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Comparison of ICA algorithms for
underdetermined blind source separation

Andreas Sandmair and Alam Zaib

Karlsruhe Institute of Technology (KIT),
Institute of Industrial Information Technology (IIIT),

Hertzstr. 16, D-76187 Karlsruhe

Abstract Independent Component Analysis (ICA) is a power-
ful statistical signal processing technique having newly emerg-
ing application areas such as blind separation of mixed signals,
analysis of data or feature extraction. Blind source separation
(BSS) for example involves extracting the source signals from
sensor observations which are unknown (linear) mixtures of un-
observed source signals. The standard ICA is restricted to de-
termined cases (no. of signals equal to no. of sensors). Within
the following paper we compare two different methods for under-
determined blind source separation and evaluate these methods
with respect to accuracy and usability.

1 Introduction

Many real world problems tend to be inherently blind in a sense that
both the input and the system states are unknown. They have to be
estimated, observing only the output signals. Hence, blind signal pro-
cessing (BSP) techniques [1] are becoming a predominant and active
area of research in signal processing. Independent component analysis is
one of the most recently developed BSP techniques to solve blind source
separation. Considering determined or overdetermined cases, where the
number of sensors is equal to or greater than the number of sources,
multiple solutions have been presented.

A very famous example of BSS is the cocktail party phenomenon,
describing the human ability to focus on a desired speech embedded in a
mixture of other sources and background noise. Under special conditions,
the problem can technically be solved. In a real world environment, the
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assumption of a determined case is normally not valid and an adequate
solution is much more difficult to obtain. Nevertheless, there are some
algorithms for the underdetermined cases that can be used.

Within this paper, two different algorithms for underdetermined ICA
are presented and evaluated with respect to blind source separation. The
organization of the paper is as follows: In Section 2 basic principles for
independent component analysis are introduced and two different ap-
proaches for underdetermined ICA are described. These approaches are
evaluated in Section 3 with respect to the applicability for BSS in speech
signal processing. Finally, a conclusion and an outlook are presented.

2 Overcomplete or underdetermined ICA

2.1 ICA model

The aim of independent component analysis is the decomposition of
mixed signals into their original components, whereas little information
about the mixture is available. Regarding a superposition of N sources,
the signal at the j-th sensor is

xj(t) = aj1 s1(t) + . . . + ajN sN (t) . (1.1)

Recording the signals using M sensors, the dataset can be written in
matrix notation

x(t) = A s(t) =
N∑

i=1

ai si(t) , (1.2)

where A is an unknown mixing matrix with components aji, s(t) =
[s1(t), . . . , sN (t)]T is the N -dimensional source data and x(t) =
[x1(t), . . . , xM (t)]T is the observed data. The columns ai of the matrix
can be interpreted as basis vectors/functions and si as coefficients. The
previous equation is referred to as ICA model. Under certain conditions,
the signals can be reconstructed.

Basically, the model above is valid for an arbitrary number of sources.
If the number of sources is equal to the number of sensors, an exact
reconstruction of the source signals is possible by estimating a matrix
W as the inverse of the mixing matrix A, using basic ICA methods
[2, 3], so that s(t) = W x(t). If there are less sensors than sources, the
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problem is referred to as overcomplete or underdetermined, which is more
difficult to handle than the ordinary ‘square matrix’ mixing problem.
Overcomplete representations have been advocated because they have a
greater robustness in the presence of perturbations in the signal or noise,
can be sparser and offer greater flexibility in matching the structure
of the data. This can be used to solve BSS problems with fewer sensors
than sources. The benefit of an overcomplete representation is illustrated
in Figure 1.1, where three sparse sources have been mixed to produce
a two dimensional mixture data space. We can see that the complete
ICA cannot model the data distribution adequately with three sources,
while the overcomplete representation finds three basis vectors that fit
the underlying data distribution. Thus, using overcomplete bases, which
allow a greater number of basis functions (vectors) than in the complete
case, is potentially a more general method of signal representation.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
ICA solution

x
1

x 2

(a) determined case

−1 −0.5 0 0.5 1
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−0.5

0

0.5

1
overcomplete ICA soln.

x
1

x 2

(b) underdetermined case

Figure 1.1: Possible solutions for BSS.

Unlike in the case of a complete basis, where signal decomposition is
well defined and unique (because of a square mixing matrix), finding the
‘best’ representation in terms of an overcomplete basis is a challenging
problem because the signal representation is not a unique combination
of the basis functions (vectors). In the context of BSS, the problem of
estimating original sources from sensor observations involves now two
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separate problems. One is to estimate the mixing matrix, referred to as
matrix recovery step, and the other is to estimate the original sources,
also called source inference step. This is in sheer contrast with standard
mixing problems, where source inference is trivially done by inverting
the mixing matrix. It is also worth mentioning that even if the mixing
matrix is perfectly estimated, the original sources cannot be recovered
perfectly because some information is permanently lost in the represen-
tation. Two approaches to tackle underdetermined BSS problems will
now be discussed, namely classical and geometric BSS.

2.2 Classical approach

In the classical approach the decomposition problem is solved by regard-
ing Equation (1.2) as a probabilistic model of the observed data. The
redundancy in the data representation can be removed by a proper choice
of the prior probability of the basis coefficients P (s). The prior proba-
bility affects the modeling of the underlying statistical structure and the
nature of the representation. First, we discuss the source inference step
assuming that the mixing matrix has already been estimated.

Source inference

Assuming that an estimate of the original mixing matrix has been found,
we are left with the problem of reconstructing the original sources using
the mixtures {x(1), . . . ,x(T )} (M×T ) and the estimated matrix A (M×
N). Because N > M , the source recovery problem is ill-posed without
further assumptions. An often used assumption [4] can be derived using
a maximum likelihood approach as is shown next [5].

The problem of source inference can be formulated as follows: Given
a random vector x ∈ RM and a matrix A as above, find an independent
vectors satisfying an assumption (to be defined) such that x = A s. Since
x can be determined by A and s, the probability of observing x given A
and s can be written as P (x|s, A). Using the Bayes rule, the posterior
probability of s is defined as

P (s|x, A) =
P (x|s, A) ·P (s)

P (x)
, (1.3)

which is the probability of an event of s after knowing x and A. Given
some samples of x, a standard approach for reconstructing s is the
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maximum-likelihood algorithm, which means maximizing this posterior
probability after knowing the prior probability P (s). Using the observed
samples one can find the most probable s so that x = As. This can be
regarded as a decomposition of x into the most probable coefficients si

with respect to the corresponding overcomplete basis {ai}.
Thus, unknown sources are estimated by solving the problem:

ŝ = argmax
x=A s

(P (s|x, A)) = argmax
x=A s

(P (x|s, A) ·P (s)) . (1.4)

Since x is fully determined after knowing s and A, P (x|s, A) can be
calculated. P (x|s, A) only depends on the proper choice of P (s), so
Equation (1.4) can be simplified:

ŝ = argmax
x=A s

(P (s)) . (1.5)

Gaussian Prior
If we assume P (s) to be Gaussian distributed, then Equation (1.5) leads
to

ŝ = argmax
x=A s

(e−|s1|2−...−|sn|2) (1.6)

= argmin
x=A s

(|s1|2 + . . . + |sn|2) = argmin
x=A s

||s||2 = A+ x .

In this case, the solution is unique and the source estimation is achieved
by the Moore-Penrose or pseudo inverse A+. However, in ICA we are
not much interested in Gaussian distributed sources [1].

Laplacian Prior
This is the case we are more interested in (speech signals are Laplacian
distributed). Thus, assuming P (s) to be Laplacian, i.e., P (si) = e−|si|,
Equation (1.5) gives

ŝ = argmax
x=A s

(e−|s1|−...−|sn|) (1.7)

= argmin
x=A s

(|s1|+ . . . + |sn|) = argmin
x=A s

‖s‖1 ,

where ‖s‖1 denotes the 1-norm.
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Linear Programming
The minimization problem mentioned above can be reformulated as

ŝ = argmin
s

(cT s) subject to x = A s , (1.8)

where c is a vector with coefficients equal to 1. This is not a linear pro-
gramming (LP) problem because of the non-linear absolute value func-
tion. The problem can be transformed into a standard LP problem (with
only positive coefficients) by separating the positive and negative coeffi-
cients [6]. Making the substitutions

s← [u;v] c← [1; 1] A′ ← [A;−A] ,

Equation (1.8) becomes

ŝ = argmin
s

(cT [u;v]) subject to x = A′ s . (1.9)

This separates the positive and negative coefficients of the solution s
into the positive variables u and v. The problem can now be solved
efficiently and exactly with interior point linear programming methods.

Gradient Ascent
The gradient ascent rule for maximizing the posterior distribution in Eq.
(1.4) can be easily derived [7] by assuming that T independent data sam-
ples {x(1), . . . ,x(T )} are observed, generated according to the extended
ICA model x = As + n, where n is the noise vector with zero mean
and the covariance matrix Σ. Under such assumptions, the posterior
probability is

P (s|x, A) =
T∏

t=1

P (s(t)|x(t), A) . (1.10)

For each data sample, the Bayes rule implies

P (s(t)|x(t), A) =
P (x(t)|s(t), A) ·P (s(t))∫
P (x(t)|s(t), A) ·P (s(t)) ds

=
P (x(t)|s(t), A) ·P (s(t))

P (x(t))
. (1.11)
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According to the ICA model, we have

P (x(t)|s(t), A) = (1.12)

|det(2 π Σ)|−1/2exp
(
−1

2
(x(t)−As(t))T Σ−1 (x(t)−As(t))

)
.

Inserting the previous equations into Eq. (1.10) the log-likelihood (LLH)
is obtained by taking the logarithm of Eq. (1.10) as

L(s) =
(
−1

2
(x(t)−As(t))T Σ−1 (x(t)−As(t)) + ϕ(s(t))

)
+C , (1.13)

where ϕ(s(t)) = log (P (s(t))) is a certain non-linear function and C is a
constant independent of s(t). To infer the most probable source signals,
one can maximize Eq. (1.13) by the gradient ascent rule. Taking the
gradient of this LLH function w.r.t. s(t) yields

Δs(t) L(s(t)) = AT Σ−1 (x(t)−As(t)) + Δs(t) ϕ(s(t)) . (1.14)

Thus, the following gradient learning rule is obtained:

sj(t) = sj−1(t) + η Δs(t) L(s(t)) , (1.15)

where η refers to a certain learning rate and sj−1(t) is the vector com-
puted in the previous iteration. The initial value is chosen randomly.

Although the LP method is superior for finding exact solutions in the
case of zero noise, it is much slower than the gradient method. The
gradient method is faster in obtaining an approximate solution and can
be adapted to more general models of different prior distributions.

Matrix recovery

Different methods have been proposed to estimate the mixing matrix
A in underdetermined problems [4, 8]. First, the classical method is
considered, which deals with the problem in a probabilistic framework.

Following [8], the problem can be stated as finding a set of basis func-
tions (vectors) ai describing the structure of the data best in terms of a
linear superposition of sparse, statistically independent sources. In terms
of probability theory language, we can say that we wish to match the
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distribution of data arising from our linear model (Eq. (1.2)) P (x|A) to
the actual distribution of observed data x, i.e., P ∗(x). In other words,
if we generate data stochastically by drawing each si in Equation (1.2)
independently from a distribution (e.g., Laplacian), how would the prob-
ability distribution of the generated data x look like and how could we
adapt A to resemble the distribution of the observed data? In order to
calculate the probability of data arising from the model, we need to spec-
ify the prior probability distribution over the coefficients P (s) as well as
the probability of a data point arising from a certain state of coefficients
in the model, P (x(t)|s(t), A). Once we have these two probabilistic as-
pects, the probability of a sample arising from the model is given by

P (x(t)|A) =
∫

P (x(t)|s(t), A) P (s) ds . (1.16)

The probability P (x(t)|s(t), A) essentially describes our model of the
level of noise or uncertainty. If we assume additive white Gaussian noise
(AWGN), the ICA model becomes x = As and the probability is given by
Eq. (1.12). Now, assuming the observed T data samples x(1), . . . ,x(T )
to be independent of each other, we get the probability of data arising
from the model as

P (x|A) =
T∏

t=1

P (x(t)|A) , (1.17)

where the factor in the product is defined in Eq. (1.16). A natural choice
of assessing how well the distribution in the previous equation matches
the actual distribution of the observed data P ∗(x) is to take the Kullback-
Leibler (KL) divergence between the two distributions given by

KL =
∫

P ∗(x) log
P ∗(x)
P (x|A)

dx (1.18)

=
∫

P ∗(x) log P ∗(x) dx−
∫

P ∗(x) log P (x|A) dx .

The greater the difference between the two distributions, the greater
will be KL. It is zero if and only if the two distributions are equal.
So our objective is to minimize KL by a proper choice of A. Because



Comparison of ICA algorithms 9

P ∗(x) is fixed, minimizing KL is equivalent to maximizing log P (x|A).
Summarizing the whole idea, the goal of learning is to solve the following
problem:

Maximize: log (P (x|A)) =
T∑

t=1

log (P (x(t)|A)) . (1.19)

Taking the gradient of Eq. (1.19) w.r.t. A and using the approximation
of Eq. (1.16) with a Gaussian around the posterior mode ŝ, a learning
rule has been derived in [4] and is given by:

Δ A = A AT ∂

∂ A
log P (x|A) ≈ A

(
Φ(ŝ)ŝT + I

)
, (1.20)

where Φ(ŝi) = ∂ logP (ŝi)
∂ ŝi

is called the score function. If the mixing matrix
A is square, the previous equation is equal to the natural gradient ICA
learning rule for the basis matrix [9].

Note that each iteration step requires the computation of ŝ as given
in the source inference step. Thus, both the estimation and the source
reconstruction steps are fused together, which makes the problem more
complicated and computationally more expensive. However, this is nu-
merically stable as no matrix inversions are required. It also works for
square mixing matrices, thus generalizing the methods of standard ICA.

2.3 Geometrical approach

Geometric approaches have gained some attention due to their pictorial
description, low computational cost and relative ease of implementation.
Further, they do not require the estimation of higher order statistics.
The geometric approach to ICA was first proposed by Puntonet [10] and
successfully used for separating real world data. The basic idea of the
geometric approaches is to use the concept of independence from a ge-
ometrical point of view. The mixing effect is similar to a geometrical
transformation of a rectangle to a parallelogram during the whitening
step. In this case, we can find the angle of rotation to recover the original
sources either in the mixture or in the whitened space using ordinary geo-
metric algorithms [11,12]. The theoretical background for geometric ICA
has been studied in detail and a convergence condition has been derived,
which then resulted in a faster geometric algorithm called FastGeo [13].
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The ideas of geometric algorithms have been successfully generalized to
overcomplete and higher-dimensional systems [5].

Source inference

The reconstruction of sources can be done using the methods presented
in Section 2.2.

Matrix recovery

In the geometric approach, the goal is to identify directions where max-
ima of the data distributions are located. These directions are assumed
to correspond to the original basis vectors. Therefor, the algorithm de-
picted in Figure 1.2 [5] was developed.

Start

Pick 2n linearly independent
starting vectors ( )w1, ’,..., , ’w w w1 N N

lo
o

p
u

n
ti
l
c
o

n
v
e

rg
e

n
c
e

Set wi = ’,
each having unit norm

wi

Choose sample (t),
project it onto unit sphere ( (t))

x
y

Find w w yi ior ’ closest to (t)
w.r.t. euclidean metric

Apply update rule to
closest neuron

Stop:
learned vectors

Figure 1.2: Flowchart for the geometrical algorithm.

The idea of identifying the axis of maximum distributions is imple-
mented as an unsupervised neural net with competitive learning, con-



Comparison of ICA algorithms 11

taining 2N elements (neurons).
The key elements of the algorithm (Figure 1.2) are

• initializing 2N elements (randomly),
• projecting the samples onto the unit sphere,
• calculating the proximity of the projection of the input data sample

y(t) = x(t)
|x(t)| to each element with respect to the Euclidean metric,

• applying the update rule (Equation (1.21)) to the closest or winning
neuron.

The update rule is defined as

wi(t) = Pr [wi(t) + η(t) sgn (y(t)−wi(t))] (1.21)
w′i(t) = −wi(t),

where Pr denotes the projection onto a unit sphere. All other neurons
are not moved within this iteration. Note that the step size η(t) does
not depend on the Euclidean distance.

A frequency fi is assigned to each element (neuron), which counts the
number of times each neuron wi has won. The step size is then modified
according to

η(t + 1) = η0 e−fi(t)/τ . (1.22)

To prevent the network from becoming stuck in a meta-stable state, the
learning rate is maintained at a certain low level η.

Modifications of the geometric approach

To improve the convergence and the accuracy, the geometrical algorithm
can be modified. An extended algorithm was designed, considering the
following enhancements:

• Adaptive Initialization
Our approach to improve the performance of the geometric algo-
rithm is based on an adaptive initialization of the basis vectors
instead of random initialization. By adaptive we mean that the
algorithm must be able to adapt the initial basis vectors approx-
imately to the true basis vectors of the underlying distribution of
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the data. The main idea is to first start with a large number of
independent basis vectors, say N∗ (> N) instead of the true num-
ber N , which span the whole data space. Then, after a predefined
interval length, only those N independent vectors that have the
highest frequencies are retained, because the vectors with higher
frequency ranks correspond approximately to the directions of the
maximum data distributions. This approach can also be analo-
gously described in the language of neural networks as follows: We
first set up a large neural network driven by observed data, which
sequentially arrives at the input. Neurons activity is generated ac-
cording to the received data samples. After a fixed interval length
the large network is trimmed, leaving only the most active neurons
in the network.

• Weighting of data samples
Due to the fact that data samples close to the origin do not con-
tribute much to the directions in the data, appropriate weighting
of the samples according to their norm, can help to improve the
performance. Data samples farther from the origin are weighted
higher than the ones close to the origin, by adding a weighting
factor to the update rule of Eq. (1.21). The weighting factor is
considered in all simulations of the geometric algorithm presented
in this paper.

3 Evaluation of ICA

Having discussed both the classical and the geometric approaches for esti-
mating an overcomplete basis for BSS, we now present some source sepa-
ration examples in order to ascertain salient features of both approaches.
At the end, they will be compared in terms of accuracy, reliability and
computational cost.

3.1 Simulation setup

The speech signals and mixing matrices from [14] were used. The number
of sensors is chosen to be two, whereas the number of sources is varying
between two and four.
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3.2 Performance indices

To compare the mixing matrix A with the estimated mixing matrix B,
a generalized crosstalking error E(A, B) of A and B given in [5], defined
as

E1 = E(A, B) = min‖A−BM‖ ∀M ∈ π, (1.23)

is calculated. π is a group of all invertible real N ×N matrices of which
only one entry in each column differs from zero which have a fixed matrix
norm (i.e., π contains all possible permutations of the identity matrix).
Note that E1 is zero if and only if A is equivalent to B, which is the
case when the mixing matrix has been recovered perfectly (of course up
to scaling and permutation) and is always positive otherwise. Thus, E1

gives a measure of quality of the estimation. A higher E1 indicates a
lower quality or accuracy of the algorithm.

3.3 Comparison

Comparing basic approaches for overcomplete independent component
analysis, the accuracy of the classical (LS) algorithm is distinctly better
than that of the geometric (Geo) approach. Besides lower mean values
(Table 1.1), there are few outliers as can be seen in Figure 1.3. However
the computation time (Table 1.2) is much higher. Therefore a good
overall performance cannot be guaranteed.

No. of sources 2 3 4

LS 0.0099 0.0205 0.0535

Geo 0.0898 0.1024 0.0900

Table 1.1: Median error for 100 independent trials.

No. of sources 2 3 4

LS 80.095 92.7935 98.9290

Geo 1.1039 3.4250 8.2560

Table 1.2: Average computation time [s] for 100 independent trials.
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Figure 1.3: Comparison of the classical and the basic geometrical approach.
Results are plotted using Box Whisker Plot, where the bottom and top of
the box are always the 25th and 75th percentile and the band is the median.
Whisker length is 1.5.
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Figure 1.4: Improving the geometrical approach using symmetric [5] and
adaptive initialization.
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No. of sources 2 3 4

symmetric 0.0767 0.0653 0.0955

adaptive 0.0708 0.0188 0.0367

Table 1.3: Median error for improved geometrical algorithms.

No. of sources 2 3 4

symmetric 1.0830 3.4665 8.420

adaptive 2.259 6.4760 12.7270

Table 1.4: Average computation time [s] for 100 improved geometrical algo-
rithms.

Due to the complexity of the classical algorithms, improvements of the
geometrical algorithm have been done. By initializing starting vectors
symmetrically [5], the accuracy can be improved, as can be seen in Figure
1.4(a) and Table 1.3. Using adaptive initialization, the error can be
reduced further. In addition, the number of outliers could be reduced
significantly. The computation time of the adaptive algorithms is greater
than the computation time of the other geometrical algorithms, due to
the adaptive initialization (Table 1.4). Learning more vectors is more
time consuming.

4 Conclusion

In a real environment, blind source separation is very difficult due to
multiple reasons. Beyond problems like scattering or reflections, an un-
known number of sources is a challenging problem. Assuming that the
number of sources can be estimated, it seems unlikely that the number
of sources is equal to the number of sensors. Especially if the problem
is underdetermined (more sources than sensors), the principal ICA ap-
proach cannot be used. Therefor, two different approaches to handle the
described scenario have been presented: a classical and a geometrical
approach. Additionally, an adaptive method for initialization has been
developed for the geometric approach. Evaluating both approaches, it
has been shown that the applicability of the classical approach is limited
due to high computational costs. By improving the geometrical approach
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using methods for intelligent initialization, an accuracy comparable to
that of the classical approach can be achieved.

For further work, methods for handling an unknown number of sources
should be developed. For applicability in real world scenarios, an im-
provement of the computation time is desirable.
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Abstract The objective of any optimization algorithm is find-
ing the global best (minimum or maximum) of an arbitrary
function. Depending on the complexity of the function, deter-
ministic methods do not always lead to success. Therefore, the
application of ‘intelligent’ algorithms for solving optimization
problems has increased during the last few decades. Due to an
included randomness, these kinds of algorithms produce good
results. Particle Swarm Optimization (PSO) is a well-known
representative of this group of methods. Within this paper we
present an extension of PSO for detecting local minima and an
underlying structure by adding some migratory behaviour. This
algorithm is used for detection of a disturbed linear structure
defined by multiple minima.

1 Introduction

The cocktail party effect describes the human ability to focus on the dis-
cussion partners, also in presence of ambient noise (music, further con-
versations, etc.) [1]. By evaluating the inter-aural time difference (ITD)
and the inter-aural level difference (ILD) between the left and the right
ear, human beings are able to detect the directions of sound and amplify
relevant signals adaptively. Regarding the performance, neuronal infor-
mation processing is far superior to existing technical systems for the
separation of speech signals. Unfortunately, neuronal information pro-
cessing is not completely investigated and an adequate implementation is
not possible. Separation of mixed speech signals in technical systems can
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only be done by statistical processing of time delay of arrival. Consider-
ing one source signal s1(t) and two spatial separated sensor signals xi(t)
(Fourier transform of the signal: Xi(f) = Ai(f)ej ϕi(f)) as presented in
Figure 2.1(a), a characteristic, frequency-dependent phase Δϕ, depend-
ing on the different distances between the source and the sensors, can be
calculated:

Δϕ(f) = ϕ2(f)− ϕ1(f) = 2π f
Δd

cs
, (2.1)

cs is the velocity of sound and Δϕ(f) is a linear function of frequency,
representative for one source. The spatial dependence of different sources
could be used for separation in technical system. After applying a short-
time Fourier transform to the sensor signals, the phase differences can be
calculated between corresponding coefficients. Computing a histogram
in every frequency bin over a defined time interval, the phase difference
can be identified by inspection (Figure 2.1(b)). Due to acoustic effects
like reflections and scattering, the linear structure is disturbed.

(a) Delay of arrival depending
on different sensor positions
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(b) Histograms of phase differences for two
spatial separated sources

Figure 2.1: Blind Source Separation based on spatial position of sources.

There exist several techniques for the separation of mixed signals (the
described problem is also known as Blind Source Separation) [2,3]. Most
of the approaches are based on a separate reconstruction of the signals in
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every frequency bin, using well-known methods like Independent Com-
ponent Analysis [4, 5]. Thereby, independent phase differences are esti-
mated in every frequency bin, followed by an adaptive combination of
the related components. Unfortunately, information about correlation
between adjacent frequencies is omitted.

We present a new approach for the detection of the phase differences by
analysing a map, based on the histograms for every frequency bin (similar
to Figure 2.1(b)). The linear structure and maximum values in the map
can be identified using a modification of particle swarm optimization
(PSO). To introduce the algorithm we concentrate on one active source
as presented above. The paper is organized as follows. In Section 2,
basic PSO for detecting global extrema is presented. Extensions to the
optimization algorithm are described in Section 3. Within Section 4,
the performance of the new algorithm is evaluated before usability and
further work is discussed in the last chapter.

2 Particle Swarm Optimization

Particle Swarm Optimization was developed by James Kennedy and Rus-
sel Eberhart in 1995 [6]. PSO is a population based algorithm describing
mathematically the behaviour of swarms (e.g., foraging) that appear in
different areas of nature. Famous examples are swarms of birds or fishes.
The fundamental idea is, that the decision making of an individual is
influenced by the own decision and the behaviour of the swarm. The
major purposes beneath the easy way of implementation, is that there is
no need of any gradient information. Opposed to many other population
based algorithms, the PSO is a stochastic algorithm. Due to the fact
that PSO does not need any gradient information of the error function,
it is often used when the calculation of the gradient is very difficult or
impossible [7–9].

For solving an optimization problem, the swarm intelligence is
described by a mathematical model presented as follows. A swarm
consists of N individuals, called particles, and each of these particles
can be interpreted as a solution to the optimization problem.

Every particle i contains the following information

xi : position of particle i
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vi : velocity of particle i
yi : best position of particle i so far
ŷ : best position of all/group of particles so far

There are two different possibilities defining ŷ. Therefore, two different
versions of the PSO algorithm exist, the gbest and the lbest version. The
gbest version uses the positions of all the particles to calculate ŷ, the
lbest version uses only a subset of particles to calulate ŷ, instead.

The process of optimization is explained based on the single steps il-
lustrated in the following flowchart (Figure 2.2). The single steps are
presented for the gbest version of PSO algorithm, whereas the modifica-
tions for the lbest version are defined in Section 2.2.

Start

Initialize N particles with random
position and velocity vector

For every particle:
1. Calculate function value

2. Update personal best position
(if required)

Calculate best position
(Gbest or Lbest)

For every particle:
Update velocity and position

Stop:
best position
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Figure 2.2: General description of the PSO algorithm.

First, N particles are initialized with random position and velocity vec-
tors within a defined environment (limitations of error function). Basic
conditions (e.g., restrictions for maximum velocity) can be set and an
exit condition (convergence criteria) has to be defined.
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The following steps are repeated until a convergence criterion
is fulfilled:

• For every particle:
– Calculate the function value f(xi(t)) based on the information

of step t.
– Update the personal best position (smallest value passed by

particle so far)

yi(t) =
{

yi(t− 1), for f(xi(t)) ≥ f(yi(t− 1))
xi(t), for f(xi(t)) < f(yi(t− 1)) (2.2)

• Calculate the global best position

ŷ(t) = argmin
yi(t)

f(yi(t)) i ∈ [1, . . . , N ] (2.3)

• For every particle
– Update the velocity:

vi(t) = vi(t− 1) + c1 r1 [yi(t)− xi(t)] (2.4)
+ c2 r2 [ŷ(t)− xi(t)]

The two independent random variables r1 and r2 are drawn
from a uniform distribution on the interval [0, 1] and are the
reason for the stochastic nature of the algorithm. The con-
stant factors c1 and c2 are called self confidence and swarm
confidence and influence the behaviour of the particles.

– Update the position:

xi(t + 1) = xi(t) + vi(t) (2.5)

After updating the velocity, the position can be updated. The
strategy for updating is also presented in Figure 2.3.

2.1 gbest version

The relevant equations for the model have been presented in the previous
section. In this variation of the PSO algorithm, the global best particle
is computed among all particles that belong to the swarm. This leads to
a fast convergence, but may end up in a local minimum.
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Figure 2.3: Principle approach for PSO; The new position of a particle de-
pends on current velocity vi(t), the global best position ŷ(t) and the personal
best position yi(t).

2.2 lbest version

The lbest version computes more than one global best particle through
building clusters within the swarm. If a swarm consists for example of N
particles, the swarm is divided into K clusters, with Ncl = N

K particles
per cluster. Assignment to a cluster can depend on the order of the
particles (i.e., first cluster contains particles i ∈ [1, . . . , Ncl]). To use
this, replace Equation (2.3) with

ŷk(t + 1) = argmin
yi(t)

f(yi(t))
k ∈ [0, . . . , K − 1]
i ∈ [k ·Ncl + 1, . . . , (k + 1) ·Ncl]

(2.6)

and Equation (2.4) with

vi(t) = vi−1(t) + c1 r1 [yi(t)− xi(t)] + c2 r2 [ŷk(t)− xi(t)] . (2.7)

The lbest variation of the PSO algorithm needs more computation time
but it is more likely to avoid the aforementioned case of ending up in a
local minimum.

3 Adding migratory behaviour to Particle Swarm
Optimization

As described in the introduction, our basic problem is not an optimiza-
tion problem. We want to find multiple local minima, arranged around
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an underlying linear structure. Extending the principle of particle swarm
optimization, an algorithm could be designed to solve our task. The prin-
ciple idea for extension is based on the natural behaviour of some species
(e.g., migratory birds). On their way to winter quarters, they stop at
resting places for sleeping and food intake. Therefore, interpreting local
extrema as sleeping places can be an interesting approach for an algo-
rithm. Based on the presented assumption, the procedure is presented
in a flowchart, extending basic PSO.

Start

Initialize S particles with random
velocity around starting position

For every particle:
1. Calculate function value

2. Update personal best position
(if required)

Calculate best position
(Gbest or Lbest)

Reinitialize swarm according to
movement

Stop:
structure defined by local minima
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Average swarm position set to
starting point

Compute average swarm position
and direction of migration

For every particle:
Update velocity and position

Figure 2.4: General description of the modified PSO algorithm.

The principle steps of the extended algorithm are explained in detail,
with regard to our basic problem. Within the presented map (Figure
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2.1(b)) a defined starting point can be set (Δϕ = 0, f = 0). Reaching of
fN by a particle could be defined as exit condition. The cost function is
defined by the magnitudes of the histograms.

A swarm with S particles is initialized around the starting point with
random velocity. The average swarm position is set to the starting point.
Therefore, the initial flight direction (Section 3.1) is defined by the origin
of the structure and the first local extremum.

The following steps are repeated until the exit condition is full-
filled:

• Basic PSO (as presented in Section 2) is done, limited by a de-
fined number of iterations. The aim of this optimization is to find
some local extrema in a restricted environment around the average
swarm position. This step is similar to finding a sleeping place in
nature.
• After local optimization a new average swarm position is calcu-

lated as the centroid of all particles. A flight direction based on
the current average position and the former average values is calcu-
lated. The estimation of the flight direction is described in Equa-
tion (2.12).
• Reinitialize the swarm according to motion. To avoid a change

of direction, a lower bound is defined above the old resting place.
Particles cannot fall bellow. So a principal moving direction is
guaranteed. Definition of the boundary is illustrated in Figure 2.5.

Figure 2.5: Definition of a lower bound. After detection of a local extremum
xloc,t−1, the swarm is moved to the next starting point. To avoid multiple
detections of this extremum, a boundary is defined that cannot be passed by
the particles so that the next extremum xloc,t is found.
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3.1 Determination of flight direction and reinitialization of swarms

In nature there is less knowledge about the route of migratory birds.
Within our special problem, the flight direction could be calculated ac-
cording to the following equations, assuming that the underlying struc-
ture is linear.

At first, a variable describing the motion between two optimization
steps can be calculate according to

Δxmov = xavr(t)− xavr(t− 1), (2.8)

where xavr(t) describes the average position of the swarm during step t
within a 2-dimensional map. Δxmov = [xmov,1, xmov,2]T is the tempo-
rary direction of motion and can be used to calculate the current flight
direction V (t) and the current flight distance S(t).

V (t) = atan
(

xmov,2
xmov,1

)
(2.9)

S(t) =
√

x2
mov,1 + x2

mov,2 (2.10)

Based on the previous results and the basic assumptions, a resulting
flight direction Vres and flight distance Sres can be calculated:

Vres(t) = t V (1)+V (t)
t+1 (2.11)

Sres(t) = t S(1)+S(t)
t+1

The choice of the direction and the distance depends mainly on the flight
direction and distance calculated at the first step. Using these values,
the algorithm delivers good results as presented in following section be-
cause a nearly linear movement is guaranteed. Additionally, modeling
the flight direction and the distance as a Markov process would be a
further possibility.

After calculating the resulting values, every particle i is reinitialized
according to

xi(t+1) = xi(t)+Sres(t) · [cos (Vres(t)) sin (Vres(t))]T +Rfac (2.12)

where Rfac is a 2-dimensional random vector with components uniformly
distributed between 0 and Rmax. This factor is added to guarantee some
stochastic behaviour. The velocity of the particles is chosen randomly.
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4 Simulation and results

Within the following section, we focus on the simulation of the extended
algorithm. Therefor some test scenarios are defined and repeatable re-
sults of PSO evaluation are presented before the algorithm is tested for
a nearly realistic scenario.

4.1 Test scenario

Regarding the basic map in Figure 2.1(b), a meaningful evaluation is
quite difficult. Just the underlying linear structures are visible but local
extrema must be extracted manually before a reliable evaluation can
be done. Therefore, a test scenario is defined (size 1000 × 1000). For
local optimization, 25 extrema (called foxholes, according to [10]) are
placed symmetrically around a linear structure (25◦), as can be seen in
Figure 2.6(b). Knowing the exact positions of the structure points, the
quality of the algorithm can be evaluated. For a more problem-specific
evaluation of our algorithm, a second scenario (Figure 2.6(a)) is defined
by smoothing a real map with a 2-dimensional Gaussian kernel. The
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Figure 2.6: Test maps for evaluation of the extendend PSO algorithm.

cost function is defined by the test scenario and the starting point for
the algorithm is set to x = [max(x)

2 , 0]T. Comparing the test maps with
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the histograms in Figure 2.1, the phase difference corresponds with the
x-axis and fN with the y-axis. More general notations are chosen to
emphasize generality of the algorithm.

4.2 Evaluation of modified PSO

For the evaluation of the algorithm, the test scenario described above is
used. Within the simulation Rmax, as defined in Section 3.1, is varied
between 0 and 100 and the simulation is repeated 100 times for every
Rmax. At first, the results for three different values of Rmax are presented
in detail (Figures 2.7, 2.8 and 2.9) before the evaluation is discussed
in general. For every separate random vector all found positions are
plotted within the according figure in the left plot. The nearest distance
Δ d (average over 100 iterations) to every foxhole is plotted in the right
picture. The distance is calculated according to

Δ d =
1
N

N∑
1

|xfoxhole − xloc,t| (2.13)

where N is the number of iterations, xloc,t is the result of the optimiza-
tion procedure (step t) and xfoxhole is the position of the nearest foxhole.

Rmax = 10
For a small Rmax, the swarm is reinitialized in a small area around the
proposed average position. As can be seen in Figure 2.7(a) nearly all
particles are located around a local extremum after the optimization
step. Due to a low random value and the predefined lower bound, several
particles are arranged near the border. Nevertheless, the minimum
distance to the foxholes is very small.

Rmax = 40
For a medium Rmax, accumulation of particles near the boarder is less
dominant. The values are distributed regular along the underlying linear
structure. As can be seen in Figure 2.8(b), minimum distance to foxholes
is decreasing due to enhanced reinitialization after an optimization step.

Rmax = 100
For large values of Rmax, the minimum distance to local extrema is grow-
ing. The first optimization delivers good results, but after reinitialization
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Figure 2.7: Evaluation of extended algorithm for PSO (Rmax = 10); Results
after 100 runs.
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Figure 2.8: Evaluation of extended algorithm for PSO (Rmax = 40); Results
after 100 runs.

particles are scattered over a wide area and the algorithm does not reach
convergence within N steps. So extrema are mostly not found. The error
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Figure 2.9: Evaluation of extended algorithm for PSO (Rmax = 100); Results
after 100 runs.

is growing after every reinitialization step.
Regarding Figure 2.10, the results of the evaluation for every random

vector are presented. Average detected points are a measure for global
optimization, indicating the ability to find all structure points. In con-
trast, the average position error is a measure for the quality of local
optimization.

Within the presented scenario, Rmax has to be chosen between 10 and
50 for practical application. With Rmax = 0, the swarm is concentrated
after reinitialization around some fixed point. After optimization, all
particles are concentrated in a small area around local best and all ele-
ments are updated the same way. For high values, predefined iterations
are not sufficient for convergence and extrema can be overleaped. For
small values of Rmax, single extrema could be detected multiple times
and therefore the number of detected points is higher than the number
of existing foxholes.

4.3 Simulating a realistic scenario

For a more application-oriented evaluation of the algorithm, the
smoothed map is considered. A maximum random vector of 40 is used.
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Figure 2.10: Graphical interpretation; detected points indicated global accu-
racy, position error characterizes local accuracy.
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Figure 2.11: Two evaluations of PSO in an almost realistic scenario under
equal conditions.

Within Figure 2.11, results of two evaluations are presented. As can be
seen, the dominant structure points are found. Due to the stochastic
nature of the algorithm, different structure points are found.
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5 Summary and outlook

An extension to the basic particle swarm optimization has been pre-
sented. After describing PSO and its extension, the modified algorithm
was evaluated. The usability of the modified PSO algorithm for the
detection of local extrema has been shown.

To improve the presented algorithm, different actions can be taken.
The random vector should not be predefined, but calculated from given
variables. The estimation of flight direction and distance should be more
dynamical and adaptive to the underlying structure.

Under certain conditions, the algorithm could be also used in context of
Blind Source Separation. For practical applications, it has to be extended
to multiple swarms that follow different sources (linear structures) as
shown in Figure 2.1(b). Therefor it is necessary to implement some
repulsion between different swarms.
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Luis Nachtigall,1 Ana Pérez Grassi,2 and Fernando Puente León1

1 Karlsruhe Institute of Technology (KIT),
Institute of Industrial Information Technology (IIIT),

Hertzstr. 16, D-76187 Karlsruhe
2 Technische Universität München,

Lehrstuhl für Messsystem- und Sensortechnik,
Theresienstr. 90/N5, D-80333 München

Abstract The appearance of varnished wood is of crucial im-
portance in the furniture industry. A finishing defect can make
a piece inadequate for commercialization. In this sense, the ear-
lier a defect is detected during the manufacturing, the lesser the
economical losses it will cause. Therefore, quality control plays a
fundamental role in the wood manufacturing process. The intro-
duction of a visual inspection system in a varnishing line would
yield significant benefits, due to its repeatability and fast execu-
tion time, as opposed to manual-visual inspection. In this paper,
a method for detection of topographical defects, based on image
series with variable illumination, is presented. The method se-
parates the texture from defects making use of a stochastic gen-
erative model that considers features learned by the Independent
Component Analysis (ICA) from a training set of surfaces. The
output of the algorithm consists of a segmented binary image
that highlights the defective areas.

1 Introduction

In the last decades, automated visual inspection has gained relevant im-
portance in the quality control stage of several industrial processes. How-
ever, the furniture sector remains to date an exception, where this task is
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usually performed by specialized workers, who can identify defects mak-
ing use of their know-how learned over the years. Due to the subjectivity
of the evaluation of the inspectors, the transfer of the know-how into al-
gorithms does not present an easy or straightforward task. Additionally,
varnished wood surfaces represent a challenging problem for automated
inspection systems, due to several reasons. On the one hand, texture
exhibits a great variability between different pieces and types of wood.
This means that texture acts as a noisy background, which complicates
the defect detection process. On the other hand, defects on varnished
or painted surfaces can hardly be distinguished under some specific di-
rections of illumination and observation. This sort of surfaces are called
‘non-collaborative’ [1]. Despite all these difficulties, automated visual
inspection is highly desirable, mainly due to the economic benefits that
an online system would introduce and the more objective and repeatable
results it can yield.

As for every visual system, the success of the results depends strongly
on the quality of the images obtained in the acquisition step. The fact
that defects are only partially visible under certain illumination and ob-
servation conditions suggests that the information contained in one im-
age may be incomplete for inspection purposes. Thus, the use of image
series would be beneficial, in the sense that it provides complementary
information of a scene. In [1] and [2] the principles of an image series
acquisition system with variable illumination are presented. The chal-
lenge arising with the use of image series is how to fuse the distributed
information. Previous work done in this area includes model-based and
statistical methods. For example, some methods belonging to the first
group are described in [1] and [2]. In the first case, the models of the de-
fects consist of mathematical functions parametrized by the defect shape
and the illumination direction. These functions are correlated with the
corresponding images of the series. The correlation results are finally
fused and thresholded. The second method takes into account a reflec-
tive model of a surface. The reflection properties and parameters, which
are used to identify defective areas in a surface, are pixel-wise estimated
from the intensity information distributed in the images of a series. In [3]
a statistical method is presented. Statistical features based on a mod-
ified Local Binary Pattern (LBP) are extracted from the image series,
and then integrated over the Euclidean group in order to obtain invariant
features against rotation and translation. Then, based on these invariant
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features, the defects are classified by a Support Vector Machine (SVM).
A different approach to the problem of defect detection in textured

surfaces are the filter-based methods [4]. These methods share a common
characteristic, which is that they use filter banks to extract features from
the images. Different types of filters are commonly used for this task, for
example, wavelets [5] and Gabor functions [6]. The main drawback of
these methods is that appropriate filter parameters, which should yield
optimal results, have to be chosen manually. A way to overcome this
issue is to use the ICA (Independent Component Analysis) as a mean for
learning filters from the data [7]. This has the advantage that the ICA
filters are adapted to the image characteristics to be inspected, which
implies no manual selection of parameters. An extension of ICA for
feature extraction from image series was described in [8].

In this work an ICA approach for defect detection based on image
series is presented. The method makes use of the ICA generative model
to separate the texture from defects. The presented algorithm gives as
output a segmented defects image.

2 Image acquisition

It is important to choose an appropriate illumination setting to acquire
images with good quality for the further processing. Different known illu-
mination techniques could be used for this purpose, for example, diffuse
light, directed light or structured illumination. In the diffuse case, the
surface to be observed is homogeneously illuminated from all directions,
while in the directed case, the light source is ideally spatially located at
one point and the rays reach the surface in a parallel manner. Structured
illumination implies the projection of different light patterns, e. g. grids,
onto the surface. In this work, the directed light illumination technique
is chosen, because it increases the local contrast of the defective areas in
the images.

2.1 Topographical defects

The defects that will be considered in this work are of topographical
nature. In Fig. 3.1 a scheme of this type of defect and how a defect
affects the reflection direction of an incident light ray is shown.
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(a) Defect-free surface. (b) Defective surface.

Figure 3.1: Scheme of a topographical defect.

Due to the partially reflecting properties of varnished surfaces, it can
be assumed that the light rays hitting on a surface will be reflected
as a superposition of a diffuse and a forescatter lobe [9]. As shown in
Fig. 3.1, a defect causes a local change of the surface normal. As a
varnished surface behaves partially like a mirror, the light reflected in
a topographical defect will have a different direction than when hitting
on a non-defective area. This property makes the use of directed light
better suited than diffuse illumination, because a better contrast in the
defective areas is achieved. In Fig. 3.2 an example of a varnishing defect
(crater) under directional light with a varying illumination azimuth ϕ
(see Fig. 3.3) is shown.

����� ������ ������� ����	��

Figure 3.2: Defective surface under varying directional illumination.

2.2 Image series

In the previous figure, it can be noticed that good contrast is only par-
tially achieved in each image. The complete defect cannot be easily iden-
tified in only one image. This suggests the need of using image series, in
order to obtain sufficient information of the surface.
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In Fig. 3.3 a scheme of an image series acquisition setup is shown. The

Figure 3.3: Scheme of a setup for acquisition of image series.

camera is fixed, viewing the surface perpendicularly from the setup’s top.
In this work, the image series are generated with fixed elevation angle θ
and varying azimuth ϕ. The number of images included in each series
considered in this work is B = 4, with ϕ = 0◦, 90◦, 180◦, 270◦ (see Fig.
3.4).
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Figure 3.4: Graphical illustration of an image series. M : width, N : height,
B: number of images.
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From a mathematical point of view, an image series can be viewed as
a vectorial function ĩ(x, y) 3:

ĩ(x, y) =

⎛⎜⎜⎜⎝
i(1)(x, y)
i(2)(x, y)

...
i(B)(x, y)

⎞⎟⎟⎟⎠ , (3.1)

where B is the number of images of the series, (x, y) the spatial coordi-
nates and i(1)(x, y), i(2)(x, y), . . . , i(B)(x, y) the individual images of the
defined series.

3 Independent Component Analysis

Generally speaking, Independent Component Analysis (ICA) is a method
that allows the separation of one or many multivariate signals into sta-
tistically independent components. A stochastic generative model serves
as the starting point for the further analysis.

3.1 Generative model

The following generative model states that a number m of observed ran-
dom variables can be expressed as a linear combination of n statistically
independent stochastic variables:

x = A · s =
∑

i

ai · si , (3.2)

where

x : observed vector (m× 1),
A : mixing matrix (m× n),
s : independent components vector (n× 1),
ai : basis vector (m× 1),
si : independent component (si ∈ R).

3 In this contribution, an overscripted tilde, e. g. ĩ(x, y), will denote an image vector
(or image series).
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The goal of the ICA is to find the independent components si of an
observed vector:

s = W ·x . (3.3)

In the case that m = n, the transformation matrix W = A−1. Note that
the mixing matrix A is not known a priori. Thus, A and W have to be
estimated through the ICA of the observed data, too.

There is an ambiguity in the solution of the ICA problem, which is that
the variance of the independent components cannot be unambiguously
determined. To overcome this issue, it is simply assumed that the covari-
ance matrix equals unity, i.e. E{ssT} = I (it was assumed here that s
is zero-mean). An overview and description of different approaches and
implementations of ICA algorithms can be found in [10].

3.2 Feature extraction

The calculation of an independent component si is achieved by means
of the inner product of a row vector wT

i of the ICA matrix W and an
observed vector x:

si = 〈wi,x〉 =
m∑

k=1

w
(k)
i ·x(k) , (3.4)

where w
(k)
i and x(k) are the k-components of the vectors wi and x re-

spectively.
wi is usually called feature detector. In this sense, si can be understood

as a feature of x. However, in the literature, the concept of feature
is not uniquely defined, and usually ai is denoted as feature, while si

corresponds to the amplitude of the feature in x. In this contribution,
the concept of feature will be used for si and ai interchangeably.

3.3 Preprocessing

In this section, some preprocessing techniques usually associated with
ICA algorithms that are also applied in our method are presented.
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Removing of the DC component

It is usually assumed that the mean value of each realisation of the ob-
served vector, also called the DC component, doesn’t contain interesting
information [11]. This applies to our problem, where the mean illumi-
nation level (or DC component) of an image does not give any useful
information about a defect. Therefore, the DC component is removed
(or subtracted) from the data.

Centering

A basic preprocessing step is to center the observed data x, i.e. to sub-
tract the mean vector E{x} from it, in order to obtain a zero-mean vector
x̌:

x̌ = x− E{x} . (3.5)

For the sake of simplicity in the notation, in the following sections the
observed vector x is assumed to be zero-mean.

Note that the centering and the removing of the DC component don’t
are equivalent. The former implies the subtraction of the mean value
of the vector x from itself, considering each component as a random
variable. Otherwise, the latter is performed by removing the mean value
of each realisation of x, so that

∑
k x(k) = 0.

Whitening

Usually, ICA algorithms require ‘whitened’ or ‘sphered’ data as input.
Whitening or sphering of data means to linearly transform a zero-mean
vector x:

v = Qx , (3.6)

in order to obtain a transformed observation vector v, so that its covari-
ance matrix equals unity:

E{vvT} = I . (3.7)

After sphering, using Eq. (3.2), we can write:

v = Bs , (3.8)
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where B = QA is an orthogonal matrix, because:

E{vvT} = BE{ssT}BT = BBT = I . (3.9)

In this way, the problem of finding an arbitrary matrix A was simpli-
fied to the less demanding task of finding an orthogonal matrix B. Many
ICA algorithms make use of this simplification to solve the problem more
efficiently. It is worth to mention that whitening of data is always possi-
ble. A standard method to perform sphering is the well-known Principal
Component Analysis (PCA).

Dimension reduction

Additionally, the PCA can be used for dimension reduction of data, which
in our case means to select a number n of independent components less
than the number m of observed variables. This is achieved by retaining
the n first principal components obtained from the PCA and discarding
the rest. Normally, the most relevant information of the data x is concen-
trated in the subspace spanned by the first principal components (those
with the highest variance or energy). Thus, by reducing the dimension
of the data space, irrelevant information can be neglected.

4 Extension of the ICA for image series

The generative model described in Eq. (3.2) can be extended and rewrit-
ten for image series as follows:

ĩ(x, y) =

⎛⎜⎜⎜⎝
i(1)(x, y)
i(2)(x, y)

...
i(B)(x, y)

⎞⎟⎟⎟⎠ =
n∑

i=1

⎛⎜⎜⎜⎜⎝
a
(1)
i (x, y)

a
(2)
i (x, y)

...
a
(B)
i (x, y)

⎞⎟⎟⎟⎟⎠ si =
n∑

i=1

ãi(x, y) · si . (3.10)

The image series ãi(x, y), with i = 1, . . . , n, form an image series basis.
With this basis an arbitrary ĩ(x, y) can be generated if the appropriate
weights si are used.

To perform the ICA, the data has to be presented in form of a column
vector (see Eq. (3.2)). This is simply achieved by stacking all the pixels
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of the image series in a vector i. The specific order in which the pixels
are arranged in the vector i is irrelevant. So, we obtain:

i =
n∑

i=1

ai · si = A · s . (3.11)

Once the ICA was performed, the image series of the basis ãi(x, y) are
formed from the column vectors ai of the mixing matrix A rearranging
the components of the vector in the corresponding position of the image
series vector, i.e. the inverse procedure of the previously used vector
stacking.

4.1 Feature extraction from image series

The feature detectors w̃i(x, y) are also formed via the inverse stacking
procedure of the row vectors wT

i of the ICA matrix W. As shown in
Eq. (3.4), the feature extraction is performed by means of the inner
product of a feature detector and an observed vector. For the case of
image series, the inner product is calculated through the summation of
all pairwise multiplied pixels that have the same position in the image
series:

si = 〈w̃i(x, y), ĩ(x, y)〉 =
B∑

k=1

M∑
x=1

N∑
y=1

w
(k)
i (x, y) · i(k)(x, y) . (3.12)

4.2 Practical considerations

In order that the ICA estimation problem can be solved practically, the
number of independent components n shouldn’t be too large. n is nor-
mally chosen to be not greater than 256. For example, let us suppose
that m = n = 256. For an image series, this means that the total number
of pixels in the series is 256. If the number of images B = 4, then the size
of each image has to be 8 × 8 pixels (because 4 × 8 × 8 = 256). Images
are usually much bigger than this, e. g. 512×512 pixels. However, this is
not really a problem, because the ICA can be applied to small patches,
instead of to the whole image. In this work, the number of images in
the series and the image patches size will be B = 4 and 8 × 8 pixels
respectively.
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For purposes of visualisation, the image patches of a series are plotted
contiguously in a rectangular arrangement. For example, the generative
model described in Eq. (3.10) would take the schematic form shown in
Fig. 3.5.
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Figure 3.5: Graphical representation of an image series patch generation.

5 Defect detection approach

In Fig. 3.6 a scheme of the proposed approach for defect detection in
textured surfaces is shown.

�

�

���	
	
������

������	�
 ����

������
	��������	��
��� ���	
	
�

����
	
� ��
������������

����	
� �
��
������	�

�����������

���������	��
���������� ��
�� 	
������

 ������
�!�����	�


"�
����	�
���
	��������	�� �����
���

������� 	����
�������
����

Figure 3.6: Scheme of the proposed defect detection approach.

The idea behind this approach is to separate the texture or background
from the defects. This is achieved through the generation of an image se-
ries using only features that represent better the texture than the defects.
These features are learned via the ICA from a set of training surfaces.
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Then, the generated image series is subtracted from the original one.
Finally, thresholds are applied in order to obtain a segmented defects
image. In the following sections the method is explained in detail.

5.1 Learning of ICA features

The features (or basis vectors) are obtained from a set of selected image
series that serve as training data. It is convenient that the set’s surfaces
include the types of defects wanted to be detected, because this yields a
better characterization and separability of the features corresponding to
the background and the defects. Image series patches are extracted from
these training surfaces and then processed via an ICA algorithm, which
gives as output the image series basis ãi(x, y), with i = 1, . . . , n, and
the corresponding feature detectors w̃i(x, y). Usually, for image data,
a dimension reduction of 75% can be performed without a relevant loss
of information [11]. In our case, this means that from the 256 pixels or
components of the observed vector (image series patch), only the first 64
principal components are considered. As input for the ICA algorithm,
50000 image series patches taken from random positions of the training
images set are used. As mentioned previously, the DC component is
considered to contain irrelevant information, so it is removed from the
input data, i.e. from each image series patch.

5.2 Sorting of features

Each feature learned by the ICA remarks different aspects of an image
series. In particular, some of them will characterize better the texture
or background than the defects. So, it is important to find a way to
identify and quantify which of the features are better suited to describe
the background. The following proposed function mi(ãi) can be used as
a measure for this purpose:

mi(ãi) =
∑
x,y

|a(1)
i (x, y)− a

(2)
i (x, y)|+ |a(1)

i (x, y)− a
(3)
i (x, y)|+

|a(1)
i (x, y)− a

(4)
i (x, y)|+ |a(2)

i (x, y)− a
(3)
i (x, y)|+

|a(2)
i (x, y)− a

(4)
i (x, y)|+ |a(3)

i (x, y)− a
(4)
i (x, y)| .

(3.13)

Basically, Eq. (3.13) gives a measure of the pixel intensity distribution
similarity between the individual images a

(1,...,4)
i (x, y) of an image vector
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ãi(x, y). A low value of mi(ãi) denotes a high similarity. It is important
to note that the DC component of the individual patches has to be also
removed in this case, so that only the distribution of the intensities affects
the measure. The image series of the basis ãi(x, y) are then sorted by
this measure. The lower the value of mi(ãi), the better describes ãi the
background. That is because defects introduce local variations of the
intensity distribution between the images of a series.

5.3 Defect segmentation

Once the features are sorted, the next step is to generate the image series
of the surface to be inspected ĩgen(x, y) by only using the first k sorted
features (k < n). So, the generated images will reproduce principally the
background, while the defects will be attenuated. k can be usually set
to the half of the total number n of vectors that form the basis.

ĩgen(x, y) =

⎛⎜⎜⎜⎝
i
(1)
gen(x, y)

i
(2)
gen(x, y)

i
(3)
gen(x, y)

i
(4)
gen(x, y)

⎞⎟⎟⎟⎠ =
k∑

i=1

⎛⎜⎜⎜⎝
a
(1)
i (x, y)

a
(2)
i (x, y)

a
(3)
i (x, y)

a
(4)
i (x, y)

⎞⎟⎟⎟⎠ si =
k∑

i=1

ãi(x, y) · si .

(3.14)

Whole images are simply obtained by generating contiguous image
patches and then joining them together.

The segmented defects image is obtained following the thresholding
scheme shown in Fig. 3.7. All the operations shown in this figure are
performed in a pixel-wise manner. When the absolute value of the dif-
ference between an original image i(1,...,4)(x, y) and the generated one
i
(1,...,4)
gen (x, y) trespasses a threshold Thresha, then these areas are con-

sidered as possible defects. If these possible defective zones occur in the
same position in at least Threshb different individual images of the series,
then this area is considered as defective. Note that if Threshb = 1, then
all possible defects would be actually considered as defects.

5.4 Example with a simulated image series

In order to show exemplarily how to carry out the different steps of the
described method, the complete procedure, from the training phase to
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Figure 3.7: Scheme of the segmentation method.

the defect segmentation, is applied to a simulated image series, which
was generated using the POV-Ray ray tracing program. The simulated
wood surface includes a crater as defect (see Fig. 3.9 (a)-(d)).

Training phase

The feature detectors are learned by applying an ICA algorithm (in par-
ticular, the FastICA algorithm [12] was used) to a set of 50000 image
series patches taken from random positions of the simulated surface. Via
the PCA, a dimension reduction of 75% is performed. Thus, the number
of basis vectors to be estimated is n = 64. In Fig. 3.8 the learned image
series basis and the feature detectors, sorted ascendingly by the measure
described in Eq. 3.13, are shown.
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(a) Image basis.

(b) Feature detectors.

Figure 3.8: Learned ICA features from a simulated surface.

Image series generation

For the image generation step, the first half of the sorted features is used,
i.e. k = n/2 = 32. First, the independent components si of contiguous
patches in the whole image are calculated through Eq. (3.12). Then,
image series of the surface are generated using the generative model (Eq.
(3.14)) with the calculated components si.

As shown in Fig. 3.9, the generated and the original images are prac-
tically identical in the non-defective areas, while the defect (crater) was
not well reproduced in the generated image. This is because the fea-
tures that better describe the defects (k > n/2) were not taken into
account for the image generation. The DC component of the generated
image patches was included in the plotted images just for purposes of
visualisation.

Fig. 3.10 shows the absolute value of the difference between the original
images and the generated ones. It can be seen that the difference is only
significant in the defective zone. This means that the first half of the
sorted features is able to describe well the texture, but not the defect.
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(a) ϕ = 0◦. (b) ϕ = 90◦. (c) ϕ = 180◦. (d) ϕ = 270◦.

(e) ϕ = 0◦. (f) ϕ = 90◦. (g) ϕ = 180◦. (h) ϕ = 270◦.

Figure 3.9: Image series of a simulated surface. (a)–(d): Original images.
(e)–(h): Generated images.

Image segmentation

The defect segmentation results are shown in Fig. 3.11. First, each differ-
ence image are thresholded by Thresha (in this example Thresha = 30).
Each pixel, where the difference exceeds the threshold, is considered as
a possible defect. Fig. 3.11(a) shows the sum of the thresholded im-
ages. Finally, the summed image is thresholded again, in this example
Threshb = 2, i.e. that a pixel needs to have at least two coincidences of
possible defects to be considered as part of a defect.

The segmented defects image of the example with a simulated surface
is shown in Fig. 3.11(b). In the next section, the same method is applied
to an image series of a real wood piece.

6 Experimental results

The proposed defect detection method was also tested with varnished
wood surfaces. The results are discussed in the following sections.
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(a) ϕ = 0◦. (b) ϕ = 180◦.

(c) ϕ = 90◦. (d) ϕ = 270◦.

Figure 3.10: Absolute value of the difference between ĩ(x, y) and ĩgen(x, y).

6.1 Image basis and feature detectors

The results of the ICA algorithm applied to a set of training image series
are shown in Fig. 3.12. Again, the dimension of the data space was
reduced 75% through PCA, so that the number of feature detectors and
basis vectors is n = 64.

The image series of the tested surface and the corresponding generated
image series, using only the first half of the sorted features (k = n/2), are
shown in Fig. 3.13. As in the previous example, the DC component of the
image patches was included in the generated images, just for visualisation
purposes.

The tested surface contains two fissures, in the upper and in the lower
part respectively. The generated images reproduce very well the original
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(a) Possible defects (Thresha = 30). (b) Segmented defects image
(Threshb = 2).

Figure 3.11: Possible defective areas and segmented defects image of a simu-
lated surface.

(a) Image basis.

(b) Feature detectors.

Figure 3.12: Learned ICA features from textured wood.

surface in the zones with no defects. On the contrary, the defective areas
are attenuated and not clearly identifiable in these images. As noted
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(a) ϕ = 0◦. (b) ϕ = 90◦. (c) ϕ = 180◦. (d) ϕ = 270◦.

(e) ϕ = 0◦. (f) ϕ = 90◦. (g) ϕ = 180◦. (h) ϕ = 270◦.

Figure 3.13: Image series of a tested surface. (a)-(d): Original images. (e)-
(h): Generated images.

before, this is because the features, which better describe the defects,
were not taken into account in the generation process.

6.2 Defect segmentation

The image indicating the possible defects and the final segmented defects
image, obtained following the thresholding scheme of Fig. 3.7, are shown
in Fig. 3.14.

7 Summary

A method for defect detection in textured surfaces was presented. The
method relies on the analysis and fusion of image series with variable illu-
mination. This image acquisition and illumination technique provides a
better visualisation of topographical defects than a single image of a sur-
face. The proposed method can be considered as filter-based, where the
filters (or feature detectors) are learned by the ICA from a set of training
surfaces. The learning of features has the advantage that no parameters
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(a) Possible defects (Thresha = 30). (b) Segmented defects image
(Threshb = 2).

Figure 3.14: Possible defective areas and segmented defects image of a var-
nished wood surface.

have to be selected or tuned manually. Through a stochastic generative
model, on which the ICA model relies, ‘filtered’ images are generated.
In these images the defect’s information is attenuated, while the back-
ground or texture is well reproduced. Then, the differences between the
original images of a series and the generated ones are calculated. By use
of a thresholding scheme, a segmented defects image is extracted. It is
important to note, that the defect detection in textured surfaces presents
a difficult task, due to the noisy background that introduces the texture
itself. The method was tested on a defective varnished wood surface,
showing good results.
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Segmentation of defect edges on grooved
surfaces using anisotropic diffusion
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Abstract Metal surface manufacturing is an important work
stage for precise shape finishing and texture generation. Some
regular tool marks, such as evenly distributed grooves with neat
edges, concern the surface roughness and functionalities. In this
paper we provide an explorative study to inspect defect edges
on the groove texture. The grooves are modelled by a modified
straight-translation-generated shape (MSTGS). Considering the
difference from ideal model, adaptive anisotropic diffusion is used
to suppress orientation fluctuations on the grooves. As a result
grooves can be piecewise represented with consecutively consis-
tent orientation whereas variable orientations are preserved on
the defect edges. The diffusion coefficients are adaptively com-
puted according to the location of the straight line segments.
By shape analysis the collinear and parallel conditions are ver-
ified in orientation space for straight line detection. Iteratively
performing diffusion filtering the curved defect edges can be seg-
mented in the image. Our approach is tested for real honed
textures. The segmentation results provide important benefits
for the classification of defects and quality evaluation of grooves.

1 Introduction

Image analysis based approaches for quality control are extensively ap-
plied in the field of industrial production. Metal surface manufacturing
is an important work stage for precise shape finishing and texture gener-
ation. Some regular tool marks, such as evenly distributed grooves with
neat edges, concern the surface roughness and functionalities. The prop-
erties of grooved surfaces can be conveniently controlled by adjusting



58 L. Wang

the groove angles, groove distribution and the balance of groove sets. In-
evitably the abrasive procedure gives rise to some undesired flaws, which
incorporate cracks, small holes, sharp edges, smeared metal and so forth.
They have to be corrected before the metal materials are worn off to the
limit of the size tolerance. Thereby some reliable methodology for on-
line measurement and inspection tends to be a solution for automating
modern machines.

The related works for this task can be found in the literatures. The
success of these methods attributes to the effective segmentation of the
grooves from defected background under certain constraints. A spectral
analysis based method is presented in [1]. Groove sets are characterized
as several radial lines in the Fourier spectrum. Such signals can then be
separated from spectrum to reconstruct groove texture. A progress is
achieved in [2] with ridgelet transform. Grooves can be extracted with
a compact representation in wavelet domain. Unfortunately these two
methods suffer from the global view of image signals, so that they are not
sensitive to the groove segments. For this reason the validation of the
above mentioned methods is restricted to intact grooves. Other methods
employing the local orientation features were introduced in [3]. A set
of rotated windows compose a filter bank to detect the local maxima of
orientation coherence, which can be derived from local variance, local
gradients or local spectra. The shortcoming of this method is that the
window size is fixed and thus can not adaptively match the random
spatial scales of grooves. Nevertheless, we still follow the well-known
model for groove texture and depict it intuitively as straight-translation
generated shape (STGS), i.e. a one dimensional signal moves according
to a straight trajectory. The generalization to some nonintact STGT is
named as the modified STGS (MSTGS) in this context (see Fig. 4.1).

Figure 4.1: From left to right: (a) STGS (b) modified STGS.
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Straightforwardly we assume the MSTGS as featured with irregular
boundaries and consecutively consistent orientation in its inner parts.
We have also noted that real manufactured grooves have random but
similar local orientations, although visually they are regarded as straight
lines. The disparities between human sense and computational analysis
are invoked by the following facts:

1. Tiny fluctuations on the grooves can not be ignored. Typically
they appear on the groove edges.

2. The imaging system digitalizes the scene in grids so that no ideal
smooth lines exist any more.

3. Computational errors are introduced by the estimation of local ori-
entation.

4. Noise from imaging equipment leads to some angle aberration.

In this case defects and grooves are obviously confused in feature space.
Our work aims at searching grooves from complex image structures. It
corresponds to determining the boundaries of MSTGS. Simultaneously
the inner structural fluctuations of grooves should be suppressed in the
digital picture to avoid false detections. Some means are exploited to
stepwise realize image segmentation. To address point 4 the edge en-
hanced nonlinear diffusion is firstly used for denoising and preserving
image structures. Afterwards the image is divided into oriented and
nonoriented regions by edge detection. The oriented regions incorporate
the boundaries and the inside straight edges of MSTGS. The nonoriented
regions are flat surfaces and weak textures. We estimate local orien-
tations in gradient field and merge them into several orientation bins.
With that the angle errors of points 2 and 3 can be partially neglected.
Anisotropic diffusion filtering is then performed to suppress orientation
fluctuations mentioned in point 1. In this phase an eigenvalue anlysis
based method for straight line detection is used to assign the diffusion co-
efficients adaptively. The diffusion procedure is equivalent to repeatedly
Gaussian low-pass filtering along a designated direction. Here we point
out that MSTG boundaries show as macrostructure whereas the fluctu-
ations inside MSTGS have large frequencies. By iterations the straight
lines will be smoothed in gray levels and enhanced in orientation space
with reduced angle difference. MSTGS boundaries will be preserved be-
fore the image structure is completely lost by smoothing. We organize
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this paper as follows to detail our approach. Section 2 formally describes
the MSTGS model and indicates the properties of grooves in orientation
space. Section 3 reviews anisotropic diffusion briefly. Section 4 applies
edge-enhanced diffusion to image denoising. In Section 5 we implement
the algorithms for geometric-selective filtering. Section 6 presents some
experimental results to verify the validation of our approach. Some con-
clusions are brought forward in Section 7.

2 The model of grooves

2.1 Representation in gradient vector field

The STGS model describes grooves as the spatial translation of a 1D
function which is the profile of a groove set. The collinear points in STGS
have constant luminosity intensity. The variation of luminosity intensity
occurs perpendicularly to the direction in which the line stretches. Hence,
grooves are modeled as a set of lines with various luminosity intensities.
The grooves extend infinitely and are truncated by the image borders.
Whether one point belongs to a straight line, is not only dependent on
the relative position of the points, but relates to their local orientation.
As defined in [4] the local orientation indicates the direction of maximal
variation of luminosity intensity, i.e. the direction of the gradient vector
of image intensity. Mathematically the MSTGS model is represented
with vector geometry in polar coordinates. Fig. 4.2 illustrates the gauge
coordinates (ξ, η) and the relationship of the gradient vector �I (�s), the
coordinate vector �s and the vector of reference direction �uk.
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Figure 4.2: MSTGS model with vector geometry.
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Two conditions are fulfilled in our model. They are written as the
collinear condition,

�s · �uk

|�uk|
= |�uk| (4.1)

and the parallel condition,∣∣∣∣∣∣
�I (�s) · �uk

|�uk| ·
∣∣∣�I (�s)

∣∣∣
∣∣∣∣∣∣ = 1 (4.2)

where �s = x�i + y�j including the unit vectors of Cartesian coordinates,
�i and �j, �uk = rkejϕk with its polar coordinates (rk, ϕk) and �I (�s) =
∂I
∂x

�i + ∂I
∂y

�j =
∣∣∣�I (�s)

∣∣∣ ejθ(�I(�s)) for the input image I. ϕk ∈ (−π/2, π/2],
θ ∈ (−π/2, π/2], so that the vectors with opposite direction have a same
orientation angle. We combine the collinear condition and the parallel
condition to define a groove formally:

Gm,k = Pm

(
�s · �uk

|�uk|
− rm

)
· δ

⎛⎝1−

∣∣∣∣∣∣
�I (�s) · �uk

|�uk| ·
∣∣∣�I (�s)

∣∣∣
∣∣∣∣∣∣
⎞⎠ (4.3)

Pm ( · ) denotes the profile of a groove. rm is the translation of Pm ( · )
in 1D case. δ ( · ) is the Dirac impulse function. The suffixes m and k
denote the m-th groove in the k-th set of parallel grooves. In the next
sections some strategies will be presented to apply this model in practice.

2.2 Decomposition in orientation space

The orientation space transform (OST) provides a method for multi-
orientation analysis. The original definition of the orientation space (OS)
in [5, 6] is a 3D space weighted by the responses of tuned Gabor filters.
A simplified style of OS is applied here. In addition to the 2D Cartesian
coordinates we set up the third dimension and define it as the angle
of local orientation. We scatter the points into OS according to their
orientation angles. Formally we give the orientation space:

OS (�s, ϕ) = δ

⎛⎝1−

∣∣∣∣∣∣
�I (�s) · �u (ϕ)

|�u (ϕ)| ·
∣∣∣�I (�s)

∣∣∣
∣∣∣∣∣∣
⎞⎠ , (4.4)
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where �u (ϕ) denotes a reference vector. Fig. 4.3 shows that the over-
lapping objects are separated on respective levels in OS. A straight line,
regardless of its continuity, keeps on a single level. A planar curve is shat-
tered on several levels. The components on each level fulfill the parallel
condition.

�

Figure 4.3: Separation of intersection lines in OS.

3 Anisotropic nonlinear diffusion

Anisotropic nonlinear diffusion (ANLD) can be understood as inhomoge-
neous blurring [7–9]. Consider the smooth filtering along the edges and
across the edges. Since gradients are sensitive to noise, we estimate the
local orientation with the structure tensor [4], which is the least-squares
estimation of the gradient vector field in a pixel neighborhood:

S =
(

J11 J12

J21 J22

)
, (4.5)

where J11 = I2
x ∗Wρ, J12 = (Ix · Iy) ∗Wρ, J22 = I2

y ∗Wρ. Ix and Iy

are the image derivatives in x and y direction, Wρ is a Gaussian window
with the standard deviation ρ, and ∗ is the convolution operator. v1 is
the principal eigenvector of S and is perpendicular to the edge, v2⊥v1:

v1 = (cos ϕ sin ϕ)T , (4.6)

v2 = (− sin ϕ cos ϕ)T , (4.7)

where ϕ is the local orientation angle in (−π/2, π/2]:

ϕ =
1
2

arctan
(

2J22

J22 − J11

)
. (4.8)
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The diffusion equation is expressed as

∂I

∂t
= div (D • ∇I) , (4.9)

where div is the divergence operator, ∇I is the image gradient vector
and D is the diffusion tensor:

D = (v1 v2)
T

(
u1 0
0 u2

)
(v1 v2) (4.10)

with u1 denoting the diffusion coefficient for v1 and u2 for v2.

4 Image preprocessing

As mentioned in Section 3, the image gradients are critically influenced by
image noise. Therefore, the denoising method using ANLD is necessary
for image preprocessing. The coefficients for edge-enhanced diffusion are
given as follows:

u1 = 1− exp
( −Cm

(|∇I| /K)m

)
, (4.11)

u2 = 0.2 . (4.12)

As suggested in [9], m = 8 and Cm = 3.31488 are chosen. K is the dif-
fusivity threshold. In this paper anisotropic nonlinear diffusion is imple-
mented numerically with the standard AOS theme [9]. The decorrelation
method described in [10] is utilized to select the stopping time. A test
image of the texture H0 and its denoising result are shown in Fig. 4.4.
Throughout this paper all the test images are digitized with 512 × 512
pixels.

5 Algorithm for geometry-selective filtering

Practically there are flexible choices of the diffusion coefficients for ap-
plications [11]. Anisotropic diffusion in fact preserves desired edges dur-
ing image smoothing. By edge-enhanced diffusion high contrasted edge
can be blurred more slowly than low contrasted edges. The criterion is
formulated with gradient magnitude for anisotropic blurring. Similarly
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Figure 4.4: (a) Left: a test image of the honed surface H0 (b) Right: edge-
enhanced diffusion of H0.

we modify the diffusion coefficients on the basis of geometric features.
Structural fluctuations on grooves arise from the microstructure of metal
material and show larger frequency than curved defect edges. We accel-
erate blurring the straight edges once they satisfy collinear and parallel
conditions. Otherwise edge-preserved diffusion is performed to restore
the disturbed edges until their fragments acquire enough smoothness and
evolve into consecutively consistent orientation. We implement this pro-
cess by a diffusion procedure with adaptive diffusion coefficients, which
rely on the locally detected segments of straight lines. An overview of
our algorithm is depicted in Fig. 4.5.
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Figure 4.5: The work flow for the segmentation of defect edges.
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5.1 Straight line detection

The operations for straight line detection are explained step by step as
follows:

Step 1: Calculate the gradients by

Ix = I ∗ g
′
x , (4.13)

Iy = I ∗ g
′
y , (4.14)

where g
′
x and g

′
y are the derivatives of the Gaussian. Then the structure

tensor S is constructed in terms of Eq. (4.5) with the integration scale ρ.
The eigenvectors v1 and v2 of S are available in Eq. (4.6) and Eq. (4.7).
The local orientation ϕ is the angle of the principle eigenvector v1.

Step 2: Threshold operation with Te on gradient magnitude to deter-
mine a mask M of oriented and non-oriented regions,

M (x, y) =

{
1 (x, y) ∈ {(x, y) | |∇I| > Te}
0 (x, y) ∈ {(x, y) | |∇I| ≤ Te}

(4.15)

Then the angles of oriented regions can be extracted from ϕ,

ϕT = ϕ ·M (4.16)

Step 3: For the numeric implementation of OST, ϕT must be quanti-
fied into finite bins. A linear uniform quantizer is constructed in (4.17).

Level (x, y) = round
[
N

π

(
ϕT (x, y) +

π

2

)
+

1
2

]
(4.17)

The quantization interval Δϕ is π/N for N levels. Note that the angles
are mapped to the integers from 1 to N , but the integer 0 is reserved to
represent non-oriented regions. It is convenient to interpret the quanti-
zation result as level indices of the OS. Each pixel is labled with its level
index.

Step 4: On each level of OS the connectivity is analyzed with 8
neighbors [12]. The edges are seperated in many connected components.
The curved objects cross through many levels, but line-structured objects
are concentrated on individual levels.
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Step 5: It is reasonable to state that the small components on a sin-
gle level likely belong to curved edges. So the area of each component is
a measure for the consecutively consistent orientations. Only the large
components are the candidates for straight line detection. Owing to the
quantization some pixels with similar orientation are connected together
on a single level and increase the component area. More complicated
shape analysis should be involved to prevent the mixing of the curved
components caused by rough angle resolution. Covariance matrix is ex-
ploited to compute similarity to a line-like shape [12,13]. In fact this step
checks the collinear condition presented in Section 2. The binary compo-
nent is understood as a function of two random variables, the coordinates

x and y. Then the elements of covariance matrix Cov =
(

Cxx Cxy

Cyx Cyy

)
can

be calculated in (4.18) to (4.20)

Cxx =
1
n

n∑
i=1

x2
i −m2

x (4.18)

Cyy =
1
n

n∑
i=1

y2
i −m2

y (4.19)

Cxy = Cyx =
1
n

n∑
i=1

xi · yi −mx ·my (4.20)

A normalized measure of the linearity is formed in (4.21)

linearity =

(
(Cyy − Cxx)2 + 4C2

xy

Cxx + Cyy

)2

(4.21)

Only if linearity is large enough, the component can be detected as a
straight line.

Step 6: Repeat the steps (4) and (5) for all the levels of the OS and
combine the detected straight lines. The entire map of line structures is
achieved by (4.22)

L =
N⋃

i=1

Li . (4.22)
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Figure 4.6: From left to right: (a) oriented regions (b) straight lines (c) defect
edges. The results are achieved at the first iteration. The input image is H0.

Here Li denotes the straight lines on a single level. The map of defects
is B = M − L (see Fig. 4.6).

5.2 Construction of diffusion coefficients

Our goal is to blur the edges of grooves but retain the edges of defects.
If a pixel is close to grooves, it should be smoothed along v1. On the
contrary, if a pixel is placed in the vicinity of defects, we smooth the
image along v2. Therefore, u1 and u2 are assigned according to the
distance transform [12] in L and B. The distance to the nearest point
of straight edges is recorded for each pixel in dL. In the same way the
distance map dB is derived from B (see Fig. 4.7). Consequently, u1 and
u2 are defined as follows:

u1 = α + β · exp

( −Cm

(|∇I| /K)m

)
, (4.23)

u2 = β , (4.24)

where α = dB

dL+dB
· M̄ + L, β = 1 − α (see Fig. 4.8) This choice of u1

and u2 has the advantage to weaken blurring on the defect edges and
simultaneously strengthen blurring on the groove edges.

5.3 Adaptive anisotropic diffusion

By iterations, u1 and u2 are updated in the filtered image It. The stop-
ping time of the diffusion process is the moment, when the area of the
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Figure 4.7: (a) Left: distance transform of L (b) Right: distance transform
of B. The results are achieved at the first iteration. The input image is H0.

Figure 4.8: (a) Left: α (b) Right: β. The results are achieved at the first
iteration. The input image is H0.

detected straight lines AL turns very small. This time the residual com-
ponents in L have also great uncertainty to be straight line. Thus, we
choose M as the final result of the segmentation. The defect edges are
extracted by E = I ·M . The segmentation results provide important
benefits for the further classification of defects and quality evaluation of
grooves.

6 Experimental results

Honing is a mechanical procedure to manufacture precision bores. The
typical application is the finishing of cylinders for internal combustion
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engines. Honed surfaces are featured with two cross-hatches in a certain
angle. The microscopic images of honed surfaces and some important
processing results are displayed in Figs. 4.12, 4.13 and 4.14 . Various
disturbances can be found, such as flakes (H1, H2), cracks (H1,H2,H3),
holes (H3), material defects (H1, H2, H3), groove interrupts (H1,H2,H3)
and chatter marks (H1, H2).

Table 4.1: Parameter settings.

Parameters for image denoising

K mean (|∇It|)
τ1 1

ε1 0.05

Parameters for straight line detection

Te mean (|∇It|)

Wρ W0 = 1
9

⎛⎝1 1 1
1 1 1
1 1 1

⎞⎠
σ 1

N 10

Ta 50

Ts 0.8

Parameters for geometry-selective filtering

τ2 1

ε2 0.1

In our tests we adjust the parameters to constant values according
to Table 4.1. The evolution of edges will be automatically terminated
according to some stopping criteria. Stopping time for image denoising
is determined by decorrelation method [10]. Suppose the number of the
current iteration i and step size τ1, compare the signal-noise correla-
tion with each other. If corr (It (0)− It ((i− 1) · τ1) , It ((i− 1) · τ1)) −
corr (It (0)− It (i · τ1) , It (i · τ1)) < ε1, the filtered image It (i) is found
with the stopping time t1 = i · τ1. Notice that signal-noise correlation
doesn’t reach the minimum in our approach, but only decreases nearly to
the minimum in order to avoid excessive smoothing of relevant textures.
Stopping time for geometric-selective filtering is one of the moments,
when AL reaches local minima. AL is normalized with the entire im-
age area. Practically AL doesn’t decrease monotonically but trends to
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Figure 4.9: From upper left to lower right: diffusion results at iteration 0, 2,
4, 10. The parameters are set in Table 1. Jet color map is used to display the
orientation level indices. The input image is H0.

fluctuate around a stable level. The stopping time should be selected
at one of the local minima in the phase of the stable fluctuation. A
question concerns how to know the stable fluctuation is arrived on the
filtering procedure. A simple and effective trick is used, given the cur-
rent and previous local minima of AL (ALmin (j) and ALmin (j − 1),
respectively). If |ALmin (j)−ALmin (j − 1)| < ε2, the filtering is termi-
nated at t2 = (i + 1) · τ2, where i is the iteration when the local mini-
mum ALmin (j) occurs. A plot of AL for the texture H0 illustrates the
evolution procedure in Fig. 4.11. After 10 iterations the straight lines
gradually disappear from the oriented region M . The segmentation is
stabilized on defect edges. See also Figs. 4.9 and 4.10.

By the further test on H1 the defects are dominant in the image so
that only fine grooves are available. Since the residual metal piece and
material smearing have irregular shapes, their curved edges are always
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Figure 4.10: (a) Left: grooves and flat regions (b) Right: defect edges. The
input image is H0.

smoothed weakly and still retained to the end . We cover the defect mask
on the original image like Fig. 4.12(b), which contains the flat regions,
inner parts of the residual metal piece and the grooved tool marks. Fig.
4.12(c) shows the defect edges.

Another test is performed on H2 and shown in Fig. 4.13. Some closely
neighbored thin lines are mixed with cracks and material defects. More-
over, the grooves with large width distribute somewhere on the surface.
Since our algorithm concerns only the geometric properties of edges, the
width of grooves has no effect on the result. From this point of view
our method is robust regarding object scales. The flat regions inside the
large defect will still be not segmented from input image.

The last test is accomplished with a weakly grooved surface in H3.
Although the grooves can be recognized visually, the line structure is
seriously interrupted so that there are seldom consistent local orienta-
tions on the grooves. Therefore, most part of the grooves is inspected as
defects. The results are given in Fig. 4.14. The rest image contains only
the flat regions and thus makes no sense. Nevertheless, the important
tool marks can successfully be recognized and segmented in our tests.
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Figure 4.11: Automatic selection of stopping time. The input image is H0.

Figure 4.12: (a) H1; (b) flat surface with fine texture; (c) defect edges.

7 Conclusion and outlook

Our method overcomes the drawbacks of the previous methods and shows
feasible to inspect complicated engineering surfaces. For the computing
efficiency it spends 0.5 to 1.6 s to process an image of 256 × 256 pixels
in Matlab. The iterations for the geometry-selective filtering are 6 to 18
dependent on the amount of the straight lines in the image. To process a
larger image it is possible to split it and do the operation in blocks. This
way is more economical since each block demands different processing
time and can be handled independently by parallel computing. Our
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Figure 4.13: (a) H2; (b) grooves and flat regions; (c) defect edges.

Figure 4.14: (a) H3; (b) flat surface with fine texture; (c) defect edges and
interrupted fine grooves.

future work will focus on improving the performance of this method and
evaluating the properties of the groove texture.
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Abstract Impulsive noise constitutes the type of noise on the
transmission channel for power line communication signals that
is most difficult to analyze. Not only capturing impulsive noise
during measurements is difficult, it is also very difficult to deter-
mine the effects different impulses might have on communication
signals. In this paper, a method for extracting single pulses from
measurement vectors is presented. The method is based on an
analytically derived criterion. Furthermore, the method is val-
idated and applied to a collection of measurements taken from
several different locations. The impulses extracted by means of
this method are then evaluated. Hypotheses explaining the ori-
gin of impulsive noise are given. Furthermore, it is shown that
impulsive noise has more impact on some parts of the frequency
bands of the A-band specified in CENELEC EN 50065 than on
other parts.

1 Introduction

The fact that arbitrary equipment may be connected to the mains grid
leads to a great variety of signals that are unintentionally injected into
the mains grid. Commonly these kinds of noises do not affect the correct
operation of electrical and electronic devices connected to the mains grid.

If the mains grid is to be utilized for carrying communication signals,
however, such signals interfere with the actual communication signals,
possibly resulting in bit errors.
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Significant work has been conducted to analyze the properties of im-
pulsive noise and to identify measurable parameters. Most prominent
and exhaustive is the analysis provided e.g. in [1]. So far, the focus of
the analysis of impulsive noise has been laid on its time-related parame-
ters, i.e. the distribution of the interarrival times of impulsive noise, the
time duration of single impulses, etc. However, when transmit signals
are modulated by OFDM or other multi-carrier modulation schemes, the
spectral properties of the impulses play a significant role. In particular,
the questions to which extent the impulsive noise jam the communica-
tion signal and to which extent errors may actually be caused can only
be answered by considering the impulses in the time/frequency plane [2].

It is worth to note here that the properties of impulsive noise strongly
depend on the filter characteristics of the components it passes on its
way from the coupling circuit to the demodulation and decision unit of
an OFDM modem.

An extensive research on the characteristics of impulsive noise is pro-
vided in [1], where the parameters amplitude A, impulse time duration tw
and impulse arrival time tarr have been identified. While [1] focuses on
the time behavior of the impulses and develops a corresponding Markov
model, this work focuses much more on the spectral properties of impul-
sive noise. Different coupling methods, a substantially different frequency
range and thus a sampling frequency deviating to great extent from that
used in [1] result in different findings concerning the parameters. Fur-
thermore, the intention of this work is to provide a suitable definition
of the term ‘impulsive noise’ that allows to differentiate it clearly from
the other kinds of additive noise, i.e. background noise and narrowband
noise. In addition to providing a clear definition, this will help to for-
mulate a criterion for detecting the start and end of an impulsive noise
waveform.

2 Field measurement setup and procedure

The measurement setup for capturing noise impulses is described in Fig-
ure 5.1. A digital storage oscilloscope (Tektronix TDS 3054B) is con-
nected to the mains grid by means of a coupling circuit. Noise impulses
are captured by utilizing the single shot function of the DSO. Capturing
starts as soon as the voltage uM (t) exceeds a predefined trigger level, and
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Figure 5.1: Setup for capturing impulsive noise.

stops as soon as the internal memory of the DSO is full. The captured
signal is buffered to ensure that the waveform that caused the trigger
event is placed inside the observation window, and the internal memory
defines the length of the observation window. It is important to note
that the memory depth of the DSO is only 10000 samples. Since the
time resolution may be selected by the user, the sampling frequency has
to be adjusted automatically to fulfill this limitation. During the mea-
surement campaign a trade-off had to be found. On the one hand, the
observation interval must be long enough to capture individual impulsive
noise signals, on the other hand the sampling rate must be high enough
so that the Nyquist frequency allows to analyze the spectral properties
of the signals properly.

Since this measurement setup does not allow to observe the channel
continuously for longer than a few milliseconds, it is impossible to provide
a numerical value for the inter-arrival time of the observed impulsive
noise waveforms. However, the inter-arrival times of impulses with large
amplitudes have been observed qualitatively to be rather in the order of
minutes than seconds for the measurement database considered in this
paper.

Measurements have been conducted at the bus bar in different trans-
former substations and at house connection points in various locations in
Karlsruhe, Germany, at various times of day. The locations included res-
idential areas as well as industrial areas with medium-sized production
facilities. All three phases L1, L2, and L3 have been included pair-
wise. Two phases have been observed simultaneously during a measure-
ment session. In most cases, impulses occurred on both of the observed
phases, whereas the impulse amplitude was considerably higher on one
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Sampling rate (MSPS) 0.25 1 2.5 5

Recordings 8 9 20 26

Table 5.1: Recorded signal vectors and sampling rates.

of the phases compared to the other. Only the signal waveform of the
impulse with the larger amplitude is considered for the further course of
this study.

Measurements have been taken at different sampling rates, see Ta-
ble 5.1.

3 Method for detecting impulsive noise

Prior to analyzing the properties of impulsive noise it is mandatory to
identify impulsive noise waveforms in the measured sample vectors. It is
necessary to devise a method that extracts reliably impulsive noise sig-
nals from measurement vectors containing background noise and possibly
narrowband noise in addition to impulsive noise. The following section
gives a brief overview of the properties of impulsive noise that will serve
as a basis for the further analysis.

Impulsive noise properties

As derived in [3], the bit error probability depends on the signal power
per bit (Eb) and the noise power (N0) in the case of an AWGN channel
model. In this case, the noise power spectral density is constant over
time and frequency. The PLC transmission channel, however, cannot be
modeled by such a model, because the noise power varies over time and
frequency.

Aiming at a more detailed model for the noise power which would
provide the basis for devising a precise statement of the channel capacity,
it would be necessary to consider the noise power distribution in the time-
frequency plane. Due to the uncertainty of time and frequency resolution,
however, segmenting the different kinds of noise in the time-frequency
plane would require sophisticated algorithms. This problem aggravates,
if no a priori knowledge about the signal properties, i.e. information
about the location along time and/or location along frequency dimension,
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is available.
The parameters impulse amplitude A, impulse time duration tw and

impulse arrival time tarr have been considered for an extended analysis
in [1]. They are without any doubt important, because they provide
information about the distribution of noise power in the time domain.
Yet, this set of parameters does not allow to model the noise power
distribution in the frequency domain, which would be equally important.

Therefore, a different approach is chosen in this work. In addition to
determining the relevant parameters in the time domain, i.e. start and
end points yielding the time duration tw of an impulsive noise waveform
and also its maximum amplitude A, the power spectral density (PSD) of
impulsive noise waveform is considered for the relevant time interval.

3.1 PLC noise – characteristics in the time/frequency plane

As described e.g. in [4], the properties of the PLC channel are far from
that of an AWGN channel. The channel transfer function causes (possi-
bly) frequency-dependent attenuation that may be time-variant, but may
be considered to be stationary for time periods that are long compared
to commonly used OFDM symbol durations or even physical layer data
units.

As described in [5], the noise signals observed on the mains grid can
be modeled as a sum of different processes

n(t) = nBG(t) + nNB(t) + nImp(t). (5.1)

The different classes of additive noise that affect the transmit signals in
sum cause SNR values that vary over time as well as over frequency.

The amplitude of a narrowband interferer n̂NB(t) is thus assumed to
be constant in the time domain and its power spectral density (PSD) is
localized well in a small region around a constant frequency. Similarly,
amplitude values of background noise n̂BG(t) are assumed to be low and
distributed over a comparably small, fixed amplitude interval in the time
domain. The PSD of background noise is also assumed to be constant,
but is known to increase with decreasing frequency. Impulsive noise,
however, exhibits highly dynamic amplitude values in the time domain
with their modulus ranging from very low to very high values. The PSD
is unknown, but assumed to be extended over wide parts of the frequency
spectrum.
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Noise Class Noise power density Noise power density
over time over frequency

Background Noise constant constant

Narrowband Noise slowly fluctuating constant

Impulsive Noise dynamically fluctuating dynamically fluctuating

Table 5.2: Properties of the typical noise classes in the time-frequency plane.

Table 5.2 gives a qualitative overview of the power distribution of the
noise classes in the time-frequency plane. Assuming that background
noise and narrowband noise vary slowly over time, if at all, impulsive
noise is to be considered as the main reason for the SNR to be dependent
of time as well as frequency.

3.2 Impulsive noise segmentation algorithm

The need for a segmentation method providing a means to separate im-
pulsive noise from other classes of noise has become clear from the pre-
vious sections. Considering the measured noise scenario uM (t) on the
mains grid captured by a measurement setup similar to that in Fig-
ure 5.1, the previous section suggests that its power

PM =
1
tw

tw∫
0

u2
M (t) dt (5.2)

could serve to derive a useful criterion for the segmentation.
For the following derivation, it is assumed that |nBG(t)| , |nNB(t)| �

1 V and |nImp(t)| > |nBG(t)|,|nImp(t)| > |nNB(t)|. Furthermore, the
noise floor is stated by |nBG(t) + nNB(t)|. With these assumptions, it is
justified to assume that the average time domain power in the presence
of impulsive noise, i.e. if uM (t) = n(t),

PImp,NB,BG ≈
1
tw

tw∫
0

(
n2

Imp(t) + 2nImp(t)nBG(t) + 2nImp(t)nNB(t)
)

dt

(5.3)
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is considerably higher than the average time domain power when impul-
sive noise is absent

PNB,BG =
1
tw

tw∫
0

(nBG(t) + nNB(t))2 dt. (5.4)

However, since there is no a priori information about the time duration
of impulses tw, it is not advisable to use the average time domain power of
the signal for detecting the start of an impulsive noise waveform. Instead,
the instantaneous power

P inst(t) = un(t)2 (5.5)

of the signal s(t), assuming a 1 Ω load, will be used in the further dis-
cussion.

Similar to the relation between the average powers in Equation 5.3 and
Equation 5.4, respectively, the instantaneous power is low as long as no
impulses are present, and high in the presence of impulsive noise, thus

P inst
Imp,NB,BG(t) >> P inst

NB,BG(t). (5.6)

Yet, there is no a priori knowledge of the impulse amplitude A, and
it is thus impossible to introduce a limit for detecting the presence of
an impulsive noise waveform. Assuming the noise floor stated by back-
ground and narrowband noise is constant within the observation period,
|nBG(t) + nNB(t)| < c and thus P inst

NB,BG(t) < c2, it is possible to use the
first derivative of the instantaneous power

d

dt
P inst

M (t) =
d

dt

(
u2

M (t)
)
,

since it is obvious that the instantaneous power of the observed signal
will increase steeply as soon as an impulse occurs. The final decision
criterion for detecting the start of an impulsive noise waveform can be
obtained by introducing a constant limit k satisfying

d

dt
P inst

M (t)

⎧⎨⎩
≥ k if impulse waveform present

< k if no impulse waveform present
(5.7)
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The start of an impulsive noise waveform tS is thus marked by the
point in time where d

dtP
inst
M (t) ≥ k and the end tE by the point in time

when d
dtP

inst
M (t) < k after the threshold had been exceeded. Note that

tS < tE and tw = tE − tS .

3.3 Evaluation of the segmentation method

In this section, the validity of the segmentation method described in
the previous section is demonstrated. All the figures are structured
in the same way: the recorded time signal with highlighted impulsive
noise waveform is shown as determined by the algorithm described in
the above. The corresponding logarithmic PSDs are displayed in an ex-
tra figure, together with the mean PSD of the background noise. In case
multiple impulsive noise waveforms are detected, the light gray areas rep-
resent the PSD values between the first up to 39th 40-quantile (i.e. the
values between 2.5 and 97.5 per cent of the cumulative density function),
the dark gray areas represent the PSD values between the first up to the
4th quartile (i.e. the values between 25 and 75 per cent of the cumulative
density function). In addition, the median of the PSDs is represented by
a solid black line.

Figure 5.2 illustrates the result of the segmentation algorithm in the
time domain as well as in the frequency domain for a. Figure 5.2(a)
shows the measured signals in the time domain with highlighted impulse
segments, sampled at 100 kS. The remaining signal parts are considered
to be background noise. Note that the impulse signal waveforms are
segmented perfectly from the background noise. In this case, multiple
impulse waveforms are detected. In order to obtain a good idea of the
individual spectral components of the segmented signals, Figure 5.2(b)
displays the PSD of the background noise and the PSDs of the impulsive
noise waveform in a boxplot. The filled circles represent the median
value of the PSDs of the individual waveforms for each of the frequency
bins, the lower end of each vertical bar represents the 25th percentile,
the upper end the 75th percentile.

Figure 5.3 shows a similar example. It differs from the signal in Figure
5.2 obviously regarding the waveform, but also in the sampling rate being
considerably higher. The PSD is normalized so that it can be compared
to the plot in Figure 5.2(b). For comparison, a third example is provided
in Figure 5.4. The examples serve well to document two things that are
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(b) Impulse signal PSD statistics and median background noise PSD over fre-
quency.

Figure 5.2: Segmented example impulse waveform recorded at 100 kS/s and
corresponding spectra.

common to the vast majority of the recorded waveforms:

1. The PSD of the background noise increases towards lower frequency
bands.

2. The PSDs of different impulsive noise signals have a maximum at
approximately 12 kHz in common.

3. The PSD of the impulsive noise signals is concentrated in frequency
bands below 600 kHz, even though there are steep gradients in the
noise waveforms.

4. The PSD of the impulsive noise signals is considerably higher than
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(a) Segmented impulse signal of a single impulse over time.

0 200 400 600 800 1000 1200
−50

−40

−30

−20

−10

0

10

20

|S
(f

)|
/
( V

2
/
H

z
)

f/kHz

(b) Impulse signal PSD (black) and background noise PSD (green) over fre-
quency.

Figure 5.3: Segmented example impulse waveform captured at 2.5MS/s and
corresponding spectra.

the PSD of the background noise in the frequency bands where it
is located.

4 Analysis of the measured parameters of impulsive noise

In order to ensure the comparability of results, all captured waveforms
have been re-sampled to a sampling rate of 333.3 kHz which is the same
sampling rate as has been used in an OFDM-based communication sys-
tem reference design described in [6]. Upon re-sampling, the signals are
treated by the same method as described in subsection 3.2. As for the
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(a) Segmented impulse signal over time.
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(b) Impulse signal PSD (black) and background noise PSD (green) over fre-
quency.)

Figure 5.4: Segmented example impulse waveform recorded at 2.5MS/s and
corresponding spectra.

communication system in [6], a 1024-point FFT is used in order to es-
timate the PSDs of the various signals. The resulting distribution of
the PSDs of all impulsive noise signal waveforms and background noise
fragments extracted from the measurement database are displayed in
Figure 5.5. In principle, the representation is the same as described in
subsection 3.3, but with outliers (PSD values outside the 3σ interval
around the median value) marked by triangles. Note that all outliers are
caused by higher PSD values.

In addition to the distribution of the PSDs of impulsive noise sig-
nals and background noise, the distributions of the durations of impul-
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Figure 5.5: PSDs of impulsive noise waveforms and background noise.

sive noise waveforms P̂ (tw) is an interesting parameter that can be de-
rived from the measurements, as well as the distribution of the max-
imum amplitude values for both, positive and negative signal voltage
P̂ (max {|nImp(t)|}). Both parameters are depicted in Figure 5.6.

Figure 5.5 suggests that the PSD of impulsive noise can on average be
characterized by a function that shows a maximum around 12 kHz, and
is otherwise constant. This, however, may be due to the fact that the
database for this statistical visualization consists of measurements that
have been taken at different locations. The examples in subsection 3.3
suggest that the PSD of impulsive noise may at least in some cases depend
on the location where they have been captured.

Figures 5.7 and 5.8 show that PSDs exhibit similarities even if mea-
sured at points that are spatially separated but belong to the same elec-
trical network. The overall measurement results allow drawing the fol-
lowing conclusions:

1. The PSDs of individual impulsive noise waveforms are
clustered in different frequency bands, i.e. not all frequen-
cies are affected by one impulsive noise waveform to the
same amount.
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Figure 5.6: Distributions of relevant parameters of impulsive noise in the time
domain.

This is shown in figures 5.7(a) and 5.7(b).
If an impulsive noise waveform is short, it affects many frequency
bins, but the noise power per frequency bin is comparably low and
may be even below the noise power of the background noise.

2. The frequencies where impulsive noise power is clustered
may depend on the electrical/physical properties of the
network.
To state a first hypothesis, the access impedance may play a role
in combination with the properties of the coupling circuit.

3. The duration of impulsive noise waveforms tw is below 2 ms
in most of the cases,
see Figure 5.6(a).

4. Maximum amplitudes caused by impulsive noise may
reach up to more than ±10 V in extreme cases, ±5 V are
very likely to occur,
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(a) Inner city transformer substation busbar.
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(b) House connection box connected to the same substa-
tion as in Figure 5.7(a).

Figure 5.7: PSDs of multiple impulsive noise waveforms captured at inner city
transformer substation and house connection box .

as can be seen from Figure 5.6(b).

Note that these conclusions can only be considered to be valid for the
measurement setup depicted in Figure 5.1.

It is obvious that the PSDs of impulsive noise as well as of background
noise show a large cluster of signal power around 12 kHz. The transfer
function of the coupling circuit displayed in Figure 5.9 shows a resonance
frequency at approximately 9 kHz, which obviously seems to cause this
effect on the spectral properties of impulsive noise. Figure 5.9 yields
that the resonant frequency of the coupling circuit is at 9 kHz, if the
coupling circuit is terminated with a load of 1 MΩ. Assuming this ter-
minating impedance is justified by the fact that the DSO used for the
measurements has the same input impedance. The difference between
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(a) Industrial area transformer substation busbar.
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(b) Feeder connected to the busbar in Figure 5.8(a).

Figure 5.8: PSDs of multiple impulsive noise waveforms captured at industrial
area transformer substation.

the measured resonant frequency of the coupling circuit of 9 kHz and
the cluster of the noise PSD at 12 kHz may be caused by the access
impedance of the mains grid.

4.1 Impulsive noise mitigation by pre-filtering

The measurement analysis in section 4 has shown that most of the im-
pulsive noise signal power is concentrated in lower frequency bands, in
particular around the resonant frequency of the coupler. Furthermore, it
can be assumed that high noise signal amplitudes in the time domain rep-
resent the spectral components of the signal in higher frequency bands.
In order to mitigate the effects of impulsive noise, applying a pre-filter
to the receive signal may thus be advisable. In this experiment, a fourth
order Butterworth bandpass filter is applied to the captured signals prior
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Figure 5.9: Modulus and argument of the transfer function of the coupling
circuit.

to applying the detection algorithm to the filtered signals. The passband
is equivalent to the frequency band used for transmission of the reference
communication system in [6], i.e. the cutoff frequencies are 75 kHz and
100 kHz, respectively.

In fact, the filter attenuates the portions of both background noise and
impulsive noise outside the passband, as shown in Figure 5.10. As ex-
pected, the distribution of the PSD in the passband does not change, the
maximum still remains in the order of 10 dBV2/Hz. Yet, the distribution
of the time duration and maximum peak voltage in Figure 5.11(a) and
Figure 5.11(b), respectively, are affected by the filter. The duration of
individual impulses is now approximately 1 ms for most of the waveforms,
which is shorter than in the case without pre-filter in Figure 5.6(a). The
pre-filter proves to be most effective when the maximum amplitudes of
impulsive noise – depicted in Figure 5.11(b) – are considered and com-
pared to those in Figure 5.6. The maximum amplitude is between ±2 V
when a pre-filter is used, compared to a maximum of up to more than
±10 V without pre-filter. This reduction is a major success, since it re-
duces the requirements of the analog/digital converter of the receiver, as
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Figure 5.10: PSDs of impulsive noise waveforms and background noise of
filtered signal.

well as those of the automatic gain control.

5 Conclusion

In this study, the properties of impulsive noise in the low voltage grid have
been analyzed. The analysis focused on the frequency range covered by
CENELEC EN 50065 and thus likely to be used for future advanced me-
tering and smart grid services over power line communication. Although
the distribution of the PSD of impulsive noise captured at different lo-
cations shows no preferred frequency ranges in addition to a distinctive
cluster around the resonant frequency of the coupling circuit, the PSD
of an individual impulsive noise waveform may be higher in specific fre-
quency bins than in others. This may possibly be caused by the physical
properties of the mains grid, i.e. its access impedance, in combination
with the properties of the coupling circuit, as a conjecture. Further re-
search is necessary to clarify the possible interdependencies. As a final
conclusion, it can be said that the dramatic impact of impulsive noise at
the receiver of a communication system is considerably mitigated by in-
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(a) Distribution of the duration of impulsive noise waveforms for
filtered impulsive noise.
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lar) for filtered impulsive noise.

Figure 5.11: Distributions of parameters of impulsive noise resulting from
filtered signals in the time domain.

cluding a pre-filter in the signal processing chain of a receiver by reducing
the peak amplitudes caused by impulsive noise.

References

1. M. Zimmermann and K. Dostert, “Analysis and modeling of impulsive noise
in broad-band powerline communications,” IEEE Transactions on Electro-
magnetic Compatibility, vol. 44, pp. 249–258, 2002.

2. G. Avril, M. Tlich, F. Moulin, A. Zeddam, and F. Nouvel, Home Network-
ing: First IFIP WG 6.2 Home Networking Conference (IHN’2007), Paris,
France, December 10-12, 2007, ser. IFIP International Federation for In-
formation Processing. Springer, 2007, vol. 256/2008, ch. Time/Frequency
Analysis of Impulsive Noise on Powerline Channels, pp. 143–150.

3. J. G. Proakis, Digital communications, 4th ed. Boston: McGraw-Hill, 2001.
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Abstract In power line communications (PLC), transmit sig-
nals are likely to be corrupted by high attenuation and additive
noise. Among different kinds of additive noise, impulsive noise
can be considered the most difficult to handle. Common ap-
proaches that aim at mitigating the effect of impulse noise on
PLC transmit signals rely on channel coding techniques. In con-
trast to this common approach, we propose a new method for
reducing the number of bit errors resulting from impulsive noise.
The proposed method utilizes redundancy of transmit signals in
combination with the properties of the Fourier transform rather
than channel coding techniques. Depending on the choice of pa-
rameters, this method allows to reduce the number of bit errors
even without necessarily increasing the gross bit rate.

1 Introduction

Power line communication (PLC) is often considered to be an economic
solution for exchanging digital information. While utilizing the mains
grid for data communication seems to be an economic advantage at first
sight, the idea provides numerous technological challenges. The noise
scenario inherent to the mains grid is known to have adverse effects on
the quality of communication links. Numerous publications focusing on
the analysis of impulsive noise are available, e.g. [1] and [2] for high-
frequency, high-speed (broadband) communication and [3] for the case
of low-speed, low-frequency communication. One of the most challeng-
ing kinds of additive noise is the class of aperiodic impulsive noise [1]: it
appears at random points in time, lasts for a random duration, exhibits
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random amplitude values and therefore random signal energy and has
random spectral properties. Undoubtedly, the signal energy of aperi-
odic impulse noise is likely to be high compared to the transmit signal,
even more so if the signal has experienced attenuation on its path from
transmitter to receiver. Commonly, various methods of channel coding
are applied in order to mitigate the effects of impulsive noise on data
transmission by reducing the bit error rate, as described in [4] and [5].
Channel coding increases the overhead of binary information that has to
be transmitted over an error-prone transmission channel by factors of at
least two [4]. Moreover, developing efficient coding schemes is difficult
and bit errors can still not be completely avoided by such measures. As
long as PLC systems offer data rates in the order of Megabits per sec-
ond, channel coding techniques provide a means to cope with impulsive
noise in general. Despite the fact that code rates need to be rather high,
overall latency times are acceptable for moderate applications, but de-
terministic behavior is still difficult to achieve. Regarding narrow-band
PLC transmission, as it is intended to be used for smart grid applications
in Europe, the situation is dramatically different. If a narrow-band PLC
system complies with norms applicable within Europe [6], only gross data
rates in the order of at most a few tens of Kilobit per second can be put
into practice. This low gross data rates make it difficult to provide ac-
ceptable throughput even if the gross data rate could be used for useful
bit information exclusively. Adding redundancy information as it would
be necessary for channel coding techniques would aggravate the problem
even further.

In this paper, we provide a first step toward solving this problem by
extending the signal analysis capabilities of the DFT commonly utilized
for OFDM transmit signal modulation and demodulation. The described
method does not require redundant binary information, but rather relies
on redundant signalling on the physical layer, thereby keeping the energy
per bit constant. Signals only have to be repeated once. In special cases,
it is even possible to maintain the data rate if improvements achieved by
this method allow for increasing the number of bits per carrier.

The structure of the remaining paper is as follows: in Section 2 the
basic signal properties used in this paper are introduced. Section 3 de-
scribes the properties of the narrow-band PLC transmission channel as
well as the properties of an exemplary communication system. OFDM
modulation by means of the DFT and the relation between DFT and
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STFT are presented in Section 4. Section 5 describes how signal clas-
sification based on the signal parameters explained in Section 2 can be
conducted. The resulting OFDM symbol reconstruction algorithm along
with experiments for its validation are presented in Section 6.

2 General signal properties

In order to obtain objective criteria for differentiating between different
signals, it is advantageous to define objective signal properties. The
general parameters signal energy, the signal’s average frequency and its
bandwidth have proven to be useful criteria [7].

2.1 Signal energy

The signal energy Ex of a finite discrete signal xn of length N is defined
as

Ex =‖xn‖2 =
N−1∑
n=0

|xn|2 (6.1)

=‖Xk‖2 =
1

N − 1

N−1∑
k=0

|Xk|2, (6.2)

where Xk is the discrete Fourier transform of xn.

2.2 Average frequency

The average frequency fx of a signal xn is given by

fx =
1

Ex
· 1
N

N
2 −1∑

k=−N
2 +1

k · |Xk|2 (6.3)

and can be interpreted as the mean of the spectral energy density of the
signal. Since real-valued time signals have Hermitian symmetric spectra,
it is obvious that their average frequency is always identical to zero.
Therefore, the limits of the sum need to be changed taking into account
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only positive frequencies, bearing in mind that this is only meaningful
for signals that are real-valued in the time domain:

f̃x =
1

Ex
· 2
N

N
2 −1∑
k=0

k · |Xk|2. (6.4)

With the limits set in this way, the result equals the computation of
fx for the analytic signal of xn, except for a constant factor of 2.

2.3 Bandwidth

The bandwidth Δfx
of a signal xn is defined by

Δ2
fx

=
1

Ex
· 1
N − 1

N
2 −1∑

k=−N
2 +1

(k − fx)2 · |Xk|2. (6.5)

This can be interpreted as the standard deviation of the power spectral
density of the signal. For real-valued time signals the summation limits
are again restricted to one half of the spectrum:

Δ̃2
fx

=
1

Ex
· 2
N

N
2 −1∑
k=0

(
k − f̃x

)2

· |Xk|2 (6.6)

2.4 OFDM signal properties for PSK

It is easy to show that the aforementioned signal properties are constants
for phase-modulated OFDM symbols, because they only differ in the
phase angle of the sub-carriers Xk. However, the phase angle does not
influence the computation of the properties Ex, f̃x, and Δ̃2

fx
, since they

are all functions of |Xk|2.

2.5 Impulsive noise signal properties – analysis of measurement
results

Noise measurements on real power lines and their time-frequency analy-
sis revealed that single noise impulses vary a lot in energy localization in
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the time-frequency plane and thus in signal energy Ex, average frequency
f̃x and bandwidth Δ̃2

fx
.

Although classes of typical noise envelopes can be identified, a noise
cancellation scheme that utilizes parameter estimation for mathematical
models derived from these envelopes would not be feasible due to the
large number of models and parameters. In addition, not modelled noise
envelopes could render the whole scheme useless.
However, to conduct experiments, five parametric signal envelopes typi-
cal for impulse noise were constructed from a database of several hundred
measurements. A sixth model to cover envelopes that do not fit the other
five models has been implemented as colored noise with random energy,
average frequency and bandwidth.
It should be pointed out that the durations of impulses were shorter than
1.5 ms in most of the cases.

3 Communications channel and system description

In this section, we provide a general overview of the communication en-
vironment provided by the mains grid at frequencies in the kHz range.
Based on the knowledge gathered from literature and from measure-
ments, we offer a simplified channel model that serves as a reference for
evaluating the method proposed in Section 6. Furthermore, we describe
the parameters of an exemplary OFDM-based narrowband PLC system.

3.1 PLC channel model

Numerous publications report the results of measurements for narrow-
band PLC in the low voltage grid. The measurements in [8] and [9]
focus on the access domain between transformer station and residential
buildings in the frequency range between 3 kHz and 95 kHz, the so-called
A-band specified in [6]. [3] focuses on the in-house domain, extending the
frequency range from 3 kHz to 500 kHz.

Channel transfer function

In the case of broadband PLC systems, the channel transfer function
generally exhibits low-pass behavior [10]. In addition, it may feature
frequency-selective behaviour (notching).
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The behavior of the channel transfer function relevant to narrowband
PLC systems contrasts the characteristics of broadband channel transfer
functions in a sense that it exhibits less predictable characteristics. The
amplitude response depends much more on the appliances connected to
the grid than on grid topology. Taking into account the relation between
the wavelength of the transmit signal and the cable lengths common for
low voltage distribution grids, notches are much less likely. High atten-
uation has been reported to affect the transmit signal in many cases. In
addition, low access impedances may cause unintentionally low transmit
signal levels. For this study, it is assumed that frequency-selective effects
caused by the channel transfer function can be neglected for narrowband
PLC.

Narrowband interference

Narrowband interference is considered as additive noise signals with near-
stationary power spectral densities that occur for time periods much
longer than one OFDM symbol period. Although [8] reports narrowband
interference in the access domain, we could find narrowband interference
in only one out of eight locations that have been visited during a mea-
surement campaign. This states a reason for assuming that narrowband
interference plays only a minor role for narrowband PLC in the access
domain. It is therefore not considered in the following parts of this work.

Impulsive noise

Each noise signal with a duration shorter than an OFDM symbol is
considered as impulse noise. In addition, the power of impulse noise is
supposed to be significantly higher than that of background noise and
narrowband noise. Lacking more detailed knowledge, the appearances of
single noise impulses are assumed to be statistically independent of each
other. With this assumption the arrival times of these impulses can be
modeled as a poisson process, which is a special case of a markov chain.
The characteristic parameter of this model is the constant average arrival
rate λ of the impulses.
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Background noise

Noise signals that cannot be categorized in one of the classes described
in the previous sections are modeled by a general stochastic process only
described by its power spectral density. As described in [3], the power
spectral density of the background noise exhibits the properties of colored
noise, i.e. it increases with decreasing frequency. For the further parts of
this work, we assume that the power spectral density of the background
noise drops to power levels where it is possible for transmit signals to
achieve agreeable SNRs at the receiver .

Channel model summary

Summarizing the findings laid out in the above sections, most of the
admittedly unfavorable channel properties can be overcome by proper
system design (see Section 3.2). The remaining issue is that it may be
difficult to achieve optimum SNR levels at the receiver because of high
channel attenuation. This aggravates the impact of impulsive noise on
OFDM signals, even more so, as the signal energy of impulsive noise
may be considerably higher than the actual OFDM signal level at the
receiver.

3.2 Communication system parameters

Based on the knowledge outlined in Section 3.1, a communication system
has been devised in [11]. Table 6.1 summarizes the parameters of this
system. Note that the system is implemented as a baseband system,
i.e. the transmitter generates the transmit signal from the output of the
IFFT. At the receiver, the FFT operation is performed directly on the
receive signal without any mixing stages.

Modulation scheme D-2-PSK
Sampling rate 333.3 kHz
FFT size 1024
Number of used carriers 48
Frequency range 79.427 . . . 94.726 kHz
Symbol duration 3.072ms

Table 6.1: Relevant parameters of the communication system.
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Figure 6.1: Overview of the OFDM scheme.

4 OFDM modulation

Orthogonal frequency-division multiplexing is a popular method to im-
plement multi-carrier communication systems. The sub-carriers are com-
plex harmonics, each of which can be modulated with a different tra-
ditional single-carrier modulation scheme (e.g. PAM, PSK, QAM), al-
though usually all sub-carriers use the same scheme to reduce complexity.
The modulation/demodulation process is implemented efficiently using
FFT algorithms [12], see Figure 6.1. For PLC applications, phase shift
keying is the preferred sub-carrier modulation. Due to the fact that PSK
demodulation only indirectly takes into account the signal amplitude,
PSK can be considered more robust than e.g. QAM, because it reduces
the sensitivity to channel attenuation. Note that, since information is
conveyed by the phase of the sub-carriers exclusively, each sub-carrier
and thus each OFDM symbol has the same signal energy. This also
proves advantageous for the requirements concerning analog amplifiers
at the transmitter and the receiver.

4.1 BPSK redundancy

The OFDM system described in Section 3.2 uses BPSK as sub-carrier
modulation scheme. Since its symbols have the largest Euclidian distance
in the signal space diagram among all carrier modulation schemes, it
provides the best resilience against noise. Since all OFDM symbols are
Hermitian symmetric in the frequency domain and BPSK sub-symbols
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Figure 6.2: Influence of a noise impulse around the symbol center, for a symbol
that is symmetric (a) and a symbol that consists of a symbol of half the length
that is repeated (b)

are real-valued, OFDM symbols that only have BSPK modulated sub-
carriers, have real-valued, symmetric spectra. Simple correspondences of
the DFT show that also the time signals of such spectra are real-valued
and symmetric. Thus they contain an inherent redundancy that could
be employed to compensate impulse noise.

4.2 Redundancy through symbol repetition

Another possibility to introduce redundancy into a signal is to take a
signal of half the length and repeat it, instead of making it symmetric. If
we make the assumption that a single noise impulse is shorter than half
an OFDM symbol (see 2.5), and that the impulse arrival rate λ ensures
that there is most likely only one noise impulse per OFDM symbol, sym-
bol repetition should be more effective than utilizing symbol-inherent
symmetry. Suppose we can localize the impulse within the signal. Then,
reconstruction of the corrupted parts is always possible for the repeated
symbol. For the symmetric symbol however, the possibility of symbol
reconstruction is dependent on the localization of the corrupted parts.
Figure 6.2 clarifies this statement. If the impulse occurs in the vicin-
ity of the axis of symmetry, both redundantly transmitted signal values
are corrupted, and reconstruction is not possible. In order to obtain a
redundant signal through repetition while maintaining the original data
rate, one can use OFDM symbols of half the length with a higher order
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PSK scheme, e.g. QPSK if BPSK symbols are to be repeated once. This
has the additional benefit of reducing the maximum required FFT size
within the system by a factor of two.

4.3 STFT, block-wise analysis

To make use of the redundancy within such modified OFDM symbols
it is indispensable to locate the impulse within the received signal. To
this end, a signal representation is required that offers time resolution,
as opposed to the Fourier transform that offers no time resolution at all.
Thus, it is desirable to use a method that provides a representation of
the signal in time domain and frequency domain at the same time, as e.g.
the Short-time Fourier transform (STFT), Wavelet-based approaches or
the Wigner-Ville-Distribution. Because of its similarity to the Fourier
transform (which is implemented in every OFDM system anyway), we
use the STFT for our explanation within the scope of this paper, but
without restricting the described method to this representation (similar
trials have been made using a wavelet packet transform).

The STFT Xγ (n′, k) of a signal xn can be constructed by first multi-
plying the signal with a time-shifted window γn−n′ and then taking the
Fourier transform of the windowed signal. If γ is a rectangular window
with size L being a divisor B of the signal length N , and the time shifts
n′ are multiples of this size, i.e.

N = B ·L and n′ = b ·L, (6.7)

then the STFT can be expressed as

X (b, k) =
(b+1) ·L−1∑

n=b ·L
xne−j2π nk

L (6.8)

with

k ∈ [0 . . . N − 1] and b ∈ [0 . . . B − 1] . (6.9)

This is the same as dividing the signal into B blocks of length L and then
calculating the (zeropadded) Fourier transform of each of the blocks.
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Figure 6.3: Features of clean blocks compared to corrupted blocks.

5 Signal feature classification

The basic idea for detecting noise impulses within the received OFDM
symbol is to compute the general signal properties from chapter 2 for
each block introduced by the STFT in Equation 6.8. Having calculated
the STFT, each block can then be classified based on the calculated
properties as either corrupted or clean. This is equivalent to creating a
three-dimensional feature space with the dimensions signal energy, aver-
age frequency and bandwidth. Figure 6.3 shows that corrupted and clean
blocks can be distinguished from each other very easily by means of this
feature space.

5.1 Noise/signal separation in the feature space

As has been shown in section 2.4, all clean OFDM symbols have the
same energy, average frequency and bandwith and are therefore concen-
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trated in a single point in feature space. Experiments showed that, when
taking only parts of OFDM symbols (cf. ‘blocks’ in 4.3) into account
for calculating these features, the features vary, but only in a compa-
rably small area of the feature space, as can be seen in Figure 6.3(a).
Opposed to this, extensive analysis of recorded noise impulses showed
that their features vary within the whole feature space (see section 2.5
and Figure 6.3(b)). This implies that a reliable separation of clean and
corrupted signals should be possible in most cases. Figure 6.3 illustrates
that although most points that belong to the the noise cloud can easily
be separated from the clean ones, both clouds overlap. However, this
overlap results mostly from trailing ends of impulses within the classified
blocks, which lead to a classification as noisy, but hardly affect the signal.

5.2 Feature space risk estimation via training

Experiments showed that a mere classification into corrupted and clean
blocks works very reliably, but is not optimal for utilization in a re-
construction scheme. Since many of the measured impulses proved to
not contain any energy within the actual passband of the PLC transmit
signal, they do not pose a critical threat to correct data transmission.
However, their occurrence has a relevant influence on the features, so they
will be detected as corrupted signals nevertheless. In order to overcome
the issue of such ‘false positive’ detections, an advanced classification is
desired that also includes an estimation of the risk for the transmitted
data.

The feature space is divided into equal sectors for the sake of defining
classes, which can be done easily by quantizing the features. All blocks
that are in the same sector are assumed to bear a similar risk with
respect to the correctness of the data represented by the signal under
consideration. It is then necessary to obtain a risk estimation for each
class, which can be achieved by a training process.

Before the training starts, the receiver creates an empty table like in
table 6.2 with a row for each class. The table is then filled with counts of
how often a class occurs during training, and how often this appearance
leads to symbol errors. During training a known training sequence of
symbols is communicated from the transmitter to the receiver. The re-
ceiver will thus have both a corrupted and a clean version of the symbol.
Now the receiver can demodulate the clean symbol to obtain the original
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Table 6.2: Empty table at the beginning of the risk training (if only four
classes are used).

class Index #Occurrences #Symbol Errors

00 0 0

01 0 0

10 0 0

11 0 0

data. Then, demodulation is performed for each block, where only the
current block is taken from the corrupted signal. After a comparison of
the restored data with the original data it is known whether inserting
this block produced a symbol error or not. After the classification of the
block according to its features, the number of occurrences is recorded in
the initially created table and also whether it resulted in errors.

After the whole training sequence has been completed, the risk esti-
mation per class is simply the ratio of symbol errors produced by a class
and the number of its occurrences:

Rclass =
SymbolErrorsclass

Occurrencesclass
. (6.10)

6 Implementation and simulation

6.1 OFDM symbol reconstruction algorithm

In order to make further use of the obtained risk estimation, a weighted
average of corresponding blocks in the time domain according to

xnr
=

R2

R1 + R2
·xn1 +

R1

R1 + R2
·xn2 , (6.11)

showed good results. Here, R1 and R2 are the risks of the two blocks
taken from the trained risk table.

The proposed overall algorithm to reduce errors due to impulse noise
can finally be summarized as:

1. Receive possibly noisy symbol
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Figure 6.4: Simulation setup.

2. Perform N
B -point FFT for each of the B Blocks (Equation (6.8))

3. Calculate and quantize features for each block based on its FFT
4. Perform risk look-up for calculated features
5. Perform weighted average of corresponding blocks (Equation

(6.11))

After that, the commonly applied OFDM demodulation can be carried
out based on the averaged signal.

6.2 Simulation setup

To show the effectiveness of the proposed algorithm, simulations of trans-
missions have been carried out. The overall simulation setup is depicted
in Figure 6.4. The two systems under test are the BPSK based OFDM
system introduced in [11], and a system that utilizes QPSK with symbol
repetition and the proposed risk estimation/signal averaging. The num-
ber of blocks in the QPSK system are chosen as four. The symbol length
of the QPSK system was set to 512 samples, assuring the same data rate
as with the BPSK system. The amplifier in the BPSK chain is necessary
to ensure the same energy per bit for both methods.

The background noise is simulated as White Noise with a fixed stan-
dard deviation σ, which ensures a given SNR per bit SNRBit.

As stated in Section 2.5 six mathematical models of typical impulse
envelopes were obtained, each with a set of parameters that can be deter-
mined independently for each instantiation. Figure 6.5 shows an example
impulse of each model. For simulation purposes, impulses are created at
random points in time, where the intervals between the impulses are
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Figure 6.5: Examples of simulated impulses.

exponentially distributed with arrival rate λ. One of the six models is
chosen randomly at every of these points in time. Each model is supposed
to appear equally probable. An instantiation of the randomly selected
model is created and added to the transmission signal. Since the char-
acteristic parameter of impulse noise is rather its arrival rate than the
energy per impulse, the ratio of impulse noise and clean signal is kept
constant at an experimentally determined value for all SNRBit.
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6.3 Simulation results

Simulations have been run with 104 symbols for each combination of
SNRBit and λ. The resulting SNRBit to BER plots are shown in Fig-
ure 6.6. Up to a SNRBit of −20 dB the BER is dominated by back-
ground noise, and a higher SNRBit reduces the BER. The value at
which the BER curve reaches a floor is determined by the impulse noise
and the system’s capability to handle it. The arrival rate λ of the im-
pulses influences the stationary BER that can be achieved. The results
in Figure 6.6 show that our proposed algorithm reduces the BER by up
to a factor of ten below the BER of the unmodified OFDM system with
BPSK while maintaining the same data rate.

7 Conclusion

We have presented a method for combating the detrimental effects of im-
pulsive noise on OFDM-based multi-carrier modulation signals. Minor
reconfigurations of the system parameters and investing moderate addi-
tional efforts resulted in a reduction of bit errors that could be verified by
simulation. The method proposed in this work has yielded encouraging
results in our comprehensive simulation scenario.
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Abstract Verifying the functionality of a communication sys-
tem is a complex task. When it comes to determining the relia-
bility of individual communication links in real-world scenarios,
the task of verification becomes even more difficult, even more
so in the case of power line communications. Yet, verifying the
functionality and reliability of such communication links estab-
lished by means of not yet mature technology is indispensable. In
this paper, we propose a test procedure that allows for verifying
the implementation of an FSK physical layer for communication
over the mains grid. Furthermore, we present results that allow
to determine the system’s robustness in different scenarios. The
proposed test procedure involves a transmitter and a receiver
for establishing a uni-directional communication link and a PLC
channel emulator that emulates the behavior of the communica-
tion channel in a reproducible manner.

1 Introduction

It is a well-established fact that the energy distribution grid states a diffi-
cult transmission medium for digital communications [1,2]. Nevertheless,
the economic advantages of utilizing an already existing infrastructure
for both, energy distribution and communication, at the same time are
compelling enough to challenge the adverse behavior of the transmis-
sion channel. In the context of smart grids and automated metering
infrastructures, PLC technologies are envisaged to provide the backbone



114 M. Bauer and W. Liu

for bi-directional digital data transfer between distributed system com-
ponents, aiming at more efficient energy consumption on a large scale.
This involves data transmission between household appliances and smart
home gateways as well as data transmission between smart meters and
data concentrators, thus involving both, the so-called in-house domain
and access domain.

Numerous PLC systems, i.e. technologies, have been brought to the
market and some industry standards have been released, the numbers of
both being expected to increase as the smart grid evolves. Only few of
these standards actually establish test conditions. System performance
has almost never been considered, apart from nominal values of bit rates
provided by manufacturers themselves. System performance can be un-
derstood in several ways, in this context, however, we focus on the re-
liability and availability of the specified service, i.e. the quality of the
communication link. Therefore, the focus of our discussion is on the
physical layer of the communication system.

One reason for the lack of knowledge about system performance under
adverse conditions might be that the PLC transmission channel is time-
variant and therefore itself not suitable for testing, which renders system
test and verification under real-word conditions almost impossible. Link
quality and thus the observed system performance may vary significantly
over time of day, depending on the current status of the mains grid.
Influencing factors are known to be various, e.g. the number and kind
of electrical appliances on the grid, signal propagation paths, number of
switching events, etc.

In order to establish a test environment that provides reproducible and
configurable scenarios, we have devised a channel emulator for PLC in
low-frequency bands between 9 kHz and 500 kHz [3], focusing on the fre-
quency bands specified in CENELEC EN 50065. Having such equipment
at hand, the next step is to define test scenarios that in turn provide use-
ful insights into system performance by measurement results. Different
approaches to testing the reliability and availability of a PLC system are
conceivable in general. In any case, the first step of testing must identify
the limitations of the communication system under consideration, which
thus states the focus of this work. The next step could then be system
optimization. Test scenarios that have been identified to be problem-
atic can be reproduced and the communication system can be improved
iteratively.
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2 Test setup

Figure 7.1 shows the overall setup that has been used for conducting the
tests described in Sect. 3. Binary data is generated by a PC and handed
to the FSK transmitter through an RS-232 COM port. The signal s(t)
generated by the transmitter is manipulated by the channel emulator
according to the user-defined settings resulting in the receive signal r(t).
The binary data output by the receiver is estimated based on this signal
and may contain erroneous bits. Bit errors are identified by comparing
received bits with the originally transmitted bits.

Tx

s(t) r(t)

Rx

COM2COM1

Channel Emulator

Figure 7.1: Overall test setup.

In order to determine the parameters of r(t), e.g. the receive signal
level, the signal is observed by means of a spectrum analyzer and a
digital storage oscilloscope (DSO).

2.1 Communication system under test

The communication system under consideration is an implementation of
an FSK modulated physical layer for PLC. Since the test setup requires
unidirectional transmission, one modem operates in transmit mode and
the other in receive mode; the modems do not change their roles during
the whole test.

Binary information is encoded according to an FSK modulation scheme
that utilizes two carrier frequencies, fC,1 = 100 kHz and fC,2 = 108 kHz.
Figure 7.2 depicts the carrier frequencies and the superposition of the
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Figure 7.2: Transmit signal spectrum. The maximum signal level is approxi-
mately 55 dBmV.

sin(x)
x -like spectra that result from rectangular pulse shaping for each of

the carriers.

Modulation Scheme FSK

Utilized Frequency Range fC1 = 100 kHz, fC2 = 108 kHz

Symbol Duration 0.833ms

Table 7.1: System parameters of the FSK implementation.

Prior to transmission, the receiver re-arranges binary data bytes re-
ceived from the PC via RS-232 to frames of BFrame = 15 · 8 = 120 bits.
A frame consists of a preamble followed by payload counting 120 bits.

The channel emulator allows for modifying the following parameters:
channel transfer function, background noise, narrowband noise, and im-
pulsive noise. Furthermore, it emulates the access impedance. Of course,
it is necessary to specify scenarios so that the sources of bit errors can
be related to a number of possible sources being as low as possible.
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3 Test procedure and test results

For each of the test scenarios described in the following, a set of random
binary data is transmitted while the channel parameters remain constant.

The test cases described in the following are defined so that only one
single channel parameter or noise class, respectively, affects the trans-
mission of the test data bulk. This parameter is then varied within an
interval specified uniquely for each of the test cases. Since the EB

N0
ac-

tually experienced by the receiver cannot be obtained directly from the
DUTs, the bit error rate is related to the channel parameters measured
by means of a spectrum analyzer.

Note that the spectra have been recorded by means of the “max hold”
function. Thus, all spectra displayed in the following show an optimistic
estimate of the carrier signal PSD, and a pessimistic estimate of the noise
signal PSD.

The bit error ratio corresponding to each of the parameter settings is
calculated from the ratio of the number of received bits Br,err deviating
from the originally transmitted bits Br,total. Ideally, the BER would be
obtained by

BER =
Br,err

Br,total
. (7.1)

However, as described in Subsect. 2.1, data is transmitted in frames of
120 bits. Furthermore, it is important to detect the loss of whole frames
due to transmission errors. Thus, the bit error ratio is calculated for
each of the frames, i.e.,

BERFrame =
Br,err

BFrame
.

In order to obtain significant statistics, a large number of frames must
be transmitted for each of the test cases. Then the BER equation

BER =
1

NFrame

NFrame∑
i=1

BERFrame,i (7.2)

yields the same result as in Eq. (7.1). Mind that, as opposed to well-
known graphs displaying theoretically derived bit error probabilities, a
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bit error ratio of 1 may occur during the measurements. Due to the fact,
however, that this is a very unlikely event, it is assumed that frames
with BER = 1 are due to channel interference causing the frame detec-
tion method to fail. Such frames are considered as ”‘lost”’ frames and
therefore accounted for in the frame loss ratio (FLR) rather than BER.

For each of the configurations in a test scenario, it is defined as the
number of lost frames divided by the total number of frames transmitted
while the configuration of parameters of a test scenario remains unal-
tered,

FLR =
NFrame,lost

NFrame
. (7.3)

3.1 Step 1: Attenuation by channel transmission function

First of all, we assume a frequency-selective channel transmission func-
tion (CTF) without notching. As described in subsection 2.1, the com-
munication system relies on two carrier frequencies fC,1 and fC,2 that are
interpreted either independently or together, depending on the estimated
noise levels for each of the correlators.

Therefore, we consider three test cases with differing prototype fre-
quency response

1. H̃0(f): “flat” channel transmission function affecting both, fC,1

and fC,2

2. H̃1(f): prototype channel transmission function letting fC,1 pass,
but not fC,2

3. H̃2(f): channel transmission function letting fC,2 pass, but not
fC,1

Each of the prototype frequency responses will be applied to the trans-
mit signal at different SNR levels c0, c1, and c2,

H(f) =

⎧⎪⎨⎪⎩
c0 · H̃0(f)
c1 · H̃1(f)
c2 · H̃2(f)

. (7.4)
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Figure 7.3: Maximum (black) and minimum (grey) PSD of the receive sig-
nal. The corresponding receive signal levels are 2.5 dBmV and −10 dBmV,
respectively.

Results for flat channel transmission function

In this test scenario, the coefficient c0 is varied so that the amplitudes
of the receive signal vary between the two power spectral density curves
depicted in Figure 7.3. The receive signal levels are very low. Compared
to the levels in Figure 7.2, attenuation is 52.5 dB and 65 dB, respectively.

The resulting bit error ratio is displayed in Figure 7.4. The receiver
is obviously operated at the limits of its sensitivity. At a signal level
of −10 dBmV, the receiver cannot detect the start of frame anymore,
which results in a frame loss ratio of 100%. At an attenuation level of
−65.5 dB, the frame loss ratio drops to 98.9%, and a bit error ratio can be
calculated. The frame loss ratio further drops to 47.9% at −63.75 dB at
constant bit error ratio and 10% at −63.05 dB attenuation, where the bit
error ratio starts to improve. From attenuation levels of −62.4 dB, the
frame loss ratio remains at zero. Note that the bit error ratio becomes
zero as soon as the attenuation is less than −56.34 dB.

For each of the points in the resulting BER plot, 550 packets have been
transmitted, resulting in a total of 66000 bits.



120 M. Bauer and W. Liu

−65 −64 −63 −62 −61 −60 −59 −58 −57
10−6

10−5

10−4

10−3

10−2

10−1

Attenuation / dB

B
E

R

Figure 7.4: Bit error ratio for scenario “Flat channel transmission function.”

Results for channel transmission function affecting one carrier

Figure 7.5 depicts the PSD of a transmit signal with carrier frequencies
fC1 and fC2. In this test scenario, H̃2(f) is utilized. The attenuation
for fC1 is increased gradually while fC2 remains at the same level.

The resulting bit error ratio is displayed in Figure 7.6. Again, the
receiver is obviously operated at the limits of its sensitivity. However,
the frame loss ratio does not reach 100%. Instead, the maximum observed
frame loss ratio is 40% at −30.77 dB carrier attenuation, drops to 16.9%
at −29.72 dB and reaches zero at −28.19 dB. Both, BER and FLR,
become zero at attenuation levels less than −18.11 dB. 510 packets have
been transmitted for each of the points in the graph.

The results in Figure 7.6 prove that the system can tolerate the loss of
one carrier frequency to great extent. The mechanism for evaluating the
transmission quality in each of the correlators obviously works correctly
and improves transmission quality dramatically.

Similar behavior is expected for the case of prototype CTF H̃1(f),
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Figure 7.5: PSD of the receive signal with mildly (black) and strongly
(gray) attenuated carrier fC1. The corresponding receive signal levels are
−20.88 dBmV and −34.9 dBmV, respectively.

therefore we assume that this test case has already been covered by the
test scenarios described up to now.

3.2 Step 2: Background noise

For this test scenario, we consider level and PSD Ñ(f) of the background
noise to be independent of the CTF, thus H(f) = 1.

Similar to the approach described in subsection 3.1, the prototype PSD
of the background noise will have the following properties:

1. ÑBG,0(f): “flat” noise PSD affecting both, fC,1 and fC,2

2. ÑBG,1(f): prototype noise PSD affecting fC,1, but not fC,2

3. ÑBG,2(f): prototype noise PSD affecting fC,2, but not fC,1

Results for flat background noise PSD

In the first test scenario involving background noise generated by means
of the channel emulator, the PSD of the background noise is assumed
to be constant for both carrier frequencies. Again, the signal carrier
frequencies are not attenuated by the channel transfer function. The
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Figure 7.6: Bit error ratio for scenario “Channel transmission function affect-
ing one carrier.”

background noise level, however, is increased gradually, as depicted in
Figure 7.7.

The resulting bit error ratio is displayed in Figure 7.8. The curve
progression resembles that of the theoretical bit error probability for
FSK. The frame loss ratio is 73.5% at SNRBG = 1.27 dB, 24.7% at
SNRBG = 2.07 dB, and attains zero starting from SNRBG ≥ 3.07 dB.
Neither bit errors nor frame losses occur for SNRBG ≥ 12.16 dB. 510
frames have been transmitted for each of the configurations.

3.3 Step 3: Narrowband noise

For this test scenario, we consider the PSD of the background noise
Ñ(f) to be zero. Furthermore, no attenuation is applied to the transmit
signals, i.e. H(f) = 1. Instead, a sinusoidal and thus narrowband noise
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Figure 7.7: PSD of the receive signal with low (black) and high (gray)
background noise level. The background noise signal level increases from
−33.43 dBmV to up to −8.55 dBmV.
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Figure 7.8: Bit error ratio for scenario “Flat background noise PSD.”
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Figure 7.9: PSD of the receive signal with low (black) and high (gray) nar-
rowband noise level affecting fC1. The receive signal level is constant at
4.41 dBmV, while the noise signal level is increased gradually until it attains
its maximum at 10.15 dBmV.

signal is added,

nBG = A · sin (2πf0t) .

The frequency is kept constant at f0 = 100 kHz, while the amplitude A
is varied as shown in Figure 7.9.

The resulting bit error ratio is displayed in Figure 7.10. The frame loss
ratio is 100% at SNRNB = −1.33 dB, but quickly drops to only 1.4% at
SNRNB = −0.57 dB. Starting from SNRBG ≥ −0.36 dB, it attains zero.
Bit errors cease to occur from SNRNB ≥ 1.28 dB. Again, 510 frames
have been transmitted in order to estimate each value for bit error ratio
and frame loss ratio, respectively.

3.4 Step 4: Impulsive noise

Impulsive noise has been approximated for this test by a waveform ac-
cording to

nImp(t) = A0 · sin (2πfpt) · exp (−d · t).
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Figure 7.10: Bit error ratio for scenario “Narrowband noise.”

The parameter A0 has been varied, as well as the impulsive noise wave-
form duration tw. The test has been run with two waveform durations
tw,1 = 85μs, see 7.11(a), and tw,2 = 170μs depicted in 7.11(b). The
pseudo-frequency is kept constant at fp = 100 kHz for all measurements.
In order to ensure that a sufficient number of FSK symbols and packets
coincide with an instance of an impulsive noise waveform, the waveforms
are repeated periodically with a repetition rate of 1/(3.33 ms) Since im-
pulsive noise did not result in bit errors for the full transmit signal am-
plitude depicted in Figure 7.2, the CTF had to be modified so that it
causes an attenuation of the transmit signal.

The resulting bit error rates are displayed in Figure 7.12. At the same
worst-case SNR, the longer impulsive noise waveform causes significantly
higher bit error ratios than the shorter waveform. Frame losses do not
occur except for a FLR of 0.78% at SNRImp = 2.36 dB, which is due
to one lost frame presumably caused by one impulse obstructing the
frame synchronization sequence. For this scenario, 500 frames have been
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(a) Impulsive noise and signal PSD – tw,1 = 85μs.
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(b) Impulsive noise and signal PSD – tw,1 = 170μs.

Figure 7.11: PSDs of the receive signal with low (black) and high (gray)
impulsive noise PSDs for different noise signal waveform durations.

transmitted in order to obtain each of the BER estimates. This number
is comparably low, but is still justifiable since the noise waveforms appear
periodically.

4 Summary

In this work, we have presented a selection of test scenarios for identify-
ing the limitations of system performance of an FSK physical layer for
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Figure 7.12: Bit error ratio for scenario “Impulsive noise.”

PLC by means of a channel emulator. As a result, the system perfor-
mance for different scenarios has been documented, thereby identifying
the limitations of the implementation under consideration. One signif-
icant conclusion is that the system can deal remarkably well with high
signal attenuation, and is very robust even if one carrier signal is severely
obstructed by narrowband noise. The measurements serve very well as
a reference for performance comparison with other systems.
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Abstract For power line communication (PLC) applications,
the robustness and accuracy of synchronization is one of the
most important factors. The zero-crossing (ZC) based global
synchronization has superiority over other common symbol syn-
chronization schemes for PLC channels. The commonly used ZC
detection circuit is based on comparator and susceptible to tran-
sients. This paper presents a least-squares (LS) estimation-based
method which predicts the ZCs within a period of mains volt-
age. Computer simulations prove its robustness and accuracy
even at the appearance of large transients existing in common
power line channels. Its ability of detecting, and extracting the
noises can be used to capture and analyze transient noises. It can
also track the change of mains frequency as well as fluctuation
of amplitude, providing quality information of power networks.
Although the method is computationally intensive, it is mainly
based on multiplications and accumulations which can be im-
plemented in ordinary digital signal processors (DSPs) or field
programmable arrays (FPGA).

1 Introduction

Power line communication (PLC) technology is used to transfer data
over the existing power transmission lines. Its low cost and wide cov-
erage range makes it one of the key technologies in the development of
automated meter reading (AMR) or even advanced metering infrastruc-
ture (AMI) services. However, the low voltage power transmission lines
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are optimized for delivering electricity, they are not guaranteed for data
transfer at higher frequencies. Many PLC systems suffer from serious de-
ficiencies due to insufficient information on channel characteristics such
as access impedance, transfer function and existing interferences. There-
fore, measurement of the power line channels and evaluation of their
characteristics should be the first and one of the most important steps
before system design begins. A measurement setup has been introduced
in [1], with which a mass of indoor power line channels are investigated.
Although this setup has a very high mobility and it can measure ac-
cess impedance, the amplitude response and the noise spectrum, it is
unable to investigate phase or delay response. An automated measure-
ment system (AMS) will make the measurement easier. The AMS can
be considered as a communication system which is composed of units of
the same design. Each unit consists of a transmit part, a receive part,
and circuit components for power supply, synchronization, and state con-
trol. A unit can be configured as either a transmitter or receiver during
measurement. The transmitter generates sequences of test signals at
predefined time points.

Figure 8.1: Measurement procedure of AMS.

Figure 8.1 illustrates the work flow. The transmitter and receiver be-
gin a new measure event at t0 by synchronizing with each other, and
the algorithm will be discussed in detail in the following parts. The re-
ceiver adjusts its gain factor through the automatic gain control (AGC)
component at t1 before the first test stimulus comes and holds the gain
factor constant until the current measure event is finished. The transmit-
ter has a automatic level and phase control (ALPC) part to make sure
the test signal has a defined amplitude and phase despite of the time-
varying access impedance. The test slices are sampled, and the system
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estimates their parameters and finally calculates the transfer function of
the channel under test.

The AMS does not need high data rate. The only requirement on
speed is that a complete measurement over the whole frequency range
should be finished before the access impedance or the transfer function
change. According to results of earlier measurements, the interval be-
tween two changes can be several minutes to even hours. As mentioned
before, the validity of measurement results, especially those for the phase
estimation, rely largely on the robustness and accuracy of the synchro-
nization. In this paper we will focus on the design of a robust and reliable
synchronization method. The first part gives an overview over existing
methods, their pros and cons and the availability for the AMS. The sec-
ond part analyzes a currently widespread zero-crossing detection based
synchronization method. The third part presents our proposed solution.
Finally simulation results and conclusions are given.

2 Typical methods of synchronization

In some communication systems, symbol synchronization is used. As
preambles, chirps or random sequence having wide bandwidth in spec-
trum and complicated waveform in time space are widely used. These
signals have satisfying resistance against most additive background noise
and narrowband interference. Furthermore, their time autocorrelation
function possesses an explicit maximum. A correlator at receiver can
provide accurate detection by correlating the received signal with the
stored preamble. However, it is improper to apply this scheme to PLC
systems because of the tough channel conditions. The frequency-selective
attenuation and possibly existing resonance might largely decrease the
preamble energy and distort the waveform resulting in detection failure.
Although the Schmidl-Cox method introduced in [2] cancelled effects
of the channel by multiplying samples from the first half with the cor-
responding samples from the second half, the timing metric has a flat
region impeding an accurate timing estimation. Minn-Zeng-Bhargava
method in [3] produces a peak in the timing metric instead of a flat
plateau, improving the accuracy. However, it is still suffering from high
attenuation and interference. Furthermore the symbol is also delayed
by the channel transfer function, which makes the evaluation of phase
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response and group delay of the channel under test almost impossible.
Another way to realize symbol synchronization can be accomplished

by integrating timing information in test slices. At the receiver, different
methods such as decision-directed or non-decision-directed methods can
be used to achieve self-synchronization [4]. A typical application is the
pilot tone in many multicarrier-based communication systems. With
pilot tones the spectrum difference between test slice and pilot slice can
be investigated. However, the test slice has to share the transmit power
with pilot tones, leading to a weakened signal-to-noise ratio. Besides,
some or even all subcarriers could be highly degraded by attenuation
and noise of the PLC channel. In this case, the required unaltered pilot
tones are no longer fulfilled and the synchronization may fail.

In some low speed communication systems, so called global synchro-
nization is used. The transmitter and receiver share the same timing
source which provides a very precise timing signal. Detection of zero-
crossing (ZC) of the mains voltage provides a robust and channel inde-
pendent alternative for synchronization. In electronics a ZC is consid-
ered the instantaneous point at which the voltage changes from positive
to negative value or vice verse. In low voltage three-phase power sys-
tem, the mains voltage has approximately sine waveform [5], which has
two ZCs within a cycle. Within the channel of interest, the transmission
length is much smaller than the wavelength of the mains voltage, a ZC is
detected almost at the same time on any site. The channel also imposes
little attenuation on the mains voltage since it is optimized for maximum
transmission of mains power. Furthermore the mains voltage has large
amplitude compared with background noise and most impulsive interfer-
ences. Although dangerous transients could occur, most of them have
very small pulse width. From these points of view, the mains voltage
could be a good choice for synchronization of AMS.

3 Comparator-based ZC detection

The power system in North America has a nominal frequency of the
60 Hz, while in Europe and many other areas the nominal frequency is
set to 50 Hz. We will use the 50 Hz as our nominal frequency in the rest
of the paper. However, the methods could also be applied to 60 Hz power
system with minor adjustment. An easy to realize ZC detection circuit,
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converting the 50Hz mains voltage into low voltage rectangular signal
has been introduced in [5]. This circuit and its slightly modified versions
are used in many PLC modem designs.

3.1 Detector hardware

The basic structure of the detector circuit is shown in Figure 8.2. As
described in [6], the CMOS operational amplifier OP1, working as a
comparator, is supplied from the 230V mains over a large resistor R1.
The mains voltage is scaled by the combination of R1 and R2. The
diode D1 prevents damage to OP1 caused by excessive negative voltage.
Diode D2 rectifies the incoming AC voltage. The Zener diode D3 and
the capacitor C1 are used to stabilize and filter the supply voltage for
OP1. The optocoupler generates a rectangular signal Sync at 50 Hz with
a duty cycle of about 50% and galvanically separates the low voltage part
from the 230V mains side.

Figure 8.2: Detector hardware.

This detector has an advantage over other detector designs because of
its low power requirement and simplicity. Its capability of potential iso-
lation makes it appropriate in PLC applications. However, several points
should be considered with respect to detection precision and robustness
against interference.

3.2 Analysis of burst error

Burst detection errors are mentioned in [6] and [7]. Figure 8.3 shows an
example of those errors. The y-axis refers to the detected time interval
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Figure 8.3: Burst errors of detector.

in milliseconds between two adjacent zero crossings. The x-axis is the
index of detection samples. It is observed that five clusters of burst
errors appear within 150 results. The maximum detected interval is over
20.3 ms and the minimum is about 19.5ms. These errors are described
as stochastic events causing serious synchronization problems.

Figure 8.4 illustrates the platform to capture burst errors. It is com-
posed of the ZC detector, a FPGA board and a two-channel oscilloscope.
Three points of the detector circuit are to be observed, two points at one
time. Points 1 through 3 refer to the positive input of OP1, the output
of OP1 and the output of the optocoupler respectively. Point 2 is also
the input of the optocoupler, see also Figure 8.2.

Figure 8.4: Platform to capture burst errors.
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The output signal is feed into the edge detector in the FPGA, where
both rising and falling edges are detected. Timer 1 and 2 measure timing
intervals between two consecutive rising and falling edges respectively. In
error detection module, two thresholds, 90% and 110%, define the lower
and upper boundaries of an error-free area. As soon as the measured
value goes beyond this area, a pulse is generated to trigger the oscillo-
scope so that the disturbed signals at probes can be captured in time.

Figure 8.5 shows examples of error-free and disturbed signals at point
2 and 3 respectively. The output of OP1 is inverted by the optocoupler.
If there is no error, as shown in the left, a rectangular signal having a
frequency of 50 Hz and duty-cycle of about 50% appears at output of
optocoupler. The plot in the right gives an example of burst error. The
OP1 signal are corrupted at ‘high’ level by a cluster of narrow negative
peaks which are then converted as narrow pulses by the optocoupler. We
can see that the coupler just inverts the signal at its input, no matter
noise or signal, it generates no burst error itself.

Figure 8.5: Error-free (left) and disturbed (right) optocoupler signals.

Disturbances at the input and the resulting error at the output of OP1
are shown in Figure 8.6. In the left plot, the input signal is having its
negative half wave. A narrow pulse with amplitude smaller than 300 mV
even leads to a notch of the ‘high’ level at the output. However, an im-
pulsive noise with amplitude over 1.5 V locating at the positive half wave
does little harm to the ‘low’ level signal. This interesting phenomenon
can be explained by the gain of OP1. As shown in Figure 8.2, OP1
works in its open loop mode, the gain can easily exceed several thou-
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sand. With this large gain factor, a noise voltage of about 100 mV drives
OP1 to saturation very quickly. The output signal turns on the input
diode of the optocoupler and is clipped to ‘low’ level. The positive half
wave is clipped to about 0.8 V by diode D1 at the input of OP1. Again,
OP1 is driven to saturation and turns on the input stage of the optocou-
pler. Additive noises contributing to larger amplitude of the input signal
does not change the saturation state of OP1, so the output signal stays
still low and leading to no error. However, as soon as the input signal is
dropped down to small enough by noises, the output could also change
from ‘low’ level to ‘high.’

Figure 8.6: Noise at input and output of OP1.

From the analysis, we see that although an operational amplifier work-
ing as a comparator makes the ZC detection simple and low cost, its
open-loop gain makes it extremely sensitive to additive noises locating
at the negative half wave of mains voltage.

The burst errors shown in the right plot in Figure 8.6 can cause fatal
error of a communication system. An effective method to ease the impact
of these burst error is to utilize a mask window: as soon as a ZC is de-
tected the detector output is ignored until the next ZC is about to come.
In this way, the burst errors are blocked out and cannot harm the syn-
chronization. However, a detection error can still occur when the noise
appears shortly before a ZC. For modulation methods that are insensitive
to phase errors, such as frequency-shift-keying (FSK) or amplitude-shift-
keying (ASK) the tiny detection errors can be tolerable. For systems that
are based on phase-shift-keying (PSK) or a measurement system which is



Least-squares-estimation based zero-crossing prediction 137

to investigate the phase response of a PLC channel, a more sophisticated
and accurate detection strategy has to be developed. In following part,
a least-squares-estimation based ZC detection will be discussed.

4 Proposed ZC detection method

First the conceptual design of our proposed detection method is pre-
sented. And a system block diagram is introduced to achieve an overview.
The detailed information is given for the relevant parts, for example, the
selection of estimation input slice, the two-step LS estimation algorithm,
the detection of frequency and the prediction of new ZC.

4.1 Conceptual design

The conceptual design is shown in Figure 8.7. A voltage divider com-
posed of R1 and R2 scales the mains voltage from over 230 V down to
5 V. A differential amplifier with high common voltage rejection will be
used as an isolator. On one hand, it has high input impedance isolating
R2 from internal circuit; on the other hand, the ground of low voltage
side is also separated from neural wire of mains. The isolator output
is filtered by a low pass filter to avoid aliasing effect, and then sampled
by an analog/digital converter (ADC). The converted samples are feed
in the FPGA, where estimations for different frequencies, a frequency
detection, and a prediction of zero crossing are performed.

4.2 Estimation input slice

The first consideration concerns the estimation input: how many samples
and which samples should be used for estimation. The size of sampled
slice should be smaller than a period of mains voltage, so that the next ZC
point of mains voltage can be predicted prior to its appearance. However,
the accuracy and robustness of LS algorithm benefits from increased slice
size. Since the power system can have a frequency up to 57.5 Hz when the
power generation exceeds the sum of loads plus losses, the window size
should be smaller than 17.39 ms. So we set the window size to 17.13 ms
in the following discussion.

We will use Figure 8.8 to explain how to choose input slices. The first
three slices right after system power-on are denoted by S1, through S3.
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Figure 8.7: Conceptual design of ZC detector.

Since the system could be turned on at any time, the possibility that S1

starts with a zero crossing is very small. We assume a start point other
than ZC for S1 to make the situation more realistic. The estimation
with respect to S1 should be finished between the slice end at t1 and
the rising edge of next ZC at t2. With the help of estimated phase and
frequency, the next ZC rising edge can be predicted to be at t2. At t2 the
system begins to buffer the second slice S2 for the estimation function.
Again the estimation of phase and frequency values should be finished
as quickly as possible and the next ZC rising edge is predicted to be at
t4, and so on. In this way, ZC’s can be predicted within a mains period.
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Figure 8.8: Choose input slices.

5 Estimator

An estimator bank shown in Figure 8.7 estimates the amplitude and
phase of the sampled signal slice. It covers a frequency range from 42.5
to 57.5 Hz with a resolution of 0.5 Hz. Each estimation is based on a two-
step LS algorithm. At the first step, the amplitude and instantaneous
phase of the signal slice are evaluated. Since the input slice could be
superimposed by additive impulsive noise which could lead to estimation
errors. Therefore the parameter should not be used to predict ZCs. A
sine wave is reconstructed with the help of estimated parameters and used
to detect as well as eliminate the noise if there is any. The parameters
of the conditioned signal are estimated. Since the noises are filtered, the
estimation results must have a better accuracy. The following parts will
introduce the details step by step.

5.1 LS estimation

We model the input signal y(t) as a sinusoidal signal superimposed by
additive noise

y(t) = A sin(ωt + ϕ) + n(t) (8.1)

where A, ω, ϕ are amplitude, angular frequency and phase respectively.
According to the sum formulas, we get

y(t) = a1 sin(ωt) + a2 cos(ωt) + n(t) (8.2)
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where a1 = A cos(ϕ), a2 = A sin(ϕ). Since the input slice is a 1-D array
of size N, we can rewrite the equation in a matrix form⎛⎜⎜⎜⎝

y(t1)
y(t2)

...
y(tN )

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
sin(ωt1) cos(ωt1)
sin(ωt2) cos(ωt2)

...
...

sin(ωtN ) cos(ωtN )

⎞⎟⎟⎟⎠ ·
(

a1

a2

)
+

⎛⎜⎜⎜⎝
n(t1)
n(t2)

...
n(tN )

⎞⎟⎟⎟⎠ (8.3)

or

y = Ha + n.

This model is an overdetermined linear system with parameter vector a
since the number of equations N is larger than the number of parameters.
In these systems, a model is proven the best approximation of the mea-
sured data if the sum of squared differences between the values derived
by the model and the measured data reaches its minimum. And the pa-
rameters of the model can be obtained with the help of the formulas:

a = (HT H)−1HT y (8.4)

A and ϕ can be obtained by

A =
√

(a1)2 + (a2)2 (8.5)

ϕ = arctan(
a2

a1
). (8.6)

5.2 First estimation

As mentioned before, LS estimation is applied to the signal slice. The
estimated parameters are used to reconstruct a sinusoidal signal of the
same frequency. Figure 8.9 shows an example of disturbed signal slice
(dashed line). The mains voltage is scaled to 4 V peak to peak, infested by
a transient that has a peak-to-peak voltage over 13V and a pulse width
of about 2 ms. The reconstructed s is shown in solid line. Due to the
interference, the amplitude is overestimated by 5.3%, and the estimation
error of phase causes a jitter of 100μs. The estimated inaccuracy can be
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exacerbated by larger, more intensive noises. Furthermore, the position
of these noises can also degrade the estimation result. To guarantee a
reliable prediction of ZC, the transients must be detected and eliminated
first.

Figure 8.9: Original and reconstructed signals after the first estimation.

5.3 Signal conditioning and second estimation

Although the reconstructed signal shown in Figure 8.9 is not suitable for
the prediction of ZC due to the amplitude and phase errors, it can still
be used to detect the transient noise. The difference between the original
signal slice and its reconstructed counterpart is mostly characterized by
the large transient. The conditioned signal can be expressed as follows:

yc(t) =

{
x(t) |x(t)− yr(t)| ≤ LTH

yr(t) else

where x(t), yr(t) are the original and the reconstructed signals respec-
tively, and LTH is a threshold of 0.2 V. The left plot in Figure 8.10 shows
the conditioned signal yc(t). Although there are still protuberances, the
noise is largely eliminated. The second estimation follows the same step
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as the first one, the only difference is that it takes the conditioned sig-
nal as its input. As a result, the amplitude error reduces to 0.14%, and
the phase error to 3.5μs. The estimation accuracy is largely improved
through the signal conditioning and the two-step LS estimation.

Figure 8.10: Conditioned signal (left) and reconstructed signals after the sec-
ond estimation (right).

5.4 Frequency detection and ZC prediction

The mains frequency depends largely on the total generation and the sum
of collective loads plus losses. If both values are equal, the frequency stays
constant. Otherwise the frequency decreases if total generation cannot
cover the sum of loads and losses, and increases if there is overplus of
the generated power [8]. Although many efforts are taken to maintain
the frequency of power system to its nominal frequency, for example, the
utilization of underfrequency and overfrequency relays, the mains volt-
age still has its frequency varying between 47 and 52 Hz if the mains is
connected to central network synchronously. The variation might fall
between 42.5 and 57.5 Hz if mains is not synchronized to central net-
work [9], which also leads to estimation and prediction errors. After the
signal conditioning and the second estimation, the degradation caused
by additive noise is largely reduced, and the remaining estimation error
is mostly contributed by the frequency deviation.

The error vector
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e =
∣∣I −H(HT H)−1HT

∣∣ y (8.7)

measures the difference deviation between measured and reconstructed
signal. The sum of squared error

SSE =
N∑

i=1

e(i)2 (8.8)

is often used to describe the quality of LS estimations. The frequency at
which SSE has minimum value is considered to be the optimal frequency.
Figure 8.11 gives an example of the detection result. The test signal has
a frequency of 50 Hz. And the calculated SSE’s vary between 0.2 and 63.
We choose the segment between 48 and 52Hz to achieve a better view of
SSE near optimal frequency. The minimum SSE value is observed right
at 50 Hz.

Figure 8.11: SSE of LS estimations for different frequencies.

5.5 Computer simulation results

The proposed conception is verified with simulations. As input signal
we generated 9 periods of sine waveforms, shown in Figure 8.12. To
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investigate the frequency detection, we changed the frequency between 48
and 52 Hz. Superimposed impulsive noises are added, whose amplitude
and pulse width are allocated randomly. The impulses are so positioned
that each period of sine wave has been interfered by at least one impulse.
As shown in Figure 8.12, the original signal is well reconstructed, the
predicted ZCs agree with the real ZCs, and frequencies 50, 51, 52, 49,
48, 49, 49, 51 and 50 Hz predefined for period 1 through 9 respectively
are also detected successfully.

Figure 8.12: Mains voltage superimposed by impulsive noises and recon-
structed signal.

6 Conclusion

In this paper, we discussed several methods of synchronization for PLC
systems; we also studied the simple ZC detector circuit and analyzed the
burst errors. As mentioned before, it can provide satisfactory synchro-
nization for PLC systems by applying sophisticated digital filtering. For
the AMS we proposed a LS estimation-based ZC detection strategy. The
system conception is introduced, and the estimation and detection algo-
rithms are discussed. Based on the conducted studies conclusions with
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respect to the proposed ZC prediction method can be drawn that it is
robust against large transients existing in common power line channels;
its ability of detecting, locating and extracting large impulsive noises can
be used to capture and analyze transient noises; it can predict a new ZC
within one mains period, suitable for ZC-based global synchronization
and other real-time applications; it can also track change of mains fre-
quency as well as fluctuation of amplitude, providing quality information
of power transmission system. Although the method is computationally
intensive, it is mainly based on multiplications and accumulations which
can be implemented in ordinary digital signal processors (DSPs) or field
programmable arrays (FPGA) without many efforts.
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Abstract Perception and task-specific interpretation of dy-
namic environments represent key components of forthcoming
intelligent systems. To master these abilities, methods are re-
quired that are capable of extracting relevant information from
signals and combining them adequately to construct a semanti-
cally enriched model of the scene of interest. This contribution
focusses on two aspects of this task. On the one hand, a method
is presented to make an optimal selection from the available in-
put data. On the other hand, an object-oriented environment
model is proposed that enables a continual fusion of available
knowledge with new sensor information and combines this with
a memory model. All methods are based on Bayesian statistics in
an objective degree-of-belief (DoB) interpretation. The applica-
tion areas of these approaches are demonstrated with humanoid
robots and autonomous vehicles.

1 Introduction

In the last years, autonomous technical systems have become part of
many domains of everyday life: They are not limited to special envi-
ronments anymore, as is the case in surveillance, manufacturing or re-
mote sensing applications. Rather, they increasingly take part in human
assistance and care, cleaning, construction, agriculture, freight traffic,
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individual transportation, rescue and disaster scenarios as well as in en-
tertainment. Many additional applications are under development.

A point that many applications have in common is that the environ-
ment is both dynamic and a priori unknown. Such an environment has
to be sensed and “understood” to enable an interaction with it or to
navigate safely within it.

One can guess that environment perception and interpretation rep-
resents one of the biggest challenges to solve such tasks. To enable
an inference about a three-dimensional environment, typically several
heterogeneous sensors are used to collect information—e.g., in the form
of images, acoustic signals or geometric measurement results. Conse-
quently, methods are needed to extract relevant features from the signals
and classify them reliably. Moreover, relations between the recognized
objects4 have to be registered and fused to a situation picture. In gen-
eral, the environment is dynamic. Thus, to enable a reliable prediction
of the intention of the “characters” or entities involved in the scene, an
estimate of their state vector is required.

The present contribution deals with methods to sense and describe
dynamic environments for technical autonomous systems equipped with
multiple sensors. Thereby, we focus on two important components of the
information processing chain:

• In the following section, we assume that both sufficient sensors and
analysis methods are available, and that a selection of the most
promising ones is to be accomplished, such that the input data are
optimal given the available resources.
• Section 3 presents an object-oriented environment model suitable

for environment representation. It features not only methods to de-
scribe the entities in the environment together with their attributes
and mutual relations, but also mechanisms to gradually refine this
description with increasingly available sensor data as well as a sim-
ple memory model for the situation picture.

The common theoretical foundation of these two components is Bayesian
statistics, by means of which the knowledge about the involved quantities
is expressed objectively in terms of degree of belief. In Section 4, two

4 To distinguish between actually existing objects and objects of an object-oriented
model, actually existing objects are referred to in the following as “entities.”
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application scenarios of the presented methods are discussed exemplarily.
For other aspects of technical cognition, which cannot be covered in this
contribution, we refer, e.g., to the research activities of the DFG Clusters
of Excellence “Cognition for Technical Systems” in Munich [1] as well as
“Cognitive Interaction Technology” in Bielefeld [2].

2 A Bayesian selection method for sensor systems

When solving tasks of information acquisition, the question of choosing
the most suitable sensor systems often arises. Considering that a set of
sensor systems and evaluation strategies (in the following referred to as
information channels) is available, the most suitable information chan-
nel or a combination of them must be found such that their abilities
are optimally exploited with regard to the specific task. This contribu-
tion proposes a methodology for obtaining an optimal choice based on
Bayesian statistics in a objective degree-of-belief (DoB) interpretation.

First, the task-relevant properties, i.e., the target quantities, are com-
bined to a vector z, dim(z) :=Z. The task-relevant knowledge can be
described in a probabilistic way in form of probability distributions5

p(z) := (p(z1), . . . , p(zZ))T over the definition domains Zi, i = 1, . . . ,Z
of the properties of interest.

The task-specific interest regarding the target quantities z is mod-
eled using an interest vector w, dim(w) = dim(z), wi ∈ {0, 1}.
The interest can then be represented by the probability distributions
p(w) := (p(w1), . . . , p(wZ))T. These picture the knowledge demand or
reconnaissance demand regarding the properties zi. The value p(wi =
1) = 1−p(wi = 0) represents the interest in the target quantity zi in the
form of a DoB.

Following, the information channels are defined, and their contribu-
tions to the determination of the target quantities are modeled. To this
purpose, the vector of information channels m, dim(m) :=M, is used.
This modeling approach includes all steps for the determination of the
target quantities starting from the acquisition of sensor data until their
evaluation yielding one or more target quantities.

5 The symbol p(.) stands for probability distribution functions for the case of con-
tinuous quantities as well as for probability mass functions in the discrete case.
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The use of an information channel is modeled by means of the dis-
tributions p(m) := (p(m1), . . . , p(mM))T, where the value for p(mi = 1),∑M

i=1 p(mi = 1) = 1, describes the contribution of this information chan-
nel for solving the task. Finally, sensor data is defined as a vector d with
dim(d) = dim(m).

Based on this modeling approach, the following questions can be an-
swered:

• Which optimal combination of information channels popt(m) has
to be chosen in order to satisfy the knowledge demand w regarding
the target quantities z?

• How can the target quantities ẑ be estimated, if an optimal combi-
nation of information channels psel(m) or a combination deduced
from the optimal one is chosen?
• How can the selection method for the information channels be ex-

tended, if the target quantities are to be determined iteratively, e.g.,
if the knowledge demand changes with time or the target quantities
are dynamic?

Choice of optimal information channels Given the previous knowledge
about the target quantities as prior distributions p(zi,0) and the respec-
tive knowledge demand, the determination of the optimal combination
of information channels popt(m) is needed. By means of a Bayesian for-
malism, the problem can be formulated as task of the determination of
the posterior distributions:

p(mj |wi, zi,0) =
p(wi, zi,0|mj) · p(mj)

p(wi, zi,0)
=

p(wi|zi,0, mj) · p(zi,0|mj) · p(mj)
p(wi, zi,0)

(9.1)

with i = 1, . . . ,Z, j = 1, . . . ,M.
A distribution p(wi|zi,0, mj) models the knowledge demand about a

target quantity (wi) in case that previous knowledge (zi,0) is given and
an information channel (mj) is employed. Since the knowledge demand
is independent of the employed information channels, the distribution
can be simplified to p(wi|zi,0, mj) = p(wi|zi,0). The knowledge demand
depending on the existing previous knowledge can now be constituted
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p2(mj)

1

costs, expenses

(a) Consideration of the costs
and expenses of an information
channel.

1

p3(mj)

elapsed time

(b) Consideration of the time
elapsed since the last use of an
information channel.

Figure 9.1: Modeling of the applicability of an information channel.

to:

p(wi|zi,0) ∝ H(zi,0) · p1(wi) , (9.2)

where H(zi,0) is the entropy of the distribution p(zi,0) describing the lack
of knowledge about zi. p1(wi) specifies the a priori existing knowledge
demand about zi.

The distribution p(zi,0|mj) represents the contribution of information
which can be delivered by an information channel (mj) regarding a target
quantity (zi). This contribution is a property of the information channel
and not of the a priori existent knowledge:

p(zi,0|mj) = p(zi|mj) . (9.3)

Using this distribution, the information quality an information channel
is able to deliver regarding a target quantity can be modeled.

The distribution p(mj) describes features of the information channel
mj which are independent of a specific task. In terms of the Bayesian
formalism, p(mj) can be interpreted as a prior distribution. This distri-
bution can be used, e.g., to model the costs which are connected with
the use of an information channel. A possible modeling is given by the
following distribution:

p(mj) ∝ p2(mj) · p3(mj) , (9.4)

where p2(mj) describes the costs and expenses caused by the informa-
tion channel and p3(mj) evaluates the elapsed time since the last use
of the channel. Figure 9.1 shows possible distributions for p2(mj) and
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p3(mj). The exponentially decreasing function for p2(mj) reduces the
weight of an information channel with increasing expenses for the infor-
mation acquisition and processing. The course of p3(mj) starting from
a small value and increasing with elapsed time guarantees that different
information channels are considered sequentially in time.

The choice of the optimal information channel can now be accom-
plished by summing over the dimension Z of the vector of the target
quantities:

popt(m) = (popt(m1), . . . , popt(mM))T with (9.5)

popt(mj) := λ

Z∑
i=1

p(mj |wi, zi,0) . (9.6)

Neglecting the denominator of Eq. (9.1), the choice of an appropriate
constant λ ensures that the normalization constraint

∑M
j=1 popt(mj =

1) = 1 is kept.
If not all possible information channels can be employed, e.g., due to

a lack of resources or temporal constraints, their use can be prioritized
according to their DoBs popt(mj = 1). This way, the optimal choice of
information channels with respect to the task and the previous knowledge
at hand can be assured. As an example, considering the list popt(m(k) =
1) sorted in descending order, the first N < M information channels
may be chosen. The contributions of the selected information channels
are then given by:

psel(m(k)) := κ · popt(m(k)) , (9.7)

where the constant κ guarantees again that the normalization constraint∑N
k=1 psel(m(k) = 1) = 1 holds.

Estimation of the target quantities Once the selected information
channels have been employed, the requested target quantities can be ob-
tained by weighted superposition of the posterior distributions p(zi|dj)
specific to the respective channels and target quantities:

p(zi) :=
N∑

k=1

psel(m(k) = 1) · p(zi|d(k)) . (9.8)
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Iterative approach The proposed methodology for the selection of in-
formation channels and for determining the target quantities can be im-
plemented in an iterative manner. For this purpose, both presented steps
must be accomplished alternately. The first step consists in the determi-
nation of the optimal selection of information channels (see Eq. (9.1)):

p(mt
j |wt

i , z
t−1
i ) =

p(wt
i |zt−1

i , mt
j) · p(zt−1

i |mt
j) · p(mt

j)

p(wt
i , z

t−1
i )

, (9.9)

where the index t ∈ N defines the iteration step and zt−1
i represents the

knowledge obtained until the preceding iteration step. According to the
procedure presented above, the contributions of the information channels
are modeled by psel(mt

(k)). In the second step, the target quantities are
determined according to Eq. (9.8):

p(zt
i) :=

N∑
k=1

psel(mt
(k) = 1) · p(zt

i |dt
(k)) . (9.10)

3 Environment modeling

Many systems acquiring information with the purpose of interacting with
their environment require a storage in addition to their sensors and in-
formation channels. The storage saves the acquired information and pro-
vides it for other cognitive components on demand. That way, the infor-
mation storage acts like a memory, incorporating a time-dependent model
of the environment. An example of such a system is an autonomous hu-
manoid robot, which is designed to help humans in housekeeping, see
Sect. 4.1. Thus, the autonomous system has the possibility of obtaining
a permanent and complete overview of the ongoing events in its relevant
environment. Together with other cognitive processes, such as inference
and prediction, this approach is known as providing situation aware-
ness [3].

A storage with the mentioned properties can be established by means
of a dynamic and object-oriented environment modeling approach. The
environment model can be compared with a Lego landscape, where the
Lego bricks compose virtual substitutes (instances) of real objects and
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persons (entities). In the virtual environment, the entities of the real
world object types and persons are represented by instances of classes,
see Fig. 9.2.

environment
entities of objects

environment model
instances of classes

wallwall

limitslimits at

next to

floor clock

onon

on
table

mug

mug

next to

Figure 9.2: Connection between the real world and the environment model.

The properties and relations of the entities are detected by sensors and
consecutively assigned to instances as attributes and relations. To sim-
plify the following presentation, attributes and relations of the instances
in the environment model are called information. They correspond to
the target properties introduced in Sect. 2.

The environment model which will be introduced in Sect. 3.1 is the
core of the environment modeling approach. In addition, the modeling
approach comprises mechanisms for information modification based on
sensor and other information, see Sects. 3.3 and 3.4.

3.1 Object-oriented environment model

The proposed approach for environment modeling is object-oriented and
provides all information in the environment model with a respective un-
certainty and an acquisition time. As a consequence, the model repre-
sents the relevant part of the environment of the system at a certain
point in time.

Entities have context-dependent properties such as position, size, color,
etc., which are mapped to the respective attributes of instances. Classes
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in the environment model are therefore also context-dependent and de-
fined in accordance to the present task.

The basic unit of the environment model is the simple class of blank
objects, which only has the existence as compulsory attribute. Instances
of this class are placeholders for unknown information. For example, a
blank object can be used to mark a spatial area as being occupied for
preventing collisions. In this case, only the attribute position is necessary
in addition to the existence. If a classification of the respective entity is
made, instances of blank objects may be replaced by instances of more
detailed classes. The new instance receives at least the class attribute
type in addition. Depending on the new class, several other attributes
may be added to the instance. Furthermore, blank objects can be used
to specify abstract information, e.g., sounds coming from an unidentified
source.

Relations between entities are also provided with uncertainties and are
handled in the environment model in a similar way as attributes.

3.2 Modeling of uncertainties

Each information (attribute or relation) is saved in the environment
model along with its uncertainty, allowing the quantification of the infor-
mation quality. There are two types of information that contribute to the
environment model: sensor information, which is dynamically acquired
by the system (e.g., by exploration), and prior information, which is
equivalent to the previous knowledge the system is provided with (e.g., an
environment map). Sensor information is generally characterized by its
observation uncertainty. Prior information is mostly acquired by means
of external sensors or is used as additional knowledge (e.g., knowledge
on the attributes of classes).

Uncertainties may be expressed in different ways:

• First, the information on a quantity (attribute or relation) can be
given parametrically in form of the most probable value and a re-
spective variance parameter. An example is given by the following
statement: “The entity A has the most probable height z0 with
the variance σ2

z .” The advantage of this modality of expressing
uncertainty is the compactness of the specified parameters.
• The uncertainty of a single quantity may be specified comprehen-
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sively by a probability distribution over the domain of all possible
values of the quantity, e.g., for the above example of a height spec-
ification, the uncertainty can be given by p(z). If the uncertainty
is given parametrically by means of the most probable value and
the variance, then the corresponding probability distribution can
be uniquely determined using the maximum entropy principle [4,5].
For the previous example, the result would be the normal distribu-
tion N (z0; σz).

• The uncertainty of several quantities may be specified at first by
considering the properties to be independent. For that, para-
metrical models (e.g., for two position coordinates, this would
be N ((x0, y0), (σx, σy)) , or independent marginal distributions
(p(x, y) = p(x) · p(y)) can be used.
• A comprehensive way of expressing the joint uncertainty of sev-

eral quantities is given by specifying the joint distribution, e.g.,
p(x, y) . The explicit specification of joint distributions has the dis-
advantage of being resource intensive: for all value combinations of
the considered quantities, the probabilities have to be determined
and stored.

Besides a frequentistic interpretation used in statistics, the proba-
bilistic specification of uncertainty offers the opportunity of interpreting
probability as degree of belief (DoB) in a Bayesian sense [6–8]. The DoB
formalism has the following advantages:

• Uncertainties can be expressed consistently: all possibilities for
specifying uncertainty can be converted into an analogous DoB
representation by using the maximum entropy principle.
• Differently scaled attributes and relations can be handled consis-

tently: probability distributions can be modeled on basis of all
possible scales (i.e., nominal, ordinal, interval, ratio and absolute
scale) [7].
• Both subjective and objective information can be quantified in a

similar way [9].
• For the handling of information, well-proven Bayesian fusion mech-

anisms can be applied [8].
• Inconsistencies can easily be handled within the Bayesian formal-

ism. Contradictory information with respective uncertainties in
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form of DoB distributions can be fused, whereas in the case of other
strict fusion formalisms, the straightforward fusion of information
is not possible.
As an example, the observation of two cylindrical instances A and B
with diameters of 10 cm placed 1 mm apart from each other would
lead to a contradiction (two objects cannot overlap), if a strict
formalism is applied. By use of a DoB formalism, the observation
can modeled with an observation uncertainty expressed for example
by means of variances (σx, σy) = (1 cm, 1 cm). In this case, the
interpretation of the two instances belonging to the same entity is
made possible.

3.3 Bayesian propagation

The environment model reflects the relevant part of the system envi-
ronment at a certain point in time. As a result of changes in the en-
vironment and other new information, the environment model must be
modified over time. The modeling of the changes is accomplished by
means of Bayesian fusion methods, which propagate the DoB distribu-
tions from a point in time ti−1 to the next point in time ti. Modifications
of the environment model may originate from two sources: new sensor
information is acquired and must be incorporated into the model, and
existent information ages. In the next sections, some of the propagation
mechanisms are described in detail using the example of the existence.
For other attributes and relations, analogous procedures are applied.

Instantiation In case that new information about entities and their at-
tributes and relations, which does not have an equivalent in the environ-
ment model (i.e., there is no instance representing the observed entity),
is observed, an instance of the respective class is created and inserted in
the model. The decision regarding the instantiation is made on basis of
a posterior DoB for the respective information. In case of the attribute
existence, the decision means the creation of a new instance. For other
attributes and relations, the respective information is assigned to the
appropriate existing instance.

Starting from the existence probability p(O = o), i.e., the probability
that an entity exists in the real world, and the probability p(O = ō) =
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1 − p(O = o) that the entity does not exist, the following conditional
DoBs can be defined [10]:

• The conditional probability p(D = o|O = o) = pE describes the
probability of a hit, i.e., the entity exists and is observed.

• The conditional probability p(D = ō|O = o) = 1−pE describes the
probability of a miss, i.e., the entity exists, but it is not observed.

• The conditional probability p(D = o|O = ō) = pF describes the
probability of a false alarm, i.e., an entity does not exist, but an
observation is made.
• The conditional probability p(D = ō|O = ō) = 1 − pF describes

the probability of a correct rejection, i.e., no entity exists and no
observation is made.

The combination of the probabilities of the existence and of the obser-
vation leads to four possibilities, see Fig. 9.3. If the posterior DoB for
the existence of an entity exceeds a given instantiation threshold γi, a
new instance is created and inserted in the environment model:

p(O = o|D = o) =
p(D = o|O = o) · p(O = o)

p(D = o)

=
1

1 + 1−p(o)
p(o)

pF
pE

> γi . (9.11)

p(O = o)

1 − p(O = o)

o

ō

pE

pF

1 − pE

1 − pF

D = o

D = ō

detectionexistence

Figure 9.3: Schematic dependencies between the existence and observation of
entities.

Propagation through aging The transition of the environment model
from one point in time ti−1 to the next point in time ti (with ti− ti−1 =
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Δt = const.) comprises an aging mechanism for the contained informa-
tion. The aging models the fact that over time, the amount of knowledge
about the real world decreases, i.e., the overall uncertainty increases. As
a result, the propagation must be defined such that the existence prob-
ability decreases over time and the entropy of the DoB distribution of
attributes and relations increases. An example of an aging model for the
existence can be achieved by using an exponentially decreasing function:

p−ti
(O = o) := β · pti−1(O = o) , (9.12)

where 0 < β ≤ 1 is a class specific constant and p−ti
(O = o) is the

existence probability after the aging step. Transient information (e.g.,
the existence of an apple) is characterized by a small value of β, such
that this information becomes uncertain in a little while. By contrast,
persistent information (e.g., the existence of a cupboard) is provided with
a higher value of β, such that the uncertainty increases more slowly.

Propagation with new acquired information In case that new sen-
sor information having a correspondence in the environment model is
available, the new information is fused with the existing information in
consideration of their uncertainties.

The main idea of the fusion approach is to apply Bayesian fusion using
the DoB distribution p(O|Di−1, . . . , D0) based on the i − 1 preceding
observations Di−1, . . . , D0 as prior and modeling the new information as
likelihood function p(Di|O) [11,12]:

p(O|Di, . . . , D0) =
p(Di, . . . , D0|O) · p(O)

p(Di, . . . , D0)

=
p(Di|O) · p(O|Di−1, . . . , D0)

p(Di|Di−1, . . . , D0)
. (9.13)

p(O) indicates the knowledge on the system prior to any observation.
p(Di|Di−1, . . . , D0) is the probability that the ith observation is made
and has the role of a normalization factor.

For the propagation, the result of the aging step is used as prior DoB
distribution. The observations Di−1, . . . , D0 are considered to be taken
at the points in time ti−1, . . . , t0. The new posterior DoB distribution is
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then obtained as follows:

pti
(O) := pti

(O|D) =
p(Di|O) · p−ti

(O)
p(Di|Di−1, . . . , D0)

. (9.14)

Here, pti
(O) is the desired posterior DoB distribution, and p(Di|O) de-

scribes the observation for the point in time ti. p−ti
(O) is the result of

the aging step of Eq. (9.12) taking the role of the prior distribution for
Bayesian fusion. D = {D0, . . . , Di} summarizes the observations up to
the point in time ti.

If no new observation regarding the given information is made at the
point in time ti, the result of the propagation adopts the result of the
aging step:

pti
(O) := p−ti

(O) . (9.15)

Deletion of information To keep the environment model efficient, out-
dated or very uncertain information must be deleted. The decision about
the deletion of an instance is based on the DoB distribution of the exis-
tence. If the DoB for the existence is smaller than a given threshold, the
instance is deleted from the environment model:

pti
(O) < γd , (9.16)

where γd is the deletion threshold, and γd < γi. The DoB may drop
under the given threshold because of aging (see Eq. (9.12)) or because of
the fusion with new sensor information not confirming the existence of
the respective entity (see Eq. (9.14)).

O

o

ō

pti(O = o)1γi

delete instantiate

γd

Figure 9.4: Hysteresis for the instantiation and the deletion of instances.
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The difference between γi and γd is necessary to ensure a hysteresis: an
instance should not be deleted immediately after it has been instantiated,
see Fig. 9.4.

An additional threshold γr with γd < γr < γi may be useful to explicitly
trigger the reconfirmation of the existence of an entity. If an entity is
not observed at random, the reconfirmation can be triggered intentionally
before it is deleted due to the aging mechanism. The difference between
γr and γi provides the system with a time buffer, during which the entity
is considered to be existing without the need to reconfirm the existence.
The time buffer is advantageous particularly in the case of transient
information, since it prevents a permanent triggering of the sensors.

p(O = o) 1
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time
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Figure 9.5: Example of the life cycle of an instance of a transient entity.

Figure 9.5 shows an example of the life cycle of an instance of a tran-
sient entity by means of the DoBs of its existence attribute. The dashed
line describes the propagation resulting from the aging mechanism (see
Eq. (9.12)), if no appropriate new sensor information is available. The
continuous line describes the course of the DoBs, if the existence of the
entity is reconfirmed at the points in time tj and tk by new observations.
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In the end, no new sensor information is acquired and as a result, the
DoB drops under the deletion threshold γd at the point in time tl . The
instance is then deleted from the environment model.

3.4 Abstraction levels

The information in the environment model is assigned to different ab-
straction levels. An instance which is described in detail by its class and
the respective attributes and relations is situated on a low abstraction
level. In contrast, an instance belonging to a class with few attributes
and relations is considered on a high abstraction level. The most abstract
information in the environment model is represented by blank objects,
which only posses the existence attribute and have no other specified at-
tributes, see Sect. 3.1. The instances of such blank objects are, therefore,
situated on the highest abstraction level.

The abstraction level of an instance may change if new information
is available: the more attributes and relations are specified about an
instance, the lower its abstraction level is. Figure 9.6 represents the
abstraction levels as a pyramid. On top of the pyramid, blank objects
are situated. The lowest level is populated with detailed instances, the
attributes and relations of which are completely specified.

coarse
information

detailed
information

level of
details

level of
abstraction

blank objects

partly detailed instances
shape, color, orientation

detailed instances
mug, clock

Figure 9.6: Abstraction levels in the environment model.

There is a second point of view on abstraction levels with regard to
the information retrieval from the environment model: depending on
the task, different degrees of detail of the retrieved information may be
necessary. As an example, for path planning, it is sufficient to know
the free space in the environment. Hence, only the attributes position
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inference processes
acquisition of

sensorial information

quality assurance

Figure 9.7: Application example of the environment model for the case of a
humanoid robot.

and extension of the instances, which represent information on a high
abstraction level, are required. By contrast, for a manipulation task,
detailed information like 3D shape or grasp possibility and relations like
is situated on of the respective instance is necessary. This information is
assigned to a low abstraction level.

4 Applications

4.1 Humanoid robots

Examples of systems which acquire information with the purpose of inter-
acting with the environment are autonomous humanoid robots. Within
the scope of the DFG Collaborative Research Center (Sonderforschungs-
bereich) SFB 588 “Humanoid Robots—Learning and Cooperating Mul-
timodal Robots,” [13] humanoid robots are designed with the purpose
of helping humans with housekeeping. To solve this task, the humanoid
robot needs a comprehensive overview on the environment. To this end,
the Bayesian selection method for sensor systems presented in Sect. 2 and
the environment model introduced in Sect. 3 are applied. Details regard-
ing the implementation of the conceptions in the context of humanoid
robots are given in [14].

The environment model and its properties represent the core cogni-
tive component of the humanoid robot. The model serves as an infor-
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Figure 9.8: Autonomous car AnnieWAY (Source: Team AnnieWay [16]).

mation hub, where information acquired by the robot sensors is saved,
propagated, and made available to other cognitive processes. As an ex-
ample, inference processes, such as automatic path planning and explo-
ration, retrieve the necessary information from the environment model,
see Fig. 9.7.

4.2 Autonomous vehicles

In the area of autonomous vehicles, another DFG Collaborative Re-
search Center is involved with environment perception and situation
interpretation—the SFB/Transregio 28 “Cognitive Automobiles” [15].
An essential goal of this interdisciplinary center is to investigate machine
cognition techniques for mobile systems as a foundation of “intelligent”
behavior. Figure 9.8 shows the cognitive automobile “AnnieWAY” de-
veloped for this purpose by the Institute of Measurement and Control at
Karlsruhe Institute of Technology [16].

The information hub used in this case is the real-time database KogMo-
RTDB [17]. This database guarantees all software processes—sensor data
acquisition, signal processing, environment perception, situation assess-
ment, and behavior generation—a fast access to the needed input data,
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which are all tagged with timestamps, and collects thereafter the pro-
cessing results. For performance reasons, the database is memory-based.

As far as trajectory planning is concerned, a distinction between roads
and unstructured zones is necessary. Moreover, to ensure a collision-free
navigation, the drivable area has to be known, which requires taking
into account the dynamics of potential obstacles. For this reason, the
attribute mobility is added to all traffic-relevant entities to discern be-
tween static and dynamic ones. A higher level of detail is for example
necessary in the case of an unavoidable collision to be able to make a
decision such that the risk or the loss can be minimized.

5 Summary

In this contribution, two important components in the context of per-
ception and task-specific interpretation of a dynamic environment have
been presented. On the one hand, the best-suited information channels
for a specific application were selected based on a Bayesian approach.
On the other hand, an object-oriented environment model was proposed
that constitutes an information hub, based upon which all information
processing processes can suitably represent, share, and update the knowl-
edge about the task-relevant entities and their respective attributes and
relations. All knowledge is specified in terms of degree of belief, which
enables to apply Bayesian fusion and inference methods to it. Additional
mechanisms take care of data consistency and quality assurance, provid-
ing for a good suitability of the model for knowledge representation in
intelligent autonomous systems.
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14. B. Kühn, A. Belkin, A. Swerdlow, T. Machmer, J. Beyerer, and
K. Kroschel, “Knowledge-driven opto-acoustic scene analysis based on an
object-oriented world modelling approach for humanoid robots,” in Pro-
ceedings of the 41st International Symposium on Robotics and the 6th Ger-
man Conference on Robotics. VDE-Verlag, 2010.

15. “Kognitive Automobile,” http://www.kognimobil.de/, Retrieved February
10, 2010.

16. “Team AnnieWay,” http://annieway.mrt.uni-karlsruhe.de/, Retrieved
February 10, 2010.

17. M. Goebl, “KogMo-RTDB – Real-time database for cognitive automo-
biles,” http://www.kogmo-rtdb.de/, Retrieved February 10, 2010.



Classification of partly occluded pedestrians
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Abstract This paper presents a novel approach to classify
partly occluded pedestrians. It focuses on the recognition of
pedestrians that were fully visible for a certain amount of time
and then have been occluded by lateral obstacles. Information
about the environment is measured by a lidar sensor and an
infrared camera. Both sensor signals are fused to determine a
region of interest in the video data. The classification of these
regions is based on the extraction of 2D translation invariant
features, which are constructed by integrating over the transfor-
mation group. Invariant features are pre-processed in order to
eliminate influence of occlusion. A support vector machine is
used to classify the invariants. The proposed approach was eval-
uated offline and the sensors were fixed. Results demonstrate
successful classification of occluded pedestrians.

1 Introduction

Among specific goals of intelligent applications such as visual surveil-
lance, robotics, autonomous vehicles and driver assistance systems there
is a common goal – detect and classify human beings. This is a challeng-
ing task not only due to the variability of human appearances and poses,
but also because obstacles in urban environments make humans not fully
visible. Moreover, pedestrians are often found in heavily cluttered scenes,
which makes the extraction of information about the pedestrians espe-
cially difficult. Various kinds of vehicle-based sensors and techniques
are used to solve this task. Commonly used sensors are passive imaging
sensors using visible light and infrared (IR) radiation, as well as active
“time-of-flight” sensors, such as radar and lidar scanners. Imaging sen-
sors are widely used because of their high lateral resolution and low cost,
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but extracting information from them involves substantial amount of pro-
cessing. Furthermore, these sensors are very sensitive to the environment
illumination and weather conditions. Time-of-flight sensors provide in-
formation about objects distances, but they deliver not enough data to
perform a complex classification. These two types of sensors complement
each another, and their fusion is expected to present better results than
single-sensor systems [1].

This paper presents a novel approach to classify partly occluded pedes-
trians. The signals of an IR camera and a lidar scanner are used as the
source data. Recent works to detect pedestrians using infrared cameras
can be found in [1–3]. All of these works are based on the fusion of
several imaging sensors data. Approaches that use time-of-flight sensors
are described in [4–6]. The fusion of image and time-of-flight sensors has
been studied in [7–10]. All these works are limited to the detection of
fully visible pedestrians.

To recognize pedestrians, a representative set of features has to be
extracted from the raw data. State-of-the-art techniques use features
based on shape, motion or depth information. Some of the features used
for shape-based detection are size and aspect ratio of bounding boxes [2],
Haar wavelets [11], Haar-like wavelets [10], pose-specifc linear (PCA)
features [12], active contours [13], invariant features [14], scale-invariant
DoG features [15, 16], intensity gradients [17] and their histograms [18,
19]. Global appearance changes caused by pedestrian articulations and
different viewpoints are considered in [20].

Occlusions prevent correct detection and classification. The most com-
mon approach to improve classification results in case of occlusion is to
use tracking. In [21] an improved mean shift tracking approach is pre-
sented. Kalman filter is used in [22] to predict pedestrians new position.
The same tracking ID is reassigned to an object in case the occlusion
disappears in a short time. In [23] a system for multi-person tracking in
busy environments is presented. Their work uses visual odometry and
several cognitive loops between internal system modules. In [24] objects
appearance models are built to handle occlusions.

This work presents a new method which estimates regions where a
pedestrian could appear. Normal impact of the occlusion is that a pedes-
trian occurred continuously in a sequence of preceding frames disappears
abruptly in the current image. Information from the antecedent clas-
sifications is used to avoid this disappearance. All calculated vectors
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of invariants that have to be tested with a classifier are concatenated
with vector of invariants that had produced correct classification before
pedestrian disappearance. If the tested image contains an object that is
slightly different from the pedestrian training samples, then values of the
resulting concatenated vector shift towards the pedestrian class. Since
there is no information about the pedestrian’s walking direction several
neighbour regions are taken into account. Even if pedestrian finishes his
movement while occlusion, he will be classified correctly. The proposed
approach can be used to classify any desirable class. It incorporates no
human body model. Additionally, the trajectory of pedestrian move-
ments can be recorded for further use.

The rest of the paper is organized as follows. Section 2 presents the
signal level data fusion and the extraction of regions of interests (ROI)
in the IR images. Section 3 describes the extraction of invariant features
from the ROIs and neighbour regions. Algorithm to process invariants
in order to avoid possible occlusion’s influence is presented in Section 4.
Finally, Section 5 presents the classification results.

2 Extraction of regions of interest

2.1 Data fusion

The infrared camera perceives the environment and provides information
about shape and temperature in form of an image frame sequence over
time. Each frame has a size M ×N pixels and is represented by:

gk := g(m, n, kΔt) , (10.1)

where m ∈ {0, . . . , M − 1}, n ∈ {0, . . . , N − 1} are conditioned by the
camera setup parameters. The recording speed is one frame per Δt sec-
onds. The coordinates (m, n) are understood as Cartesian coordinates in
the image plane. At first IR images are fused with lidar data to define Re-
gions Of Interest (ROIs), which are used in the classification process later
on. The algorithm focuses on input image areas with a high intensity
values. Such areas represent warm objects. Human body temperature
is generally higher than the environment. This makes such parts of the
human body like head and hands appear brighter than the background
in the IR image. Other parts of the person could be isolated by clothes.
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Taking this into account, all warm objects on an IR picture can be seg-
mented by a simple threshold. This leads to reducing the information
about the complete scene. Only objects with particular temperatures
could potentially be part of a human body.

These extracted hot spots are labeled by an index q ∈ {1, . . . , Q}.
The resulting Q hot spots are denoted by hq and considered potential
human heads. If there are no occlusions between pedestrians, then the
resulting hot spots include all human heads in the scene. Additionally
the hot spots hq include other warm objects like car parts, traffic signals,
building windows, etc.

The complete hypothetical human body must be extracted from gk for
each hq. A generic pedestrian size of 2 m × 1 m is defined in real world
coordinates. To translate this real world coordinates to image coordi-
nates the corresponding distances, measured with the lidar scanner, are
used. The used lidar scanner performs a one-line scan of the scene with
an angular resolution of Δϕ and an aperture angle of 180◦. The scene is
completely scanned each Δt seconds. Thus, the lidar signal can also be
described as a sequence in time composed of instances:

dk
w := d(wΔϕ, kΔt), (10.2)

where w ∈ {0, 1, . . . , W = 180◦/Δϕ}. The signal dk
w gives the distances

to the objects in the scene, whose positions at the point in time kΔt
coincide with the scanning angles wΔϕ. The correspondence between
distance data and hot spots is denoted by dw(hq). Here and further on
kΔt is equal for the infrared picture and lidar data if not stated otherwise.

For each hq a region of Mq×Nq is defined, which can enclose the entire
body. The size of this region is a function on q, i.e. a function on the
distance dw(hq). This dependency must be avoided in order to suppress
scale transformations. To accomplish this, the extracted regions of pixels
are scaled through interpolation to a normalized size M ′×N ′, where M ′

is the region width in pixels and N ′ is the region height in pixels. The
resulting normalized ROIs are denoted by

Rk
p =< rm′n′ , p, kΔt >, (10.3)

where matrix element rm′n′ is an intensity value from (10.1), m′ ∈
[0, . . . , M ′ − 1], n′ ∈ [0, . . . , N ′ − 1], point p = (x, y) defines ROI’s
position relative to the frame (x ∈ {0, . . . , M − 1}, y ∈ {0, . . . , N − 1})
and is a left upper corner of the ROI.
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2.2 Neighbour regions definition

A rectangle Rk
p has two horizontal and two vertical neighbours whose p

point coordinates are given by (x+Δw, y), (x−Δw, y), (x, y+Δh), (x, y−
Δh), where Δw = M ′ · δ, Δh = N ′ · δ and 0 < δ ≤ 1. The constant δ
defines how neighbouring regions overlap Rk

p. The case when δ = 0 is
also considered as a neighbouring region. This set of rectangles, called
5-neighbours of Rk

p, is denoted by N5(Rk
p) = 〈Ni | i ∈ {0, . . . , 4}〉, where

N0 is always a neighbour with δ = 0. Figure 10.1 illustrates N3(Rk
p).

The normalized ROIsRk
p are the patterns that must be classified. This

classification is based on the invariant features extracted from each Rk
p.

Next section presents an approach to construct these features.

Figure 10.1: Neighbour regions example. Regions from N3(Rk
p) are shown.

3 Extraction of invariants

Objects in the real world can be affected by transformations, but that
should not alter their classification. These transformations in the real
world induce transformations in pattern space. For a recognition task,
different patterns are considered equivalent if they convey to each other
through an induced transformation [25]. An induced transformation T
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on a pattern Rk
p is defined as a bijective map [26]:

T : (Rk
p, t) �→ T(t)Rk

p ∀ t ∈ T , (10.4)

where T is the set of all transformation parameters t. The set of all
transformations is denoted by T(T ) = {T(t) | t ∈ T }. The transforma-
tion set T(T ) defines an equivalence relation in pattern space, where
Rk

p ≡ T(t)Rk
p for all t ∈ T [26].

A feature f l is called invariant if, for a given transformation set T(T ),
it remains constant for all equivalent patterns:

f l(Rk
p) = f(T(t)Rk

p) ∀ t ∈ T . (10.5)

If the set T(T ) forms a compact group, then an invariant f l(Rk
p) can be

constructed by integrating over this group [25–27]:

f l(Rk
p) =

1
|T(T )|

∫
T

f̃ l
(
T(t)Rk

p

)
dt, (10.6)

where f̃ l
(
T(t)Rk

p

)
:= f

(
T(t)Rk

p , wl

)
is a real function of the trans-

formed pattern and a parameter vector wl. This function is called kernel
function. The factor |T(T )| normalizes the result with respect to the
group volume.

As defined in Eq. (10.3), the ROIRk
p is a discrete signal. If the transfor-

mation is discretized by defining T = {t0, . . . , t(T−1)}, then the integral
in Eq. (10.6) can be replaced by a summation:

f l(Rk
p) =

1
|T(T )|

∑
T

f̃ l
(
T(t)Rk

p

)
. (10.7)

The calculation of the transformed pattern T(t)Rk
p for each value t ∈ T

is computationally intensive. A more efficient solution is to induce the
transformation T(t) not on the pattern but on the kernel function [25]:

f̃ l
(
T(t)Rk

p

)
= T(t)

{
f̃ l
(
Rk

p

)}
= f̃ l

t

(
Rk

p

)
, (10.8)

where f̃ l
t denotes the transformed kernel function. Eq. (10.7) can be

rewritten as follows:

f l(Rk
p) =

1
|T(T )|

∑
T

f̃ l
t

(
Rk

p

)
. (10.9)
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3.1 Transformation group

For the detection and classification of pedestrians, the 2D translation
constitutes the transformation group of interest. In this case, the
transformation parameter is given by the translation vector tij , where
i ∈ {0, . . . , M ′−1} and j ∈ {0, . . . , N ′−1}. The transformed normalized
ROI can be defined as follows:

T(tij)Rk
p = {rm′+i, n′+j} . (10.10)

Finally, after introducing this transformation group in Eq. (10.7), the
invariant feature for this group can be written as follows:

f
(
Rk

p

)
=

1
M ′N ′

M ′−1∑
i=0

N ′−1∑
j=0

f̃ l
(
T(tij)Rk

p

)
. (10.11)

3.2 Kernel function

The kernel function should be constructed to extract fromRk
p all relevant

information for its classification. For this approach, the parameter vector
of the selected kernel function is given by:

wl := (Ul, Vl, h(ul, vl)) , (10.12)

where Ul, Vl ∈ N and are interpreted as kernel size. The last element of
wl is a function of the variables ul ∈ {0, . . . , Ul−1} and vl ∈ {0, . . . , Vl−
1}, where h(ul, vl) ∈ N0.

The selected kernel function f̃ l is a monomial defined in the following
way:

f̃ l
(
Rk

p

)
=

Vl−1∏
vl=0

Ul−1∏
ul=0

[rul , vl
]h(ul,vl) . (10.13)

As introduced in Eq. (10.8), the transformation T(t) can be induced on
the kernel function. From Eq. (10.13) and considering 2D translation,
the transformed kernel function can be written as follows:

f̃ l
ij(Rk

p) =
Ul−1∏
ul=0

Vl−1∏
vl=0

[rul+i , vl+j ]h(ul+i , vl+j).
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Rewritten Eq. (10.11) for the transformed kernel function:

f l(Rk
p) =

1
M ′N ′

M ′−1∑
i=0

N ′−1∑
j=0

f̃ l
ij(Rk

p) . (10.14)

By defining different kernel parameters wl, a vector of invariants can be
constructed for each ROI f(Rk

p) = (f1(Rk
p), . . . , fL(Rk

p)), with L ∈ N.

4 Processing invariants

Two classes are defined and used in this work. They represent non-
pedestrian and pedestrian objects and are denoted as Ω = {0, 1}, where
ω ∈ Ω. The class corresponding to a certain feature vector f(Rk

p) is
denoted by ωk

p . The class ω = 0 defines non-pedestrian objects, i.e.
objects that are warm enough to be extracted from the IR video, but are
not persons. The class ω = 1 defines pedestrian objects.

Memory is introduced to eliminate the influence from lateral obsta-
cles. It contains information about regions that have been classified as
pedestrians. There are several assumptions introduced for the simplicity
of description:

• there are two consecutive frames;
• there is only one pedestrian on both frames;
• the pedestrian is classified correctly in the first frame and misclas-

sified in the second frame due to an obstacle.

The ROI for the correctly classified pedestrian is called “base ROI” and
the following vector of invariants – “base vector”.

Given these assumptions neighbouring regions are created on the sec-
ond frame and corresponding vectors of invariants are calculated. Then
values of the base vector are added to the newly calculated vectors. This
leads to biasing testing vectors to the pedestrian class. Results are pro-
cessed with an SVM. Correctly classified region is saved as the base vector
in systems memory only if it is not equal to N0. Algorithm 1 illustrates
this method.

Use of only two frames leads to avoidance of strong influence of the
correctly classified example. Such influence may result in classifying more
than one neighbouring region as a pedestrian.
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Start from the frame with time k;1

n = 1;2

Extract ROIs. For simplicity assume, that there is only one3

pedestrian on the image with corresponding ROI Rk
p;

Rbase := Rk
p. Variable Rbase is used to store information about ROI4

that was correctly classified;
Calculate invariants vector fbase(Rbase) according to (10.14);5

Set k = k + 1, i.e. move to the next frame;6

Define neighbouring regions for base ROI, calculate N5(Rbase);7

for each neighbour Ni from N5 do8

Calculate vector of invariants f(Ni) according to (10.14);9

Update values of vector f(Ni), f l(Ni) =
fl

base(Rbase)+fl(Ni)

2
;10

Classify f(Ni) and save classification result as ωi;11

end12

Correctly classified region has index p and denoted by ωp, ωp = 1;13

if p == 0 then14

go to line 6. Do not save information if pedestrian is not moving;15

else16

Save neighbour that has been classified as pedestrian, i.e.17

Rbase := Np;
Save corresponding vector of invariants, i.e. fbase(Rbase) := f(Np);18

end19

Algorithm 1: Neighbour classification algorithm.

The algorithm could be stopped by either of two conditions: after some
amount of time or by checking unbiased vector of invariants. If classifi-
cation of unbiased vector of invariants results as wp = 1, then algorithm
should stop processing neighbouring regions until next pedestrian disap-
pearance.

The described approach could be adopted to the real application by
removing restrictions in given assumptions. For example, it is not nec-
essary to process two consecutive frames. Two frames may be taken at
time k and k+Δt correspondingly. But in this case additional processing
to find object correspondence is needed.
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5 Results

In order to train and test the classifier, a database of IR images gk and
lidar measurements dk

w has been recorded. Measurements have been done
with different people and in different places to increase data variability.
The set of ROIs have been automatically extracted from the database
and labeled manually. Examples of the images in the database are shown
in Fig. 10.2. The database contains no occluded pedestrians. All training
samples consists from walking or standing pedestrians.

The algorithm has been tested on series of videos where different people
cross the lateral object. Figures 10.3 and 10.4 shows classification results.

Figure 10.2: Database overview. Training set examples. Top and bottom
rows show pedestrian and non-pedestrian samples, respectively.

6 Conclusion

This paper presented a new approach to classify partly occluded pedes-
trians. The classification is based on combining feature vectors that are
known to result in correct classification with a feature vector that should
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k

Figure 10.3: Classification results. Above sequence shows classification done
with processed invariant features. Lower sequence shows classification without
additional feature processing.

be tested. No tracking or movement analysis have been incorporated in
the system. The classification core is extraction of invariant features.
The results demonstrate the potential of the proposed method in classi-
fying partly occluded pedestrians. Due to the fact that this method does
not exploit any a priori information about the classes, it can be used
to classify other traffic participants, such as cyclists or children. Com-
putation time restrictions as well as using data from non-static, moving
sensors remain an open issue.
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Abstract Advanced automotive safety systems require a traffic
situation analysis and classification by applying the knowledge
about the vehicle’s surrounding. A reaction will be carried out
dependent on the knowledge and the application. Radar sensors
as leading edge in vehicular remote sensing are able to precisely
determine radial distances and velocities of corresponding ob-
jects/obstacles. State of the art radars cover long and short
range distances by operating in multi-mode. The sensor perfor-
mance is in contrast to human perception almost independent of
weather and light conditions. Complementary usage of a monoc-
ular camera might enhance the perception of the environment.
Its acquisition costs are significantly lower than those of a stereo
camera. An advantageous overview of the road compared to a
passenger car is enabled due to a higher position of the camera
in the truck. Objects like passenger cars, trucks and motorcy-
cles may be measured and classified using the rear-ends of these
vehicles during day light. Back lights serve the object detection
in the darkness. An algorithm for lane detection together with
the fusion of radar and camera signals enables an object-to-lane
allocation, which is an important contribution to the situation
analysis and classification, as required in the context of adaptive
cruise control or for collision avoidance by automatic steering.
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1 Introduction

Each year several thousands of people die due to traffic accidents in the
European Union (39,000 in 2008). The EU set the goal to reduce the
number of traffic victims to 25,000 in 2010 [1]. To get at least close
to this ambitious aim, it is important to invest in the development of
advanced driver assistance systems that include applications for colli-
sion avoidance and pre-crash preparation and that satisfy safety-level
requirements. When passenger cars crash into each other, the damage is
reduced to smaller physical injuries and an economical damage in many
cases. In contrast, the probability of deaths and seriously injured persons
is increased dramatically in case of accidents with trucks due to the high
mass of the truck. The automatic recognition of imminent collision plays
an important role in making traffic more safe. The earlier a potential
collision is detected, the more possibilities are available to protect car
passengers and other road users. Besides driver attention and intention
monitoring, it is therefore important to predict possible scenarios in ad-
vance. The vehicle environment needs to be analyzed and the situation
has to be classified supporting different applications and reactions. A
region of interest for relevant traffic events has to be defined to combine
real-time calculations with detailed and precise information about the
traffic environment in terms of object characteristics and object localiza-
tion. Long-range view has to be combined with high spatial resolutions
as well as a wide field of view. One approach uses a combination of radar
(short and long range) and a monocular camera; see Figure 11.1.

Figure 11.1: Field of view applying a short range radar (SRR), a long range
radar (LRR), and a monocular camera.
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The camera detects both objects and the lane markings of the road.
Thereby, the road course and the traffic participants or objects of special
interest for the situation analysis can be predicted. This information is
particularly important on curved roads and when considering stationary
objects.

2 Sensors

2.1 Radar

The radar sensor has been the state of the art for environment perception
and driver assistance systems in automotive industry in the last years.
Diverse weather conditions like rain or fog have almost no impact on
the sensor performance, other than on human perception. Received raw
data is Fourier transformed, and the peak lists are merged to targets.
A measurement-to-track association is made, and a Kalman filter calcu-
lates the measurement update. The entries for the Kalman estimation
process are range, bearing, and Doppler velocity [2]. The Doppler infor-
mation corresponds to direct measuring of target speed and is a benefit
of radar sensors. It is used to initialize the state of the tracks [3]. The
radar sensor measures radial target distance and velocity very accurately.
Target radius (r) and target angle (φ) are transformed into longitudinal
and lateral distances and velocities relative to the own vehicle. While
the longitudinal (x-direction) information is very accurate, the lateral
resolution (y-direction) is approximate. State-of-the-art radars operate
in multi-mode covering long and short range distances in one sensor. A
wide area in front of the own vehicle can be monitored with sufficient
aperture angles.

One challenging task remains when perceiving the environment with
radar sensors: They show a small angular resolution. This makes lateral
information inaccurate, especially for long distances. When radar waves
are reflected from the environment, only point information is calculated.
The reflection points may move on the object, so one never knows from
which point of the object the reflection is received, as can be seen when a
graphical fusion of data from a 3D laser scanner (Velodyne) and radar is
performed. The distinction between different stationary objects (traffic
signs, pedestrians) and their measuring becomes crucial.

Waves emitted by continuous wave radar sensors lead to a typical,
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height-dependent interference pattern. The height-dependency may be
used to distinguish relevant obstacles with lower height from higher lo-
cated irrelevant objects like traffic signs [4].

If outer conditions are advantageous, road boundaries may be deter-
mined based on object lists. Imaging radar sensors provide a detailed im-
age of the environment. Image processing algorithms may enable a road
prediction based on radar information and the analysis of “free space”,
even if there are only trees and bushes along the road. If noisy raw data
is integrated over time, an improved signal-to-noise ratio is obtained and
the robustness of following image processing steps increases. Applying
edge detection shows size and positions of objects in the front more pre-
cisely. Rudimental object classification strategies may be supported by
evaluating polarization differences of reflections. However, radar may
benefit from vision systems and their better azimuthal resolution.

2.2 Monocular camera

A complementary vision system might be a monocular camera. Its ac-
quisition costs are significantly lower than those of a stereo camera. An
advantageous overview of the road compared to a passenger car is en-
abled due to a higher position of the camera in the truck. With adequate
vertical and horizontal aperture angles as well as sufficient pixel/◦ resolu-
tion, objects may be detected and classified. Image processing techniques
commonly use neural networks and pattern classification algorithms for
camera object detection for daylight recordings. Considering frame se-
quences instead of single frames enhances the image processing output.
Back and front lights of other vehicles are used for object detection during
the darkness. The number of pixels that represent the object in the im-
age frame sequences, defines the object size and distance during daylight.
Assuming a flat road, the height of the back or front light representa-
tion in the image as well as the light distances from each other define
the object distance and size. When the change in longitudinal and lat-
eral object distance is evaluated, object velocities and accelerations can
be determined, but the significant advantage of the camera application
for object detection is the gain in lateral information quality and the
object type classification. Herewith, also stationary traffic participants
may be detected and classified which might be of special interest when
considering rear-end collisions in traffic jams or at traffic lights.
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The monocular camera provides an additional information that the
radar cannot show at all. Image processing with gradient or edge detec-
tion filters supplies next information processing levels (situation analysis)
with the location and course of the lane based on lane markings. Ap-
plying the a-priori knowledge that most roads follow a clothoide-shaped
lane, curvatures may be determined and predicted. The visual range is
longer in the truck compared to a car due to the higher position of the
camera. A lane prediction based on already determined lane curvature
and a polynomial of second order is used to restrict the required amount
of data processing capacity and to give a higher lane confidence level.
The lane information allows to narrow down the space in which rele-
vant situations may take place. Furthermore, applications like the lane
departure warning may be integrated.

Multi-purpose cameras implicate that one sensor can be used for differ-
ent applications, and different illuminations are used. Beside the usage
for environment perception required for active safety applications, it can
be used for comfort functions such as traffic sign recognition and intelli-
gent headlight control.

The disadvantage of the camera is its sensitiveness to pollution and
bad weather conditions like rain, snow and fog. If the ego vehicle drives
versus a sunset or a sunrise, the camera might be overexposed and would
not be able to give any information. In this case, the system has to detect
the deficit and has to account for the insufficient sensor information. This
means that one has to find ways for system self-diagnosis and the han-
dling of measurement uncertainties. One way might be the integration
of additional sensors and the fusion of the sensors.

3 Fusion concept

The sensor fusion can be performed on raw data or on a higher level pro-
viding objects and boundaries. The common radar receives information
about stationary and moving objects. If conditions are advantageous, the
road boundary can be extracted such that e.g. road curves can be pre-
dicted and the region of interest can be restricted. The camera supplies
the fusion algorithm with information about the lane markings. Thereby,
one can predict whether the lane will follow a curve or go straight.

Objects can be allocated to the lane, and their position within the lane
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Figure 11.2: Concept for lane and road prediction.

can be given if lane and object coordinates are fused. This enables the
decision if objects might become relevant for an application or a function.
Oncoming traffic, e.g. in the own lane, vehicles braking, cutting in or
sheering out can be identified with a certain probability.

For long distances, the lane information of the camera is not available
but image radars will provide the road environment, thus showing the free
space where a road might be situated. The “true” way can be predicted
based on the camera lane detection (see Figure 11.2). The street takes
a left turn in the figure. The radar offers the possibilities of a straight
road or a road with a left turn. One obtains the information that the
road has to turn left using the visual lane detection range of the camera.

Object fusion is a possibility to obtain the separation of stationary
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objects, given the radar and the camera have detected the same objects.
The radar detects all kinds of objects that may be relevant or not but
without sufficient classification. As the camera is based on a pattern
classification algorithm, it will only detect objects that look similar to
those the algorithm was trained with. The camera will therefore typ-
ically detect less objects than the radar. Furthermore, the detection
will not work under all weather conditions. Thus, the radar objects are
used for a first level decision, especially when considering moving ob-
jects. The benefit due to the camera is the option of the object-to-lane
allocation, the measured object size and lateral displacement of an de-
tected obstacle. Thereby one may decide if e.g. a swerving maneuver is
possible. Another advantage is that stationary objects may be separated
from the road boundary, and traffic signs due to camera object detection
and classification.

Figure 11.3 shows the general fusion concept. The course can be pre-
dicted based on road boundary detection by radar and lane prediction
by camera using lane markings. Road users are detected by the radar
and confirmed by the camera. If the objects are classified and allocated
to a lane, decisions about their relevance can be made. In the next step,
the situation analysis, ego vehicle and object trajectories can be pre-
dicted. Markov-like fusion models and Bayes networks can be used for
the situation classification then, e.g. based on trajectory prediction.

One has to keep in mind that both sensors do not work perfectly. All
objects detected by the sensors only exist with a certain probability. If
hard threshold decisions are made on the raw data level, objects might
get lost if the threshold was taken too high, and too many objects with
“increased” weights would be considered if the threshold was taken too
low. If the probabilities of existence are kept and multiplied with next
level decision probabilities through all levels and steps of object process-
ing, the information is given with a confidence level and applications can
find decisions based on the probabilities of the object existences.

4 Discussion

The challenge of low price and high performance is known in all business
areas. However, it is special in the development of driver assistance
systems (DAS) for trucks compared to those of passenger cars. The
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Figure 11.3: Concept for the fusion of radar and camera data.

driver is the owner of the passenger car in most cases. His own safety
and comfort are important, and possessing several DASs represents a
good image. Usually, the truck driver and truck owner are different
persons instead. The trucks belong to the freight forwarder companies
where money is the key. While the forwarder company has to pay for
the DAS, the insurance company will pay in case of an accident.

3D laser scanners could be used for an almost perfect environment
perception, but they are too cost intensive. The combination of sensors
that are affordable and that can be used for different applications at once
decreases the price per application. Therefore, the multi-purpose camera
is a good compromise as it is not too expensive and can be used for other
applications like intelligent headlight control, traffic sign recognition, and
lane departure warning.

Sensors with a high performance often require a high amount of pro-
cessing capacity to enable the real-time performance of integrated sys-
tems on board. If the requirements for control units increase significantly,
they will become the expensive factor. One may hope that the increased
demand of computational power due to new, additional signal processing
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algorithms will be compensated by falling prices for computational power
(Moore’s law).

Should the required calculation power be reduced while using camera
and radar for environment perception, the radar information could be
used to define a region of interest for the image processing algorithm.
This would enhance the spatial coverage of the camera-based object de-
tection without increasing the demand of processor capacity. If an object
is confirmed by the camera, the tracking time used by the radar for ob-
ject confirmation could be shortened in some cases. Fusion at this level
induces a reduced amount of transferred data on the CAN bus. On the
other hand, if sensors were fused at a lower level, this would yield a high
effort just when one sensor has to be replaced, e.g. due to a new software
or hardware version, or when another supplier would provide a similar
alternative sensor, since raw-data processing is usually accomplished by
the sensor chip itself.

5 Summary and outlook

We introduced a fusion concept for environment perception of DASs that
fulfills industrial requirements considering both price and performance.
Based on a radar and a monocular camera, objects can be detected and
they can be allocated to a lane which advances the situation analysis and
its situation classification.

In this first step, the focus was set on the longitudinal traffic. Future
work will consider crossing traffic as well. Monocular cameras are able
to detect pedestrians, but the integration of a 2D LIDAR scanner or a
stereo-camera for urban scenarios should be analyzed as well, especially
when crossing traffic is considered. Fusion of GPS and map data will
provide further information and can be used for situation confirmation.
Moreover, the usage of data recorded in the vehicle front could be used
to support blind spot applications (usage of history).

Quite often the development of new DAS applications starts on the
sensor level (bottom-up). This may lead to redundant signal generation
or loss of information that has to be created later with higher effort.
Then, the situation analysis uses the information that is provided and
builds the basis for possible applications. Top-down development (see
Figure 11.4) shows the advantage of identifying which applications are
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Figure 11.4: Top down system development strategy: Abbreviations de-
note applications like collision mitigation (CM) and Lane Departure Warning
(LDW).

of special interest and which information is required for them. Synergy
or cross-correlation effects between applications can be identified (e.g.
front information may become information about the vehicle’s side). The
decision for required sensors is done at the end. Between the single steps,
feed-forward and feedback loops are integrated.

One has to remember that safety functions, especially when they ac-
tively operate a maneuver, have to fulfill high reliability and safety level
requirements. All sensors show a range of uncertainties that can be iden-
tified sometimes (e.g. with additional sensors). In all cases a way has to
be found to handle sensor uncertainties. One step is the introduction
of a complex that handles with measurement uncertainties and system
state self-diagnosis. Furthermore, a way to show the satisfaction of the
safety requirements has to be defined.

Moreover, the task of lane prediction in S-curves—e.g. at road works
or during a lane change—is not solved yet. It has to be evaluated when
simplified clothoide models of second order are sufficient for lane predic-
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tion and which other approximations can be made, e.g. polynomials of
third order or splines.
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Abstract In modern electrical vehicles DC-DC converters are
used to control the system voltage. An option to handle the
power demand is to use multiple converters in parallel operation.
This leads to the non-trivial problem of load distribution. In
this paper, the most energy efficient method for load sharing is
presented and possible control methods are proposed. To this
end, the typical characteristic curves of DC-DC converters at
different input and output voltages are taken into account and
a setup of multiple identical converters with a common source
and load is considered.

1 Introduction

In numerous applications, paralleling DC-DC converters are an option
due to different reasons. Such a setup of parallel DC-DC converters offers
several advantages [1–3]:

• Reduced design costs due to usage of standard converters,
• high power by using standard converters,
• higher system reliability and operational redundancy,
• modularity and scalability,
• improved thermal management,
• reduced EMI, voltage and current ripple.
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Paralleling DC-DC converters requires a technique for load distribution
to control the power flow through the converters in an optimal way. The
criteria for optimality can be cost efficiency, packaging, weight distribu-
tion, minimization of wire/cable length, thermal stress minimization or
energy efficiency. The latter is most important concerning the design of
electric vehicles due to limited battery power and costs. Possible meth-
ods for different applications are proposed in [1, 2, 4, 5]. An equal load
distribution among all converters to improve the life cycle of the con-
verters is proposed in [4]. Another algorithm, presented in [1], takes into
account that at low power demand some converters can be switched off
to improve efficiency. In contrast to the mentioned method, in [4, 5] the
load is distributed in another way. A part of the converters supply their
maximum load, one converter the remaining power and the other con-
verters are switched off. None of the techniques mentioned before takes
a non-equal load distribution and the characteristic efficiency curves of
converters into account.
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Figure 12.1: Typical efficiency characteristics of a standard DC-DC converter.

In this paper an energy optimal load distribution technique is pro-
posed. To this end, the efficiency characteristics of a Buck-Boost con-
verter shown in Figure 12.1, namely the Brusa BSC624, are considered.
For the sake of simplicity only the Buck mode of the converter is regarded
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in detail. The presented concept can easily be extended to respect the
Boost mode. Throughout this paper the following setup (Figure 12.2) is
considered:

• A common variable source and load is given,
• all converters have a fixed internal control algorithm,
• the converters are identical except for tolerances and
• can only be controlled by an external control unit.

P1, η1

P2, η2

Pn, ηn

I1

I2

In

U1

U2

Un

I = ILV

U = ULV

IHV

UHV

Converter 1

Converter 2

Converter n

Controller

Figure 12.2: Setup with n converters with common source and load.

2 Parallel operation efficiency

The efficiency of each converter depends on the input and output volt-
age and the output current. To analyze energy optimality, the overall
efficiency of a setup of n parallel DC-DC converters depending on the
output current and the load distribution among the converters is needed.
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It is given by

η =
Pout

Pin
=

∑n
i=1 Pout,i∑n
i=1 Pin,i

, (12.1)

where Pin,i and Pout,i are the in- and output power of each converter.
In parallel setup, the output voltages Ui of all converters are the same
voltage U and the sum of all output currents Ii is I:

U1 = U2 = ... = Un = U and I =
n∑

i=1

Ii . (12.2)

This leads to the overall efficiency:

η =
I∑n

i=1
1
ηi
· Ii

. (12.3)

3 Two converters system

The case of two converters is the most important one in automotive
technology because it covers the usally needed power demands and is
regarded in the following paragraph. In detail a switching strategy is
presented and the influence of input and output voltages is analyzed.

3.1 Switching strategy

Assuming identical DC-DC converters with efficiency characteristics as
shown in Figure 12.1, a variable load distribution between two converters
defined by a quotient α = I1

I yields to the overall efficiency given by

η =
1

α · 1
η1

+ (1− α) · 1
η2

, (12.4)

which is depicted in Figure 12.3 and differently in Figure 12.4. The
dark blue colored regions A1 and A2 correspond to efficiency lower than
η = 0.9. Area A1 results from the current limits of the single converters
and area A2 from the small efficiency of one converter at low α factors.
From Figure 12.3 and Figure 12.4 it follows that with increasing current
I the highest efficiency is reached at α = 0 upto I = Is. With I > Is the
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efficiency at equal distribution α = 0.5 is the optimal choice regarding
overall efficiency. The load distribution factors α between α = 0 and
α = 0.5 are not of interest due to non energy efficiency. Therefore it
can be concluded that the most efficient way of load distribution with
increasing output current is using a single converter until a limit Is is
reached. Then the second converter is switched on and the control is
set to equal load distribution. To avoid instabilities at currents around
I = Is a hysteresis should be implemented as it is proposed in [1, 6] and
shown in Figure 12.5.

Efficiency Map, BSC624-12V, UHV = 330V , ULV = 16V
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Figure 12.3: Overall efficiency map of two converters with any load distribu-
tion.

3.2 Voltage dependence

From Figure 12.1 it follows that higher voltage leads to lower losses due
to lower current level [3]. Taking into account that in electric vehicles
the source voltage depends on the state of charge of the battery and is
therefore variable, the voltage level has to be considered. Usually the
output voltage is kept constant, but to provide a general control method
it is assumed also variable. Figure 12.6 shows the single converter and
the equal load distribution efficiency of two identical converters at differ-
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Efficiency, BSC624-12V, UHV = 330V , ULV = 16V
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Figure 12.4: Comparison of efficiency at different load distribution factors.
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Figure 12.5: Switching hysteresis [6].

ent input and output voltages. According to Figure 12.6 the threshold
current Is at which the second converter should be switched on depends
on the output voltage of the converters3.

3.3 Equal load distribution

In section 3.1 it was shown, that the most efficient way in case of I > Is

is the equal load distribution. To control the converters, several methods
are proposed and compared in literature [2,4,7]. Two methods that can
be implemented by an additional control unit are:

3 The threshold current Is also depends on the input voltage, but there are currently
no measurement data for the chosen converter available to prove this.
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Figure 12.6: Threshold current Is depending on output voltage.

• Master-Slave Control
• Central-Limit Control

The methods are described in detail and compared in [2,4]. Taking into
account that the internal control of each converter is fixed, the dedicated
master/slave load share is a possible choice. The efficiency of the different
methods is not further analysized in this paper.

3.4 Selection of the single working converter

The usage of a single converter at currents below Is results in higher
stress of the single working converter. To share the stress over the entire
life cycle, the single working converter should be alternated. In [8] the
”‘first-on first-off”’ method is used to equalize the operating time. This
method does not take into account that one converter might be switched
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on much longer than the other. Therefore an overall stress criterion is
proposed to decide which converter should be chosen next. A simple
criterion is the integral over the difference between the losses Pl,i of the
converters with T meaning the overall working time:

c =
∫ T

0

(Pl,1 − Pl,2) dt . (12.5)

At the beginning and in case of I < Is,off the converter with the lower
stress criterion value is chosen.

3.5 Complete algorithm

Summarizing the results from Sections 3.1 to 3.4, the complete algorithm
for energy optimal load distribution is arranged according to Figure 12.7.
Based on the input and output voltage, the threshold currents Is and
the Is,off are calculated first using a lookup table. In the next step,
the converter states (C1 and C2) and the load distribution factor α are
determined with the state machine shown in Figure 12.8. The load dis-
tribution among the converters is implemented in the converter control
unit (CCU). To calculate the criterion c, the power losses Pl,i of the
converters are calculated within the CCU and the value is passed to the
state machine block.

C1

C2

CCU

c = f(Pl,i)

Lookup
table

Is

Is,off
Uin

U

Uin U

I

c

α

Pl,i

Figure 12.7: Complete algorithm.



Highly efficient load distribution of parallel DC-DC converters 201

C1

α = 1

C2

α = 0

C1, C2

α = 0.5

(I < I
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s,off ) && (c > 0)

I > Is
I > Is
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Figure 12.8: State machine for single working converter selection.

4 Conclusions and outlook

In this paper the energy optimal method for load distribution among
identical DC-DC converters in parallel operation is presented. The ef-
ficiency characteristics are taken into account to get the most energy
efficient algorithm. A two converters system is regarded in detail. It is
shown that the most efficient way is to use a single converter up to a
threshold input current and then switch on the second one with equal
load distribution. The method is presented in [6, 9] without reasoning
that it is the most energy efficient one. It is shown that the threshold
current depends on the input and the output voltage. To share the un-
balanced stress due to using a single converter at low currents, a method
for choosing and alternating the single working converter is proposed
taking into account the total power workload.

It is interesting to examine the extension of the results of this paper to
any number of converters and the selection of the most efficient control
method for equal load distribution in further work.
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Abstract Nowadays, an important factor in the development
of modern combustion engines in the automotive industry is the
reduction of fuel consumption and exhaust emissions to lower
travel expenses and to alleviate pollution. This report deals
with the fuel injection process of a gasoline direct injection sys-
tem. The accuracy of the injected fuel rate plays a key role
for a proper combustion. Current control strategies for the fuel
injection process are not adequate for new concepts of engine
management, especially at lower injection rates, due to manu-
facturing dispersions of fuel injection valves. Hence, an injector
calibration is needed. In this work, the possibility of using the
standard knock sensor for diagnosis of the gasoline direct injec-
tion process is pointed out. The main goal is to determine if
and to what extent the knock sensor signal contains information
about the fuel injection process. Therefore, the knock sensor
signal is analyzed in the time-frequency domain using wavelet
packets.

1 Introduction

Stricter laws and provisions force the reduction of fuel consumption and
exhaust emissions for modern combustion engines in the automotive in-
dustry. The improvement of efficiency is pursued by the development
of gasoline direct injection (GDI) engines with common rail technology.
GDI systems offer the possibility of multiple fuel injections per engine
cycle over a wide range of engine speed. This results in higher engine
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torques at lower fuel consumption rates compared to “old-fashioned”
combustion engines with carburettors. As gasoline is sprayed directly
into the cylinders, the precision of fuel metering of GDI systems is es-
sential.

In this report, the authors investigate the possibility of a diagnosis of
the GDI process via the standard knock sensors. Normally, knock sensors
monitor the structure borne sound emitted by the combustion process
of the engine. In all considerations of this paper, the knock sensors are
used to analyze the structure borne sound emitted by the fuel injection
valve during the injection process.

The fuel injection valve itself causes impacts, which excite the cylinder
head. These impacts propagate through the cylinder head and the head
gasket to the engine block, where the knock sensors are mounted. All
measurements evaluated in this paper were taken at a four cylinder GDI
engine type EA111 of Volkswagen. The fuel injection valve is presented
briefly in Section 2. Unlike the considerations in [1], the measured struc-
ture borne sound signals are analyzed by the wavelet packet transform,
which is introduced in Section 3. In Section 4, the results of the analysis
of the knock sensor signals are presented. A conclusion will be drawn in
Section 5.

2 The fuel injection valve

The considered fuel injection valve is an inward opening solenoid injector.
Today, it is commonly used in modern GDI engines. The fuel injection
valve mainly consists of a solenoid, which pulls up an anchor with a
pintle. If the solenoid is not energized, the pintle is pressed onto the
nozzle by a spring force. A more detailed description of the fuel injection
valve can be found in [2].

The fuel injection valve causes impacts during the injection process.
The time instants of interest are the following:

• The begin of injection (BOI ), when the pintle starts to move up
and fuel is started to be injected,
• the end of pintle lift (EOPL), when the anchor hits the backstop,
• the end of injection (EOI ), when the pintle falls onto the nozzle.

In the following evaluations, the measured knock sensor signal is analyzed



Wavelet packet analysis of knock sensor signals 205

within a time window of length T after the start of injection (SOI ). At
the SOI, the solenoid of the fuel injection valve is energized. After a
certain time period, the pintle starts to move up, which corresponds to
the BOI. T has to be chosen in a way, that all time instants of interest
are within the time window. The following parameters mainly influence
the pintle lift of the fuel injection valve:

• The injector current I(ti), which follows a given current profile and
which depends on the requested injection duration ti,
• the fuel pressure in the common rail prail and
• the engine temperature Θ.

By applying the wavelet packet transform, the knock sensor signal shall
be analyzed further in Section 4 for different requested injection durations
ti. The fuel pressure in the common rail prail and the engine temperature
Θ are kept on constant values.

3 Wavelet packet analysis

Time-frequency distributions are two dimensional functions, which in-
dicate the energy content of a time signal in the time-frequency plane.
The wavelet transform is an efficient tool in time-frequency analysis. The
basic idea of the wavelet transform is defining a set of orthonormal basis
functions by scaling and shifting a single function called mother wavelet
ψ(t). This provides a good frequency resolution for low-frequency compo-
nents and good time resolution for high-frequency transients of a signal.
As a square integrable representation of the affine group, the scalogram
can be obtained by the wavelet transform of a signal x(t) ∈ L2(R), which
is defined by

Wψ
x (a, b) =

∫ ∞

−∞
x(t)

1√
|a|

ψ∗
( t− b

a

)
dt .

ψ(t) has to satisfy the admissibility condition

CΨ(a, b) =
∫ ∞

−∞

|Ψ(af)|2
|f | df <∞ ,

where Ψ(f) is the Fourier transform of the mother wavelet ψ(t):

Ψa,b(f) =
√
|a|Ψ(af) e−j2πfb .
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In practical applications, both the signal to be analyzed and the wavelet
have to be discrete in time, which means that the scaling parameter a and
the shifting parameter b have to be discrete, too. It has been shown that
a dyadic scale ak = 2k and special choice of ψ constitute an orthonormal
basis for L2(R), see [3] or [4]. Therefore, the discrete shifting parameter
bmk also grows dyadically:

bmk = m 2k Ts .

In this equation, Ts is the sampling period, which yields the wavelets

ψm,k(t) = 2−
k
2 ψ(2−kt−mTs) .

For discrete time signals x(t) = x(nTs) of size N and wavelets ψ(t) =
ψ(nTs) we obtain the discrete wavelet transform (for simplicity, we set
Ts = 1)

Wψ
x (m, k) =

N−1∑
n=0

x(n) 2−
k
2 ψ∗(2−kn−m) .

Mallat [4] recognized that the construction of different wavelet bases can
be realized by the so-called multiresolution filterbanks. The fundamen-
tal principle of multiresolution analysis is the decomposition of a whole
function space V0 into individual subspaces. The approximation of a sig-
nal x(n) ∈ L2(R) in a subspace Vk ⊂ V0 is denoted as xk(n). The space
V0 ⊂ L2(R) contains the frequency domain

[
0, fs

2

]
, with sampling fre-

quency fs. The signal x(n) ≈ x0(n) ∈ V0 is decomposed into subspaces
by lowpass and bandpass filters gLP and gBP:

xk(n) = xk+1(n) + yk+1(n)

with

xk+1(n) = ProjVk+1
{x(n)} ∈ Vk+1

and

yk+1(n) = ProjWk+1
{x(n)} ∈Wk+1.
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Vk+1 and Wk+1 are orthogonal subspaces of Vk: Vk+1 ∩Wk+1 = ∅ and
Vk+1∪Wk+1 = Vk. The subspaces Vk are spanned by orthonormal scaling
functions φm,k(n). So, the approximation of x(n) in the subspace Vk is
denoted as

xk(n) =
∑
m

ck(m) φm,k(n)

with approximation coefficients ck(m) = 〈x(n), φm,k(n)〉. The subspaces
Wk are spanned by the orthonormal wavelet functions ψm,k(n). So, the
approximation of x(n) in the subspace Wk is denoted as

yk(n) =
∑
m

dk(m) ψm,k(n)

with detail coefficients dk(m) = 〈x(n), ψm,k(n)〉. The advantage of mul-
tiresolution analysis is the efficient computation of detail and approx-
imation coefficients in a filterbank with discrete convolutions and sub-
samplings. The scaling functions and wavelets are represented by a cor-
responding lowpass filter gLP and a corresponding bandpass filter gBP.
Further a subsampling operator has to be introduced:

xd(l) =↓2 {x(n)} = x(2l) .

The approximation coefficients ck+1(l) are obtained by the convolution of
ck(m) with the filter coefficients gLP followed by a subsampling whereas
the detail coefficients are computed by the convolution of ck(m) with the
filter coefficients gBP followed by a subsampling operation:

ck+1(l) =↓2 {ck(m) ∗ gLP(m)}

dk+1(l) =↓2 {ck(m) ∗ gBP(m)} .

In wavelet packet analysis the detail coefficients are also decomposed so
that we obtain a binary tree of wavelet packets [3]. In this paper we use
a complete dictionary of wavelet packets, which compose a redundant
tight frame.

4 Analysis of the knock sensor signal

The fuel injection valve transmits impacts to the cylinder head during
the injection process. The structure borne sound propagating through
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the cylinder head and the engine block is monitored by knock sensors.
The knock sensor signals yti(n) have a time varying frequency content.
Hence, a time-frequency distribution is suitable for analyzing the knock
sensor signals. Due to low efford in implementation and redundancy, the
wavelet packet analysis is used for evaluating the signals yti

(n) in the
time-frequency domain. In the following, all wavelet coefficients of the
binary wavelet packet tree are used to illustrate the scalogram. It shall
be examined, if the time instants of interest (BOI, EOPL and EOI ) can
be localized in time and in frequency within yti(n). Therefore, yti(n)
is examined for different requested injection durations ti in Section 4.1
at constant rail pressure prail and constant engine temperature Θ. Ad-
ditionally, a simple method for finding the requested injection duration
ti,start, above which the pintle is lifted, is presented in Section 4.2. In
Section 4.3 a similar strategy is discussed for determining the requested
injection duration ti,full, above which the pintle hits the backstop.

The transfer function between each individual fuel injection valve and
each knock sensor is engine-specific and generally unknown. The effort to
determine all the transfer functions would be considerably high. Hence,
the knock sensor signal is evaluated unprocessed except for a lowpass
filtering with cut-off frequency fg. GDI offers the possibility of multiple
injections per engine cycle. For reasons of signal analysis, the monitored
fuel injection process is performed during a period, when no disturbing
influences caused by the combustion process or the engine’s mechanical
system occur.

4.1 Analysis of different injection durations

The injection duration is set by the injector current I(ti), which depends
on the requested injection duration ti. Figures 13.1–13.3 show the knock
sensor signal and the scalogram obtained by a wavelet packet analysis
with a symmlet4-wavelet in a time window of length T after the SOI
for different ti, whereas ti,3 > ti,2 > ti,1. The time delay between the
SOI and the first structure borne waves in the knock sensor signal is
caused by the time of magnetization of the solenoid and the runtime of
the structure borne sound.

For ti = ti,1 a partial pintle lift is performed, see [1]. In this case, the
solenoid of the fuel injection valve is not energized long enough, so that
the anchor does not hit the backstop, which means that the EOPL does
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Figure 13.1: Knock sensor signal yti(t) in a time window of length T after
the SOI : partial pintle lift for a requested injection duration of ti = ti,1.

not take place. High energy is located in the frequency band around
f = f1 to a certain moment in time, see Figure 13.1. High energy is
expected at the EOI. Unlike the BOI, the EOI is directly related to an
impact. This is the reason, why the BOI is not visible in the scalogram.
In [1], it is shown, how the BOI can be detected.

For ti = ti,2 the fuel injection valve performs a full pintle lift. Hence,
the anchor hits the backstop, which means that the EOPL occurs. Re-
garding Figure 13.2 one can clearly see that mainly two areas of high
energy content are visible in the scalogram. The excited frequency bands
are around f = f1 and f = f2. Comparing the result to the one before,
the frequency band around f = f1 is excited later in time. This en-
courages the assumption, that the EOI is related to frequencies around
f = f1. The energy content around f = f1 in Figure 13.2 is higher than
in Figure 13.1, because the pintle is lifted to a higher position for ti,2
than for ti,1. Hence, the preceding event is the EOPL, which excites
frequencies around f = f2.

Finally, a long injection duration is examined to separate the EOPL
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Figure 13.2: Knock sensor signal yti(t) in a time window of length T after
the SOI : full pintle lift for a requested injection duration of ti = ti,2.

and the EOI, see Figure 13.3. It is clearly visible that EOPL occurs
independently at the same time instant and the same frequency band
around f = f2 as seen before. The same holds true for the EOI and
frequency bands around f = f1 at a time instant later than before.

4.2 Detection of pintle lift

In this section, a simple method for detecting the pintle lift is presented.
The goal is to find the requested injection duration ti,start, at which the
magnetic force of the solenoid is strong enough to lift the pintle. Hence,
for all ti ≥ ti,start the pintle is lifted and fuel is injected into the cylinder.
In order to decide whether an injection is proceeded or not, it is expected
that the EOI only takes place, if and only if there has occurred a BOI.
As can be seen in Figure 13.1, the EOI is related to a strong impact,
which is clearly visible in the time-frequency plane. Hence, certain coeffi-
cients of the wavelet packet tree hold high energy, if an EOI occurs. For
detection, the authors defined a region of interest in the time-frequency
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Figure 13.3: Knock sensor signal yti(t) in a time window of length T after
the SOI : full pintle lift for a requested injection duration of ti = ti,3.

plane, where the EOI is expected to take place for short injection dura-
tions, see Figure 13.4(a). Adding up the energy of those wavelet packet
coefficients representing this area yields to Figure 13.4(b), in which the
energy content of the considered wavelet packet coefficients is plotted
over the requested injection duration ti. For ti = ti,start a step in energy
occurs. This is due to the pintle lift and the EOI, which takes place for
ti ≥ ti,start.

4.3 Detection of full pintle lift

Very similar to last section, a simple method for detecting a full pintle
lift is proposed. For this, the requested injection duration ti,full has to
be detected. For all injection durations ti ≥ ti,full, the solenoid of the
fuel injection valve is energized long enough, so that the anchor hits the
backstop, which is defined as EOPL. As seen in Section 4.1, the EOPL
occurs at a certain moment in time exciting frequencies around f = f2.
The strategy of detection is the same as presented in Section 4.2. The
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(a) Region of interest in time-frequency plane where the EOI is expected

(b) Energy of coefficients within region of interest

Figure 13.4: Detection of the requested injection duration ti,start.

wavelet coefficients, which mainly hold high energy due to the EOPL are
shown in Figure 13.5(a). The energy content of the wavelet coefficients of
interest are added up and plotted in Figure 13.5(b). The step in energy
is finally assigned to ti = ti,full.

5 Conclusion

This report investigated the possibility using the standard knock sensor
of a four cylinder gasoline direct injection engine for diagnosis of the
fuel injection process. It was shown, that all time instants of interest
can be identified within the structure borne sound signal monitored by
the standard knock sensor during the injection process. The events of
the EOPL and the EOI can be distinguished in frequency. The analysis
in time-frequency domain showed adequate results for different ti. Fur-
thermore, the article presented two similar methods for determining the
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(a) Region of interest in time-frequency plane where the EOI is expected

(b) Energy of coefficients within region of interest

Figure 13.5: Detection of the requested injection duration ti,full.

requested injection durations ti,start and ti,full. This information can be
used for injector calibration and hence helps to improve the precision of
the fuel metering of a GDI fuel injection valve.

6 Nomenclature

The following indices are used as wildcards:
ti Requested injection duration
yti

Knock sensor signal during injection process
T Length of time window
BOI Beginning of injection
EOI End of injection
EOPL End of pintle lift
SOI Start of injection (I(ti) > 0)
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