media (USB Flash Drive in this case). You could mount the dd(bin) image
as well. You will find F2FS Tools in the official Linux kernel GitHub repository 4.
Alternatively, you can install the necessary tools via package management. Under
Ubuntu, for example, the following command can be used for this purpose:

sudo apt-get install f2fs-tools

File system information can be dumped from the device using the F2FS Tools
dump function. The primary interest is obtaining data from the NAT, SIT, and SSA.
However, we can also use it to obtain a file if we want to. The dump.f2fs shows
the on-disk inode information using the inode number and a dump of all SSA and
SIT entries to file recognised by dump_ssa and sump_sit. On the web page of the

4 http:// git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git

http:// git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git

3 The Flash-Friendly File System (F2FS) 97

Table 3.12: Checkpoint (USB Flash Drive) Example Values

Offset
(deci-
mal)

Bytes Description Hex ASCII Value Format

0 8 CP version for comparing old
and new

41 49 3C 37 00
00 00 00

AI<7 926697793 Int 64 LE

8 8 # of User Blocks 00 3A 38 00 00
00 00 00

:8 3684864 Int 64 LE

16 8 # of Valid blocks in Main
Area

42 00 00 00 00
00 00 00

B 66 Int 64 LE

24 4 # of Reserved segments for
garbage cleaning (GC)

81 00 00 00 129 Int 32 LE

28 4 # of overprovision segments F8 00 00 00 Ø 248 Int 32 LE
32 4 # of free segments in Main

area
0F 1D 00 00 7439 Int 32 LE

Fig. 3.22: HxD with color coded selections of Superblock to match table data 3.11

the Linux Kernel Organisation [89] all options can be retrieved, with which the
command can be executed (see Table 3.13).

Table 3.13: Usage: dump.f2fs command options

Command Option Description

-d debug level [default:0]
-i inode no (hex)
-n NAT dump nid from #1 #2 (decimal), for all 0 -1
-s SIT dump segno from #1 #2 (decimal), for all 0 -1
-S Sparse_mode
-a SSA dump segno from #1 #2 (decimal), for all 0 -1
-b Blk_addr (in 4 KB) Block Address
-V Print the version number and exit

98 Chris Currier

The tool can also be run without special parameters. In this way, information about
the size of the disk and the sector size can be determined first of all. A typical output
of the dump.f2fs command results without any options where /dev/sdb1 is the
USB Flash Drive looks like this:

#sudo dump.f2fs /dev/sdb1
Info: [/dev/sdb1] Disk Model: Flash Disk
Info: Segments per section = 1
Info: Sections per zone = 1
Info: sector size = 512
Info: total sectors = 30717952 (14999 MB)
Info: MKFS version
"Linux version 5.10.0-kali3-amd64 ..."
...
Info: superblock features = 0 :
Info: superblock encrypt level = 0, salt = 0000000000000000000000000
Info: total FS sectors = 30717952 (14999 MB)
Info: CKPT version = 373c4953
Info: checkpoint state = c5 : nat_bits crc compacted_summary unmount
Done: 0.177078 secs

Node Allocation Table (NAT) Data

In section 3.3.2 we have already learned about the task and function of the Node
Allocation Table.With dump.f2fs we can output the contents of the table for our disk.
The output of command sudo dump.f2fs -n 0~-1 /dev/sdb1 for our example
is shown in Table 3.14. Remember: All the node blocks are mapped by NAT. Hence,
the position of each node is translated by the NAT table. Apparently there are exactly
4 valid direct accounts on the device. In addition to the logical node ID, the block
address is also specified. Since the default block size is 4 KB by default, we can thus
determine the exact physical on-disk location of the node.

Table 3.14: Example for a Node Allocation Table (NAT)

nid: 3 ino: 3 offset:0 blkaddr: 27666 pack:1
nid: 4 ino: 4 offset:0 blkaddr: 27661 pack:1
nid: 6 ino: 6 offset:0 blkaddr: 28167 pack:1
nid: 10 ino: 10 offset:0 blkaddr: 28167 pack:1

Show the Segment Info Table (SIT) Data

The second important data structure besides the NAT is the Segment Information
Table. The term segment heremeans a contiguous lump of disk blocks. Normally 512

3 The Flash-Friendly File System (F2FS) 99

continuous Blocks grouped into one segment. As already discussed in section XX,
a segment is assigned a sector by default. For our example USB stick, the command
would look like this: sudo dump.f2fs -s 0~-1 /dev/sdb1. The (shortened)
output in this case looks like this:

segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)

segno:0 vblocks:2 seg_type:3 sit_pack:1
00 00 02 80 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
segno:1 vblocks:3 seg_type:4 sit_pack:1
02 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
...
segno:7444 vblocks:0 seg_type:0 sit_pack:1

valid_blocks:[0xa0] valid_segs:5 free_segs:7440

The result is a bitmap for valid blocks inside the different segments. The segment
summary contains 512 entries, which is the 2MB segment size. A summary entry
for a 4KB-sized block in a segment contains the. The first segment with number
0 seems to have 2 valid block. It is a hot data block with directory entries inside
(seg_type=3). In contrast, the second segment contains Data blocks (seg_type=4).
There are a total of 160(ℎG�0) valid blocks on the F2FS partition that are stored in
5 valid segments.

Look inside the Segment Summary Area (SSA) Data

A look at the SSA allows us to find out who exactly owns each block. For example,
to get an insight into the segment with the number 0, we can use the following
command: sudo dump.f2fs -a 0~-1 /dev/sdb1

segno: 0, Current Node
[0: 3][1: 3][2: 4][3: 5][4: 5]
[5: 5][6: 5][7: 5][8: 4][9: 4]
[10: 5][11: 5][12: 4][13: 4][14: 5]
[15: 5][16: 3][17: 5][18: 3][19: 3]
[20: 4][21: 3][22: 4][23: 3][24: 3]
[25: 0][26: 0][27: 0][28: 0][29: 0]
...

As clearly seen, the blocks with the numbers 0 and 1 from segment no 0 both belong
to the node with the node ID 3. The third block belongs to the node with the number
4 and so on.

100 Chris Currier

Obtain a file by it’s node ID

If you recall earlier the linux command sudo fsck.f2fs -t /dev/sdb1 obtained
some data including the files and their node identifiers.

|-- folder <ino = 0x4>, <encrypted (0)>
| |-- pngpicture.png <ino = 0x6>, <encrypted (0)>
| ‘-- textstays <ino = 0xa>, <encrypted (0)>

In order to get the file, again we can to use the linux command line with the
F2fs.dump command. Your forensic tools or even Linux should do this for you,
but just to reinforce how this F2FS directory works with nodes you could use the
command:

#sudo dump.f2fs -i 0x6 /dev/sdb1

Info: [/dev/sdb1] Disk Model: Flash Disk
Info: Segments per section = 1
Info: Sections per zone = 1
Info: sector size = 512
Info: total sectors = 30717952 (14999 MB)
...
[print_node_info: 353] Node ID [0x6:6] is inode
i_mode [0x 81a4 : 33188]
i_advise [0x 3 : 3]
i_uid [0x 0 : 0]
i_gid [0x 0 : 0]
i_links [0x 1 : 1]
i_size [0x 3c41f : 246815]
i_blocks [0x 3e : 62]
i_atime [0x606db122 : 1617801506]
i_atime_nsec [0x24990b38 : 614009656]
i_ctime [0x606db114 : 1617801492]
i_ctime_nsec [0x2bc016f9 : 734009081]
i_mtime [0x606b7024 : 1617653796]
i_mtime_nsec [0x ad1c7fa : 181520378]
i_generation [0xd0856627 : 3498403367]
i_current_depth [0x 0 : 0]
i_xattr_nid [0x 0 : 0]
i_flags [0x 0 : 0]
i_inline [0x 1 : 1]
i_pino [0x 4 : 4]
i_dir_level [0x 0 : 0]
i_namelen [0x e : 14]
i_name [pngpicture.png]
i_ext: fofs:0 blkaddr:ef400 len:3d
i_addr[0x0] [0x ef400 : 979968]
i_addr[0x1] [0x ef401 : 979969]
i_addr[0x2] [0x ef402 : 979970]
i_addr[0x3] [0x ef403 : 979971]
...
i_addr[0x3b] [0x ef43b : 980027]
i_addr[0x3c] [0x ef43c : 980028]

3 The Flash-Friendly File System (F2FS) 101

i_nid[0] [0x 0 : 0]
i_nid[1] [0x 0 : 0]
i_nid[2] [0x 0 : 0]
i_nid[3] [0x 0 : 0]
i_nid[4] [0x 0 : 0]

Do you want to dump this file to ./lost_found/? [Y/N] Y
Info: checkpoint state = c5 :
nat_bits crc compacted_summary unmount
Done: 3.409981 secs

We can thus query important meta-information about the file. In addition to file
names (pngpicture.png) and size, the MAC timestamps are displayed. The number
and concrete address of the blocks and the size of the file are printed out. The file
occupies a total of 63 blocks. With a block size of 4096 bytes, this corresponds to
258.048 bytes. The actual size of the file is somewhat smaller, with 246.815 bytes.

3.5.6 Carving for artefacts with XAMN

XAMN is an intuitive tool that helps you find and analyse data faster and easier, we
can even find a formerly deleted audio file (Fig. 3.23). For the file content search, all
three samples of the dataset were first loaded for analysis with XAMN.

Fig. 3.23: MSAB’s XAMN Spotlight showing a deleted audio file

First of all, it can be noted, that the program is able to detect F2FS partitions and
their regions. Each region can be called individually and its content can be examined
separately.

102 Chris Currier

Looking at the screen capture on the left you
should recognize the F2FS Areas. Or more

importantly that you are dealing with a
Flash-Friendly File System. Both the Superblock

and Checkpoint Area are highlighted.

The files themselves and their meta information must be located in the Main Area
of the disk. Accordingly , we checked to see if there were any references to the files
added or deleted in the examples. A search for the PNG picture file name resulted
in two hits (see Fig. 3.24). A simple search with a hex editor should give the same
result. But also the names of the image data could be found (see Fig. 3.25). This
appears to be the contents of the directory. In addition, a dot ’.’ and then two dots
’..’ are recognizable in the dump. Presumably these stand, as usual in Linux for the
current directory or for the parent directory entry.

Fig. 3.24: MSAB’s XAMN Elements showing the “pngpicture” search results

We are then able to find all four file names together in both the ADDED and
DELETED extractions.

Even more, all three samples of the USB flash device could be successfully
imported into XAMN. A look at the file tree shows that all file artefacts were found
for the three scenarios (1..BASE,2..ADDED,3..DELETED). The correct directory
structure could also be reconstructed. In addition to the regular files, the moved or
deleted files are displayed as well (Fig. 3.26).

3 The Flash-Friendly File System (F2FS) 103

Fig. 3.25: Found all four file names together in the extraction notice the “..” and “.”
Before the data

Fig. 3.26: File Tree showing the three USB Flash Drive Extractions

PNG File Signature Analysis

In the normal logging, blocks are written to clean unused segments. Thus there is a
good chance that blocks occupied by a file are also written together on the volume.
In our example, among other things, two .png image files were uploaded to the disk
and then deleted again. This raises the question of whether we can recover the file
contents using carving? We want to see and know about the ability to carve the PNG
Files. Keep in mind the Cleaning ability of F2FS would most likely cause additional
changes.

It is often assumed by laymen that once files have been deleted they cannot be
recovered - neither inwhole nor in part. This (careless) assumption is found especially
often with respect to Unix. The possibilities of finding data fragments at different
places of the file system or the hard disk can be used in an investigation. Often these
individual fragments can be put together to a file with the method called file Carving
or at least essential information can be extracted. In our example we want to search
for the two image files in png format. Binary formats of image files often start with a

104 Chris Currier

magic number by which we can recognize the file. Referring to Gary Kessler’s File
Signature website: www.garykessler.net/library/file_sigs.html, a search
for “PNG” resulted in the following hits (Trailer means the end of the file):

Table 3.15: PNG File Signature as shown from Gary Kessler’s website

Description Result

File Header (Hex) 89 50 4E 47 0D 0A 1A 0A
File Header (ASCII) ‰PNG. . .
File Description Portable Network Graphics file
File Extension PNG
File Trailer or Footer (Hex) 49 45 4E 44 AE 42 60 82
File Trailer or Footer (ASCII) IEND®B‘‚. . .

Knowing both the Header and footer gave us a few options. We decided to use a
Global Regular Expression (GREP) to see if we could recover the complete file from
file header to footer (or trailer). To verify the file header and footer is correct. We
can look at the extraction and pick a PNG file and view the raw file data. As you can
see below (see Fig. 3.27 and 3.28) both the header and the footer look good.

Fig. 3.27: MSAB’s XAMN Source Mode showing the PNG File Header (Hex): 89
50 4E 47 0D 0A 1A 0A

Excellent, now we can carve for the deleted png pictures to see if we can find them.
A search for file headers in both the Added data USB and the Deleted USB resulted
in 101 png file header hits for both of them. Note the deleted png file carved below.
The forensic Analysis Tool used below (see Fig. 3.30 and 3.31) was able to find the
deleted files and present them.

A search for Test did reveal a hit with the word Folder and Test (the two folders
on the USB Flash Drive). Note the red characters are showing that these are different
by comparison with the other extraction or extractions.

www.garykessler.net/library/file_sigs.html
http://www.libpng.org/pub/png/spec/

3 The Flash-Friendly File System (F2FS) 105

Fig. 3.28: MSAB’s XAMN Source Mode showing the PNG File Footer (Hex): 49
45 4E 44 AE 42 60 82

Fig. 3.29: MSAB’s XAMN Elements showing the PNG file header search and the
deleted PNG File

3.5.7 Node Allocation Table (NAT) Comparisons

The changes made to samples 2 (ADDED) and 3 (DELETED) must also have led to
a change in the Node Access Table (NAT). Blocks must have become invalid or new
blocks must have been occupied on the data carrier as a result of deleting or moving
files. For the examination with XAMN we must first open in the NAT area. Then we
can compare the two areas with each other. The results are shown in Fig. 3.32 for the
ADDED sample and in Fig. 3.33 for the DELETED sample. The only differences in
the NAT area was found between the USB Flash Drive, with Data Added and when
data was moved/deleted; these are shown in red.

106 Chris Currier

Fig. 3.30: MSAB’s XAMN showing the Deleted Text File

Fig. 3.31: MSAB’s XAMN showing the Deleted PNG File

Fig. 3.32: USB Flash Drive NAT bytes in red are different when compared with the
DELETED sample’s NAT

3 The Flash-Friendly File System (F2FS) 107

Fig. 3.33: USB Flash Drive NAT bytes in red are different when compared with the
ADDED sample’s NAT

Additional Data Structure

In addition to the works in this chapter, a F2FS forensic paper [96], in Chinese,
was found and the following data structure tables (Table 3.16 and 3.17) are included
as they may be deemed useful. For convenience a copy of the the original and the
translated version using Google Translate (accuracy cannot be guaranteed) can be
found here: http://github.com/Xamnr/F2FS.

Table 3.16: Common file metadata information data structure [96]

Intra-block Offset Byte Length Content Description

0x10 8 File size
0x20 24 Timestamp
0x5C 255 File name
0x168 3692 923 group index address
0x0FE8 20 File identification number id
0x0FEC 20 File node number ino

http://github.com/Xamnr/F2FS

108 Chris Currier

Table 3.17: Data structure of catalog file metadata information block [96]

Intra-block Offset Byte Length Content Description

0x20 24 Timestamp
0x58 4 Byte length of the directory name
0x5C 255 Directory name
0x168 3692 Directory subfile information
0x0FE8 20 Catalog file identification number nid
0x0FEC 20 Catalog file node number ino

3.6 F2FS - Application fields

One of the largest Android Manufacturers Samsung and the original creator of the
Flash-Friendly File System (F2FS) is using F2FS in combination with UFS in some
of their devices over using EXT, such as the Galaxy Note 10 and Galaxy Tab S6.
Early on Motorola and Google used F2FS. Huawei and ZTE have also used F2FS on
some of their devices.

An interesting, albeit dated article that is of interest entitled “Drone Forensic
Analysis Using Open Source Forensic Analysis Using Open Source Tools” [94].
Drones use flash media, many have removable media, so it is not a surprise to see
the connection. What is interesting is the mounting of the DD image to use the F2FS
Tools. Working off a copy of the dd image would be advised. There are certainly a
lot of developments in F2FS, including last year with Linux 5.11 and encryption.

3.7 Conclusion

The Flash-Friendly File System (F2FS) has been around for some time and as you
can see still may be used. You have seen that it was specific for Flash memory and
that this includes some mobile devices. With regards to the Android mobile devices
the user may elect to use F2FS over EXT4 if that is an option. Forensic Tools should
be able to handle the Flash-Friendly File System, so test them to be sure. The issue
is will we find the data that has been deleted. As you saw recovering deleted files is
a possibility, however, not a certainty as there are so many variables involved.

Acknowledgements Many thanks to Changman Lee, Dongho Sim, Joo-Young Hwang, and
Sangyeun Cho, Samsung Electronics Co., Ltd. for their documentation and the 2015 USENIX
Conference presentation by Joo-Young Hwang entitled: “F2FS: A New File System for Flash
Storage” [45] and to Neil Brown for his 2012 article “An f2fs teardown” [8].

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 4
QNX6

Conrad Meyer

Abstract The QNX6 filesystem is present in Smartphones delivered by Blackberry
(e.g. Devices that are using Blackberry 10) andmodern vehicle infotainment systems
that use QNX as their operating system. In 2015 QNX as an OS was used in over
50 million vehicles [6] and can hence be considered as one of the most important
operating systems in the automotive world. Today’s digital forensics tools don’t
recover a lot from this filesystem, have difficulties with different block sizes, or
even don’t support the filesystem at all. So it’s crucial for the forensic examiner to
understand the principles of this filesystem used. This chapter gives an overview of
how the filesystem generally stores the files and metadata to give the examiner the
chance to get the most information out of the evidence.

4.1 Introduction

This chapter gives an insight into the different structures and principles of the QNX6
filesystem developed by QNX.The filesystem was first introduced within QNX Neu-
trino 6.4 real-time operating system, which today is owned and developed by Black-
berry. It is a power-safe file system [7] and can withstand a sudden loss of power
without corrupting or losing data. This property is especially useful for the forensic
examiner, as it can easily happen that evidence (e.g. a vehicle or smartphone) loses
its power supply due to a battery pack running empty.

Conrad Meyer
Central Office for Information Technology in the Security Sector (ZITiS), Zamdorfer Straße 88,
Munich, Bavaria e-mail: conrad.meyer@zitis.bund.de

109© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_4

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:conrad.meyer@zitis.bund.de
https://doi.org/10.1007/978-3-030-98467-0_4
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_4&domain=pdf

110 Conrad Meyer

Table 4.1: Standard Parameters of the QNX6 Filesystem

Parameter Value Remark

Max physical Size 2 TB 2
Supported Standard Logical Blocksizes 512, 1024, 2048, 4096 Bytes

Max Filename Length 510 bytes UTF-8

Table 4.1 shows the standard values that are regularly used when formatting a volume
with the QNX6 filesystem. Note, that especially in-car infotainment systems, those
values can be different (e.g. larger blocksize). All the addressing inside the filesystem
is based on the blocksize, extracted out of the superblock.

The following sections will give the reader an insight into the binary structures
of the most important parts of the filesystem, like a superblock or inode and some
basic knowledge about the mechanism when files are deleted.

4.2 QNX6 Filesystem Structure

To understand the principle behaviour and main functions of the QNX6 filesystem,
the following chapter shows the structure of a volume and how files, directories
and metadata are linked. Volumes can be formatted in QNX6 in little-endian or
big-endian style. All the examples in the following show a QNX6 Volume formatted
with little endianness. Fig. 4.1 shows the main parts of a QNX6 filesystem and their
standard size and addresses. The system area contains the Bitmap of the allocated

Fig. 4.1: Layout of a QNX6 filesystem volume

and unallocated Blocks of the Filesystem. Each bit represents a Block. Suppose the
volume is formatted in the standard way. In that case, the volume will start with
a volume boot record, which contains standard ASCII coded bootloader messages
(Fig. 4.2), already giving a hint that the Volume is formatted with QNX.

•! Attention

Sometimes, on non standard volumes a partition directly starts with the Superblock.

4 QNX6 111

Fig. 4.2: Sector 0 of a QNX6 Partition/Volume

In the following, we will have a closer look at all the structures above. We will follow
those structures to construct a file and its metadata out of the filesystem information.
The example filesystem is in little-endian mode.

4.2.1 Superblock

The filesystemmaintains two Superblocks or global root blocks. One of those blocks,
called the working Superblock, manages the modified data, while the other one, the
stable Superblock, consists of the original version of all the blocks.Which Superblock
is the active one is determined by the 64-bit long serial number. The Superblock
with the higher serial is the active one. After all, active write operations are done,
and the integrity is checked, the former working superblock becomes the new stable
one by updating the serial number (old superblock serial +1).

112 Conrad Meyer

The superblock contains the global information of the filesystem. Table 4.2 contains
the offset address of the main features of the Superblock.

Table 4.2: Main Features and their Offset in the QNX6 superblock

Parameter Offset in Superblock Size (bytes)

Serialnumber 0x8 8
creation timestamp 0x10 8
last access timestamp 0x14 8

Volume ID 0x20 16
Blocksize 0x30 4

Root Inode Inodes 0x48 array 16 x 4 bytes
Root Inode bitmap 0x98 array 16 x 4 bytes

Root Inode longfilenames 0xE8 array 16 x 4 bytes

•! Attention

When used with the standard driver issued by Blackberry and the default settings,
you can determine the last access to the filesystem by selecting the stable superblock
(highest serial) and checking the access timestamp (assuming that system time is
used was valid). However, some non-standard drivers don’t touch this timestamp, so
for reliable results, you have to test the drivers from the System where the image
originated in each case!

The superblock contains three root inodes that point to the main parts of the filesys-
tem. The first array root inode contains the pointers to the inodes that contain the data
(files, directories, data). The second one contains the pointers to the bitmap of the
allocated blocks, and the third one is the pointers to the long filenames (filenames >
27 utf8 characters, up to 510 characters). The data inside those root inodes is shown
in Table 4.3. Those root inodes contain pointers to the corresponding filesystem
parts. If the level parameter is zero, the root inode has 16 direct pointers. By adding
another level, indirect pointers are added, as shown in Fig. 4.4. Each indirect pointer
then points to a block containing inodes or indirect 32-bit pointers, depending on
the defined number of levels. The actual data is always at the lowest level of the tree.
Given the value of blocks that such a tree can address is 16 * (block size in bytes / 4)
;4E4; So, for example, with a level value of 2, and a block size of 1024 bytes, already
1,048,576 blocks can be addressed.

4 QNX6 113

Fig. 4.3: An example of a QNX6 superblock.

Table 4.3: Structure of the root inodes

Parameter Offset in root inode Size (bytes)

Size 0x0 8
Pointer 0x8 array 16 x 4 bytes
Levels 0x48 1
Mode 0x49 1

114 Conrad Meyer

Fig. 4.4: Illustration of inode levels, here a level value of 3

4.2.2 Bitmap

The Bitmap block is used to determine whether a block in the filesystem is used
or not. Each bit in the bitmap represents a block. A value of 0 means the Block is
unused, 1 means that the Block is allocated. If the volume size is smaller than the
bits available in the Bitmap Block, the unused bits are stuffed with ones. The bitmap
incorporates two parts. First, system area 1 is split into two halves, where the upper
half is used by superblock 1, and the lower half is used by superblock 2. This bitmap
area contains the bitmap, inode and indirect addressing blocks of those structures.
Second, the bitmap of the blocks that are not used for the filesystem structure (bitmap
and inodes). The preallocation of the first system area block leads to the effect that
each superblock always works on its own filesystem structure, and to the point that
there is always a non-corrupted structure, even in the case of a sudden power loss (a
superblock is just becoming the stable one, if all write operations are done, see sect.
4.2.1).

Fig. 4.5 depicts the end of the used space of the bitmap pointed to in the example
superblock from Fig. 4.3. The bitmap comprises two blocks, starting at 0x3000,
and the volume contains a total of 0xC7F8 blocks. In Fig 4.5, the stuffing of the
unused space with ones therefore starts at 0x48FF: Bitmap starting address: 0x3000
+ number of blocks 0xC8f8 divided by 8 (each Block represented by 1 bit).

4 QNX6 115

Fig. 4.5: An example of a QNX6 Bitmap

4.2.3 Inode

On the lowest level of the root inode tree, in the "leaves", the direct inode data is
found. Depending on the level defined, also those inodes can address other indirect
inode addressing blocks. An inode contains a vast amount of data useful for the
forensic examiner, e.g. permissions, access time, change time, and modification
time. Table 4.4 shows the offsets and the size of the various parameters in an inode.

116 Conrad Meyer

Table 4.4: Structure of an inode

Parameter Offset Size (bytes)

size 0x0 8
uid 0x8 4
gid 0xC 4
ftime 0x10 4
mtime 0x14 4
atime 0x18 4
ctime 0x1C 4
mode 0x20 2

blockpointer 0x24 array 16 x 4 bytes
Levels 0x54 1
status 0x49 1 (see table 4.5)

Table 4.5: inode status byte

Value Status

0x1 directory
0x2 deleted
0x3 normal

As QNXOS is in line with the POSIX standards; also the timestamps are. The epoch
is the standard POSIX (or UNIX) epoch, the 01.01.1970, 00:00 UTC. From that
epoch, the timestamps are counted in seconds. The modified timestamp (mtime) is
the time of the last write operation on this specific file. The access timestamp (atime)
tells the examiner the time the file was last read. The change timestamp (ctime) is
changed when the permissions of a file are changed. So ctime can be changed without
a change in atime. The timestamp ftime is not fully referenced in the POSIX standard.
Like in many other filesystems, it is the timestamp when the file was created. The
inode 1 always contains the root directory, and inode counting starts with 1.

•! Attention

When it comes to timestamps, the forensic expert has to pay attention to the reliability
of the timestamps given. This is especially true for QNX6. Not all timestamps are
actualised on some systems, as with QNXwith the standardQNX6file-system driver.
Whenever possible, tests with the system you are examining should be performed
(e.g. changing permissions, modifying files, etc.)!

4 QNX6 117

Fig. 4.6: An example of a QNX6 Inode.

4.2.4 Directories

Inodes with the status 0x3 point to a directory file system object that contains sub-
directories and file entries with names shorter than 27 UTF-8 characters. An entry
starts with the inode number of that entry, where you can find the metadata like
timestamps and the pointers to the Data or other directories, followed by a name
length field and the actual name. A directory always contains a "." and a ".." entry.
The "." entry contains the inode number of the directory inode, and the ".." entry

118 Conrad Meyer

contains the inode number of the parent directory inode. In the example Fig. 4.7,
those entries are both pointing to the same inode number because the directory
shown is the root directory.

Table 4.6: Directory entry

Parameter Offset Size (bytes)

Inode number 0x0 4
Namelength 0x4 1

Name 0x5 up to 27

Fig. 4.7: An example of a QNX6 directory. Here, the root directory is shown.

A long directory entry has a different structure (Table 4.7). It includes the Inode, in
which the timestamps and pointers to the data are. Furthermore, the long filenames
inodeNumber, where the entry’s name is found, is noted in this structure. An example
of a long filename/directory entry is displayed in Fig. 4.8.

4 QNX6 119

Table 4.7: Long Directory entry

Parameter Offset Size (bytes)

Inode number 0x0 4
size 0x4 1

Long Filenames Inode Number 0x8 4
checksum 0x12 checksum

Fig. 4.8: An example of a QNX6 inode entry of a long filename

4.2.5 Long Filenames Inode

If a file or directories length is longer than 27 UTF-8 characters, the name is stored
in the long filenames node. Long filenames Inodes start counting with zero. The
structure is shown in Table 4.8, an example is Fig. 4.9.

Table 4.8: Long Filenames Inode

Parameter Offset Size (bytes)

filename length 0x0 2
filename 0x2 up to 510 bytes

4.3 Example: Construction of a file

To understand how a file can be retrieved from the filesystem data, we will manually
find the file /usr/fileformathandbook.ascii with its content and metadata by using the

120 Conrad Meyer

Fig. 4.9: An example QNX6 long filenames entry

filesystem information. We will begin the reconstruction from the root directory. As
already mentioned in the previous chapter, inode 1 contains the root directory. From
there, we will start finding the file in the filesystem structure. The first step is to
determine the valid stable superblock by the serial number. The superblocks inode
root block is shown in Fig. 4.10

Fig. 4.10: Inode Root block used in the file reconstruction example

The root block tree has one level, meaning that we go on with the indirect inode
block in the next step. The formula can easily calculate the physical address of those
blocks:

1;>2:033A4BB = 1;>2:=D<14A ∗ 1;>2:B8I4 + > 5 5 B4C

On standard QNX6 Volumes, the offset is the superblock size + the offset of the
beginning of the superblock. Thus, the first indirect inode block is located at 0xCD
* 0x1000 + 0x3000 = 0xD0000, where 0xCD is the block number, 0x1000 the
blocksize and 0x3000 the global offset due to the superblock with size 0x1000 and
start at 0x2000. From the indirect inode (Fig. 4.11), we can retrieve the number
0x03, and by this, the address of the first inode block, which is located at 0x6000.

The first inode in this block is the root inode. If we take the first block pointer,
0x7F10, of this inode, we get the address of the root directory: 0x7F13000. This root
directory, Fig. 4.13 is already familiar to us, as the second version of it is shown in
Fig. 4.7, but this time, it is the root directory maintained by the first superblock.
In the root directory, we take the inode number for the /usr directory, 0x08. With this
number, we go back to the first Inode Block, where the inode 8 is located at 0x6380
(0x6000, where inode 1 is located plus 7 * 0x80 offset, for the preceding inodes).
From that inode (Fig. 4.14) we can then calculate the /usr directory offset in the way
we already did for the root directory. The /usr directory is defined at block 0x7F72

4 QNX6 121

Fig. 4.11: Indirect inode block

Fig. 4.12: inode 1 which contains the pointers to the root diretory

Fig. 4.13: Root Directory

which is at offset 0x7F75000. Here we see now our filename and the corresponding
inode Number, where the metadata and pointer to the file content is.

We see that the fileformathandbook.ascii file has the inode number 0x258. Know-
ing this, we have to find the offset where this inode is defined. With a block size of
0x1000 and an inode size of 0x80, each inode block contains 0x20 inodes, so the
inode we are looking for is the 24th inode in inode block number 19. Going back to
Fig. 4.11, the 19 inode block is at physical block 0xE0, calculated address 0xE3000

122 Conrad Meyer

Fig. 4.14: Inode 8, which has the pointer to the /usr directory in our example

Fig. 4.15: /usr directory with the entry of the file we are looking for

+ 0xB80 (24th inode in Block). In this inode, depicted in Fig. 4.16 we find all the
relevant filesystem metadata for this file and the pointers to the filesystem content.

Following now the pointers to the content, beginning with 0x19D, we can retrieve
the file block by block (Fig. 4.17).

After demonstrating the retrieval of the example file from the file system data, it
is easy to understand the next section, which shows the possibilities to reconstruct
deleted files.

4.4 Deleted Files

There are some possibilities to recover deleted files in a QNX6 Volume, depending,
when the file or directory was deleted and what happened with the filesystem in the
meanwhile. Deleting an entry (directory or file) in QNX6 means that the Status in

4 QNX6 123

Fig. 4.16: Inode entry of our example file

Fig. 4.17: Content of our example file

an Inode switches to "deleted" (see Table 4.5) and that the entries inode number is
deleted from the directory as shown in Fig. 4.18. By this, it is not possible to recover
a file by its name, because there is no link anymore between the filename and the
inode containing the metadata and the pointers to the file content. If a directory is
updated after a file was deleted (e.g. a new file is added), the filesystem driver moves
the directory to another block. The filename is “lost” from the regular filesystem

124 Conrad Meyer

directory tree. Also, the blocks, which contain the content of the files are set to
unused in the bitmap, which means, they are free to be overwritten by other data.
Knowing this, there are still some possibilities to recover files, with and without their
respective names.

Fig. 4.18: Directory entry before (bottom) and after (top) deletion

The first possibility, if the file was just deleted recently, it may still be present in the
non-active filesystem structure of the second superblock. If this is the case, the file
can normally be fully recovered, even with its content (still, it is possible that the
content is not original).

Second, you can parse the inodes to recover files with their metadata without
the associated filename. This fact is quite problematic because the Blocks do not
necessarily still contain the files original data.

In conclusion, we see that the reconstruction of files is sometimes possible. How-
ever, compared to some other filesystems (e.g. NTFS), there is a smaller possibility
to recover deleted files from the filesystem information. In some special cases where
you can prove the integrity of a file in another way (e.g. some packed/zipped files),
it is still helpful to take advantage of the inode structure and the possibility to put
together fragmented files from the pointers inside the inode.

4 QNX6 125

4.5 Forensic Tools supporting QNX6 filesystems

The Linux kernel includes a read-only driver for QNX6 (and QNX4) file systems.
Also, some mobile forensic tools like UFED physical analyzer support this file
system to a certain degree. Until today, those tools just support volumes formatted
with the standard values shown in Table 4.1. Lately, there have been some projects
in the Autopsy / Sleuthkit community to support QNX6, but until today, none of the
projects has come to an end.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Part II
Mobile File Formats

File format analysis examines one specific file. An App or a program typically inter-
prets the data contained in a file. Files can contain user data as well as configuration
data, caches or any data. One aim of file format analysis is to recover corrupted
files or restore deleted entries from files that only mark entries as deleted but do not
overwrite the deleted data.

In this part of the book, the general design of five common file formats in
mobile devices is described, and different analysis techniques are presented. This
part abstractly approaches the topic and is not limited to how a specific tool analyzes
a file format.

File formats are used by Apps or programs and provide mechanisms to store data
in a structured way. File formats can organize metadata as well as and data such that
the specific App can use this. The described file formats in this part are typically
used in mobile devices.

Chapter 5
SQLite

Dirk Pawlaszczyk

Abstract SQLite is, without doubt, themost widely used database systemworldwide
at the moment. The single file database system is used, among other things, in
operating systems for cell phones, such as Android, iOS or Symbian OS. On a
typical smartphone, we usually find several hundred SQLite databases used by a
wide variety of apps. Due to its widespread use, the database format is of particular
importance in mobile forensics. It is not uncommon for the suspect to try to cover
his tracks by deleting database content. Recovering deleted records from a database
presents a special challenge. In this chapter, the on-disk database format of the SQLite
database system is highlighted. Therefore,we take a closer look at the database header
as well as record structure on a binary level. We first examine the structure of the
data. Recovery options for erased records are discussed as well. Special attention
is paid to the slack areas within the database: unallocated space, Freelist as well as
free blocks. In this context, we discuss basic techniques for carving and acquisition
of deleted data artefacts. Despite the main database format and recovery options,
temporary file types like write-ahead logs and rollback journals are analyzed as well.

5.1 Introduction

A large amount of data is being stored and processed in relational databases. The
most widely used database system in the world is undoubtedly SQLite since it is the
default solution for the Android and iOS operating systems. So it is not surprising,
that web browsers, messenger services and mobile applications employ the free
and serverless database solution as their storage format of choice [61],[60]. At the
moment, there are more than a trillion SQLite instances in active use [81]. In the
vast majority of criminal investigations involving information technology, one task
is to make information stored in such databases accessible. Evidence acquisition for

University of Applied Sciences (Hochschule Mittweida), Technikumplatz 17, 09648 Mittweida,
Germany, e-mail: pawlaszc@hs-mittweida.de

129© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_5

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

https://doi.org/10.1007/978-3-030-98467-0_5
mailto:pawlaszc@hs-mittweida.de
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_5&domain=pdf

130 Dirk Pawlaszczyk

databases is traditionally made with SQL, a powerful query language. Also, SQLite
supports most of the SQL language commands. In this way, the data can be accessed
with one of the freely available viewers. Unfortunately, this form of analysis usually
does not allow access to deleted records or temporary data content such as recently
added but not committed entries. This creates the need for alternative ways to analyze
such databases forensically.

5.2 The SQLite File Structure

SQLite is a single-file database engine, i.e., all tables are managed in only one file
on disk. There is no intermediary server process; an application has to communicate
with first, for storing data. It does not work this way. Instead, the database can
be integrated directly into an application. Therefore, it provides a library and an
easy to use programming interface. This fact has significantly contributed to the
current spread and popularity of the program. We will discuss the basic structure of
a database before turning to the details of carving for data records.

Fig. 5.1: Schematic structure of a SQLite database

Like most structured binary formats, the database file starts with a header part [80].
Its size is exactly 100 bytes. Beyond this, the database file is divided into pages of
equal size. The file size is thus always a multiple of the page size. A page number
uniquely identifies a single page, whereas the first page has the number one. The
default page size usually is 4096 bytes. However, it can be adjusted if necessary to a
minimum of 512 bytes and a maximum of 64KB [32]. Of course, the header is part
of the first page. In a relational database system, all data is stored in tables. This is
also the case with SQLite. In turn, a table is distributed over one or more pages of

5 SQLite 131

the database on the binary level (see Fig. 5.1). Each data page again contains one or
more records, for precisely one table. To access and acquire all records of a particular
table, we must first determine which pages of the database are associated with this
table. This information can again be taken from the first page of the database. Besides
the header string, this page contains one more piece of information - the database
schema. Necessary information such as the root page numbers, column names, and
column types of the tables are stored here, in a data structure called SQLite_Master
Table. We will discuss the details of this table in sect. 5.2.3. To represent a table
and its pages, SQLite uses a balanced tree data structure (B+tree) under the hood.
In a B+tree, the raw data elements are stored exclusively in the leaf nodes, while the
inner nodes contain only links. Since the maximum size of a page is limited from
above, we can gain more space for links or branches in the inner nodes by moving the
leaves’ data records. Moreover, this limits the height of the tree. Since data elements
are normally accessed via the tree’s root, a lower height reduces the number of nodes
to be traversed. Many relational database systems manage their records in this way.

Table 5.1: SQLite page types and byte flags

Page Type 1st Byte in Page

table b-tree interior page 0x05
table b-tree leaf page 0x0d
index b-tree interior page 0x02
index b-tree leaf page 0x0a
overflow page 0x00 (for db-size < 64GB)
freelist page 0x00 (first 8 bytes filled with zero-bytes)
pointer map 0x01 or 0x02 or 0x03 or 0x04 or 0x05
locking page 0x00 (only, if db-size > 1 GB)

A page with links to other pages only is called a b-tree interior page [80]. The record
nodes are saved in table b-tree leaf pages. Beyond this, a table can have multiple
indexes. An index contains links to normal table records to speed up searching and
sorting by specific fields. Whenever we create an index, SQLite creates a B-tree
structure to hold the index data as well. Similar to normal tables we can distinguish
between index b-tree interior pages as well as index b-tree leaf pages. When a data
record is too large for a single data leaf page, the excessive bytes are spilt onto so-
called overflow pages. Several overflow pages are filled at once to store large amounts
of data such as Binary Large OBjects (BLOBs). Together all overflow pages for one
record form a linked list. To capture all the data associated with a record, we need to
read all the pages. The payload for an record and the preceding pointer are combined
to form a cell.

Despite the five data page types, SQLite knows three more page classes. A
database file might contain one or more pages that are not in active use. Whenever
the last record is deleted from a page, this page is released. The freed page will
be reused when new pages are required and filled with new table contents. In the

132 Dirk Pawlaszczyk

meantime, all unallocated pages are stored in a so-called freelist (sect. 5.3). These
freelist pages are of particular forensic value since most of the removed content can
be found here.

A further not yet discussed page type are so-called pointer maps. A pointer
map has the function of not losing track when pages are moved from one position
in the database file to another. This page type is created whenever the database
is reorganized or cleaned up. A pointer map provides a lookup table to quickly
determine page types and their parents. However, this page type exists only in auto-
vacuum databases. The locking page is the last page type in SQLite. The first page of
this page class starts at byte offset 230 (1,073,741,824) and always remains unused.
Conversely, this means that a locking page only appears when the database size is
more extensive the 1 GB. Since it is empty, it has only a technical, but no forensic
value and is therefore not considered further.

We can usually determine the type of page by looking at the page’s first byte.
The flag-byte at offset 0 indicates the page class. Table 5.4 lists all the page types
discussed so far. However, not every database will include all of these types. With
the page size and type information at hand, an investigator can walk through the
database and identify all areas of interest.

5.2.1 The Database Header

Every forensic investigation starts with analysing the file header. The header contains
important information that will help us to carve for deleted records. The fields of
the header have a precisely defined size and position (see Fig. 5.2). The individual
(multi-byte) fields are encoded as big endian (BE) values.

Fig. 5.2: The SQLite Database Header Format and fields

5 SQLite 133

We will discuss the fields below and evaluate them in terms of their respective value
for a forensic investigation [80]:

• Each database starts with the header string. The magic header value is always set
to "SQLite format 3". We can use the header information to carve the beginning
of a database file on the binary level. Offset 15 marks the end of the magic
header string. It holds a special character, the null terminator (0x00).

• At offset 16, we can find a two-byte big-endian integer value representing the
database’s page size. The value in this field must be a power of two. The range
of values is between 512 and 32768. There is one exception: The value 0x0001
is viewed as a big-endian 1. It represents the value 65,536 - the largest possible
page size - since this number will not fit in a two-byte usually.

• The two flag bytes at offset 18 and 19 control the read and write permission
for the database. The values should typically always be either a 1 or a 2. For
the rollback journalling mode (sect. 5.4.2), both values are set to 1. In contrast,
number 2 in both fields indicates a WAL journalling mode (sect. 5.4.3). If the
write version has a value greater than 2, this database file must be accessed as
read-only. These two fields’ value can indicate whether other files (WAL file or
journal file) are present.

• The 1-byte integer value at offset 20 of the header is used to apply for certain
SQLite extensions. The number of bytes specified here reduces the usable area
within the page. In this way, for example, special salt or nonce values can be
stored for each page when using the cryptographic extension. This value is
usually 0. The value can be odd.

• The bytes on offset 21 to 23 have fixed values per definition. Maximum and
minimum payload fraction must be 64, 32. The byte for the leaf payload fraction
always holds the value 32.

• With each transaction carried out on the database, the 4-byte big-endian integer
at offset 24 is usually incremented by one. A process that wants to read data
from the database can determine whether there has been a change since the last
access.

• With the 4-byte integer on offset 28 stores the size of the in-header database in
pages. However, this value may differ from the file’s actual size when accessing
a database before version 3.7.0. Alternatively, you can determine the actual file
size and divide by the page size to infer this value.

• At offset 32, we can find a 4-byte big-endian integer which indicates the be-
ginning of the so-called freelist. As already pointed out, unused pages in the
database file are stored within this data structure. This field has a significant
meaning, as it allows us to access pages of the database that are no longer visi-
ble. It holds the offset of the first page of the list. If the value is zero, the list is
empty.

• At offset 36 represents the total number of entries on the freelist. Together with
the start address, one can thus automatically iterate over the released pages.

• Each change to the database schema, such as adding or deleting a table or
creating an index, automatically leads to an increment of the value at offset 40.

134 Dirk Pawlaszczyk

• The 4-byte value at offset 44 represents the format number. This field has a
value between 1 and 4. For a SQLite database created with the latest version of
the database, the value is always 4 and thus supports the more SQL commands.
Databases created before November 2005 usually have a value of 3 or less.

• The value default pages cache size at offset 48 queries or sets the suggested
maximum number of pages of disk cache for a database file.

• The 4-byte big-endian integer value at offset 52 is only used to manage pointer-
maps for auto vacuum-databases. A non-zero value means that this database file
contains pointer map-pages.

• All strings in the database are encoded with the same encoding. There are only
3 valid encodings: UFT8 (value 1), UTF16LE (value 2), UTF16BE (value 3).
For the analysis of the database, this field value must always be read first.

• The integer at offset 64 is true for incremental_vacuumand false for auto_vacuum
mode. A value is larger than 0 means that the database reclaims space after data
has been deleted. An autovacuum database thus contains few deleted artefacts -
if any. It is defragmented automatically.

• The Application ID at offset 68 can be set by the Application programmer. It is
not used by SQLite.

• Offset 92 covers the value of the change counter. The integer at offset 92 indicates
which transaction the version number is valid for.

• The 4-byte integer at offset 96 stores the SQLITE_VERSION_NUMBER value.
The version number of the database library with which changes were last made
to the database is noted here.

All remaining header bytes are reserved for future expansion. Consequently, we can
ignore them.

•> Important

As can be seen from what has been said, various header fields must be read and
analyzed as the first step of every examination. Thus, the page size (offset 16) and
the number of pages (offset 28) must always be determined, since we need to know
the structure and size of the database. In order to interpret the strings correctly, the
encoding must also be examined (offset 58). A look at the freelist entries at offset
32 and 36 tells us whether unused pages in the database exist. If we do not find
any references to free pages, it may be an auto vacuum database (offset 64). Using
the flags for transaction management at offset 18 or 19, we can also find out which
additional SQLite files may exist. This is of particular interest because these files
can also contain records of former transactions. Thus, old states of the database
have been overwritten in the meantime could be made visible again. The header’s
remaining information is more technical and is, therefore, less interesting for the
investigator.

5 SQLite 135

5.2.2 Storage Classes, Serial Types and Varint-Encoding

In order to understand the binary format of records we first need to clarify what
data types SQLite knows at the binary level and how they are encoded. Like most
other databases, SQLite uses strict typing. Therefore, each value stored is mapped
to one of the five storage classes (Table 5.2). The word storage class is just another
term for a data type. However, the latter is more commonly used in connection with
programming languages. SQLite supports storage classes for integers (INTEGER),
floating-point numbers (REAL), strings (TEXT), binary objects (BLOB), and other
numeric data such as dates (NUMERIC). The storage class thus determines how the
binary data is to be interpreted. Conceptually, each column of a table is assigned with
a specific affinity. The affinity denotes the preferred storage class for a column. The
data type of a column defines what value the column can hold. However, the SQL
standard knows several data type names for one SQLite storage class. For example,
there exist more than ten different integer data types in SQL. For texts, there exist
seven different types. Accordingly, each data type is mapped to exactly one storage
class.

A second essential aspect is a length occupied by a cell value. An integer, for
example, will consume a length between zero and a maximum of 8 Bytes. A floating-
point number is mapped to a 64-bit field. A text can have an arbitrary length. SQLite
uses the so-called serial types to map storage class and length. In simplified terms,
this type is a number. The concrete value of the number provides information about
the length of a cell value. At the same time, the storage class can be derived from the
numerical value. Table 5.3 lists all possible serial types. For serial types 0, 8, 9, the
value is zero bytes in length. The serial type is used whenever the type and length of
a cell must be determined. Usually, each table row has a corresponding header that
summarizes the serial bytes for each column. As a rule, a serial type occupies exactly
one byte. Especially with texts or BLOBs, this principle is sometimes deviated from
as soon as the numerical value’s length exceeds 127. In this case, additional bytes
may be added to map the serial type.

Table 5.2: Mapping from SQL types to SQLite storage classes [80]

SQL Data Type Storage Class

INT, INTEGER, INTUNSIGNED, LONG, TINYINT,
SMALLINT, MEDIUMINT, BIGINT, INT2, INT8 INTEGER
TEXT, CHARACTER, CLOB, VARCHAR, NCHAR,
NATIVE CHARACTER, VARYINGCHARACTER TEXT
REAL, DOUBLE, DOUBLEPRESICION, FLOAT REAL
NUMERIC, DEZIMAL, BOOLEAN, DATE, DTIME NUMERIC
BLOB (no datatype specified) BLOB

136 Dirk Pawlaszczyk

SQLite uses a particular encoding for storing serial types. The representation form
used is a variable-length integer (varint). SQLite version 3 uses this simple byte-
oriented encoding where each byte contains 7 bits of the integer being encoded.
The most significant bit (MSB) is a flag bit, indicating more bytes to follow. Since
most integers in a database have relatively small values, we can keep memory
consumption low this way. Storing with a fixed-length integer will mostly generate
unnecessarily many null bytes. Instead, SQLite uses a static Huffman encoding of
64-bit twos-complement integers that needs less space for small positive values. The
serial type varints for large strings and BLOBs might extend up to nine-byte varints.
The following illustration should once again make clear the storage principle of
varint-values:

1 Byte 0XXXXXXXX ..127
2 Bytes 1XXXXXXX 0XXXXXXXX ..16384
3 Bytes 1XXXXXXX 1XXXXXXX 0XXXXXXXX ..2097152
4 Bytes 1XXXXXXX 1XXXXXXX 1XXXXXXX 0XXXXXXXX ..268435456

Since texts have a variable size, and the length calculation is performed by a formula.
A numerical value above 12 or 13 can only occur with texts or BLOBs. An odd value
will be correspondingly for texts. On the other hand, if the value is even, then it is
the BLOB storage class. For example, to store the word Test, the value 21(0x15) -
2 * text length + 13 - is stored as the length specification. A JPEG file with, let us
say, the length of 109 Bytes would be encoded with the serial type number 230 since
∗2+12 is what we need to calculate for a binary object. However, since we cannot
map this value with 7 bits, we have to add a second byte for the varint:

decimal: 230 = 128 + 64 + 32 + 4 + 2
binary: 1110 0110
varint: 1000 0001 and 0110 0110 (2-Byte: 1X.. 0X..)

Thus, we must first calculate the respective length specification each time we need
to know the exact length of a table cell. The serial values 8 and 9 are noteworthy
features. They can be used to map the two values 0 or 1. An extra content byte is not
necessary in this case. With the information presented, we are now able to decode
the cells of a table row.

5.2.3 Decoding The SQLite_Master Table

A database schema is a set of data definitions that define the structural design of
a database. As already explained, the schema, or the master table, resides on the
database’s first page, just behind the header. Technically, it is a regular table [85].
Table 5.4 shows all columns and their meaning for the master table. The schema
table contains all database objects in the database and the statement used to create
each object. With the schema table’s help, all table names, the corresponding column
names and data types can be determined. Each table entry is opened by two additional
fields: the rowid and the payload (see Fig. 5.3). Both values are only visible on the

5 SQLite 137

Table 5.3: Serial Type Codes Of The Record Format [80]

Serial Type Size Meaning

0 0 Value is a NULL.
1 1 A 8-bit twos-complement integer.
2 2 A big-endian 16-bit twos-compl. integer.
3 3 A big-endian 24-bit twos-compl. integer.
4 4 A big-endian 32-bit twos-compl. integer.
5 6 A big-endian 48-bit twos-compl. integer.
6 8 A big-endian 64-bit twos-compl. integer.
7 8 A big-endian 64-bit floating point number.
8 0 integer 0 (schema format ≥ 4).
9 0 integer 1 (schema format ≥ 4).
10,11 variable Reserved for internal use. Variable size.
N≥12, even (N-12)/2 Value is a BLOB with (N-12)/2 bytes length.
N≥13, odd (N-13)/2 Value is a string in the text encoding and

(N-13)/2 bytes in length.
The nul terminator is not stored.

binary level. Any row of the master table and therefore every database object is
assigned to a unique, non-NULL, signed 64-bit integer - the rowid. This value is
used as the access key for the data in the underlying B-tree. On the binary level,
each table row starts with a rowid number greater than null. Most tables in a typical
SQLite database schema are rowid tables. A rowid table is defined as any table in
an SQLite schema that is not a virtual table and is not a WITHOUT ROWID table.
The rowid is not part of the table definition. A payload field that stores the length of
the record follows directly after the rowid.

Table 5.4: Structure of the sqlite_master table [85]

Column Name Description

type type of database object (table, index etc.)
name name of the database object
tblname table that the database object is connected to
rootpage root page
sql SQL statement used to create the database object.

Interestingly, we can find descriptions for tables that have already been removed.
If an object in the database is erased, the schema table’s corresponding record is
marked as removed. If a table is dropped, the rowid value for the line in question is
set to 0x0000. The entry that is no longer needed is only overwritten when a new
database object is added. In the meantime, the entry is still accessible. Figure 5.3
shows an example of a deleted entry for a table in hex mode. The table header and

138 Dirk Pawlaszczyk

all columns of the record are intact. Only the rowid value at Offset 3935 has been
wiped with zero bytes.

In the example below, the signature 0x7461626C65 represents the object type of
a table. The table name, i.e. ”users”, directly follows the type column. However, we
must parse and analyse the corresponding SQL statement from the fifth column to
get all column names and the corresponding type information.

Fig. 5.3: Record of a dropped table from the sqlite_master (example)

By analyzing the SQL statement, a storage class can be derived for each table column.
For the five columns of the table <users>, the following columns can be identified:
INT, TEXT, TEXT, INT, REAL. This type of vector can be considered as a kind
of fingerprint. Sometimes, a found record could be recovered, but it is not clear to
which table it belongs. With the help of the table’s signature derived in this way, an
assignment can still be made, even for a deleted record. Of course, this rule is not
always 100% accurate. It is not excluded that two tables have the same signature.
However, it can help us make an educated guess, which will be correct in most cases.

5.2.4 Page Structure

All records are stored on pages. Approaching the data of a table requires a leaf page
scan. To access the data, we must understand the structure of a page. Each page starts
with a header, with a total size of 8 bytes in the case of a data leaf page (see Fig. 5.4).
All header bytes are big-endian values. The header starts with the page type at offset
0. In the case of a leaf page, the page starts with the value 0x0D. It can be classified
from the other pages by reading this value. The 2-byte value at offset 1 marks the
beginning of the first free block on the page. A free block is created whenever a
record is deleted from the database. All free blocks are organized as a linked list,

5 SQLite 139

whereas the first two bytes of the free block point to the offset of the following free
block within the list. If the free block is the last on the chain, this value is zero. If we
want to identify deleted records, our search should start right here in the free block
list [80].

Fig. 5.4: Fields of a b-tree leaf page header

Another essential value is located directly behind the free block field at offset 3. The
16-bit twos-complement integer field is called number of cells. Its value indicates
howmany active cells exist within the current page. In SQLite, the serial type header
and the values of a particular table row are combined into a structure called "cell".
So if we want to access a record, we need to locate the matching cell. Fortunately,
all cell offsets are stored in an array directly after the page header. Hence, to read a
regular record of a table, we need to iterate through the cell pointer field.

Fig. 5.5: Structure of a regular data leaf page (permanent and temporary)

The next header field at offset 5 provides the start-offset of the content area. A b-tree
leaf page is divided into regions (see Fig. 5.5). The cell content area is always located
at the bottom of the page. The header and the cell pointer array are always located
at the beginning of the page. Between them resides the unallocated space. As the
content area grows from the highest memory address towards the lower address,

140 Dirk Pawlaszczyk

overlapping the two mentioned regions is prevented. The concept is thus similar to
the management of heap and stack areas within memory management. The last value
in the header denotes the number of fragmented bytes. A free block requires at least
4 bytes of space. Areas between 1 to 3 bytes form a fragment and thus cannot hold
any data records.

Figure 5.6 shows an example of the header of a page on a binary level. In addition
to 15 cells, we can also find at least one free block of offset 3620(0x0E24). The
content area in this example starts at 0x0DEC. The cell pointer array is highlighted
in yellow. Interestingly, we can find five more cell pointers shown in red. The value
of the surplus cell offsets corresponds to the start offset of the cell content area.
From this, we can conclude that apparently, five other records must have existed on
the page in the past. Nevertheless, they have been deleted in the meantime. Thus, in
addition to the 15 regular records, there should be five more deleted records on the
page. However, the deletion turned the cells into free blocks. So, to find and restore
them, we need to examine each element of the free block list.

Fig. 5.6: Sample header and cell content array for a data leaf page

It is not always possible to find all deleted records by checking the free blocks. If a
record is deleted that resides directly at the unallocated area, the offset value for the
cell content area start is moved up in the direction to a higher address. Of course,
this address denotes the cell pointer offset of the next regular record. The data set is
thus moved to the unallocated area by changing the border. We must consider this
case in our search since this record will never appear in the free block list.

However, it gets even worse. If a complete page is deleted, SQLite typically wipes
the first 4 Bytes of the header with zeros. So, in this case, the offset for the first free
block is erased. Thus, we do not know where precisely the list begins. What does
this, in turn, mean for our search for hidden records? The best way to approach our
search for slack areas is to use the exclusion principle. Slack space is the leftover
storage that exists on a page when records do not need all the space which has been
allocated. Slack areas are always created when records are deleted. Hence, the total
amount of slack space can thus be calculated as shown in the equation below.

5 SQLite 141

slack space with (possible) deleted content = page content
- header (8 bytes)
- N times 2-Byte cell pointer
- fragmented bytes
- N times cell

If we exclude the regular, well-known areas of the page, we automatically access the
slack areas. Only the areas determined in this way can contain deleted data artefacts.
In any case, we must always consider the unallocated space and the free block
list when searching within the page. Fortunately, leaf pages are always structured
the same. However, there is a second type of leaf page, the index leaf page. In its
structure, this page corresponds to a regular data leaf page, except for one difference.
The index leaf page starts with the value 0x0A at offset 0. However, what has been
said so far also remains valid for the second type of page.

5.2.5 Recovering Data Records

Now that we know the location of the records, we can start reading them. This
information can be derived from the cell offset array (see the last section). Every
cell has the same structure (see Fig. 5.7). The cell header opens with a payload
value. It indicates the total size of the cell in bytes. This value does not include the
cell header itself. Normally, the payload field is followed by the rowid (see sect.
5.2.3). As already explained, the pseudo-column is usually generated automatically
by SQLite. It is used to enable efficient access via the table tree. However, not all
records have a rowid. For example, index records are created without this field. If the
option "WITHOUT ROWID" is part of the CREATE TABLE statement, this field
is also missing. Thus, the cell header has a minimum size of 1 byte for a mandatory
payload value. The values in the cell header and all other header fields are varint
values without a fixed size. So to read a record, we always have to read value by
value. Skipping or omitting bytes is not possible because the fields do not have a
fixed offset. The actual cell starts again with a header. This time, it is the header of
the data record.

The header size field indicates how many bytes the header contains. Its value
includes the actual header size byte. The individual serial types follow immediately.
Column by column, we must first determine the storage class and space for each
table cell. The header is followed directly by the actual data record. Since we operate
on a binary level, the exact length of each field to be read and the data types can only
be determined via the serial bytes in the header. However, it might be challenging
to determine the exact beginning or end of the column cell values without this
information. An intact header is, therefore, an essential prerequisite for successful
data recovery.

142 Dirk Pawlaszczyk

•> Information

The recovery of deleted data depends on the data management policy used. This, of
course, differs from application to application. We can distinguish three cases:

1. Wipe with zeros. The free block is completely overwritten with zero-bytes.
Recovery of data is impossible even if the removed area is identified.

2. Truncate or remove deleted area. The second policy is made on a small size of
data. It deletes the record itself, and there is no way even to trace the occurrence
of deletion. Some iPhone system files are handled this way.

3. Add to a free list. The last policy is to mark the record or page as free. The
data itself remains in the database. This procedure generates the least I/O-traffic
compared to the other two strategies. It is therefore used as the default behaviour
of SQLite.

In the case of a data record that has been deleted, it sometimes happens that the cell
header and parts of the record header are replaced with new information [59]. These
new data fields cover the free block’s length in bytes and the address of the following
free block. Since both pieces of information are mapped to a 16-bit fixed-length
integer, a total of four bytes of the respective cell are overwritten. In total, we can
discern six situations when dealing with a deleted record (see Table 5.5).

Many records are deleted without being marked or overwritten. As explained
earlier, some records are deleted by merely moving the cell content area’s border
upwards. Thus, the records slip into the unallocated area of the page. When clearing
the browser cache, for example, almost all entries are removed from a caching table.
Instead of first marking each record as deleted, the links to the affected pages are
deleted from the table tree. Anything else would be a time-consuming process.
Instead, the page as a whole is skipped. In both cases, however, the deleted records
remain intact. Complete reconstruction is, therefore, possible. Sometimes a record is
removed from the middle of the content area of an active page. In this case, the record

Fig. 5.7: Schematic structure of a data leaf cell

5 SQLite 143

Table 5.5: Recovery Situations

Wiped Data Recoverability

cell is intact (no wiped bytes) yes
payload bytes yes
payload bytes + rowid yes
payload bytes + rowid + header length yes
payload bytes + rowid + header length + 1st serial partly
two or more serial type are wiped no

is converted to a free block. Thus, the beginning is overwritten, at least partially. The
previously occupied space will be released for reallocation. This, in turn, can result
in different cases that influence the recoverability of the data record. Sometimes
only the payload got wiped. In another case, the payload field, together with rowid,
may be overwritten. We can mostly do without this field information. As long as
the rest of the cell record remains intact, we can read the required column lengths
and types and correctly interpret the data. Even a wiped header length field should
not be a big problem. This field only holds the total length of the header. It can be
reconstructed by summing the individual serial lengths. It gets tricky when columns
are also overwritten. Without a valid column type and length specification for our
first column, we cannot reconstruct the remaining columns correctly. However, the
first column of a table is often an ID column with a numerical value. Knowing the
length of the first column of a regular record on the same page can indirectly infer the
first column’s length for our destroyed record. Unfortunately, this rule does not work
in every case. For example, if the first column contains a text with variable length,
we will most likely not restore the record correctly. If more than one serial type has
been overwritten, reconstruction seems unlikely. We then have too many possible
lengths to consider. Strictly speaking, the number of possible lengths for a column
grows exponentially with the number of overwritten length or type information in
the header.

Figure 5.8 shows the content area of a data leaf page. There are a total of three
records on the page. The cells are located at the end of the page. Remember, the
cell content area always grows from higher towards the lower address. The record in
the middle is deleted. The records before and after it are intact. Cell header, record
header and all data are unaltered. Even without knowledge of the table, it can be
deduced from the serial types alone that it is a table with apparently two columns.
The first column can store integers (serial types 0G02 resp. 0G03). The second column
is a string since the value is odd and greater than 13 (see sect. 5.2.2).

We can see that the second of the three data cells have been deleted because the
first 4 bytes of the data set have been overwritten with the free block identifier. The
identifier is 0G0000000�. The first two bytes have the value 0G0000. From this, we
can conclude that it is the last free block within the page. The second half of the
identifier tells us something about the length of the free block. It is exactly 12 bytes
(0G000�). The free block is outlined in red in the illustration.Aswe can see, the actual

144 Dirk Pawlaszczyk

Fig. 5.8: Example data page with three records (one is wiped)

data fields of the deleted record are still intact. However, the PPL-field, ROWID,
header length byte, and the first column’s serial type are no longer accessible. The
serial type of the second column is not wiped. From the length specification of the
free block and the knowledge about the length of the second column, we can infer
the length of the first column in this case. Accordingly, the first column of our data
set can only be 2 bytes in size:

length of the first column field =
12 byte (total free block length)

- 5 (0x15 -13 / 2) (length of text column)
- 4 (free block identifier)
- 1 (serial type byte for 2nd column)

Thus, we can recover deleted content in many cases, even when parts of the header
have been overwritten.

5.3 Accessing The Freelist

As soon as the last record on a page is deleted, it is transferred to the free list. At
the same time, the link within the table tree is removed. From now, the page cannot
be accessed from an active table. However, it can be assigned to a new table at any
time. Meanwhile, the content of the page is still accessible. Usually, it is not wiped or
replaced with random values. The pages are just sitting on the free list, waiting to be
used again. Like the slack areas in the standard database pages, these unused pages
may contain forensically exciting values such as chat protocols, short messages, or
web pages visited [61].

The freelist is a simple linked list consisting of trunk pages 5.9. Each trunk page
initially contains a 4-byte integer pointer referencing to the next trunk page in the list

5 SQLite 145

Fig. 5.9: Schematic principle of a freepage trunk list

[80]. A zero-byte value means that this is the last trunk page in the list, and the list
ends here. The second 4-byte value in a trunk page contains the number of leaf page
offsets. To analyse all the list pages, we must first visit each trunk page and query
the offsets stored. Nevertheless, where do we have to start our search for freelist
treasures?

The starting address for the freelist can be calculated very easily [59]. We must
first determine the start offset of the first trunk page from the header at offset 32 of
the database. Second, we need the page size. The latter can also be determined from
the header. From these two values, we can calculate the actual offset of the first trunk
page:

offset of 1st trunk page = (trunk page number - 1) * page size.

A trunk page consists of an array of 4-byte big-endian integers. As pointed out, the
first 4 bytes of the trunk page header references the next trunk page within the list.
The next, a four-byte big-endian integer holds the length of the leaf pointer array
of the current page. With these two pieces of information at hand, we can quickly
iterate over the array’s entries.

The basic algorithm is shown in Listing 1. An example of a trunk page will
illustrate what has been said so far (see Fig. 5.10). In addition to the reference to the
next trunk page at offset 0, the number of page pointers to follow is visible (offset 4).
The offset of the first free page can be found directly behind the two header integers
at Offset 8. The second pointer is exactly 4 bytes behind. In the example, there are
a total of 555 entries on the TrunkList page. The data size is therefore 8 + 555 *
4 = 2228 bytes. Thus, all unused pages can be found and accessed with linear time
complexity with the described algorithm.

146 Dirk Pawlaszczyk

Algorithm 1 Freelist Page Recovery
⊲ Input: SQLITE 31 filepointer

1: read ?064B8I4← 4 byte BE on byte 0x10
2: read trunk← for the first freelist trunk on byte 0x20
3: while trunk ≠ null do
4: BC0AC = (4 Byte BE in offset - 1) * ?064B8I4.
5: 31.seek(BC0AC) ⊲ go to start of the trunk page
6: read trunk← for the next freelist trunk page (4 Byte BE)
7: read ;4=6Cℎ← number of cell entries (4 Byte BE)
8: for 9 = 0, 1, . . . , ;4=6Cℎ − 1 do ⊲ iterate over trunk page array
9: 31.seek(BC0AC + 8 + (4 ∗ 9))
10: read freepage← next free page number
11: fpstart = (freepage - 1) * ?064B8I4.
12: 31.seek(fpstart) ⊲ go to start of next free page
13: readPage() ⊲ start analyzing the hidden page
14: end for
15: end while

Fig. 5.10: start of a freelist trunk page (example)

5.4 More Artefacts

As explained earlier, SQLite manages all records in a single database file. However,
access management, transaction handling, and integrity protection are performed
with the help of primarily additional temporary files [84]. Despite the main database
file, SQLite uses nine distinct types of temporary files (see Fig. 5.11). Below we will
take a look at the other file types of SQLite. The focus is on searching for records no
longer in the regular database but can still be found in one of those files.

5.4.1 Temporary File Types

SQLite creates several temporary files when managing the database. A transient
database, for example, is a temporarily created file when the database is reorganized.

5 SQLite 147

Data pages that are no longer required are removed. The whole process is comparable
to the defragmentation of a hard disk. Pages are joined together, and gaps are closed.
Then, the temporary file’s content is copied back into the original database file, and
the temporary file is deleted. However, this file type is generated only for databases
for which the VACUUM property is activated. Since the database copy is deleted
immediately afterwards, it is not easy to locate it on the disk. However, it might be
possible to find old page versions of the database on the medium through carving.
From time to time, SQLite makes use of transient indices. Each index is therefore
stored in a separate temporary file. For example, if the ORDER-BY or GROUP-BY
clause is used in an SQL statement, a corresponding index file is created to manage
the intermediate results. The index is automatically deleted at the end of the statement
that uses it.

In the case of complex SQL statements, partial queries are sometimes stored in a
temporary file. In SQLite, this method is called "materializing" the subquery. This is
the case, for example, with large SQL INNER JOIN statements. The query optimizer
decides for which query a separate swap file is created.

Database users can create a temporary table using the "CREATE TEMP TABLE"
command. Since this unique table is created only for a particular database connection
and is not visible to other database users, it is swapped out to a separate file. Again,
the temporary database file used to store temporary tables is removed automatically
when the database connection is closed. When SQLite performs a transaction with
multiple statements, a Statement Journal File can be used to undo individual steps.
Assume that by executing a statement, 100 rows of a table are modified. After half
of the records have been modified, the execution must be aborted due to an error.
The rows of the database that have been modified so far are written back with the
statement journal’s help. All five of the temporary file formats discussed can contain
data or temporary results of the database transactions. However, these data are highly
volatile. In most cases, the temporarily stored results are already deleted when the
statement is finished. Thus, it is not very likely for an investigator to come into
contact with such artefacts. We will, therefore, not consider them further.

There are four remaining file types in SQLite. Unlike the formats discussed so
far, these are files that are often encountered when examining a database. These files
are Rollback Journals, Write-ahead Logs, Shared-Memory Files as well as Super
Journals. They can usually be found in the same directory as the actual database file.
Admittedly, the data stored in it is also classified only temporary within the official
documentation of SQLite. However, the data stored in them is updated or overwritten
much less frequently. We almost always find one of these file types. For this reason,
these are also listed under the heading other permanent files in Fig. 5.11. Thus, the
chance to acquire data from these files is much more likely. However, in some cases,
the use of one file format excludes the use of the second. For example, the shared
memory file and write-ahead log are usually found together. In contrast, the rollback
journal is only found in a directory if the first-mentioned files are absent. Of the file
formats mentioned above, super journals are relatively rare. The files are created only
in transactions where multiple databases are updated simultaneously in an atomic
transaction. Accordingly, without a super-journal in place, transaction commit on

148 Dirk Pawlaszczyk

Fig. 5.11: The SQLite file types (permanent and temporary)

a multi-database transaction would be atomic for each database individually, but
it would not be atomic across all databases. Due to the relatively low usage level,
we will not take a closer look at this file format. Instead, we will focus on the two
remaining journal formats. Besides availability and confidentiality, data integrity
forms a central goal of every database system. SQLite is no exception. SQLite
maintains its integrity by using journals and transactions. Below we will examine
the two integrity protection techniques offered by SQLite inmore detail:Write-ahead
logs and Rollback Journals [80],[32].

5.4.2 Rollback Journals

The idea behind the rollbacks is simple: If a database gets into an inconsistent state
due to write access, it is reset to the last valid state. To implement atomic commit and
rollback capabilities, SQLite offers a file called rollback journal. Rollback refers to
resetting the individual processing steps of a database transaction [79]. The system
is thus wholly returned to the state before the start of the transaction. In the case
of SQLite, a copy is first created for all database pages possibly affected by the
transaction and stored in the rollback journal. If something goes wrong during
transaction processing, the database can always be reset to the last valid state if
required. Note: SQLite permanently stores the entire page in the journal file, even if
the transaction modifies only a single record.

A journal file is usually created when a new transaction is started and deleted after
the transaction is completed. Although this is the default behaviour, in many cases,
there is a deviation from this approach. For example, if the application developer
activates the exclusive locking mode for a database, then the rollback journal is not

5 SQLite 149

immediately deleted. An application can enable the exclusive locking mode by using
the following pragma-statement:

PRAGMA locking_mode=EXCLUSIVE;

In this case, the journal file may be truncated, or the file’s header may be wiped
with zero bytes. Which behaviour of this occurs depends on the SQLite version
used. However, the file is preserved in any case as long as the locking mode is
activated. Fortunately, many applications that use rollback journals for transaction
safety operate in thismode, reducing unnecessary IO operations. The same behaviour
as is seen in EXCLUSIVE locking mode can also be reached by setting the journal
mode pragma to PERSIST instead of DELETE which is the default behaviour in
SQLite:

PRAGMA journal_mode=PERSIST;

No matter which of the two modes is activated, an investigator can restore the old
execution states of the database. In this way, data records that may have been deleted
in the meantime can be made visible again.

•! Attention

The rollback journal file is always located in the same directory as the actual
database. One can quickly identify the journal by the file name: It has the same name
as the database but with the extension "-journal". Thus, the name of a journal file
is precisely eight characters longer than the original name of the database [84].

A rollback journal is a binary format. Just like the main database file, it contains a
small header. The header has a fixed size of a maximum of 28 bytes. The individual
header fields and their meanings are shown in Table 5.6. Next to the Magic Header
String, information about the total number of database pages stored in the journal.
The header also records the original size of the database file. So if a change causes
the database file to grow, we will still know the original size of the database. Unfor-
tunately, the fields carried in the header are usually automatically overwritten after a
COMMIT and wiped with null bytes. Thus, we will rarely be able to recover useful
information from it. However, the header is usually preserved if a transaction cannot
be completed due to a power down.

The journal file has a preset page size. The value can be determined via the offset
20 in the header. Even if this value can no longer be determined due to wiping, there
is a way out. The default value of the first sector is 512. The remaining space of the
first journal page is filled with zero bytes. Since the default page size is 512 bytes,
the header is thus always followed by a padding area of zero bytes. After the header
and padding area, zero or more page records will follow. Such a record contains
a copy of precisely one database page. Additionally, each record is introduced by
a one-field header. Only with this value, SQLite can reset the correct page in the
database in case of a rollback. On offset four, the original content of the database

150 Dirk Pawlaszczyk

Table 5.6: Rollback Journal Header Format

Offset Size Description

0 8 Header string: 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7
8 4 The "Page Count" - The number of pages in the next segment of the journal
12 4 A random nonce for the checksum
16 4 Initial size of the database in pages
20 4 Size of a disk sector.
24 4 Size of pages in this journal.

page follows. The journal page record ends again with a 4-byte big-endian value.
It holds the checksum for this page. The value is used to guard against incomplete
write operations.

Table 5.7: Rollback Journal Page Record Format [80]

Offset Size Description

0 4 The page number in the database file
4 N Original content of the page prior to the start of the transaction
N+4 4 Checksum

Since the header is always reset for each new transaction, the page records directly
following the header are always the most current. However, journal records of past
transactions can still be stored in the same journal. For example, suppose a transaction
changed ten database pages. The following transaction only rewrote five pages. In
that case, the database subsequently contains the database’s state before the last
transaction plus five more pages from the previous. The following example shows
the beginning of the second journal page of a rollback file:

0x1200	61746506 BAC4E54E 0000000B 0D000000	ate....N........
0x1210	0B0E2C00 0F620F35 0FC20F96 0F0E0EFD	..,..b.5........
0x1220	0ED10EB8 0E9A0E5A 0E2C0000 00000000Z.,......

0xBAC4E54E -> Checksum of the 1st journal records
0x0000000B -> page 11 in the database (start of the 2nd journal)
0x0D000000 -> start of a data leaf page (snapshot)

The start of 2nd journal record can be calculated as follows:

0x0200 1st sector (header + padding area) - 512 byte
+ 0x0004 page record page number (record start) - 4 byte
+ 0x1000 1st page in journal - 4096 byte
+ 0x0004 checksum of 1st journal page (record end) - 4 byte

0x1208 start offset of the 2nd journal record

5 SQLite 151

The example shows the end of the first journal page and the beginning of the second
journal frame. While the green highlighted value at offset 0x1204 still belongs to the
first journal page, the value at offset 0x1208 already initiates the next journal record.
Generically, the address of each journal could be determined as follows:

RecordBC0AC(N+1) = size of 1st sector + N × (page size + 8)

However, how can we determine whether the database’s journal page belongs to the
last transaction or is not perhaps older? A different random nonce is used each time
a transaction is started to minimize the risk that unwritten sectors might by chance
contain data from the same page that was a part of prior journals. The last nonce is a
4 Byte integer value and can be found at offset 12 in the journal header. By changing
the nonce for each transaction, stale data will still generate an incorrect checksum.
Since the entire page is always saved from the database, we can restore the actual
data described in section 5.2.5.

5.4.3 Write-Ahead Logs

As pointed out in the last section, a copy of the data page to be changed is first
created before writing directly into the database file in a classic rollback journal
[86]. Version 3.7.0 of the SQLite database engine introduced an alternative concept
for transaction management [84]. With write-ahead logs (WAL), this procedure is
reversed. The content of the original database file is not changed. Instead, every
change is appended into a separate WAL file. It works like a roll-forward journal. All
changes are first written to the WAL file. Even a COMMIT does not automatically
update the database file [79]. If, for example, other reading database connections exist
simultaneously, they can operate as usual on the original unaltered data. Meanwhile,
a concurrently running write process stores its changes into the WAL file. Moving
the WAL file transactions back into the database is called a checkpoint. Usually,
SQLite does a checkpoint automatically. If the WAL size reaches a threshold size
of 1000 pages, a checkpoint is triggered by default. As soon as we examine a
database that works in WAL mode, we must also analyse the included WAL archive.
Simultaneously, this also means that we may have different versions of the same
database page in the main database and the WAL file. As long as no checkpoint has
been carried out, the WAL file exclusively contains the latest changes. The database
is, therefore, still in an old state. If we look at both files together, we can get a
consistent view [86].

To access the content of a WAL file, all we have to do is open the corresponding
database file. When opening a WAL mode database, the WAL file’s content is auto-
matically transferred back to the database. In other words, a checkpoint is executed.
However, this procedure is usually not recommended for various reasons. With this
approach, old artefacts that are evidentially valuable to the investigator could be
overwritten and thus lost. Moreover, we would be violating a fundamental rule of
any forensic investigation: Never change the evidence.

152 Dirk Pawlaszczyk

•> Important

It is best not to work with a standard database viewer when evaluating a database
in WAL mode. Even by opening the database, one risks losing old data due to
checkpointing.

But how should we proceed then? One possibility is the use of a special forensic
database browser. An example would be the FQLite1 browser. This program reads the
database and theWAL file separately. Since access is read-only, all data is preserved.

•! Attention

A particular database will use either a rollback journal or a write-ahead log. It is
not possible to use both at the same time. The write-ahead log is always located in
the same directory as the actual database. One can quickly identify the journal by
the file name: It has the same name as the database but with the extension "-wal".

Let us now turn to the actual structure of the file. The WAL file starts with a header.
Zero or more so-called WAL-frames follow it. Just as with the rollback journal, a
frame represents the altered content of exactly one page of the database. The file
header has a size of exactly 32 bytes. It starts with a 4 byte long Magic Number (see
Table 5.8). At offset 4 follows the file format version. Again, this is a 4-byte unsigned
integer value. The size of one page of the database is stored at offset 8. Using the
field checkpoint sequence number at offset 12, we can again determine how many
checkpoints have already been executed since their creation.

Table 5.8: WAL Header Format [86]

Offset Size Description

0 4 Magic number. 0x377f0682 or 0x377f0683
4 4 File format version. For example 3007000.
8 4 Database page size. Example: 1024
12 4 Checkpoint sequence number
16 4 Salt-1: random integer incremented with each checkpoint
20 4 Salt-2: a different random number for each checkpoint
24 4 Checksum-1: First part of a checksum on the first 24 bytes of header
28 4 Checksum-2: Second part of the checksum on the first 24 bytes of header

The last fields of the header form two salt values and two checksum values. Using
these fields, we can determine which frames belong to the current checkpoint and

1 https://github.com/pawlaszczyk/fqlite

5 SQLite 153

have not yet been transferred to the database. Figure 5.12 shows an example of the
header of a WAL archive in FQLite.

Each WAL frame also starts with a header [84]. The structure of the header with
its fields is shown in Table 5.8. The header consists of exactly six big-endian values,
each with a size of 4 bytes. The first object is the page number this frame is assigned.
Using the page number, we can identify the place in the database where the change
takes effect. The value at offset four can be used to determine whether a COMMIT
was performed. A value other than 0 is a so-called commit frame. Let us remember
that a COMMIT does not automatically update the database. Like the header of the
WAL file, each frame header ends with two salt values and two checksums. The four
big-endian 32-bit unsigned integer values are located from Offset 8 to 24.

Fig. 5.12: View on a WhatsApp-DB WAL-Header with FQLite Carving Tool

AWAL archive always grows from the beginning. It can cause frames from different
checkpoints to appear in the same file, whereas current ones are always at the file’s
beginning. Fortunately, we can use the mentioned salt values to determine relatively
quickly whether the frame under consideration is valid or whether it belongs to
an older state already transferred to the database. Whether a frame is valid can be
determined as follows [86]:

1. The Salt-1 and Salt-2 values from the header must both match the values in the
respective frame.

2. The 8-byte checksum in the frame must match the cumulative checksum over
the first 24 bytes of the WAL header plus the first 8 bytes and the contents of all
previous frames.

If a checkpoint was executed successfully, the WAL file is reset afterwards. In this
case, the salt values are overwritten. The value of salt-1 is incremented, while a

154 Dirk Pawlaszczyk

Table 5.9: WAL Frame Header Format [86]

Offset Size Description

0 4 Page number
4 4 For commit records, the size of the database file in pages after the commit.

For all other records, zero.
8 4 Salt-1 copied from the WAL header
12 4 Salt-2 copied from the WAL header
16 4 Checksum-1: Cumulative checksum up through and including this page
20 4 Checksum-2: Second half of the cumulative checksum.

new random value is assigned to salt-2. Previously valid frames are automatically
discarded due to this procedure. However, the previous frames usually remain in
the archive due to the I/O- operations when the file is truncated. Thus, there is an
excellent chance to make past states of database pages visible again with the help of
the WAL file.

Let us take a look at how write-ahead logs work. Figure 5.13 shows the frames list
of a WAL file. Below the header field for the Salt-1 value, several frames are shown.
All frames with matching salt values belong to the same checkpoint. The first seven
frames thus form a unit. The remaining frames are part of an older checkpoint. As
we can see, the salt in the header matches the salt in the first unit. Accordingly, the
pages have not yet been transferred to the database. In other words, the WAL file
contains the latest version of page 2,4,6,18. The pages within the database are out of
date. The next checkpoint is usually executed when opening the database, and these
data records are transferred to the database. Since WAL files always work at a page
level, the complete database page is updated. Remember, the salt value changes for
each checkpoint. Thus the Salt-1 field in the header is discarded afterwards.

Interestingly, page 6 has been updated three times. When a checkpoint occurs,
each page will be written back to the database in the same order written to the WAL
file. Pages are written from the start of the WAL file. Accordingly, the update order
would be 2,6,4,12,6,18,6. This allows a timeline to be created, starting with the first
to the last update step.

5.5 Conclusions

The SQLite database format has great importance in the field of mobile forensics.
In this chapter, we have therefore tried to take a look behind the scenes. As quickly
became apparent, the file format of SQLite has some similarities to a classic file
system, where files are usually stored in blocks. Instead of blocks or clusters, data
content in SQLite is managed in pages. As has been shown, even records are often
recoverable after they have been deleted. Analogous to a file system, these are usually

5 SQLite 155

Fig. 5.13: Frame list of a WAL file (example)

not wiped but merely marked as deleted. However, we do not manage files but data
sets.

We further identified different slack spaces of an SQLite database. Besides free
blocks and the unallocated space, we can find deleted records, especially in the
freelist area of the database. The carving techniques discussed within this chapter
can help make these data sets visible again in many cases.

Of the temporary file-formats considered, rollback journals and the WAL files
are of particular interest to the investigator, as they may contain old or previously
altered data. However, special care must be taken when acquiring data from these
files. Thus, the data stored in a WAL file can be reconstructed manually or with
specialized forensic tools. Using an ordinary SQLite reader, on the other hand, can
lead to the loss of data.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 6
Property Lists

Christian Hummert and Georgina Louise Humphries

Abstract Property List files (*.plist) are a widely used data storage format used
by Apple software. Most of the system properties are stored in plists, but also,
many apps store their configuration in plist-files. The data held within Property is
regularly of high evidential value for forensic analysts, so understanding the format is
essential for the forensic investigation of Apple mobile devices and computers. Not
all of today’s digital forensics tools recover plists properly. Especially for carved or
damaged plists, the support is insufficient. So the forensic examiner must understand
the principles of this file format. This chapter gives an overview of the plist structure
to give the examiner the knowledge to get the most information out of the evidence
possible.

6.1 Introduction

Property List files (*.plist) are one of the widely used data storage formats used
by Apple software . Most of the system properties are stored in plists (many of
them are located in /Library/Preferences/), but many apps store their configuration
in plist-files. Therefore, property lists can be found in various places on Apple
systems. They sometimes can even be found on devices other than Apple operating
systems (especially if other Apple software like Safari or iTunes is installed). The
data held within Property is regularly of high evidential value for forensic analysts, so
understanding the format is essential for the forensic investigation of Apple mobile
devices and computers.

Christian Hummert
Agentur für Innvation in der Cybersicherheit, Halle, Germany, e-mail: hummert@cyberagentur.
de

Georgina Louise Humphries
Politihøgskolen - Norwegian Police University College Department of Postgraduate Studies, Oslo,
Norway, e-mail: georgina.louise.humphries@phs.no

157© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_6

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

hummert@cyberagentur.de
hummert@cyberagentur.de
https://doi.org/10.1007/978-3-030-98467-0_6
mailto:georgina.louise.humphries@phs.no
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_6&domain=pdf

158 Christian Hummert and Georgina Louise Humphries

Property lists offer a structured and efficient way to represent and persist hierarchies
of objects to disk. They are the standard way to save and load data between the
internal representation within objects in Objective-C or Swift programs and disk
files. The standard objects of the Cocoa framework have built-in methods to deal
with plist files.

The first plists were developed with the NeXTSTEP operating system. NeXT-
STEP is a discontinued operating system that merges the Mach kernel and the BSD
kernel. It was developed by NeXT, a company founded by Steve Jobs in 1985, and
released in 1989. NeXTSTEP had a text-based, human-readable format for plists,
serialized to ASCII in a syntax somewhat like a programming language. Apple
replaced the format with an XML-based format and also introduced the binary plist
format. Since Mac OS X 10.7, in addition, JSON notation can be read and written.
So, there are four different property list formats[9]:

• NeXTSTEP property lists (deprecated since OS X 10.0)
• XML property lists (introduced with OS X 10.0)
• Binary property lists (introduced with OS X 10.2)
• JSON property lists (introduced with OS X 10.7, but not 100% compatible)

The formats except the binary plist have the advantage of being human-readable.
In contrast, the binary plist offers the most efficient representation on disk and fast
serialization/deserialization. OS X offers the plutil utility (introduced in OS X 10.2)
to check the syntax of property lists or convert a property list file from one format
to another. It also supports converting plists to Objective-C or Swift object literals.
Another tool that comes with OS X is PlistBuddy (it can be found at /usr/libexec).
PlistBuddy allows to merge plists or edit their content.

Property Lists in XML or JSON notation can be easily edited and evaluated in
any desired text editor. Apples IDE Xcode also contains a hierarchical viewer and
editor for binary and XML plists. In addition, Apple offers an Apple Script interface
to create, edit and write property lists (since OS X 10.5). Due to the human-readable
notation of NeXTSTEP, XML and JSON property lists, they are not an obstacle for
forensic investigates. Therefore, this chapter concentrates on the binary plists (bplist)
format and will afterwards describe some of the interfaces to plist files.

6.2 Binary plist Structure

Apple disclosed the structure of the binary property list format; it is documented in the
comments of the Apple-provided open-source CFBinaryPList.c1 and declarations of
the ForFoundationOnly.h2. Every binary plist file comprises four sections: a header,
an object table, an offset table and a trailer (compare table 6.1).

Each bplist file begins with an 6-byte header, containing the magic bplist (Hex:
0x62706C697374). The header is followed by a 2-bye version. The most common

1 https://opensource.apple.com/source/CF/CF-550/CFBinaryPList.c
2 https://opensource.apple.com/source/CF/CF-550/ForFoundationOnly.h

6 Property Lists 159

Table 6.1: Structure of a bplist file.

Offset Size Description

0x00 6 bplist header (0x62706C697374)
0x06 2 format version
0x08 LEN1 object table
0x08 + LEN1 LEN2 offset table
0x08 + LEN1 + LEN2 32 trailer

version on Apple devices is 00, but there are at least two other versions of binary
property lists, too; bplist15 or bplist16 occur. Unlike for bplist00, there is
no documentation for either format. The bplist15 format appears to be internal to
CoreFoundation. The bplist16 format is internal to Foundation, too, and is used
almost exclusively in Objective-C remoting over XPC. The format of bplist16 is
similar, but not compatible with bplist00, noting the following differences: Files
in format version 16 do not have a trailer, and the items start directly at the head
of the property list, right after the bplist16 magic, and are packed (not aligned). In
addition, in bplist16 there are more data types available.[47]

The bplist file ends with a 32-byte long trailer. The structure of the trailer is
shown in table 6.2. The bytes 0 to 4 of the trailer are unused. Byte 5 contains the
sort version. Byte 6 stores the information of the size in byte of each offset entry
in the offset table. Similarly, byte 7 stores the information of the size of each object
reference in a container. At offset 0x8, there is an 8-byte entry that saves the number
of objects that are encoded inside the object table. The following 8 bytes save the
offset of the first offset in the offset table (usually zero). The last 8 bytes of the trailer
denotes the start of the offset table, counting from the start of the bplist.

Table 6.2: Structure of the bplist trailer.

Offset Length Description

0x0 5 unused
0x5 1 sort version
0x6 1 size per offset in offset table in bytes
0x7 1 size per object reference in a container
0x8 8 number of objects in object table (big endian)
0x10 8 offset of the first offset in the offset table (big endian)
0x18 8 offset of the offset table (big endian)

The second section in every bplist file is the object table. The object table contains
all the data objects of the plist. All object types are identified by a single byte, also
called a marker (compare Table 6.3). This byte encodes the type of an object and the
size of the data.

160 Christian Hummert and Georgina Louise Humphries

Table 6.3: Format of object types.

Object Marker (Additional Info) Description

null 0000 0000
bool 0000 1000 false
bool 0000 1001 true
fill 0000 1111 fill byte
int 0001 nnnn . . . 2^nnnn bytes (big endian)
real 0010 nnnn . . . 2^nnnn bytes (big endian)
date 0011 0011 . . . 8 byte float (big endian)
data 0100 nnnn [int] . . . nnnn bytes unless 1111 then [int]

count followed by bytes
string 0101 nnnn [int] . . . nnnn chars unless 1111 then [int]

count followed by bytes
string 0110 nnnn [int] . . . Unicode string, nnnn chars unless

1111 then [int] count followed by
bytes

0111 xxxx unused
uid 1000 nnnn . . . nnnn+1 bytes

1001 xxxx unused
array 1010 nnnn [int] objref* nnnn entries unless 1111 then [int]

count followed by entries
1011 xxxx unused

set 1100 nnnn [int] objref* unused
dict 1101 nnnn [int] keyref* nnnn entries unless 1111 then [int]

count followed by entries
1110 xxxx unused
1111 xxxx unused

The marker is the binary representation of a single byte. All other objects can be
uniquely identified by the marker byte’s 4 most significant bits (MSB). At the same
time, the least significant bits (LSB) of the marker byte denotes sizing information. If
the object size is small enough, the size is encoded immediately in the 4 right-most
bits, and then the actual data values follow. If the object size is larger, the LSB
matches 0xF (1111), denoting that the next bytes encode size information before the
actual value bytes.

The size is encoded as follows: TheMSB equals 0x1 (0001), and the LSB contains
a value G. The size will be stored in the following 2G bytes in big-endian.

For example: let us assume the object table contains the sequence 0x5F 10 19.
The first 0x5F is converted into its binary representation 0101 1111. The MSB is
0101, so the object denotes a string. The LSB matches 1111, so the size is encoded
in the next byte. The next byte is 0x10 = 0001 0000. The MSB equals 0x1, and the
LSB shows that 20 = 1 byte follows, which stores the size of the string. The next
byte is 0x19 resulting in a 25-byte long string.

Markers corresponding to objects such as ints, real numbers, strings are imme-
diately followed by a multibyte sequence representing their actual values. This is
not always the case, though. In the case of object containers, such as arrays and

6 Property Lists 161

dictionaries, the marker byte is followed by object references that are simply offset
to the offset table. The length of this offsets is determined in the bplist trailer, and
are counted from the beginning of the offset table. Therefore, a container element is
just a reference that points back to a position in the offset table, which points back to
the object table and specifically to a marker corresponding to the individual object.
This technique flat-maps the actual multi-level hierarchy and allows all objects to
have fixed sizes.

The third section in bplists contains offsets to the object table and guides to the
actual values of objects. The size of each offset is defined in the file trailer. All offsets
are calculated from the beginning of the file (not the end of the header). The number
of offsets stored in the offset table is also given in the trailer.[40]

6.3 Example

Given is the following plist (Table 6.4) from a MacBook Pro:

Table 6.4: Example plist (object table colored in blue, offset table colored in red,
trailer colored in yellow).

62 70 6C 69 73 74 30 30 D2 01 02 03 04 5E 42 61 b p l i s t 0 0 “ ˆ B a
74 74 65 72 79 48 69 73 74 6F 72 79 5F 10 13 54 t t e r y H i s t o r y _ T
6F 74 61 6C 4E 75 6D 62 65 72 6F 66 45 76 65 6E o t a l N u m b e r O f E v e n
74 73 09 10 0A 08 0D 1C 32 33 00 00 00 00 00 00 t s - 2 3
01 01 00 00 00 00 00 00 00 05 00 00 00 00 00 00
00 00 00 00 00 00 00 00 35 5

The given bplist is version 00 as the header states. To analyze the bplist in a first step
the trailer is marked (here yellow) the trailer comprises the last 32 bytes of the file.
Now the trailer can be decoded (result in Table 6.5):

Table 6.5: Decoded example bplist trailer.

Content Offset Length Description

0x00 0x5 1 sort version
0x01 0x6 1 size per offset in offset table
0x01 0x7 1 size per object reference
0x0000000000000005 0x8 8 number of objects in object table
0x0000000000000000 0x10 8 offset of the first offset in offset table
0x0000000000000035 0x18 8 offset of the offset table

Now, it is clear that the bplist contains five objects in the object table, and the offset
table starts at 0x35, whereas the first object-offset starts at 0x35 + 0x00, and each

162 Christian Hummert and Georgina Louise Humphries

offset has the size of one single byte. In consequence, the offsets from the offset table
are 0x08, 0x0D, 0x1C, 0x32 and 0x33, which leads to the following four objects
from the object table:

1. 0xD2 01 02 03 04
2. 0x5E 42 61 74 74 65 . . .
3. 0x5F 10 13 54 6F 74 . . .
4. 0x09
5. 0x10 0A

The first object starts with 0xD2, which is 1101 0010 in binary. The MSB (1101)
shows that the object-type is a dictionary. The LSB (0010 = 2) shows that the
dictionary has two entries. The data 0x01 02 03 04 has to be interpreted as object
references that are simply offsets to the offset table. Before interpreting the dictionary
as an object container, the other four entries should be decoded.

The second object starts with 0x5E, which is 0101 1110 in binary. The MSB
(0101) shows that the object type is a string. The LSB (1110 = 14) shows that the
string is 14 chars long. The content of the string is "BatteryHistory".

The third object starts with 0x5F, which is 0101 1111 in binary. The MSAB
(0101) shows that the object is another string. The LSB (1111) shows that the string
is longer than 14 chars, and the size is encoded in the following bytes. The next byte
is 0x10, which is 0001 0000 in binary. The MSB (0001) is defined as 0001, and the
LSB (0000) shows that the following 20 = 1 bytes encode the length of the string
size. So the next byte has to be decoded. It is 0x13, which states that the string has a
length of 0x13 = 19 chars. The content of the string is "TotalNumberOfEvents".

The fourth object starts with 0x09, which is 0000 1001 in binary. TheMSB (0000)
indicates the object as bool, and the LSB (1001) indicates the content as "true".

The fifth object starts with 0x10, which is 0001 0000 in binary. The MSB (0001)
indicates the object as an integer. The LSB indicates that the integer is 20 = 1 byte
long. The content of the integer is 0x0A which is 10. Now the dictionary (the first
object) can be decoded. The dictionary has two entries: the objects at offset 0x01
and 0x02 in the offset table, which are the two strings. The first entry is connected
to the object on offset 0x03, which is the boolean. The second entry is connected to
the object on offset 0x04, which is the integer. That gives the following result (Table
6.6):

Table 6.6: Decoded example bplist.

dictionary (2 entries)
BatteryHistory TRUE
TotalNumberOfEvents 10

Fig. 6.1 shows the same plist file decoded with Apples XCode IDE and confirms the
correct decoding.

6 Property Lists 163

Fig. 6.1: Illustration of the elements of a block group.

6.4 Forensic Tools Supporting plists

There is quite a bunch of tools supporting the decoding of plist files. Most of the
tools support binary plists as well as XML property lists. As the property lists are in
an Apple format, the macOS universe gives the best support. If the given property
list file is in XML format, it can be edited in any text editor. On the other hand, if
the given property list file is in the binary format, it can be converted to XML first
by running on the macOS shell:

plutil -convert xml1 file.plist

If an XML property list should be converted back this is possible with:

plutil -convert binary1 file.plist

A more convenient way to edit and browse plist files is to install the Apple devel-
opment platform Xcode. The suite includes a graphical editor which is easy to use
(compare Fig. 6.2).

For old versions (Xcode 4.2 and earlier) there was a separate application for
editing property lists (/Developer/Applications/Utilities/Property List Editor.app/).

Nevertheless, despite the Apple world, there are plenty of alternatives. One free
plist parser for binary property lists is binplist 3 a parser module written in Python.
For forensic use, it is possible to create an instance of the BinaryPlist class and then
call the Parse() method, with a file-like object as an argument.

with open("myfile.plist", "rb") as fd:
bplist = BinaryPlist(fd)
top_level_object = bplist.Parse(fd)

The Parse() method returns the top-level object, just as readPlist. Once parsed,
BinaryPlist. is_corrupt can be checked to recognize whether the plist had corrupt
data. This allows to maybe decode the corrupted data manually and gather the
maximum information on the plist even when they are corrupt.

3 https://github.com/google/binplist

164 Christian Hummert and Georgina Louise Humphries

Fig. 6.2: View of an example plist in the Xcode editor.

Another Python module dealing with binary property lists is ccl-bplist4. A C-library
to handle plists is libplist5.

Forensic Suites on Windows create a different picture. The MSAB Forensic suite6
offers property list decoding as well as the Cellebrite7 suite. Oxygen Forensics8
offers the Oxygen Forensic Plist Viewer that automatically unpacks one plist file and
displays its content as a folder tree (compare Fig. 6.3). The entries can be converted
to different encodings. In addition, the binary content of cells, such as images,
video and sound, can be decoded and visualized. The Forensic Toolkit (FTK)9 does
support plist decoding, whereas the Encase Forensic Software10 offers a plugin script
to decode these files.

4 https://code.google.com/archive/p/ccl-bplist/
5 https://github.com/JonathanBeck/libplist
6 https://www.msab.com/
7 https://www.cellebrite.com/
8 www.oxygen-forensic.com
9 https://accessdata.com/products-services/forensic-toolkit-ftk
10 https://security.opentext.com/encase-forensic

6 Property Lists 165

Fig. 6.3: View of an example plist in the Oxygen Forensic Plist Viewer.

6.5 Conclusions

Property Lists have great importance in the field of mobile forensics. In this chapter,
a look behind the scenes was given. There are four different types of property lists.
The chapter concentrated on the binary property list format because it is not intuitive
to decode and has a certain prevalence. The binary property list format contains a
header, a trailer and an object table. The type of the single objects can be found in a
look-up table.

There are plenty of tools that support the decoding of plist files. But in a forensic
manner, information from corrupted files (especially parts of files carved from the
unallocated space) must be revealed. To fulfill this challenge, deep knowledge about
file structures is crucial.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 7
Java Serialization

Dirk Pawlaszczyk

Abstract Java Serialization is a popular technique for storing object states in the
Java programming language. In the field of mobile forensics, we come across such
artefacts. App developers very often resort to this technique to make their application
state persistent. Serialization is also used when transferring data over a network
between two Java applications using Remote Method Invocation(RMI). In the past,
there have been recurring security issues associated with this technology. Despite
its importance for forensic casework, one can hardly find any literature on this
topic. In this chapter, we give an insight into the binary format. For this purpose,
special features of the format are presented using an example. In addition to the
actual protocol structure, basic steps for acquiring such data and analyzing it will be
discussed. Practical hints for searching serials are given. Finally, the security issues
are addressed.

7.1 Introduction

Among app developers, the Java programming language has been the first choice for
many years. The popularity of the language can be attributed to its simple syntax and
compelling framework. As with any object-oriented language, the execution state of
the program is managed through objects. From time to time, an application needs to
back up its current state to disk. Of course, it is possible to store important data in
a database such as SQLite. However, this usually requires object-relational mapping
to be performed first. From the beginning, Java offers an alternative for persistent
writing of objects: the so-called Java Object Serialization (JOS) [93]. Java’s standard
serialization seems to be a good choice, especially for app developers who want to
store objects’ current execution state. By serialization, we understand the ability to

Faculty for Applied Computer Science
University of Applied Sciences (Hochschule Mittweida), Technikumplatz 17, 09648 Mittweida,
Germany, e-mail: pawlaszc@hs-mittweida.de

167© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_7

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:pawlaszc@hs-mittweida.de
https://doi.org/10.1007/978-3-030-98467-0_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_7&domain=pdf

168 Dirk Pawlaszczyk

convert an object in the application’s main memory into a format that allows the
object to be written to a file or transported over a network connection.

Since many apps rely on this format by default to store their program data,
investigators are of particular interest. This chapter will take a closer look behind the
scenes at the Standard Serialization concept in Java. We pay special attention to the
binary format and explore how to analyze this file type.

7.2 Object Serialization in Java

7.2.1 Serialization Techniques in Java

Under Java SE, objects can be automatically mapped and stored persistently using
various approaches [91], [54]:

• Standard serialization: The object structure and states are saved in a binary
format. As already mentioned, this procedure is also called Java Object Serial-
ization (JOS). Standard serialization is very important for remote method calls
and storing things over time and then retrieving them from the closet at some
point.

• XML serialization via JavaBeans Persistence: JavaBeans - and only such - can
be saved in an XML format. One solution is JavaBeans Persistence (JBP), which
was originally intended for Swing. When the state of a graphical user interface
is binary persisted with JOS, changes to the Swing API’s internals are not easily
possible since the binary format of JOS is very tightly coupled with the object
model. That is, objects sometimes cannot be reconstructed from the binary
document. JBP decouples this by communicating only through setters/getters
and not on internal references, which are an implementation detail, which can
change at any time. Nowadays, JBP hardly plays a role in practice.

• XML mapping via JAXB:With JAXB, a second API is available for mapping
the object structure to XML documents. The eXtensible Markup Language
(XML) supports a text-based data format based on markups. The platform-
independent exchange format is part of the standard library from version 6. It is
a fundamental technology, especially for Web service calls.

All three options are already built into Java by default. The standard object serializa-
tion creates a binary format and is very strongly oriented towards Java. Other systems
cannot do much with the data. XML is convenient as a format because other sys-
tems can process it. Another compact binary format that also allows interoperability
is Protocol Buffers 1 from Google. The company uses it internally when different
applications are to exchange data.

Finally, objects can also be stored in relational databases called object-relational
mapping (OR mapping). This technique is very sophisticated because the object

1 http://code.google.com/p/protobuf/

7 Java Serialization 169

models and tables are quite different. The Java SE does not offer any support for
OR mapping, but it can be done with additional frameworks, such as the JPA (Java
Persistence API).

7.2.2 Serialization by Example

The traditional way from an object to persistent storage is via Java’s serialization
mechanism [57][54]. JOS is the technology we want to deal with in the following.
The standard serialization offers a simple possibility to make objects persistent
and to reconstruct them later. The object state (no static ones!) is written into a
byte stream (serialization). From this, it can be reconstructed to an object again
later (deserialization). The object state is written into a serial data stream of 0
and 1. Java provides two special classes for this purpose: ObjectOutputStream and
ObjectInputStream with a writeObject() respectively readObject()-method. Both
classes can be found in the java.io package of the Java standard class library 2.
To save an object’s state, we must pass the object reference as a parameter to the
writeObject()-method. In the Java ecosystem, the applications programmers are
encouraged to use serialization almost everywhere.

Fig. 7.1: Java Object Serialization (JOS) - Concept

Serialization concept can show its strengths, especially in communication between
different Java processes distributed over a network. We serialize some of the objects,
send them to another process for processing, serialize the transformed object and send

2 https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html

170 Dirk Pawlaszczyk

it back. To illustrate this, we will discuss a small example program. In the following,
we want to make a class SaveMe serializable. For this, we need the following code:

Listing 7.1: Class definition of a class to serialize
impo r t j a v a . i o . S e r i a l i z a b l e ;

p u b l i c c l a s s SaveMe implemen t s S e r i a l i z a b l e {

p r i v a t e s t a t i c f i n a l l ong s e r i a lV e r s i o nU ID = 1L ;
p r i v a t e i n t x ;
p r i v a t e doub l e d ;
p r i v a t e S t r i n g s ;

p u b l i c SaveMe () {
t h i s (100 , 3 . 1 4 , " h e l l o ") ;

}

p u b l i c SaveMe (i n t x , doub l e d , S t r i n g s) {
t h i s . x = x ;
t h i s . d = d ;
t h i s . s = s ;

}

p u b l i c S t r i n g t o S t r i n g () {
r e t u r n s + " " + x + " " + d ;

}
}

In Listing 1.1, the class SaveMe is defined first. In order for objects to be Serialized,
the classes must implement the Serializable interface. This interface thus serves as
a marker to indicate that the class can be Serialized.

•! Attention

When serializing an object, only its attributes are stored. Methods or program code
remains in the .class file.

Java is assigning a serial number to each object of the class it writes to a stream.
This serial number is then used to re-create the class when it is reread. If two
variables contain references to the same object and we write the objects to a file
and later read them from the file, then the two objects that are read will again be
references to the same object. All attributes of an object can be made persistent in
this way. However, there are two exceptions. Attributes defined with the prefixed
key transient are not Serialized. This identifier was explicitly introduced to exclude
an attribute from Serialization. It can be helpful, for example, if confidential or
volatile data should not be saved. The second exception is class attributes preceded
by the keyword static. With one exception, such attributes shared by all objects
of a class are not Serialized. In our example, there are no transient attributes and
only one static class attribute. Since the serialVersionUID property is defined as

7 Java Serialization 171

static and thus should not be stored. In this case, however, an exception is made.
In Java, serialVersionUID is like version control, ensuring that both Serialized and
deSerialized objects use the compatible class. For example, if an object is saved into
a stream with serialVersionUID=1L, when we convert the stream back to an object,
we must use the same serialVersionUID=1L. Otherwise, an InvalidClassException
is thrown.

If we create a SaveMe object >1 and call FA8C4$1 942C (>1), the ObjectOutput-
Stream pushes the variable assignments (here G, 3 and B) into the data stream. An
example is shown in the next listing:

Listing 7.2: Output Class ‘Serializer’
impo r t j a v a . i o . ∗ ;

p u b l i c c l a s s S e r i a l i z e r {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) t h rows IOExec tp ion {
Ob j e c tOu tpu tS t r e am o =

new Ob j e c tOu tpu tS t r e am (
new F i l eOu t p u t S t r e am (" saved . s e r ")) ;

SaveMe o1 = new SaveMe () ;
o . w r i t eOb j e c t (o1) ;
o . c l o s e () ;

}}

This routine creates a file, saved.bin, on the disk that contains the serialized object.
With a few lines, the state of our object >1 can be saved to a file. In the example
shown, the serialized object is written to a file. To send the object over the network,
we have to create an object of the Socket class and start writing to the output stream
of this class:

Listing 7.3: Output to a socket connection instead of a file
. . .
Socke t c o n n e c t i o n = new Socke t (hostName , portNumber) ;
O jbec tOu tpu tS t r e am oos = new

Ob j e c tOu tpu tS t r e am (c o nn e c t i o n . g e tOu t pu tS t r e am () , t r u e) ;
oos . w r i t eOb j e c t (o1) ;

We only need to adjust two lines in our program, and we are ready to go. It could
not be simpler. However, this form of serialization also has disadvantages. Standard
serialization works according to the principle: Everything reached from the object
graph enters the data stream serialized. Suppose the object graph is extensive, the
time for serialization and the data volume increase.Unlike other persistence concepts,
it is not possible to write only the changes. For example, if only one attribute value
has changed in an extended object list, the entire list must be rewritten. This is not
efficient. However, let us focus on analyzing the binary format.

The output file <saved.ser> from the above example has a size of 80 bytes. The
content of the file can be seen in Fig. 7.2. In addition to the actual attribute values,
information about data type and class type is also stored in the file. Fig. 7.3 offers
a high-level look at the serialization algorithm for this example. In the next section,

172 Dirk Pawlaszczyk

Fig. 7.2: Hex view of the serialized object >1

we will take a closer look a the serialized format of the object and see what each
byte represents.

Fig. 7.3: Outline of the Serialization steps for class SaveMe

7.3 Java Object Serialization Protocol Revealed

As already discussed, Java’s object Serialization creates a binary stream. Unlike
JavaBeans persistence, for example, it is not readable by humans. Fortunately, the
format is well documented. Oracle provides corresponding documentation on its
website in which details of the Object Serialization Stream Protocol are presented
[56]. The specification defines context-free grammar for the stream format. It gives
a good insight into the Serialization process. The stream rules formulated in it are
used directly in the Serialization of an object. In addition, a look at the source
code of the ObjectOutputStream class reveals a lot about concrete implementation.
Fig. 7.4 shows the first part of the grammar using a syntax diagram. It defines a set of

7 Java Serialization 173

production rules (<'=>). These rules can then be used directly to generate an object
data stream.

Fig. 7.4: Syntax-diagram for the Java Object Serialization Protocol (Header Detail)

The syntax diagram for this is thus as follows: Definitions of symbols are followed
by a ":". We first distinguish between the terminal and non-terminal symbols. The
latter can be recognised by the fact that they consist of a literal enclosed in double
quotes. Constant values are enclosed in an oval. A rectangle marks non-terminals.
A sequence of values is represented as a series of symbols on the same line. The
individual values can be found precisely in this order in the stream. A definition
consists of zero or more alternative values. Alternatives are indicated by a branch
(exclusive OR).

Let us now turn to the concrete meaning of the rules. Each object stream initially
consists of a magic number, the version number and the actual content specification
('1). A magic number opens the data stream. The 2-byte integer value resides on
offset 0. On offset two, the stream version field follows. According to the internal
specification, this is assigned to value 0x0005 ('3). Thus, a Java object stream can
be detected with the help of the header signature 0XACED0005 ('2 + '3). This
information is beneficial when carving to serial format files on disk. The actual
content directly follows the header in the data stream.

The contents field is defined recursively (see '4). Thus it can hold multiple
content objects. A content object is first divided into an object description and a
data block with the concrete attribute values ('5). Thus, valid values for a content
element are objects, classes, arrays, strings, enumerations, exceptions ('6). In this
way, all elements of a class and its objects can be described. Within the byte stream,

174 Dirk Pawlaszczyk

limiter symbols indicate the type, start and end of particular elements. These terminal
constants (TC) are shown in Table 7.1.

Fig. 7.5: Syntax-diagram for the ‘newClass’production rule

Table 7.1: Stream Terminal Constants (TC)

Constant Value(hex)

TC_NULL 0x70
TC_REFERENCE 0x71
TC_CLASSDESC 0x72
TC_OBJECT 0x73
TC_STRING 0x74
TC_ARRAY 0x75
TC_CLASS 0x76
TC_BLOCKDATA 0x77
TC_ENDBLOCKDATA 0x78
TC_RESET 0x79
TC_BLOCKDATALONG 0x7A
TC_EXCEPTION 0x7B
TC_LONGSTRING 0x7C
TC_PROXYCLASSDESC 0x7D
TC_ENUM 0x7E
baseWireHandle 0x7E0000

Fig. 7.5 describes the syntax definition for a class. Besides the class name, the
SerializationUUID and ClassDescInfo elements are of particular importance (see
'10). Note: A corresponding class description must first be placed in the data stream

7 Java Serialization 175

for each object to be Serialized. It contains information about attribute names and
data types. If the class has been derived from a special super-class, the class must,
of course, also be Serialized. Since attributes of the super-class are also inherited in
the deriving class, we must also capture them. If the super-class, in turn, has a parent
class, then this must also be described. Inheritance relationships thus significantly
increase the data stream. Fortunately, Java supports only single inheritance.

Particular attention should be paid to the symbol TC_CLASSDEC. It is used to
show the start of a new class definition. The byte TC_OBJECT (0x73) represents the
start of an object. A data block (TC_BLOCKDATA) is in turn initiated by the byte
value 0x77. We need to search the serial stream for these symbols to make the data
visible. The constant baseWireHandle is of particular importance. Each Serialized
element is assigned to such a handle. The first Serialized element contains the handle
0x7E0000, the next object is the trade 0x7E00001 and so on. In this way, for example,
an object can reference its class.

Table 7.2: Type Codes / Stream Symbols for Primitive Types

Symbol Datatype

B byte
C char
D double
F float
I integer
J long
S short
Z boolean

Table 7.2 shows the identifiers used in the stream for the eight built-in data types in
Java. We can now start decoding the first part of our sample file <saved.ser> with
what we have discussed so far (see below). As discussed above, the binary stream is
opened by the magic number (0xACED) and the stream version (0x0005). The next
byte indicates that this is an object that follows (0x73). The following byte introduces
the class identifier (0x72).

•> Important

Java serialized objects have a specific signature. We can use it to identify an object
stream. The binary value is 0xACED0005. It translates to BASE64 as “rO0ABQ==”
in a HTTP-Stream for example.

The sub-element is composed of the className. The class name is again composed
of a length specification 0x0006 and the actual name string 0x536176654D65.

176 Dirk Pawlaszczyk

0x00	ACED0005 73720006 53617665 4D650000sr..SaveMe..
0x10	00000000 00010200 03440001 64490001D..dI..
0x20	784C0001 73740012 4C6A6176 612F6C61	xL..st..Ljava/la
0x30	6E672F53 7472696E 673B7870 40091EB8	ng/String;xp@...
0x40	51EB851F 00000064 74000568 656C6C6F	Q......dt..hello

STREAM_MAGIC - 0xACED
STREAM_VERSION - 0x0005
Contents
TC_OBJECT - 0x73

TC_CLASSDESC - 0x72
className
Length - 6 - 0x0006
Value - SaveMe - 0x536176654d65

serialVersionUID - 0x0000000000000001
newHandle 0x007E0000
classDescFlags - 0x02 - SC_SERIALIZABLE
fieldCount - 3 - 0x0003
Fields
0: Double - D - 0x44

field name ’x’
Length - 1 - 0x00 01
Value - d - 0x64

1: Int - I - 0x49
field name ’d’
Length - 1 - 0x00 01
Value - x - 0x78

2: Object - L - 0x4C
field name ’s’
Length - 1 - 0x00 01
Value - s - 0x73
class name
TC_STRING - 0x74
newHandle 0x007E0001
Length - 18 - 0x00 12
Value - Ljava/lang/String; -
0x4C6A6176612F6C616E672F537472696E673B

classAnnotations
TC_ENDBLOCKDATA - 0x78

superClassDesc
TC_NULL - 0x70. <- end of class description

integer. The value in the example is 0x0000000000000001. The SaveMe class is
internally assigned with the handle 0x007e0000. The handle never appears directly
in the stream. Only if later, a stream element again refers to the class will be visible
in the stream. Various flags typically follow the class name. This flag indicates that
this class supports serialization (0x02). Now we have to read out the actual attribute
values. They follow directly after the class description. The object we stored in the
above example has a total of three more attributes: ’x’, ’d’ and ’s’. Since the serial
number attribute is not counted, the property fieldcount has the value 0x0003. The
individual attribute descriptions with a data type, name and length specification

7 Java Serialization 177

follow directly afterwards (see Fig. 7.6). The string attribute is different here. Since
this value itself is an object and not a primitive data type, it is also handled. Again,
this is not displayed in binary code. However, Java carries an internal counter. The
TC_ENDBLOCKDATA (0x78) value marks the end of the class description. Next,
the serialization algorithm checks to see if the current class has any parent classes.
If it did, the algorithm would start writing that class. Since we have not specified
a superclass, the superClassDesc field remains empty or is assigned the terminal
symbol TC_NULL(0x70). Finally, the actual attribute values for our object o1 are
still missing:

|0x30|6E672F53 7472696E 673B7870 40091EB8 |ng/String;xp@...|
|0x40|51EB851F 00000064 74000568 656C6C6F |Q......dt..hello|

newHandle 0x00 7e 00 02
classdata

SaveMe
values

’d’ (double)3.14 - 0x40091EB851EB851F
’x’ (int)100 - 0x00000064
’s’ (object) TC_STRING - 0x74

newHandle 0x007E0003
Length - 5 - 0x0005
Value - hello - 0x68656C6C6F

As we surely noticed, the object name >1 is missing. This information is not stored
in the stream since it is only an identifier. The programmer decides under which
identifier the object can be accessed after deserialization. The value assignment of
the ordinal types 3 and G follows directly in the stream. The first attribute has 8 bytes
in length for the LONG value. The integer value has a length of 4 bytes. Thus, unlike
database formats such as SQLite, no compression is used. The memory content is
transferred 1:1 into the stream. The string value terminates the stream. A string is
not an ordinal type but an object itself. Therefore first, the identifier follows as a
string (0x74). The length of a string is dynamic. Therefore the length specification is
additionally prefixed to the string value (0x05). The actual value follows last. There
is no particular end identifier. Instead, the stream ends [54].

There are some production rules which are not listed so far. Special stream types
like enumerations, exceptions or proxy classes are missing. At this point we refer to
the protocol description on the oracle website [57][56].

7.4 Pitfalls and Security Issues

In the last years, the serialization protocol of Java was increasingly in the criticism
due to different vulnerabilities [76][34]. At this point, we want to shed light on the
background and show how these threats can be minimized.

178 Dirk Pawlaszczyk

Fig. 7.6: Syntax-diagram for the objects ‘fields’and ‘blockdata’

7.4.1 Hands on Serialized Objects

With what we already know about serialization, it is easy to find a point of attack.
It is not uncommon, although it is not recommended, to transmit or store important
confidential information in streams. Assume a user-supplied serialized object we
discovered. We can manipulate program logic by tampering with the information
stored within the stream. For example, let’s take our object SaveMe. We can easily
modify the string at the end of the stream:

0005 68656C6F | ..hello -> 0007 62656576 696C | ..beevil

Since there are no parity bits or checksums, we do not need to adjust anything else
within the stream. In our case, that is probably not a big deal. If somebody cheats on
a gaming app and overwrite the high score, we can certainly get over it. However, the
whole thing changes quickly when confidential data is included in our stream (e.g.
user=admin, password=abc123). For example, if the Java object is used as a cookie
for access control, we can change the usernames, role names, and ID-token. One can
also try tampering with any value in the object that is a file path. We can even alter
the program’s flow if we override the correct field.

7.4.2 Beware of Gadget Chains

As if that were not enough, we can sometimes even perform remote code execution
(RCE) [34][76]. In Java applications, so-called gadget classes can be found in the
libraries loaded by the application. Using gadgets that are in-scope of the application,

7 Java Serialization 179

we can create a chain of method invocations that eventually lead to RCE. This chain
can be bumped during or after the deserialization process.

Listing 7.4: Possible Vulnerable Class
p u b l i c c l a s s Vu l n e r a b l e {

p u b l i c Ob j e c t i nvoke (SaveMe o) {
r e t u r n Runtime . exec (" echo \ " I j u s t want t o say \ " " + o . s) ;

}
}

An example class is shown in the listing above. The invoke() method in this ex-
ample uses the string attribute we modified earlier. If we set the string B to "hello
| mkdir somedirectory", the second part of the statement causes the creation of a
new directory on the target system. This sort of attack is called Command injection.
Alternatively, we can, of course, execute any command we like. The goal is to exe-
cute arbitrary commands on the host operating system via a vulnerable process. Web
servers are very prone to this form of attack.

All we need to find is an appropriate hooking point. Therefore, we should look
for gadgets in commonly available libraries to maximize the chances that this gadget
is in-scope of the application. To date, exploits utilizing gadgets are already known
and published. Those classes are mostly part of popular libraries such as the Apache
Commons-Fileupload, Apache Commons-Collections, or Groovy. A collection with
the gadget chains for Java can be found in the ysoserial project from Chris Frohoff
3. The repository offers a collection of utilities and gadget chains discovered in
shared Java libraries. Due to unsafe serialization, a gadget chain may automatically
be invoked and cause the command to be executed on the host system. The creation
of an unsafe serial object with ysoserial is straightforward:

$ java -jar ysoserial.jar [gadget chain] ’[command to execute]’

The dangerous thing about this is that it does not depend on what classes we use in
our application. It is sufficient that the class in question is accessible via the local
classpath. To honour the rescue of Java developers, however, it must be said that this
is not only a particular problem of Java Runtime Environment. Such security issues
can also be found in languages like Python, PHP, or Ruby [92],[87].

However, how can we prevent such attacks now? One measure is to blocklist
or allowlist object classes before deserializing them. Most suitable for this is the
resolve() method of the ObjectInputStream class (see Fig. 7.7). If we would validate
the object directly after readObject() has finished its work, it may already be too late.
However, if serialization is performed by a framework class working in the back-
ground, we do not even have to notice it.

3 https://github.com/frohoff/ysoserial

180 Dirk Pawlaszczyk

Fig. 7.7: Sequence Diagram of Object De-Serialization

7.5 Conclusions

In this chapter, insight into the standard Serialization format of Java was given.
Serialized objects are used in many places in Java. Despite the security problems
mentioned earlier and the relativelymodest performance, the format enjoys unbroken
popularity. Forensically, the file format is exciting because it is not uncommon for
confidential or sensitive data to be stored in a stream. However, it should not be a
problem to restore attribute assignmentswith the appropriate tools, even for unknown
classes.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 8
Realm

Phil Cobley and Ginger Geneste

Abstract In this chapter, we explore some of the fundamentals of the Realm database
(sometimes referred to as RealmDB or simply Realm). It is widely known within the
Digital Forensics discipline that SQLite is themost commonly found database format
within any mobile device application and even some desktop applications. Realm
is a relatively new database format built as a potential replacement for SQLite, as
technology and applications continue to develop and evolve. At the time of writing,
it is clear that the database is not as commonly found as some might have expected,
but that is not to say the database format will not eventually find its way into
many modern apps over the coming years. To that end, we decided to research the
database to try and provide some of the details of interest relating to the fundamentals
behind the new format. We hope this chapter will help digital forensic examiners and
investigators learn and grasp some of the basic concepts of Realm, hoping that any
new knowledge and understanding might support and assist in future research into
the topic.

8.1 Organisation of this Chapter

You will find a chapter dedicated to the SQLite file format within this book. We shall
be covering some of the basics behind SQLite for ease of readability and not assume
prior knowledge. We look at some of the differences between SQLite and Realm
before looking at Realm in more depth. We want to highlight that the Realm code
is under constant development and is still in the early stages of that development,

Phil Cobley
MSAB, 2nd Floor East, Central Point, 25-31 London Street, Reading, RG1 4PS, UK e-mail:
phil.cobley@msab.com

Ginger Geneste
Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB Den Haag e-mail: g.geneste@
nfi.nl

181© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_8

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:phil.cobley@msab.com
https://doi.org/10.1007/978-3-030-98467-0_8
mailto:g.geneste@nfi.nl
mailto:g.geneste@nfi.nl
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_8&domain=pdf

182 Phil Cobley and Ginger Geneste

meaning there are some limitations as to what can be confirmed both in the short
and long term.

We have broken the chapter down into sections to help readers navigate through a
journey of discovery, starting with some high-level and generic concepts, eventually
drilling down into more detail later on. Each section builds on the last, but we have
tried to write this chapter so that you can easily use the content as reference material
if needed.

We start by looking at some of the similarities and differences with SQLite,
exploring the concept of object-oriented database design and development over tra-
ditional relational tables and SQL queries. We then move into looking at how Realm
works and how data is structured similar to a table-like format, but without actually
creating any tables. We detail some object-oriented concepts before exploring the
Realm files and their data structures in far greater detail. We discuss the concept of
data and reference arrays and how these play an important part in Realm databases
and break down the various file and array headers at the byte level.

We use example files in the chapter that can be created or downloaded, with
the links available within the text itself, if you wish to either create those files or
download them yourself. We use those files to break down a Realm array, looking at
the offset pointers, the header, and how we can examine the data to identify the size
of the payload and the type of data each array contains.

8.2 Introduction

In Digital Forensics, we are often interested in collecting and reviewing data held
in databases. Most applications and operating systems rely on databases to store,
organise and manage their data instead of swathes of unconnected files and unsorted
data blocks. Databases make storage and retrieval simple and provide standardised
mechanisms and schemas that modern applications can easily harness.

Within mobile device forensics the most commonly found database type used by
applications is SQLite [78], which is a cross-platform, serverless database type, that
has become a valuable tool for mobile app and operating system (OS) developers
over recent years. The SQLite database was designed to be simple to use, easy to
connect to applications across any platform, and could be installed and run upon the
client device without the need for a bulky, backend server [83].

However, as devices, applications, and our usage needs of mobile devices evolve,
so do the databases harnessed by applications. SQLite is a powerful database format,
but it has its limitations. Often, modern-day developers are forced to generate and
write additional code to enable their applications to do what they need them to do
due to the emerging limitations present within SQLite. This additional code often
involves implementing workarounds to enable natively unsupported data values
stored within the SQLite tables.

This chapter seeks to explore the Realm database format [71], which has emerged
over recent years as a possible successor to the now ageing SQLite format, looking

8 Realm 183

at how this database format plugs those emerging gaps. Understanding how this
database structure differs from SQLite should enable forensic examiners to under-
stand better the types of data they are likely to encounter and appreciate how the
format works in practice. For example, Realm databases do not use relational tables,
a core feature within SQLite databases, but instead, work with linked objects. How
does this impact forensic analysis? In this chapter, we shall look at what artefacts we
can expect to find when a Realm database has been used and clarify what data may
be found within.

•! Attention

It is worth noting that research into this subject is still ongoing, and so, while this
chapter seeks to explore how Realm databases work, it is not a comprehensive deep-
dive into the full workings and data structures. This chapter may expand and evolve
in future revisions of this book. However, we have ultimately tried to incorporate as
many confirmed findings and factual content as possible at the time of writing. You
will see that we have included enough for researchers to understand the fundamentals
of these data structures and for forensic examiners to decode various headers and
attributes, and we hope that this is the strong starting point to encourage and support
examiners in taking this research further.

8.3 SQLite, It is Not!

While Realmmight be replacing SQLite in some applications, the way they are coded
and operate differ greatly. In order to understand how the object-oriented approach
of the Realm database structure works, we will first go through an introduction to
the more common relational database structure. We will then explore the concepts
of an object-oriented approach for database structures, comparing its features with
that of a relational database.

8.3.1 Relational Databases

There are many ways to define what a relational database is. However, in essence, it is
a method of organising data into tables, which are linked together through common
criteria or data components [38]. Data is typically organised into rows and columns,
with each row being assigned a unique identifier. Tables can then reference data in
other tables through the use of these unique identifiers, which is the “relational”
aspect of the relational database concept.

As a simple example of how this might work, imagine we wish to use this concept
when looking at grocery shopping. When grocery shopping, we may wish to search

184 Phil Cobley and Ginger Geneste

for the itemswe need by searching under specific categories, such as fruit, vegetables,
meats, bakery, and so on. In a relational database setup, it may be that these are each
represented as different tables, each containing the various items that you might find
under that category (see Table 8.1).

Table 8.1: Example Grocery Tables

Fruit Price

Apple 0.2
Orange 0.3
Pear 0.15
Banana 0.25

Vegetables Price

Carrots 0.11
Potatoes 0.15
Cabbage 0.2
Cauliflower 0.3

Bakery Price

Bread 0.8
Rolls 0.4
Wraps 0.95
Bagels 1.6

Structured Query Language (SQL) [39] is often used as a standardised language to
both write data to and query data from such databases that support it. It has enabled
developers to quickly and easily write and format queries and code to edit and
pull data from relational databases through a global standard. Tables are connected
to one another through functions known as “Joins” with search queries generating
combined results sets in newly created tables containing various record (row) content,
depending on the query made.

When carrying out searches across data sets, such as those found in our grocery
example, SQL may be used in the background of a website or application to run
queries across the tables, utilising search terms input by the user. This may include
filters we commonly see on websites to narrow down the search. For example, we
may be looking for a loaf of bread and therefore click on a "Bakery" filter and search
for the term “bread” Fig. 8.1. SQL may then be used in the background to search
for row items containing the keyword “bread”, but only within the “Bakery” table.
Equally, applying no filters may conduct the search across all tables, thus conducting
a wider search.

When searching such as this, there may also be an empty table either created
or already available, that is used to hold copies of the search results. The column
structure would likely be very similar to have compatibility with the existing data
sets from the other tables but may have additional columns specific to a search. You
could think of this table as possible where a typical search results page on a website
may be drawing data from.

There are obviously countless ways to develop and programme these structures,
and so this is just one (very simplistic) possible example of how data may be held,
linked, and manipulated within a relational database. However, you will often have
tables of fixed data content that are used as a reference point for the application. You
will also have other tables populated and edited through user interaction or system
processes, containing live or deleted content.

If we use our grocery example from a forensic standpoint, it might be that the
grocery item tables are of little interest to us. However, the search table, or possibly

8 Realm 185

Fig. 8.1: Background Table Searches

Fig. 8.2: Relational Table Results Collated in a New Table

a “Basket” table that is populated by the user when they add items to their basket
might be of forensic interest as it would help identify user activity.

8.3.2 SQLite as a Relational Database

SQLite uses a relational database structure, storing all of the data tables and links
within a single file, usually with a file extension similar to *.sqlite or *.db, although
this can vary depending on the intended software platform and how the developers
decide to build their applications (in mobile devices you will often find them with
no file extension at all). This use of a simple, single, self-managing file, is what
has helped make SQLite so popular with mobile developers, as there is no need to

186 Phil Cobley and Ginger Geneste

rely on additional backend servers, and the data becomes self-contained and very
portable. These days we see mobile devices with huge storage capacities, but back
when smartphones were first coming onto the market storage was still at a premium.
SQLite databases enabled developers to build database storage into their mobile
applications without taking up very much space on a user’s device, and without
the need to install additional software or depend on addition software or services
running in the background, taking up valuable processing capacity, memory, or
network bandwidth.

SQLite is also a cross-platform file format, which means it can be run and used on
any common or major operating system, reducing the need for developers to concern
themselves with huge changes in their application architecture when developing for
multiple platforms, such as Android and iOS.

Given that SQLite utilises SQL as a query language, and given both SQL and
SQLite are platform agnostic, it means that a software developer building an appli-
cation in Swift for iOS will most likely utilise the same or similar SQL queries to a
software developer building the same application in Java or Kotlin for the Android
operating system. This, in turn, means that the structure, layout, and logic of the
backend database does not have to change very much from one system to the next,
allowing app developers to focus on only having to adapt the code that surrounds the
database when building for different systems, rather than having to also be concerned
with what database to use and how to update, edit, and retrieve data from within it.

In digital forensics this is great news for examiners and investigators, as most of
the time we only need to concern ourselves with the content of the database – and
for a standardised database format such as SQLite that is found on both iOS and
Android, it means we only need to learn how to interrogate one database format,
regardless of what type of device that data resides within.

8.3.3 SQLite Schema

A schema is essentially a specification confirming and defining the structure of a
database, usually written or presented within the appropriate language or format
for that database type. SQL developers define their database schema using what is
known as Data Definition Language [77] which is used to create tables and define
the types of data that each column should hold, such as integers, dates in specific
formats, strings, and so on, as well as stating what columns can or cannot contain
NULL values (see Fig. 8.3).

8.3.4 Temporary SQLite Files

Something that we commonly find alongside SQLite databases are the shared-
memory (SHM) and write-ahead log (WAL) files, that we may find located in the

8 Realm 187

Fig. 8.3: SQLite Studio Displaying SQL Schema

same directory location as the SQLite database file [86]. There are actually several
more additional temporary files that are sometimes found as well, but we will not
go into detail of how these work here as they are explained in more depth within
the SQLite chapter. However, we will touch on what the commonly found WAL and
SHM files do and why they (sometimes) exist, for our later comparison.

Fig. 8.4: SQLite Files, including SHM and WAL

The WAL file is a form of journal that stores updates and changes to the SQLite
database file. Rather than writing changes directly to the database file itself, which
could cause complications and problems in numerous possible implementations
of the database, those changes are written to the WAL first. Multiple changes and
amendments can bemade (resulting in duplicate entrieswithin theWAL), pending the
appropriate trigger to “Commit” those changes in the WAL. This committed content
only gets written to the database itself once a “checkpoint” is triggered, where the
most recent versions of all the changes and amendments are then transferred across to
the database itself. Those triggers vary depending on the version and implementation
of SQLite, but occasionally the commit does not take place during a single session,
and may only be triggered when the database is reopened and accessed later on.
This means that the WAL file can persist in a file system even after a connected
application is closed, and it is not actually uncommon to find the WAL file to be
even larger in size than the database itself.

188 Phil Cobley and Ginger Geneste

The SHM is a file created to help manage concurrent connections to the database
and allows the WAL to use a specified area of memory for indexing and managing
the various changes and commits being made to the database. In essence, if you have
multiple system services or process threads access the SQLite database file at the
same time (which is very common) then an SHM file will be created to help service
those connections. If one is created then it will typically persist on disk with the
WAL file until the WAL file is deleted.

Why are these files important? Well, it is not uncommon for forensic analysists
to find evidence and vital data buried within these temporary files, rather than the
data being within the main database file itself. We shall see how this differs within
Realm databases later on.

8.3.5 SQLite File Format

SQLite is an open-source file format with a very distinct and well documented
structure. A lot of digital forensic training and education programmes will teach
examiners about the specific layout and structure of the SQLite database header, as
understanding the various attributes and byte values can be invaluable, particularly
when dealing with more complex and challenging forensic scenarios where the
database cannot be automatically parsed and decoded, albeit these instances are rare
due to the wide range of comprehensive forensic software tools available. The header
information can be found at: https://www.sqlite.org/fileformat.html, (see
Fig. 8.5) [82]).

Fig. 8.5: Screenshot from sqlite.org File Format Webpage

You can visit the referenced website to find the full database header format content,
along with explanations and documentation around each offset specification.

https://www.sqlite.org/fileformat.html

8 Realm 189

8.4 How Realm Works

8.4.1 Realm Database Fundamentals

Realm is described on the realm.io website as:

“. . . an open source, developer-friendly alternative to CoreData and SQLite. Start
in minutes, port your app in hours, and save yourself weeks of work.” [71]

The database itself is an object database as opposed to a relational database, harness-
ing the principles of object-oriented programming over traditional database models
such as SQLite. This approach allows the database to benefit in ways that are not
possible in SQLite, such as having a zero-copy architecture and a near endless pos-
sibility to handle, store, and manipulate almost any file format or data type with
ease.

As we already know, relational databases, such as SQLite, consist of tables that
join and work together to reference various data sets, locating and identifying records
and data by navigating rows and columns. Sometimes the table connections (joins)
can become incredibly complex, often requiring tables built specifically to hold
unique reference variables to help tables navigate to and reference one another. Any
queries that are run have their results copied into another table, duplicating data
content for the purposes of generating query results. This can be time consuming,
memory and processor intensive, and take up considerable data storage as databases
grow and expand. The sheer act of copying data out of tables to represent the same
content within another table could also be seen as being inefficient and unnecessary.

In their paper “Evolution of Object-Oriented Database Systems” [2] Alzahran
compares traditional relational data models with object-oriented models, discussing
the future of database structures and a shift in the current paradigm. An example of
an object-oriented model (such as Realm) and relational data model (such as SQLite)
is given in Fig. 8.6.

In the example presented in Fig. 8.6, we can see how data tables in a relational
model are replaced with object instances of different classes, with a new object
instance being created instead of a new row being added to a table. The columns in a
table are now represented through object attributes, meaning that in order to locate
data the object instance is queried and asked to return the attribute values, rather
than tables being queried through SQL expressions.

8.4.2 Common Concepts and Terminology

Here we shall define and provide an overview for some common concepts and
terminology used within Realm database architecture.

190 Phil Cobley and Ginger Geneste

Fig. 8.6: Screenshot from sqlite.org File Format Webpage

Basic Object-Oriented Programming Concepts

In object-oriented programming, used in languages such as Java and Python, there
are a number of concepts and principles that are considered as very important when
it comes to software design and development [16]. One of these concepts is known
as “low coupling, high cohesion” and another being the concept of having small,
well-defined objects that do specific jobs, rather than large, bulky objects that carry
out multiple tasks.

The reason behind these concepts helps promote code design that is flexible and
dynamic as well as being easily maintainable and adaptable. By having small, single
function objects, you can build code where any other objects requiring that function
simply call those specific object instances, rather than running the risk of duplicating
the function within many larger objects. While singular, self-sufficient objects may
seem like a good idea, it makes the code more difficult to maintain and manage.
For example, say a specific function requires updating; if it is duplicated within
multiple object types then they all require updating to ensure no objects are running
with legacy code. However, if you have a single object for that function that other
objects call upon to use, then simply updating that one object function will update
the capability for all connected objects with minimal updates being required. This
concept is sometimes referred to in other industries as “single-source” and relates to
many different practices, not just software development.

The concept of low-coupling and high cohesion links into this through design
principles in software development that suggest objects should work well together
(high cohesion) but remain independent so that changes to one do not negatively
impact the other (low-coupling). This allows developers to design code that is more
easily maintainable and resilient to change. If objects can work well together and
have a means to communicate without being dependant on exactly “how” the code

8 Realm 191

has been implemented, then when that code needs changing or updating, so long as
the communication methods remain in place, other objects remain unaffected.

Realm databases are able to leverage these benefits through an object-oriented
approach to the database design, where the application creates and maintains
lightweight, connected object instances as opposed to bulky, rigid, relational ta-
ble structures. In SQLite, complex systems and database designs often rely upon
queries that fully understand and recognise exactly what they’re looking for, where,
and how. The benefit this brings forensic examiners is that those queries and ta-
ble structures are relatively straight-forward to reverse engineer and piece together,
given how explicit the calls and queries often have to be. In Realm, this is not nec-
essarily the case, as the database queries and calls are highly dependent upon how
the developer has decided to implement the Realm database objects and instances,
how they have coded the various communication methods and object attributes, and
how complex the communication structure ends up becoming. The way this often
happens is through objects communicating in a chain, from one to the next, making
singular queries to one another, rather than a single, large, complex query statement
across multiple tables (Fig. 8.7).

Fig. 8.7: Object Instance Communication

Top-level Objects

Top-level objects could be considered the equivalent of a relational table within an
SQLite database. They are typically found to be object classes, such as “Fruit” or
“Vegetables”, similar to our example earlier in section 8.3.1.

In the following example we use a screenshot from a demo file available for
download from the realm.io website [72] viewed within the official free Realm
Studio tool [74], used for testing and training purposes to demonstrate some of what
Realm can do.

realm.io

192 Phil Cobley and Ginger Geneste

In the screenshot you can see:

• Listed object classes – these are equivalent to a relational table
• A list of object instances – these are equivalent to the rows/records in a table
• The defined object properties/attributes – these are equivalent to table columns

Fig. 8.8: Realm Top-level Object Structure Example

Object Types

It may sound obvious to some, but within Realm databases, an Object Type is a term
used to help define exactly what any given object is recognised to be by the database.
Object Types link to the database schema, which is defined in code by the database
developer and works in a similar way to that of a database schema within SQLite.
However, this is one area where Realm goes beyond the capabilities of SQLite in its
capabilities.

In SQLite schemas column values are restricted to predetermined values, such as
string or integer values, with a finite list of available types that are coded into the
SQLite codebase. Anything that does not fit within this predefined list is typically
managed through the use of BLOB data, which stands for Binary Large Object
[49]. BLOB data can be almost anything that a developer wishes to include, but the
data management can sometimes be complicated, and sometimes requires encoding.
Furthermore, the database itself will usually not be able to determine exactly what
the BLOB data represents, as this has to sometimes be managed through additional
software components or tools outside of the database environment.

Within Realm , as the entire schema can be developed alongside the object code,
the “type” values can be absolutely anything that the developer wishes to include or
use, so long as the type represents a coded object class. This means that proprietary
data objects can be built within the Realm code, teaching the database how to handle,

8 Realm 193

manage, store, and manipulate that data natively, regardless of what it is or how it is
constructed.

This can be potentially very powerful for database and application developers,
but prove to be a huge challenge to forensic examiners and investigators, as it may
require reverse engineering the original code in order to understand any proprietary
or custom object types or formats. The MongoDB documentation for Realm has an
example schema which shows possible schema code for storing data about books in
libraries, where “Library” and “Book” are object types [49]:
[
{

" t ype " : " L i b r a r y " ,
" p r o p e r t i e s " : {

" a d d r e s s " : " s t r i n g " ,
" books " : "Book [] "

}
} ,
{

" t ype " : "Book " ,
" pr imaryKey " : " i s b n " ,
" p r o p e r t i e s " : {

" i s b n " : " s t r i n g " ,
" t i t l e " : " s t r i n g " ,
" a u t h o r " : " s t r i n g " ,
" numberOwned " : { " t yp e " : " i n t ? " , " d e f a u l t " : 0 } ,
" numberLoaned " : { " t yp e " : " i n t ? " , " d e f a u l t " : 0 }

}
}

]

Every object within a Realm database must be of a type that is validated by the
schema and properly defined. It is worth noting, given Realm is based on the concept
of everything being an object instance, that the Realm database itself is an object of
type “realm”. When a Realm database file is opened and accessed an instance of the
Realm database is initialised, with the relevant attributes and properties loaded into
that instance from the stored data.

Group

When a Realm database is accessed or opened, the schema is read and interpreted
to begin validating and initialising the appropriate object instances. Groups are
collections of top-level objects (so, the equivalent of a collection of tables in SQLite)
which together help identify and clarify the schema requirements.

Essentially, whenever a Realm database file is accessed through one of the Realm
database SDK’s, the file is verified and loaded into a Realm object by calling the
Realm Group [73].

194 Phil Cobley and Ginger Geneste

Arrays

Realm databases predominantly store their data within data arrays, and so first we
shall take a quick look at what an array actually is.

It is probably fair to say that almost every programming language can implement
arrays in some form, and whilst their implementation may differ depending on the
language, the concepts behind them remain fundamentally unchanged. They are
simply a data structure that can be used to store an ordered collection of data within
a single programmable component. What does that mean, exactly? Let us use an
example to explore the answer to that question. Imagine you are programming a
simple application and have decided you want to assign variables to hold the names
of people who are attending an event. Now, there would be hundreds of different way
to do this, and some more efficient than others, but this is just a simplified example
to help with our understanding.
You may decide to programme individual variables, maybe something similar to the
following:

attendee1 = "John"
attendee2 = "Sarah"
attendee3 = "Sam"

This might work really well for the first few attendees, but when you expand your
system to a thousand, it may begin to get tedious and time consuming, not to mention
a huge amount of code. Instead, you may consider an array. This component allows
you to define a certain number of elements which are automatically numbered
sequentially as the values are added to the component, so it is similar to a table
that has two columns and a finite number of rows. The first column is automatically
determined by the array and grows sequentially from 0 upwards, and the second
column is for the data you wish to assign to each row. This allows you to forget about
needing to code variables for each user, and instead lets you simply add the names
directly to the array, so the array might be conceptualised similar to Table 8.2.

Table 8.2: Conceptual Array

index value

0 ”John”
1 “Sarah”
2 “Sam”
.
1000 "Yvette"

The order of adding values is very important with an array, as the indexes are filled
sequentially to ensure efficiency, so no gaps are purposefully left. Arrays make it
very easy for the software to locate specific data values as the index can be used to

8 Realm 195

locate the data quickly. However, arrays do not care about the order in which they
store their data, which differentiates them from other similar data structures where
ordering and sorting is an important part of their function.

Another way of looking at arrays is like the chapters in a book. The chapters in a
book are fixed and will not change, and the book provides a way for the reader to use
the chapters to locate the information of interest to them. In this example, the book
is the array and the chapters are the indexes and their data values (Fig. 8.9).

Fig. 8.9: Array Book Analogy

A Realm database file consists of a file header and is followed almost exclusively
by ’Realm Arrays’. If the database is not encrypted then these arrays can be located
and identified with a hex viewer and parsed out either manually or with appropriate
scripting. There are two types of arrays found within Realm databases that we found
through testing:

1. Arrays containing references to other arrays (referred to as a Reference Array)
2. Arrays containing data (referred to as a Data Array)
Essentially, a Realm database utilises what is known as a B+-Tree structure, where
the tree can be recreated and mapped by following the pointers of the headers and
reference arrays (the branches), until you reach the data arrays (the leaves). These
arrays are all essentially nodes within that structure.

In the next section we shall begin exploring the structure behind some of these
arrays, along with details of the Realm header and associated files that may be found
with the *.realm database file.

196 Phil Cobley and Ginger Geneste

8.5 File Storage and Structures

8.5.1 Realm Files and Folders

Herewe are going to have a quick look at the files youmay encounter when examining
realm databases, including some of the temporary files that may be created, similar
to how we sometimes find SHM and WAL files accompanying SQLite databases.
Two core files will be commonly found with a Realm database, along with a folder
that may be empty when recovered [48].

Fig. 8.10: Realm Files

•! Attention

We will not be covering Realm encryption in this book chapter, but it is worth being
aware that they can be encrypted at source.

8.5.2 The Realm File

The most obvious file is the Realm database itself. The Realm database is referred to
in documentation simply as a “Realm” which is a term that encapsulates the database
and all associated files and data. The Realm is a single file that has a *.realm file
extension, and contains all the generated data and associated objects. Developers
are encouraged to initialise the Realm instance (create a Realm file) the first time
an application is opened and run on a device, which means it may be possible to
have realm-based applications that have been installed, but where no database is yet
present if the application has not been run since installation. Realms can be encrypted
by the developers, which would mean that static analysis may not be possible through
standard tools without initial decryption taking place.

8 Realm 197

Fig. 8.11: The *realm File

The Lock File

The Lock file is created when the first connection is made, then recreated and
reinitialised at the beginning of every session. This means that the file does not need
to be present when the database is initially opened. The purpose of the file is to
enable “synchronization between writes” [48] and even if deleted, will be recreated
when the database is reopened.

Fig. 8.12: The Lock File

A session is initiated and closed with the opening and closing of a Realm file via
database objects. However, it also includes any sequence of temporarily overlapping
openings of a particular Realm file via multiple database objects. For example, if
there are two database objects, A and B, and the file is first opened via A, then
opened via B, then closed via A, and finally closed via B, then the session stretches
from the opening via A to the closing via B, rather than two individual sessions.
This might be two different application instances opening the same Realm database
file simultaneously, for example (like a multi-user session).

The Management Directory

This folder appears, like the lock file, when the database is opened and a connection
established. Through testing we have yet to come across any files within the folder
itself, but it is reported by MongoDB to “[contain] internal state management files”
[48] which are likely to be of little interest within a forensic investigation.

Stateless Realm Instances

It is possible to create and run a Realm entirely within memory, resulting in no
actual files being saved to persistent storage. In these instances no trace of any realm

198 Phil Cobley and Ginger Geneste

Fig. 8.13: The Management Directory

data will be located within extracted data storage but the data may be present within
extractions of any volatile memory from an active device.

8.5.3 Creating Realm Test Instance

We are going to explore two different databases through this chapter. One is a demo
file provided by Realm.io, which can be downloaded directly from their website or
via a link within the Realm Studio software package:

• Realm Studio can be downloaded from the following URL:
https://docs.mongodb.com/realm-legacy/products/realm-studio.html

• The Realm demo file can be downloaded from the following URL:
https://static.realm.io/downloads/realm-studio/demo-v20.realm

The second database we are going to look at is a simple realm database created using
Java within Android Studio [22] designed as a simple tasking app.

•> Important

When writing this chapter we considered including a step-by-step guide on how to
create a simple Realm database within Android Studio. However, we found, through
our research, that constant changes to Android Studio, Java, Realm, and associated
libraries and dependencies, meant that the guides would be out of date by the time
they were published, with errata being required almost immediately. We stumbled
upon a well-documented guide as written by developer Joyce Echessa, published
in a blog article on behalf of auth0 [12] which we have used to build the Task
app referenced within this section. This has been done so that you can follow the
referenced web page and create your own database, if you wish. We found we had to
update a number of referenced versions and dependencies, but overall the guide was
still valid at the time of writing, and we were kindly given permission to include a
reference to it within this book.

Upon creating our Task application within Android Studio we now need to run our
task app for the first time to initialise the database and create a Realm instance. We

https://docs.mongodb.com/realm-legacy/products/realm-studio.html
https://static.realm.io/downloads/realm-studio/demo-v20.realm

8 Realm 199

then need to access our emulated device via the ADB (Android Debug Bridge) [21]
to pull the newly created files out.

•! Attention

If you are not familiar with ADB then then we encourage you to visit the android-
studio documentation 1 to learn more about it and download the relevant software
and tool packages. This walkthrough is completed using Windows 10, but you can
achieve the same results on other operating systems.

Step 1: Launch the Task Application

From Android Studio, open up your emulated Android environment with your Task
app present and load the operating system. Navigate to the applications list and you
should see your Task app present (Fig. 8.14):

Fig. 8.14: ADB Walkthrough - Find Application

Now launch the application by clicking on the icon (Fig. 8.15) and then close it
down:

1 https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/command-line/adb

200 Phil Cobley and Ginger Geneste

Fig. 8.15: ADB Walkthrough - Launch Task App

Step 2: Open a CMDWindow

Open a CMD Command Prompt (or Powershell if you prefer), which can be done
simply by opening your Start menu and typing “cmd”, which will present the option
to open a Command Prompt window similar to Fig. 8.16.

Fig. 8.16: ADB Walkthrough - Open CMDWindow

8 Realm 201

Step 3: Create an Output Folder

Create an output folder where your Android files will be placed. For this example
we have created a folder called “Android” at the root of the Windows C:\ drive as
this will keep the commands in later steps, much smaller and easier to manage, but
you can choose any location you like.

Step 4: Start ADB

In your CMD window type the command:

adb devices

•> Important

This is assuming you have added ADB to your PATH. If not, we suggest you do this
before proceeding.

What you should see is a list of devices attached to your computer via ADB
(Fig. 8.17). Your emulated Android may have a different reference number or name,
but you should see something similar to:

Fig. 8.17: ADB Walkthrough - “adb devices” Command

This has confirmed that your emulated device is visible to your computer via ADB,
and we can proceed with pulling the data from the device.

202 Phil Cobley and Ginger Geneste

Step 5: Get ADB Root

This is only really going to work as we are emulating our Android device and simply
using the content for research purposes. However, usually you would have to use
additional steps to pull the application data from a modern Android handset due
to permission restrictions and device security settings. However, in the interests of
speed and simplicity, type in the following command to your CMD window:

adb root

This will provide you with root access to the device via ADB, meaning we can
bypass a lot of the existing security and protections.

Step 6: Find the Application Data

Here we shall navigate through the device to confirm the location of the application
data. We would expect the find the app package and associated directories, located
within the file path:

/data/data/<package ID>

In this example I have named the app “Tasky” and it has a package ID of:

com.tutorial.tasky

Yours may be different, depending on how you build the app and what name you
gave it, so just bear this in mind when looking for the package. First, in your CMD
window type the following commands in order and press enter/return at the end of
each one:

adb shell

Then type:

ls

Next type the command:

cd /data/data

This takes us to the data folder where all of the packages are located. We could have
done two separate steps of running the command cd /data twice in succession
as there are two directories called “data”, one nested within another. However, the
commandwe used combined both into a single command. Next, use the ls command
to locate your application package:

ls

8 Realm 203

Fig. 8.18: ADB Walkthrough - “adb shell” and “ls” Commands

The list of packages will be displayed, and you can look through the list to find your
application. In this example, the app we have created is located near the end of the
list (Fig. 8.19):

Fig. 8.19: ADB Walkthrough - Locate Package ID

We have now confirmed that our app package directory is located at:

/data/data/com.tutorial.tasky

Now, exit the adb shell using this command:

204 Phil Cobley and Ginger Geneste

exit

Step 7: Use the “pull” Command

In this final step we use the “pull” command to pull a copy of the package directory
out from the device and place the copy into a location of our choice on our computer.
In your CMD window type the following command:

adb pull “/data/data/com.tutorial.tasky” “C:\Android”

Here we have specified the command adb pull, and provided what are known as
parameters. The pull command can recognise several parameters, and we have
provided both a target for our pull action, as well as a destination of where to place
the copied content.

You should now be able to open the destination location on your computer and
find the exported copies of the package folders. Within these folders you will find
your initialised Realm database file.

Fig. 8.20: ADB Walkthrough - Output Files

8.5.4 The Realm Database File Structure

As digital forensic examiners and investigators it is usually helpful to understand the
inner workings of the artefacts that we analyse and decode. It is not always possible
for us to fully reverse engineer these artefacts, but with research and testing we can
often, as a community, begin to figure out some of the key and important hex strings
and data blocks that reside within. With Realm this is no exception, and as the source
code is publicly available, we have the benefit of being able to use this code to help
identify how the database is structured at a byte level for some of those important
components.

So far in this chapter we have discussed how Realm compares to traditional
SQLite databases, how it differs, and have provided a brief overview of what to
expect from a Realm database. We shall now take that understanding and dive
deeper into the inner-workings of the files themselves, highlighting and identifying
some key structures. We include this in the hopes that it can both direct examiners to
relevant documentation to continue this research, as well as assist those who wish to
begin creating scripts and other tools to begin parsing these databases themselves.

8 Realm 205

This section will guide you through the basic concepts of the Realm database file
structure based on the implementation of the ‘Realm Core’ . The source code of the
RealmCore implementation is available onGithub at https://github.com/realm/realm-
core [62]. At the time of writing, the source code referenced with this chapter relates
to ‘realm-java-v10.4.0’. The Realm Core is actively being developed which does
mean that any static analysis of the source code may change over time.

Navigating to the Github repository directory /src/realm/ we find many C++
source code files (*.cpp). We have analysed and researched some of these files to
help identify some of the content for this section, identifying some structures and
confirming some byte references and offsets. However, remember that this code is
under active development, and therefore we advise examiners and investigators to
validate and verify these findings, as is good practice, for all future versions of the
source code.

Fig. 8.21: Screenshot of the realm-core/src/realm/ directory

8.5.5 Realm File Header

Each Realm database contains a 24-byte header that can be broken down into com-
ponent parts. We found the header to be defined within the file alloc_slab.hpp
which is a form of header file, and can be found at https://github.com/realm/realm-
core/blob/master/src/realm/alloc_slab.hpp [65]. The code relates to the definition of
what is known as a struct, which is a C++ data structure where the term literally
stands for “structure”. It is used to store different elements of different data types
within a fixed, structured environment, which is perfect for building a header of a set
size and design. At the time of writing, the code was located at line 520 and reads

https://github.com/realm/realm-core
https://github.com/realm/realm-core
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp

206 Phil Cobley and Ginger Geneste

as follows:
/ / 24 b y t e s

s t r u c t Header {

u i n t 6 4 _ t m_ top_re f [2] ; / / 2 ∗ 8 b y t e s

/ / I n f o −b l o c k 8 b y t e s

u i n t 8 _ t m_mnemonic [4] ; / / "T−DB"

u i n t 8 _ t m_ f i l e _ f o rma t [2] ; / / See ‘ l i b r a r y _ f i l e _ f o r m a t ‘

u i n t 8 _ t m_rese rved ;

/ / b i t 0 m_ f l ag s i s used t o s e l e c t be tween t h e two top
r e f s .

u i n t 8 _ t m_f l ags ;
} ;

Based on this declaredHeader struct, the 24-byte header contains a reference to a ‘top
ref’, the ‘mnemonic’, a ‘file format’, ‘reserved’ and ‘flags’. Each of these elements
will be described below. However, in essence, the byte allocations are as follows:

Fig. 8.22: Realm Header Structure

• 16 bytes: 2 x 8 byte references to the ‘top_ref’
• 4 bytes: mnemonic / ‘magic value’
• 2 bytes: file_format
• 1 byte: reserved
• 1 byte: flags - bit 0 is used to select between the two top_ref pointers

“Top Ref” - Bytes 0x00 to 0x0F (d0–d15)

The top_ref element stands for “Top reference” and relates to the root of the database.
The element is sixteen bytes in length, using the first sixteen bytes of the database

8 Realm 207

file, but is actually made up of two eight byte components (see Fig. 8.23). Both
components are a top_ref but each eight byte string references an offset within the
file, with the first referencing the start of the first top_ref, and the next eight byte
string referencing the second top_ref.

Fig. 8.23: Realm Header - top_ref

These references point to two separate arrays that act as the root nodes. These, in
turn, point to two distinct branches that each link to a series of arrays, both branches
seemingly mirrored (or almost mirrored). At the time of writing, our understanding
based on testing suggests that the database utilises multiple branches through the
top_ref mechanism as a form of journaling, alternating writes and commits between
the two different root nodes. Starting at one of the two top_ref arrays, one can follow
the references to other reference arrays to build up a tree. The current, most up to
date state of the database is represented by rebuilding the Tree from the root node of
the ‘current top ref’. The database identifies the current top_ref through the flag byte,
and writes new data to the other top_ref, preserving the current branch of arrays.
This could be thought of as a form of WAL, where the “current” top_ref is like an
SQLite database file and remains untouched, but the other referenced root node is
used to write changes prior to any commits.

However, similar to an SQLite database where WAL checkpoint rules do not
always appear to be followed by the database itself, the rules governing changes with
Realm arrays also appear to be fairly flexible and not always consistent.

“Mnemonic” - Bytes 0x10 to 0x13 (d16–d19)

These four bytes contain the ASCII value ‘T-DB’ which is called the ‘mnemonic’
of the Realm file. In other words, bytes 0x10 to 0x14 contain the magic value of the
Realm file.

At the time of writing the mnemonic values are static and always equate to the
ASCII “T-DB”. This may change with future iterations of the database code, but
currently this is a very good way of being able to immediately identify the file as
a Realm database, and enables examiners to utilise the hex string 0x542D4442 in
searches when seeking to find Realm database amongst datasets.

208 Phil Cobley and Ginger Geneste

Fig. 8.24: Realm Header - mnemonic

“File Format” - Bytes 0x14 to 0x15 (d20–d21)

These two bytes are described in the Realm core source code as the ‘file format’.
Both bytes form an integer value and represent the version number.

Fig. 8.25: Realm Header - file_format

In the documentation the file format is actually also referred to as the “version”,
and in the alloc_slab.cpp file [63] there is actually reference to the variable
file_format_version variable, alongwith an objectmethod of get_committed_
file_format_version() get_committed_file_format_version(). In this
method, it was observed that the file format may be updated to 0x14 (d20) whenever
the process (called ‘session’ in the Realm Core source code) accessing the Realm
database requires so. This functionality is likely built in to provide compatibility with
processes that handle newer/future file formats. For example, in the group.cpp file,
the object method read_only_version_check() requires a file format upgrade if
the file_format_version is lower than 0x14 (d20) when the database needs to
be opened in read only mode. At the time of writing the maximum value for the file
format was 0x14 (d20) but may be subject to change in the future.

The file group.cpp of the source code contains an object method called void-
Group::open(). In this method, the target_file_format_version is assigned
to a value determined by get_target_file_format_version_for_session(),
suggesting the desired file format version of the file itself is determined by the current
process which calls open(). The open() object method only returns without errors
if the target_file_format_version is 0 or equal to the file format version.

8 Realm 209

The file format version is assigned to 0 upon the creation of an empty database file
where the Realm file header needs to be initialised. The initialisation of an empty
header is defined in alloc_slab.cpp as follows:
c o n s t S l a bA l l o c : : Header S l a bA l l o c : : emp t y _ f i l e _ h e a d e r = {

{0 , 0} , / / top− r e f s
{ ’T ’ , ’− ’ , ’D’ , ’B ’ } ,
{0 , 0} , / / undec ided f i l e f o rma t
0 , / / r e s e r v e d
0 / / f l a g s (l s b i s s e l e c t b i t)

} ;

“Reserved” - Byte 0x16 (d22)

The reserved byte, at the time of writing, is always set to zero, and has never changed
throughout testing. This byte currently appears to be unused, as the name suggests,
but may be utilised.

Fig. 8.26: Realm Header - reserved

“Flags” - Byte 0x17 (d23)

The final byte value of the header represents flags. The first bit (the least significant
bit) of the last byte indicates which top reference is currently active. If this bit is set
to 0, the first top reference is currently active and when this bit is set to 1, the second
top reference is active. The other seven bits of the last byte are at the time of writing
unused.

In Fig. 8.27 we can see that the byte value is 0x01, meaning that the last bit
must be a 1 (the binary breakdown of 0x01 being b0000001), indicating that in this
example the current referenced array branch is top_ref 2 (Fig. 8.28).

210 Phil Cobley and Ginger Geneste

Fig. 8.27: Realm Header - flags

Fig. 8.28: Realm Header - top_ref 2 example from flag value of 0x01

8.5.6 Realm File Arrays

After the Realm header a *.realm file is made-up entirely of arrays in a B+tree
format, with a single root node, inner nodes that act as sign posts, and leaf nodes
that generally contain the data of interest to investigators.

Fig. 8.29: Example Node Structure

The top_ref header information points to offsets within the file where you will find
(typically) “reference arrays”. These reference arrays point to other nodes and arrays
within the database, some of which will be other reference arrays, and some will be
what are known as “data arrays”. These data arrays are where the actual core object
data is stored.

8 Realm 211

Opening up a copy of the downloadable “demo.realm” file, available from realm.io,
we will use the first array found after the Realm header, as an example of how arrays
are structured and can be broken down (see Fig. 8.30).

Fig. 8.30: Example Node Structure

8.5.7 Realm Array Header

Every array within Realm starts with an 8-byte header broken into two distinct parts:

1. Checksum value (4 bytes)
2. Array characteristics (4 bytes)

Fig. 8.31: Realm Array Header Example

This can actually be broken down further into the following components:

212 Phil Cobley and Ginger Geneste

Table 8.3: Table of Realm Array Header Components

Header Section Offset Size Description

Checksum 0x00 (0) 4 bytes Checksum (dummy) (“AAAA” in ASCII)
Characteristics 0x04 (4) 1 byte Flags
Characteristics 0x05 (5) 3 bytes Size

8.5.8 Checksum

The first four bytes contain a checksum value that, at the time of writing, is only
considered a “Dummy Checksum” within documentation, suggesting that this com-
ponent may change in future iterations of the code. The checksum consists of four
matching byte values, namely 0x41414141, which reads as “AAAA” in ASCII. The
source code shows us that these four ASCII characters are used when scanning for
arrays within the database [69].

8.5.9 Flags

The fifth byte of the array header represents flags and utilises several bit groupings
to denote different configurations for the array [66]. This means that to read or parse
the bit groupings we need to breakdown the byte into 8-bits and identify which bits
represent which groups. The breakdown is as follows:

Table 8.4: Breakdown of “Flags” byte into bit groupings

Bit Group Description

1 1 is_inner_bptree_node
2 2 has_refs
3 3 context_flag
4
5 4 width_scheme

6
7
8

5 width_ndx

8 Realm 213

Bit Group 1: is_inner_bptree_node

The first bit of the flags byte indicates whether a Realm array is an ‘inner node’. A
value of 1 would indicate that the node is an inner node, which would mean that the
array must be a reference array, as opposed to a data array. While analysing several
Realm database files, none of the Realm arrays had the is_inner_bptree_node
flag set. One reason for not using the is_inner_bptree_node flag in the Realm
array header could be that the tree structure of the Realm database can still be
constructed without checking this flag: starting from the root node (the top_ref
array), and following all references of the tree until all identified references have
been exhausted and pursued, allows a researcher to build the tree manually. Take a
look at the code snippet below, which comes from the file array.cpp:
vo id Array : : s e t _ t y p e (Type t ype)
{

REALM_ASSERT(i s _ a t t a c h e d ()) ;

copy_on_wr i t e () ; / / Throws

boo l i n i t _ i s _ i n n e r _ b p t r e e _ n o d e = f a l s e , i n i t _ h a s _ r e f s =
f a l s e ;

sw i t c h (t ype) {
c a s e type_Normal :

b r e ak ;
c a s e t ype_ Inne rBp t r e eNode :

i n i t _ i s _ i n n e r _ b p t r e e _ n o d e = t r u e ;
i n i t _ h a s _ r e f s = t r u e ;
b r e ak ;

c a s e type_HasRef s :
i n i t _ h a s _ r e f s = t r u e ;
b r e ak ;

}
m_ i s _ i n n e r _bp t r e e _nod e = i n i t _ i s _ i n n e r _ b p t r e e _ n o d e ;
m_has_ r e f s = i n i t _ h a s _ r e f s ;

c h a r ∗ heade r = g e t h e ade r () ;
s e t _ i s _ i n n e r _ b p t r e e _ n o d e _ i n _ h e a d e r (i n i t _ i s _ i n n e r _ b p t r e e _ n o d e ,

h e ade r) ;
s e t _ h a s r e f s _ i n _ h e a d e r (i n i t _ h a s _ r e f s , h e ade r) ;

}

It appears an array with the is_inner_bptree_node flag set, also sets the bit
flag for has_refs. Therefore, it is concluded that any array that is considered an
inner_bptree_node, also contains references to other arrays.

Bit Group 2: has_refs

A Realm Array header where the second bit of the flags byte is set to 1, indicates the
Realm Array contains references to other Realm Arrays in its payload, making it a
“reference array”. This, in turn, makes the array the parent of any other arrays that

214 Phil Cobley and Ginger Geneste

it directly references. The payload of any reference array will typically consist of
elements that store pointers to the child arrays. These pointers will be integer values
that directly correspond to an offset in the file. These offsets always consist of 8-byte
strings.

Bit Group 3: context_flag

The third bit within the flags byte is known as the “context_flag”. However, rarely
set to 1, and the full purpose of the flag remains unclear. Code from the array.hpp
file [66] enables us to deduce that the context flag can be used to tell what type
of leaf node the given array is. Unfortunately, there is not much more information
currently shared regarding the ‘context flag’ in the Realm Core source code at the
time of writing.

Bit Group 4: width_scheme

The array header contains information that enables us to calculate the total size, in
bytes, of the payload held within the array. This calculation is done by using both the
width_scheme and width_ndx bit groupings. We can therefore calculate the total
size of the array by identifying the values held within these two bit groups.

The width_scheme consists of two bits which are added together to create a
integer value. This type of calculation, therefore, allows for three possible value
outcomes: 0, 1, or 2. Depending on the value, the payload is calculated in a certain
way, as defined in node_header.hpp [67]. The following code snippet outlines the
calculations and intentions:
s t a t i c vo id s e t _w t y p e _ i n _h e a d e r (WidthType va lue , c h a r ∗ heade r)

noexcep t
{

/ / I n d i c a t e s how t o c a l c u l a t e s i z e i n b y t e s based on
w id th

/ / 0 : b i t s (w id t h / 8) ∗ s i z e
/ / 1 : m u l t i p l y w id t h ∗ s i z e
/ / 2 : i g no r e 1 ∗ s i z e

t y p e d e f un s i gned cha r ucha r ;
u cha r ∗ h = r e i n t e r c e p t _ c a s t < ucha r ∗>(heade r) ;
h [4] = ucha r ((i n t (h [4]) & ~0x18) | i n t (v a l u e) << 3) ;

}

Therefore, the width_scheme could be translated as per Table 8.5. The ‘size’ in the
calculation is the value represented in the last three bytes of the Realm Array header.
The value of ‘width’ in the calculation is represented in bit group 5, after applying
the width translation table (see Table 8.6 below).

8 Realm 215

Table 8.5: Calculations Required for width_scheme Values

Value of width_scheme Meaning Calculation for array payload

0 Calculate size with number of bits Cell(width*size/8)
1 Calculate size with number of bytes Width*size
2 Ignore width in size calculation size

Bit Group 5: width_ndx

Bits 6, 7, and 8 of the flags byte form ‘bit group 5’, referred to as width_ndx.
These three bits collectively are used to represent the values 0 to 7 (7 being when
all three bits are set to 1), and are used to indicate the value of ‘width’. With the
translation table below, the translation from width_ndx to the actual value of ‘width’
can be found. The value “width” represents the number of elements that are contained
within the Realm Array payload.

Table 8.6: Translation table for width_ndx

width_ndx calculated value 0 1 2 3 4 5 6 7

Value of ‘width’ 0 1 2 4 8 16 32 64

8.5.10 Size

The size of the Realm Array payload is described in the last 3 bytes of the Realm
Array Header. The size represents the amount of bits or bytes of one element in a
Realm array. The value of width_scheme determines how the size value is used
to calculate the overall payload. Since the amount of elements is represented in
width_ndx, the size of each element can be calculated by using the knowledge
found in the width_scheme along with the value of size, one can calculate the
complete size of a payload, and thus calculate the total size of the array. So to
summarise:

Table 8.7: Calculations Required for width_scheme Values

Width_scheme The method used to calculate the overall size of the payload
Width_ndx The number of elements present within the payload
Size The size of each element within the payload

216 Phil Cobley and Ginger Geneste

8.5.11 Realm Array Payload

After the 8-byte header, the remainder of the Realm Array is followed by multiples
of 8-bytes, which makes up the “payload”. The amount of bytes that follow after the
Realm Array Header (so, the total size of the payload) can be calculated by taking
the width_ndx, width_scheme and size as explained in the section above.

This is outlined within the node_header.hpp file found within the Realm-core
documentation [67] where you will find the following code:
s t a t i c s i z e _ t c a l c _ b y t e _ s i z e (WidthType wtype , s i z e _ t s i z e ,

u i n t _ l e a s t 8 _ t wid th) noexcep t
{

s i z e _ t num_bytes = 0 ;
sw i t c h (wtype) {

c a s e w type_B i t s : {
/ / Cur r en t a s sump t i on i s t h a t s i z e i s a t most

2^24 and t h a t w id t h i s a t most 64 .
/ / In t h a t case t h e f o l l o w i n g w i l l n eve r

o v e r f l ow . (Assuming t h a t s i z e _ t i s a t l e a s t
32 b i t s)

REALM_ASSERT_3(s i z e , < , 0 x1000000) ;
s i z e _ t num_bi t s = s i z e ∗ wid th ;
num_bytes = (num_bi t s + 7) >> 3 ;
b r e ak ;

}
c a s e w type_Mul t i p l y : {

num_bytes = s i z e ∗ wid th ;
b r e ak ;

}
c a s e wtype_ Igno re :

num_bytes = s i z e ;
b r e ak ;

}

/ / Ensure 8− b y t e a l i g nmen t
num_bytes = (num_bytes + 7) & ~ s i z e _ t (7) ;

num_bytes += h e a d e r _ s i z e ;

r e t u r n num_bytes ;
}

From this code-snippet we can deduce that if we take the value of size and multiply
it with the width value, these are the amount of bits or bytes of the complete Realm
Array payload. Whether this value is in bits or bytes depends on the width_scheme
(referred to by wtype in the code example). This number is padded until it becomes
a multiple of 8. The total size of a Realm Array is the payload size in addition to the
Realm Array Header size (which is 8 bytes).

8 Realm 217

8.5.12 Size Calculation Example

We shall revisit the example content used when introducing the Realm Array Header
in 8.5.7 above, to demonstrate how some of these calculations work.

Fig. 8.32: Realm Array Example

This example looks at an Array that is stored immediate after the Realm file header,
which we have blanked out to help focus on the Array itself (Fig. 8.32). Remember,
our Array Header consists of eight bytes that can be broken down into two distinct
elements (Fig. 8.33).

Fig. 8.33: Realm Array Header Example

We can see that the header for our array is made up of the following eight bytes:

Table 8.8: Array Header Bytes

Byte 1 2 3 4 5 6 7 8

Hex Value 41 41 41 41 0E 00 00 05

218 Phil Cobley and Ginger Geneste

8.5.13 Array Example - Header

The first four bytes are our checksum, which, at the time of writing, is always
0x41414141 (“AAAA” in ASCII) and then our next set of four bytes are the charac-
teristics values. If you recall from earlier in the chapter, this is further broken down
into two different components, namely the flags and size values.

8.5.14 Array Example - Flags

The fifth byte is our flags, which is currently the value 0x0E, which is the binary
value of b00001110. If you recall, the flags byte is broken into five “Bit Groups” that
represent different things depending on their values. For our example value, we can
breakdown the byte as follows:

Fig. 8.34: Realm Array Example - Header Breakdown

From this we can identify the following:

• Our array is not an “Inner Node”, given our is_inner_bptree_node value is
set at 0.

• Our array is likely a “Data Array” as the has_refs value is set at 0.
• Our value of width_scheme is set at 1. Looking back at Table 8.5 in 8.5.9
above, this tells us that the scheme we need to use is calculating with the number
of bytes (Width*size).

• The value of width_ndx is 110 in binary, which is the value 6 in decimal, which
gives us the width_ndx value of 32 from the translation table provided by Table
8.6 in section 8.5.9 above.

8 Realm 219

To clarify how we made this conversion, we followed these simple steps:

1. Convert the Binary Value 110 into Decimal

This can be done using a calculator or converter, but to manually do this conversion
we can simply look at the base 2 number values:

Table 8.9: Calculations Required for width_scheme Values

Base 2 columns 4 2 1

Binary Value 1 1 0

So our decimal calculation is:

1 x 0 = 0
2 x 1 = 2
4 x 1 = 4

0 + 2 + 4 = 6

2. Find the Decimal Value on the Translation Table

Fig. 8.35: Annotated Copy of the width_ndx Translation Table

3. Identify the Given Value that the Table Returns

As we can see above, the returned value for “width” is 32.

8.5.15 Array Example - Size

Our final series of bytes within the Array Header denotes the value for size. Given
we have a three-byte value of 0x000005, which is the decimal value of 5, we can
confirm the value of size to be 5.

Now that we have our values for both “width” and “size” we can use the given
width_scheme calculation method to identify the total size of the payload for this
array, as follows:

220 Phil Cobley and Ginger Geneste

Size x Width = Payload size in bytes
5 x 32 = 160 bytes

Remember that the total size of our array is the header plus the payload size. Our
header is always going to be 8 bytes long, and our payload is 160 bytes, so this array
should be 168 bytes in total. You can see in the following screenshot of our Realm
file viewed through the software tool HxD [36] that our array is, indeed, 168 bytes
in length (Fig. 8.36):

Fig. 8.36: Screenshot of Realm File in HxD showing Total Size of an Array

If you look closely at the end of the array in Fig. 8.36, you will notice that the byte
following the end of the highlighted array is the start of another array, with the array
header ASCII values “AAAA” clearly visible within the decoded text.

8.6 Conclusion

Realm databases have been considered, by some, to be the new format that will
ultimately replace SQLite. While we have seen some evidence of this with some
applications, the anticipated change has been far slower than originally believed, and

8 Realm 221

Realm databases are still not commonly found within the most common applications
examined byDigital Forensic examiners. Thismay change in the future asmomentum
builds for the database, or the movement may continue to struggle to gain traction
as developers find workarounds and clever ways to continue implementing the more
widely known and understood SQLite format.

The Realm database format has, at the time of writing, an active developer
community with an ever-evolving code-base. The format is still relatively new, with
a number of areas of code still using “dummy” or “temporary” values or data
structures while the code is developed. The open-source nature of the realm-core
code enables forensic examiners to reverse engineer the code in order to discover
exactly how these database are structured and operate, which may be vital in digital
forensic investigations.

However, the move away from SQL structures and into editable and customisable
object-oriented code also adds challenges for forensic examiners, especially when
every database could, in theory, be coded to operate and function is very different
ways from any other. Understanding the fundamental concepts and structures behind
Realm databases should enable examiners to navigate and understand some of the
core data structures, even if the object functions remain challenging to decode and
decipher.

This chapter has aimed to introduce some of the core fundamentals behind the
Realm database, with a view of providing the foundations and tools that could be
helpful in continued, further research and analysis. We hope that readers are able to
use any knowledge gained from this chapter and referenced materials, to continue to
explore and build their understanding of this database format, and we hope that the
community continues to explore, share knowledge, and help one another enhance
our understanding of new and developing file formats and structures for the benefit
of all.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Chapter 9
Protocol Buffers

Chris Currier

Abstract Protocol Buffers (Protobufs) are discussed in this chapter, from creating
one to analyzing the data. This particular serialization format, originally developed
by Google, is used in various apps. We discuss creating a protocol buffer and adding
data through Python step by step. This provides a better understanding of how and
why protocol buffers are formed and used. We also clarify how to recognize and
decode them during a forensic examination.

9.1 Introduction

I remember being on the edge of my seat as Johan Persson, a developer at MSAB,
first introduced me to Protocol Buffers. Why? Protobufs, as they are commonly
referred to, contain data that we as examiners may find helpful in an investigation. I
had no idea how to find them and view the payload they carried. However, that was
to change quickly.

9.1.1 What is a Protocol Buffer?

A Protocol Buffer provides a format for taking compiled data (many different lan-
guages/platforms supported) and serializing it by turning it into bytes represented in
decimal values. This makes the data smaller and faster to send over the wire. We call
this serialization in computer science.

A protocol buffer is a data format structured in a very efficient binary format. The
structure is defined in a .proto file, which is in a readable text format. The concept
is similar to XML, where the schema description can be done inline or in a separate

Chris Currier
MSAB, Hornsbruksgatan 28 SE-117 34 Stockholm Sweden e-mail: chris.currier@msab.com

223© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0_9

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

mailto:chris.currier@msab.com
https://doi.org/10.1007/978-3-030-98467-0_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98467-0_9&domain=pdf

224 Chris Currier

file. The .proto file is then used to generate code for reading from and writing data
to the protocol buffer. Due to its nature, protocol buffer data is very suitable for
transmission over networks. When transmitted over networks, it is often compressed
with GZIP to minimize the size of the data. The protocol buffer concept was created
and is used extensively by Google. Other users of protocol buffers include Apple
and app developers.

So, where do we begin? Of course, the best place to learn about Google’s Protocol
Buffers is Google (see Fig. 9.1). Google defines how to structure and use Protocol
Buffers [24]. The structured or rigid format used by Protocol Buffers is often referred
to as a schema.

Fig. 9.1: Google’s Protocol Buffers

Google itself says about its format in the developer documentation that it is a platform-
independent, language-independent and easily extensible serialization format. Of
course, other formats allow serialization of data too. Java-Serial is an example of
this. Unlike this, Protobuf is a language-independent transmission format. Also,
XML would be an option. However, Protobuf is smaller and faster than most of
the other formats [24]. A significant advantage of Protobuf is that we only need to
define the structure for the data to be transferred once and can then exchange it over
a wide variety of data channels. The programming language is secondary since we
are language-neutral. The data stream itself (network or file) is also irrelevant. The
definition of the protobuf message always remains the same [24].

9 Protocol Buffers 225

9.1.2 Why are Protocol Buffers Used?

Now think of a network with data being transmitted through it. How do we get data
through the network faster? The smaller the data, the faster it will be. We also do not
need it to be human-readable during transmission. This is where Protocol Buffers
shine with faster transmission. Figures 9.2 and 9.3 demonstrate the time and size of
Protbufs, based on tests performed to consider encoding and decoding benchmarks
and common browsers [58, 43].

JSON JSON Stream Protobuf

0

1,000

2,000

3,000

527 463
197

2,183
2,500

461

ns
/o
ps

Encoding Decoding

Fig. 9.2: Encoding and Decoding Performance of Protobufs [58]

0 200 400

Safari

Firefox

Chrome

399

400

396

386

380

388

Time (ms)

0 50 100

111

111

111

101

101

103

Size (KB)

JSON Protobuf

Fig. 9.3: Compression Environment of Protobufs and JSON [43]

The authors of a benchmark study in [43] conclude that ProtoBuf performs signifi-
cantly better than JSON. The messages are significantly smaller and are transmitted

226 Chris Currier

much faster at the same time. However, there is always someone faster, and that
brings us to the term FlatBuffers:

“Protocol Buffers is indeed relatively similar to FlatBuffers, with the primary differ-
ence being that FlatBuffers does not need a parsing/ unpacking step to a secondary
representation before you can access data, often coupled with per-object memory
allocation. The code is an order of magnitude bigger, too. Protocol Buffers has
neither optional text import/export nor schema language features.” [15]

As you can see, it is not just about speed but also the size of the data. The protocol
buffer is not only the code but also the key. The data sent is binary and can be
converted and looked at. Different languages (code) may be supported and used to
enter and view this data.

9.2 Using Protocol Buffers

This section will clarify how ProtoBuf works and what data is needed. For this,
the first step is to generate a description of the message types used and the access
service:

Messages

To create a ProtoBuf message, we must first create an appropriate template. This
template is usually saved in a file with the extension .proto. The file is set up and
used alongside another programming language such as Python. The data (or user
data) can be added using the same scheme (Field assignments: Type, Name, Tag)
and then sent internally or externally over the wire. Google set up Protocol Buffers
for their internal communication. Data is transmitted as binary. For this reason, we
can encounter it in almost every Google app.

Services

Protocol Buffers are not just about messages but also services. For this reason, we
need a service description. It describes the interface of the methods offered via the
service. If we want to create an RPC service using a proto buffer, then the service
must be given a name under which it can later be called once. In this case, the
developer documentation recommends formulating both the service name and the
access methods in CamelCase (with an initial capital). Here we have a brief example
of defining a chat service that provides precisely one access method:

s e r v i c e Cha t S e r v i c e {
rpc Ge tCha t s (Cha tReques t) r e t u r n s (CharResponse) ;

}

9 Protocol Buffers 227

One such service is Google’s gRPC. These RPC (Remote Procedure Calls) methods
accept a request "message" and return a response "message". Protobuf is often used
with HTTP and RPCs for local and remote client-server communication. Protobuf is
used for the description of the required interfaces and message types. The protocol
composition is also summarized under the name gRPC [30]. In this case, the call to
the remote method - encapsulated by a service - is provided platform-independently
via a service description. The steps for generating a protobuf message and sub-
sequent transmission are briefly summarised again in Fig. 9.4. The message data
(message refers to type or object and not to chat or text) is then transmitted over the
wire (internal or external). The supported platforms can all have code generated to
deserialize the data and make sense of it, regardless of what coding platform created
the data.

Fig. 9.4: How Protobufs Work

Looking at the data, we may not make sense of it without having the original code to
know what the data represents. Unfortunately, we will not find the schema to help us
make sense of the fields. So, let us look at the code to start with. That will give us a
better understanding of what we see during the examination. Therefore, we will first
discuss the design and implementation of a proto buffer using two small examples
before turning to the forensic analysis of these special artefacts.

The Proto File

We start by creating a .proto file. We like to think of this file as the key or legend
to the data we will see on a mobile device. Unfortunately, we will not find this key

Protocol
Buffer

CREATED

Protocol
Buffer

COMPILER
ProtoC

Multiple
Supported
Platforms
Can be

Compiled

Language
Code

Template
CREATED

Message
DATA INPUT
Using Preferred

Language & Template

Data SERIALIZED
Sent as Binary Bytes

10101010

Message
DESERIALIZED
Delivered/Read

Preferred Language

228 Chris Currier

or legend on the device itself as examiners. The .proto file is not included with
the binary, with a few exceptions. As we will see, this often leaves some room for
interpretation when we deserialize a Protocol Buffer manually. We will walk you
through an example of the process. This example (see Fig. 9.5) will be for an Address
Book, so we will name it formobileAB.proto. The file can be created with any editor.

Fig. 9.5: FORMOBILE Protobuf Example

Define the Syntax

Google made Protocol Buffers public in 2008. In 2016 Google published Protocol
Buffers 3. Since there is a different version, we have to identify which version of
Protocol Buffers will be used. So, the first line of code needs to state this. Version 3
is used in these examples, as shown below.

syntax = "proto3";

Message Type

Now the message needs to be defined or named. This "message" is a code term
that refers to the data and is not confused with terms chat or SMS text messages.
The name should reflect the type of message based on content. The term address
book should define our Protocol Buffer just fine. When using two words they use
CamelCase and form one word i.e. addressBook or AddressBook, as shown below.

syntax = "proto3";

message AddressBook {

}

Fields

To create the first property, we need to know the type of data [int32], followed by
property name [thread] and then identify it as the sequential property [1]. Fields

9 Protocol Buffers 229

identify these data characteristics through Field Type, Field Name, and a Field Tag
(or also called a Field Number). This is where we define the class characteristics
that will be used. We consider what information would we want to know about, for
example, a:

• Person
• Contact
• Web Broswer Search
• Location and a Chat

•! Attention

Remember, the idea behind Protocol Buffers is to take code from another language
and package it into a smaller container. This starts defining the data by naming it and
then following with fields.

The actual data such as: John Smith 40 1.85 90.71 Brown Blue will not exist in this
proto file, but in another file. This should remind you of how meta data type looks
like in a chat message. Fig. 9.6 is an example found in an address book showing the
fields and associated data and profile picture.

Scalar Values

A message is normally composed of a number of different scalar values. Each value
is assigned to a particular type. Looking at an SQLite database table definition,
we will find terms such as Integer, Boolean, Float, and String. These define data
types. Protocol Buffers use these as well (see table 9.1). Since we usually want to
exchange messages between different applications, the data they contain must be
preserved. As we can see in the table below, Protocol Buffers are easily used with
other programming languages: C++, Java, Python, and Go. Accordingly, we can
easily map the data type of a programming language to a ProtoBuf type and vice
versa. For more information about types and unsigned bit integers please refer to
[26].

230 Chris Currier

Fig. 9.6: Address Book Profile Example

.proto Type Notes C++ Java Type Python Type Go Type

double double double float *float64
float float float float *float32
int32 Uses variable-length encoding.

Inefficient for encoding negative
numbers – if your field is likely to
have negative values, use sint32
instead.

int32 int int *int32

int64 Uses variable-length encoding.
Inefficient for encoding negative
numbers – if your field is likely to
have negative values, use sint64
instead.

int64 long int/long *int64

uint32 Uses variable-length encoding. uint32 int int/long *unint32
uint64 Uses variable-length encoding. uint64 long int/long *uint64
sint32 Uses variable-length encoding.

Signed int value. These more effi-
ciently encode negative numbers
than regular int32s.

int32 int int *int32

sint64 Uses variable-length encoding.
Signed int value. These more effi-
ciently encode negative numbers
than regular int64s.

int64 long int/long *int64

sfixed32 Always four bytes. int32 int int *int32
sfixed64 Always eight bytes. int64 long int/long *int64
bool bool boolean bool *bool
string A string must always contain

UTF-8 encoded or 7-bit ASCII
text.

string String unicode
(Py2) or str
(Py3)

*string

bytes May contain any arbitrary se-
quence of bytes.

string ByteString bytes []byte

Table 9.1: Mapping Table for possible Scalar Types (Detail) [26]

9 Protocol Buffers 231

•! Attention

In this chapter, we will discuss several examples of Proto Buffers: (1) an address
book, (2) a chat message, and (3) an Apple Maps example. You will find most of the
files mentioned here: www.github.com/Xamnr/ProtocolBuffers. If you like,
you can analyze the examples discussed here yourself. Just give it a try.

9.2.1 The Schema Defintion

The Protocol Buffer defines the Object (type of data and position). Not the actual
data or user data. The actual data will be coded in Python or another language format.
However, the type of data that will go into these fields needs to be defined. Protocol
Buffers use fields. There are three types of fields:

• Field Type
• Field Name
• Field Tag (or Number)

Field Type

The field type uses the scalar values to define the type of data like integer, string,
or bool. Thinking back to our Apple contact, shown below (Fig. 9.7), we have the
following fields and data to consider:

• Name or maybe Last Name and First Name
• Phone Number (Home, Work, Cell)
• Email (Home, Work)
• A Unique Identifier
• A Profile Picture

If not set, specified, or unknown, every field will have a default value. Protocol
Buffers do not recognize required fields. Instead, the runtime environment of the
programming language is responsible for that, i.e. Java, Python, Go. This means that
a field whose assignment corresponds to the default value is not serialized. It is just
left out. Since the field is missing in the data stream, the receiver side automatically
uses the default value in this case. This property, which may seem confusing at first
glance, ensures that no unnecessary values are transmitted. The serialized data on
the wire remains small.

www.github.com/Xamnr/ProtocolBuffers

232 Chris Currier

Fig. 9.7: Field Type and Scalar Values (example)

VALUE DEFAULT

Bool False
Number 0
String (UTF-8 or 7-bit ASCII) Empty String
Byte (or byte array) Empty Bytes (or empty byte array
Enum First Defined Value 0
Repeated Empty List

Table 9.2: Field Type Default Values

Field Names

The field name represents one particular element within the message, therefore
identifying the data for us. To identify a contact, we may use identifiers such as
last_name, first_name, phone_number_cell, email, unique_id, date_time_created,
profile_picture. When multiple words are used, each word is separated by an under-
score “_”. Again, we do not add the data such as Karl Agathon. This data will be
input elsewhere. Now that we have our field names, we need to identify the field type
values for each field. We will focus on using Python. See Table 9.3 below.
The field tag is the last element. It works as a place holder. Tags are simply a number
ranging from 1 to 536, 870, 911. However, there are some rules that come with these
tags:

• The number may only be used once so that it is unique (more on this later).

9 Protocol Buffers 233

VALUE DEFAULT

last_name String (UTF-8 or 7-bit ASCII)
first_name String (UTF-8 or 7-bit ASCII)
phone_number_cell Int (int32)
email String (UTF-8 or 7-bit ASCII)
unique_id Int (int32)
date_time_created float (could be a double in another language)
profile_picture Bytes

Table 9.3: Field Name Python Example

• Numbers 19000 through 19999 cannot be used. Reserved by Google.

There are also some strategies to speed up the data with these tags:

• Numbers 1 to 15 use only 1 byte, so these are used for fields used most often.
• Numbers 16 – 2047 use 2 bytes

Now we put this together in the code with the Field Type, Field Name, and Field Tag.

Fig. 9.8: Code Structure

A correct schema definition for our address book example could thus look like the
following:

message AddressBook {
string last_name = 1;
string first_name = 2;
int32 phone_number_cell = 3;
string email = 4;
int32 unique_id = 5;
float date_time_created = 6;
bytes profile_picture = 7;

As you can see above the address book has 7 assigned fields. Each field is defined by
a Type, Name, and unique Tag. Certain rules still apply to the message fields [27]:

• singular: Such fields have the cardinality 1. Thus, a message can only have none
or exactly one of this field values. This is the default rule.

234 Chris Currier

• repeated: Array or list of values. It can be repeated any number of times - even
zero times.

Since the keyword singular is the default case, it can be omitted when defining a
field. Once we have chosen the field tag number, that number is unique and cannot
be reused. However, we could change the .proto file by commenting out a field. Field
names or field tags can also be reserved for future use. Using a reserved field may
cause compiler issues if the data type is not identified correctly.

For example, to define the field other phone numbers as a list, we can use the
following assignment:

repeated string other_phone_numbers = 8;

Enums

An Enumeration (Enum) is used when the values for a field are known or fixed. An
Enum must start with tag 0 (default value). An example could be a status: Unknown
Status (default), Read, Unread, Sent. The Enum values are all capitalized (upper
case). See the example below. Here we added the employee’s employment status.
The default value is the first one tagged with zero:

1 syntax = "proto3";
2

3 /* This is Protocol Buffers
4 * for FORMOBILE */
5

6 message AddressBook {
7 string last_name = 1;
8 string first_name = 2;
9 int32 phone_number_cell = 3;

10 string email = 4;
11 int32 unique_id = 5;
12 float date_time_created = 6;
13 bytes profile_picture = 7;
14 // profile or avatar (jpg) file
15

16 repeated string other_phone_numbers = 8;
17

18 //Employee Status as an Enum
19 enum EmployeeStatus{
20 UNKNOWN_EMPLOYEE_STATUS = 0;
21 CURRENT = 1;
22 RETIRED = 2;
23 RESIGNED = 3;
24 APPLICANT = 4;
25 FIRED = 5;
26 }
27

9 Protocol Buffers 235

28 /* This is an example of an ENUM notice
29 *it is ALL CAPS and the default starts with zero */
30 EmployeeStatus employee_status = 9;
31 }

Nesting

Messages can be added inline into another message. Nesting allows us to have
message(s) types within a message type. This functionality is well known in pro-
gramming languages and is called aggregation. That means some other message type
is part of a second message type.

•! Attention

Here a message refers to code and not a chat message.

In the example shown below, the address entry has been added to include street, city,
zip code, and country. Notice the indentation. In this example, the original message
refers to the AddressBook, and the nested message refers to the message Address
that starts on line30. The enum used tag 9 and the nested message is now assigned
tag 10. This is now defined as AddressBook.Address.

1 syntax = "proto3";
2

3 import "myproject/timestamp.proto";
4

5 message AddressBook {
6 string last_name = 1;
7 string first_name = 2;
8 int32 phone_number_cell = 3;
9 string email = 4;

10 int32 unique_id = 5;
11

12 //....
13

14 //Nesting allows us to define a message within a
15 //message (notice the indentation)
16 message Address{
17 string street_number = 1;
18 string street = 2;
19 string city = 3;
20 string zip_code = 4;
21 strong country = 5;
22 }
23 Address employee_address = 10;
24 }

236 Chris Currier

Importing & Packages

Importing allows us to use other .proto file(s) or package(s) with the code you need
from a different proto file. Below is a timestamp.proto file that has the set up for
an epoch time stamp, which will be shown on the following pages.
When importing, we use import followed by the full path where the file is located
endingwith a semicolon, as seen below.Code can be compiled and put into a package.
Protocol Buffers are no different, which is helpful for other coding languages. This
also helps to avoid naming conflicts. A package can be created and then imported
into a protocol buffer. Following is the timestamp.proto file. The package name
is google.protobuf.timestamp and save the file to the same directory as the
formobileAB.proto file.

syntax = "proto3";

package google.protobuf.timestamp;

option csharp_namespace = "Google.Protobuf.WellKnownTypes";
option cc_enable_arenas = true;
option go_package = "github.com/golang/protobuf/ptypes/timestamp";
option java_package = "com.google.protobuf";
option java_outer_classname = "TimestamProto";
option java_multiple_files = true;
option obj_class_prefix = "GPB";

message Timestamp {
// Represents seconds of UTC time since Unix epoch
// 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to
// 9999-12-31T23:59:59Z inclusive.
int64 seconds = 1;
// Non-negative fractions of a second at nanosecond resolution.
// Negativebsecond values with fractions must still have
// non-negative nanos values that count forward in time.
//Must be from 0 to 999,999,999 inclusive.
int32 nanos = 2;

}

To include the message definition of a Timestamp to our address book, we have
to open formobileAB.proto file and add the imported proto file as well as the
package name. Now we have to change the ‘date_create’d field so that the timestamp
epoch time is recognized from the package:

1 syntax = "proto3";
2

3 /* This is Protocol Buffers
4 * for FORMOBILE */
5 import "google/protobuf/timestamp.proto";
6

9 Protocol Buffers 237

7 package google.protobuf.timestamp;
8

9 message AddressBook {
10 string last_name = 1;
11 string first_name = 2;
12 int32 phone_number_cell = 3;
13 string email = 4;
14 int32 unique_id = 5;
15 google.protobuf.timestamp.Timestamp date_created = 6;
16 bytes profile_picture = 7;
17 // profile or avatar (jpg) file

Nowwe have some idea of how a protocol buffer .proto file is created. The .proto
file itself does not contain user data but just the schema. We will find such schema
definitions in our analysis. However, they may appear like the timestamp.proto
file shown in Fig. 9.9. Our analysis tool or a hex viewer may not be the best way to
view this file. Here, an ordinary text editor is certainly the better choice.

Fig. 9.9: timestamp.proto demonstrated in a Hex Viewer

The above information covers some of the code options for creating the .proto
file. More information can be found at [27]. We will now look at the .proto file
from a forensic analysis perspective. But first, we have to transfer our newly created
message type into a concrete programming language.

238 Chris Currier

9.2.2 Compiling Your Protocol Buffer

Once the custom data structures are defined as desired in the .proto file, generate
the classes needed to read and write the protobuf messages. For this purpose, apply
the protocol buffers compiler (protoc) to the configuration file. The protoc.exe is
what we will be using to look at the data that we find. So first, let us see how it is used
to serialize or encode the data from a protocol buffer file. The link to obtain ProtoC
is www.github.com/protocolbuffers/protobuf/releases. ProtoC will gen-
erate code from the Proto File to the supported language. A template for coders to
follow and use the defined terms.

First, we have to specify the directory to search for imports. It may be specified
multiple times; directories will be searched in order. If not given, the current working
directory is used. If not found in any of these directories, the --descriptor_set_in
descriptors will be checked for required proto file. Next, we have to define the output
language:

--cpp_out=OUT_DIR Generate C++ header and source.
--csharp_out=OUT_DIR Generate C# source file.
--java_out=OUT_DIR Generate Java source file.
--js_out=OUT_DIR Generate JavaScript source.
--objc_out=OUT_DIR Generate Objective-C source.
--php_out=OUT_DIR Generate PHP source file.
--python_out=OUT_DIR Generate Python source file.
--ruby_out=OUT_DIR Generate Ruby source file.

In this case, we will be using Python --python_out=OUT_DIR. Other languages
like GO are supported and can be found referenced online. Now to take the formo-
bileAB.proto file and compile the code for Python (or another language). We will
place the ProtoC executable here and create a python folder.

Fig. 9.10: Python Folder Example

Then open up a command prompt in this location and follow steps 1, 2, 3 or 1, 2, 4.
1 Determine the directory name that your proto files are in.
2 Add Output language (Java, Python...).
3 Add Absolute path of your proto file with extension.
4 or all proto files in that location folder.
‘

www.github.com/protocolbuffers/protobuf/releases

9 Protocol Buffers 239

Fig. 9.11: File Path Example

Analysing the Python Protobuf-Code

In our example, we have chosen Python as the target language.Wewill briefly discuss
the file formobileAB_pb2.proto created in the process below. In the first section,
we see imports from google.protobuf. One of the imports mentions reflection.
This can be observed throughout the following Python example. This means the
coder will have to identify the objects in their code. Descriptors are shown as well.
A serialized_pb binary buffer could be found.

-*- coding: utf-8 -*-
Generated by the protocol buffer compiler. DO NOT EDIT!
source: formobileAB.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
@@protoc_insertion_point(imports)

_sym_db = _symbol_database.Default()

DESCRIPTOR = _descriptor.FileDescriptor(
name='formobileAB.proto',
package='', syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key ,
serialized_pb=b'\n\x11\x66ormobileAB.proto\"\xf7\x03\n\x0b\x41
\x64\x64AressBook\x12\x11\n
\tlast_name\x18\x01 \x01(\t\x12\x12\n\n
first_name\x18\x02(\t\x12\x19\n
\x11phone_number_cell\x18\x03 \x01(\x05\x12\r\n
\x05\x65mail\x18\x04 \x01(\t\x12\x11\n
\tunique_id\x18\x05 \x01(\x05\x12\x14\n
\x0c\x64\x61te_created\x18\x06 \x01(\x02\x12\x17\n
\x0fprofile_picture\x18\x07 \x01(\x0c\x12\x1b\n
\x13other_phone_numbers\x18\x08 \x03(\t\x12\x34\n
\x0f\x65mployee_status\x18\t
\x01(\x0e\x32\x1b.AddressBook.EmployeeStatus\x12.\n
\x10\x65mployee_address\x18\n
\x01(\x0b\x32\x14.AddressBook.Address\x1a\x61\n
\x07\x41\x64\x64ress\x12\x15\n
\rstreet_number\x18\x01 \x01(\t\x12\x0e\n
\x06street\x18\x02 \x01(\t\x12\x0c\n
\x04\x63ity\x18\x03 \x01(\t\x12\x10\n

240 Chris Currier

\x08zip_code\x18\x04 \x01(\t\x12\x0f\n
\x07\x63ountry\x18\x05 \x01(\t\"o\n
\x0e\x45mployeeStatus\x12\x1b\n
\x17UNKNOWN_EMPLOYEE_STATUS\x10\x00\x12\x0b\n
\x07\x43URRENT\x10\x01\x12\x0b\n\x07RETIRED\x10\x02\x12\x0c\n
\x08RESIGNED\x10\x03\x12\r\n\tAPPLICANT\x10\x04\x12\t\n
\x05\x46IRED\x10\x05\x62\x06proto3'

)

Scrolling down the page we find the AddressBookmessage descriptors. You should
be able to see the Field Names and the Field Tags.

full_name='AddressBook.Address',
filename=None,
file=DESCRIPTOR ,
containing_type=None,
create_key=_descriptor._internal_create_key ,
fields=[

_descriptor.FieldDescriptor(
name='street_number ',
full_name='AddressBook.Address.street_number ',
index=0, number=1, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=
None,file=DESCRIPTOR ,c
reate_key=_descriptor._internal_create_key),

_descriptor.FieldDescriptor(
←↪

name='street', full_name='AddressBook.Address.street', index=1,
number=2, type=9, cpp_type=9, label=1,
has_default_value=False, default_value=b"".decode('utf-8'),
message_type=None, enum_type=None, containing_type=None,
is_extension=False, extension_scope=None,
serialized_options=
None,
←↪

file=DESCRIPTOR , create_key=_descriptor._internal_create_key),

A 2nd Example - The FormobileChat message

Having created the first example so easily, let us follow it up with a second example
right away. This time it will be about defining a chat message with data fields and then
generating a corresponding protobuf message. A second example was generated. The
formobilechat.proto file has been created. After reading through this material
you should have a good idea of what you are looking at. There is a message named
FormobileChat. Followed byFieldTypes,Names, andTags. There are also twoenums

9 Protocol Buffers 241

used for message direction and status. Does this data remind you of something? Chat
message data, maybe?

syntax = "proto3";
// Formobile Protocol Buffers
message FormobileChat {

int32 chat_thread_id = 1;
string chat_contact = 2;
string chat_text = 3;
bytes chat_attachment = 4;
float chat_latitude = 5;
float chat_longitude = 6;
int64 chat_timestamp = 7;

enum Chat_Direction {
UNKNOWN_DIRECTION = 0;
OUTGOING = 1;
INCOMING =2;

}
Chat_Direction chat_direction = 8;
enum Chat_Status {

UNKNOWN_STATUS = 0;
UNREAD = 1;
READ = 2;

}
Chat_Status chat_status = 9;

As with our address book example, next, we need to have the schema file compiled
using the compiler protoc. The result, in our case, is again a Python source file. We
could use ProtoC �proto_path and �python_out commands to generate the code
for Python.

242 Chris Currier

•! Attention

Note there are two dashes “– ” before both proto and python.

$> p r o t o c −−p r o t o _ p a t h = . −−py thon_ou t = . . / f o rmo b i l e c h a t . p r o t o

ProtoC took theprotofile, output it to Python to create theformobilechat_pb2.py
file. This file has almost 200 lines of code from a proto file with less than 30 lines
of code.

Formobilechat_pb2.py

Even though it says pb2, this was made from a proto3 file. Notice the size compared
to the .proto file itself.

-*- coding: utf-8 -*-
Generated by the protocol buffer compiler. DO NOT EDIT!
source: formobileAB.proto
"""Generated protocol buffer code."""
from google.protobuf import descriptor as _descriptor
from google.protobuf import message as _message
from google.protobuf import reflection as _reflection
from google.protobuf import symbol_database as _symbol_database
@@protoc_insertion_point(imports)

_sym_db = _symbol_database.Default()

DESCRIPTOR = _descriptor.FileDescriptor(
name='formobileAB.proto',
package='', syntax='proto3',
serialized_options=None,
create_key=_descriptor._internal_create_key ,
serialized_pb=b'\n\x11\x66ormobileAB.proto\"\xf7\x03\n\x0b\x41
\x64\x64AressBook\x12\x11\n
\tlast_name\x18\x01 \x01(\t\x12\x12\n\n
first_name\x18\x02(\t\x12\x19\n
\x11phone_number_cell\x18\x03 \x01(\x05\x12\r\n
\x05\x65mail\x18\x04 \x01(\t\x12\x11\n

9.2.3 Creation of a Protobufs with Python

Now it is time to generate our first chat message using the Python files generated
in the previous step. Therefore, a python script must be created, so this one will be
named formobilechat.py.

9 Protocol Buffers 243

First, the formobilechat_pb2 has to be imported into the script and followed by
any other imports or packages. Without the import, we would not be able to access
the message types predefined. A variable is created, identifying the Fieldnames and
entering data for those fields. Since Reflection is used, the developer must identify
the fields used in the Protocol Buffer. In programming, reflection means that a
programme knows its structure (introspection) and can modify it.

Program Code <formobilechat.py>

impo r t f o rmob i l e c h a t _ pb2 as f o rmob i l e c h a t _ pb2

Formob i l eCha t = f o rmob i l e c h a t _ pb2 . Fo rmob i l eCha t ()

Fo rmob i l eCha t . c h a t _ t h r e a d _ i d = 1
Formob i l eCha t . c h a t _ c o n t a c t _ i d = " Kar l Agathon "
Formob i l eCha t . c h a t _ t e x t = " P a t r i c k s o r r y you cou ld no t make i t

t o n i g h t t o g e t your c u t o f t h e cash . We w i l l use you f o r t h e
nex t bank . Got some th ing f o r you "

Formob i l eCha t . c h a t _ a t t a c hmen t = by t e s ([0 xFF , 0XD8, 0XFF , 0x00 ,
0x10 , 0x4A , 0x46 , 0x49 , 0x46 , 0x00 , 0x01 , 0x01 , 0x01 , 0xFF ,
0xD9])

Fo rmob i l eCha t . c h a t _ l a t i t u d e = 5 .50559
Formob i l eCha t . c h a t _ l o n g t i t u d e = −0.08956
Formob i l eCha t . c h a t _ t ime s t amp = 1616182435
Formob i l eCha t . c h a t _ d i r e c t i o n = 1
Formob i l eCha t . c h a t _ s t a t u s = 2

In our example, a chat message is generated with a Contact named Karl Agathon. In
addition to the actual message text, a JPEG was also added as an attachment. The
message is supplemented with position information (latitude and longitude) and a
timestamp. Now that the sample message is complete, we can create a real ProtoBuf
message from it in the next step.

Writing the Object to a Binary File

The message is now serialized using Protobuf and saved to a binary file. For this
we create a new file named FormobileChat.bin. Then we write the content of the
messages created with Python before into the file.

Program Code

wi th open (" Fo rmob i l eCha t . b i n " , "wb") a s f :
b y t e sA sS t r i n g = Formob i l eCha t . S e r i a l i z e T o S t r i n g ()
f . w r i t e (b y t e sA sS t r i n g)

244 Chris Currier

The output file is then located in the same directory as the Python script used to
create the binary.

Remember Size = Speed

Notice the size comparisons below. The first image shows the Python Script
formobilechat.py and the FormobileChat.bin. This contains the complete
chat_attachment jpg picture binary data.

Fig. 9.12: FormobileChat.bin in File Explorer

Notice the size comparison of the original proto file, the compiled pb2.py file,
and the binary file. Note the FormobileChat.bin (has the full jpg picture
chat_attachment binary data). The FormobileChatsmall.bin has a portion
of the chat_attachment binary data as seen on the previous page.

Fig. 9.13: FormobileChat.bin in File Explorer

The Raw Binary Data

Opening the file in Hex-Editor does not really do this file justice. Well we can see
the chat text and the file signature of a JPG, but that is it. So how do we handle this
protocol buffer data?

9 Protocol Buffers 245

Fig. 9.14: FormobileChat.bin Hex

9.2.4 Reversing Proto Buffer Messages

In our example, we are in possession of the original .proto file as well as the generated
binary. In practice, unfortunately, it is often the case that we do not have a schema
file. But even without a interface description there is a way out.

The protoc compiler is not just for compiling data from a protocol buffer. But
it can also be used in other ways. The protoc tool is very useful for showing the
contents of protocol buffer data.

There is data here for us to find. We just need to know how to view it. That is
where the protoc �decode_raw command comes in. We use the command line to
decode the raw binary data from the FormobileChatsmall.bin. The command to
use is protoc --decode_raw < (File and Path). Our attempt to restore the
data using the "decode raw" option was apparently only partially successful (see Fig.
9.15).

246 Chris Currier

Fig. 9.15: Decoded Protocol Buffer

Fortunately, there is a solution for this as well. Thus, there are a variety of pro-
grams that provide a mostly accurate interpretation of the numerical values. The
program protobuf-inspector1 is one of those tools. It helps to reverse Protocol
Buffers with unknown definition, i.e., missing .proto files. The command to use
is main.py < (File and Path)

Fig. 9.16: Close up of Protobuf-Inspector decode results

With both decodes, we see the data entered, and some of it is easily understood, and
other parts are not. Take note above that the protobuf inspector does change
the octal values to hexadecimal and also translated the Longitude and Latitude in
the correct Decimal 5.50559 and −0.0895600. We can compare the encoded binary
message with the original Python Script results (see Fig. 9.17).

1 www.github.com/mildsunrise/protobuf-inspector

www.github.com/mildsunrise/protobuf-inspector

9 Protocol Buffers 247

Fig. 9.17: The Original Entered Formobilechat Data (Python)

Data Conversion

While we may not know what the 1 and 2 flags mean, we can certainly look for data
that we can do something about to start with. Location data in the case of 5.50559 and
−0.08956 is shown in decimal, which is one way forensic tools represent it. However,
what do we do when we are seeing something (maybe from a map application) that
could be longitude and latitude and is in Hexadecimal: 0x40102321 0x13176132 If
the Hex value starts with 8, 9, A, B, C, D, E, or F then it is a negative number. There
are a few ways to do this, but the best we have been taught is HxD and a Python
Script. We will show you how to use HxD’s Data Inspector later in the chapter.

The Python Script requires 8 bytes, as seen below and do not name the script
struct (as that is reserved). Also, be aware that you may input the data in the wrong
spots mixing up the latitude and longitude. Test this with known data first to make
sure it works in your part of the world.

Program Code

c o n v e r t La t Long from hex t o dec ima l
impo r t s t r u c t

l a t = s t r u c t . unpack (’>d ’ , b ’ \ x40 \ x45 \ xF5 \ xE5 \ xF6 \ x6D \ x59 \ x0F ’) [0]
long = s t r u c t . unpack (’>d ’ , b ’ \ xc0 \ x51 \ xFA \ xA3 \ xB1 \ xD3 \ x4B \ x67 ’) [0]

p r i n t (" L a t i t u d e : " , (l a t) , " and t h e Long i t ude : " , (l ong))

Timestamp

In the above example,we see something thatmaybe an epoch timestamp 1616182435.
Unix time is based on the date 1970-01-01 00:00:00 (UTC), and Apple timestamps

248 Chris Currier

(MAC Absolute time) use 2001-01-01 00:00:00 (UTC) as a start. Timestamps nor-
mally use seconds but may also use milliseconds, microseconds, nanoseconds etc.

The above example starts with 1 then it is probably a Unix time (when it comes
to Android and Apple Devices). Apple Timestamps will most likely start with 3, 4,
5, or 6. We find epoch converter works well as an online converter or Tempus.pyw
for an offline converter available at http://github.com/eichbaumj/Python.

Linux CF or Mac Absolute Apple HFS+

www.epochconverter.com www.epochconverter.com/coredata www.epochconverter.com/mac

Table 9.4: Epoch Timestamp Look Up Websites

Fig. 9.18: Epoch Timestamp Look Up

Pictures or other files represented by octal data

The easiestway is to look at the data in aHexViewer such asHxDor your forensic tool
and copy out the file. In this case, the attachment is a JPG. The file signature for a JPG
file is Hex FFD8FF, and the end of the file may have Hex FFD9. You can see the start
of the file below. Highlight and copy the data and save it as a .jpg type file. Example
files can be found here: https://github.com/Xamnr/ProtocolBuffers.

9.3 Practical Analysis of different Proto Buffers

Analyzing digital evidence when looking thoroughly at an application can be difficult
enough. Within a normal investigation of a mobile phone, the investigator already
has to evaluate many different file formats. Typical file formats, which are also found
in this book, are Apple Property Lists (Plists), XML, SQLite databases. Of course,
you can do keyword searches for .proto files, but as you saw earlier, that is probably

http://github.com/eichbaumj/Python
www.epochconverter.com
www.epochconverter.com/coredata
www.epochconverter.com/mac
https://github.com/Xamnr/ProtocolBuffers

9 Protocol Buffers 249

Fig. 9.19: ChatData - HexView, including file header of JPEG picture

not going to help you. To make even worser, proto buffers are often nested within
other file formats rather than in their own files.

One of the issues is that these files already contain various types of data, such
as Binary Large Object encoded Base 64. So, we need to be familiar with another
XML or PList file within a BLOB, XML, Plist and/or Protocol Buffer Data within
a BLOB. BLOBs are often also stored in a database table. In each case, we have to
determine what content we are dealing with. Unfortunately, Protobuf does not have
a real MagicNumber. We can only make a guess. Even more, Protocol Buffers can
also be stored as GZip archive files. This adds another level of difficulty in finding
these Protocol Buffers.

9.3.1 Mobile Device Artifact Examples

Some popular apps that use protocol buffers include Apple Maps, Google Maps,
Badoo, Gmail, Google Allo, TamTam, Tango,WeChat, Wickr, Wire and many more.
The Apple iCloud Backup system makes extensive use of protocol buffers. When
dealing with application data, you are probably familiar with SQLite Databases,
XML, and Apple Property List Files (.plist). You may not be aware that these files
can contain data encoded Base64, such as a Binary Large Object (BLOB).

Example - Waze Navigation App

As a first example, we will use a typical app that uses Proto Buffers internally.Waze
is a navigational guidance application for getting directions and showing the fastest

250 Chris Currier

available routes. Shown on the following page is the application folder for Waze.
Selected is a file named cache_data, shown below.

Fig. 9.20: cached_data

Let us now take a closer look at the cache file. We use the forensic tool’s hex viewer
to see what type of data the file contains, shown on the right. Well this is nice, we
can see some data immediately (see Fig.9.21). With a simple string search we can
already extract a number of artefacts. A couple things you should know about the
data (see Table 9.5).

Username: Millenium Falcon
Phone Number: +15166618197
Home Location: 375 Main Street, New London, NH 03257

Table 9.5: Some extracted data

In fact, this example is a protocol buffer.We save the file out as a binary file adding the
.bin file extension. Now to examine the file with both protoc and protobuf inspector.
In Fig. 9.22 Waze’s cached_data decoded with ProtoC. Scrolling down through the
results, we come across the address and again some other data that we may or may
not determine. You may not figure out what the other data items are. Again, we do
not have the original code or legend. We can certainly see if data is a timestamp or
location.

Below in Fig.9.23 we take the same file into Protobuf Inspector. As we can
see, some characters on the screenshots are from escape sequences to make sure that
some chars (characters) are in bold, etc. This is an easy example, in my opinion, of a
protocol buffer. Using Protoc, Protobuf Inspector, or other Protocol Buffer decoding
tools can help break down and show the information. In this case, the data could

9 Protocol Buffers 251

Fig. 9.21: cached_data

be seen for the most part with the hex viewer. Other instances will contain Base64
Encoded data.

BASE64 Encoding

Some of you may remember reading about BASE64 and its use with Email Attach-
ments. This encoding scheme is to take this raw data like a picture and make sure
that none of the data will cause an issue. Looking at an ASCII chart, you will notice
the first 33 decimal places (0-32) are reserved for functions like BackSpace, Space,
and Carriage Return.

•! Attention

Please remember that Apple Property Lists, XML Files, and Databases can contain
pictures or web links to pictures, and of course, Protocol Buffers. Next, we will
analyze some examples of Protocol Buffers found in each.

When we send raw data, we do not want these functions to be performed. So Base64
Encoding removes these from the equation. Binary Large Objects (like a picture
or even an embedded XML or Plist file) are encoded with Base64. So, what are
Protocol Buffers managing? Raw data. When it comes to plists, they are usually in
binary form, only rarely in text format. A forensic tool like MSAB’s XAMN will
show such content in a readable (XML-like) format, making binary data appear as
base64. The website used in the below example to convert the raw data to Base64:
www.motobit.com/util/base64-decoder-encoder.asp.

www.motobit.com/util/base64-decoder-encoder.asp

252 Chris Currier

Fig. 9.22: cached_data

Fig. 9.23: cached_data in Protobuf Inspector

Example: Apple Web Cache file

In Fig.9.24 you can see a Apple Web Cache file. The filename is 12.xml. The BLOB
is highlighted. But what is it about in this case? Is it a protocol buffer or something
else?

9 Protocol Buffers 253

Fig. 9.24: 12.xml File Highlighting Encoded Data

We get the answer when we convert the raw data - probably BASE64 encoded - back
into a normal UTF-8 string. The result is shown in Fig. 9.25. The BASE64 converted
data, and we will notice that this is an XML file within an XML File. What can we
learn from this? It does not always have to be a protobuf.

Fig. 9.25: 12.xml File Base 64 Converted Data

Identifying Base64 Encoded Data

You know that Binary Large Objects (BLOBS) are usually, if not always, encoded
with BASE64. Sometimes you do not know. As seen below, we look for the tell-tale
equals sign “=” or two equal’s signs “==” at the end of the data.

254 Chris Currier

•! Attention

Note the BASE64 encoded data does not always end with an equals sign.

CBYQACDA0QIoADAAYAKBfbWIbIcCwsJBKK5NOicKJQiL84igk82e1/
kBEhIJKzQQy2axRUARwjl2dDMFUsAYrk2QAwFA47ejkYoowAwB0gwk
OEVGRkMyRTAtQkQ1Qy00MTIGLTICQkMtMjRDRERBMzZBNDQw@WAA@=

This content data is then highlighted and copied. We saved it and decoded it us-
ing a base 64 decoder. In this case, we used James Eichbaum’s Base64 Decoder
(http://github.com/eichbaumj/Python). We then save the data as a .bin file and re-
view it in the HxD Hex Editor (see Fig. 9.26). Protocol Buffer data does not have
a file signature per se. If you recall, there are different Scalar values int32, int64,
string, bytes, etc. Well these all have associated wire types. We have to look for
hex values like 08, 09, 0A. In a protobuf, those values all correspond to key = 1 with
different wire types:

Fig. 9.26: Base64 Decode: GeoHistory Contents

08 varint (A variable length integer)
09 64 bit
0A length delimited

Table 9.6: Typical protobuf start values

http://github.com/eichbaumj/Python

9 Protocol Buffers 255

A value like 08 is not a header byte. It is just a common value protobufs start with. If
interpreted as key and type it translates to key = 1, type = varint. Another common
byte at the beginning of protobufs is 0x0A which translates to key = 1, type = length
delimited (i.e. nested message, string, byte array). Remember: We can only make an
educated guess about the binary content since protobufs directly start with the serial
data stream.

•> Important

A file header for a GZIP File is Hex 1F8BC8 the file will then have to be saved and
unzipped.

As we know now, a protocol buffer message is a series of key-value pairs. Therefore,
the serialised message consists of a series of key-value pairs that are stored one after
the other in the data stream. When a message is encoded, they are concatenated into
a byte stream. The binary version of a protobuf message uses the field’s number as
the key. A concrete name and declared type for each field can only be determined
on the decoding end by referencing the message type’s definition (i.e. the .proto
file). When the message is being decoded, the parser needs to skip fields that it does
not recognise. This way, new fields can be added to a message without breaking old
programs that do not know about them. To this end, the "key" for each pair in a
wire-format message is two values – the field number from your .proto file, plus a
wire type that provides just enough information to find the length of the following
value. Mostly, this key is referred to as a tag [23].Fig. 9.7 demonstrates the wire
types available.

Type Meaning Usage

0 Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum
1 64-bit fixed64, sfixed64, double
2 Length-delimited string, bytes, embedded messages, packed repeated fields
3 Start group groups (deprecated)
4 End group groups (deprecated)
5 32-bit fixed32, sfixed32, float

Table 9.7: Available Wire Types

Just recall the formobilechat message from the earlier section. The protobuf binary
(small one in this case) is shown in Fig. 9.27. The figure demonstrates the raw data;
notice that it starts with 0x08.
The problem is we can figure out where it starts with these Hex values, possibly, but
where does it end? Is it the end of the file, or only for a few bytes? Or is it 188 bytes
like the aforementioned example. That is when the developers reply, “Welcome to
our world.”

256 Chris Currier

Fig. 9.27: Notice The Variable Integer 0x08 at the start

9.3.2 Yet another example: Apply Property List (PLIST) Files

Let’s take a look at another example fromour sample data. Fig. 9.28 shows data copied
from the GeoHistory.mapsdata.plist. The value stored under the key "content"
looks suspiciously like a BASE64 encoded value. And indeed, the data which appears
to be BASE64 was copied and pasted into www.motobit.com decoder. The result
was then copied and saved into notepad as GeoHistory_contents3.bin and opened
into HxD.
Using the file GeoHistory_contents3.bin start with 08, but which one or ones?
The file starts with 08. A search for Hex 08 results in 206 hits. See Fig. 9.29.
Wemanually look at each hit and the ASCII area for human-readable data that makes
sense, which will not always be the case. In this first example, we take the results of
the last hit, which starts at decimal offset 8579. Please copy the entire length to the
end of the file and paste it into a new HxD file that we save and name with the offset
(see Fig. 9.30).

Then the rest is decoding the data with Protoc and/or other tools. Moreover, try
to figure out what we are looking at. Since the data belongs to a map application,
we want to see if the hex values below are latitude and longitude. Maybe one of the
other values is a date time stamp? See:

1: 0x4040cda6e5dc30e8
2: 0xc05c16c2f76aa800

Indeed, the values look like latitude and longitude in decimal. However, we do not
want to assume that. This takes time and effort if we have to go through each search.
Since the file started with hex 08, we can try protoc and our other tools against the
entire GeoHistory_contents3.bin file. Keep inmind:Without the corresponding
.proto file, we can only speculate about the meaning of the data.

www.motobit.com

9 Protocol Buffers 257

Fig. 9.28: GeoHistory.mapsdata.plist

9.3.3 Suggested Examination Process of a File

The idea is you create the process that works best for you. This may be completely
working within your mobile forensic tool. The alternative is that you export out the
file(s) of interest and review the data.

1. If unknown file type, then place the file into a Hex Viewer/Editor
2. Identify the File Signature (Research it if unknown to include possible file

extensions). The data itself may be human readable as well.
3. Make sure the file has the right file extension
4. Open the file to view it natively i.e. as a database, xml, or plist file.
5. Look for Binary Large Objects (BLOB) or other raw data. Copy this raw data.
6. Decode this raw data with a Base64 Decoder and save. Devise a system to name

the file and add a .bin file extension on it as a place holder.
7. Open this .bin file in a Hex Viewer/Editor
8. Identify the File Signature (as it could be an XML or Apple Property List file).
9. If this is an XML or PList File go back to Step 5. If not close the file and move

on.

258 Chris Currier

Fig. 9.29: Finding Protocol Buffer Data

Fig. 9.30: The extracted Protocol Buffer from offset 8579

Fig. 9.31: Notice the Hex (0x) Values

10. Place the file in a folder with ProtoC executable.
11. Open a command prompt from this location
12. Type: protoc --decode_raw < Filename.bin

Click enter.

9 Protocol Buffers 259

Fig. 9.32: Protobuf-Inspector converted Hex values. Lat and Long?

If you placed the file in the same directory as the protoc then to find the file
automatically, without typing, after you type the “<” character click the space
bar once and then hit tab to cycle through all of the files in the folder. Once you
find the right file click enter.

13. See if you have Protocol Buffer data. If it Failed to parse the input, then that is
not a protobuf (or you may need to review sections of the file for data).

14. To save the data. Highlight it and Left Click.
15. Paste into text editor.This allows you to use keywords as well.

•! Attention

Now, remember the tools may obtain this data for you. However, it is nice to know
where the data came from. Examining an unsupported application may have you
uncovering protocol buffers for data as well.

9.3.4 Tools

We need to consider some of the tools in your toolbox for examining these artefacts.
Some of these capabilities may be included with your mobile device forensic tools,
such as MSAB’s XRY and XAMN. If so, then these non-forensic tools will help
validate your work. Most are free or have a freeware version. Some of these may cost
money, so look for Freeware versions:

• Hex Viewer/Editor: HxD
• Sqlite database viewer: SQLite Expert
• XML file viewer: Notepad++
• PList file viewer: PList Editor for Windows

http://mh-nexus.de/en/hxd/
www.sqliteexpert.com
http://notepad-plus-plus.org/downloads/
www.icopybot.com/plist-editor.htm

260 Chris Currier

• Base64 Decoder: Motobit and James Eichbaum’s Base64 Decoder.pyw
• Epoch Timestamp Converter: Epoch Converter Website and James Eichbaum’s
Tempus.pyw

• File Signature Analysis: Gary Kessler Website
• Windows Calculator in Programmer Mode
• Visual Studio
• Protocol Buffer Compiler: Proto C (protoc.exe) and Protobuf inspector

9.4 Conclusion

We have seen why Protocol Buffers are helpful. They take data make it small, and
provide faster transmission speed. Coders themselves may not want to welcome
the structure. As forensic examiners, we learned that understanding this structured
serializing data is essential. Applications use Protocol Buffers to store data in Apple
Property Lists (Plists), Binary Large Objects, and XML Files. Wemay find user data,
time stamps, location data, and more. So, these applications alone show that protocol
buffers are used and the importance of understanding them and how to analyze them.

The most important takeaway that we can provide is that now you will hopefully
identify what you are looking at. Have a greater appreciation of Protocol Buffers
how to make sense of this data and explain it if necessary. We learned what to look
for, and now you do also.

Acknowledgements My thanks to my fellow MSAB colleagues Johan Persson, Sebastian Zankl,
Oscar Choi, and Global Training Manager James Eichbaum for their time, contributions to this
chapter and the forensic community.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative Commons license and indicate if changes

were made.

 The images or other third party material in this chapter are included in the chapter’s Creative Commons

license, unless indicated otherwise in a credit line to the material. If material is not included in the

chapter’s Creative Commons license and your intended use is not permitted by statutory regulation or

exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

www.motobit.com/util/base64-decoder-encoder.asp
http://github.com/eichbaumj/Python
www.epochconverter.com
 http://github.com/eichbaumj/Python
 http://github.com/eichbaumj/Python
www.garykessler.net/library/file_sigs.html
http:// code.visualstudio.com
http://github.com/mildsunrise/protobuf-inspector
http://creativecommons.org/licenses/by/4.0/

References

1. Alendal, G., Dyrkolbotn, G. O., and Axelsson, S. (2018) Forensics acquisition — Analy-
sis and Circumvention of Samsung Secure Boot Enforced Common Criteria Mode. Digital
Investigation 24:60–67. https://doi.org/10.1016/j.diin.2018.01.008

2. Alzahrani, H. (2016) Evolution of Object-Oriented Database Systems. Global Journal of
Computer Science and Technology 16(3). https://computerresearch.org/index.php/
computer/article/view/1387

3. android.googlesource.com (n.d.) What is Flash-Friendly File System (F2FS).
Git at Google. https://android.googlesource.com/kernel/common/+/
22f837981514e157f8f9737b25ac6d7d90a14006/Documentation/filesystems/
f2fs.txt. Accessed 28 May 2021

4. Apple (2020) Apple File System Reference. https://developer.apple.com/support/
downloads/Apple-File-System-Reference.pdf. Accessed 28 May 2021

5. Balci, M. (2020) A Minimum Complete Tutorial of
Linux ext4 File System. https://metebalci.com/blog/
a-minimum-complete-tutorial-of-linux-ext4-file-system/. Accessed 28
May 2021

6. Blackberry (2015) 50 Million Vehicles and Counting: QNX Achieves New Milestone in Au-
tomotive Market. https://blackberry.qnx.com/cn/news/release/2015/6118. Ac-
cessed 28 May 2021

7. Blackberry (2010) QNX Software Systems Online Infocenter. http://www.qnx.com/
developers/docs/6.5.0/index.jsp. Accessed 28 May 2021

8. Brown, N. (2012) An F2FS Teardown. Available via LWN.net. https://lwn.net/
Articles/518988/. Accessed 28 May 2021

9. Caithness, A (2010) Property Lists in Digital Forensics. Available via CCL Foren-
sics Limited. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.190.
762.Accessed28May2021

10. Carrier B (2005) File Systems Forensics Analysis. Addison-Wesley Professional
11. Dewald, A. and Seufert, S. (2017) AFEIC: Advanced Forensic Ext4 inode Carving. Digital

Investigation 20:83–91. https://doi.org/10.1016/j.diin.2017.01.003
12. Echessa, J. (2017) Integrating Realm Database in an Android

Application. Available via AUTH0. https://auth0.com/blog/
integrating-realm-database-in-an-android-application/. Accessed 28 May
2021

13. Evans, D. (2014) Log-Structured File Systems. https://www.youtube.com/watch?v=
KTCkW_6zz2k. Accessed 28 May 2021

14. Fairbanks, K. D. (2012) An analysis of Ext4 for digital forensics. Digital Investigation 9:118–
130. https://doi.org/10.1016/j.diin.2012.05.010

15. FPL. (2020) FlatBuffers. https://google.github.io/flatbuffers/. Accessed 28 May 2021

261© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

https://doi.org/10.1016/j.diin.2018.01.008
https://computerresearch.org/index.php/computer/article/view/1387
https://computerresearch.org/index.php/computer/article/view/1387
https://android.googlesource.com/kernel/common/+/22f837981514e157f8f9737b25ac6d7d90a14006/Documentation/filesystems/f2fs.txt
https://android.googlesource.com/kernel/common/+/22f837981514e157f8f9737b25ac6d7d90a14006/Documentation/filesystems/f2fs.txt
https://android.googlesource.com/kernel/common/+/22f837981514e157f8f9737b25ac6d7d90a14006/Documentation/filesystems/f2fs.txt
https://developer.apple.com/support/downloads/Apple-File-System-Reference.pdf
https://developer.apple.com/support/downloads/Apple-File-System-Reference.pdf
https://metebalci.com/blog/a-minimum-complete-tutorial-of-linux-ext4-file-system/
https://metebalci.com/blog/a-minimum-complete-tutorial-of-linux-ext4-file-system/
https://blackberry.qnx.com/cn/news/release/2015/6118
http://www.qnx.com/developers/docs/6.5.0/index.jsp
http://www.qnx.com/developers/docs/6.5.0/index.jsp
https://lwn.net/Articles/518988/
https://lwn.net/Articles/518988/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.190.762. Accessed 28 May 2021
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.190.762. Accessed 28 May 2021
https://doi.org/10.1016/j.diin.2017.01.003
https://auth0.com/blog/integrating-realm-database-in-an-android-application/
https://auth0.com/blog/integrating-realm-database-in-an-android-application/
https://www.youtube.com/watch?v=KTCkW_6zz2k
https://www.youtube.com/watch?v=KTCkW_6zz2k
https://doi.org/10.1016/j.diin.2012.05.010
https://google.github.io/flatbuffers/
https://doi.org/10.1007/978-3-030-98467-0

262 References

16. Freeman, E., Robson, E., Bates, B., and Sierra, K. (2004) Head First Design Patterns. 2nd
edn. O’Reilly.

17. Garg, S. and Baliyan, N. (2021) Comparative analysis of Android and iOS from security
viewpoint. Computer Science Review, 40. https://doi.org/10.1016/j.cosrev.2021.
100372. Accessed 21 June 2021

18. Göbel, T. and Baier, H. (2018) Anti-forensics in ext4: On secrecy and usability of timestamp-
based data hiding. Digital Investigation 24:111–120. https://doi.org/10.1016/j.diin.
2018.01.014

19. Google (2020) crc32c. https://github.com/google/crc32c. Accessed 28 May 2021
20. Google. (2008) google.protobuf.descriptor. https://googleapis.dev/python/

protobuf/latest/google/protobuf/descriptor.html. Accessed 28 May 2021
21. Google Android Developers. (2021) Android Debug Bridge (adb). https://developer.

android.com/studio/command-line/adb. Accessed 28 May 2021
22. Google Android Developers. (2021) Download Android Studio and SDK Tools. https:

//developer.android.com/studio. Accessed 28 May 2021
23. Google Developers. (2020) Encoding Protocol Buffers. https://developers.google.

com/protocol-buffers/docs/encoding. Accessed 28 May 2021
24. Google Developers. (2020) Protocol Buffers. https://developers.google.com/

protocol-buffers. Accessed 28 May 2021
25. Google Developers. (2020) Protocol Buffer Basics: C++ Protocol Buffers. https://

developers.google.com/protocol-buffers/docs/cpptutorial. Accessed 28 May
2021

26. Google Developers. (2020) Protocol Buffers Language Guide. https://developers.
google.com/protocol-buffers/docs/overview. Accessed 28 May 2021

27. Google Developers. (2020) Protocol Buffers Language Guide (proto3). https://
developers.google.com/protocol-buffers/docs/proto3. Accessed 28 May 2021

28. Google Developers. (2020) Protocol Buffers Style Guide. https://developers.google.
com/protocol-buffers/docs/style. Accessed 28 May 2021

29. gRPC Authors. (2020) About gRPC. https://grpc.io/about/. Accessed 28 May 2021
30. gRPC Authors. (2020) What is gRPC? https://grpc.io/docs/what-is-grpc/faq/.

Accessed 28 May 2021
31. GSMArena (2017) Samsung Galaxy S8. https://www.gsmarena.com/samsung_galaxy_

s8-8161.php. Accessed 28 May 2021
32. Haldar, S. (2015) SQLite Database System Design and Implementation. 2nd edn. https:

//books.google.de/books?id=OEJ1CQAAQBAJ. Accessed 28 May 2021
33. Hansen, K. H. and Toolan, F (2017) Decoding the APFS File System. Digital Investigation

22:107–132. https://doi.org/10.1016/j.diin.2017.07.003
34. Holzinger, P., Triller, S., Bartel, A., and Bodden, E. (2016) An In-Depth Study of More

Than Ten Years of Java Exploitation. Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). Association for Computing Machinery,
New York. 10.1145/2976749.2978361 p 779–790

35. Horsman, G. (2018) Framework for Reliable Experimental Design (FRED): A Research
Framework to ensure the dependable Interpretation of Digital Data for Digital Forensics.
Computers & Security 73:294–306. https://doi.org/10.1016/j.cose.2017.11.009

36. Hörz, M. (2020) HxD - Freeware Hex Editor and Disk Editor. https://mh-nexus.de/en/
hxd/. Accessed 28 May 2021

37. Huebner, E., Bem, D., and Wee, C. K. (2006) Data Hiding in the NTFS File System. Digital
Investigation 3(4):211–226. https://doi.org/10.1016/j.diin.2006.10.005

38. IBM. (2019) Relational Databases. Relational Databases Explained. https://www.ibm.
com/cloud/learn/relational-databases. Accessed 28 May 2021

39. ISO/IEC (2021) ISO/IEC 9075-1:2016. Information technology — Database languages
— SQL — Part 1: Framework (SQL/Framework). https://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/06/35/63555.html. Accessed 28
May 2021

https://doi.org/10.1016/j.cosrev.2021.100372
https://doi.org/10.1016/j.cosrev.2021.100372
https://doi.org/10.1016/j.diin.2018.01.014
https://doi.org/10.1016/j.diin.2018.01.014
https://github.com/google/crc32c
https://googleapis.dev/python/protobuf/latest/google/protobuf/descriptor.html
https://googleapis.dev/python/protobuf/latest/google/protobuf/descriptor.html
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio
https://developer.android.com/studio
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers/docs/cpptutorial
https://developers.google.com/protocol-buffers/docs/cpptutorial
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/proto3
https://developers.google.com/protocol-buffers/docs/style
https://developers.google.com/protocol-buffers/docs/style
https://grpc.io/about/
https://grpc.io/docs/what-is-grpc/faq/
https://www.gsmarena.com/samsung_galaxy_s8-8161.php
https://www.gsmarena.com/samsung_galaxy_s8-8161.php
https://books.google.de/books?id=OEJ1CQAAQBAJ
https://books.google.de/books?id=OEJ1CQAAQBAJ
https://doi.org/10.1016/j.diin.2017.07.003
https://doi.org/10.1016/j.cose.2017.11.009
https://mh-nexus.de/en/hxd/
https://mh-nexus.de/en/hxd/
https://doi.org/10.1016/j.diin.2006.10.005
https://www.ibm.com/cloud/learn/relational-databases
https://www.ibm.com/cloud/learn/relational-databases
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/35/63555.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/35/63555.html

References 263

40. Karaiskos, C (2018) Understanding Apple’s Binary Prop-
erty List Format. https://medium.com/@karaiskc/
understanding-apples-binary-property-list-format-281e6da00dbd.
Accessed28May2021

41. Kernel.org (2020) Dynamic Structures. https://www.kernel.org/doc/html/latest/
filesystems/ext4/dynamic.html. Accessed 28 May 2021

42. Kim, J. (2012) F2FS: Introduce Flash-Friendly File System. Available via LWN.net. https:
//lwn.net/Articles/518718/

43. Krebs,B. (2017) Beating JSON performance with Protobuf. Available via Auth0. https:
//auth0.com/blog/beating-json-performance-with-protobuf/. Accessed 28 May
2021

44. Leachi, P., Mealing, M. and Salz, R. (2005) A Universally Unique Identifier (UUID) Names-
pace. https://www.ietf.org/rfc/rfc4122.txt. Accessed 28 May 2021

45. Lee, C., Sim, D., Hwang, JY., and Cho, S. (2015) F2FS: A New File System for Flash Storage.
13th USENIX Conference on File and Storage Technologies, Feb. 2015. https://www.
usenix.org/system/files/conference/fast15/fast15-paper-lee.pdf. Accessed
28 May 2021

46. Lee, C., Sim, D., Hwang, JY., and Cho, S. (2015). F2FS: A New File
System for Flash Storage. USENIX FAST 2015, Santa Clara, CA, USA.
https://www.usenix.org/sites/default/files/conference/protected-files/fast15_slides_lee.pdf.
Accessed 28 May 2021

47. Levin, J (2013) Mac OS X and iOS Internals. John Wiley & Sons
48. MongoDB. (2021) Realm Files. https://docs.mongodb.com/realm/sdk/node/

fundamentals/realms/#realm-files. Accessed 28 May 2021
49. MongoDB. (2021) Realm Object Types and Schemas. https://docs.mongodb.com/

realm/sdk/node/fundamentals/realms/#object-types---schemas. Accessed 28
May 2021

50. Merkle, R. C. (1980) Protocols for Public Key Cryptosystems. 1980 IEEE Symposium on
Security and Privacy. 122–122. doi: 10.1109/SP.1980.10006

51. Nikkel, B. J (2009) Forensic Analysis of GPT Disks and GUID Partition Tables. Digital
Investigation 6(1):39–47. https://doi.org/10.1016/j.diin.2009.07.001

52. Nordvik, R., Porter, K., Toolan, F., Axelsson, S. and Franke, K. (2020) Generic Metadata
Time Carving. Forensic Science International: Digital Investigation 33. https://doi.org/
10.1016/j.fsidi.2020.301005

53. Olsen, J. (2017) Hard Drives: How Do They Work? Techbytes. April, 2017. https://
blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/. Ac-
cessed 28 May 2021

54. Opyrchal, L. and Prakash, A. (1999) Efficient Object Serialization in Java. Proceedings of 19th
IEEE International Conference on Distributed Computing Systems. Workshops on Electronic
Commerce and Web-based Applications. Middleware. 10.1109/ECMDD.1999.776421 p 96–
101

55. Oracle Corporation (2010) Character and Block Devices. https://docs.oracle.com/cd/
E19253-01/817-5789/fgoue/index.html. Accessed 28 May 2021

56. Oracle Cooperation. (2021) Object Serialization Stream Protocol. https://docs.oracle.
com/javase/8/docs/platform/serialization/spec/protocol.html. Accessed 28
May 2021

57. Oracle Cooperation. (2021) Serializable Objects - The Java Tutorials. https://docs.
oracle.com/javase/tutorial/jndi/objects/serial.html. Accessed 28 May 2021

58. Panfilov, M. (2019) What the hell is protobuf? Available via MEDIUM. https://
blog.usejournal.com/what-the-hell-is-protobuf-4aff084c5db4. Accessed 28
May 2021

59. Pawlaszczyk, D. and Hummert, C. (2021) Making the Invisible Visible – Techniques for Re-
covering Deleted SQLite Data Record. International Journal of Cyber Forensics and Advanced
Threat Investigations 1(1–3):27–41. 10.46386/ijcfati.v1i1-3.17

https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd. Accessed 28 May 2021
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd. Accessed 28 May 2021
https://medium.com/@karaiskc/understanding-apples-binary-property-list-format-281e6da00dbd. Accessed 28 May 2021
https://www.kernel.org/doc/html/latest/filesystems/ext4/dynamic.html
https://www.kernel.org/doc/html/latest/filesystems/ext4/dynamic.html
https://lwn.net/Articles/518718/
https://lwn.net/Articles/518718/
https://auth0.com/blog/beating-json-performance-with-protobuf/
https://auth0.com/blog/beating-json-performance-with-protobuf/
https://www.ietf.org/rfc/rfc4122.txt
https://www.usenix.org/system/files/conference/fast15/fast15-paper-lee.pdf
https://www.usenix.org/system/files/conference/fast15/fast15-paper-lee.pdf
https://docs.mongodb.com/realm/sdk/node/fundamentals/realms/#realm-files
https://docs.mongodb.com/realm/sdk/node/fundamentals/realms/#realm-files
https://docs.mongodb.com/realm/sdk/node/fundamentals/realms/#object-types---schemas
https://docs.mongodb.com/realm/sdk/node/fundamentals/realms/#object-types---schemas
https://doi.org/10.1016/j.diin.2009.07.001
https://doi.org/10.1016/j.fsidi.2020.301005
https://doi.org/10.1016/j.fsidi.2020.301005
https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/
https://blogs.umass.edu/Techbytes/2017/04/04/hard-drives-how-do-they-work/
https://docs.oracle.com/cd/E19253-01/817-5789/fgoue/index.html
https://docs.oracle.com/cd/E19253-01/817-5789/fgoue/index.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://docs.oracle.com/javase/tutorial/jndi/objects/serial.html
https://blog.usejournal.com/what-the-hell-is-protobuf-4aff084c5db4
https://blog.usejournal.com/what-the-hell-is-protobuf-4aff084c5db4

264 References

60. Pawlaszczyk, D. and Hummert, C. (2019) "Alexa, tell me . . . " - A forensic examination
of the Amazon Echo Dot 3 rd Generation. International Journal of Computer Sciences and
Engineering 7(11):20–29. https://doi.org/10.26438/ijcse/v7i11.2029

61. Pawlaszczyk, D. (2017) Digitaler Tatort - Sicherung und Verfolgung digitaler Spuren. In:
Labudde D., Spranger M (eds) Forensik in der digitalen Welt. Springer Spektrum, Berlin,
Heidelberg p 113–166

62. realm.io. (2021) realm/realm core: Core database component for the Realm Mobile Database
SDKs. https://github.com/realm/realm-core. Accessed 28 May 2021

63. realm.io. (2021) realm-core/alloc_slab.cpp. Available via GITHUB. https://github.com/
realm/realm-core/blob/master/src/realm/alloc_slab.cpp. Accessed 28 May
2021

64. realm.io. (2021) realm-core/alloc_slab.hpp. Available via GITHUB. https://github.com/
realm/realm-core/blob/master/src/realm/alloc_slab.hpp. Accessed 28 May
2021

65. realm.io (2021) realm-core/alloc_slab.hpp. Available via GITHUB. https://github.com/
realm/realm-core/blob/master/src/realm/alloc_slab.hpp. Accessed 28 May
2021

66. realm.io (2021) realm-core/array.hpp. Available via GITHUB. https://github.com/
realm/realm-core/blob/master/src/realm/array.hpp. Accessed 28 May 2021

67. realm.io (2020) realm-core/node_header.hpp. Available via GITHUB. https://github.
com/realm/realm-core/blob/2946c7a52449d3b8d038ff03d896b651615b8ad4/
src/realm/node_header.hpp. Accessed 28 May 2021

68. realm.io (2020) realm-core/node_header.hpp. Available via GITHUB. https://github.
com/realm/realm-core/blob/master/src/realm/node_header.hpp. Accessed 28
May 2021

69. realm.io. (2019) realm-core/realm_dump.c. Available via GITHUB. https://github.com/
realm/realm-core/blob/master/src/realm/exec/realm_dump.c. Accessed 28 May
2021

70. realm.io. (2021) realm-core/test_allocations.cpp. Available via GITHUB. https://github.
com/realm/realm-core/blob/master/test/test_transactions.cpp. Accessed 28
May 2021

71. Realm.io. (2021) Realm.io. www.realm.io/. Accessed 28 May 2021
72. Realm.io. (2021) Realm Demo File Download. https://static.realm.io/downloads/

realm-studio/demo-v20.realm. Accessed 28 May 2021
73. Realm.io. (2021) Realm Groups. https://github.com/realm/realm-core. Accessed 28

May 2021
74. Realm.io. (2021) Realm Studio Download. https://docs.mongodb.com/realm-legacy/

products/realm-studio.html. Accessed 28 May 2021
75. Rosenblum, M. and Ousterhout, J. K. (1992) The Design and Implementation of a Log-

Structured File System. ACM Trans. Comput. Syst. 10(1):26–52. Association for Computing
Machinery, New York.

76. Seacord, R. C. (2017) Java Deserialization Vulnerabilities and Mitigation. In: 2017 IEEE
Cybersecurity Development (SecDev) 1:6–7. 10.1109/SecDev.2017.13

77. Science Direct. (2021) Data Definition Language. Data Definition Language -
An Overview ScienceDirect Topics. https://www.sciencedirect.com/topics/
computer-science/data-definition-language. Accessed 28 May 2021

78. SQLite Consortium. (2021) About SQLite. https://sqlite.org/about.html. Accessed
28 May 2021

79. SQLite Consortium (2021) Atomic Commit In SQLite - Draft. http://www.sqlite.org/
draft/atomiccommit.html. Accessed 28 May 2021

80. SQLite Consortium (2021) Database File Format. https://www.sqlite.org/
fileformat.html. Accessed 28 May 2021

81. SQLite Consortium (2021) Most Widely Deployed and Used Database Engine. https://
www.sqlite.org/mostdeployed.html. Accessed 28 May 2021

https://doi.org/10.26438/ijcse/v7i11.2029
https://github.com/realm/realm-core
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.cpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.cpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp
https://github.com/realm/realm-core/blob/master/src/realm/alloc_slab.hpp
https://github.com/realm/realm-core/blob/master/src/realm/array.hpp
https://github.com/realm/realm-core/blob/master/src/realm/array.hpp
https://github.com/realm/realm-core/blob/2946c7a52449d3b8d038ff03d896b651615b8ad4/src/realm/node_header.hpp
https://github.com/realm/realm-core/blob/2946c7a52449d3b8d038ff03d896b651615b8ad4/src/realm/node_header.hpp
https://github.com/realm/realm-core/blob/2946c7a52449d3b8d038ff03d896b651615b8ad4/src/realm/node_header.hpp
https://github.com/realm/realm-core/blob/master/src/realm/node_header.hpp
https://github.com/realm/realm-core/blob/master/src/realm/node_header.hpp
https://github.com/realm/realm-core/blob/master/src/realm/exec/realm_dump.c
https://github.com/realm/realm-core/blob/master/src/realm/exec/realm_dump.c
https://github.com/realm/realm-core/blob/master/test/test_transactions.cpp
https://github.com/realm/realm-core/blob/master/test/test_transactions.cpp
www.realm.io/
https://static.realm.io/downloads/realm-studio/demo-v20.realm
https://static.realm.io/downloads/realm-studio/demo-v20.realm
https://github.com/realm/realm-core
https://docs.mongodb.com/realm-legacy/products/realm-studio.html
https://docs.mongodb.com/realm-legacy/products/realm-studio.html
https://www.sciencedirect.com/topics/computer-science/data-definition-language
https://www.sciencedirect.com/topics/computer-science/data-definition-language
https://sqlite.org/about.html
http://www.sqlite.org/draft/atomiccommit.html
http://www.sqlite.org/draft/atomiccommit.html
https://www.sqlite.org/fileformat.html
https://www.sqlite.org/fileformat.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html

References 265

82. SQLite Consortium. (2021) SQLite Database Header. https://sqlite.org/
fileformat2.html. Accessed 28 May 2021

83. SQLite Consortium. (2021) SQLite Is Serverless. https://sqlite.org/serverless.
html. Accessed 28 May 2021

84. SQLite Consortium (2021) Temporary Files Used By SQLite. https://sqlite.org/
tempfiles.html. Accessed 28 May 2021

85. SQLite Consortium (2021) The Schema Table. https://sqlite.org/schematab.html.
Accessed 28 May 2021

86. SQLite Consortium (2021) Write-Ahead Logging. https://www.sqlite.org/wal.html.
Accessed 28 May 2021

87. Tanaka, K. and Saito, T. (2018) Python Deserialization Denial of Services Attacks and Their
Mitigations. In: Lee, R. (ed) Computational Science/Intelligence & Applied Informatics, CSII
2018, Yonago, Japan, July 10-12, 2018. Studies in Computational Intelligence, 787:15–25.
10.1007/978-3-319-96806-3_2

88. TechTerms. (2019) NAND Definition. https://techterms.com/definition/nand. Ac-
cessed 28 May 2021

89. The Linux Kernel Organisation. (n.d.) What is Flash-Friendly File System
(F2FS)? The Linux Kernel Archives. https://www.kernel.org/doc/Documentation/
filesystems/f2fs.txt. Accessed 28 May 2021

90. The Sleuth Kit. (2019) HFS - SlethKit Wiki. https://wiki.sleuthkit.org/index.php?
title=HFS. Accessed 17 June 2021

91. Vanura J. and Kriz P. (2018) Perfomance Evaluation of Java, JavaScript and PHP Serialization
Libraries for XML, JSON and Binary Formats. In: Ferreira, J. and Spanoudakis, G. (eds)
Services Computing – SCC 2018. SCC 2018. Lecture Notes in Computer Science, vol 10969.
Springer, Cham p 413–61

92. Vickie, L. (2020) Exploiting PHP Deserialization - Intro to PHP Object Injection Vulner-
abilities. Available via MEDIUM. https://medium.com/swlh/exploiting-php-deserialization-
56d71f03282. Accessed 28 May 2021

93. Weyns D., Truyen E., and Verbaeten P. (2003) Serialization of Distributed Execution-State in
Java. In: Aksit M., Mezini M., Unland R. (eds) Objects, Components, Architectures, Services,
and Applications for a Networked World. NODe 2002. Lecture Notes in Computer Science,
vol 2591. Springer Spektrum, Berlin, Heidelberg p 413–461

94. Azhar, M. A. H., Barton, T., and Islam, T. (2018). Drone Forensic Analysis Using Open Source
Tools. The Journal of Digital Forensics, Security and Law. https://doi.org/10.15394/
jdfsl.2018.1513

95. Mikhaylov, I. (2016). Forensic analysis of Flash-Friendly File System (F2FS). Digi-
tal Forensics Corp. https://www.digitalforensics.com/blog/forensic-analysis-of-flash-friendly-
file-system-f2fs/

96. Zhai Yujia, Li Tao, and Hu Aiqun. (2020). Data forensics method of mobile terminal F2FS im-
age file. Cyberspace Security, 11(8). http://www.css.ccidgroup.com/EN/Y2020/V11/
I8/11. Accessed 28 May 2021

97. Larabel, M. (2020). ATGCCould Come In Linux 5.10 For F2FS, Much Faster Decompression
Speeds Too—Phoronix. Phoronix. https://www.phoronix.com/scan.php?page=news_
item&px=F2FS-ATGC-Dev-Branch. Accessed 28 May 2021

98. Yu, C. (2020). Support Age-Threshold based Garbage Collection for f2fs. LWN.Net. https:
//lwn.net/Articles/828027/. Accessed 28 May 2021

https://sqlite.org/fileformat2.html
https://sqlite.org/fileformat2.html
https://sqlite.org/serverless.html
https://sqlite.org/serverless.html
https://sqlite.org/tempfiles.html
https://sqlite.org/tempfiles.html
https://sqlite.org/schematab.html
https://www.sqlite.org/wal.html
https://techterms.com/definition/nand
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
https://wiki.sleuthkit.org/index.php?title=HFS
https://wiki.sleuthkit.org/index.php?title=HFS
https://doi.org/10.15394/jdfsl.2018.1513
https://doi.org/10.15394/jdfsl.2018.1513
http://www.css.ccidgroup.com/EN/Y2020/V11/I8/11
http://www.css.ccidgroup.com/EN/Y2020/V11/I8/11
https://www.phoronix.com/scan.php?page=news_item&px=F2FS-ATGC-Dev-Branch
https://www.phoronix.com/scan.php?page=news_item&px=F2FS-ATGC-Dev-Branch
https://lwn.net/Articles/828027/
https://lwn.net/Articles/828027/

Index

Adaptive Logging, 88
ADB, 199
APFS, 3
APFS cotainer, 4
APFS Ephemeral-Objects, 7
APFS Object header, 5
APFS Physial Objects, 7
APFS Superblock, 8
APFS Virtual Objects, 8
APSP, 18
Array Payload, 216

BASE64, 251
binplist, 163
Bit Group, 215
Bitmap, 114
Blackberry, 109
block device, 56
block groups, 42
block maps, 60
bplist header, 158
bplist object table, 159
bplist offset table, 159
bplist trailer, 159
bplist versions, 159

ccl-bplist, 164
character device, 57
checkpoint, 11, 151
checksums, 43

COMPAT_DIR_PREALLOC, 46
COMPAT_EXT_ATTR, 46
COMPAT_HAS_JOURNAL, 46
COMPAT_RESIZE_INODE, 46
COMPAT_SPARE_SUPER2, 53
COMPAT_SPARSE_SUPER2, 46
crc32c, 62

dentries, 83

EnCase, 39
Enumeration, 234
epoch, 116
Ext2, 41
Ext3, 41
Ext4, 41, 68
extent header, 60
extent index entry, 62
extents, 60

F2FS, 69, 108
FIFO, 56
FlatBuffers, 226
flex group, 47
Flexible block groups, 47
FQlite, 152
freelist, 144
FTL, 69, 71

Gadget Chains, 178
GPT, 4

267© The Author(s) 2022

https://doi.org/10.1007/978-3-030-98467-0

C. Hummert, D. Pawlaszczyk (eds.) – The File Format Handbook, , Mobile Forensics

https://doi.org/10.1007/978-3-030-98467-0

268 INDEX

gRPC, 227

i_mode, 56
INCOMPAT_64BIT, 52
IndexNode, 25
Inode, 53
inode, 43, 55, 67, 72
inode bitmap, 55
inode checksums, 58
inodes, 86

Java, 167
Java Object Serialization Protocol,

172
Java Serialization, 167
JavaBeans, 168
JAXB, 168
journal, 68
Journaling, 78
JSON, 158, 225

leaf, 61
LFS, 73, 81
Linux kernel, 125
Little Endian, 60
Lock File, 197
long filenames, 118
LSFS, 72

MAC address, 54
magic number, 60
Main Area, 80
Management Directory, 197
MBR, 4
Merkle tree, 49
Mkfs, 75
Multi-Head Logging, 87

NAND, 69
Nesting, 235
Network File System, 63
NeXTSTEP, 158
NFS, 63
Node Address Table (NAT), 79

OjectInputStream, 169

Oxygen Forensic Plist Viewer, 164

partition, 73
plist, 248
PlistBuddy, 158
plutil, 158, 163
pointer maps, 132
property list, 157
protobuf inspector, 246
protoc, 238
Protocol Buffers, 223

QNX Neutrino, 109
QNX4, 125
QNX6, 109

Realm, 189
Realm - Groups, 193
Realm Types, 192
Realm-Arrays, 194
remanence, 73
RFC4122, 54
RO_COMPAT_PROJECT, 65
rollback journal, 148
rowid, 141
RPC, 226

s_feature_compat, 45
s_feature_incompat, 45
s_feature_ro_compat, 45
s_prealloc_dir_blocks, 46
sector, 73
Segment Info Table (SIT), 79
Segment Summary Area (SSA), 80
SerialVersionUID, 170
Set-GID, 56
Set-UID, 56
Shadow Copy, 80
Shared-Memory Files, 147
Sleuthkit, 125
SQLite, 129, 181
SQLite file format, 133
SQLite_Master Table, 131
Statement Journal File, 147
Sticky bit, 56
storage classes, 135

INDEX 269

Super Journals, 147
Superblock, 76, 77
superblock, 42, 43, 65, 94
symbolic link, 56

Timestamp, 247
transient indices, 147

user privileges, 56
UUID, 43

varint, 136
Volumes (APFS), 15

Write-Ahead Logs (WAL), 151

xattr, 62
Xcode, 158, 163
XML, 158

	Preface
	Roadmap
	Scope of the Book
	Conventions Used in This Book
	Acknowledgements

	Contents
	Part I Mobile File System Formats
	Chapter 1 APFS
	1.1 Introduction
	1.2 APFS File system category
	1.2.1 Finding the APFS container
	1.2.2 Object header
	Object type, some examples
	Object type masks
	Object type flags
	Ephemeral Objects
	Physical Objects
	Virtual Objects

	1.2.3 Superblocks
	1.2.4 Checkpoint mapping
	1.2.5 Volumes
	Finding the Volume
	Showing the Volume (APSB)
	Volume Object mapping

	1.3 APFS Metadata Category
	1.4 APFS File Name category
	1.5 APFS Content Category
	1.6 APFS Application Category
	1.7 Comparing our results with a commercial tool

	Chapter 2 Ext4
	2.1 Introduction
	2.2 Ext4 File system category
	2.3 Superblock
	2.3.1 Temporary data about the File system
	2.3.2 Supported features
	Compatible features
	Incompatible features
	Read only compatible features

	2.3.3 The group descriptor
	Universal Unique Identifier

	2.4 Ext4 Metadata Category
	2.4.1 The inode
	2.4.2 User privileges and type of file
	2.4.3 Temporary metadata describing inodes
	2.4.4 Temporary metadata manipulations
	2.4.5 Links count
	Blocks used by a file
	Inode flags
	Block map, Extent tree or inline data
	File version
	Operating System Descriptor 2
	Project ID

	2.5 Ext4 File Name category
	2.6 Ext4 Content Category
	2.6.1 Recovery of files
	Inode Carving using extent magic signature

	2.6.2 Generic metadata time carving
	2.6.3 Additional file content

	2.7 Ext4 Application Category

	Chapter 3 The Flash-Friendly File System (F2FS)
	3.1 Introduction
	3.1.1 NAND (Not And) Flash Memory
	NAND flash memory
	NOR flash memory

	3.1.2 Flash Translation Layer (FTL)

	3.2 Flash Filesystems
	3.2.1 The Log-Structured File System (LSFS) or (LFS)
	3.2.2 Flash-Friendly File System (F2FS): Enter F2FS
	3.2.3 Wandering Tree Problem

	3.3 On-Disk Layout of F2FS
	Sector
	Partitions
	3.3.1 Creation of F2FS partitions with Mkfs.f2fs
	3.3.2 F2FS on Disk
	Superblock
	Zone
	Section and Segment
	Check Point (CP)
	Segment Information Table (SIT)
	Node Address Table (NAT)
	Segment Summary Area (SSA)
	Updates to the SIT and NAT
	Shadow Copy
	Main Area

	3.4 File Structure of F2FS
	3.4.1 Node Structure
	3.4.2 File Creation and Management
	Directory Structure

	3.4.3 Fsck.f2fs Identifying Files
	3.4.4 Metadata
	3.4.5 Multi-Head Logging
	3.4.6 Cleaning
	Adaptive Logging
	Roll-Back Recovery
	Important

	3.5 Forensic Analysis
	3.5.1 F2FS Sample Dataset
	3.5.2 F2FS andWindows
	3.5.3 Data-Extraction with XRY
	3.5.4 Superblock Examination
	3.5.5 Examine NAT, SIT & SSA with Linux
	Node Allocation Table (NAT) Data
	Show the Segment Info Table (SIT) Data
	Look inside the Segment Summary Area (SSA) Data
	Obtain a file by it’s node ID

	3.5.6 Carving for artefacts with XAMN
	PNG File Signature Analysis

	3.5.7 Node Allocation Table (NAT) Comparisons
	Additional Data Structure

	3.6 F2FS Application fields
	3.7 Conclusion

	Chapter 4 QNX6
	4.1 Introduction
	4.2 QNX6 Filesystem Structure
	4.2.1 Superblock
	4.2.2 Bitmap
	4.2.3 Inode
	4.2.4 Directories
	4.2.5 Long Filenames Inode

	4.3 Example: Construction of a file
	4.4 Deleted Files
	4.5 Forensic Tools supporting QNX6 filesystems

	Part II Mobile File Formats
	Chapter 5 SQLite
	5.1 Introduction
	5.2 The SQLite File Structure
	5.2.1 The Database Header
	5.2.2 Storage Classes, Serial Types and Varint-Encoding
	5.2.3 Decoding The SQLite_Master Table
	5.2.4 Page Structure
	5.2.5 Recovering Data Records

	5.3 Accessing The Freelist
	5.4 More Artefacts
	5.4.1 Temporary File Types
	5.4.2 Rollback Journals
	5.4.3 Write-Ahead Logs

	5.5 Conclusions

	Chapter 6 Property Lists
	6.1 Introduction
	6.2 Binary plist Structure
	6.3 Example
	6.4 Forensic Tools Supporting plists
	6.5 Conclusions

	Chapter 7 Java Serialization
	7.1 Introduction
	7.2 Object Serialization in Java
	7.2.1 Serialization Techniques in Java
	7.2.2 Serialization by Example

	7.3 Java Object Serialization Protocol Revealed
	7.4 Pitfalls and Security Issues
	7.4.1 Hands on Serialized Objects
	7.4.2 Beware of Gadget Chains

	7.5 Conclusions

	Chapter 8 Realm
	8.1 Organisation of this Chapter
	8.2 Introduction
	8.3 SQLite, It is Not!
	8.3.1 Relational Databases
	8.3.2 SQLite as a Relational Database
	8.3.3 SQLite Schema
	8.3.4 Temporary SQLite Files
	8.3.5 SQLite File Format

	8.4 How Realm Works
	8.4.1 Realm Database Fundamentals
	8.4.2 Common Concepts and Terminology
	Basic Object-Oriented Programming Concepts
	Top-level Objects
	Object Types
	Group
	Arrays

	8.5 File Storage and Structures
	8.5.1 Realm Files and Folders
	8.5.2 The Realm File
	The Lock File
	The Management Directory
	Stateless Realm Instances

	8.5.3 Creating Realm Test Instance
	Step 1: Launch the Task Application
	Step 2: Open a CMD Window
	Step 3: Create an Output Folder
	Step 4: Start ADB
	Step 5: Get ADB Root
	Step 6: Find the Application Data
	Step 7: Use the “pull” Command

	8.5.4 The Realm Database File Structure
	8.5.5 Realm File Header
	“Top Ref” Bytes 0x00 to 0x0F (d0–d15)
	“Mnemonic” Bytes 0x10 to 0x13 (d16–d19)
	“File Format” Bytes 0x14 to 0x15 (d20–d21)
	“Reserved” Byte 0x16 (d22)
	“Flags” Byte 0x17 (d23)

	8.5.6 Realm File Arrays
	8.5.7 Realm Array Header
	8.5.8 Checksum
	8.5.9 Flags
	Bit Group 1: is_inner_bptree_node
	Bit Group 2: has_refs
	Bit Group 3: context_flag
	Bit Group 4: width_scheme
	Bit Group 5: width_ndx

	8.5.10 Size
	8.5.11 Realm Array Payload
	8.5.12 Size Calculation Example
	8.5.13 Array Example Header
	8.5.14 Array Example Flags
	8.5.15 Array Example Size

	8.6 Conclusion

	Chapter 9 Protocol Buffers
	9.1 Introduction
	9.1.1 What is a Protocol Buffer?
	9.1.2 Why are Protocol Buffers Used?

	9.2 Using Protocol Buffers
	Messages
	Services
	The Proto File
	Define the Syntax
	Message Type
	Fields
	Scalar Values
	9.2.1 The Schema Defintion
	Field Type
	Field Names
	Enums
	Nesting
	Importing & Packages

	9.2.2 Compiling Your Protocol Buffer
	Analysing the Python Protobuf-Code
	A 2nd Example The FormobileChat message
	Formobilechat_pb2.py

	9.2.3 Creation of a Protobufs with Python
	Writing the Object to a Binary File
	Remember Size = Speed
	The Raw Binary Data

	9.2.4 Reversing Proto Buffer Messages
	Data Conversion
	Timestamp
	Pictures or other files represented by octal data

	9.3 Practical Analysis of different Proto Buffers
	9.3.1 Mobile Device Artifact Examples
	Example Waze Navigation App
	BASE64 Encoding
	Example: Apple Web Cache file
	Identifying Base64 Encoded Data

	9.3.2 Yet another example: Apply Property List (PLIST) Files
	9.3.3 Suggested Examination Process of a File
	9.3.4 Tools

	9.4 Conclusion

	References
	Index

