

Table	of	Contents
COVER
TITLE	PAGE
INTRODUCTION

THE	WORLD	OF	.NET
THE	WORLD	OF	C#
WHAT'S	NEW	IN	C#
WHAT'S	NEW	IN	ASP.NET	CORE
WHAT'S	NEW	WITH	WINDOWS
WHAT	YOU	NEED	TO	WRITE	AND	RUN	C#	CODE
WHAT	THIS	BOOK	COVERS
CONVENTIONS
SOURCE	CODE
ERRATA

PART	I:	The	C#	Language
1	.NET	Applications	and	Tools

FROM	.NET	FRAMEWORK	TO	.NET	CORE	TO	.NET
.NET	TERMS
.NET	SUPPORT	LENGTH
APPLICATION	TYPES	AND	TECHNOLOGIES
DEVELOPER	TOOLS
USING	THE	.	NET	CLI
SUMMARY

2	Core	C#
FUNDAMENTALS	OF	C#
NULLABLE	TYPES
USING	PREDEFINED	TYPES
CONTROLLING	PROGRAM	FLOW
ORGANIZATION	WITH	NAMESPACES

WORKING	WITH	STRINGS
COMMENTS
C#	PREPROCESSOR	DIRECTIVES
C#	PROGRAMMING	GUIDELINES
SUMMARY

3	Classes,	Records,	Structs,	and	Tuples
CREATING	AND	USING	TYPES
PASS	BY	VALUE	OR	BY	REFERENCE
CLASSES
RECORDS
STRUCTS
ENUM	TYPES
REF,	IN,	AND	OUT
TUPLES
VALUETUPLE
DECONSTRUCTION
PATTERN	MATCHING
PARTIAL	TYPES
SUMMARY

4	Object-Oriented	Programming	in	C#
OBJECT	ORIENTATION
INHERITANCE	WITH	CLASSES
MODIFIERS
INHERITANCE	WITH	RECORDS
USING	INTERFACES
GENERICS
SUMMARY

5	Operators	and	Casts
OPERATORS
USING	BINARY	OPERATORS

TYPE	SAFETY
OPERATOR	OVERLOADING
COMPARING	OBJECTS	FOR	EQUALITY
IMPLEMENTING	CUSTOM	INDEXERS
USER-DEFINED	CONVERSIONS
SUMMARY

6	Arrays
MULTIPLE	OBJECTS	OF	THE	SAME	TYPE
SIMPLE	ARRAYS
MULTIDIMENSIONAL	ARRAYS
JAGGED	ARRAYS
ARRAY	CLASS
ARRAYS	AS	PARAMETERS
ENUMERATORS
USING	SPAN	WITH	ARRAYS
INDICES	AND	RANGES
ARRAY	POOLS
BITARRAY
SUMMARY

7	Delegates,	Lambdas,	and	Events
REFERENCING	METHODS
DELEGATES
LAMBDA	EXPRESSIONS
EVENTS
SUMMARY

8	Collections
OVERVIEW
COLLECTION	INTERFACES	AND	TYPES
LISTS
STACKS

LINKED	LISTS
SORTED	LIST
DICTIONARIES
SETS
PERFORMANCE
IMMUTABLE	COLLECTIONS
SUMMARY

9	Language	Integrated	Query
LINQ	OVERVIEW
STANDARD	QUERY	OPERATORS
PARALLEL	LINQ
EXPRESSION	TREES
LINQ	PROVIDERS
SUMMARY

10	Errors	and	Exceptions
HANDLING	ERRORS
PREDEFINED	EXCEPTION	CLASSES
CATCHING	EXCEPTIONS
USER-DEFINED	EXCEPTION	CLASSES
CALLER	INFORMATION
SUMMARY

11	Tasks	and	Asynchronous	Programming
WHY	ASYNCHRONOUS	PROGRAMMING	IS	IMPORTANT
TASK-BASED	ASYNC	PATTERN
TASKS
ERROR	HANDLING
CANCELLATION	OF	ASYNC	METHODS
ASYNC	STREAMS
ASYNC	WITH	WINDOWS	APPS
SUMMARY

12	Reflection,	Metadata,	and	Source	Generators
INSPECTING	CODE	AT	RUNTIME	AND	DYNAMIC
PROGRAMMING
CUSTOM	ATTRIBUTES
USING	REFLECTION
USING	DYNAMIC	LANGUAGE	EXTENSIONS	FOR
REFLECTION
EXPANDOOBJECT
SOURCE	GENERATORS
SUMMARY

13	Managed	and	Unmanaged	Memory
MEMORY
MEMORY	MANAGEMENT	UNDER	THE	HOOD
STRONG	AND	WEAK	REFERENCES
WORKING	WITH	UNMANAGED	RESOURCES
UNSAFE	CODE
SPAN<T>
PLATFORM	INVOKE
SUMMARY

PART	II:	Libraries
14	Libraries,	Assemblies,	Packages,	and	NuGet

THE	HELL	OF	LIBRARIES
ASSEMBLIES
CREATING	AND	USING	LIBRARIES
CREATING	NUGET	PACKAGES
MODULE	INITIALIZERS
SUMMARY

15	Dependency	Injection	and	Configuration
WHAT	IS	DEPENDENCY	INJECTION?
USING	THE	.NET	DI	CONTAINER
USING	THE	HOST	CLASS

LIFETIME	OF	SERVICES
INITIALIZATION	OF	SERVICES	USING	OPTIONS
USING	CONFIGURATION	FILES
CONFIGURATION	WITH	.NET	APPLICATIONS
AZURE	APP	CONFIGURATION
SUMMARY

16	Diagnostics	and	Metrics
DIAGNOSTICS	OVERVIEW
LOGGING
METRICS
ANALYTICS	WITH	VISUAL	STUDIO	APP	CENTER
APPLICATION	INSIGHTS
SUMMARY

17	Parallel	Programming
OVERVIEW
PARALLEL	CLASS
TASKS
CANCELLATION	FRAMEWORK
CHANNELS
TIMERS
THREADING	ISSUES
INTERLOCKED
MONITOR
SPINLOCK
WAITHANDLE
MUTEX
SEMAPHORE
EVENTS
BARRIER
READERWRITERLOCKSLIM

LOCKS	WITH	AWAIT
SUMMARY

18	Files	and	Streams
OVERVIEW
MANAGING	THE	FILE	SYSTEM
ITERATING	FILES
WORKING	WITH	STREAMS
USING	READERS	AND	WRITERS
COMPRESSING	FILES
WATCHING	FILE	CHANGES
JSON	SERIALIZATION
USING	FILES	AND	STREAMS	WITH	THE	WINDOWS
RUNTIME
SUMMARY

19	Networking
OVERVIEW
WORKING	WITH	UTILITY	CLASSES
USING	SOCKETS
USING	TCP	CLASSES
USING	UDP
USING	WEB	SERVERS
THE	HTTPCLIENT	CLASS
HTTPCLIENT	FACTORY
SUMMARY

20	Security
ELEMENTS	OF	SECURITY
VERIFYING	USER	INFORMATION
ENCRYPTING	DATA
ENSURING	WEB	SECURITY
SUMMARY

21	Entity	Framework	Core

INTRODUCING	EF	CORE
CREATING	A	MODEL
SCAFFOLDING	A	MODEL	FROM	THE	DATABASE
MIGRATIONS
WORKING	WITH	QUERIES
LOADING	RELATED	DATA
WORKING	WITH	RELATIONSHIPS
SAVING	DATA
CONFLICT	HANDLING
USING	TRANSACTIONS
USING	AZURE	COSMOS	DB
SUMMARY

22	Localization
GLOBAL	MARKETS
NAMESPACE	SYSTEM.GLOBALIZATION
RESOURCES
LOCALIZATION	WITH	ASP.NET	CORE
LOCALIZATION	WITH	WINUI
SUMMARY

23	Tests
OVERVIEW
UNIT	TESTING
USING	A	MOCKING	LIBRARY
ASP.NET	CORE	INTEGRATION	TESTING
SUMMARY

PART	III:	Web	Applications	and	Services
24	ASP.NET	Core

UNDERSTANDING	WEB	TECHNOLOGIES
CREATING	AN	ASP.NET	CORE	WEB	PROJECT
ADDING	CLIENT-SIDE	CONTENT

CREATING	CUSTOM	MIDDLEWARE
ENDPOINT	ROUTING
REQUEST	AND	RESPONSE
SESSION	STATE
HEALTH	CHECKS
DEPLOYMENT
SUMMARY

25	Services
UNDERSTANDING	TODAY'S	SERVICES
REST	SERVICES	WITH	ASP.NET	CORE
CREATING	A	.NET	CLIENT
USING	EF	CORE	WITH	SERVICES
AUTHENTICATION	AND	AUTHORIZATION	WITH	AZURE
AD	B2C
IMPLEMENTING	AND	USING	SERVICES	WITH	GRPC
USING	AZURE	FUNCTIONS
MORE	AZURE	SERVICES
SUMMARY

26	Razor	Pages	and	MVC
SETTING	UP	SERVICES	FOR	RAZOR	PAGES	AND	MVC
RAZOR	PAGES
ASP.NET	CORE	MVC
SUMMARY

27	Blazor
BLAZOR	SERVER	AND	BLAZOR	WEBASSEMBLY
CREATING	A	BLAZOR	SERVER	WEB	APPLICATION
BLAZOR	WEBASSEMBLY
RAZOR	COMPONENTS
SUMMARY

28	SignalR
OVERVIEW

CREATING	A	SIMPLE	CHAT	USING	SIGNALR
GROUPING	CONNECTIONS
STREAMING	WITH	SIGNALR
SUMMARY

PART	IV:	Apps
29	Windows	Apps

INTRODUCING	WINDOWS	APPS
INTRODUCING	XAML
WORKING	WITH	CONTROLS
WORKING	WITH	DATA	BINDING
IMPLEMENTING	NAVIGATION
IMPLEMENTING	LAYOUT	PANELS
SUMMARY

30	Patterns	with	XAML	Apps
WHY	MVVM?
DEFINING	THE	MVVM	PATTERN
SAMPLE	SOLUTION
MODELS
SERVICES
VIEW	MODELS
VIEWS
MESSAGING	USING	EVENTS
SUMMARY

31	Styling	Windows	Apps
STYLING
SHAPES
GEOMETRY
TRANSFORMATION
BRUSHES
STYLES	AND	RESOURCES

TEMPLATES
ANIMATIONS
VISUAL	STATE	MANAGER
SUMMARY

INDEX
COPYRIGHT
DEDICATION
ABOUT	THE	AUTHOR

ABOUT	THE	TECHNICAL	EDITOR
ACKNOWLEDGMENTS
END	USER	LICENSE	AGREEMENT

List	of	Illustrations
Chapter	1

FIGURE	1-1

FIGURE	1-2

Chapter	5

FIGURE	5-1

Chapter	6

FIGURE	6-1

FIGURE	6-2

FIGURE	6-3

FIGURE	6-4

FIGURE	6-5

FIGURE	6-6

FIGURE	6-7

Chapter	8

FIGURE	8-1

FIGURE	8-2

FIGURE	8-3

FIGURE	8-4

Chapter	9

FIGURE	9-1

FIGURE	9-2

Chapter	13

FIGURE	13-1

FIGURE	13-2

FIGURE	13-3

FIGURE	13-4

FIGURE	13-5

FIGURE	13-6

Chapter	14

FIGURE	14-1

FIGURE	14-2

FIGURE	14-3

Chapter	16

FIGURE	16-1

FIGURE	16-2

FIGURE	16-3

FIGURE	16-4

FIGURE	16-5

Chapter	17

FIGURE	17-1

Chapter	18

FIGURE	18-1

Chapter	19

FIGURE	19-1

FIGURE	19-2

Chapter	20

FIGURE	20-1

Chapter	22

FIGURE	22-1

FIGURE	22-2

FIGURE	22-3

FIGURE	22-4

FIGURE	22-5

FIGURE	22-6

FIGURE	22-7

Chapter	23

FIGURE	23-1

Chapter	24

FIGURE	24-1

FIGURE	24-2

Chapter	25

FIGURE	25-1

FIGURE	25-2

FIGURE	25-3

FIGURE	25-4

FIGURE	25-5

FIGURE	25-6

Chapter	26

FIGURE	26-1

FIGURE	26-2

FIGURE	26-3

FIGURE	26-4

FIGURE	26-5

FIGURE	26-6

FIGURE	26-7

FIGURE	26-8

FIGURE	26-9

FIGURE	26-10

Chapter	27

FIGURE	27-1

FIGURE	27-2

FIGURE	27-3

FIGURE	27-4

FIGURE	27-5

Chapter	28

FIGURE	28-1

FIGURE	28-2

FIGURE	28-3

FIGURE	28-4

FIGURE	28-5

Chapter	29

FIGURE	29-1

FIGURE	29-2

FIGURE	29-3

FIGURE	29-4

FIGURE	29-5

FIGURE	29-6

FIGURE	29-7

FIGURE	29-8

FIGURE	29-9

FIGURE	29-10

FIGURE	29-11

FIGURE	29-12

FIGURE	29-13

FIGURE	29-14

FIGURE	29-15

FIGURE	29-16

FIGURE	29-17

FIGURE	29-18

FIGURE	29-19

FIGURE	29-20

Chapter	30

FIGURE	30-1

FIGURE	30-2

FIGURE	30-3

FIGURE	30-4

Chapter	31

FIGURE	31-1

FIGURE	31-2

FIGURE	31-3

FIGURE	31-4

FIGURE	31-5

FIGURE	31-6

FIGURE	31-7

FIGURE	31-8

FIGURE	31-9

FIGURE	31-10

FIGURE	31-11

FIGURE	31-12

FIGURE	31-13

FIGURE	31-14

PROFESSIONAL
C#	and	.NET
	

2021	Edition

	

	

Christian	Nagel

	

	

	

	

	

INTRODUCTION
EVEN	THOUGH	.NET	was	announced	in	the	year	2000,	it	is	not	becoming	a
grandfather	technology.	Instead,	.NET	keeps	increasing	developer	traction	since
it	has	become	open	source	and	is	available	not	only	on	Windows	but	also	on
Linux	platforms.	.NET	can	also	run	within	the	browser	on	the	client—without
the	need	to	install	a	plugin—by	using	the	WebAssembly	standard.

As	new	enhancements	for	C#	and	.NET	are	coming,	a	focus	lies	not	only	on
performance	gains	but	also	on	ease	of	use.	.NET	more	and	more	is	a	choice	for
new	developers.

C#	is	also	attractive	for	long-term	developers.	Every	year,	Stack	Overflow	asks
developers	about	the	most	loved,	dreaded,	and	wanted	programming	languages
and	frameworks.	For	several	years,	C#	has	been	within	the	top	10	of	the	most
loved	programming	languages.	ASP.NET	Core	now	holds	the	top	position	as	the
most	loved	web	framework.	.NET	Core	is	number	one	in	the	most	loved	other
frameworks/libraries/tools	category.	See
https://insights.stackoverflow.com/survey/2020	for	details.

When	you	use	C#	and	ASP.NET	Core,	you	can	create	web	applications	and
services	(including	microservices)	that	run	on	Windows,	Linux,	and	Mac.	You
can	use	the	Windows	Runtime	to	create	native	Windows	apps	using	C#,	XAML,
and	.NET.	You	can	create	libraries	that	you	share	between	ASP.NET	Core,
Windows	apps,	and	.NET	MAUI.	You	can	also	create	traditional	Windows
Forms	and	WPF	applications.

Most	of	the	samples	of	this	book	are	built	to	run	on	a	Windows	or	Linux	system.
Exceptions	are	the	Windows	app	samples	that	run	only	on	the	Windows
platform.	You	can	use	Visual	Studio,	Visual	Studio	Code,	or	Visual	Studio	for
the	Mac	as	the	developer	environment;	only	the	Windows	app	samples	require
Visual	Studio.

THE	WORLD	OF	.NET
.NET	has	a	long	history;	the	first	version	was	released	in	the	year	2002.	The	new
.NET	generation	with	a	complete	rewrite	of	.NET	(.NET	Core	1.0	in	the	year
2016)	is	very	young.	Recently,	many	features	from	the	old	.NET	version	have
been	brought	to	.NET	Core	to	ease	the	migration	experience.

https://insights.stackoverflow.com/survey/2020

When	creating	new	applications,	there	is	no	reason	not	to	move	to	the	new	.NET
versions.	Whether	old	applications	should	stay	with	the	old	version	of	.NET	or
be	migrated	to	the	new	one	depends	on	the	features	used,	how	difficult	the
migration	is,	and	what	advantages	you	gain	after	the	application	is	migrated.	The
best	options	here	need	to	be	considered	with	an	application-by-application
analysis.

The	new	.NET	provides	easy	ways	to	create	Windows	and	web	applications	and
services.	You	can	create	microservices	running	in	Docker	containers	in	a
Kubernetes	cluster;	create	web	applications;	use	the	new	OpenTelemetry
standard	to	analyze	distributed	traces	in	a	vendor-independent	manner;	create
web	applications	returning	HTML,	JavaScript,	and	CSS;	and	create	web
applications	returning	HTML,	JavaScript,	and	.NET	binaries	that	run	in	the
client's	browser	in	a	safe	and	standard	way	using	WebAssembly.	You	can	create
Windows	applications	in	traditional	ways	using	WPF	and	Windows	Forms	and
make	use	of	modern	XAML	features	and	controls	that	support	the	fluent	design
with	WinUI	and	mobile	applications	with	.NET	MAUI.

.NET	uses	modern	patterns.	Dependency	injection	is	built	into	core	services,
such	as	ASP.NET	Core	and	EF	Core,	which	not	only	makes	unit	testing	easier
but	also	allows	developers	to	easily	enhance	and	change	features	from	these
technologies.

.NET	runs	on	multiple	platforms.	Besides	Windows	and	macOS,	many	Linux
environments	are	supported,	such	as	Alpine,	CentOS,	Debian,	Fedora,
openSUSE,	Red	Hat,	SLES,	and	Ubuntu.

.NET	is	open	source	(https://github.com/dotnet)	and	freely	available.	You
can	find	meeting	notes	for	the	C#	compiler
(https://github.com/dotnet/csharplang),	the	source	code	for	the	C#
compiler	(https://github.com/dotnet/Roslyn),	the	.NET	runtime	and
libraries	(https://github.com/dotnet/runtime),	and	ASP.NET	Core
(https://github.com/dotnet/aspnetcore)	with	Razor	Pages,	Blazor,	and
SignalR.

Here's	a	summary	of	some	of	the	features	of	the	new	.NET:

.NET	is	open	source.

.NET	uses	modern	patterns.

.NET	supports	development	on	multiple	platforms.

ASP.NET	Core	can	run	on	Windows	and	Linux.

https://github.com/dotnet
https://github.com/dotnet/csharplang
https://github.com/dotnet/Roslyn
https://github.com/dotnet/runtime
https://github.com/dotnet/aspnetcore

THE	WORLD	OF	C#
When	C#	was	released	in	the	year	2002,	it	was	a	language	developed	for	the
.NET	Framework.	C#	was	designed	with	ideas	from	C++,	Java,	and	Pascal.
Anders	Hejlsberg	had	come	to	Microsoft	from	Borland	and	brought	experience
from	the	language	development	of	Delphi.	At	Microsoft,	Hejlsberg	worked	on
Microsoft's	version	of	Java,	named	J++,	before	creating	C#.

NOTE Today,	Anders	Hejlsberg	has	moved	to	TypeScript	(although	he	still
influences	C#),	and	Mads	Torgersen	is	the	project	lead	for	C#.	C#
improvements	are	discussed	openly	at
https://github.com/dotnet/csharplang,	and	you	can	read	C#	language
proposals	and	event	meeting	notes.	You	can	also	submit	your	own	proposals
for	C#.

C#	started	not	only	as	an	object-oriented	general-purpose	programming	language
but	was	a	component-based	programming	language	that	supported	properties,
events,	attributes	(annotations),	and	building	assemblies	(binaries	including
metadata).

Over	time,	C#	was	enhanced	with	generics,	Language	Integrated	Query	(LINQ),
lambda	expressions,	dynamic	features,	and	easier	asynchronous	programming.
C#	is	not	an	easy	programming	language	because	of	the	many	features	it	offers,
but	it's	continuously	evolving	with	features	that	are	practical	to	use.	With	this,
C#	is	more	than	an	object-oriented	or	component-based	language;	it	also
includes	ideas	of	functional	programming—things	that	are	of	practical	use	for	a
general-purpose	language	developing	all	kinds	of	applications.

Nowadays,	a	new	version	of	C#	is	released	every	year.	C#	8	added	nullable
reference	types,	and	C#	9	added	records	and	more.	C#	10	is	releasing	with	.NET
6	in	2021	and	C#	11	will	be	released	with	.NET	7	in	2022.	Because	of	the
frequency	of	changes	nowadays,	check	the	GitHub	repository	for	the	book	(read
more	in	the	section	“Source	Code”)	for	continuous	updates.

WHAT'S	NEW	IN	C#
Every	year,	a	new	version	of	C#	is	released,	with	many	new	features	available	in
each	version.	The	latest	versions	include	features	such	as	nullable	reference
types	to	reduce	exceptions	of	type	NullableReferenceException	and	instead	let

https://github.com/dotnet/csharplang

the	compiler	help	more;	features	to	increase	productivity	such	as	indices	and
ranges;	switch	expressions	that	make	the	switch	statement	look	old;	features	for
using	declarations;	and	enhancements	with	pattern	matching.	Top-level
statements	allow	reducing	the	number	of	source	code	lines	with	small
applications	and	records—classes	where	the	compiler	creates	boilerplate	code
for	equality	comparison,	deconstruction,	and	with	expressions.	Code	generators
allow	creating	code	automatically	while	the	compiler	runs.	All	these	new
features	are	covered	in	this	book.

WHAT'S	NEW	IN	ASP.NET	CORE
ASP.NET	Core	now	contains	new	technology	for	creating	web	applications:
Blazor	Server	and	Blazor	WebAssembly.	With	Blazor,	you	have	a	full-stack
option	to	write	C#	code	both	for	the	client	and	for	the	server.	With	Blazor	Server,
the	Razor	components	you	create	containing	HTML	and	C#	code	run	on	the
server.	With	Blazor	WebAssembly,	Razor	components	written	with	C#	and
HTML	run	on	the	client	using	the	HTML	5	standard	WebAssembly	that	allows
you	to	run	binary	code	in	the	browser,	which	is	supported	by	all	modern	web
browsers.

For	creating	services,	you	can	now	use	gRPC	with	ASP.NET	Core	for	binary
communication	between	services.	This	is	a	great	option	for	service-to-service
communication	to	reduce	the	bandwidth	needed,	as	well	as	CPU	and	memory
usage	if	a	lot	of	data	transfer	is	needed.

WHAT'S	NEW	WITH	WINDOWS
For	developing	applications	for	Windows,	a	new	technology	combines	the
features	of	the	Universal	Windows	Platform	and	desktop	applications:	WinUI	3.
WinUI	is	the	native	UI	platform	for	Windows	10	applications.	With	WinUI	3,
you	can	use	modern	XAML	code	that	includes	compiled	binding	to	create
desktop	applications.	New	controls	with	Microsoft's	fluent	design	system	are
available.	These	controls	are	not	delivered	with	the	Windows	Runtime	as	was
previously	the	case	with	the	Universal	Windows	Platform	(UWP).	These
controls	are	developed	independently	of	the	Windows	10	version	that	allows	you
to	use	the	newest	controls	with	Windows	10	versions	1809	and	above.	As	the
roadmap	available	with	WinUI	shows,	these	new	controls	will	be	usable	from
WPF	applications	as	well.

WHAT	YOU	NEED	TO	WRITE	AND	RUN	C#	CODE
.NET	runs	on	Windows,	Linux,	and	Mac	operating	systems.	You	can	create	and
build	your	programs	on	any	of	these	operating	systems	using	Visual	Studio	Code
(https://code.visualstudio.com).	You	can	build	and	run	most	of	the	samples
on	Windows	or	Linux	and	use	the	.NET	development	tools	of	your	choice.	Only
the	WinUI	applications	require	you	to	use	the	Windows	platform,	and	here,
Visual	Studio	is	the	best	option	to	use.	The	minimum	version	required	to	build
and	run	the	WinUI	application	is	version	16.10.

The	command	line	plays	an	important	part	when	using	the	.NET	CLI	and	the
Azure	CLI;	you	can	use	the	new	Windows	Terminal.	With	the	newest	Windows
10	versions,	this	terminal	is	delivered	as	part	of	Windows.	With	older	versions,
you	can	download	it	from	the	Microsoft	Store.

Most	.NET	developers	use	the	Windows	platform	as	their	development	machine.
When	using	the	Windows	Subsystem	for	Linux	(WSL	2),	you	can	build	and	run
your	.NET	applications	in	a	Linux	environment,	and	you	can	install	different
Linux	distributions	from	your	Windows	environment	and	access	the	same	files.
Visual	Studio	even	allows	debugging	your	.NET	applications	while	they	run	in	a
Linux	environment	on	WSL	2.

With	some	samples	of	the	book,	Microsoft	Azure	is	shown	as	an	optional
hosting	environment	to	run	your	web	applications,	use	Azure	Functions,	and	use
Entity	Framework	Core	to	access	SQL	Server	and	Azure	Cosmos	DB.	For	this,
you	can	use	a	free	trial	offering	from	Microsoft	Azure;	visit
https://azure.microsoft.com/free	to	register.

https://code.visualstudio.com
https://azure.microsoft.com/free

WHAT	THIS	BOOK	COVERS
This	book	covers	these	four	major	parts:

The	C#	language

Using	base	class	libraries	from	.NET

Developing	web	applications	and	services

Developing	Windows	applications

Let's	get	into	the	different	parts	and	all	the	chapters	in	more	detail.

Part	I,	“The	C#	Language”
The	first	part	of	this	book	covers	all	the	aspects	of	the	C#	programming
language.	You	learn	the	syntax	options	and	see	how	the	C#	syntax	integrates
with	classes	and	interfaces	from	.NET.	This	part	gives	good	grounding	in	the	C#
language.	This	section	doesn't	presume	knowledge	of	any	particular
programming	language,	but	it's	assumed	you	are	an	experienced	programmer.
You	start	looking	at	C#'s	basic	syntax	and	data	types	before	getting	into
advanced	C#	features.

Chapter	1,	“.NET	Applications	and	Tools,”	covers	what	you	need	to	know
to	create	.NET	applications.	You	learn	about	the	.NET	CLI	and	create	a
Hello	World	application	using	C#	9	top-level	statements.

Chapter	2,	“Core	C#,”	dives	into	core	C#	features	and	gives	you	details	on
top-level	statements	and	information	on	declaration	of	variables	and	data
types.	The	chapter	covers	target-typed	new	expressions,	explains	nullable
reference	types,	and	defines	a	program	flow	that	includes	the	new	switch
expressions.

Chapter	3,	“Classes,	Records,	Structs,	and	Tuples,”	gives	you	information
to	create	reference	or	value	types,	create	and	use	tuples,	and	make	use	of
the	C#	9	enhancement	to	create	and	use	records.

Chapter	4,	“Object-Oriented	Programming	in	C#,”	goes	into	details	of
object-oriented	techniques	with	C#	and	demonstrates	all	the	C#	keywords
for	object	orientation.	It	also	covers	using	inheritance	with	C#	9	records.

Chapter	5,	“Operators	and	Casts,”	explains	the	C#	operators,	and	you	also
learn	how	to	overload	standard	operators	for	custom	types.

Chapter	6,	“Arrays,”	doesn't	stop	with	simple	arrays;	you	learn	using
multidimensional	and	jagged	arrays,	use	the	Span	type	to	access	arrays,	and
use	the	new	index	and	range	operators	to	access	arrays.

Chapter	7,	“Delegates,	Lambdas,	and	Events,”	covers	.NET	pointers	to
methods,	lambda	expressions	with	closures,	and	.NET	events.

Chapter	8,	“Collections,”	dives	into	the	different	kind	of	collections,	such
as	lists,	queues,	stacks,	dictionaries,	and	immutable	collections.	The	chapter
also	gives	you	the	information	you	need	to	decide	which	collection	to	use	in
what	scenario.

Chapter	9,	“Language	Integrated	Query,”	gives	you	the	C#	language
integrated	query	features	to	query	data	from	your	collections.	You	also	learn
how	to	use	multiple	CPU	cores	with	a	query	and	what's	behind	expression
trees	that	are	used	when	you	use	LINQ	to	access	your	database	with	Entity
Framework	Core.

Chapter	10,	“Errors	and	Exceptions,”	covers	how	you	should	deal	with
errors,	throw	and	catch	exceptions,	and	filter	exceptions	when	catching
them.

Chapter	11,	“Tasks	and	Asynchronous	Programming,”	shows	the	C#
keywords	async	and	await	in	action—	not	only	with	the	task-based	async
pattern	but	also	with	async	streams,	which	is	a	new	feature	since	C#	8.

Chapter	12,	“Reflection,	Metadata,	and	Source	Generators,”	covers	using
and	reading	attributes	with	C#.	The	attributes	will	not	just	be	read	using
reflection,	but	you'll	also	see	the	functionality	of	source	generators	that
allow	creating	source	code	during	compile	time.

Chapter	13,	“Managed	and	Unmanaged	Memory,”	is	the	last	chapter	of	Part
I,	which	not	only	shows	using	the	IDisposable	interface	with	the	using
statement	and	the	new	using	declaration	but	also	demonstrates	using	the
Span	type	with	managed	and	unmanaged	memory.	You	can	read	about	using
Platform	Invoke	both	with	Windows	and	with	Linux	environments.

Part	II,	“Libraries”
Part	II	starts	with	creating	custom	libraries	and	NuGet	packages,	but	the	major
topics	covered	with	Part	II	are	for	using	.NET	libraries	that	are	important	for	all
application	types.

Chapter	14,	“Libraries,	Assemblies,	Packages,	and	NuGet,”	explains	the

differences	between	assemblies	and	NuGet	packages.	In	this	chapter,	you
learn	how	to	create	NuGet	packages	and	are	introduced	to	a	new	C#	feature,
module	initializers,	which	allow	you	to	run	initial	code	in	a	library.

Chapter	15,	“Dependency	Injection	and	Configuration,”	gives	detail	about
how	the	Host	class	is	used	to	configure	a	dependency	injection	container
and	the	built-in	options	to	retrieve	configuration	information	from	a	.NET
application	with	different	configuration	providers,	including	Azure	App
Configuration	and	user	secrets.

Chapter	16,	“Diagnostics	and	Metrics,”	continues	using	the	Host	class	to
configure	logging	options.	You	also	learn	about	reading	metric	information
that's	offered	from	some	NET	providers,	using	Visual	Studio	App	Center,
and	extending	logging	for	distributed	tracing	with	OpenTelemetry.

Chapter	17,	“Parallel	Programming,”	covers	myriad	features	available	with
.NET	for	parallelization	and	synchronization.	Chapter	11	shows	the	core
functionality	of	the	Task	class.	In	Chapter	17,	more	of	the	Task	class	is
shown,	such	as	forming	task	hierarchies	and	using	value	tasks.	The	chapter
goes	into	issues	of	parallel	programming	such	as	race	conditions	and
deadlocks,	and	for	synchronization,	you	learn	about	different	features
available	with	the	lock	keyword,	the	Monitor,	SpinLock,	Mutex,	Semaphore
classes,	and	more.

Chapter	18,	“Files	and	Streams,”	not	only	covers	reading	and	writing	from
the	file	system	with	new	stream	APIs	that	allow	using	the	Span	type	but
also	covers	the	new	.NET	JSON	serializer	with	classes	in	the
System.Text.Json	namespace.

In	Chapter	19,	“Networking,”	you	learn	about	foundational	classes	for
network	programming,	such	as	the	Socket	class	and	how	to	create
applications	using	TCP	and	UDP.	You	also	use	the	HttpClient	factory
pattern	to	create	HttpClient	objects	with	automatic	retries	if	transient
errors	occur.

Chapter	20,	“Security,”	gives	you	information	about	cryptography	classes
for	encrypting	data,	explains	how	to	use	the	new	Microsoft.Identity
platform	for	user	authentication,	and	provides	information	on	web	security
and	what	you	need	to	be	aware	of	with	encoding	issues	as	well	as	cross-site
request	forgery	attacks.

Chapter	21,	“Entity	Framework	Core,”	covers	reading	and	writing	data
from	a	database—including	the	many	features	offered	from	EF	Core,	such

as	shadow	properties,	global	query	filters,	many-to-many	relations,	and
what	metric	information	is	now	offered	by	EF	Core—and	reading	and
writing	to	Azure	Cosmos	DB	with	EF	Core.

In	Chapter	22,	“Localization,”	you	learn	to	localize	applications	using
techniques	that	are	important	both	for	Windows	and	web	applications.

Chapter	23,	“Tests,”	covers	creating	unit	tests,	analyzing	code	coverage
with	the	.NET	CLI,	using	a	mocking	library	when	creating	unit	tests,	and
what	features	are	offered	by	ASP.NET	Core	to	create	integration	tests.

Part	III,	“Web	Applications	and	Services”
Part	III	of	this	book	is	dedicated	to	ASP.NET	Core	technologies	for	creating	web
applications	and	services,	no	matter	whether	you	run	these	applications	and
services	in	your	on-premises	environment	or	in	the	cloud	making	use	of	Azure
App	Services,	Azure	Static	Web	Apps,	or	Azure	Functions.

Chapter	24,	“ASP.NET	Core,”	gives	you	the	foundation	of	ASP.NET	Core.
Based	on	the	dependency	injection	container	you	learned	about	in	Part	II,
this	chapter	shows	how	ASP.NET	Core	makes	use	of	middleware	to	add
functionality	to	every	HTTP	request	and	define	routes	with	ASP.NET	Core
endpoint	routing.

Chapter	25,	“Services,”	dives	into	creating	microservices	using	different
technologies	such	as	ASP.NET	Core	as	well	as	using	Azure	Functions	and
gRPC	for	binary	communication.

Chapter	26,	“Razor	Pages	and	MVC,”	is	about	interacting	with	users	with
ASP.NET	Core	technologies.	It	covers	Razor	pages,	Razor	views,	and
functionality	such	as	tag	helpers	and	view	components.

Chapter	27,	“Blazor,”	is	about	the	newest	enhancement	of	ASP.NET	Core
with	Razor	components,	which	allows	you	to	implement	C#	code	running
either	on	the	server	or	in	the	client	using	WebAssembly.	You	learn	about	the
differences	between	Blazor	Server	and	Blazor	WebAssembly,	what	the
restrictions	are	with	these	technologies,	and	the	built-in	components
available.

Chapter	28,	“SignalR,”	covers	the	real-time	functionality	available	with
ASP.NET	Core	to	send	information	to	a	group	of	clients	and	how	you	can
use	C#	async	streams	with	SignalR.

Part	IV,	“Apps”
Part	IV	of	this	book	is	dedicated	to	XAML	code	and	creating	Windows
applications	with	the	native	UI	platform	for	Windows	10:	WinUI.	Much	of	the
information	you	get	here	can	also	be	applied	to	WPF	applications	and	to	.NET
MAUI	and	developing	XAML-based	applications	for	mobile	platforms.

Chapter	29,	“Windows	Apps,”	gives	you	foundational	information	on
XAML,	including	dependency	properties	and	attached	properties.	You	learn
how	to	create	custom	markup	extensions	and	about	the	control	categories
available	with	WinUI,	including	advanced	techniques	such	as	adaptive
triggers	and	deferred	loading.

Chapter	30,	“Patterns	with	XAML	Apps,”	gives	you	the	information	you
need	to	use	the	MVVM	pattern	and	how	you	can	share	as	much	code	as
possible	between	different	XAML-based	technologies	such	as	WinUI,
WPF,	and	.NET	MAUI.

Chapter	31,	“Styling	Windows	Apps,”	explains	XAML	shapes	and
geometry	elements,	dives	into	styles	and	control	templates,	gives	you
information	on	creating	animations,	and	explains	how	you	can	use	the
Visual	State	Manager	with	your	XAML-based	applications.

CONVENTIONS
To	help	you	get	the	most	from	the	text	and	keep	track	of	what's	happening,	I	use
some	conventions	throughout	the	book.

WARNING Warnings	hold	important,	not-to-be-forgotten	information	that
is	directly	relevant	to	the	surrounding	text.

NOTE Notes	indicate	notes,	tips,	hints,	tricks,	and/or	asides	to	the	current
discussion.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	keyboard	strokes	like	this:	Ctrl+A.

We	show	filenames,	URLs,	and	code	within	the	text	like	so:

persistence.properties.

We	present	code	in	two	different	ways:

We	use	a	monofont	type	with	no	highlighting	for	most	code	

examples.

We	use	bold	to	emphasize	code	that's	particularly	important	in	

the	present	context	or	to	show	changes	from	a	previous	code	

snippet.

SOURCE	CODE
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type
all	the	code	manually	or	to	use	the	source	code	files	that	accompany	the	book.
All	the	source	code	used	in	this	book	is	available	for	download	at
www.wiley.com.	When	at	the	site,	simply	locate	the	book's	title	(either	by	using
the	Search	box	or	by	using	one	of	the	title	lists)	and	click	the	Download	Code
link	on	the	book's	detail	page	to	obtain	all	the	source	code	for	the	book.

NOTE Because	many	books	have	similar	titles,	you	may	find	it	easiest	to
search	by	ISBN;	this	book's	ISBN	is	978-1-119-79720-3.

After	you	download	the	code,	just	decompress	it	with	your	favorite	compression
tool.

The	source	code	is	also	available	on	GitHub	at
https://www.github.com/ProfessionalCSharp/ProfessionalCSharp2021.
With	GitHub,	you	can	also	open	each	source	code	file	with	a	web	browser.	When
you	use	the	website,	you	can	download	the	complete	source	code	in	a	zip	file.
You	can	also	clone	the	source	code	to	a	local	directory	on	your	system.	Just
install	the	Git	tools,	which	you	can	do	with	Visual	Studio	or	by	downloading	the
Git	tools	from	https://git-scm.com/downloads	for	Windows,	Linux,	and	Mac.
To	clone	the	source	code	to	a	local	directory,	use	git	clone:

>	git	clone	

https://www.github.com/ProfessionalCSharp/ProfessionalCSharp2021

With	this	command,	the	complete	source	code	is	copied	to	the	subdirectory
ProfessionalCSharp2021.	From	there,	you	can	start	working	with	the	source
files.

As	updates	of	.NET	become	available	(until	the	next	edition	of	the	book	will	be

http://www.wiley.com
https://www.github.com/ProfessionalCSharp/ProfessionalCSharp2021
https://git-scm.com/downloads

released),	the	source	code	will	be	updated	on	GitHub.	Check	the	readme.md	file
in	the	GitHub	repo	for	updates.	If	the	source	code	changes	after	you	cloned	it,
you	can	pull	the	latest	changes	after	changing	your	current	directory	to	the
directory	of	the	source	code:

>	git	pull

In	case	you've	made	some	changes	on	the	source	code,	git	pull	might	result	in
an	error.	If	this	happens,	you	can	stash	away	your	changes	and	pull	again:

>	git	stash

>	git	pull

The	complete	list	of	git	commands	is	available	at	https://git-scm.com/docs.

In	case	you	have	questions	on	the	source	code,	use	discussions	with	the	GitHub
repository.	If	you	find	an	error	with	the	source	code,	create	an	issue.	Open
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in	the
browser,	click	the	Issues	tab,	and	click	the	New	Issue	button.	This	opens	an
editor.	Just	be	as	descriptive	as	possible	to	describe	your	issue.

For	reporting	issues,	you	need	a	GitHub	account.	If	you	have	a	GitHub	account,
you	can	also	fork	the	source	code	repository	to	your	account.	For	more
information	on	using	GitHub,	check
https://guides.github.com/activities/hello-world.

NOTE You	can	read	the	source	code	and	issues	and	clone	the	repository
locally	without	joining	GitHub.	For	posting	issues	and	creating	your	own
repositories	on	GitHub,	you	need	your	own	GitHub	account.	For	basic
functionality,	GitHub	is	free	(see	https://github.com/pricing).

ERRATA
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.
However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of
our	books,	like	a	spelling	mistake	or	faulty	piece	of	code,	we	would	be	grateful
for	your	feedback.	By	sending	in	errata,	you	may	save	another	reader	hours	of
frustration,	and	at	the	same	time	you	can	help	provide	even	higher-quality
information.

To	find	the	errata	page	for	this	book,	go	to	www.wiley.com	and	locate	the	title

https://git-scm.com/docs
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021
https://guides.github.com/activities/hello-world
https://github.com/pricing
http://www.wiley.com

using	the	Search	box	or	one	of	the	title	lists.	Then,	on	the	book	details	page,
click	the	Book	Errata	link.	On	this	page,	you	can	view	all	errata	that	have	been
submitted	for	this	book	and	posted	by	the	book's	editors.

If	you	don't	spot	“your”	error	on	the	Book	Errata	page,	go	to
https://support.wiley.com/s/article/reporting-a-wiley-book-error	for
information	about	how	to	send	us	the	error	you	have	found.	We'll	check	the
information	and,	if	appropriate,	post	a	message	to	the	book's	errata	page	and	fix
the	problem	in	subsequent	editions	of	the	book.

https://support.wiley.com/s/article/reporting-a-wiley-book-error

PART	I
The	C#	Language

CHAPTER	1:	.NET	Applications	and	Tools

CHAPTER	2:	Core	C#

CHAPTER	3:	Classes,	Records,	Structs,	and	Tuples

CHAPTER	4:	Object-Oriented	Programming	in	C#

CHAPTER	5:	Operators	and	Casts

CHAPTER	6:	Arrays

CHAPTER	7:	Delegates,	Lambdas,	and	Events

CHAPTER	8:	Collections

CHAPTER	9:	Language	Integrated	Query

CHAPTER	10:	Errors	and	Exceptions

CHAPTER	11:	Tasks	and	Asynchronous	Programming

CHAPTER	12:	Reflection,	Metadata,	and	Source	Generators

CHAPTER	13:	Managed	and	Unmanaged	Memory

1
.NET	Applications	and	Tools

WHAT'S	IN	THIS	CHAPTER?

From	.NET	Framework	to	.NET	Core	to	.NET

.NET	terms

.NET	support	length

Application	types	and	technologies

Developer	tools

Using	the	.NET	command-line	interface

Programming	“Hello	World!”

Technologies	for	creating	web	apps

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/HelloWorld.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

HelloWorld

WebApp

SelfContainedHelloWorld

FROM	.NET	FRAMEWORK	TO	.NET	CORE	TO
.NET

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

The	first	version	of	.NET	was	released	in	2002.	Since	the	first	version,	many
things	have	changed.	The	first	era	of	.NET	was	the	.NET	Framework	that	offered
Windows	Forms	for	Windows	desktop	development	and	Web	Forms	to	create
web	applications.	This	version	of	.NET	was	available	only	for	Microsoft
Windows.	At	that	time,	Microsoft	also	invented	a	standard	for	C#	at	ECMA
(https://www.ecma-international.org/publications/standards/Ecma-
334.htm).

Later,	Silverlight	used	a	subset	of	this	technology	with	a	limited	library	and
runtime	running	in	browsers	using	a	browser	add-in.	At	that	time,	the	company
Ximian	developed	the	Mono	runtime.	This	runtime	was	available	for	Linux	and
Android	and	offered	a	subset	of	Microsoft	.NET’s	functionality.	Later,	Novell
bought	Ximian,	and	Novell	was	later	bought	by	The	Attachmate	Group.	As	the
new	organization	lost	interest	in	.NET,	Miguel	de	Icaza	(the	founder	of	Ximian)
started	Xamarin	and	took	the	interesting	.NET	parts	into	his	new	organization	to
start	.NET	for	Android	and	iOS.	Nowadays,	Xamarin	belongs	to	Microsoft,	and
the	Mono	runtime	is	part	of	the	dotnet	runtime	repo
(https://github.com/dotnet/runtime).

Silverlight	started	.NET	development	for	other	devices	with	different	form
factors,	which	have	different	needs	for	.NET.	Silverlight	was	not	successful	in
the	long	term	because	HTML5	offered	features	that	previously	only	were
available	by	using	browser	add-ins.	However,	Silverlight	started	moving	.NET	in
other	directions	that	resulted	in	.NET	Core.

.NET	Core	was	the	biggest	change	to	.NET	since	its	inception.	.NET	code
became	open-source,	you	could	create	apps	for	other	platforms,	and	the	new
code	base	of	.NET	is	using	modern	design	patterns.	The	next	step	is	a	logical
move:	the	version	of	.NET	after	.NET	Core	3.1	is	.NET	5.	The	Core	name	is
removed,	and	version	4	was	skipped	to	send	a	message	to	.NET	Framework
developers	that	there's	a	higher	version	than	.NET	Framework	4.8,	and	it's	time
to	move	to	.NET	5	for	creating	new	applications.

For	developers	using	.NET	Core,	the	move	is	an	easy	one.	With	existing
applications,	usually	all	that	needs	to	be	changed	is	the	version	number	of	the
target	framework.	Moving	applications	from	the	.NET	Framework	is	not	that
easy	and	might	require	bigger	changes.	Depending	on	the	application	type,	more
or	less	change	is	needed.	.NET	Core	3.x	supports	WPF	and	Windows	Forms
applications.	With	these	application	types,	the	change	can	be	easy.	However,
existing	.NET	Framework	WPF	applications	may	have	features	that	cannot	be
moved	that	easily	to	the	new	.NET.	For	example,	application	domains	are	not

http://www.ecma-international.org/publications/standards/Ecma-334.htm
https://github.com/dotnet/runtime

supported	with	.NET	Core	and	.NET	5.	Moving	Windows	Communication
Foundation	(WCF)	services	to	.NET	5	is	not	at	all	easy.	The	server	part	of	WCF
is	not	supported	in	the	new	.NET	era.	The	WCF	part	of	the	application	needs	to
be	rewritten	to	ASP.NET	Core	Web	API,	gRPC,	or	another	communication
technology	that	fulfills	the	needs.

With	existing	applications,	it	can	be	useful	to	stay	with	the	.NET	Framework
instead	of	changing	to	the	new	.NET	because	the	old	framework	will	still	be
maintained	for	many	years	to	come.	The	.NET	Framework	is	installed	with
Windows	10,	and	support	for	the	.NET	Framework	has	a	long	target	that	is
bound	to	the	support	of	the	Windows	10	versions.

The	new	.NET	and	NuGet	packages	allow	Microsoft	to	provide	faster	update
cycles	for	delivering	new	features.	It's	not	easy	to	decide	what	technology	should
be	used	for	creating	applications.	This	chapter	helps	you	with	that	decision.	It
gives	you	information	about	the	different	technologies	available	for	creating
Windows	and	web	apps	and	services,	offers	guidance	on	what	to	choose	for
database	access,	and	helps	with	moving	from	old	technologies	to	new	ones.
You'll	also	read	about	the	.NET	tooling	that	you	can	use	with	the	code	samples
through	all	the	chapters	of	this	book.

.NET	TERMS
Before	digging	deeper,	you	should	understand	concepts	and	some	important
.NET	terms,	such	as	what's	in	the	.NET	SDK	and	what	the	.NET	runtime	is.	You
also	should	get	a	better	understanding	of	the	.NET	Framework	and	.NET,	when
to	use	the	.NET	Standard,	and	the	NuGet	packages	and	.NET	namespaces.

.NET	SDK
For	developing	.NET	applications,	you	need	to	install	the	.NET	SDK.	The	SDK
contains	the	.NET	command-line	interface	(CLI),	tools,	libraries,	and	the
runtime.	With	the	.NET	CLI,	you	can	create	new	applications	based	on
templates,	restore	packages,	build	and	test	the	application,	and	create
deployment	packages.	Later	in	this	chapter	in	the	section	“.NET	CLI,”	you	will
see	how	to	create	and	build	applications.

If	you	use	Visual	Studio	2019,	the	.NET	SDK	is	installed	as	part	of	Visual
Studio.	If	you	don't	have	Visual	Studio,	you	can	install	the	SDK	from
https://dot.net.	Here,	you	can	find	instructions	on	how	to	install	the	SDK	on
Windows,	Mac,	and	Linux	systems.

https://dot.net

You	can	install	multiple	versions	of	the	.NET	SDK	in	parallel.	The	command

>	dotnet	--list-sdks

shows	all	the	different	SDK	versions	that	are	installed	on	the	system.	By	default,
the	latest	version	is	used.

NOTE To	run	the	command,	you	have	many	different	options	to	start	a
command	prompt.	One	is	the	Windows	built-in	Command	Prompt;	you	can
install	the	new	Windows	Terminal;	if	Visual	Studio	is	installed,	you	can	start
the	Developer	Command	Prompt;	or	you	can	use	the	bash	shell.	Read	more
on	the	Windows	Terminal	later	in	this	chapter	in	the	section	“Developer
Tools.”

You	can	create	a	global.json	file	if	you	do	not	want	to	use	the	latest	version	of
the	SDK.	The	command

>	dotnet	new	globaljson

creates	the	file	global.json	in	the	current	directory.	This	file	contains	the
version	element	with	the	version	number	currently	used.	You	can	change	the
version	number	to	one	of	the	other	SDK	versions	that	is	installed:

{

		"sdk":	{

				"version":	"5.0.202"

		}

}

In	the	directory	of	global.json	and	its	subdirectories,	the	specified	SDK
version	is	used.	You	can	verify	this	with

>	dotnet	--version

.NET	Runtime
On	the	target	system,	the	.NET	SDK	is	not	required.	Here	you	just	need	to	install
the	.NET	runtime.	The	runtime	includes	all	the	core	libraries	and	the	dotnet
driver.

The	dotnet	driver	is	used	to	run	the	application—for	example,	the	Hello,	World
application	with

>	dotnet	hello-world.dll	

At	https://dot.net,	you	can	find	not	only	instructions	to	download	and	install
the	SDK	on	different	platforms	but	also	the	runtime.

Instead	of	installing	the	runtime	on	the	target	system,	you	also	can	deliver	the
runtime	as	part	of	the	application	(which	is	known	as	self-contained
deployment).	This	technique	is	very	different	from	older	.NET	Framework
applications	and	is	covered	later	in	the	chapter	in	the	“Using	the	.NET	CLI”
section.

To	see	which	runtimes	are	installed,	you	can	use

>	dotnet	--list-runtimes

Common	Language	Runtime
The	C#	compiler	compiles	C#	code	to	Microsoft	Intermediate	Language	(IL)
code.	This	code	is	a	little	bit	like	assembly	code,	but	it	has	more	object-oriented
features.	The	IL	code	is	run	by	the	Common	Language	Runtime	(CLR).	What's
done	by	a	CLR?

The	IL	code	is	compiled	to	native	code	by	the	CLR.	The	IL	code	available	in
.NET	assemblies	is	compiled	by	a	Just-In-Time	(JIT)	compiler.	This	compiler
creates	platform-specific	native	code.	The	runtime	includes	a	JIT	compiler
named	RyuJIT.	This	compiler	is	not	only	faster	than	the	previous	one,	but	it	also
has	better	support	for	using	Edit	&	Continue	while	you're	debugging	the
application	with	Visual	Studio.

The	runtime	also	includes	a	type	system	with	a	type	loader	that	is	responsible	for
loading	types	from	assemblies.	Security	infrastructure	with	the	type	system
verifies	whether	certain	type	system	structures	are	permitted—for	example,	with
inheritance.

After	instances	of	types	are	created,	they	also	need	to	be	destroyed,	and	memory
needs	to	be	recycled.	Another	feature	of	the	runtime	is	the	garbage	collector.	The
garbage	collector	cleans	up	memory	from	objects	that	are	no	longer	referenced
in	the	managed	heap.

The	runtime	is	also	responsible	for	threading.	When	you	are	creating	a	managed
thread	from	C#,	it	is	not	necessarily	a	thread	from	the	underlying	operating
system.	Threads	are	virtualized	and	managed	by	the	runtime.

NOTE How	you	can	create	and	manage	threads	from	C#	is	covered	in
Chapter	17,	“Parallel	Programming.”	Chapter	13,	“Managed	and

https://dot.net

Unmanaged	Memory,”	gives	information	about	the	garbage	collector	and
how	to	clean	up	memory.

.NET	Compiler	Platform
The	C#	compiler	that's	installed	as	part	of	the	SDK	belongs	to	the	.NET
Compiler	Platform,	which	is	also	known	by	the	code	name	Roslyn.	Roslyn
allows	you	to	interact	with	the	compilation	process,	work	with	syntax	trees,	and
access	the	semantic	model	that	is	defined	by	language	rules.	You	can	use	Roslyn
to	write	code	analyzers	and	refactoring	features.	You	also	can	use	Roslyn	with	a
new	feature	of	C#	9,	code	generators,	which	are	discussed	in	Chapter	12,
“Reflection,	Metadata,	and	Source	Generators.”

.NET	Framework
The	.NET	Framework	is	the	name	of	the	old	.NET.	The	last	version	available	is
.NET	Framework	4.8.	It's	not	that	useful	to	create	new	applications	with	this
framework,	but	of	course	you	can	maintain	existing	applications	because	this
technology	will	still	be	supported	for	many	years	to	come.	If	existing
applications	don't	get	any	advantages	by	moving	to	new	technologies	and	there's
not	a	lot	of	maintenance	going	on,	there's	no	need	to	switch	in	the	short	term.

Depending	on	the	technologies	used	with	existing	applications,	the	switch	to
.NET	can	be	easy.	WPF	and	Windows	Forms	have	been	offered	with	newer
technologies	since	.NET	Core	3.	However,	WPF	and	Windows	applications
could	have	used	features	where	the	application	architecture	might	need	a	change.

Examples	of	technologies	that	are	no	longer	offered	with	new	versions	of	.NET
are	ASP.NET	Web	Forms,	Windows	Communication	Foundation	(WCF),	and
Windows	Workflow	Foundation	(WF).	Instead	of	ASP.NET	Web	Forms,	you	can
rewrite	applications	using	ASP.NET	Blazor.	Instead	of	WCF,	you	can	use
ASP.NET	Core	Web	API	or	gRPC.	Instead	of	WF,	moving	to	Azure	Logic	Apps
might	be	useful.

.NET	Core

.NET	Core	is	the	new	.NET	that	is	used	by	all	new	technologies	and	is	a	main
focus	of	this	book	(with	the	new	name	.NET).	This	framework	is	open	source,
and	you	can	find	it	at	http://www.github.com/dotnet.	The	runtime	is	the
CoreCLR	repository;	the	framework	containing	collection	classes,	file	system

http://www.github.com/dotnet

access,	console,	XML,	and	a	lot	more	is	in	the	CoreFX	repository.

Unlike	the	.NET	Framework,	where	the	specific	version	you	needed	for	the
application	had	to	be	installed	on	the	system,	with	.NET	Core	1.0,	the
framework,	including	the	runtime,	is	delivered	with	the	application.	Previously,
there	were	times	when	you	might	have	had	problems	deploying	an	ASP.NET
web	application	to	a	shared	server	because	the	provider	had	older	versions	of
.NET	installed;	those	times	are	gone.	Now	you	can	deliver	the	runtime	with	the
application,	and	you	are	not	dependent	on	the	version	installed	on	the	server.

.NET	Core	is	designed	in	a	modular	approach.	The	framework	is	split	into	a
large	list	of	NuGet	packages.	So	that	you	don't	have	to	deal	with	all	the
packages,	metapackages	reference	the	smaller	packages	that	work	together.	This
even	improved	with	.NET	Core	2.0	and	ASP.NET	Core	2.0.	With	ASP.NET	Core
2.0,	you	just	need	to	reference	Microsoft.AspNetCore.All	to	get	all	the
packages	you	typically	need	with	ASP.NET	Core	web	applications.

.NET	Core	can	be	updated	at	a	fast	pace.	Even	updating	the	runtime	doesn't
influence	existing	applications	because	the	runtime	can	be	installed	with	the
applications.	Now	Microsoft	can	improve	.NET	Core,	including	the	runtime,
with	faster	release	cycles.

NOTE For	developing	apps	using	.NET	Core,	Microsoft	created	new
command-line	utilities.	These	tools	are	introduced	later	in	this	chapter
through	a	“Hello	World!”	application	in	the	section	“Using	the	.NET	CLI.”

.NET
Starting	with	.NET	5,	.NET	Core	has	a	new	name:	.NET.	Removing	“Core”	from
the	name	should	tell	developers	who	still	use	the	.NET	Framework	that	there's
not	a	new	version	of	the	.NET	Framework	from	now	on.	The	.NET	Framework
is	no	longer	receiving	new	features.	For	new	applications,	you	should	use	.NET.

.NET	Standard

.NET	Standard	is	an	important	specification	when	creating	and	using	libraries.

.NET	Standard	offers	a	contract	rather	than	an	implementation.	With	this
contract,	available	APIs	are	listed.	With	every	new	version	of	.NET	Standard,
new	APIs	are	added.	APIs	are	never	removed.	For	example,	.NET	Standard	2.1
lists	more	APIs	than	.NET	Standard	1.6.

When	you're	creating	a	library,	you	probably	want	to	use	as	many	APIs	as
possible,	so	I	suggest	you	choose	the	most	recent	.NET	Standard	version.
However,	the	highest	standard	version	also	means	the	lowest	number	of
platforms	that	support	this	standard,	so	you	may	need	to	take	that	into
consideration.

A	table	at	https://docs.microsoft.com/dotnet/standard/net-standard
gives	you	the	details	on	what	platform	supports	which	version	of	the	standard.
For	example,	.NET	Framework	4.6.1	and	later	support	up	to	.NET	Standard	2.0.
In	addition,	.NET	Core	3.0	and	later	(which	includes	.NET	5	and	later)	support
.NET	Standard	2.1.	The	Universal	Windows	Platform	build	10.0.16299	supports
.NET	Standard	2.0.	Xamarin.Android	10.0	supports	.NET	Standard	2.1.

As	of	.NET	5,	the	.NET	Standard	becomes	irrelevant.	If	you're	creating	libraries
with	.NET	5,	you	can	use	libraries	from	.NET	5,	.NET	6,	and	later	applications.
Similarly,	when	you're	creating	libraries	with	.NET	7,	you	can	use	libraries	from
applications	written	with	.NET	7	and	later.

However,	we	can't	expect	that	the	.NET	Framework,	Mono,	and	other	older
technologies	will	just	fade	away,	so	.NET	Standard	will	still	be	needed	for	many
years	to	come.	If	you	need	to	support	older	technologies	with	your	libraries,
you'll	still	need	.NET	Standard.

NOTE Read	detailed	information	about	.NET	Standard	in	Chapter	14,
“Libraries,	Assemblies,	Packages,	and	NuGet.”

NuGet	Packages
In	the	early	days,	assemblies	were	reusable	units	with	applications.	That	use	is
still	possible	(and	necessary	with	some	assemblies)	when	you're	adding	a
reference	to	an	assembly	for	using	the	public	types	and	methods	from	your	own
code.	However,	using	libraries	can	mean	a	lot	more	than	just	adding	a	reference
and	using	it.	Using	libraries	can	also	mean	making	some	configuration	changes
or	using	scripts	to	take	advantage	of	some	features.	The	target	framework
determines	which	binaries	you	can	use.	These	are	reasons	to	package	assemblies
within	NuGet	packages,	which	are	zip	files	that	contain	the	assembly	(or
multiple	assemblies)	as	well	as	configuration	information	and	PowerShell
scripts.

Another	reason	for	using	NuGet	packages	is	that	they	can	be	found	easily;

https://docs.microsoft.com/dotnet/standard/net-standard

they're	available	not	only	from	Microsoft	but	also	from	third	parties.	NuGet
packages	are	easily	accessible	on	the	NuGet	server	at	https://www.nuget.org.

You	can	add	NuGet	packages	to	applications	with	the	.NET	CLI:

>	dotnet	add	package	<package-name>

From	the	references	within	a	Visual	Studio	project,	you	can	open	the	NuGet
Package	Manager	(see	Figure	1-1).	There	you	can	search	for	packages	and	add
them	to	the	application.	This	tool	enables	you	to	search	for	packages	that	are	not
yet	released	(including	prerelease	options)	and	define	the	NuGet	server	that
should	be	searched	for	packages.	One	place	to	search	for	packages	can	be	your
own	shared	directory	where	you've	placed	your	internal	packages	that	you've
used.

FIGURE	1-1

Namespaces
The	classes	available	with	.NET	are	organized	in	namespaces.	Most	of	these
namespaces	start	with	the	name	System	or	Microsoft.	The	following	table
describes	a	few	of	the	namespaces	to	give	you	an	idea	about	the	hierarchy:

NAMESPACE DESCRIPTION
System.Collections

https://www.nuget.org

This	is	the	root	namespace	for
collections.	Collections	are	also
found	within	subnamespaces	such
as
System.Collections.Concurrent

and
System.Collections.Generic.

System.Diagnostics This	is	the	root	namespace	for
diagnostics	information,	such	as
event	logging	and	tracing	(in	the
namespace
System.Diagnostics.Tracing).

System.Globalization This	is	the	namespace	that
contains	classes	for	globalization
and	localization	of	applications.

System.IO This	is	the	namespace	for	File
input/output	(I/O),	which	includes
classes	that	access	files	and
directories.	Readers,	writers,	and
streams	are	here.

System.Net This	is	the	namespace	for	core
networking,	such	as	accessing
DNS	servers	and	creating	sockets
with	System.Net.Sockets.

System.Threading This	is	the	root	namespace	for
threads	and	tasks.	Tasks	are
defined	within
System.Threading.Tasks.

Microsoft.Data This	is	the	namespace	for
accessing	databases.
Microsoft.Data.SqlClient

contains	classes	that	access	the
SQL	Server.	The	previous	classes
from	System.Data	have	been
repackaged	into	Microsoft.Data

Microsoft.Extensions.DependencyInjection This	is	the	namespace	for	the
Microsoft	DI	container	that	is	part

of	.NET.
Microsoft.EntityFrameworkCore To	access	relational	and	NoSQL

databases,	Entity	Framework	Core
can	be	used.	Types	are	defined	in
this	namespace.

.NET	SUPPORT	LENGTH
When	you're	working	in	the	new	era	of	.NET,	you	should	know	about	versions
with	different	support	cycles.	.NET	releases	differ	based	on	a	Current	or	Long-
Term	Support	LTS	moniker.	LTS	versions	are	supported	at	least	three	years,	or
for	one	year	after	the	next	LTS	version	is	available.	If	for	example,	the	next	LTS
version	is	available	2.5	years	after	the	previous	one	was	released,	and	the
previous	one	has	a	support	length	of	3.5	years.	Current	versions	are	supported
for	only	three	months	after	the	next	version	is	available.	At	the	time	of	this
writing,	.NET	Core	2.2	and	3.0	are	current	versions	that	are	already	no	longer
supported	with	security	and	hot	fixes,	whereas	.NET	Core	2.1	and	3.1	are	LTS
versions	that	still	have	support.	The	following	table	lists	the	.NET	Core	and
.NET	versions	with	their	release	dates,	support	level,	and	end-of-life	dates:

.NET
CORE/.NET
VERSION

RELEASE
DATE

SUPPORT
LEVEL

END	OF	LIFE

1.0 June	27,
2016

LTS June	27,	2019

1.1 Nov.	16,
2016

LTS* June	27,	2019

2.0 Aug.	14,
2017

Current Oct.	1,	2018

2.1 May	30,
2018

LTS Aug.	21,	2021

2.2 Dec.	4,
2018

Current Dec.	23,	2019

3.0 Sep.	23,
2019

Current Mar.	3,	2020

3.1 Dec.	3, LTS Dec.	3,	2022

2019
5.0 Nov.	10,

2020
Current around	Feb.	2022

6.0 Nov.	2021 LTS Nov.	2024
7.0 Nov.	2022 Current Feb.	2024	or	earlier	in	case	minor

versions	are	released
8.0 Nov.	2023 LTS Nov.	2026

Starting	with	.NET	5,	the	versions	become	more	predictable.	Every	year	in
November,	a	new	major	release	is	available.	Every	second	year,	the	release	is	an
LTS	version.

Depending	on	the	environment	you're	working	in,	you	might	decide	to	use	LTS
or	Current	versions.	With	current	versions,	you	get	new	features	faster,	but	you
need	to	upgrade	to	newer	versions	more	often.	While	the	application	is	in	its
active	development	stage,	you	might	decide	to	use	the	current	version.	As	your
application	is	becoming	more	stable,	you	can	switch	to	the	next	LTS	version.

If	you	already	started	development	with	continuous	integration/continuous
delivery	(CI/CD),	it	can	be	an	easy	task	to	use	only	current	versions	and	receive
new	features	faster.

APPLICATION	TYPES	AND	TECHNOLOGIES
You	can	use	C#	to	create	console	applications;	with	most	code	samples	in	the
first	chapters	of	this	book,	you'll	do	that	exact	thing.	For	many	programs,
console	applications	are	not	used	that	often.	You	can	use	C#	to	create
applications	that	use	many	of	the	technologies	associated	with	.NET.	This
section	gives	you	an	overview	of	the	different	types	of	applications	that	you	can
write	in	C#.

Data	Access
Before	taking	a	look	at	the	application	types	themselves,	let's	look	at
technologies	that	are	used	by	all	application	types	for	access	to	data.

Files	and	directories	can	be	accessed	by	using	simple	API	calls;	however,	the
simple	API	calls	are	not	flexible	enough	for	some	scenarios.	With	the	Stream
API,	you	have	a	lot	of	flexibility,	and	the	streams	offer	many	more	features,	such
as	encryption	or	compression.	Readers	and	writers	make	using	streams	easier.

All	of	the	different	options	available	here	are	covered	in	Chapter	18,	“Files	and
Streams.”

To	read	and	write	to	databases,	you	can	use	an	abstraction	layer,	Entity
Framework	Core	(Chapter	21,	“Entity	Framework	Core”).	Entity	Framework
Core	offers	a	mapping	of	object	hierarchies	to	the	relations	of	a	database.	EF
Core	not	only	offers	using	different	relational	databases	but	also	has	support	for
NoSQL	databases,	such	as	Azure	Cosmos	DB.

Windows	Apps
For	creating	Windows	apps,	you	can	use	the	new	UI	control	WinUI	3.0	to	create
either	Universal	Windows	Platform	(UWP)	or	Windows	desktop	applications.
UWP	applications	make	use	of	a	sandboxed	environment	where	the	application
needs	to	request	permissions	from	the	user	depending	on	the	APIs	used.	The
desktop	application	version	can	be	compared	to	a	WPF	and	Windows	Forms
application	where	nearly	all	.NET	5	APIs	can	be	used.	WPF	and	Windows
Forms	applications	can	also	be	updated	to	use	new	modern	WinUI	controls.

Creating	WinUI	applications	with	XAML	code	using	the	MVVM	pattern	is
covered	in	Chapter	30,	“Patterns	with	XAML	Apps,”	and	the	chapters	that
follow	it.

NOTE Creating	WinUI	apps	is	covered	in	Chapter	30	with	an	introduction
to	XAML,	the	different	XAML	controls,	and	the	lifetime	of	apps.	You	can
create	apps	with	WinUI,	WPF,	UWP,	Xamarin,	the	Uno	Platform,	and	Maui
by	using	as	much	common	code	as	possible	by	supporting	the	MVVM
pattern.	This	pattern	is	covered	in	Chapter	30.	To	create	cool	looks	and	style
the	app,	be	sure	to	read	Chapter	31,	“Styling	Windows	Apps.”	Finally,
Chapter	32,	“Advanced	Windows	Apps,”	dives	into	some	advanced	features
of	Windows	apps.

Web	Applications
For	creating	web	applications	with	.NET,	several	options	are	available.	A
technology	that	implements	the	Model-View-Controller	(MVC)	pattern	with	the
application	structure	is	ASP.NET	Core	MVC.	If	you	have	an	existing	.NET
Framework	ASP.NET	MVC	application,	the	move	to	ASP.NET	Core	MVC
shouldn't	be	too	hard.

ASP.NET	Core	Razor	Pages	provide	an	easier	option	compared	to	the	MVC
pattern.	Razor	Pages	can	use	code-behind	or	mix	the	C#	code	with	the	HTML
page.	This	solution	is	easier	to	start	with,	and	it	also	can	be	used	with	MVC.	The
dependency	injection	features	of	Razor	Pages	make	it	easy	to	create	reusable
code.

ASP.NET	Core	Blazor	is	a	new	technology	that	is	used	to	get	rid	of	JavaScript
code.	With	a	server-side	variant,	user	interface	events	are	handled	on	the	server.
The	client	and	server	are	continuously	connected	using	SignalR	behind	the
scenes.	Another	variant	of	Blazor	is	using	WebAssembly	on	the	client.	With	this,
you	can	use	C#,	HTML,	and	CSS	to	write	code	running	binary	in	the	client.
Because	WebAssembly	is	an	HTML	5	standard,	Blazor	runs	in	all	modern
browsers	without	the	need	for	an	add-in.

The	original	introduction	of	ASP.NET	fundamentally	changed	the	web
programming	model.	ASP.NET	Core	changed	it	again.	ASP.NET	Core	allows	the
use	of	.NET	Core	for	high	performance	and	scalability,	and	it	runs	not	only	on
Windows	but	also	on	Linux	systems.

With	ASP.NET	Core,	ASP.NET	Web	Forms	is	no	longer	covered.	(ASP.NET
Web	Forms	can	still	be	used	and	is	updated	with	.NET	4.7.)

ASP.NET	Core	MVC	is	based	on	the	well-known	MVC	pattern	for	easier	unit
testing.	It	also	allows	a	clear	separation	for	writing	user	interface	code	with
HTML,	CSS,	and	JavaScript,	and	it	uses	C#	on	the	back	end.

NOTE Chapter	24,	“ASP.NET	Core,”	covers	the	foundation	of	ASP.NET
Core.	Chapter	26,	“Razor	Pages	and	MVC,”	continues	describing	the
foundation	and	adds	using	Razor	Pages,	Razor	Views,	and	the	ASP.NET
Core	MVC	framework.	Chapter	27,	“Blazor,”	continues	with	Razor
components	and	covers	development	both	for	Blazor	Server	and	Blazor
WebAssembly.

Services
SOAP	and	WCF	fulfilled	their	duties	in	the	past.	Modern	apps	make	use	of
Representational	State	Transfer	(REST)	and	the	Web	API.	Using	ASP.NET	Core
to	create	a	Web	API	is	an	option	that	is	a	lot	easier	for	communication	and
fulfills	more	than	90	percent	of	requirements	by	distributed	applications.	This
technology	is	based	on	REST,	which	defines	guidelines	and	best	practices	for

stateless	and	scalable	web	services.

The	client	can	receive	JSON	or	XML	data.	JSON	and	XML	can	also	be
formatted	in	a	way	to	make	use	of	the	Open	Data	(OData)	specification.

The	features	of	this	new	API	make	it	easy	to	consume	from	web	clients	using
JavaScript,	.NET,	and	other	technologies.

Creating	a	Web	API	is	a	good	approach	for	creating	microservices.	The	approach
to	build	microservices	defines	smaller	services	that	can	run	and	be	deployed
independently	and	have	their	own	control	of	a	data	store.

To	describe	the	services,	a	new	standard	has	been	developed—the	OpenAPI
(https://www.openapis.org),	which	has	its	roots	with	Swagger
(https://swagger.io/).

For	remote	procedure	calls	(RPC)	like	communication,	you	can	use	gRPC,
which	offers	a	binary	communication	based	on	HTTP/2	that	can	be	used	across
different	platforms.

NOTE The	ASP.NET	Core	Web	API,	the	OpenAPI,	gRPC,	and	more
information	on	microservices	are	covered	in	Chapter	25,	“Services.”

SignalR
For	real-time	web	functionality	and	bidirectional	communication	between	the
client	and	the	server,	SignalR	is	an	ASP.NET	Core	technology.	SignalR	allows
pushing	information	to	connected	clients	as	soon	as	information	is	available.
SignalR	makes	use	of	the	WebSocket	technology	to	push	information.

NOTE The	foundation	of	SignalR	connection	management,	grouping	of
connections,	and	streaming	are	discussed	in	Chapter	28,	“SignalR.”

Microsoft	Azure
Nowadays,	you	can't	ignore	the	cloud	when	considering	the	development
picture.	Although	this	book	doesn't	include	a	dedicated	chapter	on	cloud
technologies,	Microsoft	Azure	is	referenced	in	several	chapters	in	this	book.

Microsoft	Azure	offers	software	as	a	service	(SaaS),	infrastructure	as	a	service
(IaaS),	platform	as	a	service	(PaaS),	and	functions	as	a	service	(FaaS),	and

https://www.openapis.org
https://swagger.io/

sometimes	offerings	are	in	between	these	categories.	Let's	take	a	look	at	some
Microsoft	Azure	offerings.

Software	as	a	Service
SaaS	offers	complete	software;	you	don't	have	to	deal	with	management	of
servers,	updates,	and	so	on.	Office	365	is	one	of	the	SaaS	offerings	for	using
email	and	other	services	via	a	cloud	offering.	A	SaaS	offering	that's	relevant	for
developers	is	Azure	DevOps	Services.	Azure	DevOps	Services	is	the	cloud
version	of	Azure	DevOps	Server	(previously	known	as	Team	Foundation	Server)
that	can	be	used	for	private	and	public	code	repository,	for	tracking	bugs	and
work	items,	and	for	building	and	testing	services.	Another	offering	from
Microsoft	in	this	category	is	GitHub,	which	is	just	enhanced	to	receive	many
features	from	Azure	DevOps.

Infrastructure	as	a	Service
Another	service	offering	is	IaaS.	Virtual	machines	are	included	in	this	service
offering.	You	are	responsible	for	managing	the	operating	system	and	maintaining
updates.	When	you	create	virtual	machines,	you	can	decide	between	different
hardware	offerings	starting	with	shared	cores	up	to	416	cores	(at	the	time	of	this
writing,	but	things	change	quickly).	The	M-Series	of	machines	include	416
cores,	11.4TB	RAM,	and	8TB	local	SSD.

With	preinstalled	operating	systems,	you	can	decide	between	Windows,
Windows	Server,	Linux,	and	operating	systems	that	come	preinstalled	with	SQL
Server,	BizTalk	Server,	SharePoint,	Oracle,	and	many	other	products.

I	use	virtual	machines	often	for	environments	that	I	need	only	for	several	hours	a
week	because	the	virtual	machines	are	paid	on	an	hourly	basis.	If	you	want	to	try
compiling	and	running	.NET	Core	programs	on	Linux	but	don't	have	a	Linux
machine,	installing	such	an	environment	on	Microsoft	Azure	is	an	easy	task.

Platform	as	a	Service
For	developers,	the	most	relevant	part	of	Microsoft	Azure	is	platform	as	a
service	(PaaS).	You	can	access	services	for	storing	and	reading	data,	use
computing	and	networking	capabilities	of	app	services,	and	integrate	developer
services	within	the	application.

For	storing	data	in	the	cloud,	you	can	use	a	relational	data	store	SQL	Database.
SQL	Database	is	nearly	the	same	as	the	on-premise	version	of	SQL	Server.

There	are	also	some	NoSQL	solutions,	such	as	Cosmos	DB,	with	different	store
options	such	as	JSON	data,	relationships,	or	table	storage,	and	Azure	Storage
that	stores	blobs	(for	example,	for	images	or	videos).

App	Services	can	be	used	to	host	your	web	apps	and	API	apps	that	you	create
with	ASP.NET	Core.

Along	with	the	previously	introduced	Visual	Studio	Team	Services,	another	part
of	the	Developer	Services	in	Microsoft	Azure	is	Application	Insights.	With	faster
release	cycles,	it's	becoming	more	and	more	important	to	get	information	about
how	the	user	uses	the	app.	What	menus	are	never	used	because	the	users
probably	can't	find	them?	What	paths	in	the	app	does	the	user	take	to	accomplish
tasks?	With	Application	Insights,	you	can	get	good	anonymous	user	information
to	find	out	the	issues	users	have	with	the	application,	and,	with	DevOps	in	place,
you	can	do	quick	fixes.

You	can	also	use	Cognitive	Services	that	offer	functionality	to	process	images,
use	Bing	Search	APIs,	understand	what	users	say	with	Language	services,	and
more.

Functions	as	a	Service
FaaS,	also	known	with	the	category	name	Azure	serverless,	is	a	new	concept	for
cloud	service.	Of	course,	behind	the	scenes	there's	always	a	server.	You	just	don't
pay	for	reserved	CPU	and	memory	because	they're	handled	with	AppServices
that	are	used	from	web	apps.	Instead,	you	pay	based	on	consumption—the
number	of	calls	done	with	some	limitations	on	the	memory	and	time	needed	for
the	activity.	Azure	Functions	is	one	technology	that	can	be	deployed	using	FaaS.

NOTE Chapter	15,	“Dependency	Injection	and	Configuration,”	not	only
describes	the	architecture	to	define	configuration	with	.NET	applications,
but	it	also	covers	what	you	need	to	use	this	configuration	approach	to	access
Microsoft	Azure	App	Configuration	and	the	Azure	Key	Vault.	Chapter	16,
“Diagnostics	and	Metrics,”	covers	using	Azure	Monitor,	and	Chapter	21
shows	how	to	access	relational	databases	both	with	the	on-premises	SQL
database	and	with	Azure	SQL.	It	also	shows	how	you	can	use	EF	Core	to
access	the	Azure	Cosmos	NoSQL	database.	Chapter	25	uses	Azure	App
Services	and	Azure	Functions	for	deployment	options.

DEVELOPER	TOOLS
For	development,	you	need	an	SDK	to	build	your	applications	and	test	them,	and
you	need	a	code	editor.	Some	other	tools	can	help,	such	as	a	Linux	environment
on	your	Windows	system	and	an	environment	to	run	Docker	images.	Let's	get
into	some	practical	tools.

.NET	CLI
For	development,	you	need	the	.NET	SDK.	If	you're	using	Visual	Studio	for
development,	the	.NET	SDK	is	installed	with	Visual	Studio.	If	you're	using	a
different	environment	or	you	want	to	install	different	versions	that	are	not	part	of
the	Visual	Studio	installation,	you	can	get	downloads	for	the	SDK	from
https://dot.net.	Here	you	can	download	and	install	distributions	of	the	SDK
for	different	platforms.

Part	of	the	SDK	is	the	.NET	CLI—the	command-line	interface	to	develop	.NET
applications.	You	can	use	the	.NET	CLI	to	create	new	applications,	compile
applications,	run	unit	tests,	create	NuGet	packages,	and	create	the	files	you	need
for	publishing.	Other	than	that,	you	can	use	any	editor	such	as	Notepad	to	write
the	code.	Of	course,	if	you	have	access	to	other	tools	that	offer	IntelliSense,
using	them	makes	it	easier	to	run	and	debug	your	applications.

A	tour	of	the	.NET	CLI	is	given	later	in	this	chapter	in	the	section	“Using	the
.NET	CLI.”

Visual	Studio	Code
Visual	Studio	Code	is	a	lightweight	editor	available	not	only	on	Windows	but
also	on	Linux	and	macOS.	The	community	created	a	huge	number	of	extensions
that	make	Visual	Studio	Code	the	preferred	environment	for	many	technologies.

With	many	chapters	of	this	book,	you	can	use	Visual	Studio	Code	as	your
development	editor.	What	you	currently	can't	do	is	create	WinUI	and	Xamarin
applications.	You	can	use	Visual	Studio	Code	for	.NET	Core	console
applications	and	ASP.NET	Core	web	applications.

You	can	download	Visual	Studio	Code	from	http://code.visualstudio.com.

Visual	Studio	Community
This	edition	of	Visual	Studio	is	a	free	edition	with	features	that	the	Professional

https://dot.net
http://code.visualstudio.com

edition	previously	had,	but	there's	a	license	restriction	for	when	it	can	be	used.
It's	free	for	open-source	projects	and	training	and	to	academic	and	small
professional	teams.	Unlike	the	Express	editions	of	Visual	Studio	that	previously
have	been	the	free	editions,	this	product	allows	using	extensions	with	Visual
Studio.

Visual	Studio	Professional
Visual	Studio	Professional	includes	more	features	than	the	Community	edition,
such	as	the	CodeLens	and	Team	Foundation	Server	for	source	code	management
and	team	collaboration.	With	this	edition,	you	also	get	a	subscription	that
includes	several	server	products	from	Microsoft	for	development	and	testing,	as
well	as	a	free	amount	that	you	can	use	with	Microsoft	Azure	for	development
and	testing.

Visual	Studio	Enterprise
Unlike	the	Professional	edition,	Visual	Studio	Enterprise	contains	a	lot	of	tools
for	testing,	such	as	Live	Unit	Testing,	Microsoft	Fakes	(unit	test	isolation),	and
IntelliTest	(unit	testing	is	part	of	all	Visual	Studio	editions).	With	Code	Clone
you	can	find	similar	code	in	your	solution.	Visual	Studio	Enterprise	also	contains
architecture	and	modeling	tools	to	analyze	and	validate	the	solution	architecture.

NOTE Be	aware	that	with	a	Visual	Studio	subscription	you're	entitled	to
free	use	of	Microsoft	Azure	up	to	a	specific	monthly	amount	that	is
contingent	on	the	type	of	the	Visual	Studio	subscription	you	have.

NOTE For	some	of	the	features	in	this	book—for	example,	live	unit	testing
that	is	briefly	explained—you	need	Visual	Studio	Enterprise.	However,	you
can	work	through	most	parts	of	the	book	with	the	Visual	Studio	Community
edition.

Visual	Studio	for	Mac
Visual	Studio	for	Mac	originated	in	the	Xamarin	Studio,	but	now	it	has	a	lot
more	than	the	earlier	product.	The	actual	version	of	Visual	Studio	for	Mac	is
using	the	same	source	code	for	the	editor	that	is	available	with	the	Windows
version	of	Visual	Studio.	With	Visual	Studio	for	Mac,	you	can	create	not	only

Xamarin	apps	but	also	ASP.NET	Core	apps	that	run	on	Windows,	Linux,	and
Mac.	With	many	chapters	of	this	book,	you	can	use	Visual	Studio	for	Mac.
Exceptions	are	the	chapters	that	cover	WinUI	(Chapters	29	through	31),	which
require	Windows	to	run	and	develop	the	app.

Windows	Terminal
After	so	many	years	without	changes	to	the	Windows	command	prompt,	now
there's	a	completely	new	one.	The	source	code	is	public	at
https://github.com/Microsoft/terminal,	and	it	offers	many	features	that	are
useful	for	development.	This	terminal	offers	multiple	tabs	and	different	shells,
such	as	the	Windows	PowerShell,	a	command	prompt,	the	Azure	Cloud	Shell,
and	WSL	2	environments.	You	can	have	the	terminal	full	screen,	open	different
tabs	to	keep	different	folders	easily	accessible,	and	also	split	panes	to	have
different	folders	open	in	a	single	screen	for	easy	comparison.	New	features	are
added	on	a	monthly	basis,	and	you	can	install	the	terminal	from	the	Microsoft
Store.

WSL	2
WSL	2	is	the	second	generation	of	the	Windows	Subsystem	for	Linux.	With	this,
the	subsystem	to	run	Linux	is	not	only	faster,	but	it	also	offers	practically	all
Linux	APIs.

Using	WSL	2,	you	can	install	different	Linux	distributions	from	the	Microsoft
Store.	If	you	use	the	Windows	Terminal,	different	tabs	can	be	opened	for	every
Linux	distribution	installed.

WSL	2	gives	you	an	easy	way	to	build	and	run	.NET	applications	on	a	Linux
environment	from	your	Windows	system.	You	can	even	use	Visual	Studio	to
debug	your	.NET	applications	while	they	run	in	the	Linux	environment.	You	just
need	to	install	the	extension	.NET	Core	Debugging	with	WSL	2.	When	you	run	a
debug	session	from	Visual	Studio,	the	.NET	SDK	gets	automatically	installed	in
your	WSL	2	environment.

Docker	Desktop
The	Docker	Desktop	for	Linux	(which	you	can	install	from
https://hub.docker.com/editions/community/docker-ce-desktop-windows)
allows	running	Docker	containers	for	Linux	or	Windows.	Using	Docker	allows
creating	images	that	include	your	application	code	based	on	images	containing

https://github.com/Microsoft/terminal
https://hub.docker.com/editions/community/docker-ce-desktop-windows

the	.NET	runtime.	The	.NET	runtime	itself	is	based	on	Linux	or	Windows
images.

You	can	use	Docker	to	create	a	solution	using	many	.NET	services	running	in
multiple	Docker	containers.	Docker	containers	are	running	instances	of	Docker
images	that	you	can	built	with	support	from	Visual	Studio	or	dotnet	tools	such	as
tye	(https://github.com/dotnet/tye).

NOTE Creating	microservices	and	running	them	in	Docker	containers	is
covered	in	Chapter	25.

USING	THE	.	NET	CLI
With	many	chapters	in	this	book,	you	don't	need	Visual	Studio.	Instead,	you	can
use	any	editor	and	a	command	line,	such	as	the	.NET	CLI.	Let's	take	a	look	at
how	to	set	up	your	system	and	how	you	can	use	this	tool.	This	works	the	same
on	all	platforms.

Nowadays,	having	a	focus	on	the	command	line	is	also	due	to	CI/CD.	You	can
create	a	pipeline	in	which	compiling,	testing,	and	deployment	happens
automatically	in	the	background.

If	you	install	.NET	CLI	tools,	you	have	what	you	need	as	an	entry	point	to	start
all	these	tools.	Use	the	command

>	dotnet	--help

to	see	all	the	different	options	of	the	dotnet	tools	available.	Many	of	the	options
have	a	shorthand	notation.	For	help,	you	can	also	type

>	dotnet	-h

Creating	the	Application
The	dotnet	tools	offer	an	easy	way	to	create	a	“Hello	World!”	application.	Just
enter	this	command	to	create	a	console	application:

>	dotnet	new	console	--output	HelloWorld

This	command	creates	a	new	HelloWorld	directory	and	adds	the	source	code	file
Program.cs	and	the	project	file	HelloWorld.csproj.	The	command	dotnet	new
also	includes	the	functionality	of	dotnet	restore	where	all	needed	NuGet

https://github.com/dotnet/tye

packages	are	downloaded.	To	see	a	list	of	dependencies	and	versions	of	libraries
used	by	the	application,	you	can	check	the	file	project.assets.json	in	the	obj
subdirectory.	Without	using	the	option	--output	(or	-o	as	shorthand),	the	files
would	be	generated	in	the	current	directory.

The	generated	source	code	looks	like	the	following	code	snippet:

using	System;

	

namespace	HelloWorld

{

		class	Program

		{

				static	void	Main(string[]	args)

				{

						Console.WriteLine("Hello	World!");

				}

		}

}

NOTE Since	the	1970s,	when	Brian	Kernighan	and	Dennis	Ritchie	wrote
the	book	The	C	Programming	Language,	it's	been	a	tradition	to	start	learning
programming	languages	using	a	“Hello	World!”	application.	With	the	.NET
CLI,	this	program	is	automatically	generated.

Let's	get	into	the	syntax	of	this	program.	The	Main	method	is	the	entry	point	for	a
.NET	application.	The	CLR	invokes	a	static	Main	method	on	startup.	The	Main
method	needs	to	be	put	into	a	class.	Here,	the	class	is	named	Program,	but	you
could	call	it	by	any	name.

Console.WriteLine	invokes	the	WriteLine	method	of	the	Console	class.	The
Console	class	can	be	found	in	the	System	namespace.	To	avoid	writing
System.Console.WriteLine	to	invoke	this	method,	the	System	namespace	is
opened	with	the	using	declaration	on	top	of	the	source	file.

After	writing	the	source	code,	you	need	to	compile	the	code	to	run	it.	How	you
can	do	this	is	explained	soon	in	the	section	“Building	the	Application.”

The	created	project	configuration	file	is	named	HelloWorld.csproj.	This	file
contains	the	project	configuration,	such	as	the	target	framework,	and	the	type	of
binary	to	create.	An	important	piece	of	information	in	this	file	is	the	reference	to
the	SDK	(project	file	HelloWorld/HelloWorld.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

		</PropertyGroup>

</Project>

Top-Level	Statements
C#	9	allows	you	to	simplify	the	code	for	the	“Hello	World!”	application.	With
top-level	statements,	the	namespace,	class,	and	Main	method	declarations	can	be
removed	to	write	only	top-level	statements.	The	application	can	look	like	the
“Hello	World!”	application	code	shown	here	(code	file
HelloWorld/Program.cs):

using	System;

	

Console.WriteLine("Hello	World!");

If	you	prefix	the	invocation	of	the	WriteLine	method	to	add	the	namespace,	you
can	write	the	program	in	a	single	code	line:

System.Console.WriteLine("Hello	World!");

NOTE Behind	the	scenes,	with	top-level	statements,	a	class	and	a	Main
method	are	still	created.	Looking	into	the	generated	IL	code,	a	class	named
<Program>$,	and	a	main	method	named	<Main>$	are	generated	to	contain
the	top-level	statements.	You	just	don't	have	to	write	this	code	on	your	own.

With	small	applications	like	sample	applications,	top-level	statements	reduce
the	required	code.	When	C#	is	used	in	a	script-like	environment,	top-level
statements	are	practical	as	well.	Top-level	statements	are	discussed	in	more
detail	in	Chapter	2,	“Core	C#.”

Selecting	the	Framework	and	Language	Versions
Instead	of	building	a	binary	for	just	one	framework	version,	you	can	replace	the
TargetFramework	element	with	TargetFrameworks,	and	you	can	specify
multiple	frameworks	as	shown	with	.NET	5	and	.NET	Framework	4.8.	The
LangVersion	element	is	added	because	the	sample	application	uses	the	C#	9
code	(top-level	statements).	Without	using	this	attribute,	the	C#	version	is
defined	by	the	framework	version.	.NET	5	by	default	is	using	C#	9,	and	.NET
Framework	4.8	is	using	C#	7.3	(project	file	HelloWorld/HelloWorld.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFrameworks>net5.0;net48</TargetFrameworks>

				<LangVersion>9.0</LangVersion>

		</PropertyGroup>

</Project>

The	Sdk	attribute	specifies	the	SDK	that	is	used	by	the	project.	Microsoft	ships
different	SDKs:	Microsoft.NET.Sdk	for	console	applications,
Microsoft.NET.Sdk.Web	for	ASP.NET	Core	web	applications,	and
Microsoft.NET.Sdk.BlazorWebAssembly	for	web	applications	with	Blazor	and
WebAssembly.

You	don't	need	to	add	source	files	to	the	project.	Files	with	the	.cs	extension	in
the	same	directory	and	subdirectories	are	automatically	added	for	compilation.
Resource	files	with	the	.resx	extension	are	automatically	added	for	embedding
resources.	You	can	change	the	default	behavior	and	exclude/include	files
explicitly.

You	also	don't	need	to	add	the	.NET	Core	package.	When	you	specify	the	target
framework	net5.0,	the	metapackage	Microsoft.NETCore.App	that	references
many	other	packages	is	automatically	included.

Building	the	Application
To	build	the	application,	you	need	to	change	the	current	directory	to	the
directory	of	the	application	and	start	dotnet	build.	You	can	see	output	like	the
following,	which	is	compiled	for	.NET	5.0	and	.NET	Framework	4.8:

>	dotnet	build

Microsoft	(R)	Build	Engine	version	16.8.0	for	.NET	Copyright	(C)	

Microsoft	Corporation.	All	rights	reserved.

	

		Determining	projects	to	restore…

		Restored	C:\procsharp\Intro\HelloWorld\HelloWorld.csproj	(in	

308	ms).

		HelloWorld	->	

C:\procsharp\Intro\HelloWorld\bin\Debug\net48\HelloWorld.exe

		HelloWorld	->	

C:\procsharp\Intro\HelloWorld\bin\Debug\net5.0\HelloWorld.dll

	

Build	succeeded.

				0	Warning(s)

				0	Error(s)

	

Time	Elapsed	00:00:02.82

NOTE The	commands	dotnet	new	and	dotnet	build	automatically
restore	NuGet	packages,	so	you	cannot	forget	to	do	it.	Restoring	NuGet
packages	retrieves	libraries	that	are	referenced	in	the	project	file	from	the
NuGet	server	or	other	servers	that	are	configured	in	your	environment.	You
can	also	explicitly	restore	NuGet	packages	with	dotnet	restore	.

As	a	result	of	the	compilation	process,	you	find	the	assembly	containing	the	IL
code	of	the	Program	class	within	the	bin/debug/[net5.0|net48]	folders.	If	you
compare	the	build	of	.NET	Core	with	.NET	4.8,	you	will	find	a	DLL	containing
the	IL	code	with	.NET	Core	and	an	EXE	containing	the	IL	code	with	.NET	4.8.
The	assembly	generated	for	.NET	Core	has	a	dependency	on	the
System.Console	assembly,	whereas	the	.NET	4.8	assembly	includes	the	Console
class	in	the	mscorlib	assembly.

To	build	release	code,	you	need	to	specify	the	option	--configuration	Release
(shorthand	-c	Release):

>	dotnet	build	--configuration	Release

NOTE The	debug	build	includes	debug	symbols	and	the	generated	code	is
not	optimized	for	easier	debugging.	With	the	release	build,	the	code	is
optimized	for	production	and	runs	faster.	From	time	to	time	during	the
development	phase	(before	delivering	the	application	for	production),	you
should	try	the	release	build	because	there	can	be	different	behaviors	not
found	with	debug	builds.

Running	the	Application
To	run	the	application,	you	can	use	the	following	dotnet	command:

>	dotnet	run

If	the	project	file	targets	multiple	frameworks,	you	need	to	tell	the	dotnet	run
command	which	framework	to	use	to	run	the	app	by	adding	the	option	--
framework.	This	framework	must	be	configured	with	the	csproj	file.	With	the
sample	application,	you	should	get	the	following	output	of	the	application	after
the	restore	information:

>	dotnet	run	––framework	net5.0

Hello	World!

On	a	production	system,	you	don't	use	dotnet	run	to	run	the	application;
instead,	you	just	use	dotnet	with	the	name	of	the	library:

>	dotnet	bin/debug/net5.0/HelloWorld.dll

The	compiler	also	creates	an	executable,	which	does	nothing	more	than	load	and
start	the	library.	You	can	start	the	executable	as	well.	How	executables	are	built
for	publishing	is	shown	in	the	next	steps.

NOTE As	you've	seen	from	building	and	running	the	“Hello	World!”	app
on	Windows,	the	dotnet	tools	work	the	same	on	Linux	and	macOS.	You	can
use	the	same	.NET	CLI	commands	on	either	platform.

Creating	a	Web	Application
Similarly	to	creating	a	console	application,	you	can	also	use	the	.NET	CLI	to
create	a	web	application.	As	you	enter	dotnet	new,	you	can	see	a	list	of
templates	available.

The	command

>	dotnet	new	webapp	-o	WebApp

creates	a	new	ASP.NET	Core	web	application	with	Razor	Pages.

The	created	project	file	now	contains	a	reference	to	the	Microsoft.NET.Sdk.Web
SDK.	This	SDK	contains	tools	and	extensions	for	the	project	file	that	are	needed
to	create	web	applications	and	services:

<Project	Sdk="Microsoft.NET.Sdk.Web">

		<PropertyGroup>

				<TargetFramework>net5.0</TargetFramework>

		</PropertyGroup>

</Project>

Now	using

>	dotnet	build

>	dotnet	run

starts	the	Kestrel	server	of	ASP.NET	Core	to	listen	on	port	5000	and	5001.	You
can	open	a	browser	to	access	the	pages	returned	from	this	server,	as	shown	in

Figure	1-2.

FIGURE	1-2

If	you	start	this	for	the	first	time,	you're	giving	a	security	warning	to	trust	the
developer	certificate.	As	you	trust	the	certificate,	the	warnings	will	no	longer
occur.

To	stop	the	application,	just	press	Ctrl+C	to	send	the	cancel	command.

Publishing	the	Application
With	the	dotnet	tool,	you	also	can	create	a	NuGet	package	and	publish	the
application	for	deployment.	Let's	first	create	a	framework-dependent	deployment
of	the	application.	This	reduces	the	number	of	files	you	need	for	publishing.

Using	the	previously	created	console	application,	you	just	need	the	following
command	to	create	the	files	for	publishing.	The	framework	is	selected	by	using	-
f,	and	the	release	configuration	by	using	-c	:

>	dotnet	publish	-f	net5.0	-c	Release

You	put	the	files	needed	for	publishing	into	the	bin/Release/net5.0/publish
directory.

When	you	use	these	files	for	publishing	on	the	target	system,	you	need	the

runtime	as	well.	You	can	find	the	runtime	downloads	and	installation	instructions
at	https://www.microsoft.com/net/download/.

NOTE If	your	application	uses	additional	NuGet	packages,	they	need	to
be	referenced	in	the	csproj	file,	and	the	libraries	need	to	be	delivered	with
the	application.	Read	Chapter	14	for	more	information.

Self-Contained	Deployments
Instead	of	needing	to	have	the	runtime	installed	on	the	target	system,	the
application	can	deliver	the	runtime	with	it.	This	is	known	as	self-contained
deployment.

Depending	on	the	platform	where	the	application	should	be	installed,	the	runtime
differs.	Thus,	with	self-contained	deployment,	you	need	to	specify	the	platforms
supported	by	specifying	RuntimeIdentifiers	in	the	project	file	as	shown	in	the
following	project	file.	Here,	the	runtime	identifiers	for	Windows	10,	macOS,	and
Ubuntu	Linux	are	specified	(project	file
SelfContainedHelloWorld/SelfContainedHelloWorld.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

		</PropertyGroup>

		<PropertyGroup>

				<RuntimeIdentifiers>

						win10-x64;ubuntu-x64;osx.10.11-x64;

				</RuntimeIdentifiers>

		</PropertyGroup>

</Project>

NOTE Get	all	the	runtime	identifiers	for	different	platforms	and	versions
from	the	.NET	Core	Runtime	Identifier	(RID)	catalog	at
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog	.

Now	you	can	create	publish	files	for	all	the	different	platforms:

>	dotnet	publish	-c	Release	-r	win10-x64

>	dotnet	publish	-c	Release	-r	osx.10.11-x64

>	dotnet	publish	-c	Release	-r	ubuntu-x64

https://www.microsoft.com/net/download/
https://docs.microsoft.com/en-us/dotnet/core/rid-catalog

After	running	these	commands,	you	can	find	the	files	needed	for	publishing	in
the	Release/[win10-x64|osx.10.11-x64|ubuntu-x64]/publish	directories.	As
.NET	5.0	runtime	is	now	included,	the	size	of	the	files	needed	for	publishing	has
grown.	In	these	directories,	you	can	also	find	platform-specific	executables	that
can	be	started	directly	without	using	the	.NET	CLI	command.

NOTE If	you're	running	a	Windows	System	with	WSL	2	installed,	you	can
run	the	binary	image	created	for	Ubuntu	directly	in	this	subsystem.	If	you
install	the	.NET	SDK	within	WSL,	you	can	also	start	the	build	and	publish
commands	from	within	the	subsystem.

Creating	a	Single	Executable
Instead	of	publishing	a	large	list	of	files,	you	can	create	a	single	executable.
Adding	the	option	-p:PublishSingleFile=true	adds	the	complete	runtime	to
one	binary,	which	then	can	be	used	for	deployment.	With	the	following
command,	a	single	file	is	created	to	the	output	directory	singlefile.	This
directory	also	contains	a	file	with	the	pdb	extension.	This	file	can	be	deployed	to
get	symbol	information	for	analysis	in	case	the	application	crashes.

>	dotnet	publish	-r	win10-x64	-p:PublishSingleFile=true	--self-

contained	

-o	singlefile

ReadyToRun
To	speed	up	the	startup	performance	of	the	application,	some	parts	of	the
application	can	be	precompiled	to	native	code.	This	way,	the	IL	compiler	can
reduce	its	work	when	running	the	application.	This	option	can	be	used	with	or
without	PublishSingleFile.

>	dotnet	publish	-r	win10-x64	-p:PublishReadyToRun=true	--self-

contained	

-o	readytorun

Instead	of	passing	this	configuration	with	the	command	line,	the
<PublishReadyToRun>	element	can	also	be	specified	in	the	project	file.

Trimming
Of	course,	a	single	executable	for	publishing	that	includes	the	complete	runtime

is	large.	However,	there's	a	way	around	that.	You	can	trim	all	the	classes	and
methods	that	are	not	needed	for	the	application	to	make	the	binary	smaller.

You	can	specify	trimming	with	the	PublishTrimmed	element	in	the	project	file.
The	TrimMode	specifies	how	aggressively	trimming	should	be	performed.	The
value	link	(used	in	this	example)	is	used	to	trim	based	on	members	and	to
remove	members	that	are	not	used.	When	you	set	the	value	to	copyused,
complete	assemblies	are	kept	if	any	of	their	members	are	used	by	the
application:

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<RuntimeIdentifiers>

						win10-x64;ubuntu-x64;osx.10.11-x64;

				</RuntimeIdentifiers>

				<PublishTrimmed>true</PublishTrimmed>

				<TrimMode>link</TrimMode>

		</PropertyGroup>

</Project>

You	use	the	following	command	and	the	previous	project	configuration	to	create
a	single	file	executable	that	is	trimmed.	At	the	time	of	this	writing,	the	size	of	the
binary	for	“Hello,	World!”	is	reduced	from	54MB	to	2.8MB.	That's	quite
impressive.	As	the	feature	is	improved	continuously,	more	savings	can	be
expected	in	the	future.

>	dotnet	publish	-o	publishtrimmed	-p:PublishSingleFile=true	--

self-contained	

-r	win10-x64

There	is	a	risk	with	trimming.	For	example,	if	the	application	makes	use	of
reflection,	the	trimmer	is	not	aware	that	the	reflected	members	are	needed	during
runtime.	To	deal	with	such	issues,	you	can	specify	what	assemblies,	types,	and
type	members	should	not	be	trimmed.	To	configure	such	options,	read	the
detailed	documentation	at
https://docs.microsoft.com/dotnet/core/deploying/trimming-options.

SUMMARY
This	chapter	covered	a	lot	of	ground	to	review	important	technologies	and
changes	with	.NET.	With	new	applications	you	should	use	.NET	Core	(now

https://docs.microsoft.com/dotnet/core/deploying/trimming-options

renamed	to	just	.NET)	for	future	development.	With	existing	applications,	it
depends	on	the	state	of	the	application	if	you	prefer	to	stay	with	older
technologies	or	migrate	to	new	ones.	For	moving	to	.NET,	you	now	know	about
frameworks	that	you	can	use	to	replace	older	frameworks.

You	read	about	tools	you	can	use	for	development	and	dived	into	the	.NET	CLI
to	create,	build,	and	publish	applications.

You	looked	at	technologies	for	accessing	the	database	and	creating	Windows
apps,	and	you	read	about	different	ways	to	create	web	applications.

Whereas	this	chapter	laid	the	foundation	with	a	“Hello	World!”	example,
Chapter	2	dives	fast	into	the	syntax	of	C#.	It	covers	variables,	how	to	implement
program	flows,	how	to	organize	your	code	into	namespaces,	and	more.

2
Core	C#

WHAT'S	IN	THIS	CHAPTER?

Top-level	statements

Declaring	variables

Target-typed	new	expressions

Nullable	types

Predefined	C#	data	types

Program	flow

Namespaces

Strings

Comments	and	documentation

C#	preprocessor	directives

Guidelines	and	coding	conventions

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/CoreCSharp.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

TopLevelStatements

CommandLineArgs

VariableScopeSample

NullableValueTypes

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

NullableReferenceTypes

ProgramFlow

SwitchStatement

SwitchExpression

ForLoop

StringSample

All	the	sample	projects	have	nullable	reference	types	enabled.

FUNDAMENTALS	OF	C#
Now	that	you	understand	more	about	what	C#	can	do,	you	need	to	know	how	to
use	it.	This	chapter	gives	you	a	good	start	in	that	direction	by	providing	a	basic
understanding	of	the	fundamentals	of	C#	programming,	which	subsequent
chapters	build	on.	By	the	end	of	this	chapter,	you	will	know	enough	C#	to	write
simple	programs	(though	without	using	inheritance	or	other	object-oriented
features,	which	are	covered	in	later	chapters).

The	previous	chapter	explained	how	to	create	a	“Hello,	World!”	application
using	the	.NET	CLI	tools.	This	chapter	focuses	on	C#	syntax.	First,	here's	some
general	information	on	the	syntax:

Statements	end	in	a	semicolon	(;)	and	can	continue	over	multiple	lines
without	needing	a	continuation	character.

Statements	can	be	joined	into	blocks	using	curly	braces	({}).

Single-line	comments	begin	with	two	forward	slash	characters	(//).

Multiline	comments	begin	with	a	slash	and	an	asterisk	(/*)	and	end	with	the
same	combination	reversed	(*/).

C#	is	case-sensitive.	Variables	named	myVar	and	MyVar	are	two	different
variables.

Top-Level	Statements
A	new	feature	of	C#	9	is	top-level	statements.	You	can	create	simple	applications
without	defining	a	namespace,	declaring	a	class,	and	defining	a	Main	method.	A

one-line	“Hello,	World!”	application	can	look	like	this:

System.Console.WriteLine("Hello	World!");

Let's	enhance	this	one-line	application	to	open	the	namespace	where	the	Console
class	is	defined	first.	With	the	using	directive	to	import	the	System	namespace,
you	can	use	class	Console	without	prefixing	it	with	the	namespace:

using	System;

Console.WriteLine("Hello	World!");

Because	WriteLine	is	a	static	method	of	the	Console	class,	it's	even	possible	to
open	the	Console	class	with	the	using	static	directive:

using	static	System.Console;

WriteLine("Hello	World!");

Behind	the	scenes,	with	top-level	statements,	the	compiler	creates	a	class	with	a
Main	method	and	adds	the	top-level	statements	to	the	Main	method:

using	System;

	

class	Program

{

		static	void	Main()

		{

				Console.WriteLine("Hello,	World!");

		}

}

NOTE Many	of	the	samples	of	this	book	use	top-level	statements	because
this	feature	is	extremely	useful	with	small	sample	applications.	This	feature
can	also	be	of	practical	use	with	small	microservices	that	you	now	can	write
in	a	few	code	lines	and	when	you	use	C#	in	a	scripting-like	environment.

Variables
C#	offers	different	ways	to	declare	and	initialize	variables.	A	variable	has	a	type
and	a	value	that	can	change	over	time.	In	the	next	code	snippet,	the	variable	s1	is
of	type	string	as	defined	with	the	type	declaration	at	the	left	of	the	variable
name,	and	it	is	initialized	to	a	new	string	object	where	the	string	literal	"Hello,
World!"	is	passed	to	the	constructor.	Because	the	string	type	is	commonly
used,	instead	of	creating	a	new	string	object,	the	string	"Hello,	World!"	can	be
directly	assigned	to	the	variable	(shown	with	the	variable	s2).

C#	3	invented	the	var	keyword	with	type	inference,	which	can	be	used	to	declare
a	variable	as	well.	Here,	the	type	is	required	on	the	right	side,	and	the	left	side
would	infer	the	type	from	it.	As	the	compiler	creates	a	string	object	from	the
string	literal	"Hello,	World",	s3	is	in	the	same	way	a	type-safe	strongly	defined
string	like	s1	and	s2.

C#	9	provides	another	new	syntax	to	declare	and	initialize	a	variable	with	the
target-typed	new	expression.	Instead	of	writing	the	expression	new
string("Hello,	World!"),	if	the	type	is	known	at	the	left	side,	using	just	the
expression	new("Hello,	World!")	is	sufficient;	you	don't	have	to	specify	the
type	on	the	right	side	(code	file	TopLevelStatements/Program.cs):

using	System;

	

string	s1	=	new	string("Hello,	World!");

string	s2	=	"Hello,	World!";

var	s3	=	"Hello,	World!";

string	s4	=	new("Hello,	World!");

	

Console.WriteLine(s1);

Console.WriteLine(s2);

Console.WriteLine(s3);

Console.WriteLine(s4);

//…

NOTE Declaring	the	type	on	the	left	side	using	the	var	keyword	or	the
target-typed	new	expression	often	is	just	a	matter	of	taste.	Behind	the	scenes,
the	same	code	gets	generated.	The	var	keyword	has	been	available	since	C#
3	and	reduced	the	amount	of	code	you	needed	to	write	by	defining	the	type
both	on	the	left	side	to	declare	the	type	and	on	the	right	side	when
instantiating	the	object.	With	the	var	keyword,	you	only	have	to	have	the
type	on	the	right	side.	However,	the	var	keyword	cannot	be	used	with
members	of	types.	Before	C#	9,	you	had	to	write	the	type	two	times	with
class	members;	now	you	can	use	target-typed	new.	Target-typed	new	can	be
used	with	local	variables,	which	you	can	see	in	the	preceding	code	snippet
with	variable	s4.	This	doesn't	make	the	var	keyword	useless;	it	still	has	its
advantages—for	example,	on	receiving	values	from	a	method.

Command-Line	Arguments
When	you're	passing	values	to	the	application	when	starting	the	program,	the

variable	args	is	automatically	declared	with	top-level	statements.	In	the
following	code	snippet,	with	the	foreach	statement,	the	variable	args	is
accessed	to	iterate	through	all	the	command-line	arguments	and	display	the
values	on	the	console	(code	file	CommandLineArgs/Program.cs):

using	System;

	

foreach	(var	arg	in	args)

{

		Console.WriteLine(arg);

}

Using	the	.NET	CLI	to	run	the	application,	you	can	use	dotnet	run	followed	by
--	and	then	pass	the	arguments	to	the	program.	The	--	needs	to	be	added	so	as
not	to	confuse	the	arguments	of	the	.NET	CLI	with	the	arguments	of	the
application:

>	dotnet	run	--	one	two	three

When	you	run	this,	you	see	the	strings	one	two	three	on	the	console.

When	you	create	a	custom	Main	method,	the	method	needs	to	be	declared	to
receive	a	string	array.	You	can	choose	a	name	for	the	variable,	but	the	variable
named	args	is	commonly	used,	which	is	the	reason	this	name	was	selected	for
the	automatically	generated	variable	with	top-level	statements:

using	System;

	

class	Program

{

		static	void	Main(string[]	args)

		{

				foreach	(var	arg	in	args)

				{

						Console.WriteLine(arg);

				}

		}

}

Understanding	Variable	Scope
The	scope	of	a	variable	is	the	region	of	code	from	which	the	variable	can	be
accessed.	In	general,	the	scope	is	determined	by	the	following	rules:

A	field	(also	known	as	a	member	variable)	of	a	class	is	in	scope	for	as	long
as	its	containing	class	is	in	scope.

A	local	variable	is	in	scope	until	a	closing	brace	indicates	the	end	of	the
block	statement	or	method	in	which	it	was	declared.

A	local	variable	that	is	declared	in	a	for,	while,	or	similar	statement	is	in
scope	in	the	body	of	that	loop.

It's	common	in	a	large	program	to	use	the	same	variable	name	for	different
variables	in	different	parts	of	the	program.	This	is	fine	as	long	as	the	variables
are	scoped	to	completely	different	parts	of	the	program	so	that	there	is	no
possibility	for	ambiguity.	However,	bear	in	mind	that	local	variables	with	the
same	name	can't	be	declared	twice	in	the	same	scope.	For	example,	you	can't	do
this:

int	x	=	20;

//	some	more	code

int	x	=	30;

Consider	the	following	code	sample	(code	file
VariableScopeSample/Program.cs):

using	System;

	

for	(int	i	=	0;	i	<	10;	i++)

{

		Console.WriteLine(i);

}	//	i	goes	out	of	scope	here

	

//	We	can	declare	a	variable	named	i	again,	because

//	there's	no	other	variable	with	that	name	in	scope

for	(int	i	=	9;	i>=	0;	i--)

{

		Console.WriteLine(i);

}	//	i	goes	out	of	scope	here.

This	code	simply	prints	out	the	numbers	from	0	to	9,	and	then	from	9	to	0,	using
two	for	loops.	The	important	thing	to	note	is	that	you	declare	the	variable	i
twice	in	this	code,	within	the	same	method.	You	can	do	this	because	i	is	declared
in	two	separate	loops,	so	each	i	variable	is	local	to	its	own	loop.

Here's	another	example	(code	file	VariableScopeSample2/Program.cs):

int	j	=	20;

for	(int	i	=	0;	i	<	10;	i++)

{

		int	j	=	30;	//	Can't	do	this	—	j	is	still	in	scope

		Console.WriteLine(j	+	i);

}

If	you	try	to	compile	this,	you	get	an	error	like	the	following:

error	CS0136:	A	local	or	parameter	named	'j'	cannot	be	declared	

in	this	scope	because	that	name	is	used	in	an	enclosing	local	

scope	to	define	a	local	or	parameter

This	occurs	because	the	variable	j,	which	is	defined	before	the	start	of	the	for
loop,	is	still	in	scope	within	the	for	loop	and	won't	go	out	of	scope	until	the	Main
method	(which	is	created	from	the	compiler)	has	finished	executing.	The
compiler	has	no	way	to	distinguish	between	these	two	variables,	so	it	won't
allow	the	second	one	to	be	declared.

It	even	doesn't	help	to	put	the	variable	j	declared	outside	of	the	for	loop	after
the	end	of	the	for	loop.	The	compiler	moves	all	variable	declarations	at	the
beginning	of	a	scope	no	matter	where	you	declare	it.

Constants
For	values	that	never	change,	you	can	define	a	constant.	For	constant	values,	you
can	use	the	const	keyword.

With	variables	declared	with	the	const	keyword,	the	compiler	replaces	the
variable	in	every	occurrence	with	the	value	specified	with	the	constant.

A	constant	is	specified	with	the	const	keyword	before	the	type:

const	int	a	=	100;	//	This	value	cannot	be	changed.

The	compiler	replaces	every	occurrence	of	the	local	field	with	the	value.	This
behavior	is	important	in	terms	of	versioning.	If	you	declare	a	constant	with	a
library	and	use	the	constant	from	an	application,	the	application	needs	to	be
recompiled	to	get	the	new	value;	otherwise,	the	library	could	have	a	different
value	from	the	application.	Because	of	this,	it's	best	to	use	const	only	with
values	that	never	change,	even	in	future	versions.

Constants	have	the	following	characteristics:

They	must	be	initialized	when	they	are	declared.	After	a	value	has	been
assigned,	it	can	never	be	overwritten.

The	value	of	a	constant	must	be	computable	at	compile	time.	You	can't
initialize	a	constant	with	a	value	taken	from	a	variable.	If	you	need	to	do
this,	you	must	use	a	read-only	field.

Constants	are	always	implicitly	static.	Notice	that	you	don't	have	to	(and,	in
fact,	are	not	permitted	to)	include	the	static	modifier	in	the	constant
declaration.

The	following	are	the	advantages	of	using	constants	in	your	programs:

Constants	make	your	programs	easier	to	read	by	replacing	magic	numbers
and	strings	with	readable	names	whose	values	are	easy	to	understand.

Constants	help	prevent	mistakes	in	your	programs.	If	you	attempt	to	assign
another	value	to	a	constant	somewhere	in	your	program	other	than	at	the
point	where	the	constant	is	declared,	the	compiler	flags	the	error.

NOTE If	multiple	instances	could	have	different	values	but	the	value	never
changes	after	initialization,	you	can	use	the	readonly	keyword.	This	is
discussed	in	Chapter	3,	“Classes,	Records,	Structs,	and	Tuples.”

Methods	and	Types	with	Top-Level	Statements
You	can	also	add	methods	and	types	to	the	same	file	with	top-level	statements.
In	the	following	code	snippet,	the	method	named	Method	is	defined	and	invoked
after	the	method	declaration	and	implementation	(code	file
TopLevelStatements/Program.cs):

//…

void	Method()

{

				Console.WriteLine("this	is	a	method");

}

	

Method();

//…

The	method	can	be	declared	before	or	after	it	is	used.	Types	can	be	added	to	the
same	file,	but	these	need	to	be	specified	following	the	top-level	statements.	With
the	following	code	snippet,	the	class	Book	is	specified	to	contain	a	Title
property	and	the	ToString	method.	Before	the	declaration	of	the	type,	a	new
instance	is	created	and	assigned	to	the	variable	b1,	the	value	of	the	Title
property	is	set,	and	the	instance	is	written	to	the	console.	When	the	object	is
passed	as	an	argument	to	the	WriteLine	method,	in	turn	the	ToString	method	of
Book	class	is	invoked:

Book	b1	=	new();

b1.Title	=	"Professional	C#";

Console.WriteLine(b1);

	

	

class	Book

{

		public	string	Title	{	get;	set;	}

		public	override	string	ToString()	=>	Title;

}

NOTE Creating	and	invoking	methods	and	defining	classes	are	explained
in	detail	in	Chapter	3.

NOTE All	the	top-level	statements	need	to	reside	in	one	file.	Otherwise,
the	compiler	wouldn't	know	where	to	start.	If	you	use	top-level	statements,
make	them	easy	to	find,	such	as	by	adding	them	to	the	Program.cs	file.	You
don't	want	to	search	for	the	top-level	statements	in	a	list	of	multiple	files.

NULLABLE	TYPES
With	the	first	version	of	C#,	a	value	type	couldn't	have	a	null	value,	but	it	was
always	possible	to	assign	null	to	a	reference	type.	The	first	change	happened
with	C#	2	and	the	invention	of	the	nullable	value	type.	C#	8	brought	a	change
with	reference	types	because	most	exceptions	occurring	with	.NET	are	of	type
NullReferenceException.	These	exceptions	occur	when	a	member	of	a
reference	is	invoked	that	has	null	assigned.	To	reduce	these	issues	and	get
compiler	errors	instead,	nullable	reference	types	were	introduced	with	C#	8.

This	section	covers	both	nullable	value	types	and	nullable	reference	types.	The
syntax	looks	similar,	but	it's	very	different	behind	the	scenes.

Nullable	Value	Types
With	a	value	type	such	as	int,	you	cannot	assign	null	to	it.	This	can	lead	to
difficulties	when	mapping	to	databases	or	other	data	sources,	such	as	XML	or
JSON.	Using	a	reference	type	instead	results	in	additional	overhead:	an	object	is
stored	in	the	heap,	and	the	garbage	collection	needs	to	clean	it	up	when	it's	not
used	anymore.	Instead,	the	?	can	be	used	with	the	type	definition,	which	allows
assigning	null	:

int?	x1	=	null;

The	compiler	changes	this	to	use	the	Nullable<T>	type:

Nullable<int>	x1	=	null;

Nullable<T>	doesn't	add	the	overhead	of	a	reference	type.	This	is	still	a	struct
(a	value	type)	but	adds	a	Boolean	flag	to	specify	if	the	value	is	null.

The	following	code	snippet	demonstrates	using	nullable	value	types	and
assigning	non-nullable	values.	The	variable	n1	is	a	nullable	int	that	has	been
assigned	the	value	null.	A	nullable	value	type	defines	the	property	HasValue,
which	can	be	used	to	check	whether	the	variable	has	a	value	assigned.	With	the
Value	property,	you	can	access	its	value.	This	can	be	used	to	assign	the	value	to
a	non-nullable	value	type.	A	non-nullable	value	can	always	be	assigned	to	a
nullable	value	type;	this	always	succeeds	(code	file
NullableValueTypes/Program.cs):

int?	n1	=	null;

if	(n1.HasValue)

{

		int	n2	=	n1.Value;

}

int	n3	=	42;

int?	n4	=	n3;

Nullable	Reference	Types
Nullable	reference	types	have	the	goal	of	reducing	exceptions	of	type
NullReferenceException,	which	is	the	most	common	exception	that	occurs
with	.NET	applications.	There	always	has	been	a	guideline	that	an	application
should	not	throw	such	exceptions	and	should	always	check	for	null,	but	without
the	help	of	the	compiler,	such	issues	can	be	missed	too	easily.

To	get	help	from	the	compiler,	you	need	to	turn	on	nullable	reference	types.
Because	this	feature	has	breaking	changes	with	existing	code,	you	need	to	turn	it
on	explicitly.	You	specify	the	Nullable	element	and	set	the	enable	value	in	the
project	file	(project	file	NullableReferenceTypes.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

</Project>

Now,	null	cannot	be	assigned	to	reference	types.	When	you	write	this	code	with
nullable	enabled,

string	s1	=	null;	//	compiler	warning

you	get	the	compiler	warning	“CS8600:	Converting	a	null	literal	or	a	possible
null	value	to	non-nullable	type.”

To	assign	null	to	the	string,	the	type	needs	to	be	declared	with	a	question	mark—
like	nullable	value	types:

string?	s1	=	null;

When	you're	using	the	nullable	s1	variable,	you	need	to	make	sure	to	verify	for
not	null	before	invoking	methods	or	assigning	it	to	non-nullable	strings;
otherwise,	compiler	warnings	are	generated:

string	s2	=	s1.ToUpper();	//	compiler	warning

Instead,	you	can	check	for	null	before	invoking	the	method	with	the	null-
conditional	operator	?.,	which	invokes	the	method	only	if	the	object	is	not	null.
The	result	cannot	be	written	to	a	non-nullable	string.	The	result	of	the	right
expression	can	be	null	if	s1	is	null	:

string?	s2	=	s1?.ToUpper();

You	can	use	the	coalescing	operator	??	to	define	a	different	return	value	in	the
case	of	null.	With	the	following	code	snippet,	an	empty	string	is	returned	in
case	the	expression	to	the	left	of	??	returns	null.	The	complete	result	of	the	right
expression	is	now	written	to	the	variable	s3,	which	can	never	be	null.	It's	either
the	uppercase	version	of	the	s1	string	if	s1	is	not	null,	or	an	empty	string	if	s1	is
null	:

string	s3	=	s1?.ToUpper()	??	string.Empty;

Instead	of	using	these	operators,	you	can	also	use	the	if	statement	to	verify
whether	a	variable	is	not	null.	With	the	if	statement	in	the	following	code
snippet,	the	C#	pattern	is	not	is	used	to	verify	that	s1	is	not	null.	The	block
covered	by	the	if	statement	is	invoked	only	when	s1	is	not	null.	Here	it	is	not
necessary	to	use	the	null-conditional	operator	to	invoke	the	method	ToUpper	:

if	(s1	is	not	null)

{

		string	s4	=	s1.ToUpper();

}

Of	course,	it's	also	possible	to	use	the	not	equals	operator	!=	:

if	(s1	!=	null)

{

		string	s5	=	s1.ToUpper();

}

NOTE Operators	are	covered	in	detail	in	Chapter	5,	“Operators	and
Casts.”

Using	nullable	reference	types	is	also	important	with	members	of	types,	as
shown	in	the	Book	class	with	the	Title	and	Publisher	properties	in	the
following	code	snippet.	The	Title	is	declared	with	a	non-nullable	string	type;
thus,	it	needs	to	be	initialized	when	creating	a	new	object	of	the	Book	class.	It's
initialized	with	the	constructor	of	the	Book	class.	The	Publisher	property	is
allowed	to	be	null,	so	it	doesn't	need	initialization	(code	file
NullableReferenceTypes/Program.cs):

class	Book

{

		public	Book(string	title)	=>	Title	=	title;

				

		public	string	Title	{	get;	set;	}

		public	string?	Publisher	{	get;	set;	}

}

When	you're	declaring	a	variable	of	the	Book	class,	the	variable	can	be	declared
as	nullable	(b1),	or	it	needs	a	Book	object	with	the	declaration	using	the
constructor	(b2).	The	Title	property	can	be	assigned	to	a	non-nullable	string
type.	With	the	Publisher	property,	you	can	assign	it	to	a	nullable	string	or	use
the	operators	as	shown	earlier:

Book?	b1	=	null;

Book	b2	=	new	Book("Professional	C#");

string	title	=	b2.Title;

string?	publisher	=	b2.Publisher;

Behind	the	scenes	with	nullable	value	types,	the	type	Nullable<T>	is	used
behind	the	scenes.	This	is	not	the	case	with	nullable	reference	types.	Instead,	the
compiler	adds	annotation	to	the	types.	Nullable	reference	types	have	Nullable
attributes	associated.	With	this,	nullable	reference	types	can	be	used	with

libraries	to	annotate	parameters	and	members	with	nullability.	When	the	library
is	used	with	new	applications,	IntelliSense	can	give	information	regarding
whether	a	method	or	property	can	be	null,	and	the	compiler	acts	accordingly
with	compiler	warnings.	Using	an	older	version	of	the	compiler	(earlier	than	C#
8),	the	library	can	still	be	used	in	the	same	way	nonannotated	libraries	are	used.
The	compiler	just	ignores	the	attributes	it	doesn't	know.

NOTE Nearly	all	the	samples	of	this	book	are	configured	to	have	nullable
reference	types	turned	on.	With	.NET	5,	nearly	all	the	base	class	libraries
have	been	fully	annotated	with	nullable	reference	types.	This	helps	getting
information	about	what	is	required	with	parameters	and	what	is	returned.
An	interesting	aspect	here	is	the	choices	Microsoft	made	in	deciding
nullability.	The	string	returned	from	the	object.ToString	method	was
originally	documented	that	overriding	this	method	should	never	return	null.
The	.NET	team	reviewed	different	implementations:	some	Microsoft	teams
overriding	this	method	returned	null.	Because	the	usage	was	different	than
the	documentation,	Microsoft	decided	to	declare	the	object.ToString
method	to	return	string?,	which	allows	it	to	return	null.	Overriding	this
method,	you	can	be	stricter	and	return	string.	Overriding	methods	is
explained	in	detail	in	Chapter	4,	“Object-Oriented	Programming	in	C#.”

Because	nullable	reference	types	is	a	breaking	change	when	turning	this
feature	on	with	existing	applications,	to	allow	for	a	slow	migration	to	this
new	feature,	you	can	use	the	preprocessor	directive	#nullable	to	turn	it	on
or	off	and	to	restore	it	to	the	setting	from	the	project	file.	This	is	discussed	in
the	section	“C#	Preprocessor	Directives.”

USING	PREDEFINED	TYPES
Now	that	you	have	seen	how	to	declare	variables	and	constants	and	know	about
an	extremely	important	enhancement	with	nullability,	let's	take	a	closer	look	at
the	data	types	available	in	C#.

The	C#	keywords	for	data	types—such	as	int,	short,	and	string—are	mapped
from	the	compiler	to	.NET	data	types.	For	example,	when	you	declare	an	int	in
C#,	you	are	actually	declaring	an	instance	of	a	.NET	struct:	System.Int32.	All
the	primitive	data	types	offer	methods	that	can	be	invoked.	For	example,	to
convert	int	i	to	a	string,	you	can	write	the	following:

string	s	=	i.ToString();

I	should	emphasize	that	behind	this	syntactical	convenience,	the	types	really	are
stored	as	primitive	types,	so	absolutely	no	performance	cost	is	associated	with
the	idea	that	the	primitive	types	are	represented	by	.NET	structs.

The	following	sections	review	the	types	that	are	recognized	as	built-in	types	in
C#.	Each	type	is	listed	along	with	its	definition	and	the	name	of	the
corresponding	.NET	type.	I	also	show	you	a	few	exceptions—some	important
data	types	that	are	available	only	with	their	.NET	type	and	don't	have	a	specific
C#	keyword.

Let's	start	with	predefined	value	types	that	represent	primitives,	such	as	integers,
floating-point	numbers,	characters,	and	Booleans.

Integer	Types
C#	supports	integer	types	with	various	numbers	of	bits	used	and	differs	between
types	that	support	only	positive	values	or	types	with	a	range	of	negative	and
positive	values.	Eight	bits	are	used	by	the	byte	and	sbyte	types.	The	byte	type
allows	values	from	0	to	255—only	positive	values—whereas	the	s	in	sbyte
means	to	use	a	sign;	that	type	supports	values	from	–128	to	127,	which	is	what's
possible	with	8	bits.

The	short	and	ushort	types	make	use	of	16	bits.	The	short	type	covers	the
range	from	–32,768	to	32,767.	With	the	ushort	type,	the	u	is	for	unsigned,	and	it
covers	0	to	65,535.	Similarly,	the	int	type	is	a	signed	32-bit	integer,	and	the
uint	type	is	an	unsigned	32-bit	integer.	long	and	ulong	have	64	bits	available.
Behind	the	scenes,	the	C#	keywords	sbyte,	short,	int,	and	long	map	to
System.SByte,	System.Int16,	System.Int32,	and	System.Int64.	The	unsigned
versions	map	to	System.Byte,	System.UInt16,	System.UInt32,	and
System.UInt64.	The	underlying	.NET	types	clearly	list	the	number	of	bits	used
in	the	name	of	the	type.

To	check	for	the	maximum	and	minimum	values	from	the	type,	you	can	use	the
MaxValue	and	MinValue	properties.

Big	Integer
In	case	you	need	a	number	representation	that	has	a	bigger	value	than	the	64	bits
available	in	the	long	type,	you	can	use	the	BigInteger	type.	This	struct	doesn't
have	a	limit	on	the	number	of	bits	and	can	grow	until	there's	not	enough	memory
available.	There's	not	a	specific	C#	keyword	for	this	type,	and	you	need	to	use

BigInteger.	Because	this	type	can	grow	endlessly,	MinValue	and	MaxValue
properties	are	not	available.	This	type	offers	built-in	methods	for	calculation
such	as	Add,	Subtract,	Divide,	Multiply,	Log,	Log10,	Pow,	and	others.

Native	Integer	Types
With	int,	short,	and	long,	the	number	of	bits	and	available	sizes	are
independent	if	the	application	is	a	32-	or	64-bit	application.	This	is	different
from	the	integer	definitions	as	defined	with	C++.	C#	9	has	new	keywords	for
platform-specific	values:	nint	and	nuint	(native	integer	and	native	unsigned
integer,	respectively).	In	a	64-bit	application,	these	integer	types	make	use	of	64
bits,	whereas	in	a	32-bit	application	just	32	bits	are	used.	These	types	are
important	with	direct	memory	access,	which	is	covered	in	Chapter	13,	“Managed
and	Unmanaged	Memory.”

Digit	Separators
For	better	readability	of	numbers,	you	can	use	digit	separators.	You	can	add
underscores	to	numbers,	as	shown	in	the	following	code	snippet.	In	this	code
snippet,	also	the	0x	prefix	is	used	to	specify	hexadecimal	values	(code	file
DataTypes/Program.cs):

long	l1	=	0x_123_4567_89ab_cedf;

The	underscores	used	as	separators	are	just	ignored	by	the	compiler.	These
separators	help	with	readability	and	don't	add	any	functionality.	With	the
preceding	sample,	reading	from	the	right,	every	16	bits	(or	4	hexadecimal
characters)	a	digit	separator	is	added.	This	is	a	lot	more	readable	compared	to
this:

long	l2	=	0x123456789abcedf;

Of	course,	because	the	compiler	ignores	the	underscores,	you	are	responsible	for
readability	yourself.	You	can	put	the	underscores	at	any	position,	which	may	not
really	help	with	readability:

long	l3	=	0x_12345_6789_abc_ed_f;

It's	useful	that	any	position	can	be	used,	which	allows	for	different	use	cases
such	as	to	work	with	hexadecimal	or	octal	values	or	to	separate	different	bits
needed	for	a	protocol,	as	shown	in	the	next	section.

Binary	Values

Besides	offering	digit	separators,	C#	also	makes	it	easy	to	assign	binary	values
to	integer	types.	Using	the	0b	literal,	it's	only	allowed	to	assign	values	of	0	and	1,
such	as	the	following	(code	file	DataTypes/Program.cs):

uint	binary1	=	0b_1111_1110_1101_1100_1011_1010_1001_1000;	

The	preceding	code	snippet	uses	an	unsigned	int	with	32	bits	available.	Digit
separators	help	with	readability	for	using	binary	values.	This	snippet	makes	a
separation	every	4	bits.	Remember,	you	can	write	this	in	the	hex	notation	as
well:

uint	hex1	=	0xfedcba98;	

Using	the	separator	every	3	bits	helps	in	working	with	the	octal	notation,	where
characters	are	used	between	0	(000	binary)	and	7	(111	binary).

uint	binary2	=	0b_111_110_101_100_011_010_001_000;

If	you	need	to	define	a	binary	protocol—for	example,	where	2	bits	define	the
rightmost	part	followed	by	6	bits	in	the	next	section,	and	two	times	4	bits	to
complete	16	bits—you	can	put	separators	per	this	protocol:

ushort	binary3	=	0b1111_0000_101010_11;

NOTE Read	Chapter	5	for	additional	information	on	working	with	binary
data.

Floating-Point	Types
C#	also	specifies	floating-point	types	with	different	numbers	of	bits	based	on	the
IEEE	754	standard.	The	Half	type	(new	as	of	.NET	5)	uses	16	bits,	float
(Single	with	.NET)	uses	32	bits,	and	double	(Double)	uses	64	bits.	With	all	of
these	data	types,	1	bit	is	used	for	the	sign.	Depending	on	the	type,	10	through	52
bits	are	used	for	the	significand,	and	5	through	11	bits	for	the	exponent.	The
following	table	shows	the	details:

C#
KEYWORD

.NET	TYPE DESCRIPTION SIGNIFICAND
BIT

EXPONENT
BIT

System.Half 16-bit,	single-
precision
floating	point

10 5

float System.Single 32-bit,	single- 23 8

precision
floating	point

double System.Double 64-bit,	double-
precision
floating	point

52 11

When	you	assign	a	value,	if	you	hard-code	a	noninteger	number	(such	as	12.3),
the	compiler	assumes	that's	a	double.	To	specify	that	the	value	is	a	float,
append	the	character	F	(or	f):

float	f	=	12.3F;

With	the	decimal	type	(.NET	struct	Decimal),	.NET	has	a	high-precision
floating-point	type	that	uses	128	bits	and	can	be	used	for	financial	calculations.
With	the	128	bits,	1	is	used	for	the	sign,	and	96	for	the	integer	number.	The
remaining	bits	specify	a	scaling	factor.	To	specify	that	your	number	is	a	decimal
type	rather	than	a	double,	a	float,	or	an	integer,	you	can	append	the	M	(or	m)
character	to	the	value:

decimal	d	=	12.30M;

The	Boolean	Type
You	use	the	C#	bool	type	to	contain	Boolean	values	of	either	true	or	false.

You	cannot	implicitly	convert	bool	values	to	and	from	integer	values.	If	a
variable	(or	a	function	return	type)	is	declared	as	a	bool,	you	can	only	use	values
of	true	and	false.	You	get	an	error	if	you	try	to	use	zero	for	false	and	a
nonzero	value	for	true.

The	Character	Type
The	.NET	string	consists	of	two-byte	characters.	The	C#	keyword	char	maps	to
the	.NET	type	Char.	Using	single	quotation	marks,	for	example,	'A',	creates	a
char.	With	double	quotation	marks,	a	string	is	created.

As	well	as	representing	chars	as	character	literals,	you	can	represent	them	with
four-digit	hex	Unicode	values	(for	example,	'\u0041'),	as	integer	values	with	a
cast	(for	example,	(char)65),	or	as	hexadecimal	values	(for	example,	'\x0041').
You	can	also	represent	them	with	an	escape	sequence,	as	shown	in	the	following
table:

ESCAPE	SEQUENCE CHARACTER

\' Single	quotation	mark
\" Double	quotation	mark
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form	feed
\n Newline
\r Carriage	return
\t Tab	character
\v Vertical	tab

Literals	for	Numbers
In	the	preceding	sections,	literals	have	been	shown	for	numeric	values.	Let's
summarize	them	here	in	the	following	table:

LITERAL POSITION DESCRIPTION
U Postfix unsigned	int

L Postfix long

UL Postfix unsigned	long

F Postfix float

M Postfix decimal	(money)
0x Prefix Hexadecimal	number;	values	from	0	to	F	are	allowed
0b Prefix Binary	number;	only	0	and	1	are	allowed
true NA Boolean	value
false NA Boolean	value

The	object	Type
Besides	value	types,	with	C#	keywords,	two	reference	types	are	defined:	the
object	keyword	that	maps	to	the	Object	class	and	the	string	keyword	that
maps	to	the	String	class.	The	string	type	is	discussed	later	in	this	chapter	in
the	section	“Working	with	Strings.”	The	Object	class	is	the	ultimate	base	class

of	all	reference	types	and	can	be	used	for	two	purposes:

You	can	use	an	object	reference	to	bind	to	an	object	of	any	particular
subtype.	For	example,	in	Chapter	5,	you’ll	see	how	you	can	use	the	object
type	to	box	a	value	object	on	the	stack	to	move	it	to	the	heap;	object
references	are	also	useful	in	reflection,	when	code	must	manipulate	objects
whose	specific	types	are	unknown.

The	object	type	implements	a	number	of	basic,	general-purpose	methods,
which	include	Equals,	GetHashCode,	GetType,	and	ToString.	User-defined
classes	might	need	to	provide	replacement	implementations	of	some	of
these	methods	using	an	object-oriented	technique	known	as	overriding,
which	is	discussed	in	Chapter	4.	When	you	override	ToString,	for	example,
you	equip	your	class	with	a	method	for	intelligently	providing	a	string
representation	of	itself.	If	you	don't	provide	your	own	implementations	for
these	methods	in	your	classes,	the	compiler	picks	up	the	implementations	of
the	object	type,	which	returns	the	name	of	the	class.

CONTROLLING	PROGRAM	FLOW
This	section	looks	at	the	real	nuts	and	bolts	of	the	language:	the	statements	that
allow	you	to	control	the	flow	of	your	program	rather	than	execute	every	line	of
code	in	the	order	it	appears	in	the	program.	With	conditional	statements	like	the
if	and	switch	statements,	you	can	branch	your	code	depending	on	whether
certain	conditions	are	met.	You	can	repeat	statements	in	loops	with	for,	while,
and	foreach	statements.

The	if	Statement
With	the	if	statement,	you	can	specify	an	expression	within	parentheses.	If	the
expression	returns	true,	the	block	that's	specified	with	curly	braces	is	invoked.
In	case	the	condition	is	not	true,	you	can	check	for	another	condition	to	be	true
using	else	if.	The	else	if	can	be	repeated	to	check	for	more	conditions.	If
neither	the	expressions	specified	with	the	if	nor	all	the	else	if	expressions
evaluate	to	true,	the	block	specified	with	the	else	block	is	invoked.

With	the	following	code	snippet,	a	string	is	read	from	the	console.	If	an	empty
string	is	entered,	the	code	block	following	the	if	statement	is	invoked.	The
string	method	IsNullOrEmpty	returns	true	if	the	string	is	either	null	or
empty.	The	block	specified	with	the	else	if	statement	is	invoked	when	the
length	of	the	input	is	smaller	than	five	characters.	In	all	other	cases—for

example,	with	an	input	length	of	five	or	more	characters—the	else	block	is
invoked	(code	file	ProgramFlow/Program.cs):

Console.WriteLine("Type	in	a	string");

string?	input	=	Console.ReadLine();

	

if	(string.IsNullOrEmpty(input))

{

		Console.WriteLine("You	typed	in	an	empty	string.");

}

else	if	(input?.Length	<	5)

{

		Console.WriteLine("The	string	had	less	than	5	characters.");

}

else

{

		Console.WriteLine("Read	any	other	string");

}

Console.WriteLine("The	string	was	"	+	input);

NOTE If	there's	just	a	single	statement	with	the	if	/	else	if	/	else
blocks,	the	curly	braces	are	not	necessary.	They	are	necessary	only	with
multiple	statements.	However,	the	curly	braces	also	help	with	readability
with	single	code	lines.

With	the	if	statement,	else	if	and	else	are	optional.	If	you	just	need	to	invoke
a	code	block	based	on	a	condition	and	don't	invoke	a	code	block	if	this	condition
is	not	met,	you	can	use	the	if	without	else.

Pattern	Matching	with	the	is	Operator
One	of	the	C#	features	is	pattern	matching,	which	you	can	use	with	the	if
statement	and	the	is	operator.	The	earlier	section	“Nullable	Reference	Types”
included	an	example	that	used	an	if	statement	and	the	pattern	is	not	null.

The	following	code	snippet	compares	the	argument	received	that	is	of	type
object	with	null,	using	a	const	pattern	to	compare	the	argument	with	null	and
throw	the	ArgumentNullException.	With	the	expression	used	in	else	if,	the
type	pattern	is	used	to	check	whether	the	variable	o	is	of	type	Book.	If	this	is	the
case,	the	variable	o	is	assigned	to	the	variable	b.	Because	variable	b	is	of	type
Book,	with	b	the	Title	property	that	is	specified	by	the	Book	type	can	be
accessed	(code	file	ProgramFlow/Program.cs):

void	PatternMatching(object	o)

{

		if	(o	is	null)	throw	new	ArgumentNullException(nameof(o));

		else	if	(o	is	Book	b)

		{

				Console.WriteLine($"received	a	book:	{b.Title}");

		}

}

NOTE In	this	example,	for	throwing	the	ArgumentNullException	,	the
nameof	expression	is	used.	The	nameof	expression	is	resolved	from	the
compiler	to	take	the	name	of	the	argument—for	example,	the	variable	o	—
and	pass	it	as	a	string.	throw	new	ArgumentNullException(nameof(o));
resolves	to	the	same	code	as	throw	new	ArgumentNullException("o");	.
However,	if	the	variable	o	is	renamed	to	a	different	value,	refactoring
features	can	automatically	rename	the	variable	specified	with	the	nameof
expression.	If	the	parameter	of	nameof	is	not	changed	when	the	variable	is
renamed,	a	compiler	error	will	be	the	result.	Without	the	nameof	expression,
the	variable	and	the	string	can	easily	get	out	of	sync.

A	few	more	samples	for	const	and	type	patterns	are	shown	in	the	following	code
snippet:

if	(o	is	42)	//	const	pattern

if	(o	is	"42")	//	const	pattern

if	(o	is	int	i)	//	type	pattern

NOTE You	can	use	pattern	matching	with	the	is	operator,	the	switch
statement,	and	the	switch	expression.	You	can	use	different	categories	of
pattern	matching.	This	chapter	only	covers	const,	type,	relational	patterns,
and	pattern	combinators.	More	patterns,	such	as	property	patterns,	patterns
with	tuples,	and	recursive	patterns,	are	covered	in	Chapter	3.

The	switch	Statement
The	switch	/	case	statement	is	good	for	selecting	one	branch	of	execution	from
a	set	of	mutually	exclusive	ones.	It	takes	the	form	of	a	switch	argument
followed	by	a	series	of	case	clauses.	When	the	expression	in	the	switch
argument	evaluates	to	one	of	the	values	specified	by	a	case	clause,	the	code
immediately	following	the	case	clause	executes.	This	is	one	example	for	which

you	don't	need	to	use	curly	braces	to	join	statements	into	blocks;	instead,	you
mark	the	end	of	the	code	for	each	case	using	the	break	statement.	You	can	also
include	a	default	case	in	the	switch	statement,	which	executes	if	the	expression
doesn't	evaluate	to	any	of	the	other	cases.	The	following	switch	statement	tests
the	value	of	the	x	variable	(code	file	SwitchStatement/Program.cs):

void	SwitchSample(int	x)

{

		switch	(x)

		{

				case	1:

						Console.WriteLine("integerA	=	1");

						break;

				case	2:

						Console.WriteLine("integerA	=	2");

						break;

				case	3:

						Console.WriteLine("integerA	=	3");

						break;

				default:

						Console.WriteLine("integerA	is	not	1,	2,	or	3");

						break;

		}

}

Note	that	the	case	values	must	be	constant	expressions;	variables	are	not
permitted.

With	the	switch	statement,	you	cannot	remove	the	break	from	the	different
cases.	Contrary	to	the	C++	and	Java	programming	languages,	with	C#	automatic
fall-through	from	one	case	implementation	to	continue	with	another	case	is	not
done.	Instead	of	an	automatic	fall-through,	you	can	use	the	goto	keyword	for	an
explicit	fall-through	and	select	another	case.	Here's	an	example:

goto	case	3;

If	the	implementation	is	completely	the	same	with	multiple	cases,	you	can
specify	multiple	cases	before	specifying	an	implementation:

switch(country)

{

		case	"au":

		case	"uk":

		case	"us":

				language	=	"English";

				break;

		case	"at":

		case	"de":

				language	=	"German";

				break;

}

Pattern	Matching	with	the	switch	Statement
Pattern	matching	can	also	be	used	with	the	switch	statement.	The	following
code	snippet	shows	different	case	options	with	const	and	type,	and	relational
patterns.	The	method	SwitchWithPatternMatching	receives	a	parameter	of	type
object.	case	null	is	a	const	pattern	that	compares	o	for	null.	The	next	three
cases	specify	a	type	pattern.	case	int	i	uses	a	type	pattern	that	creates	the
variable	i	if	o	is	an	int,	but	only	in	combination	with	the	when	clause.	The	when
clause	uses	a	relational	pattern	to	check	if	it	is	larger	than	42.	The	next	case
matches	every	remaining	int	type.	Here,	no	variable	is	specified	where	object	o
should	be	assigned.	Specifying	a	variable	is	not	necessary	if	you	don't	need	this
variable	and	just	need	to	know	it's	of	this	type.	With	the	match	for	a	Book	type,
the	variable	b	is	used.	Declaring	a	variable	here,	this	variable	is	of	type	Book
(code	file	SwitchStatement/Program.cs):

void	SwitchWithPatternMatching(object	o)

{

		switch	(o)

		{

				case	null:

						Console.WriteLine("const	pattern	with	null");

						break;

				case	int	i	when	i>	42

						Console.WriteLine("type	pattern	with	when	and	a	relational	

pattern");			

				case	int:

						Console.WriteLine("type	pattern	with	an	int");

						break;

				case	Book	b:

						Console.WriteLine($"type	pattern	with	a	Book	{b.Title}");

						break;

				default:

						break;

		}

}

The	switch	Expression

The	next	example	shows	a	switch	based	on	an	enum	type.	The	enum	type	is	based
on	an	integer	but	gives	names	to	the	different	values.	The	type	TrafficLight
defines	the	different	values	for	the	colors	of	a	traffic	light	(code	file
SwitchExpression/Program.cs):

enum	TrafficLight

{

		Red,

		Amber,

		Green

}

NOTE Chapter	3	goes	into	more	detail	about	the	enum	type	so	you	can	see
the	effect	of	changing	the	base	type	and	assigning	different	values.

With	the	switch	statement	so	far,	you've	only	seen	invoking	some	actions	in
every	case.	When	you	use	the	return	statement	to	return	from	a	method,	you
can	also	directly	return	a	value	from	the	case	without	continuing	with	the
following	cases.	The	method	NextLightClassic	receives	a	TrafficLight	with
its	parameter	and	returns	a	TrafficLight.	If	the	passed	traffic	light	has	the	value
TrafficLight.Green,	the	method	returns	TrafficLight.Amber.	When	the
current	light	value	is	TrafficLight.Amber,	TrafficLight.Red	is	returned:

TrafficLight	NextLightClassic(TrafficLight	light)	

{

		switch	(light)

		{

				case	TrafficLight.Green:

						return	TrafficLight.Amber;

				case	TrafficLight.Amber:

						return	TrafficLight.Red;

				case	TrafficLight.Red:

						return	TrafficLight.Green;

				default:

							throw	new	InvalidOperationException();												

		}

}

In	such	a	scenario,	if	you	need	to	return	a	value	based	on	different	options,	you
can	use	the	switch	expression	that	is	new	as	of	C#	8.	The	method	NextLight
receives	and	returns	a	TrafficLight	value	similar	to	the	previously	shown
method.	The	implementation	is	now	done	with	an	expression	bodied	member
because	the	implementation	is	done	in	a	single	statement.	Curly	braces	and	the

return	statement	are	unnecessary	in	this	case.	When	you	use	a	switch
expression	instead	of	the	switch	statement,	the	variable	and	switch	keyword	are
reversed.	With	the	switch	statement,	the	value	on	the	switch	follows	in	braces
after	the	switch	keyword.	With	the	switch	expression,	the	variable	is	followed
by	the	switch	keyword.	A	block	with	curly	braces	defines	the	different	cases.
Instead	of	using	the	case	keyword,	the	=>	token	is	used	to	define	what's
returned.	The	functionality	is	the	same	as	before,	but	you	need	fewer	lines	of
code:

TrafficLight	NextLight(TrafficLight	light)	=>

		light	switch

		{

				TrafficLight.Green	=>	TrafficLight.Amber,

				TrafficLight.Amber	=>	TrafficLight.Red,

				TrafficLight.Red	=>	TrafficLight.Green,

				_	=>	throw	new	InvalidOperationException()

		};

If	the	enum	type	TrafficLight	is	imported	with	the	using	static	directive,	you
can	simplify	the	implementation	even	more	by	just	using	the	enum	value
definitions	without	the	type	name:

using	static	TrafficLight;

	

TrafficLight	NextLight(TrafficLight	light)	=>

		light	switch

		{

				Green	=>	Amber,

				Amber	=>	Red,

				Red	=>	Green,

				_	=>	throw	new	InvalidOperationException()

		};

NOTE In	the	United	States,	the	switch	on	the	traffic	light	is	simple
compared	to	many	other	countries.	In	many	countries,	the	light	switches
from	red	back	to	amber.	Here	you	could	use	multiple	amber	states	such	as
AmberAfterGreen	and	AmberAfterRed	.	But	there	are	other	options	that
require	the	property	pattern	or	pattern	matching	based	on	tuples.	This	is
covered	in	Chapter	3.

With	the	next	example,	a	pattern	combinator	is	used	to	combine	multiple
patterns.	First,	input	is	retrieved	from	the	console.	If	string	one	or	two	is	entered,
the	same	match	applies,	using	the	or	combinator	pattern	(code	file

SwitchExpression/Program.cs):

string?	input	=	Console.ReadLine();

	

string	result	=	input	switch

{

		"one"	=>	"the	input	has	the	value	one",

		"two"	or	"three"	=>	"the	input	has	the	value	two	or	three",

		_	=>	"any	other	value"

};

With	pattern	combinators,	you	can	combine	patterns	using	the	and,	or,	and	not
keywords.

The	for	Loop
C#	provides	four	different	loops	(for,	while,	do	-	while,	and	foreach)	that
enable	you	to	execute	a	block	of	code	repeatedly	until	a	certain	condition	is	met.
With	the	for	keyword,	you	iterate	through	a	loop	whereby	you	test	whether	a
particular	condition	holds	true	before	you	perform	another	iteration:

for	(int	i	=	0;	i	<	100;	i++)

{

		Console.WriteLine(i);

}

The	first	expression	of	the	for	statement	is	the	initializer.	It	is	evaluated	before
the	first	loop	is	executed.	Usually	you	use	this	to	initialize	a	local	variable	as	a
loop	counter.

The	second	expression	is	the	condition.	This	is	checked	before	every	iteration	of
the	for	block.	If	this	expression	evaluates	to	true,	the	block	is	executed.	If	it
evaluates	to	false,	the	for	statement	ends,	and	the	program	continues	with	the
next	statement	after	the	closing	curly	brace	of	the	for	body.

After	the	body	is	executed,	the	third	expression,	the	iterator,	is	evaluated.
Usually,	you	increment	the	loop	counter.	With	i++,	a	value	of	1	is	added	to	the
variable	i.	After	the	third	expression,	the	condition	expression	is	evaluated	again
to	check	whether	another	iteration	with	the	for	block	should	be	done.

The	for	loop	is	a	so-called	pretest	loop	because	the	loop	condition	is	evaluated
before	the	loop	statements	are	executed;	therefore,	the	contents	of	the	loop	won't
be	executed	at	all	if	the	loop	condition	is	false.

It's	not	unusual	to	nest	for	loops	so	that	an	inner	loop	executes	once	completely

for	each	iteration	of	an	outer	loop.	This	approach	is	typically	employed	to	loop
through	every	element	in	a	rectangular	multidimensional	array.	The	outermost
loop	loops	through	every	row,	and	the	inner	loop	loops	through	every	column	in
a	particular	row.	The	following	code	displays	rows	of	numbers.	It	also	uses
another	Console	method,	Console.Write,	which	does	the	same	thing	as
Console.WriteLine	but	doesn't	send	a	carriage	return	to	the	output	(code	file
ForLoop/Program.cs):

//	This	loop	iterates	through	rows

for	(int	i	=	0;	i	<	100;	i	+=	10)

{

		//	This	loop	iterates	through	columns

		for	(int	j	=	i;	j	<	i	+	10;	j++)

		{

				Console.Write($"	{j}");

		}

		Console.WriteLine();

}

This	sample	results	in	this	output:

0	1	2	3	4	5	6	7	8	9

10	11	12	13	14	15	16	17	18	19

20	21	22	23	24	25	26	27	28	29

30	31	32	33	34	35	36	37	38	39

40	41	42	43	44	45	46	47	48	49

50	51	52	53	54	55	56	57	58	59

60	61	62	63	64	65	66	67	68	69

70	71	72	73	74	75	76	77	78	79

80	81	82	83	84	85	86	87	88	89

90	91	92	93	94	95	96	97	98	99

NOTE It	is	technically	possible	to	evaluate	something	other	than	a
counter	variable	in	a	for	loop's	test	condition,	but	it	is	certainly	not	typical.
It	is	also	possible	to	omit	one	(or	even	all)	of	the	expressions	in	the	for	loop.
In	such	situations,	however,	you	should	consider	using	the	while	loop.

The	while	Loop
Like	the	for	loop,	while	is	a	pretest	loop.	The	syntax	is	similar,	but	while	loops
take	only	one	expression:

while(condition)

		statement(s);

Unlike	the	for	loop,	the	while	loop	is	most	often	used	to	repeat	a	statement	or	a
block	of	statements	for	a	number	of	times	that	is	not	known	before	the	loop
begins.	Usually,	a	statement	inside	the	while	loop's	body	sets	a	Boolean	flag	to
false	on	a	certain	iteration,	triggering	the	end	of	the	loop,	as	in	the	following
example:

bool	condition	=	false;

while	(!condition)

{

		//	This	loop	spins	until	the	condition	is	true.

		DoSomeWork();

		condition	=	CheckCondition();	//	assume	CheckCondition()	

returns	a	bool

}

The	do-while	Loop
The	do	-	while	loop	is	the	post-test	version	of	the	while	loop.	This	means	that
the	loop's	test	condition	is	evaluated	after	the	body	of	the	loop	has	been
executed.	Consequently,	do	-	while	loops	are	useful	for	situations	in	which	a
block	of	statements	must	be	executed	at	least	one	time,	as	in	this	example:

bool	condition;

do

{

		//	This	loop	will	at	least	execute	once,	even	if	the	condition	

is	false.

		MustBeCalledAtLeastOnce();

		condition	=	CheckCondition();

}	while	(condition);

The	foreach	Loop
The	foreach	loop	enables	you	to	iterate	through	each	item	in	a	collection.	For
now,	don't	worry	about	exactly	what	a	collection	is	(it	is	explained	fully	in
Chapter	6,	“Arrays”);	just	understand	that	it	is	an	object	that	represents	a	list	of
objects.	Technically,	for	an	object	to	count	as	a	collection,	it	must	support	an
interface	called	IEnumerable.	Examples	of	collections	include	C#	arrays,	the
collection	classes	in	the	System.Collections	namespaces,	and	user-defined
collection	classes.	You	can	get	an	idea	of	the	syntax	of	foreach	from	the
following	code,	if	you	assume	that	arrayOfInts	is	(unsurprisingly)	an	array	of
int	s:

foreach	(int	temp	in	arrayOfInts)

{

		Console.WriteLine(temp);

}

Here,	foreach	steps	through	the	array	one	element	at	a	time.	With	each	element,
it	places	the	value	of	the	element	in	the	int	variable	called	temp	and	then
performs	an	iteration	of	the	loop.

Here	is	another	situation	where	you	can	use	type	inference.	The	foreach	loop
would	become	the	following:

foreach	(var	temp	in	arrayOfInts)

{

		//	…

}

int	would	infer	from	temp	because	that	is	what	the	collection	item	type	is.

An	important	point	to	note	with	foreach	is	that	you	can't	change	the	value	of	the
item	in	the	collection	(temp	in	the	preceding	code),	so	code	such	as	the	following
will	not	compile:

foreach	(int	temp	in	arrayOfInts)

{

		temp++;

		Console.WriteLine(temp);

}

If	you	need	to	iterate	through	the	items	in	a	collection	and	change	their	values,
you	must	use	a	for	loop	instead.

Exiting	Loops
Within	a	loop,	you	can	stop	the	iterations	with	the	break	statement	or	end	the
current	iteration	and	continue	with	the	next	iteration	with	the	continue
statement.	With	the	return	statement,	you	can	exit	the	current	method	and	thus
also	exit	a	loop.

ORGANIZATION	WITH	NAMESPACES
With	small	sample	applications,	you	don't	need	to	specify	a	namespace.	When
you	create	libraries	where	classes	are	used	in	applications,	to	avoid	ambiguities,
you	must	specify	namespaces.	The	Console	class	used	earlier	is	defined	in	the
System	namespace.	To	use	the	class	Console,	you	either	have	to	prefix	it	with

the	namespace	or	import	the	namespace	from	this	class.

Namespaces	can	be	defined	in	a	hierarchical	way.	For	example,	the
ServiceCollection	class	is	specified	in	the	namespace
Microsoft.Extensions.DependencyInjection.	To	define	the	class	Sample	in
the	namespace	Wrox.ProCSharp.CoreCSharp,	you	can	specify	this	namespace
hierarchy	with	the	namespace	keyword:

namespace	Wrox

{

		namespace	ProCSharp

		{

				namespace	CoreCSharp

				{

						public	class	Sample

						{

						}

				}

		}

}

You	can	also	use	the	dotted	notation	to	specify	the	namespace:

namespace	Wrox.ProCSharp.CoreCSharp

{

		public	class	Sample

		{

		}

}

A	namespace	is	a	logical	construct	and	completely	independent	of	physical	files
or	components.	One	assembly	can	contain	multiple	namespaces,	and	a	single
namespace	can	be	spread	across	multiple	assemblies.	It's	a	logical	construct	to
group	different	types	together.

Each	namespace	name	is	composed	of	the	names	of	the	namespaces	it	resides
within,	separated	with	periods,	starting	with	the	outermost	namespace	and
ending	with	its	own	short	name.	Therefore,	the	full	name	for	the	ProCSharp
namespace	is	Wrox.ProCSharp,	and	the	full	name	of	the	Sample	class	is
Wrox.ProCSharp.CoreCSharp.Sample.

The	using	Directive
Obviously,	namespaces	can	grow	rather	long	and	tiresome	to	type,	and	the
capability	to	indicate	a	particular	class	with	such	specificity	may	not	always	be

necessary.	Fortunately,	as	noted	earlier	in	this	chapter,	C#	allows	you	to
abbreviate	a	class's	full	name.	To	do	this,	list	the	class's	namespace	at	the	top	of
the	file,	prefixed	with	the	using	keyword.	Throughout	the	rest	of	the	file,	you
can	refer	to	the	types	in	the	namespace	by	their	type	names.

If	two	namespaces	referenced	by	using	declarations	contain	a	type	of	the	same
name,	you	need	to	use	the	full	(or	at	least	a	longer)	form	of	the	name	to	ensure
that	the	compiler	knows	which	type	to	access.	For	example,	suppose	classes
called	Test	exist	in	both	the	ProCSharp.CoreCSharp	and	ProCSharp.OOP
namespaces.	If	you	then	create	a	class	called	Test	and	both	namespaces	are
imported,	the	compiler	reacts	with	an	ambiguity	compilation	error.	In	this	case,
you	need	to	specify	the	namespace	name	for	the	type.

Namespace	Aliases
Instead	of	specifying	the	complete	namespace	name	for	the	class	to	resolve
ambiguity	issues,	you	can	specify	an	alias	with	the	using	directive,	as	shown
with	different	Timer	classes	from	two	namespaces:

using	TimersTimer	=	System.Timers.Timer;

using	Webtimer	=	System.Web.UI.Timer;

WORKING	WITH	STRINGS
The	code	in	this	chapter	has	already	used	the	string	type	several	times.	string
is	an	important	reference	type	that	offers	many	features.	Although	it's	a	reference
type,	it's	immutable—it	can't	be	changed.	All	the	methods	this	type	offers	don't
change	the	content	of	the	string	but	instead	return	a	new	string.	For	example,	to
concatenate	strings,	the	+	operator	is	overloaded.	The	expression	s1	+	"	"	+	s2
first	creates	a	new	string	combining	s1	and	the	string	containing	the	space
character.	Another	new	string	is	created	by	combining	the	result	string	with	s2	to
create	another	new	string.	Finally,	the	result	string	is	referenced	from	the
variable	s3	:

string	s1	=	"Hello";

string	s2	=	"World";

string	s3	=	s1	+	"		"	+	s2;

With	many	strings	created,	you	need	to	be	aware	that	the	objects	that	are	no
longer	necessary	need	to	be	cleaned	up	by	the	garbage	collector.	The	garbage
collector	frees	up	memory	in	the	managed	heap	from	objects	that	are	no	longer
needed.	This	doesn't	happen	when	the	reference	is	not	used	anymore;	it's	based

on	certain	memory	limits.	Read	Chapter	13	for	more	information	on	the	garbage
collector.	It's	best	to	avoid	object	allocation,	which	can	be	done	when
dynamically	working	with	strings	by	using	the	StringBuilder	class.

Using	the	StringBuilder
The	StringBuilder	allows	a	program	to	dynamically	work	with	strings	using
Append,	Insert,	Remove,	and	Replace	methods	without	creating	new	objects.
Instead,	the	StringBuilder	uses	a	memory	buffer	and	modifies	this	buffer	as	the
need	arises.	When	you're	creating	a	StringBuilder,	the	default	capacity	is	16
characters.	If	strings	are	appended	as	shown	in	the	following	code	snippet	and
more	memory	is	needed,	the	capacity	is	doubled	to	32	characters	(code	file
StringSample/Program.cs):

void	UsingStringBuilder()

{

		StringBuilder	sb	=	new("the	quick");

		sb.Append('	');

		sb.Append("brown	fox	jumped	over	");

		sb.Append("the	lazy	dogs	1234567890	times");

		string	s	=	sb.ToString();

		Console.WriteLine(s);

}

If	the	capacity	is	too	small,	the	buffer	size	always	doubles—for	example,	from
16	to	32	to	64	to	128	characters.	The	length	of	the	string	can	be	accessed	with
the	Length	property.	The	capacity	of	the	StringBuilder	is	returned	from	the
Capacity	property.	After	creating	the	necessary	string,	you	can	use	the	ToString
method,	which	allocates	a	new	string	containing	the	content	of	the
StringBuilder.

String	Interpolation
Code	snippets	in	this	chapter	have	already	included	strings	with	the	$	prefix.
This	prefix	allows	evaluating	expressions	within	the	string	and	is	known	as
string	interpolation.	For	example,	with	string	s2,	the	content	of	string	s1	is
embedded	within	s2	to	have	the	final	result	of	Hello,	World!	:

string	s1	=	"World";

string	s2	=	$"Hello,	{s1}!";

You	can	write	code	expressions	within	the	curly	braces	to	get	the	expression
evaluated	and	the	result	added	into	the	string.	In	the	following	code	snippet,	a

string	is	specified	with	three	placeholders	where	the	value	of	x,	the	value	of	y,
and	the	result	of	the	addition	of	x	and	y	are	put	into	the	string:

int	x	=	3,	y	=	4;

string	s3	=	$"The	result	of	{x}	and	{y}	is	{x	+	y}";

Console.WriteLine(s3);

The	resulting	string	is	The	result	of	3	and	4	is	7.

The	compiler	translates	the	interpolated	string	to	invoke	the	Format	method	of
the	string,	passes	a	string	with	numbered	placeholders,	and	passes	additional
arguments	following	the	string.	The	result	of	the	additional	arguments	is	from
the	implementation	of	the	Format	method	passed	to	the	placeholders	based	on
the	numbers.	The	first	argument	following	the	string	is	passed	to	the	0
placeholder,	the	second	argument	to	the	1	placeholder,	and	so	on:

string	s3	=	string.Format("The	result	of	{0}	and	{1}	is	{2}",	x,	

y,	x	+	y);

NOTE To	escape	curly	braces	in	an	interpolated	string,	you	can	use
double	curly	braces:	{{}}	.

FormattableString
What	the	interpolated	string	gets	translated	to	can	easily	be	seen	by	assigning	a
string	to	a	FormattableString.	The	interpolated	string	can	be	directly	assigned
to	this	type	because	it's	a	better	match	than	the	normal	string.	This	type	defines
the	Format	property	that	returns	the	resulting	format	string,	an	ArgumentCount
property,	and	the	method	GetArgument	that	returns	the	argument	values	(code
file	StringSample/Program.cs):

void	UsingFormattableString()

{

		int	x	=	3,	y	=	4;

		FormattableString	s	=	$"The	result	of	{x}	+	{y}	is	{x	+	y}";

		Console.WriteLine($"format:	{s.Format}");

		for	(int	i	=	0;	i	<	s.ArgumentCount;	i++)

		{

				Console.WriteLine($"argument:	{i}:{s.GetArgument(i)}");

		}

		Console.WriteLine();

}

Running	this	code	snippet	results	in	this	output:

format:	The	result	of	{0}	+	{1}	is	{2}

argument	0:	3

argument	1:	4

argument	2:	7

NOTE In	Chapter	22,	“Localization,”	you	can	read	about	using	string
interpolation	with	different	cultures.	By	default,	string	interpolation	makes
use	of	the	current	culture.

String	Formats
With	an	interpolated	string,	you	can	add	a	string	format	to	the	expression.	.NET
defines	default	formats	for	numbers,	dates,	and	time	based	on	the	computer's
locale.	The	following	code	snippet	shows	a	date,	an	int	value,	and	a	double
with	different	format	representations.	D	is	used	to	display	the	date	in	the	long
date	format,	d	in	the	short	date	format.	The	number	is	shown	with	integral	and
decimal	digits	(n),	using	an	exponential	notation	(e),	a	conversion	to
hexadecimal	(x),	and	a	currency	(c).	With	the	double	value,	the	first	result	is
shown	rounded	after	the	decimal	point	to	three	digits	(###.###);	with	the	second
version,	the	three	digits	before	the	decimal	point	are	shown	as	well	(000.000):

void	UseStringFormat()

{

		DateTime	day	=	new(2025,	2,	14);

		Console.WriteLine($"{day:D}");

		Console.WriteLine($"{day:d}");

	

		int	i	=	2477;

		Console.WriteLine($"{i:n}	{i:e}	{i:x}	{i:c}");

	

		double	d	=	3.1415;

		Console.WriteLine($"{d:###.###}");

		Console.WriteLine($"{d:000.000}");

		Console.WriteLine();

}

When	you	run	the	application,	this	is	shown:

Friday,	February	14,	2025

2/14/2025

2,477.00	2.477000e+003	9ad	$2,477.00

3.142

NOTE See	the	Microsoft	documentation	for	all	the	different	format	strings
for	numbers	at	https://docs.microsoft.com/en-
us/dotnet/standard/base-types/standard-numeric-format-strings

and	for	date/time	at	https://docs.microsoft.com/en-
us/dotnet/standard/base-types/standard-date-and-time-format-

strings.	To	define	custom	formats	with	a	custom	type,	see	the	sample	in
Chapter	9,	“Language	Integrated	Query.”

Verbatim	Strings
Code	snippets	in	the	section	“The	Character	Type”	earlier	in	this	chapter
included	special	characters	such	as	\t	for	a	tab	or	\r\n	for	carriage	return
newline.	You	can	use	these	characters	in	a	complete	string	to	get	the	specific
meaning.	If	you	need	a	backslash	in	the	output	of	the	string,	you	can	escape	this
with	a	double	backslash	\\.	This	can	be	annoying	if	backslashes	are	needed
multiple	times	because	they	can	make	the	code	unreadable.	For	such	scenarios,
such	as	when	using	regular	expressions,	you	can	use	verbatim	strings.	A
verbatim	string	is	prefixed	with	the	@	character:

string	s	=	@"a	tab:	\t,	a	carriage	return:	\r,	a	newline:	\n";

Console.WriteLine(s);

Running	the	preceding	code	results	in	this	output:

a	tab:	\t,	a	carriage	return:	\r,	a	newline:	\n

Ranges	with	Strings
The	String	type	offers	a	Substring	method	to	retrieve	a	part	of	a	string.	Instead
of	using	the	Substring	method,	as	of	C#	8	you	can	use	the	hat	and	the	range
operators.	The	range	operator	uses	the	..	notation	to	specify	a	range.	With	the
string,	you	can	use	the	indexer	to	access	one	character	or	use	it	with	the	range
operator	to	access	a	substring.	The	numbers	left	and	right	of	the	..	operator
specify	the	range.	The	left	number	specifies	the	0-indexed	first	value	from	the
string,	which	is	included	from	the	string	up	to	the	0-indexed	last	value	that	is
excluded.	The	range	0..3	would	span	the	string	The.	To	start	from	the	first
character	in	the	string,	the	0	can	be	omitted	as	shown	with	the	following	code
snippet.	The	range	4..9	starts	with	the	fifth	character	and	goes	up	to	the	eighth
character.	To	count	from	the	end,	you	can	use	the	hat	operator	^	(code	file
StringSample/Program.cs):

https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-numeric-format-strings
https://docs.microsoft.com/en-us/dotnet/standard/base-types/standard-date-and-time-format-strings

void	RangesWithStrings()

{

		string	s	=	"The	quick	brown	fox	jumped	over	the	lazy	dogs	down	

"	+

				"1234567890	times";

		string	the	=	s[..3];

		string	quick	=	s[4..9];

		string	times	=	s[^5..^0];

		Console.WriteLine(the);

		Console.WriteLine(quick);

		Console.WriteLine(times);

		Console.WriteLine();

}

NOTE For	more	information	about	the	indices,	ranges,	and	the	hat
operator,	read	Chapter	6,	“Arrays.”

COMMENTS
The	next	topic—adding	comments	to	your	code—looks	simple	on	the	surface,
but	it	can	be	complex.	Comments	can	be	beneficial	to	other	developers	who	may
look	at	your	code.	Also,	as	you	will	see,	you	can	use	comments	to	generate
documentation	for	your	code	that	other	developers	can	use.

Internal	Comments	Within	the	Source	Files
C#	uses	the	traditional	C-type	single-line	(//..)	and	multiline	(/*	..	*/)
comments:

//	This	is	a	single-line	comment

/*	This	comment

spans	multiple	lines.	*/

Everything	in	a	single-line	comment,	from	the	//	to	the	end	of	the	line,	is
ignored	by	the	compiler,	and	everything	from	an	opening	/*	to	the	next	*/	in	a
multiline	comment	combination	is	ignored.	It	is	possible	to	put	multiline
comments	within	a	line	of	code:

Console.WriteLine(/*	Here's	a	comment!	*/	"This	will	compile.");

Inline	comments	can	be	useful	when	debugging	if,	for	example,	you	temporarily
want	to	try	running	the	code	with	a	different	value	somewhere,	as	in	the

following	code	snippet.	However,	inline	comments	can	make	code	hard	to	read,
so	use	them	with	care.

DoSomething(Width,	/*Height*/	100);

XML	Documentation
In	addition	to	the	C-type	comments	illustrated	in	the	preceding	section,	C#	has	a
very	neat	feature:	the	capability	to	produce	documentation	in	XML	format
automatically	from	special	comments.	These	comments	are	single-line
comments,	but	they	begin	with	three	slashes	(///)	instead	of	two.	Within	these
comments,	you	can	place	XML	tags	containing	documentation	of	the	types	and
type	members	in	your	code.

The	tags	in	the	following	table	are	recognized	by	the	compiler:

TAG DESCRIPTION
<c> Marks	up	text	within	a	line	as	code—for	example,	<c>int	i

=	10;</c>.
<code> Marks	multiple	lines	as	code.
<example> Marks	up	a	code	example.
<exception> Documents	an	exception	class.	(Syntax	is	verified	by	the

compiler.)
<include> Includes	comments	from	another	documentation	file.	(Syntax

is	verified	by	the	compiler.)
<list> Inserts	a	list	into	the	documentation.
<para> Gives	structure	to	text.
<param> Marks	up	a	method	parameter.	(Syntax	is	verified	by	the

compiler.)
<paramref> Indicates	that	a	word	is	a	method	parameter.	(Syntax	is

verified	by	the	compiler.)
<permission> Documents	access	to	a	member.	(Syntax	is	verified	by	the

compiler.)
<remarks> Adds	a	description	for	a	member.
<returns> Documents	the	return	value	for	a	method.
<see> Provides	a	cross-reference	to	another	parameter.	(Syntax	is

verified	by	the	compiler.)

<seealso> Provides	a	“see	also”	section	in	a	description.	(Syntax	is
verified	by	the	compiler.)

<summary> Provides	a	short	summary	of	a	type	or	member.
<typeparam> Describes	a	type	parameter	in	the	comment	of	a	generic	type.
<typeparamref> Provides	the	name	of	the	type	parameter.
<value> Describes	a	property.

The	following	code	snippet	shows	the	Calculator	class	with	documentation
specified	for	the	class,	and	documentation	for	the	Add	method	(code	file
Math/Calculator.cs):

namespace	ProCSharp.MathLib

{

		///<summary>

		///	ProCsharp.MathLib.Calculator	class.

		///	Provides	a	method	to	add	two	doubles.

		///</summary>

		public	static	class	Calculator

		{

				///<summary>

				///	The	Add	method	allows	us	to	add	two	doubles.

				///</summary>

				///<returns>Result	of	the	addition	(double)</returns>

				///<param	name="x">First	number	to	add</param>

				///<param	name="y">Second	number	to	add</param>

				public	static	double	Add(double	x,	double	y)	=>	x	+	y;

		}

}

To	generate	the	XML	documentation,	you	can	add	the
GenerateDocumentationFile	to	the	project	file	(project	configuration	file
Math/Math.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

	

		<PropertyGroup>

				<OutputType>exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

				<GenerateDocumentationFile>true</GenerateDocumentationFile>

		</PropertyGroup>

	

</Project>

With	this	setting,	the	documentation	file	is	created	in	the	same	directory	where
the	program	binary	will	show	up	as	you	compile	the	application.	You	can	also
specify	the	DocumentationFile	element	to	define	a	name	that's	different	from
the	project	file,	and	you	can	also	specify	an	absolute	directory	where	the
documentation	should	be	generated.

Using	tools	like	Visual	Studio,	IntelliSense	will	show	tooltips	with	the
information	from	the	documentation	as	the	classes	and	members	are	used.

C#	PREPROCESSOR	DIRECTIVES
Besides	the	C#	keywords,	most	of	which	you	have	now	encountered,	C#
includes	a	number	of	commands	that	are	known	as	preprocessor	directives.
These	commands	are	never	actually	translated	to	any	commands	in	your
executable	code,	but	they	affect	aspects	of	the	compilation	process.	For	example,
you	can	use	preprocessor	directives	to	prevent	the	compiler	from	compiling
certain	portions	of	your	code.	You	might	do	this	if	you	target	different
frameworks	and	deal	with	the	differences.	In	another	scenario,	you	might	want
to	turn	nullable	reference	types	on	or	off	because	changing	existing	codebases
cannot	be	fixed	in	the	short	term.

The	preprocessor	directives	are	all	distinguished	by	beginning	with	the	#
symbol.

The	following	sections	briefly	cover	the	purposes	of	the	preprocessor	directives.

#define	and	#undef
#define	is	used	like	this:

#define	DEBUG

This	tells	the	compiler	that	a	symbol	with	the	given	name	(in	this	case	DEBUG)
exists.	It	is	a	little	bit	like	declaring	a	variable,	except	that	this	variable	doesn't
really	have	a	value—it	just	exists.	Also,	this	symbol	isn't	part	of	your	actual
code;	it	exists	only	for	the	benefit	of	the	compiler,	whereas	the	compiler	is
compiling	the	code	and	has	no	meaning	within	the	C#	code	itself.

#undef	does	the	opposite	and	removes	the	definition	of	a	symbol:

#undef	DEBUG

If	the	symbol	doesn't	exist	in	the	first	place,	then	#undef	has	no	effect.	Similarly,

#define	has	no	effect	if	a	symbol	already	exists.

You	need	to	place	any	#define	and	#undef	directives	at	the	beginning	of	the	C#
source	file,	before	any	code	that	declares	any	objects	to	be	compiled.

#define	isn't	of	much	use	on	its	own,	but	when	combined	with	other
preprocessor	directives,	especially	#if,	it	becomes	powerful.

By	default,	with	a	Debug	build,	the	DEBUG	symbol	is	defined,	and	with	the
Release	code,	the	RELEASE	symbol	is	defined.	To	define	different	code	paths	on
debug	and	release	builds,	you	don't	need	to	define	these	symbols;	all	you	have	to
do	is	to	use	the	preprocessor	directives	shown	in	the	next	section	to	define	the
code	paths	the	compiler	should	take.

NOTE Preprocessor	directives	are	not	terminated	by	semicolons,	and	they
normally	constitute	the	only	command	on	a	line.	If	the	compiler	sees	a
preprocessor	directive,	it	assumes	that	the	next	command	is	on	the	next	line.

#if,	#elif,	#else,	and	#endif
These	directives	inform	the	compiler	whether	to	compile	a	block	of	code.
Consider	this	method:

int	DoSomeWork(double	x)

{

		//	do	something

		#if	DEBUG

		Console.WriteLine($"x	is	{x}");

		#endif

}

This	code	compiles	as	normal	except	for	the	Console.WriteLine	method	call
contained	inside	the	#if	clause.	This	line	is	executed	only	if	the	symbol	DEBUG
has	been	defined.	As	previously	mentioned,	it's	defined	with	a	Debug	build—or
you	defined	it	with	a	previous	#define	directive.	When	the	compiler	finds	the
#if	directive,	it	checks	to	see	whether	the	symbol	concerned	exists	and	compiles
the	code	inside	the	#if	clause	only	if	the	symbol	does	exist.	Otherwise,	the
compiler	simply	ignores	all	the	code	until	it	reaches	the	matching	#endif
directive.	Typical	practice	is	to	define	the	symbol	DEBUG	while	you	are
debugging	and	have	various	bits	of	debugging-related	code	inside	#if	clauses.
Then,	when	you	are	close	to	shipping,	you	simply	comment	out	the	#define
directive,	and	all	the	debugging	code	miraculously	disappears,	the	size	of	the

executable	file	gets	smaller,	and	your	end	users	don't	get	confused	by	seeing
debugging	information.	(Obviously,	you	would	do	more	testing	to	ensure	that
your	code	still	works	without	DEBUG	defined.)	This	technique	is	common	in	C
and	C++	programming	and	is	known	as	conditional	compilation.

The	#elif	(=	else	if)	and	#else	directives	can	be	used	in	#if	blocks	and	have
intuitively	obvious	meanings.	It	is	also	possible	to	nest	#if	blocks:

#define	ENTERPRISE

#define	W10

//	further	on	in	the	file

#if	ENTERPRISE

//	do	something

#if	W10

//	some	code	that	is	only	relevant	to	enterprise

//	edition	running	on	W10

#endif

#elif	PROFESSIONAL

//	do	something	else

#else

//	code	for	the	leaner	version

#endif

#if	and	#elif	support	a	limited	range	of	logical	operators,	too,	using	the
operators	!,	==,	!=,	&&,	and	||.	A	symbol	is	considered	to	be	true	if	it	exists
and	false	if	it	doesn't.	Here's	an	example:

#if	W10	&&	!ENTERPRISE	//	if	W10	is	defined	but	ENTERPRISE	isn't

#warning	and	#error
Two	other	useful	preprocessor	directives,	#warning	and	#error,	cause	a	warning
or	an	error,	respectively,	to	be	raised	when	the	compiler	encounters	them.	If	the
compiler	sees	a	#warning	directive,	it	displays	whatever	text	appears	after	the
#warning	to	the	user,	after	which	compilation	continues.	If	it	encounters	an
#error	directive,	it	displays	the	subsequent	text	to	the	user	as	if	it	is	a
compilation	error	message	and	then	immediately	abandons	the	compilation,	so
no	IL	code	is	generated.

You	can	use	these	directives	as	checks	that	you	haven't	done	anything	silly	with
your	#define	statements;	you	can	also	use	the	#warning	statements	to	remind
yourself	to	do	something:

#if	DEBUG	&&	RELEASE

#error	"You've	defined	DEBUG	and	RELEASE	simultaneously!"

#endif

	

#warning	"Don't	forget	to	remove	this	line	before	the	boss	tests	

the	code!"

Console.WriteLine("*I	love	this	job.*");

#region	and	#endregion
The	#region	and	#endregion	directives	are	used	to	indicate	that	a	certain	block
of	code	is	to	be	treated	as	a	single	block	with	a	given	name,	like	this:

#region	Member	Field	Declarations

int	x;

double	d;

decimal	balance;

#endregion

The	region	directives	are	ignored	by	the	compiler	and	used	by	tools	such	as	the
Visual	Studio	code	editor.	The	editor	allows	you	to	collapse	region	sections,	so
only	the	text	associated	with	the	region	shows.	This	makes	it	easier	to	scroll
through	the	source	code.	However,	you	should	prefer	to	write	shorter	code	files
instead.

#line
You	can	use	the	#line	directive	to	alter	the	filename	and	line	number
information	that	is	output	by	the	compiler	in	warnings	and	error	messages.	You
probably	won't	want	to	use	this	directive	often.	It's	most	useful	when	you	are
coding	in	conjunction	with	another	package	that	alters	the	code	you	are	typing
before	sending	it	to	the	compiler.	In	this	situation,	line	numbers,	or	perhaps	the
filenames	reported	by	the	compiler,	don't	match	up	to	the	line	numbers	in	the
files	or	the	filenames	you	are	editing.	The	#line	directive	can	be	used	to	restore
the	match.	You	can	also	use	the	syntax	#line	default	to	restore	the	line	to	the
default	line	numbering:

#line	164	"Core.cs"	//	We	happen	to	know	this	is	line	164	in	the	

file

//	Core.cs,	before	the	intermediate

//	package	mangles	it.

//	later	on

#line	default	//	restores	default	line	numbering

#pragma

The	#pragma	directive	can	either	suppress	or	restore	specific	compiler	warnings.
Unlike	command-line	options,	the	#pragma	directive	can	be	implemented	on	the
class	or	method	level,	enabling	fine-grained	control	over	what	warnings	are
suppressed	and	when.	The	following	example	disables	the	“field	not	used”
warning	and	then	restores	it	after	the	MyClass	class	compiles:

#pragma	warning	disable	169

public	class	MyClass

{

		int	neverUsedField;

}

#pragma	warning	restore	169

#nullable
With	the	#nullable	directive,	you	can	turn	on	or	off	nullable	reference	types
within	a	code	file.	#nullable	enable	turns	nullable	reference	types	on,	no
matter	what	the	setting	in	the	project	file.	#nullable	disable	turns	it	off.
#nullable	restore	switches	the	settings	back	to	the	settings	of	the	project	file.

How	do	you	use	this?	If	nullable	reference	types	are	enabled	with	the	project
file,	you	can	temporarily	turn	them	off	in	code	sections	where	you	have	issues
with	this	compiler	behavior	and	restore	it	to	the	project	file	settings	after	the
code	with	nullability	issues.

C#	PROGRAMMING	GUIDELINES
This	final	section	of	the	chapter	supplies	the	guidelines	you	need	to	bear	in	mind
when	writing	C#	programs.	These	are	guidelines	that	most	C#	developers	use.
When	you	use	these	guidelines,	other	developers	will	feel	comfortable	working
with	your	code.

Rules	for	Identifiers
This	section	examines	the	rules	governing	what	names	you	can	use	for	variables,
classes,	methods,	and	so	on.	Note	that	the	rules	presented	in	this	section	are	not
merely	guidelines:	they	are	enforced	by	the	C#	compiler.

Identifiers	are	the	names	you	give	to	variables,	user-defined	types	such	as	classes
and	structs,	and	members	of	these	types.	Identifiers	are	case	sensitive,	so,	for
example,	variables	named	interestRate	and	InterestRate	would	be
recognized	as	different	variables.	The	following	are	a	few	rules	determining

what	identifiers	you	can	use	in	C#:

They	must	begin	with	a	letter	or	underscore,	although	they	can	contain
numeric	characters.

You	can't	use	C#	keywords	as	identifiers.

See	the	list	of	C#	reserved	keywords	at	https://docs.microsoft.com/en-
us/dotnet/csharp/language-reference/keywords/.

If	you	need	to	use	one	of	these	words	as	an	identifier	(for	example,	if	you	are
accessing	a	class	written	in	a	different	language),	you	can	prefix	the	identifier
with	the	@	symbol	to	indicate	to	the	compiler	that	what	follows	should	be	treated
as	an	identifier,	not	as	a	C#	keyword	(so	abstract	is	not	a	valid	identifier,	but
@abstract	is).

Finally,	identifiers	can	also	contain	Unicode	characters,	specified	using	the
syntax	\uXXXX,	where	XXXX	is	the	four-digit	hex	code	for	the	Unicode	character.
The	following	are	some	examples	of	valid	identifiers:

Name

Überfluß

_Identifier

\u005fIdentifier

The	last	two	items	in	this	list	are	identical	and	interchangeable	(because	005f	is
the	Unicode	code	for	the	underscore	character),	so,	obviously,	both	these
identifiers	couldn't	be	declared	in	the	same	scope.

Usage	Conventions
In	any	development	language,	certain	traditional	programming	styles	usually
arise.	The	styles	are	not	part	of	the	language	itself	but	rather	are	conventions—
for	example,	how	variables	are	named	or	how	certain	classes,	methods,	or
functions	are	used.	If	most	developers	using	that	language	follow	the	same
conventions,	it's	easier	for	different	developers	to	understand	each	other's	code—
which	in	turn	generally	helps	program	maintainability.	Conventions	do,	however,
depend	on	the	language	and	the	environment.	For	example,	C++	developers
programming	on	the	Windows	platform	have	traditionally	used	the	prefixes	psz
or	lpsz	to	indicate	strings—	char	*pszResult;	char	*lpszMessage;—but	on
Unix	machines	it's	more	common	not	to	use	any	such	prefixes:	char	*Result;
char	*Message;.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/

NOTE The	convention	by	which	variable	names	are	prefixed	with	letters
that	represent	the	data	type	is	known	as	Hungarian	notation.	It	means	that
other	developers	reading	the	code	can	immediately	tell	from	the	variable
name	what	data	type	the	variable	represents.	Hungarian	notation	is	widely
regarded	as	redundant	in	these	days	of	smart	editors	and	IntelliSense.

Whereas	many	languages’	usage	conventions	simply	evolved	as	the	language
was	used,	for	C#	and	the	whole	of	the	.NET	Framework,	Microsoft	has	written
comprehensive	usage	guidelines	that	are	detailed	in	the	.NET/C#	documentation.
This	means	that,	right	from	the	start,	.NET	programs	have	a	high	degree	of
interoperability	in	terms	of	developers	being	able	to	understand	code.	The
guidelines	have	also	been	developed	with	the	benefit	of	some	20	years’	hindsight
in	object-oriented	programming.	Judging	by	the	relevant	newsgroups,	the
guidelines	have	been	carefully	thought	out	and	are	well	received	in	the	developer
community.	Hence,	the	guidelines	are	well	worth	following.

Note,	however,	that	the	guidelines	are	not	the	same	as	language	specifications.
You	should	try	to	follow	the	guidelines	when	you	can.	Nevertheless,	you	won't
run	into	problems	if	you	have	a	good	reason	for	not	doing	so—for	example,	you
won't	get	a	compilation	error	because	you	don't	follow	these	guidelines.	The
general	rule	is	that	if	you	don't	follow	the	usage	guidelines,	you	must	have	a
convincing	reason.	When	you	depart	from	the	guidelines,	you	should	be	making
a	conscious	decision	rather	than	simply	not	bothering.	Also,	if	you	compare	the
guidelines	with	the	samples	in	the	remainder	of	this	book,	you'll	notice	that	in
numerous	examples	I	have	chosen	not	to	follow	the	conventions.	That's	usually
because	the	conventions	are	designed	for	much	larger	programs	than	the
samples;	although	the	guidelines	are	great	if	you	are	writing	a	complete	software
package,	they're	not	really	suitable	for	small	20-line	stand-alone	programs.	In
many	cases,	following	the	conventions	would	have	made	the	samples	harder,
rather	than	easier,	to	follow.

The	full	guidelines	for	good	programming	style	are	quite	extensive.	This	section
is	confined	to	describing	some	of	the	more	important	guidelines,	as	well	as	those
most	likely	to	surprise	you.	To	be	absolutely	certain	that	your	code	follows	the
usage	guidelines	completely,	you	need	to	refer	to	the	Microsoft	documentation.

Naming	Conventions
One	important	aspect	of	making	your	programs	understandable	is	how	you

choose	to	name	your	items—and	that	includes	naming	variables,	methods,
classes,	enumerations,	and	namespaces.

It	is	intuitively	obvious	that	your	names	should	reflect	the	purpose	of	the	item
and	should	not	clash	with	other	names.	The	general	philosophy	in	the	.NET
Framework	is	also	that	the	name	of	a	variable	should	reflect	the	purpose	of	that
variable	instance	and	not	the	data	type.	For	example,	height	is	a	good	name	for
a	variable,	whereas	integerValue	isn't.	However,	you	are	likely	to	find	that
principle	is	an	ideal	that	is	hard	to	achieve.	Particularly	when	you	are	dealing
with	controls,	in	most	cases	you'll	probably	be	happier	sticking	with	variable
names	such	as	confirmationDialog	and	chooseEmployeeListBox,	which	do
indicate	the	data	type	in	the	name.

The	following	sections	look	at	some	of	the	things	you	need	to	think	about	when
choosing	names.

Casing	of	Names
In	many	cases,	you	should	use	Pascal	casing	for	names.	With	Pascal	casing,	the
first	letter	of	each	word	in	a	name	is	capitalized:	EmployeeSalary,
ConfirmationDialog,	PlainTextEncoding.	Notice	that	nearly	all	the	names	of
namespaces,	classes,	and	members	in	the	base	classes	follow	Pascal	casing.	In
particular,	the	convention	of	joining	words	using	the	underscore	character	is
discouraged.	Therefore,	try	not	to	use	names	such	as	employee_salary.	It	has
also	been	common	in	other	languages	to	use	all	capitals	for	names	of	constants.
This	is	not	advised	in	C#	because	such	names	are	harder	to	read—the	convention
is	to	use	Pascal	casing	throughout:

const	int	MaximumLength;

The	only	other	casing	convention	that	you	are	advised	to	use	is	camel	casing.
Camel	casing	is	similar	to	Pascal	casing,	except	that	the	first	letter	of	the	first
word	in	the	name	is	not	capitalized:	employeeSalary,	confirmationDialog,
plainTextEncoding.	The	following	are	three	situations	in	which	you	are	advised
to	use	camel	casing:

For	names	of	all	private	member	fields	in	types.

For	names	of	all	parameters	passed	to	methods.

To	distinguish	items	that	would	otherwise	have	the	same	name.	A	common
example	is	when	a	property	wraps	around	a	field:

private	string	employeeName;

public	string	EmployeeName

{

		get

		{

				return	employeeName;

		}

}

NOTE Since	.NET	Core,	the	.NET	team	has	been	prefixing	names	of
private	member	fields	with	an	underscore.	This	is	also	used	as	a	convention
with	this	book.

If	you	are	wrapping	a	property	around	a	field,	you	should	always	use	camel
casing	for	the	private	member	and	Pascal	casing	for	the	public	or	protected
member	so	that	other	classes	that	use	your	code	see	only	names	in	Pascal	case
(except	for	parameter	names).

You	should	also	be	wary	about	case	sensitivity.	C#	is	case	sensitive,	so	it	is
syntactically	correct	for	names	in	C#	to	differ	only	by	the	case,	as	in	the	previous
examples.	However,	bear	in	mind	that	your	assemblies	might	at	some	point	be
called	from	Visual	Basic	applications—and	Visual	Basic	is	not	case	sensitive.
Hence,	if	you	do	use	names	that	differ	only	by	case,	it	is	important	to	do	so	only
in	situations	in	which	both	names	will	never	be	seen	outside	your	assembly.	(The
previous	example	qualifies	as	okay	because	camel	case	is	used	with	the	name
that	is	attached	to	a	private	variable.)	Otherwise,	you	may	prevent	other	code
written	in	Visual	Basic	from	being	able	to	use	your	assembly	correctly.

Name	Styles
Be	consistent	about	your	style	of	names.	For	example,	if	one	of	the	methods	in	a
class	is	called	ShowConfirmationDialog,	then	you	should	not	give	another
method	a	name	such	as	ShowDialogWarning	or	WarningDialogShow.	The	other
method	should	be	called	ShowWarningDialog.

Namespace	Names
It	is	particularly	important	to	choose	namespace	names	carefully	to	avoid	the
risk	of	ending	up	with	the	same	name	for	one	of	your	namespaces	as	someone
else	uses.	Remember,	namespace	names	are	the	only	way	that	.NET
distinguishes	names	of	objects	in	shared	assemblies.	Therefore,	if	you	use	the
same	namespace	name	for	your	software	package	as	another	package	and	both

packages	are	used	by	the	same	program,	problems	will	occur.	Because	of	this,
it's	almost	always	a	good	idea	to	create	a	top-level	namespace	with	the	name	of
your	company	and	then	nest	successive	namespaces	that	narrow	down	the
technology,	group,	or	department	you	are	working	in	or	the	name	of	the	package
for	which	your	classes	are	intended.	Microsoft	recommends	namespace	names
that	begin	with	<CompanyName>.<TechnologyName>.

Names	and	Keywords
It	is	important	that	the	names	do	not	clash	with	any	keywords.	In	fact,	if	you
attempt	to	name	an	item	in	your	code	with	a	word	that	happens	to	be	a	C#
keyword,	you'll	almost	certainly	get	a	syntax	error	because	the	compiler	will
assume	that	the	name	refers	to	a	statement.	However,	because	of	the	possibility
that	your	classes	will	be	accessed	by	code	written	in	other	languages,	it	is	also
important	that	you	don't	use	names	that	are	keywords	in	other	.NET	languages.
Generally	speaking,	C++	keywords	are	similar	to	C#	keywords,	so	confusion
with	C++	is	unlikely,	and	those	commonly	encountered	keywords	that	are	unique
to	Visual	C++	tend	to	start	with	two	underscore	characters.	As	with	C#,	C++
keywords	are	spelled	in	lowercase,	so	if	you	hold	to	the	convention	of	naming
your	public	classes	and	members	with	Pascal-style	names,	they	will	always	have
at	least	one	uppercase	letter	in	their	names,	and	there	will	be	no	risk	of	clashes
with	C++	keywords.	However,	you	are	more	likely	to	have	problems	with	Visual
Basic,	which	has	many	more	keywords	than	C#	does,	and	being	non-case-
sensitive	means	that	you	cannot	rely	on	Pascal-style	names	for	your	classes	and
methods.

Check	the	Microsoft	documentation	at
docs.microsoft.com/dotnet/csharp/language-reference/keywords.	Here,
you	find	a	long	list	of	C#	keywords	that	you	shouldn't	use	with	classes	and
members.

Use	of	Properties	and	Methods
One	area	that	can	cause	confusion	regarding	a	class	is	whether	a	particular
quantity	should	be	represented	by	a	property	or	a	method.	The	rules	are	not	hard
and	strict,	but	in	general	you	should	use	a	property	if	something	should	look	and
behave	like	a	variable.	(If	you're	not	sure	what	a	property	is,	see	Chapter	3.)	This
means,	among	other	things,	that

Client	code	should	be	able	to	read	its	value.	Write-only	properties	are	not
recommended,	so,	for	example,	use	a	SetPassword	method,	not	a	write-

http://docs.microsoft.com/dotnet/csharp/language-reference/keywords

only	Password	property.

Reading	the	value	should	not	take	too	long.	The	fact	that	something	is	a
property	usually	suggests	that	reading	it	will	be	relatively	quick.

Reading	the	value	should	not	have	any	observable	and	unexpected	side
effect.	Furthermore,	setting	the	value	of	a	property	should	not	have	any	side
effect	that	is	not	directly	related	to	the	property.	Setting	the	width	of	a
dialog	has	the	obvious	effect	of	changing	the	appearance	of	the	dialog	on
the	screen.	That's	fine,	because	it's	obviously	related	to	the	property	in
question.

It	should	be	possible	to	set	properties	in	any	order.	In	particular,	it	is	not
good	practice	when	setting	a	property	to	throw	an	exception	because
another	related	property	has	not	yet	been	set.	For	example,	to	use	a	class
that	accesses	a	database,	you	need	to	set	ConnectionString,	UserName,	and
Password,	and	then	the	author	of	the	class	should	ensure	that	the	class	is
implemented	such	that	users	can	set	them	in	any	order.

Successive	reads	of	a	property	should	give	the	same	result.	If	the	value	of	a
property	is	likely	to	change	unpredictably,	you	should	code	it	as	a	method
instead.	Speed,	in	a	class	that	monitors	the	motion	of	an	automobile,	is	not	a
good	candidate	for	a	property.	Use	a	GetSpeed	method	here;	but	Weight	and
EngineSize	are	good	candidates	for	properties	because	they	will	not	change
for	a	given	object.

If	the	item	you	are	coding	satisfies	all	the	preceding	criteria,	it	is	probably	a
good	candidate	for	a	property.	Otherwise,	you	should	use	a	method.

Use	of	Fields
The	guidelines	are	pretty	simple	here.	Fields	should	almost	always	be	private,
although	in	some	cases	it	may	be	acceptable	for	constant	or	read-only	fields	to
be	public.	Making	a	field	public	may	hinder	your	ability	to	extend	or	modify	the
class	in	the	future.

The	previous	guidelines	should	give	you	a	foundation	of	good	practices,	and	you
should	use	them	in	conjunction	with	a	good	object-oriented	programming	style.

A	final	helpful	note	to	keep	in	mind	is	that	Microsoft	has	been	relatively	careful
about	being	consistent	and	has	followed	its	own	guidelines	when	writing	the
.NET	base	classes,	so	a	good	way	to	get	an	intuitive	feel	for	the	conventions	to
follow	when	writing	.NET	code	is	to	simply	look	at	the	base	classes—see	how

classes,	members,	and	namespaces	are	named,	and	how	the	class	hierarchy
works.	Consistency	between	the	base	classes	and	your	classes	will	facilitate
readability	and	maintainability.

NOTE The	ValueTuple	type	contains	public	fields,	whereas	the	old	Tuple
type	used	properties	instead.	Microsoft	broke	a	guideline	it	defined	for	fields.
Because	variables	of	a	tuple	can	be	as	simple	as	a	variable	of	an	int	and
because	performance	is	paramount,	it	was	decided	to	have	public	fields	for
value	tuples.	No	rules	without	exceptions.	Read	Chapter	3	for	more
information	on	tuples.

SUMMARY
This	chapter	examined	the	basic	syntax	of	C#,	covering	the	areas	needed	to	write
simple	C#	programs.	Much	of	the	syntax	is	instantly	recognizable	to	developers
who	are	familiar	with	any	C-style	language	(or	even	JavaScript).	C#	has	its	roots
with	C++,	Java,	and	Pascal	(Anders	Hejlsberg,	the	original	lead	architect	of	C#
was	the	original	author	of	Turbo	Pascal,	and	also	created	J++,	Microsoft's
version	of	Java).

Over	time,	some	new	features	have	been	invented	that	are	also	available	with
other	programming	languages,	and	C#	also	has	gotten	more	enhancements
already	available	with	other	languages.	The	next	chapter	dives	into	creating
different	types;	differences	between	classes,	structs,	and	the	new	records;	and	an
explanation	about	the	members	of	types	such	as	properties	and	more	about
methods.

3
Classes,	Records,	Structs,	and	Tuples

WHAT'S	IN	THIS	CHAPTER?

Pass	by	value	and	by	reference

Classes	and	members

Records

Structs

Enum	types

ref,	in,	and	out	keywords

Tuples

Deconstruction

Pattern	Matching

Partial	Types

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Types.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

TypesSample

ClassesSample

MathSample

MethodSample

ExtensionMethods

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

RecordsSample

StructsSample

EnumSample

RefInOutSample

TuplesSample

PatternMatchingSample

All	the	projects	have	nullable	reference	types	enabled.

CREATING	AND	USING	TYPES
So	far,	you've	been	introduced	to	some	of	the	building	blocks	of	the	C#
language,	including	variables,	data	types,	and	program	flow	statements,	and	you
have	seen	a	few	short	but	complete	programs	that	contain	little	more	than	top-
level	statements	and	a	few	methods.	What	you	haven't	seen	yet	is	how	to	put	all
these	elements	together	to	form	a	longer	program.	The	key	to	this	lies	in	working
with	the	types	of	.NET—classes,	records,	structs,	and	tuples,	which	are	the
subject	of	this	chapter.

NOTE This	chapter	introduces	the	basic	syntax	associated	with	types.
However,	I	assume	that	you	are	already	familiar	with	the	underlying
principles	of	using	classes—for	example,	that	you	know	what	a	constructor
or	a	property	is.	This	chapter	is	largely	confined	to	applying	those	principles
in	C#	code.

PASS	BY	VALUE	OR	BY	REFERENCE
The	types	available	with	.NET	can	be	categorized	as	pass	by	reference	or	pass	by
value.

Pass	by	value	means	that	if	you	assign	a	variable	to	another	variable,	the	value	is
copied.	If	you	change	the	new	value,	the	original	value	does	not	change.	The
content	of	the	variable	is	copied	on	assignment.	With	the	following	code	sample,
a	struct	is	created	that	contains	a	public	field	A.	x1	and	x2	are	variables	of	this
type.	After	creating	x1,	x2	is	assigned	to	x1.	Because	struct	is	a	value	type,	the

data	from	x2	is	copied	to	x1.	Changing	the	value	of	the	public	field	with	x2
doesn't	influence	x1	at	all.	The	x1	variable	still	lists	the	original	value;	the	value
was	copied	(code	file	TypesSample/Program.cs):

AStruct	x1	=	new()	{	A	=	1	};

AStruct	x2	=	x1;

x2.A	=	2;

Console.WriteLine($"original	didn't	change	with	a	struct:	

{x1.A}");

	

//…

	

public	struct	AStruct

{

		public	int	A;

}

NOTE Usually,	you	should	not	create	public	fields;	instead,	you	should
use	other	members	such	as	properties.	To	give	you	an	easy	view	of	major
differences	with	the	.NET	types,	public	fields	are	used.

This	behavior	is	very	different	with	classes.	If	you	change	the	public	member	of
A	within	the	y2	variable,	using	the	reference	y1,	the	new	value	assigned	from	y2
can	be	read.	Pass	by	reference	means	that	the	variables	y1	and	y2	after
assignment	reference	the	same	object	(code	file	TypesSample/Program.cs):

AClass	y1	=	new()	{	A	=	1	};

AClass	y2	=	y1;

y2.A	=	2;

Console.WriteLine($"original	changed	with	a	class:	{y1.A}");

	

//…

	

public	class	AClass

{

		public	int	A;

}

Another	difference	between	the	types	that's	worth	mentioning	is	where	the	data
is	stored.	With	a	reference	type	like	the	class,	the	memory	where	the	data	is
stored	is	the	managed	heap.	The	variable	itself	is	on	the	stack	and	references	the
content	on	the	heap.	A	value	type	like	the	struct	is	usually	stored	on	the	stack.
This	is	important	with	regard	to	garbage	collection.	The	garbage	collector	needs

to	clean	up	objects	in	the	heap	if	they	are	no	longer	used.	Memory	on	the	stack	is
automatically	released	at	the	end	of	the	method,	when	the	variable	is	outside	of
its	scope.

NOTE The	value	of	a	struct	typically	is	stored	on	the	stack.	However,	with
boxing—that	is,	when	a	struct	is	passed	as	an	object	or	object	methods	are
invoked	with	the	struct—the	data	of	the	struct	is	moved	to	the	heap.	Boxing
moves	a	struct	to	the	heap;	unboxing	moves	it	back.	C#	also	has	a	type
where	the	data	can	never	be	stored	on	the	heap;	this	is	the	ref	struct.	With	a
ref	struct,	you	get	a	compilation	error	if	operations	are	used	that	would
move	the	data	to	the	heap.	This	is	discussed	in	Chapter	13,	“Managed	and
Unmanaged	Memory.”

Let's	take	a	look	at	the	record	type	that's	new	with	C#	9.	Using	the	record
keyword,	a	record	is	created.	Similar	to	our	previous	example	when	the	class
keyword	was	used	to	create	a	reference	type,	with	the	record	keyword	a
reference	type	is	created	as	well.	A	C#	9	record	is	a	class.	This	C#	keyword	is
just	“syntax	sugar”:	the	compiler	creates	a	class	behind	the	scenes.	There's	no
functionality	needed	from	the	runtime;	you	could	create	the	same	generated	code
without	using	this	keyword,	you	just	would	need	a	lot	more	code	lines	(code	file
TypesSample/Program.cs):

ARecord	z1	=	new()	{	A	=	1	};

ARecord	z2	=	z1;

z2.A	=	2;

Console.WriteLine($"original	changed	with	a	record:	{z1.A}");

	

//…

	

public	record	ARecord

{

		public	int	A;

}

NOTE A	record	supports	value	semantics	like	a	struct,	but	it's
implemented	as	a	class.	This	comes	from	the	fact	that	a	record	offers	easy
creation	of	immutable	types	and	has	members	that	cannot	be	changed	after
initialization.	Read	more	about	records	later	in	this	chapter.

What	about	tuples?	With	tuples,	you	combine	multiple	types	into	one	type

without	needing	to	create	a	class,	struct,	or	record.	How	does	this	type	behave?

In	the	following	code	snippet,	t1	is	a	tuple	that	combines	a	number	and	a	string.
The	tuple	t1	is	then	assigned	to	the	variable	t2.	If	you	change	the	value	of	t2,	t1
is	not	changed.	The	reason	is	that	behind	the	scenes,	using	the	C#	syntax	for
tuples,	the	compiler	makes	use	of	the	ValueTuple	type—which	is	a	struct—and
copies	values	(code	file	TypesSample/Program.cs):

var	t1	=	(Number:	1,	String:	"a");

var	t2	=	t1;

t2.Number	=	2;

t2.String	=	"b";

Console.WriteLine($"original	didn't	change	with	a	tuple:	

{t1.Number}	{t1.String}");

NOTE .NET	offers	the	Tuple<T>	type	as	well	as	the	ValueTuple<T>	type.
Tuple<T>	is	the	older	one	that	is	implemented	as	a	class.	With	the	built-in
C#	syntax	for	tuples,	the	ValueTuple	is	used.	This	ValueTuple	contains
public	fields	for	all	the	members	of	the	tuple.	The	old	Tuple<T>	type
contains	public	read-only	properties	where	the	values	cannot	be	changed.
Today,	there's	no	need	to	use	the	Tuple<T>	type	in	your	applications	because
there's	better	built-in	support	for	ValueTuple<T>.

Now	that	you've	been	introduced	to	the	main	differences	between	classes,
structs,	records,	and	tuples,	let's	dive	deeper	into	the	classes,	including	the
members	of	classes.	Most	of	the	members	of	classes	you	learn	about	also	apply
to	records	and	structs.	I	discuss	the	differences	between	records	and	structs	after
I	introduce	the	members	of	classes.

CLASSES
A	class	contains	members,	which	can	be	static	or	instance.	A	static	member
belongs	to	the	class;	an	instance	member	belongs	to	the	object.	With	static	fields,
the	value	of	the	field	is	the	same	for	every	object.	With	instance	fields,	every
object	can	have	a	different	value.	Static	members	have	the	static	modifier
attached.

The	kinds	of	members	are	explained	in	the	following	table:

MEMBER DESCRIPTION
Fields A	field	is	a	data	member	of	a	class.	It	is	a	variable	of	a	type	that

is	a	member	of	a	class.
Constants Constants	are	associated	with	the	class	(although	they	do	not

have	the	static	modifier).	The	compiler	replaces	constants
everywhere	they	are	used	with	the	real	value.

Methods Methods	are	functions	associated	with	a	particular	class.
Properties Properties	are	sets	of	functions	that	can	be	accessed	from	the

client	in	a	similar	way	to	the	public	fields	of	the	class.	C#
provides	a	specific	syntax	for	implementing	read	and	write
properties	on	your	classes,	so	you	don't	have	to	use	method
names	that	are	prefixed	with	the	words	Get	or	Set.	Because
there's	a	dedicated	syntax	for	properties	that	is	distinct	from
that	for	normal	functions,	the	illusion	of	objects	as	actual	things
is	strengthened	for	client	code.

Constructors Constructors	are	special	functions	that	are	called	automatically
when	an	object	is	instantiated.	They	must	have	the	same	name
as	the	class	to	which	they	belong	and	cannot	have	a	return	type.
Constructors	are	useful	for	initialization.

Indexers Indexers	allow	your	object	to	be	accessed	the	same	way	as
arrays.	Indexers	are	explained	in	Chapter	5,	“Operators	and
Casts.”

Operators Operators,	at	their	simplest,	are	actions	such	as	+	or	–.	When
you	add	two	integers,	you	are,	strictly	speaking,	using	the	+
operator	for	integers.	C#	also	allows	you	to	specify	how
existing	operators	will	work	with	your	own	classes	(operator
overloading).	Chapter	5	looks	at	operators	in	detail.

Events Events	are	class	members	that	allow	an	object	to	notify	a
subscriber	whenever	something	noteworthy	happens,	such	as	a
field	or	property	of	the	class	changing,	or	some	form	of	user
interaction	occurring.	The	client	can	have	code,	known	as	an
event	handler,	that	reacts	to	the	event.	Chapter	7,	“Delegates,
Lambdas,	and	Events,”	looks	at	events	in	detail.

Destructors The	syntax	of	destructors	or	finalizers	is	similar	to	the	syntax
for	constructors,	but	they	are	called	when	the	CLR	detects	that
an	object	is	no	longer	needed.	They	have	the	same	name	as	the
class,	preceded	by	a	tilde	(~).	It	is	impossible	to	predict
precisely	when	a	finalizer	will	be	called.	Finalizers	are

discussed	in	Chapter	13.

Deconstructors Deconstructors	allow	you	to	deconstruct	the	object	into	a	tuple
or	different	variables.	Deconstruction	is	explained	later	in	the
section	“Deconstruction.”

Types Classes	can	contain	inner	classes.	This	is	interesting	if	the	inner
type	is	used	only	in	conjunction	with	the	outer	type.

Let's	get	into	the	details	of	class	members.

Fields
Fields	are	any	variables	associated	with	the	class.	In	the	class	Person,	the	fields
_	firstName	and	_lastName	of	type	string	are	defined.	It's	a	good	practice	to
declare	fields	with	the	private	access	modifier,	which	only	allows	accessing
fields	from	within	the	class	(code	file	ClassesSample/Person.cs):

public	class	Person

{

		//…

		private	string	_firstName;

		private	string	_lastName;

		//…

}

NOTE Members	declared	with	the	private	access	modifier	only	allow
members	of	the	class	to	invoke	this	member.	To	allow	access	from
everywhere,	use	the	public	access	modifier.	Besides	these	two	modifiers,	C#
also	defines	internal	and	protected	to	be	used	with	access	modifiers.	All
the	different	access	modifiers	are	explained	in	detail	in	Chapter	4,	“Object-
Oriented	Programming	in	C#.”

In	the	class	PeopleFactory,	the	field	s_peopleCount	is	of	type	int	and	has	the
static	modifier	applied.	With	the	static	modifier,	the	field	is	used	with	all
instances	of	the	class.	Instance	fields	(without	the	static	modifier)	have
different	values	for	every	instance	of	the	class.	Because	this	class	only	has	static
members,	the	class	itself	can	have	the	static	modifier	applied.	The	compiler
than	makes	sure	that	instance	members	are	not	added	(code	file
ClassesSample/PeopleFactory.cs):

public	static	class	PeopleFactory

{

		//…

		private	static	int	s_peopleCount;

		//…

}

Readonly	Fields
To	guarantee	that	fields	of	an	object	cannot	be	changed,	fields	can	be	declared
with	the	readonly	modifier.	Fields	with	the	readonly	modifier	can	be	assigned
only	values	from	constructors.	This	is	different	from	the	const	modifier	shown
in	Chapter	2,	“Core	C#.”	With	the	const	modifier,	the	compiler	replaces	the
variable	by	its	value	everywhere	it	is	used.	The	compiler	already	knows	the
value	of	the	constant.	Read-only	fields	are	assigned	during	runtime	from	a
constructor.	The	following	Person	class	specifies	a	constructor	where	values	for
both	firstName	and	lastName	need	to	be	passed.

Contrary	to	const	fields,	read-only	fields	can	be	instance	members.	With	the
following	code	snippet,	the	_firstName	and	_lastName	fields	are	changed	to	add
the	readonly	modifier.	The	compiler	complains	with	errors	if	this	field	is
changed	after	initializing	it	in	the	constructor	(code	file
ClassesSample/Person.cs):

public	class	Person

{

		//…

		public	Person(string	firstName,	string	lastName)

		{

				_firstName	=	firstName;

				_lastName	=	lastName;

		}

	

		private	readonly	string	_firstName;

		private	readonly	string	_lastName;

		//…

}

Properties
Instead	of	having	a	method	pair	to	set	and	get	the	values	of	a	field,	C#	defines
the	syntax	of	a	property.	From	outside	of	the	class,	a	property	looks	like	a	field
with	typically	used	uppercase	names.	Within	the	class,	you	can	write	a	custom
implementation	to	set	not	just	fields	and	get	the	value	of	fields,	but	you	can	add
some	programming	logic	to	validate	the	value	before	assigning	it	to	a	variable.

You	can	also	define	a	purely	computed	property	without	any	variable	that	is
accessed	by	the	property.
The	class	Person	as	shown	in	the	following	code	snippet	defines	a	property	with
the	name	Age	accessing	the	private	field	_age.	With	the	get	accessor,	the	value
of	the	field	is	returned.	With	the	set	accessor,	the	variable	value,	which	contains
the	value	passed	when	setting	the	property,	is	automatically	created.	In	the	code
snippet,	the	value	variable	is	used	to	assign	the	value	to	the	_age	field	(code	file
ClassesSample/Person.cs):

public	class	Person

{	

		//…

	

		private	int	_age;

		public	int	Age

		{

				get	=>	_age;

				set	=>	_age	=	value;

		}

}

In	case	more	than	one	statement	is	needed	with	the	implementation	of	the
property	accessor,	you	can	use	curly	brackets	as	shown	in	the	following	code
snippet:

private	int	_age;

public	int	Age

{

		get

		{

				return	_age;

		}

		set	

		{

				_age	=	value;

		}

}

To	use	the	property,	you	can	access	the	property	from	an	object	instance.	Setting
a	value	to	the	property	invokes	the	set	accessor.	Reading	the	value	invokes	the
get	accessor:

person.Age	=	4;	//	setting	a	property	value	with	the	set	

accessor

int	age	=	person.Age;	//	accessing	the	property	with	the	get	

accessor

Auto-Implemented	Properties
If	there	isn't	going	to	be	any	logic	in	the	property	accessors	set	and	get,	then
auto-implemented	properties	can	be	used.	Auto-implemented	properties
implement	the	backing	member	variable	automatically.	The	code	for	the	earlier
Age	example	would	look	like	this:

public	int	Age	{	get;	set;	}

The	declaration	of	a	private	field	is	not	needed.	The	compiler	creates	this
automatically.	With	auto-implemented	properties,	you	cannot	access	the	field
directly	because	you	don't	know	the	name	the	compiler	generates.	If	all	you	need
to	do	with	a	property	is	read	and	write	a	field,	the	syntax	for	the	property	using
auto-implemented	properties	is	shorter	than	using	expression-bodied	property
accessors.

By	using	auto-implemented	properties,	validation	of	the	property	cannot	be	done
at	the	property	set.	Therefore,	with	the	Age	property,	you	could	not	have	checked
to	see	whether	an	invalid	age	is	set.

Auto-implemented	properties	can	be	initialized	using	a	property	initializer.	The
compiler	moves	this	initialization	to	the	created	constructor,	and	the	initialization
is	done	before	the	constructor	body.

public	int	Age	{	get;	set;	}	=	42;

Access	Modifiers	for	Properties
C#	allows	the	set	and	get	accessors	to	have	differing	access	modifiers.	This
would	allow	a	property	to	have	a	public	get	and	a	private	or	protected	set.	This
can	help	control	how	or	when	a	property	can	be	set.	In	the	following	code
example,	notice	that	the	set	has	a	private	access	modifier,	but	the	get	does	not.
In	this	case,	the	get	takes	the	access	level	of	the	property.	One	of	the	accessors
must	follow	the	access	level	of	the	property.	A	compile	error	is	generated	if	the
get	accessor	has	the	protected	access	level	associated	with	it	because	that
would	make	both	accessors	have	a	different	access	level	from	the	property.

private	string	_name;

public	string	Name

{

		get	=>	_name;

		private	set	=>	_name	=	value;

}

Different	access	levels	can	also	be	set	with	auto-implemented	properties:

public	int	Age	{	get;	private	set;	}

Readonly	Properties
It	is	possible	to	create	a	read-only	property	by	simply	omitting	the	set	accessor
from	the	property	definition.	Thus,	to	make	FirstName	a	read-only	property,	you
can	do	this	by	just	defining	the	get	accessor:

private	readonly	string	_firstName;

public	string	FirstName

{

		get	=>	_firstName;

}

Declaring	the	field	with	the	readonly	modifier	only	allows	initializing	the	value
of	the	property	in	the	constructor.

NOTE Similar	to	properties	that	only	make	use	of	a	get	accessor,	you	can
also	specify	a	property	with	just	a	set	accessor.	This	is	a	write-only
property.	However,	this	is	regarded	as	poor	programming	practice	and	could
be	confusing	to	the	developers	who	access	this	property.	It's	recommended
that	you	define	methods	instead	of	using	write-only	properties.

Expression-Bodied	Properties
With	properties	that	only	implement	a	get	accessor,	you	can	use	a	simplified
syntax	with	the	=>	token	and	assign	an	expression-bodied	member.	There's	no
need	to	write	the	get	accessor	to	return	a	value.	Behind	the	scenes,	the	compiler
creates	an	implementation	with	a	get	accessor.

In	the	following	code	snippet,	a	FirstName	property	is	defined	that	returns	the
field	_firstName	using	an	expression-bodied	property.	The	FullName	property
combines	the	_firstName	field	and	the	value	from	the	LastName	property	to
return	the	full	name	(code	file	ClassesSample/Person.cs):

private	readonly	string	_firstName;

public	string	FirstName	=>	_firstName;

private	readonly	string	_lastName;

public	strign	LastName	=>	_lastName;

public	string	FullName	=>	$"{FirstName}	{LastName}";

Auto-Implemented	Read-Only	Properties
C#	offers	a	simple	syntax	with	auto-implemented	properties	to	create	read-only
properties	that	access	read-only	fields.	These	properties	can	be	initialized	using
property	initializers:

public	string	Id	{	get;	}	=	Guid.NewGuid().ToString();

Behind	the	scenes,	the	compiler	creates	a	read-only	field	and	a	property	with	a
get	accessor	to	this	field.	The	code	from	the	initializer	moves	to	the
implementation	of	the	constructor	and	is	invoked	before	the	constructor	body	is
called.

Read-only	properties	can	also	explicitly	be	initialized	from	the	constructor,	as
shown	with	this	code	snippet:

public	class	Book

{

		public	Book(string	title)	=>	Title	=	title;

	

		public	string	Title	{	get;	}

}

Init-Only	Set	Accessors
C#	9	allows	you	to	define	properties	with	get	and	init	accessors	by	using	the
init	keyword	instead	of	the	set	keyword.	This	way	the	property	value	can	be
set	only	in	the	constructor	or	with	an	object	initializer	(code	file
ClassesSample/Book.cs):

public	class	Book

{

		public	Book(string	title)

		{

				Title	=	title;

		}

	

		public	string	Title	{	get;	init;	}

		public	string?	Publisher	{	get;	init;	}

}

C#	9	offers	a	new	option	with	properties	that	should	only	be	set	with
constructors	and	object	initializers.	A	new	Book	object	can	now	be	created	by
invoking	the	constructor	and	using	an	object	initializer	to	set	the	properties	as

shown	in	the	following	code	snippet	(code	file	ClassesSample/Program.	cs):

Book	theBook	=	new("Professional	C#")	

{	

		Publisher	=	"Wrox	Press"

};

You	can	use	object	initializers	to	initialize	properties	on	creation	of	the	object.
The	constructor	defines	the	required	parameters	that	the	class	needs	for
initialization.	With	the	object	initializer,	you	can	assign	all	properties	with	a	set
and	an	init	accessor.	The	object	initializer	can	be	used	only	when	creating	the
object,	not	afterward.

Methods
With	the	C#	terminology,	there's	a	distinction	between	functions	and	methods.
The	term	function	member	includes	not	only	methods,	but	also	other	nondata
members	such	as	indexers,	operators,	constructors,	destructors,	and	properties—
all	members	that	contain	executable	code.

Declaring	Methods
In	C#,	the	definition	of	a	method	consists	of	any	method	modifiers	(such	as	the
method's	accessibility),	followed	by	the	type	of	the	return	value,	followed	by	the
name	of	the	method,	followed	by	a	list	of	parameters	enclosed	in	parentheses,
followed	by	the	body	of	the	method	enclosed	in	curly	brackets.

Each	parameter	consists	of	the	name	of	the	type	of	the	parameter	and	the	name
by	which	it	can	be	referenced	in	the	body	of	the	method.	Also,	if	the	method
returns	a	value,	a	return	statement	must	be	used	with	the	return	value	to	indicate
each	exit	point,	as	shown	in	this	example:

public	bool	IsSquare(Rectangle	rect)

{

		return	(rect.Height	==	rect.Width);

}

If	the	method	doesn't	return	anything,	specify	a	return	type	of	void	because	you
can't	omit	the	return	type	altogether.	If	the	method	takes	no	parameters,	you	need
to	include	an	empty	set	of	parentheses	after	the	method	name.	With	a	void
return,	using	a	return	statement	in	the	implementation	is	optional—the	method
returns	automatically	when	the	closing	curly	brace	is	reached.

Expression-Bodied	Methods

If	the	implementation	of	a	method	consists	just	of	one	statement,	C#	gives	a
simplified	syntax	to	method	definitions:	expression-bodied	methods.	You	don't
need	to	write	curly	brackets	and	the	return	keyword	with	this	syntax.	The	=>
token	is	used	to	distinguish	the	declaration	of	the	left	side	of	this	operator	to	the
implementation	that	is	on	the	right	side.

The	following	example	is	the	same	method	as	before,	IsSquare,	implemented
using	the	expression-bodied	method	syntax.	The	right	side	of	the	=>	token
defines	the	implementation	of	the	method.	Curly	brackets	and	a	return	statement
are	not	needed.	What's	returned	is	the	result	of	the	statement,	and	the	result
needs	to	be	of	the	same	type	as	the	method	declared	on	the	left	side,	which	is	a
bool	in	this	code	snippet:

public	bool	IsSquare(Rectangle	rect)	=>	rect.Height	==	

rect.Width;

Invoking	Methods
The	following	example	illustrates	the	syntax	for	definition	and	instantiation	of
classes	and	for	definition	and	invocation	of	methods.	The	class	Math	defines
instance	and	static	members	(code	file	MathSample/Math.cs):

public	class	Math

{

		public	int	Value	{	get;	set;	}

		public	int	GetSquare()	=>	Value	*	Value;

		public	static	int	GetSquareOf(int	x)	=>	x	*	x;

}

The	top-level	statements	in	the	Program.cs	file	uses	the	Math	class,	calls	static
methods,	and	instantiates	an	object	to	invoke	instance	members	(code	file
MathSample/Program.cs):

using	System;

	

//	Call	static	members

int	x	=	Math.GetSquareOf(5);

Console.WriteLine($"Square	of	5	is	{x}");

	

//	Instantiate	a	Math	object

Math	math	=	new();

	

//	Call	instance	members

math.Value	=	30;

Console.WriteLine($"Value	field	of	math	variable	contains	

{math.Value}");

Console.WriteLine($"Square	of	30	is	{math.GetSquare()}");

Running	the	MathSample	example	produces	the	following	results:

Square	of	5	is	25

Value	field	of	math	variable	contains	30

Square	of	30	is	900

As	you	can	see	from	the	code,	the	Math	class	contains	a	property	that	contains	a
number,	as	well	as	a	method	to	find	the	square	of	this	number.	It	also	contains
one	static	method	to	find	the	square	of	the	number	passed	in	as	a	parameter.

Method	Overloading
C#	supports	method	overloading—several	versions	of	the	method	that	have
different	signatures	(that	is,	the	same	name	but	a	different	number	of	parameters
and/or	different	parameter	data	types).	To	overload	methods,	simply	declare	the
methods	with	the	same	name	but	different	numbers	of	parameter	types:

class	ResultDisplayer

{

		public	void	DisplayResult(string	result)

		{

				//	implementation

		}

	

		public	void	DisplayResult(int	result)

		{

				//	implementation

		}

}

It's	not	just	the	parameter	types	that	can	differ;	the	number	of	parameters	can
differ	too,	as	shown	in	the	next	example.	One	overloaded	method	can	invoke
another:

class	MyClass

{

		public	int	DoSomething(int	x)	=>	DoSomething(x,	10);

	

		public	int	DoSomething(int	x,	int	y)

		{

				//	implementation

		}

}

NOTE With	method	overloading,	it	is	not	sufficient	to	differ	overloads
only	by	the	return	type.	It's	also	not	sufficient	to	differ	them	by	parameter
names.	The	number	of	parameters	and/or	types	needs	to	differ.

Named	Arguments
When	invoking	methods,	the	variable	name	need	not	be	added	to	the	invocation.
However,	if	you	have	a	method	signature	like	the	following	to	move	a	rectangle:

public	void	MoveAndResize(int	x,	int	y,	int	width,	int	height)

and	you	invoke	it	with	the	following	code	snippet,	it's	not	clear	from	the
invocation	what	numbers	are	used	for	what:

r.MoveAndResize(30,	40,	20,	40);

You	can	change	the	invocation	to	make	it	immediately	clear	what	the	numbers
mean:

r.MoveAndResize(x:	30,	y:	40,	width:	20,	height:	40);

Any	method	can	be	invoked	using	named	arguments.	You	just	need	to	write	the
name	of	the	variable	followed	by	a	colon	and	the	value	passed.	The	compiler
gets	rid	of	the	name	and	creates	an	invocation	of	the	method	just	as	if	the
variable	name	is	not	there—so	there's	no	difference	within	the	compiled	code.

You	can	also	change	the	order	of	variables	this	way,	and	the	compiler	rearranges
it	to	the	correct	order.	The	real	advantage	to	this	is	shown	in	the	next	section
with	optional	arguments.

Optional	Arguments
Parameters	can	also	be	optional.	You	must	supply	a	default	value	for	optional
parameters,	which	must	be	the	last	ones	defined:

public	void	TestMethod(int	notOptionalNumber,	int	optionalNumber	

=	42)

{

		Console.WriteLine(optionalNumber	+	notOptionalNumber);

}

This	method	can	now	be	invoked	using	one	or	two	parameters.	When	you	pass
one	parameter,	the	compiler	changes	the	method	call	to	pass	42	with	the	second
parameter:

TestMethod(11);

TestMethod(11,	42);

NOTE Because	the	compiler	changes	methods	with	optional	parameters
to	pass	the	default	value,	the	default	value	should	never	change	with	newer
versions	of	the	library.	This	is	a	breaking	change	because	the	calling
application	can	still	have	the	previous	value	without	recompilation.

You	can	define	multiple	optional	parameters,	as	shown	here:

public	void	TestMethod(int	n,	int	opt1	=	11,	int	opt2	=	22,	int	

opt3	=	33)

{

		Console.WriteLine(n	+	opt1	+	opt2	+	opt3);

}

This	way,	the	method	can	be	called	using	one,	two,	three,	or	four	parameters.
The	first	line	of	the	following	code	leaves	the	optional	parameters	with	the
values	11,	22,	and	33.	The	second	line	passes	the	first	three	parameters,	and	the
last	one	has	a	value	of	33	:

TestMethod(1);

TestMethod(1,	2,	3);

With	multiple	optional	parameters,	the	feature	of	named	arguments	shines.	When
you	use	named	arguments,	you	can	pass	any	of	the	optional	parameters.	For
example,	this	example	passes	just	the	last	one:

TestMethod(1,	opt3:	4);

WARNING Pay	attention	to	versioning	issues	when	using	optional
arguments.	One	issue	is	changing	default	values	in	newer	versions;	another
issue	is	changing	the	number	of	arguments.	It	might	be	tempting	to	add
another	optional	parameter	because	it	is	optional	anyway.	However,	the
compiler	changes	the	calling	code	to	fill	in	all	the	parameters,	and	that's	the
reason	why	earlier	compiled	callers	fail	if	another	parameter	is	added	later.

Variable	Number	of	Arguments
When	you	use	optional	arguments,	you	can	define	a	variable	number	of
arguments.	However,	there's	also	a	different	syntax	that	allows	passing	a	variable
number	of	arguments—and	this	syntax	doesn't	have	versioning	issues.

When	you	declare	the	parameter	of	type	array—the	sample	code	uses	an	int
array—and	add	the	params	keyword,	the	method	can	be	invoked	using	any
number	of	int	parameters.

public	void	AnyNumberOfArguments(params	int[]	data)

{

		foreach	(var	x	in	data)

		{

				Console.WriteLine(x);

		}

}

NOTE Arrays	are	explained	in	detail	in	Chapter	6,	“Arrays.”

Because	the	parameter	of	the	method	AnyNumberOfArguments	is	of	type	int[],
you	can	pass	an	int	array,	or	because	of	the	params	keyword,	you	can	pass	zero
or	more	int	values:

AnyNumberOfArguments(1);

AnyNumberOfArguments(1,	3,	5,	7,	11,	13);

If	arguments	of	different	types	should	be	passed	to	methods,	you	can	use	an
object	array:

public	void	AnyNumberOfArguments(params	object[]	data)

{

		//	…

Now	it	is	possible	to	use	any	type	for	the	parameters	calling	this	method:

AnyNumberOfArguments("text",	42);

If	the	params	keyword	is	used	with	multiple	parameters	that	are	defined	with	the
method	signature,	params	can	be	used	only	once,	and	it	must	be	the	last
parameter:

Console.WriteLine(string	format,	params	object[]	arg);

NOTE In	case	you've	overloaded	methods,	and	one	of	these	methods	is
using	the	params	keyword,	the	compiler	prefers	fixed	parameters	rather	than
the	params	keyword.	For	example,	if	a	method	is	declared	with	two	int
parameters	(Foo(int,	int)),	and	another	method	is	using	the	params
keyword	(Foo(int[]	params),	when	invoking	this	method	with	two	int
arguments,	the	method	Foo(int,	int)	wins	because	it	has	a	better	match.

Now	that	you've	looked	at	the	many	aspects	of	methods,	let's	get	into
constructors,	which	are	a	special	kind	of	method.

Constructors
The	syntax	for	declaring	basic	constructors	is	a	method	that	has	the	same	name
as	the	containing	class	and	that	does	not	have	any	return	type:

public	class	MyClass

{

		public	MyClass()

		{

		}

	

		//…

}

It's	not	necessary	to	provide	a	constructor	for	your	class.	If	you	don't	supply	any
constructor,	the	compiler	generates	a	default	behind	the	scenes.	This	constructor
initializes	all	the	member	fields	to	the	default	values,	which	is	0	for	numbers,
false	for	bool,	and	null	for	reference	types.	When	you're	using	nullable
reference	types	and	don't	declare	your	reference	types	to	allow	null,	you'll	get	a
compiler	warning	if	these	fields	are	not	initialized.

Constructors	follow	the	same	rules	for	overloading	as	other	methods—that	is,
you	can	provide	as	many	overloads	to	the	constructor	as	you	want,	provided	they
are	clearly	different	in	signature:

public	MyClass()	//	parameterless	constructor

{

		//	construction	code

}

	

public	MyClass(int	number)	//	constructor	overload	with	an	int	

parameter

{

		//	construction	code

}

If	you	supply	any	constructors,	the	compiler	does	not	automatically	supply	a
default	one.	The	default	constructor	is	created	only	if	other	constructors	are	not
defined.

Note	that	it	is	possible	to	define	constructors	as	private	or	protected	so	that

they	are	invisible	to	code	in	unrelated	classes,	too:

public	class	MyNumber

{

		private	int	_number;

		private	MyNumber(int	number)	=>	_number	=	number;

		//…

}

An	example	in	which	this	is	useful	is	to	create	a	singleton	where	an	instance	can
be	created	only	from	a	static	factory	method.

Expression	Bodies	with	Constructors
If	the	implementation	of	a	constructor	just	consists	of	a	single	expression,	the
constructor	can	be	implemented	with	an	expression-bodied	implementation:

public	class	Singleton

{

		private	static	Singleton	s_instance;

		private	int	_state;

		private	Singleton(int	state)	=>	_state	=	state;

	

		public	static	Singleton	Instance	=>	s_instance	??=	new	

Singleton(42);

}

You	can	also	initialize	multiple	properties	with	a	single	expression.	You	can	do
this	using	the	tuple	syntax	as	shown	in	the	following	code	snippet.	With	the	Book
constructor,	two	parameters	are	required.	Putting	these	two	variables	in
parentheses	creates	a	tuple.	This	tuple	is	then	deconstructed	and	put	into	the
properties	specified	with	the	left	side	of	the	assignment	operator.	Behind	the
scenes,	the	compiler	detects	that	tuples	are	not	needed	for	the	initialization	and
creates	the	same	code	whether	you	initialize	the	properties	within	curly	brackets
or	with	the	tuple	syntax	shown:

public	class	Book

{

		public	Book(string	title,	string	publisher)	=>	

				(Title,	Publisher)	=	(title,	publisher);

	

		public	string	Title	{	get;	}

		public	string	Publisher	{	get;	}

}

Calling	Constructors	from	Other	Constructors
When	you're	creating	multiple	constructors	in	a	class,	you	shouldn't	duplicate	the
implementation.	Instead,	one	constructor	can	invoke	another	one	from	a
constructor	initializer.

Both	constructors	initialize	the	same	fields.	It	would	clearly	be	tidier	to	place	all
the	code	in	one	location.	C#	has	a	special	syntax	known	as	a	constructor
initializer	to	enable	this:

class	Car

{

		private	string	_description;

		private	uint	_nWheels;

		public	Car(string	description,	uint	nWheels)

		{

				_description	=	description;

				_nWheels	=	nWheels;

		}

		public	Car(string	description):	this(description,	4)

		{

		}

}

In	this	context,	the	this	keyword	simply	causes	the	constructor	with	the
matching	parameters	to	be	called.	Note	that	any	constructor	initializer	is
executed	before	the	body	of	the	constructor.

Static	Constructors
Static	members	of	a	class	can	be	used	before	any	instance	of	this	class	is	created
(if	any	instance	is	created	at	all).	To	initialize	static	members,	you	can	create	a
static	constructor.	The	static	constructor	has	the	same	name	as	the	class	(similar
to	an	instance	constructor),	but	the	static	modifier	is	applied.	This	constructor
cannot	have	an	access	modifier	applied	because	it	isn't	invoked	from	the	code
using	the	class.	This	constructor	is	automatically	invoked	before	any	other
member	of	this	class	is	called	or	any	instance	is	created:

class	MyClass

{

		static	MyClass()

		{

				//	initialization	code

		}

		//…

}

The	.NET	runtime	makes	no	guarantees	about	when	a	static	constructor	will	be
executed,	so	you	should	not	place	any	code	in	it	that	relies	on	it	being	executed
at	a	particular	time	(for	example,	when	an	assembly	is	loaded).	Nor	is	it	possible
to	predict	in	what	order	static	constructors	of	different	classes	will	execute.
However,	what	is	guaranteed	is	that	the	static	constructor	will	run	at	most	once,
and	it	will	be	invoked	before	your	code	makes	any	reference	to	the	class.	In	C#,
the	static	constructor	is	usually	executed	immediately	before	the	first	call	to	any
member	of	the	class.

Local	Functions
Methods	with	a	public	access	modifier	can	be	invoked	from	outside	of	the	class.
Methods	with	a	private	access	modifier	can	be	invoked	from	anywhere	within
the	class	(from	other	methods,	property	accessors,	constructors,	and	so	on).	To
restrict	this	further,	a	local	function	can	be	invoked	only	from	within	the	method
where	the	local	function	is	declared.	The	local	function	has	the	scope	of	the
method	and	cannot	be	invoked	from	somewhere	else.

Within	the	method	IntroLocalFunctions,	the	local	function	Add	is	defined.
Parameters	and	return	types	are	implemented	in	the	same	way	as	a	normal
method.	Similarly	to	a	normal	method,	a	local	function	can	be	implemented	by
using	curly	brackets	or	with	an	expression-bodied	implementation	as	shown	in
the	following	code.	Since	C#	8,	the	local	function	can	have	the	static	modifier
associated	if	the	implementation	doesn't	access	instance	members	defined	with
the	class	or	local	variables	of	the	method.	With	the	static	modifier,	the
compiler	makes	sure	this	does	not	happen	and	can	optimize	the	generated	code.
The	local	function	is	invoked	in	the	method	itself;	it	cannot	be	invoked
anywhere	else	in	the	class.	Whether	the	local	function	is	declared	before	or	after
its	use	is	just	a	matter	of	taste	(code	file
MethodSample/LocalFunctionsSample.cs):

public	static	void	IntroLocalFunctions()

{

		static	int	Add(int	x,	int	y)	=>	x	+	y;

	

		int	result	=	Add(3,	7);

		Console.WriteLine("called	the	local	function	with	this	result:	

{result}");								

}

With	the	next	code	snippet,	the	local	function	Add	is	declared	without	the	static

modifier.	In	the	implementation,	this	function	not	only	uses	the	variables
specified	with	the	arguments	of	the	function	but	also	variable	z,	which	is
specified	in	the	outer	scope	of	the	local	function,	within	the	scope	of	the	method.
When	accessing	the	variable	outside	of	its	scope	(known	as	closure),	the
compiler	creates	a	class	where	the	data	used	within	this	function	is	passed	in	a
constructor.	Here,	the	local	function	needs	to	be	declared	after	the	variables	used
within	the	local	function.	That's	why	the	local	function	is	put	at	the	end	of	the
method	LocalFunctionWithClosure	:

public	static	void	LocalFunctionWithClosure()

{

		int	z	=	3;

	

		int	result	=	Add(1,	2);

		Console.WriteLine("called	the	local	function	with	this	result:	

{result}");

	

		int	Add(int	x,	int	y)	=>	x	+	y	+	z;

}

NOTE Local	functions	can	help	with	error	handling	when	using	deferred
execution	with	the	yield	statement.	This	is	shown	in	Chapter	9,	“Language
Integrated	Query.”	With	C#	9,	local	functions	can	have	the	extern	modifier.
This	is	shown	for	invoking	native	methods	in	Chapter	13.

Generic	Methods
If	you	need	implementations	of	methods	that	support	multiple	types,	you	can
implement	generic	methods.	The	method	Swap<T>	defines	T	as	a	generic	type
that	is	used	for	two	arguments	and	a	local	variable	temp	(code	file
MeethodSample/GenericMethods.cs):

class	GenericMethods

{

		public	static	void	Swap<T>(ref	T	x,	ref	T	y)

		{

				T	temp;

				temp	=	x;

				x	=	y;

				y	=	temp;

		}

}

NOTE It's	a	convention	to	use	T	for	the	name	of	the	generic	type.	In	case
you	need	multiple	generic	types,	you	can	use	T1,	T2,	T3,	and	so	on.	For
specific	generic	types,	you	can	also	add	a	name—for	example,	TKey	and
TValue	for	generic	types	representing	the	type	of	the	key	and	the	type	of	the
value.

NOTE With	generic	methods,	you	can	also	invoke	members	of	the	generic
type	other	than	members	of	the	object	class	if	you	define	constraints	and
define	that	the	generic	type	needs	to	implement	an	interface	or	derive	from	a
base	class.	This	is	explained	in	Chapter	4	where	generic	types	are	covered.

Extension	Methods
With	extension	methods,	you	can	create	methods	that	extend	other	types.

The	following	code	snippet	defines	the	method	GetWordCount	that	is	used	to
extend	the	string	type.	An	extension	method	is	not	defined	by	the	name	of	the
class	but	instead	by	using	the	this	modifier	with	the	parameter.	GetWordCount
extends	the	string	type	because	the	parameter	with	the	this	modifier	(which
needs	to	be	the	first	parameter)	is	of	type	string.	Extension	methods	need	to	be
static	and	declared	in	a	static	class	(code	file
ExtensionMethods/StringExtensions.cs):

public	static	class	StringExtensions

{

		public	static	int	GetWordCount(this	string	s)	=>	

s.Split().Length;											

}

To	use	this	extension	method,	the	namespace	of	the	extension	class	needs	to	be
imported;	then	the	method	can	be	called	in	the	same	way	as	an	instance	method
(code	file	ExtensionMethods/Program.cs):

string	fox	=	"the	quick	brown	fox	jumped	over	the	lazy	dogs";

int	wordCount	=	fox.GetWordCount();

Console.WriteLine($"{wordCount}	words");

Console.ReadLine();

It	might	look	like	extension	methods	break	object-oriented	rules	in	regard	to
inheritance	and	encapsulation	because	methods	can	be	added	to	an	existing	type
without	inheriting	from	it	and	without	changing	the	type.	However,	you	can	only

access	public	members.	Extension	methods	are	really	just	“syntax	sugar”
because	the	compiler	changes	the	invocation	of	the	method	to	call	a	static
method	that's	passing	the	instance	as	the	parameter,	as	shown	here:

int	wordCount	=	StringExtensions.GetWordCount(fox);

Why	would	you	create	extension	methods	instead	of	calling	static	methods?	The
code	can	become	a	lot	easier	to	read.	Just	check	into	the	extension	methods
implemented	for	LINQ	(see	Chapter	9)	or	the	extension	methods	used	to
configure	configuration	and	logging	providers	(see	Chapter	15,	“Dependency
Injection	and	Configuration”).

Anonymous	Types
Chapter	2	discusses	the	var	keyword	in	reference	to	implicitly	typed	variables.
When	used	with	the	new	keyword,	you	can	create	anonymous	types.	An
anonymous	type	is	simply	a	nameless	class	that	inherits	from	object.	The
definition	of	the	class	is	inferred	from	the	initializer,	just	as	with	implicitly	typed
variables.

For	example,	if	you	need	an	object	that	contains	a	person's	first,	middle,	and	last
name,	the	declaration	would	look	like	this:

var	captain	=	new

{

		FirstName	=	"James",

		MiddleName	=	"Tiberius",

		LastName	=	"Kirk"

};

This	would	produce	an	object	with	FirstName,	MiddleName,	and	LastName	read-
only	properties.	If	you	were	to	create	another	object	that	looked	like	this:

var	doctor	=	new

{

		FirstName	=	"Leonard",

		MiddleName	=	string.Empty,

		LastName	=	"McCoy"

};

then	the	types	of	captain	and	doctor	are	the	same.	You	could	set	captain	=
doctor,	for	example.	This	is	possible	only	if	all	the	properties	match.

The	names	for	the	members	of	anonymous	types	can	be	inferred	if	the	values
that	are	being	set	come	from	another	object.	This	way,	the	initializer	can	be

abbreviated.	If	you	already	have	a	class	that	contains	the	properties	FirstName,
MiddleName,	and	LastName	and	you	have	an	instance	of	that	class	with	the
instance	name	person,	then	the	captain	object	could	be	initialized	like	this:

var	captain	=	new

{

		person.FirstName,

		person.MiddleName,

		person.LastName

};

The	property	names	from	the	person	object	are	inferred	in	the	new	object	named
captain,	so	the	object	named	captain	has	FirstName,	MiddleName,	and
LastName	properties.

The	actual	type	name	of	anonymous	types	is	unknown,	which	is	where	the	name
comes	from.	The	compiler	“makes	up”	a	name	for	the	type,	but	only	the
compiler	is	ever	able	to	make	use	of	it.	Therefore,	you	can't	and	shouldn't	plan
on	using	any	type	reflection	on	the	new	objects	because	you	will	not	get
consistent	results.

RECORDS
So	far	in	this	chapter,	you've	seen	that	records	are	reference	types	that	support
value	semantics.	This	type	allows	reducing	the	code	you	need	to	write	because
the	compiler	automatically	implements	comparing	records	by	value	and	gives
some	more	features,	which	are	explained	in	this	section.

Immutable	Types
A	main	use	case	for	records	is	to	create	immutable	types	(although	you	can	also
create	mutable	types	with	records).	An	immutable	type	just	contains	members
where	the	state	of	the	type	cannot	be	changed.	You	can	initialize	such	a	type	in	a
constructor	or	with	an	object	initializer,	but	you	can't	change	any	values
afterward.

Immutable	types	are	useful	with	multithreading.	When	you're	using	multiple
threads	to	access	the	immutable	object,	you	don't	need	to	worry	with
synchronization	because	the	values	cannot	change.

An	example	of	an	immutable	type	is	the	String	class.	This	class	does	not	define
any	member	that	is	allowed	to	change	its	content.	Methods	such	as	ToUpper
(which	changes	the	string	to	uppercase)	always	return	a	new	string,	but	the

original	string	passed	to	the	constructor	remains	unchanged.

Nominal	Records
Records	can	be	created	in	two	kinds:	nominal	and	positional	records.	A	nominal
record	looks	like	a	class	just	using	the	record	keyword	instead	of	the	class
keyword,	as	shown	with	the	type	Book1.	Here,	init-only	set	accessors	are	used	to
forbid	state	changes	after	an	instance	has	been	created	(code	file
RecordsSample/Program.cs):

public	record	Book1

{

				public	string	Title	{	get;	init;	}	=	string.Empty;

				public	string	Publisher	{	get;	init;	}	=	string.Empty;

}

You	can	add	constructors	and	all	the	other	members	you	learned	about	in	this
chapter.	The	compiler	just	creates	a	class	with	the	record	syntax.	What's	different
from	classes	is	that	the	compiler	creates	some	more	functionality	inside	this
class.	The	compiler	overrides	the	GetHashCode	and	ToString	methods	of	the
base	class	object,	creates	methods	and	operator	overloads	to	compare	different
values	for	equality,	and	creates	methods	to	clone	existing	objects	and	create	new
ones	where	object	initializers	can	be	used	to	change	some	property	values.

NOTE See	Chapter	5	for	information	about	operator	overloads.

Positional	Records
The	second	way	to	implement	a	record	is	to	use	the	positional	record	syntax.
With	this	syntax,	parentheses	are	used	after	the	name	of	the	record	to	specify	the
members.	This	syntax	has	the	name	primary	constructor.	The	compiler	creates	a
class	from	this	code	as	well,	with	init-only	set	accessors	for	the	types	used	with
the	primary	constructor	and	a	constructor	with	the	same	parameters	to	initialize
the	properties	(code	file	RecordsSample/Program.cs):

public	record	Book2(string	Title,	string	Publisher);

You	can	use	curly	brackets	to	add	what	you	need	to	the	already	existing
implementation—for	example,	by	adding	overloaded	constructors,	methods,	or
any	other	members	you've	seen	earlier	in	this	chapter:

public	record	Book2(string	Title,	string	Publisher)

{

		//	add	your	members,	overloads

}

As	the	compiler	creates	a	constructor	with	parameters,	you	can	instantiate	an
object	as	you're	used	to—by	passing	the	values	to	the	constructor	(code	file
RecordsSample/Program.cs):

Book2	b2	=	new("Professional	C#",	"Wrox	Press");

Console.WriteLine(b2);

Because	the	compiler	creates	a	ToString	method	that	is	implicitly	invoked	by
passing	the	variable	to	the	WriteLine	method,	this	is	what's	shown	on	the
console:	the	name	of	the	class	followed	by	the	property	names	with	their	values
in	curly	brackets:

Book2	{	Title	=	Professional	C#,	Publisher	=	Wrox	Press	}

With	positional	records,	the	compiler	creates	the	same	members	as	with	nominal
records	and	adds	methods	for	deconstruction.	Deconstruction	is	explained	later
in	this	chapter	in	the	section	“Deconstruction.”

Equality	Comparison	with	Records
With	classes,	the	default	implementation	for	equality	is	to	compare	the	reference.
Creating	two	new	objects	of	the	same	type	that	are	initialized	to	the	same	values
are	different	because	they	reference	different	objects	in	the	heap.	This	is
different	with	records.	With	the	equality	implementation	of	records,	two	records
are	equal	if	their	property	values	are	the	same.

In	the	following	code	snippet,	two	records	that	contain	the	same	values	are
created.	The	object.ReferenceEquals	method	returns	false,	because	these	are
two	different	references.	Using	the	equal	operator	==	returns	true	because	this
operator	is	implemented	with	the	record	type	(code	file
RecordsSample/Program.cs):

Book1	book1a	=	new()	{	Title	=	"Professional	C#",	Publisher	=	

"Wrox	Press"	};

Book1	book1b	=	new()	{	Title	=	"Professional	C#",	Publisher	=	

"Wrox	Press"	};

if	(!object.ReferenceEquals(book1a,	book1b))	

		Console.WriteLine("Two	different	references	for	equal	

records");

	

if	(book1a	==	book1b)	

		Console.WriteLine("Both	records	have	the	same	values");

The	record	type	implements	the	IEquality	interface	with	the	Equals	method,	as
well	as	the	equality	==	and	the	inequality	!=	operators.

With	Expressions
Records	make	it	easy	to	create	immutable	types,	but	there's	a	new	feature	with
records	for	easily	creating	new	record	instances.	The	.NET	Compiler	Platform
(also	known	by	the	name	Roslyn)	is	built	with	immutable	objects	and	many	With
methods	to	create	new	objects	from	existing	ones.	With	the	C#	9	enhancement,
the	with	expressions,	there's	a	lot	of	simplification	that	can	be	used	by	the
Roslyn	team.	The	code	created	with	the	record	syntax	includes	a	copy
constructor	and	a	Clone	method	with	a	hidden	name	where	all	the	values	of	the
existing	object	are	copied	to	a	new	instance	that's	returned	from	this	method.	The
with	expression	now	makes	use	of	this	Clone	method,	and	with	the	init-only	set
accessors,	you	can	use	object	initialization	to	set	the	values	that	should	be
different.

var	aNewBook	=	book1a	with	{	Title	=	"Professional	C#	and	.NET	-	

2024"	};

NOTE See	Chapter	4	for	inheritance	not	only	with	classes	but	also	with
records.

STRUCTS
So	far,	you	have	seen	how	classes	and	records	offer	a	great	way	to	encapsulate
objects	in	your	program.	You	have	also	seen	how	they	are	stored	on	the	heap	in	a
way	that	gives	you	much	more	flexibility	in	data	lifetime	but	with	a	slight	cost	in
performance.	Objects	stored	in	the	heap	require	work	from	the	garbage	collector
to	remove	the	memory	of	the	objects	that	are	no	longer	needed.	To	reduce	the
work	needed	by	the	garbage	collector,	you	can	use	the	stack	for	smaller	objects.

Chapter	2	discusses	predefined	value	types	such	as	int	and	double,	which	are
represented	as	a	struct	type.	You	can	create	such	structs	on	your	own.

Just	by	using	the	struct	keyword	instead	of	the	class	keyword,	the	type	is	by
default	stored	in	the	stack	instead	of	the	heap.

The	following	code	snippet	defines	a	struct	called	Dimensions,	which	simply

stores	the	length	and	width	of	an	item.	Suppose	you're	writing	a	furniture-
arranging	program	that	enables	users	to	experiment	with	rearranging	their
furniture	on	the	computer,	and	you	want	to	store	the	dimensions	of	each	item	of
furniture.	All	you	have	is	two	numbers,	which	you'll	find	convenient	to	treat	as	a
pair	rather	than	individually.	There	is	no	need	for	a	lot	of	methods,	or	for	you	to
be	able	to	inherit	from	the	class,	and	you	certainly	don't	want	to	have	the	.NET
runtime	go	to	the	trouble	of	bringing	in	the	heap,	with	all	the	performance
implications,	just	to	store	two	double	s	(code	file
StructsSample/Dimensions.cs):

public	readonly	struct	Dimensions

{

		public	Dimensions(double	length,	double	width)

		{

				Length	=	length;

				Width	=	width;

		}

	

		public	double	Length	{	get;	}

		public	double	Width	{	get;	}

		//…

}

NOTE If	the	members	of	a	struct	don't	change	any	state	(other	than	the
constructors),	the	struct	can	be	declared	with	the	readonly	modifier.	The
compiler	will	make	sure	you	don't	add	any	members	that	change	state.

Defining	members	for	structs	is	done	in	the	same	way	as	defining	them	for
classes	and	records.	You've	already	seen	a	constructor	with	the	Dimensions
struct.	The	following	code	demonstrates	adding	the	property	Diagonal	invoking
the	Sqrt	method	of	the	Math	class	(code	file	StructsSample/Dimensions.cs):

public	struct	Dimensions

{

		//…

		public	double	Diagonal	=>	Math.Sqrt(Length	*	Length	+	Width	*	

Width);

}

Structs	make	use	of	the	previously	discussed	pass	by	value	semantics,	where
values	are	copied.	This	is	not	the	only	difference	with	classes	and	records:

Structs	do	not	support	inheritance.	You	can	implement	interfaces	with

structs	but	not	derive	from	another	struct.

Structs	always	have	a	default	constructor.	With	a	class,	if	you	define	a
constructor,	the	default	constructor	no	longer	gets	generated.	The	struct	type
is	different	than	a	class.	A	struct	always	has	a	default	constructor,	and	you
cannot	create	a	custom	parameterless	constructor.

With	a	struct,	you	can	specify	how	the	fields	are	laid	out	in	memory.	This	is
examined	in	Chapter	13.

Structs	are	stored	on	the	stack	or	inline	(if	they	are	part	of	another	object
that	is	stored	on	the	heap).	When	a	struct	is	used	as	an	object	(for	example,
passed	to	an	object	parameter	or	an	object-based	method	is	invoked),
boxing	occurs,	and	the	value	is	copied	to	the	heap	as	well.

ENUM	TYPES
An	enumeration	is	a	value	type	that	contains	a	list	of	named	constants,	such	as
the	Color	type	shown	here.	The	enumeration	type	is	defined	by	using	the	enum
keyword:

public	enum	Color

{

		Red,

		Green,

		Blue

}

You	can	declare	variables	of	enum	types,	such	as	the	variable	c1,	and	assign	a
value	from	the	enumeration	by	setting	one	of	the	named	constants	prefixed	with
the	name	of	the	enum	type	(code	file	EnumSample/Program.cs):

void	ColorSamples()

{

		Color	c1	=	Color.Red;

		Console.WriteLine(c1);

	

		//…

}

When	you	run	the	program,	the	console	output	shows	Red,	which	is	the	constant
value	of	the	enumeration.

By	default,	the	type	behind	the	enum	type	is	an	int.	You	can	change	the
underlying	type	to	other	integral	types	(byte,	short,	int,	long	with	signed	and

unsigned	variants).	The	values	of	the	named	constants	are	incremental	values
starting	with	0,	but	you	can	change	them	to	other	values	(code	file
EnumSample/Color.cs):

public	enum	Color	:	short

{

		Red	=	1,

		Green	=	2,

		Blue	=	3

}

You	can	change	a	number	to	an	enumeration	value	and	back	using	casts.

Color	c2	=	(Color)2;

short	number	=	(short)c2;

You	can	also	use	an	enum	type	to	assign	multiple	options	to	a	variable	and	not
just	one	of	the	enum	constants.	To	make	exclusive	enum	values,	the	numbers
assigned	to	the	values	should	each	set	a	single	different	bit.

The	enum	type	DaysOfWeek	defines	different	values	for	every	day.	Setting
different	bits	can	be	done	easily	using	hexadecimal	values	that	are	assigned
using	the	0x	prefix.	The	Flags	attribute	is	information	for	the	compiler	for
creating	a	different	string	representation	of	the	values—for	example,	setting	the
value	3	to	a	variable	of	DaysOfWeek	results	in	Monday,	Tuesday	when	you	use
the	Flags	attribute	(code	file	EnumSample/DaysOfWeek.cs):

[Flags]

public	enum	DaysOfWeek

{

		Monday	=	0x1,

		Tuesday	=	0x2,

		Wednesday	=	0x4,

		Thursday	=	0x8,

		Friday	=	0x10,

		Saturday	=	0x20,

		Sunday	=	0x40

}

With	such	an	enum	declaration,	you	can	assign	a	variable	multiple	values	using
the	logical	OR	operator	(code	file	EnumSample/Program.cs):

DaysOfWeek	mondayAndWednesday	=	DaysOfWeek.Monday	|	

DaysOfWeek.Wednesday;

Console.WriteLine(mondayAndWednesday);

When	you	run	the	program,	the	output	is	a	string	representation	of	the	days:

Monday,	Wednesday

When	you	set	different	bits,	you	also	can	combine	single	bits	to	cover	multiple
values,	such	as	Weekend	with	a	value	of	0x60.	The	value	0x60	is	created	by
combining	Saturday	and	Sunday	with	the	logical	OR	operator.	Workday	is	set	to
0x1f	to	combine	all	days	from	Monday	to	Friday,	and	AllWeek	to	combine
Workday	and	Weekend	with	the	logical	OR	operator	(code	file
EnumSample/DaysOfWeek.cs):

[Flags]

public	enum	DaysOfWeek

{

		Monday	=	0x1,

		Tuesday	=	0x2,

		Wednesday	=	0x4,

		Thursday	=	0x8,

		Friday	=	0x10,

		Saturday	=	0x20,

		Sunday	=	0x40,

		Weekend	=	Saturday	|	Sunday,

		Workday	=	0x1f,

		AllWeek	=	Workday	|	Weekend

}

With	this	in	place,	you	can	assign	DaysOfWeek.Weekend	directly	to	a	variable,
but	assigning	the	separate	values	DaysOfWeek.Saturday	and
DaysOfWeek.Sunday	combined	with	the	logical	OR	operator	gives	the	same
result.	The	output	shown	is	the	string	representation	of	Weekend	:

DaysOfWeek	weekend	=	DaysOfWeek.Saturday	|	DaysOfWeek.Sunday;

Console.WriteLine(weekend);

When	you're	working	with	enumerations,	the	class	Enum	is	sometimes	a	big	help
for	dynamically	getting	some	information	about	enum	types.	Enum	offers
methods	to	parse	strings	to	get	the	corresponding	enumeration	constant	and	to
get	all	the	names	and	values	of	an	enum	type.

The	following	code	snippet	uses	a	string	to	get	the	corresponding	Color	value
using	Enum.TryParse	(code	file	EnumSample/Program.cs):

if	(Enum.TryParse<Color>("Red",	out	Color	red))

{

		Console.WriteLine($"successfully	parsed	{red}");

}

NOTE 	Enum.TryParse	is	a	generic	method	where	T	is	a	generic
parameter	type.	The	return	value	is	a	Boolean	to	return	true	when	parsing
succeeded.	To	return	the	parsed	enum	result,	the	out	keyword	is	used	as	a
modifier	of	the	parameter.	With	the	out	keyword,	you	can	specify	to	return
multiple	values	from	a	method.	This	keyword	is	discussed	in	the	next	section.

The	Enum.GetNames	method	returns	a	string	array	of	all	the	names	of	the
enumeration:

foreach	(var	color	in	Enum.GetNames(typeof(Color)))

{

		Console.WriteLine(color);

}

When	you	run	the	application,	this	is	the	output:

Red

Green

Blue

To	get	all	the	values	of	the	enumeration,	you	can	use	the	method
Enum.GetValues.	To	get	the	integral	value,	it	needs	to	be	cast	to	the	underlying
type	of	the	enumeration,	which	is	done	by	the	foreach	statement:

foreach	(short	color	in	Enum.GetValues(typeof(Color)))

{

		Console.WriteLine(color);

}

REF,	IN,	AND	OUT
A	value	type	is	passed	by	value;	thus,	the	value	of	a	variable	is	copied	when
assigned	to	another	variable,	such	as	when	it's	passed	to	a	method.	There's	a	way
around	that.	If	you	use	the	ref	keyword,	a	value	type	is	passed	by	reference.	In
this	section,	you	learn	about	the	parameter	and	return	type	modifiers	ref,	in,	and
out.

ref	Parameters
The	following	code	snippet	defines	the	method	ChangeAValueType,	where	an
int	is	passed	by	reference.	Remember,	the	int	is	declared	as	struct,	so	this
behavior	is	valid	with	custom	structs	as	well.	By	default,	the	int	would	be

passed	by	value.	Because	of	the	ref	modifier,	the	int	is	passed	by	reference
(using	an	address	of	the	int	variable).	Within	the	implementation,	now	the
variable	named	x	references	the	same	data	on	the	stack	as	the	variable	a	does.
Changing	the	value	of	x	also	changes	the	value	of	a,	so	after	the	invocation,	the
variable	a	contains	the	value	2	(code	file	RefInOutSample/Program.cs):

int	a	=	1;

ChangeAValueType(ref	a);

Console.WriteLine($"the	value	of	a	changed	to	{a}");

	

void	ChangeAValueType(ref	int	x)

{

		x	=	2;

}

Passing	a	value	type	by	reference	requires	the	ref	keyword	with	the	method
declaration	and	when	calling	the	method.	This	is	important	information	for	the
caller;	knowing	the	method	receiving	this	value	type	can	change	the	content.

Now	you	might	wonder	if	it	could	be	useful	to	pass	a	reference	by	using	the	ref
keyword.	Passing	a	reference	allows	the	method	to	change	the	content	anyway.
Indeed,	it	can	be	useful,	as	the	following	code	snippet	demonstrates.	The	method
ChangingAReferenceByReference	specifies	the	ref	modifier	with	the	argument
of	type	SomeData,	which	is	a	class.	In	the	implementation,	first	the	value	of	the
Value	property	is	changed	to	2.	After	this,	a	new	instance	is	created,	which
references	an	object	with	a	Value	of	3.	If	you	try	to	remove	the	ref	keyword
from	the	method	declaration,	as	well	as	the	invocation	of	this	method,	after	the
invocation	data1.Value	has	the	value	2.	Without	the	ref	keyword,	the	data1
variable	references	the	object	on	the	heap	and	the	data	variable	at	the	beginning
of	the	method.	After	creating	a	new	object,	the	data	variable	references	a	new
object	on	the	heap,	which	then	contains	the	value	3.	With	the	ref	keyword	used
as	in	the	sample,	the	data	variable	references	the	data1	variable;	it's	a	pointer	to
a	pointer.	This	way,	a	new	instance	can	be	created	within	the
ChangingAReferenceByRef	method,	and	the	variable	data1	references	this	new
object	instead	of	the	old	one:

SomeData	data1	=	new()	{	Value	=	1	};

ChangingAReferenceByRef(ref	data1);

Console.WriteLine($"the	new	value	of	data1.Value	is:	

{data1.Value}");

	

void	ChangingAReferenceByRef(ref	SomeData	data)

{

		data.Value	=	2;

		data	=	new	SomeData	{	Value	=	3	};

}

	

class	SomeData

{

		public	int	Value	{	get;	set;	}

}

in	Parameters
If	you	want	to	avoid	the	overhead	of	copying	a	value	type	when	passing	it	to	a
method	but	don't	want	to	change	the	value	within	the	method,	you	can	use	the	in
modifier.

For	the	next	sample	code,	the	SomeValue	struct,	which	contains	four	int	values,
is	defined	(code	file	RefInOutSample/Program.cs):

struct	SomeValue

{

		public	SomeValue(int	value1,	int	value2,	int	value3,	int	

value4)

		{

				Value1	=	value1;

				Value2	=	value2;

				Value3	=	value3;

				Value4	=	value4;

		}

		public	int	Value1	{	get;	set;	}

		public	int	Value2	{	get;	set;	}

		public	int	Value3	{	get;	set;	}

		public	int	Value4	{	get;	set;	}

}

If	you	declare	a	method	where	the	SomeValue	struct	is	passed	as	an	argument,
the	four	int	values	need	to	be	copied	on	method	invocation.	When	you	use	the
ref	keyword,	you	don't	need	a	copy,	and	you	can	pass	a	reference.	However,
with	the	ref	keyword,	the	caller	might	not	want	the	called	method	to	make	any
change.	To	guarantee	that	changes	are	not	happening,	you	use	the	in	modifier.
With	this	modifier,	a	pass	by	reference	is	happening,	but	the	compiler	does	not
allow	change	to	any	value	when	the	data	variable	is	used.	Data	is	now	a	read-
only	variable:

void	PassValueByReferenceReadonly(in	SomeValue	data)

{

		//	data.Value1	=	4;	-	you	cannot	change	a	value,	it's	a	read-

only	variable!

}

ref	return
To	avoid	copying	the	value	on	return	of	a	method,	you	can	declare	the	return
type	with	the	ref	keyword	and	use	return	ref.	The	Max	method	receives	two
SomeValue	structs	with	the	parameters	and	returns	the	larger	of	these	two.	With
the	parameters,	the	values	are	not	copied	using	the	ref	modifier,	as	shown	here:

ref	SomeValue	Max(ref	SomeValue	x,	ref	SomeValue	y)

{

		int	sumx	=	x.Value1	+	x.Value2	+	x.Value3	+	x.Value4;

		int	sumy	=	y.Value1	+	y.Value2	+	y.Value3	+	y.Value4;

	

		if	(sumx>	sumy)

		{

				return	ref	x;

		}

		else

		{

				return	ref	y;

		}

}

Within	the	implementation	of	the	Max	method,	you	can	replace	the	if	/	else
statement	with	a	conditional	ref	expression.	With	this,	the	ref	keyword	needs	to
be	used	with	the	expression	to	compare	sumx	and	sumy.	Based	on	the	result,	a
ref	to	x	or	to	y	is	written	to	a	ref	local,	which	is	then	returned:

ref	SomeValue	Max(ref	SomeValue	x,	ref	SomeValue	y)

{

		int	sumx	=	x.Value1	+	x.Value2	+	x.Value3	+	x.Value4;

		int	sumy	=	y.Value1	+	y.Value2	+	y.Value3	+	y.Value4;

	

		ref	SomeValue	result	=	ref	(sumx	>	sumy)	?	ref	x	:	ref	y;

		return	ref	result;

}

Whether	the	returned	value	should	be	copied	or	a	reference	should	be	used	is	a
decision	from	the	caller.	In	the	following	code	snippet,	with	the	first	invocation
of	the	Max	method,	the	result	is	copied	to	the	bigger1	variable,	although	the
method	is	declared	to	return	a	ref.	There's	not	a	compiler	error	with	the	first
version	(contrary	to	the	ref	parameters).	You	will	not	have	any	issues	when	the

value	is	copied—other	than	the	performance	hit.	With	the	second	invocation,	the
ref	keyword	is	used	to	invoke	the	method	to	get	a	ref	return.	With	this
invocation,	the	result	needs	to	be	written	to	a	ref	local.	The	third	invocation
writes	the	result	into	a	ref	readonly	local.	With	the	Max	method,	there's	no	change
needed.	The	readonly	used	here	is	only	to	specify	that	the	bigger3	variable	will
not	be	changed,	and	the	compiler	complains	if	properties	are	set	to	change	its
values:

SomeValue	one	=	new	SomeValue(1,	2,	3,	4);

SomeValue	two	=	new	SomeValue(5,	6,	7,	8);

	

SomeValue	bigger1	=	Max(ref	one,	ref	two);

ref	SomeValue	bigger2	=	ref	Max(ref	one,	ref	two);

ref	readonly	SomeValue	bigger3	=	ref	Max(ref	one,	ref	two);

The	Max	method	doesn't	change	any	of	its	inputs.	This	allows	using	the	in
keyword	with	the	parameters	as	shown	with	the	MaxReadonly	method.	However,
here	the	declaration	of	the	return	must	be	changed	to	ref	readonly.	If	this
change	wouldn't	be	necessary,	the	caller	of	this	method	would	be	allowed	to
change	one	of	the	inputs	of	the	MaxReadonly	method	after	receiving	the	result:

ref	readonly	SomeValue	MaxReadonly(in	SomeValue	x,	in	SomeValue	

y)

{

		int	sumx	=	x.Value1	+	x.Value2	+	x.Value3	+	x.Value4;

		int	sumy	=	y.Value1	+	y.Value2	+	y.Value3	+	y.Value4;

	

		return	ref	(sumx>	sumy)	?	ref	x	:	ref	y;

}

Now	the	caller	is	required	to	write	the	result	to	a	ref	readonly	or	to	copy	the
result	into	a	new	local.	With	bigger5,	readonly	is	not	required	because	the
original	value	received	is	copied:

ref	readonly	SomeValue	bigger4	=	ref	MaxReadonly(in	one,	in	

two);

SomeValue	bigger5	=	MaxReadonly(in	one,	in	two);

out	Parameters
If	a	method	should	return	multiple	values,	there	are	different	options.	One	option
is	to	create	a	custom	type.	Another	option	is	to	use	the	ref	keyword	with
parameters.	Using	the	ref	keyword,	the	parameter	needs	to	be	initialized	before
invoking	the	method.	With	the	ref	keyword,	data	is	passed	into	and	returned

from	the	method.	If	the	method	should	just	return	data,	you	can	use	the	out
keyword.

The	int.Parse	method	expects	a	string	to	be	passed	and	returns	an	int—if	the
parsing	succeeds.	If	the	string	cannot	be	parsed	to	an	int,	an	exception	is
thrown.	To	avoid	such	exceptions,	you	can	instead	use	the	int.TryParse
method.	This	method	returns	a	Boolean	whether	the	parsing	is	successful	or	not.
The	result	of	the	parse	operation	is	returned	with	an	out	parameter.

This	is	the	declaration	of	the	TryParse	method	with	the	int	type:

bool	TryParse(string?	s,	out	int	result);

To	invoke	the	TryParse	method,	an	int	is	passed	with	the	out	modifier.	Using
the	out	modifier,	the	variable	doesn't	need	to	be	declared	before	invoking	the
method	and	doesn't	need	to	be	initialized:

Console.Write("Please	enter	a	number:	");

string?	input	=	Console.ReadLine();

if	(int.TryParse(input,	out	int	x))

{

		Console.WriteLine();

		Console.WriteLine($"read	an	int:	{x}");

}

TUPLES
With	arrays,	you	can	combine	multiple	objects	of	the	same	type	into	one	object.
When	you're	using	classes,	structs,	and	records,	you	can	combine	multiple
objects	into	one	object	and	add	properties,	methods,	events,	and	all	the	different
members	of	types.	Tuples	enable	you	to	combine	multiple	objects	of	different
types	into	one	without	the	complexity	of	creating	custom	types.

To	better	understand	some	advantages	of	tuples,	let's	take	a	look	at	what	a
method	can	return.	To	return	a	result	from	a	method	that	returns	multiple	results,
you	need	to	either	create	a	custom	type	where	you	can	combine	the	different
result	types	or	use	the	ref	or	out	keywords	with	parameters.	Using	ref	and	out
has	an	important	restriction:	you	cannot	use	this	with	asynchronous	methods.
Creating	custom	types	has	its	advantages,	but	in	some	cases,	this	is	not	needed.
You	have	a	simpler	path	with	tuples	and	can	return	a	tuple	from	a	method.	As	of
C#	7,	tuples	are	integrated	with	the	C#	syntax.

Declaring	and	Initializing	Tuples

A	tuple	can	be	declared	using	parentheses	and	initialized	using	a	tuple	literal	that
is	created	with	parentheses	as	well.	In	the	following	code	snippet,	on	the	left
side,	a	tuple	variable	tuple1	that	contains	a	string,	an	int,	and	a	Book	is
declared.	On	the	right	side,	a	tuple	literal	is	used	to	create	a	tuple	with	the	string
magic,	the	number	42,	and	a	Book	object	initialized	using	the	primary	constructor
of	the	Book	record.	The	tuple	can	be	accessed	using	the	variable	tuple1	with	the
members	declared	in	the	parentheses	(AString,	Number,	and	Book	in	this
example;	code	file	TuplesSample/Program.cs):

void	IntroTuples()

{

		(string	AString,	int	Number,	Book	Book)	tuple1	=	

				("magic",	42,	new	Book("Professional	C#",	"Wrox	Press"));

				Console.WriteLine($"a	string:	{tuple1.AString},	"	+	

						$"number:	{tuple1.Number},	"	+	

						$"book:	{tuple1.Book}");

		//…

}

public	record	Book(string	Title,	string	Publisher);

When	you	run	the	application	(the	top-level	statements	invoke	IntroTuples),
the	output	shows	the	values	of	the	tuple:

a	string:	magic,	number:	42,	book:	Book	{	Title	=	Professional	

C#,	Publisher	=	Wrox	Press	}

NOTE There	was	some	discussion	on	naming	tuples	using	camelCase	or
PascalCase.	Microsoft	doesn't	give	a	guideline	on	naming	internal	and
private	members,	but	with	public	APIs	it	was	decided	to	name	tuple
members	using	PascalCase.	After	all,	the	names	you	specify	with	the	tuple
are	public	members,	and	these	are	usually	PascalCase.	See
https://github.com/dotnet/runtime/issues/27939	if	you	are	interested
in	this	discussion	between	different	teams	at	Microsoft	and	the	community.

The	tuple	literal	also	can	be	assigned	to	a	tuple	variable	without	declaring	its
members.	This	way	the	members	of	the	tuple	are	accessed	using	the	member
names	of	the	ValueTuple	struct:	Item1,	Item2,	and	Item3	:

var	tuple2	=	("magic",	42,	new	Book("Professional	C#",	"Wrox	

Press"));

Console.WriteLine($"a	string:	{tuple2.Item1},	number:	

{tuple2.Item2},	"	+	

https://github.com/dotnet/runtime/issues/27939

		$"book:	{tuple2.Item3}");

You	can	assign	names	to	the	tuple	fields	in	the	tuple	literal	by	defining	the	name
followed	by	a	colon,	which	is	the	same	syntax	as	with	object	literals:

var	tuple3	=	(AString:	"magic",	Number:	42,	

		Book:	new	Book("Professional	C#",	"Wrox	Press"));

With	all	this,	names	are	just	a	convenience.	You	can	assign	one	tuple	to	another
one	when	the	types	match;	the	names	do	not	matter:

(string	S,	int	N,	Book	B)	tuple4	=	tuple3;

The	name	of	the	tuple	members	can	also	be	inferred	from	the	source.	With	the
variable	tuple5,	the	second	member	is	a	string	with	the	title	of	the	book.	A	name
for	this	member	is	not	assigned,	but	because	the	property	has	the	name	Title,
Title	is	automatically	taken	for	the	tuple	member	name:

Book	book	=	new("Professional	C#",	"Wrox	Press");

var	tuple5	=	(ANumber:	42,	book.Title);

Console.WriteLine(tuple5.Title);

Tuple	Deconstruction

Tuples	can	be	deconstructed	into	variables.	To	do	this,	you	just	need	to	remove
the	tuple	variable	from	the	previous	code	sample	and	define	variable	names	in
parentheses.	The	variables	that	contain	the	values	of	the	tuple	parts	can	then	be
directly	accessed.	In	case	some	variables	are	not	needed,	you	can	use	discards.
Discards	are	C#	placeholder	variables	with	the	name	_.	Discards	are	meant	to
just	ignore	the	results,	as	shown	with	the	second	deconstruction	in	the	following
code	snippet	(code	file	TuplesSample/Program.cs):

void	TuplesDeconstruction()

{

		var	tuple1	=	(AString:	"magic",	

				Number:	42,	Book:	new	Book("Professional	C#",	"Wrox	

Press"));

		(string	aString,	int	number,	Book	book)	=	tuple1;

	

		Console.WriteLine($"a	string:	{aString},	number:	{number},	

book:	{book}");

	

		(_,	_,	var	book1)	=	tuple1;

		Console.WriteLine(book1.Title);

}

Returning	Tuples

Let's	get	into	a	more	useful	example:	a	method	returning	a	tuple.	The	method
Divide	from	the	following	code	snippet	receives	two	parameters	and	returns	a
tuple	consisting	of	two	int	values.	Tuple	results	are	created	by	putting	the
methods	return	group	within	parentheses	(code	file	Tuples/Program.cs):

static	(int	result,	int	remainder)	Divide(int	dividend,	int	

divisor)

{

		int	result	=	dividend	/	divisor;

		int	remainder	=	dividend	%	divisor;

		return	(result,	remainder);

}

The	result	is	deconstructed	into	the	result	and	remainder	variables:

private	static	void	ReturningTuples()

{

		(int	result,	int	remainder)	=	Divide(7,	2);

		Console.WriteLine($"7	/	2	-	result:	{result},	remainder:	

{remainder}");

}

NOTE When	you're	using	tuples,	you	can	avoid	declaring	method
signatures	with	out	parameters.	out	parameters	cannot	be	used	with	async
methods;	this	restriction	does	not	apply	with	tuples.

VALUETUPLE
When	you're	using	the	C#	tuple	syntax,	the	C#	compiler	creates	ValueTuple
structures	behind	the	scenes.	.NET	defines	seven	generic	ValueTuple	structures
for	one	to	seven	generic	parameters	and	another	one	where	the	eighth	parameter
can	be	another	tuple.	Using	a	tuple	literal	results	in	an	invocation	of
Tuple.Create.	The	tuple	structure	defines	public	fields	named	Item1,	Item2,
Item3,	and	so	on	to	access	all	the	items.

For	the	names	of	the	elements,	the	compiler	uses	the	attribute
TupleElementNames	to	store	the	custom	names	of	the	tuple	members.	This
information	is	read	from	the	compiler	to	invoke	the	correct	members.

NOTE Attributes	are	covered	in	detail	in	Chapter	12,	“Reflection,
Metadata,	and	Source	Generators.”

DECONSTRUCTION
You've	already	seen	deconstruction	with	tuples—writing	tuples	into	simple
variables.	You	also	can	do	deconstruction	with	any	custom	type:	deconstructing
a	class	or	struct	into	its	parts.

For	example,	you	can	deconstruct	the	previously	shown	Person	class	into	first
name,	last	name,	and	age.	In	the	sample	code,	the	age	returned	from	the
deconstruction	is	ignored	using	discard	(code	file	Classes/Program.cs):

//…

(var	first,	var	last,	_)	=	katharina;

Console.WriteLine($"{first}	{last}");

All	you	need	to	do	is	create	a	Deconstruct	method	(also	known	by	the	name
deconstructor)	that	fills	the	separate	parts	into	parameters	with	the	out	modifier
(code	file	Classes/Person.cs):

public	class	Person

{

		//…

		public	void	Deconstruct(out	string	firstName,	out	string	

lastName,	

				out	int	age)

		{

				firstName	=	FirstName;

				lastName	=	LastName;

				age	=	Age;

		}

}

Deconstruction	is	implemented	with	the	method	name	Deconstruct.	This
method	is	always	of	type	void	and	returns	the	parts	with	multiple	out
parameters.	Instead	of	creating	a	member	of	a	class,	for	deconstruction	you	can
also	create	an	extension	method	as	shown	here:

public	static	class	PersonExtensions

{

		public	static	void	Deconstruct(this	Person	person,	out	string	

firstName,	

				out	string	lastName,	out	int	age)

		{

				firstName	=	person.FirstName;

				lastName	=	person.LastName;

				age	=	person.Age;

		}

}

NOTE With	positional	records,	the	Deconstruct	method	is	implemented
from	the	compiler.	When	you're	defining	a	primary	constructor,	the	compiler
knows	about	the	ordering	of	the	parameters	for	the	Deconstruct	method	and
can	create	it	automatically.	With	nominal	records,	you	can	create	a	custom
implementation	of	the	Deconstruct	method	similar	to	classes	you've	seen.	In
any	case	(with	positional	or	nominal	records,	or	with	classes),	you	can
define	overloads	with	different	parameter	types	as	needed.

PATTERN	MATCHING
Chapter	2	covers	basic	functionality	with	pattern	matching	using	the	is	operator
and	the	switch	statement.	This	can	now	be	extended	with	some	more	features	on
pattern	matching,	such	as	using	tuples	and	property	patterns.

Pattern	Matching	with	Tuples
The	previous	chapter	included	a	sample	of	simple	pattern	matching	with	traffic
lights.	Now	let's	extend	this	sample	with	not	just	a	simple	flow	from	red	to	green
to	amber	to	red…	but	to	change	to	different	states	after	amber	depending	on
what	the	previous	light	was.	Pattern	matching	can	be	based	on	tuple	values.

NOTE The	traffic	light	sequences	are	different	in	many	countries
worldwide.	With	a	change	from	amber	(or	yellow)	to	red	in	Canada	and	a
few	other	countries,	amber	and	red	appear	together	to	indicate	a	change.	In
most	European	countries,	changing	from	red	to	green,	the	red	and	amber
lights	are	displayed	together	for	one,	two,	or	three	seconds.	In	Austria,
China,	Russia,	Israel,	and	more,	the	green	light	starts	flashing	at	the	end	of
the	go	phase.	If	you	are	interested	in	the	details,	read
https://en.wikipedia.org/wiki/Traffic-

light_signalling_and_operation.

The	method	NextLightUsingTuples	receives	enum	values	for	the	current	and
previous	traffic	light	in	two	parameters.	The	two	parameters	are	combined	to	a
tuple	with	(current,	previous)	to	define	the	switch	expression	based	on	this

https://en.wikipedia.org/wiki/Traffic-light_signalling_and_operation

tuple.	With	the	switch	expression,	tuple	patterns	are	used.	The	first	case	matches
when	the	current	light	has	the	value	Red.	The	value	of	the	previous	light	is
ignored	using	a	discard.	The	NextLightUsingTuples	method	is	declared	to
return	a	tuple	with	Current	and	Previous	properties.	In	the	first	match,	a	tuple
that	matches	this	return	type	is	returned	with	(Amber,	current)	to	specify	the
new	value	Amber	for	the	current	light.	In	all	the	cases,	the	previous	light	is	set
from	the	current	light	that	was	received.	When	the	current	light	is	Amber,	now
the	tuple	pattern	results	in	different	outcomes	depending	on	the	previous	light.	If
the	previous	light	was	Red,	the	new	light	returned	is	Green,	and	vice	versa	(code
file	PatternMatchingSample/Program.cs):

(TrafficLight	Current,	TrafficLight	Previous)	

		NextLightUsingTuples(TrafficLight	current,	TrafficLight	

previous)	=>

				(current,	previous)	switch

				{

						(Red,	_)	=>	(Amber,	current),

						(Amber,	Red)	=>	(Green,	current),

						(Green,	_)	=>	(Amber,	current),

						(Amber,	Green)	=>	(Red,	current),

						_	=>	throw	new	InvalidOperationException()

				};

With	the	following	code	snippet,	the	method	NextLightUsingTuples	is	invoked
in	a	for	loop.	The	return	value	is	deconstructed	into	currentLight	and
previousLight	variables	to	write	the	current	light	information	to	the	console
and	to	invoke	the	NextLightUsingTuples	method	in	the	next	iteration:

var	previousLight	=	Red;

var	currentLight	=	Red;

for	(int	i	=	0;	i	<	10;	i++)

{

		(currentLight,	previousLight)	=	

NextLightUsingTuples(currentLight,	

				previousLight);

		Console.Write($"{currentLight}	-	");

		await	Task.Delay(1000);

}

Console.WriteLine();

NOTE With	the	statement	await	Task.Delay(1000);	the	application	just
waits	for	one	second	before	the	next	statement	is	invoked.	With	top-level
statements,	you	can	directly	add	async	methods	as	shown.	In	case	you	want
to	add	this	statement	to	a	method,	the	method	needs	to	have	the	async

modifier	and	it	is	best	to	return	a	Task	.	This	is	covered	in	detail	in	Chapter
11,	“Tasks	and	Asynchronous	Programming.”

Property	Pattern
Let's	extend	the	traffic	light	sample	again.	When	you're	using	tuples,	additional
values	and	types	can	be	added	to	extend	the	functionality.	However,	at	some
point	this	doesn't	help	with	readability,	and	using	classes	or	records	is	helpful.

One	extension	to	the	traffic	light	is	having	different	timings	for	the	different	light
phases.	Another	extension	is	used	in	some	countries:	before	the	light	changes
from	the	green	to	the	amber	light,	another	phase	is	introduced:	the	green	light
blinks	three	times.	To	keep	up	with	the	different	states,	the	record
TrafficLightState	is	introduced	(code	file
PatternMatchingSample/Program.cs):

public	record	TrafficLightState(TrafficLight	CurrentLight,	

		TrafficLight	PreviousLight,	int	Milliseconds,	int	BlinkCount	=	

0);

The	enum	type	TrafficLight	is	extended	to	include	GreenBlink	and
AmberBlink	:

public	enum	TrafficLight

{

		Red,

		Amber,

		Green,

		GreenBlink,

		AmberBlink

}

The	new	method	NextLightUsingRecords	receives	a	parameter	of	type
TrafficLightState	with	the	current	light	state	and	returns	a
TrafficLightState	with	the	new	state.	In	the	implementation,	a	switch
expression	is	used	again.	This	time,	the	cases	are	selected	using	the	property
pattern.	If	the	property	CurrentLight	of	the	variable	trafficLightState	has
the	value	AmberBlink,	a	new	TrafficLightState	with	the	current	red	light	is
returned.	When	the	CurrentLight	is	set	to	Amber,	the	PreviousLight	property	is
verified	as	well.	Depending	on	the	PreviousLight	value,	different	records	are
returned.	Another	pattern	is	used	in	this	scenario—the	relational	pattern	that	is
new	with	C#	9.	BlinkCount:	<	3	references	the	BlinkCount	property	and

verifies	whether	the	value	is	smaller	than	3.	If	this	is	the	case,	the	returned
TrafficLightState	is	cloned	from	the	previous	state	using	the	with	expression,
and	the	BlinkCount	is	incremented	by	1	:

TrafficLightState	NextLightUsingRecords(TrafficLightState	

trafficLightState)	

		=>	trafficLightState	switch

		{

				{	CurrentLight:	AmberBlink	}	=>	

						new	TrafficLightState(Red,	

trafficLightState.PreviousLight,	3000),

				{	CurrentLight:	Red	}	=>	

						new	TrafficLightState(Amber,	

trafficLightState.CurrentLight,	200),

				{	CurrentLight:	Amber,	PreviousLight:	Red}	=>	

						new	TrafficLightState(Green,	

trafficLightState.CurrentLight,	2000),

				{	CurrentLight:	Green	}	=>	

						new	TrafficLightState(GreenBlink,	

trafficLightState.CurrentLight,	

								100,	1),

				{	CurrentLight:	GreenBlink,	BlinkCount:	<	3	}	=>	

						trafficLightState	with	

								{	BlinkCount	=	trafficLightState.BlinkCount	+	1	},

				{	CurrentLight:	GreenBlink	}	=>	

						new	TrafficLightState(Amber,	

trafficLightState.CurrentLight,	200),

				{	CurrentLight:	Amber,	PreviousLight:	GreenBlink	}	=>	

						new	TrafficLightState(Red,	trafficLightState.CurrentLight,	

3000),

				_	=>	throw	new	InvalidOperationException()

		};

The	method	NextLightUsingRecords	is	invoked	in	a	for	loop	similar	to	the
sample	before.	Now,	an	instance	of	TrafficLightState	is	passed	as	an
argument	to	the	method	NextLightUsingRecords.	The	new	value	is	received
from	this	method,	and	the	current	state	is	shown	on	the	console:

TrafficLightState	currentLightState	=	new(AmberBlink,	

AmberBlink,	2000);

	

for	(int	i	=	0;	i	<	20;	i++)

{

		currentLightState	=	NextLightUsingRecords(currentLightState);

		Console.WriteLine($"{currentLightState.CurrentLight},	

				{currentLightState.Milliseconds}");

		await	Task.Delay(currentLightState.Milliseconds);

}

PARTIAL	TYPES
The	partial	keyword	allows	a	type	to	span	multiple	files.	Typically,	a	code
generator	of	some	type	is	generating	part	of	a	class,	and	having	the	class	in
multiple	files	can	be	beneficial.	Let's	assume	you	want	to	make	some	additions
to	the	class	that	is	automatically	generated	from	a	tool.	If	the	tool	reruns,	your
changes	are	lost.	The	partial	keyword	is	helpful	for	splitting	the	class	into	two
files	and	making	your	changes	to	the	file	that	is	not	defined	by	the	code
generator.

To	use	the	partial	keyword,	simply	place	partial	before	class,	struct,	or
interface.	In	the	following	example,	the	class	SampleClass	resides	in	two
separate	source	files:	SampleClassAutogenerated.cs	and	SampleClass.cs	:

//SampleClassAutogenerated.cs

partial	class	SampleClass

{

		public	void	MethodOne()	{	}

}

	

//SampleClass.cs

partial	class	SampleClass

{

		public	void	MethodTwo()	{	}

}

When	the	project	that	contains	the	two	source	files	is	compiled,	a	single	type
called	SampleClass	will	be	created	with	two	methods:	MethodOne	and
MethodTwo.

Nested	partials	are	allowed	as	long	as	the	partial	keyword	precedes	the	class
keyword	in	the	nested	type.	Attributes,	XML	comments,	interfaces,	generic-type
parameter	attributes,	and	members	are	combined	when	the	partial	types	are
compiled	into	the	type.	Given	these	two	source	files:

//	SampleClassAutogenerated.cs

[CustomAttribute]

partial	class	SampleClass:	SampleBaseClass,	ISampleClass

{

		public	void	MethodOne()	{	}

}

	

//	SampleClass.cs

[AnotherAttribute]

partial	class	SampleClass:	IOtherSampleClass

{

		public	void	MethodTwo()	{	}

}

the	equivalent	source	file	would	be	as	follows	after	the	compile:

[CustomAttribute]

[AnotherAttribute]

partial	class	SampleClass:	SampleBaseClass,	ISampleClass,	

IOtherSampleClass

{

		public	void	MethodOne()	{	}

		public	void	MethodTwo()	{	}

}

NOTE Although	it	may	be	tempting	to	create	huge	classes	that	span
multiple	files	and	possibly	have	different	developers	working	on	different
files	but	the	same	class,	the	partial	keyword	was	not	designed	for	this	use.
With	such	a	scenario,	it	would	be	better	to	split	the	big	class	into	several
smaller	classes	to	have	a	class	just	for	one	purpose.

Partial	classes	can	contain	partial	methods.	This	is	extremely	useful	if	generated
code	should	invoke	methods	that	might	not	exist	at	all.	The	programmer
extending	the	partial	class	can	decide	to	create	a	custom	implementation	of	the
partial	method	or	do	nothing.	The	following	code	snippet	contains	a	partial	class
with	the	method	MethodOne	that	invokes	the	method	APartialMethod.	The
method	APartialMethod	is	declared	with	the	partial	keyword;	thus,	it	does	not
need	any	implementation.	If	there's	not	an	implementation,	the	compiler	removes
the	invocation	of	this	method:

//SampleClassAutogenerated.cs

partial	class	SampleClass

{

		public	void	MethodOne()

		{

				APartialMethod();

		}

		public	partial	void	APartialMethod();

}

An	implementation	of	the	partial	method	can	be	done	within	any	other	part	of
the	partial	class,	as	shown	in	the	following	code	snippet.	With	this	method	in
place,	the	compiler	creates	code	within	MethodOne	to	invoke	this
APartialMethod	declared	here:

//	SampleClass.cs

partial	class	SampleClass:	IOtherSampleClass

{

		public	void	APartialMethod()

		{

				//	implementation	of	APartialMethod

		}

}

NOTE Prior	to	C#	9,	partial	methods	had	to	be	declared	void	.	This	is	no
longer	necessary.	However,	with	partial	methods	that	do	not	return	void	,	an
implementation	is	required.	This	is	an	extremely	useful	enhancement,	such	as
when	using	code	generators.	Code	generators	are	covered	in	Chapter	12.

SUMMARY
This	chapter	examined	C#	syntax	for	creating	custom	types	with	classes,
records,	structs,	and	tuples.	You've	seen	how	to	declare	static	and	instance	fields,
properties,	methods,	and	constructors,	both	with	curly	brackets	and	with
expression-bodied	members.

In	a	continuation	of	Chapter	2,	you've	also	seen	more	features	with	pattern
matching,	such	as	tuple,	property,	and	relational	patterns.

The	next	chapter	extends	the	types	with	inheritance,	adding	interfaces,	and	using
inheritance	with	classes,	records,	and	interfaces.

4
Object-Oriented	Programming	in	C#

WHAT'S	IN	THIS	CHAPTER?

Using	inheritance	with	classes	and	records

Working	with	access	modifiers

Using	interfaces

Working	with	default	interface	methods

Using	dependency	injection

Using	generics

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/ObjectOrientation.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

VirtualMethods

AbstractClasses

InheritanceWithConstructors

RecordsInheritance

UsingInterfaces

DefaultInterfaceMethods

GenericTypes

GenericTypesWithConstraints

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

OBJECT	ORIENTATION
C#	is	not	a	pure	object-oriented	programming	language	because	it	offers
multiple	programming	paradigms.	However,	object	orientation	is	an	important
concept	with	C#;	it's	a	core	principle	of	all	the	libraries	offered	by	.NET.

The	three	most	important	concepts	of	object	orientation	are	inheritance,
encapsulation,	and	polymorphism.	Chapter	3,	“Classes,	Records,	Structs,	and
Tuples,”	talks	about	creating	individual	types	to	arrange	properties,	methods,	and
fields.	When	members	of	a	type	are	declared	private,	they	cannot	be	accessed
from	the	outside.	They	are	encapsulated	within	the	type.	This	chapter	covers
inheritance	and	polymorphism	and	extends	encapsulation	features	with
inheritance.

The	previous	chapter	explained	all	the	members	of	a	type.	This	chapter	explains
how	to	use	inheritance	to	enhance	base	types,	how	to	create	a	hierarchy	of
classes,	and	how	polymorphism	works	with	C#.	It	also	describes	all	the	C#
keywords	related	to	inheritance,	shows	how	to	use	interfaces	as	contracts	for
dependency	injection,	and	covers	default	interface	methods	that	allow
implementations	with	interfaces.

INHERITANCE	WITH	CLASSES
If	you	want	to	declare	that	a	class	derives	from	another	class,	use	the	following
syntax:

class	MyDerivedClass:	MyBaseClass

{

		//	members

}

NOTE If	you	do	not	specify	a	base	class	in	a	class	definition,	the	base
class	will	be	System.Object	.

Let's	get	into	an	example	to	define	a	base	class	Shape.	Something	that's	common
with	shapes—no	matter	whether	they	are	rectangles	or	ellipses—is	that	they
have	position	and	size.	For	position	and	size,	corresponding	records	are	defined
that	are	contained	within	the	Shape	class.	The	Shape	class	defines	read-only

properties	Position	and	Size	that	are	initialized	using	auto	properties	with
property	initializers	(code	file	VirtualMethods/Shape.cs):

public	class	Position

{

		public	int	X	{	get;	set;	}

		public	int	Y	{	get;	set;	}

}

	

public	class	Size

{

		public	int	Width	{	get;	set;	}

		public	int	Height	{	get;	set;	}

}

	

public	class	Shape

{

		public	Position	Position	{	get;	}	=	new	Position();

		public	Size	Size	{	get;	}	=	new	Size();

}

NOTE With	the	shapes	sample,	the	Position	and	Size	objects	are
contained	within	an	object	of	the	Shape	class.	This	is	the	concept	of
composition.	The	Rectangle	and	Ellipse	classes	derive	from	the	base	class
Shape	.	This	is	inheritance.

Virtual	Methods
By	declaring	a	base	class	method	as	virtual,	you	allow	the	method	to	be
overridden	in	any	derived	classes.

The	following	code	snippet	shows	the	DisplayShape	method	that	is	declared
with	the	virtual	modifier.	This	method	is	invoked	by	the	Draw	method	of	the
Shape.	Virtual	methods	can	be	public	or	protected.	The	access	modifier	cannot
be	changed	when	overriding	this	method	in	a	derived	class.	Because	the	Draw
method	has	a	public	access	modifier,	this	method	can	be	used	from	the	outside
when	using	the	Shape	or	when	using	any	class	deriving	from	Shape.	The	Draw
method	cannot	be	overridden	as	it	doesn't	have	the	virtual	modifier	applied	(code
file	VirtualMethods/Shape.cs):

public	class	Shape

{

		public	void	Draw()	=>	DisplayShape();

	

		protected	virtual	void	DisplayShape()

		{

				Console.WriteLine($"Shape	with	{Position}	and	{Size}");

		}

}

NOTE All	the	C#	access	modifiers	are	discussed	later	in	this	chapter	in
detail.

You	also	may	declare	a	property	as	virtual.	For	a	virtual	or	overridden
property,	the	syntax	is	the	same	as	for	a	nonvirtual	property,	with	the	exception
of	the	keyword	virtual,	which	is	added	to	the	definition:

public	virtual	Size	Size	{	get;	set;	}

For	simplicity,	the	following	discussion	focuses	mainly	on	methods,	but	it
applies	equally	well	to	properties.

Methods	that	are	declared	virtual	can	be	overridden	in	a	derived	class.	To	declare
a	method	that	overrides	a	method	from	a	base	class,	use	the	override	keyword
(code	file	VirtualMethods/ConcreteShapes.cs):

public	class	Rectangle	:	Shape

{

		protected	override	void	DisplayShape()

		{

				Console.WriteLine($"Rectangle	at	position	{Position}	with	

size	{Size}");

		}

}

Virtual	functions	offer	a	core	feature	of	OOP:	polymorphism.	With	virtual
functions,	the	decision	of	which	method	to	invoke	is	delayed	during	runtime.
The	compiler	creates	a	virtual	method	table	(vtable)	that	lists	the	methods	that
can	be	invoked	during	runtime,	and	it	invokes	the	method	based	on	the	type	at
runtime.

For	performance	reasons,	in	C#,	functions	are	not	virtual	by	default.	For
nonvirtual	functions,	the	vtable	is	not	needed,	and	the	compiler	directly
addresses	the	method	that's	invoked.

The	Size	and	Position	types	override	the	ToString	method.	This	method	is
declared	as	virtual	in	the	base	class	Object	(code	file

VirtualMethods/ConcreteShapes.cs):

public	class	Position

{

		public	int	X	{	get;	set;	}

		public	int	Y	{	get;	set;	}

	

		public	override	string	ToString()	=>	$"X:	{X},	Y:	{Y}";

}

	

public	class	Size

{

		public	int	Width	{	get;	set;	}

		public	int	Height	{	get;	set;	}

	

		public	override	string	ToString()	=>	$"Width:	{Width},	Height:	

{Height}";

}

Before	C#	9,	there	was	the	rule	that,	when	overriding	methods	of	the	base	class,
the	signature	(all	parameter	types	and	the	method	name)	and	the	return	type	must
match	exactly.	If	you	want	different	parameters,	you	need	to	create	a	new
member	that	does	not	override	the	base	member.

With	C#	9,	there's	a	small	change	to	this	rule:	when	overriding	methods,	the
return	type	might	differ,	but	only	to	return	a	type	that	derives	from	the	return
type	of	the	base	class.	One	example	where	this	can	be	used	is	to	create	a	type-
safe	Clone	method.	The	Shape	class	defines	a	virtual	Clone	method	that	returns	a
Shape	(code	file	VirtualMethods/Shape.cs):

public	virtual	Shape	Clone()	=>	throw	new	

NotImplementedException();	

The	Rectangle	class	overrides	this	method	to	return	a	Rectangle	type	instead	of
the	base	class	Shape	by	creating	a	new	instance	and	copying	all	the	values	from
the	existing	instance	to	the	newly	created	one:

public	override	Rectangle	Clone()

{

		Rectangle	r	=	new();

		r.Position.X	=	Position.X;

		r.Position.Y	=	Position.Y;

		r.Size.Width	=	Size.Width;

		r.Size.Height	=	Size.Width;

		return	r;

}

In	the	top-level	statements	of	the	Program.cs	file,	a	rectangle	and	an	ellipse	are
instantiated,	properties	are	set,	and	the	rectangle	is	cloned	by	invoking	the	virtual
Clone	method.	Finally,	the	DisplayShapes	method	is	invoked	passing	all	the
different	created	shapes.	The	Draw	method	of	the	Shape	class	is	invoked	to,	in
turn,	invoke	the	overridden	methods	of	the	derived	types.	In	this	code	snippet,
you	also	see	the	Ellipse	class	used;	this	is	similar	to	the	Rectangle	type,
deriving	from	Shape	(code	file	VirtualMethods/Program.cs):

Rectangle	r1	=	new();

r1.Position.X	=	33;

r1.Position.Y	=	22;

r1.Size.Width	=	200;

r1.Size.Height	=	100;

	

Rectangle	r2	=	r1.Clone();

r2.Position.X	=	300;

	

Ellipse	e1	=	new();

e1.Position.X	=	122;

e1.Position.Y	=	200;

e1.Size.Width	=	40;

e1.Size.Height	=	20;

	

DisplayShapes(r1,	r2,	e1);

	

void	DisplayShapes(params	Shape[]	shapes)

{

		foreach	(var	shape	in	shapes)

		{

				shape.Draw();

		}

}

Run	the	program	to	see	the	output	of	the	Draw	method	coming	from	the
implementation	of	the	overridden	Rectangle	and	Shape	DisplayShape	methods:

Rectangle	at	position	X:	33,	Y:	22	with	size	Width:	200,	Height:	

100

Rectangle	at	position	X:	300,	Y:	22	with	size	Width:	200,	

Height:	200

Ellipse	at	position	X:	122,	Y:	200	with	size	Width:	40,	Height:	

20

NOTE Neither	member	fields	nor	static	methods	can	be	declared	as
virtual.	The	concept	of	virtual	members	doesn't	make	sense	for	anything

other	than	instance	function	members.

Hiding	Methods
If	a	method	with	the	same	signature	is	declared	in	both	base	and	derived	classes,
but	the	methods	are	not	declared	with	the	modifiers	virtual	and	override,
respectively,	then	the	derived	class	version	is	said	to	hide	the	base	class	version.

For	hiding	methods,	you	can	use	the	new	keyword	as	a	modifier	with	the	method
declaration.	In	most	cases,	you	would	want	to	override	methods	rather	than	hide
them.	By	hiding	them,	you	risk	calling	the	wrong	method	for	a	given	class
instance.	However,	as	shown	in	the	following	example,	C#	syntax	is	designed	to
ensure	that	the	developer	is	warned	at	compile	time	about	this	potential	problem,
thus	making	it	safer	to	hide	methods	if	that	is	your	intention.	This	also	has
versioning	benefits	for	developers	of	class	libraries.

Suppose	that	you	have	a	class	called	Shape	in	a	class	library:

public	class	Shape

{

		//	various	members

}

At	some	point	in	the	future,	you	write	a	derived	class	Ellipse	that	adds	some
functionality	to	the	Shape	base	class.	In	particular,	you	add	a	method	called
MoveBy,	which	is	not	present	in	the	base	class:

public	class	Ellipse:	Shape

{

		public	void	MoveBy(int	x,	int	y)

		{

				Position.X	+=	x;

				Position.Y	+=	y;

		}

}

At	some	later	time,	the	developer	of	the	base	class	decides	to	extend	the
functionality	of	the	base	class	and,	by	coincidence,	adds	a	method	that	is	also
called	MoveBy	and	that	has	the	same	name	and	signature	as	yours;	however,	it
probably	doesn't	do	the	same	thing.	This	new	method	might	be	declared	virtual
or	not.

If	you	recompile	the	derived	class,	you	get	a	compiler	warning	because	of	a
potential	method	clash.	The	application	is	still	working,	and	where	you've

written	code	to	invoke	the	MoveBy	method	using	the	Ellipse	class,	the	method
you've	written	is	invoked.	Hiding	a	method	is	the	default	behavior	to	avoid
breaking	changes	when	adding	methods	to	a	base	class.

To	get	rid	of	the	compilation	error,	you	need	to	add	the	new	modifier	to	the
MoveBy	method.	The	code	the	compiler	is	creating	with	or	without	the	new
modifier	is	the	same;	you	just	get	rid	of	the	compiler	warning	and	flag	this	as	a
new	method—a	different	one	from	the	base	class:

public	class	Ellipse:	Shape

{

		new	public	void	MoveBy(int	x,	int	y)

		{

				Position.X	+=	x;

				Position.Y	+=	y;

		}

		//…

}

Instead	of	using	the	new	keyword,	you	can	also	rename	the	method	or	override
the	method	of	the	base	class	if	it	is	declared	virtual	and	serves	the	same	purpose.
However,	if	other	methods	already	invoke	this	method,	a	simple	rename	can	lead
to	breaking	other	code.

NOTE You	shouldn't	use	the	new	method	modifier	to	hide	members	of	the
base	class	deliberately.	The	main	purpose	of	this	modifier	is	to	deal	with
version	conflicts	and	react	to	changes	on	base	classes	after	the	derived	class
was	done.

Calling	Base	Versions	of	Methods
If	a	derived	class	overrides	or	hides	a	method	in	its	base	class,	then	it	can	invoke
the	base	class	version	of	the	method	by	using	the	base	keyword.	For	example,	in
the	base	class	Shape,	the	virtual	Move	method	is	declared	to	change	the	actual
position	and	write	some	information	to	the	console.	This	method	should	be
called	from	the	derived	class	Rectangle	to	use	the	implementation	from	the	base
class	(code	file	VirtualMethods/Shape.cs):

public	class	Shape

{

		public	virtual	void	Move(Position	newPosition)

		{

				Position.X	=	newPosition.X;

				Position.Y	=	newPosition.Y;

				Console.WriteLine($"moves	to	{Position}");

		}

		//…

}

The	Move	method	is	overridden	in	the	Rectangle	class	to	add	the	term
Rectangle	to	the	console.	After	this	text	is	written,	the	method	of	the	base	class
is	invoked	using	the	base	keyword	(code	file
VirtualMethods/ConcreteShapes.cs):

public	class	Rectangle:	Shape

{

		public	override	void	Move(Position	newPosition)

		{

				Console.Write("Rectangle	");

				base.Move(newPosition);

		}

		//…

}

Now	move	the	rectangle	to	a	new	position	(code	file
VirtualMethods/Program.cs):

r1.Move(new	Position	{	X	=	120,	Y	=	40	});

Run	the	application	to	see	output	that	is	a	result	of	the	Move	method	in	the
Rectangle	and	the	Shape	classes:

Rectangle	moves	to	X:	120,	Y:	40

NOTE Using	the	base	keyword,	you	can	invoke	any	method	of	the	base
class—not	just	the	method	that	is	overridden.

Abstract	Classes	and	Methods
C#	allows	both	classes	and	methods	to	be	declared	as	abstract.	An	abstract	class
cannot	be	instantiated,	whereas	an	abstract	method	does	not	have	an
implementation	and	must	be	overridden	in	any	nonabstract	derived	class.
Obviously,	an	abstract	method	is	automatically	virtual.	If	any	class	contains	any
abstract	methods,	that	class	is	also	abstract	and	must	be	declared	as	such.

Let's	change	the	Shape	class	to	be	abstract.	Instead	of	throwing	a

NotImplementedException,	the	Clone	method	is	now	declared	abstract,	and	thus
it	can't	have	any	implementation	in	the	Shape	class	(code	file
AbstractClasses/Shape.cs):

public	abstract	class	Shape

{

		public	abstract	Shape	Clone();	//	abstract	method

}	

When	deriving	a	type	from	the	abstract	base	class	that	itself	is	not	abstract,	it's	a
concrete	type.	With	a	concreate	class	it	is	necessary	to	implement	all	abstract
members.	Otherwise,	the	compiler	complains	(code	file
AbstractClasses/ConcreteShapes.cs):

public	class	Rectangle	:	Shape

{

		//…

		public	override	Rectangle	Clone()

		{

				Rectangle	r	=	new();

				r.Position.X	=	Position.X;

				r.Position.Y	=	Position.Y;

				r.Size.Width	=	Size.Width;

				r.Size.Height	=	Size.Width;

				return	r;

		}

}

Using	the	abstract	Shape	class	and	the	derived	Ellipse	class,	you	can	declare	a
variable	of	a	Shape.	You	cannot	instantiate	it,	but	you	can	instantiate	an	Ellipse
and	assign	it	to	the	Shape	variable	(code	file	AbstractClasses/Program.cs):

Shape	s1	=	new	Ellipse();

s1.Draw();

Sealed	Classes	and	Methods
If	you	don't	want	to	allow	other	classes	to	derive	from	your	class,	your	class
should	be	sealed.	Adding	the	sealed	modifier	to	a	class	doesn't	allow	you	to
create	a	subclass	of	it.	Sealing	a	method	means	it's	not	possible	to	override	this
method.

sealed	class	FinalClass

{

		//…

}

	

class	DerivedClass:	FinalClass	//	wrong.	Cannot	derive	from	

sealed	class.

{

		//…

}

The	most	likely	situation	in	which	you'll	mark	a	class	or	method	as	sealed	is	if
the	class	or	method	is	internal	to	the	operation	of	the	library,	class,	or	other
classes	that	you	are	writing.	Overriding	methods	could	lead	to	instability	of	the
code.	When	you	seal	the	class,	you	make	sure	that	overriding	is	not	possible.

There's	another	reason	to	seal	classes.	With	a	sealed	class,	the	compiler	knows
that	derived	classes	are	not	possible,	and	thus	the	virtual	table	used	for	virtual
methods	can	be	reduced	or	eliminated,	which	can	increase	performance.	The
string	class	is	sealed.	I	haven't	seen	a	single	application	that	doesn't	use	strings,
so	it's	best	to	have	this	type	as	performant	as	possible.	Making	the	class	sealed	is
a	good	hint	for	the	compiler.

Declaring	a	method	as	sealed	serves	a	purpose	similar	to	that	for	a	class.	The
method	can	be	an	overridden	method	from	a	base	class,	but	in	the	following
example,	the	compiler	knows	another	class	cannot	extend	the	virtual	table	for
this	method;	it	ends	here.

class	MyClass:	MyBaseClass

{

		public	sealed	override	void	FinalMethod()

		{

				//	implementation

		}

}

	

class	DerivedClass:	MyClass

{

		public	override	void	FinalMethod()	//	wrong.	Will	give	

compilation	error

		{

		}

}

To	use	the	sealed	keyword	on	a	method	or	property,	the	member	must	have	first
been	overridden	from	a	base	class.	If	you	do	not	want	a	method	or	property	in	a
base	class	overridden,	then	don't	mark	it	as	virtual.

Constructors	of	Derived	Classes
Chapter	3	discusses	how	constructors	can	be	applied	to	individual	classes.	An
interesting	question	arises	as	to	what	happens	when	you	start	defining	your	own
constructors	for	classes	that	are	part	of	a	hierarchy,	inherited	from	other	classes
that	may	also	have	custom	constructors.

In	the	sample	application	that	uses	shapes,	so	far,	custom	constructors	have	not
been	specified.	The	compiler	creates	a	default	constructor	automatically	to
initialize	all	members	to	null	or	0	(depending	on	whether	the	types	are	reference
or	value	types)	or	uses	the	code	from	specified	property	initializers	to	add	these
to	the	default	constructor.	Now,	let's	change	the	implementation	to	create
immutable	types	and	define	custom	constructors	to	initialize	their	values.	The
Position,	Size,	and	Shape	classes	are	changed	to	specify	read-only	properties,
and	the	constructors	are	changed	to	initialize	the	properties.	The	Shape	class	is
still	abstract,	which	doesn't	allow	creating	instances	of	this	type	(code	file
InheritanceWithConstructors/Shape.cs):

public	class	Position

{

		public	Position(int	x,	int	y)	=>	(X,	Y)	=	(x,	y);

	

		public	int	X	{	get;	}

		public	int	Y	{	get;	}

	

		public	override	string	ToString()	=>	$"X:	{X},	Y:	{Y}";

}

	

public	class	Size

{

		public	Size(int	width,	int	height)	=>	(Width,	Height)	=	

(width,	height);

	

		public	int	Width	{	get;	}

		public	int	Height	{	get;	}

	

		public	override	string	ToString()	=>	$"Width:	{Width},	Height:	

{Height}";

}

	

public	abstract	class	Shape

{

		public	Shape(int	x,	int	y,	int	width,	int	height)

		{

				Position	=	new	Position(x,	y);

				Size	=	new	Size(width,	height);

		}

	

		public	Position	Position	{	get;	}

		public	virtual	Size	Size	{	get;	}

	

		public	void	Draw()	=>	DisplayShape();

	

		protected	virtual	void	DisplayShape()

		{

				Console.WriteLine($"Shape	with	{Position}	and	{Size}");

		}

	

		public	abstract	Shape	Clone();

}

Now	the	Rectangle	and	Ellipse	types	need	to	be	changed	as	well.	Because	the
Shape	class	doesn't	have	a	parameterless	constructor,	the	compiler	complains
because	it	cannot	automatically	invoke	the	constructor	of	the	base	class.	A
custom	constructor	is	required	here	as	well.

With	the	new	implementation	of	the	Ellipse	class,	a	constructor	is	defined	to
supply	the	position	and	size	for	the	shape.	To	invoke	the	constructor	from	the
base	class,	such	as	invoking	methods	of	the	base	class,	you	use	the	base
keyword,	but	you	just	can't	use	the	base	keyword	in	the	block	of	the	constructor
body.	Instead,	you	need	to	use	the	base	keyword	in	the	constructor	initializer	and
pass	the	required	arguments.	The	Clone	method	can	now	be	simplified	to	invoke
the	constructor	to	create	a	new	Ellipse	object	by	forwarding	the	values	from	the
existing	object	(code	file	InheritanceWithConstructors/ConcreteShapes.cs):

public	class	Ellipse	:	Shape

{

		public	Ellipse(int	x,	int	y,	int	width,	int	height)

				:	base(x,	y,	width,	height)	{	}

	

		protected	override	void	DisplayShape()

		{

				Console.WriteLine($"Ellipse	at	position	{Position}	with	size	

{Size}");

		}

	

		public	override	Ellipse	Clone()	=>	

				new(Position.X,	Position.Y,	Size.Width,	Size.Height);

}

NOTE Chapter	3	covers	constructor	initializers	with	the	this	keyword	to
invoke	other	constructors	of	the	same	class.	To	invoke	constructors	of	the
base	class,	you	use	the	base	keyword.

MODIFIERS
You	have	already	encountered	quite	a	number	of	so-called	modifiers—keywords
that	can	be	applied	to	a	type	or	a	member.	Modifiers	can	indicate	the	visibility	of
a	method,	such	as	public	or	private,	or	the	nature	of	an	item,	such	as	whether	a
method	is	virtual	or	abstract.	C#	has	a	number	of	modifiers,	and	at	this	point
it's	worth	taking	a	minute	to	provide	the	complete	list.

Access	Modifiers
Access	modifiers	indicate	which	other	code	items	can	access	an	item.

You	can	use	all	the	access	modifiers	with	members	of	a	type.	The	public	and
internal	access	modifiers	can	also	be	applied	to	the	type	itself.	With	nested
types	(types	that	are	specified	within	types),	you	can	apply	all	access	modifiers.
In	regard	to	access	modifiers,	nested	types	are	members	of	the	outer	type,	such
as	those	shown	in	the	following	code	snippet	where	the	OuterType	is	declared
with	the	public	access	modifier,	and	the	type	InnerType	has	the	protected
access	modifier	applied.	With	the	protected	access	modifier,	the	InnerType	can
be	accessed	from	the	members	of	the	OuterType,	and	all	types	that	derive	from
the	OuterType	:

public	class	OuterType

{

		protected	class	InnerType

		{

				//	members	of	the	inner	type

		}

		//	more	members	of	the	outer	type

}

The	public	access	modifier	is	the	most	open	one;	everyone	has	access	to	a	class
or	a	member	that	has	the	public	access	modifier	applied.	The	private	access
modifier	is	the	most	restrictive	one.	Members	with	this	access	modifier	can	be
used	only	within	the	class	where	the	modifier	is	used.	The	protected	access
modifier	is	in	between	these	access	restrictions.	In	addition	to	the	private

access	modifier,	it	allows	access	to	all	types	that	derive	from	the	type	where	the
protected	access	modifier	is	used.

The	internal	access	modifier	is	different.	This	access	modifier	has	the	scope	of
the	assembly.	All	the	types	defined	within	the	same	assembly	have	access	to
members	and	types	where	the	internal	access	modifier	is	used.

If	you	do	not	supply	an	access	modifier	with	a	type,	by	default	internal	access
is	specified.	You	can	use	this	type	only	within	the	same	assembly.

The	protected	internal	access	modifier	is	a	combination	of	protected	and
internal	—combining	these	access	modifiers	with	OR.	protected	internal
members	can	be	used	from	any	type	in	the	same	assembly	or	from	types	from
another	assembly	if	an	inheritance	relationship	is	used.	With	the	intermediate
language	(IL)	code,	this	is	known	as	famorassem	(family	or	assembly)—family
for	the	protected	C#	keyword	and	assembly	for	the	internal	keyword.
famandassem	is	also	available	with	the	IL	code.	Because	of	the	demand	for	an
AND	combination,	the	C#	team	had	some	issues	finding	a	good	name	for	this,
and	finally	it	was	decided	to	use	private	protected	to	restrict	access	from
within	the	assembly	to	types	that	have	an	inheritance	relationship	but	no	types
from	any	other	assembly.

The	following	table	lists	all	the	access	modifiers	and	their	uses:

MODIFIER APPLIES	TO DESCRIPTION
public Any	types	or

members
The	item	is	visible	to	any	other	code.

protected Any	member	of	a
type	and	any
nested	type

The	item	is	visible	only	to	the	type	and	any
derived	type.

internal Any	types	or
members

The	item	is	visible	only	within	its	containing
assembly.

private Any	member	of	a
type,	and	any
nested	type

The	item	is	visible	only	inside	the	type	to
which	it	belongs.

protected

internal

Any	member	of	a
type	and	any
nested	type

The	item	is	visible	to	any	code	within	its
containing	assembly	and	to	any	code	inside	a
derived	type.

private

protected

Any	members	of	a The	item	is	visible	to	the	type	and	any

type	and	any
nested	type

derived	type	that	is	specified	within	the
containing	assembly.

Other	Modifiers
The	modifiers	in	the	following	table	can	be	applied	to	members	of	types	and
have	various	uses.	A	few	of	these	modifiers	also	make	sense	when	applied	to
types:

MODIFIER APPLIES
TO

DESCRIPTION

new Function
members

The	member	hides	an	inherited	member	with	the
same	signature.

static All
members

The	member	does	not	operate	on	a	specific	instance
of	the	class.	This	is	also	known	as	class	member
instead	of	instance	member.

virtual Function
members
only

The	member	can	be	overridden	by	a	derived	class.

abstract Function
members
only

A	virtual	member	that	defines	the	signature	of	the
member	but	doesn't	provide	an	implementation.

override Function
members
only

The	member	overrides	an	inherited	virtual	or
abstract	member.

sealed Classes,
methods,
and
properties

For	classes,	the	class	cannot	be	inherited	from.	For
properties	and	methods,	the	member	overrides	an
inherited	virtual	member	but	cannot	be	overridden
by	any	members	in	any	derived	classes.	This	must
be	used	in	conjunction	with	override.

extern Static
[DllImport]
methods
only

The	member	is	implemented	externally,	in	a
different	language.	The	use	of	this	keyword	is
explained	in	Chapter	13,	“Managed	and	Unmanaged
Memory.“

INHERITANCE	WITH	RECORDS

Chapter	3	discusses	a	new	feature	with	C#	9:	records.	Behind	the	scenes,	records
are	classes.	However,	you	cannot	derive	a	record	from	a	class	(other	than	the
object	type),	and	a	class	cannot	derive	from	a	record.	However,	records	can
derive	from	other	records.

Let's	change	the	shapes	sample	to	use	positional	records.	With	the	following
code	snippet,	Position	and	Size	are	records	that	contain	X,	Y,	Width,	and
Height	properties	with	set	init-only	accessors	as	specified	by	the	primary
constructor.	Shape	is	an	abstract	record	with	Position	and	Size	properties,	a
Draw	method,	and	a	virtual	DisplayShape	method.	As	with	classes,	you	can	use
modifiers	with	records,	such	as	abstract	and	virtual.	The	previously	specified
Clone	method	is	not	needed	with	records	because	this	is	created	automatically
using	the	record	keyword	(code	file	RecordsInheritance/Shape.cs):

public	record	Position(int	X,	int	Y);

	

public	record	Size(int	Width,	int	Height);

	

public	abstract	record	Shape(Position	Position,	Size	Size)

{

		public	void	Draw()	=>	DisplayShape();

	

		protected	virtual	void	DisplayShape()

		{

				Console.WriteLine($"Shape	with	{Position}	and	{Size}");

		}

}

The	Rectangle	record	derives	from	the	Shape	record.	With	the	primary
constructor	syntax	used	with	the	Rectangle	type,	derivation	from	Shape	passes
the	same	values	to	the	primary	constructor	of	the	Shape.	Similar	to	the
Rectangle	class	created	earlier,	in	the	Rectangle	record,	the	DisplayShape
method	is	overridden	(code	file	RecordsInheritance/ConcreteShapes.cs):

public	record	Rectangle(Position	Position,	Size	Size)	:	

Shape(Position,	Size)

{

		protected	override	void	DisplayShape()

		{

				Console.WriteLine($"Rectangle	at	position	{Position}	with	

size	{Size}");

		}

}

With	the	top-level	statements	in	the	Program.cs	file,	a	Rectangle	and	an

Ellipse	are	created	using	primary	constructors.	The	implementation	of	the
Ellipse	record	is	similar	to	the	Rectangle	record.	The	first	rectangle	created	is
cloned	by	using	the	built-in	functionality,	and	with	the	new	Rectangle,	the
Position	property	is	set	to	a	new	value	using	the	with	expression.	The	with
expression	makes	use	of	the	init-only	set	accessors	created	from	the	primary
constructor	(code	file	RecordsInheritance/Program.cs):

Rectangle	r1	=	new(new	Position(33,	22),	new	Size(200,	100));

Rectangle	r2	=	r1	with	{	Position	=	new	Position(100,	22)	};

Ellipse	e1	=	new(new	Position(122,	200),	new	Size(40,	20));

	

DisplayShapes(r1,	r2,	e1);

	

void	DisplayShapes(params	Shape[]	shapes)

{

		foreach	(var	shape	in	shapes)

		{

				shape.Draw();

		}

}

NOTE With	future	C#	versions,	the	inheritance	with	records	might	be
relaxed	to	allow	inheritance	from	classes.

USING	INTERFACES
A	class	can	derive	from	one	class,	and	a	record	can	derive	from	one	record;	you
cannot	use	multiple	inheritance	with	classes	and	records.	You	can	use	interfaces
to	bring	multiple	inheritance	into	C#.	Both	classes	and	records	can	implement
multiple	interfaces.	Also,	one	interface	can	inherit	from	multiple	interfaces.

Before	C#	8,	an	interface	never	had	any	implementation.	In	the	versions	since
C#	8,	you	can	create	an	implementation	with	interfaces,	but	this	is	very	different
from	the	implementation	with	classes	and	records;	interfaces	cannot	keep	state,
so	fields	or	automatic	properties	are	not	possible.	Because	method
implementation	is	only	an	additional	feature	of	interfaces,	let's	keep	this
discussion	for	later	in	this	chapter	and	first	focus	on	the	contract	aspect	of
interfaces.

Predefined	Interfaces

Let's	take	a	look	at	some	predefined	interfaces	and	how	they	are	used	with	.NET.
Some	C#	keywords	are	even	designed	to	work	with	particular	predefined
interfaces.	The	using	statement	and	the	using	declaration	(covered	in	detail	in
Chapter	13)	use	the	IDisposable	interface.	This	interface	defines	the	method
Dispose	without	any	arguments	and	without	return	type.	A	class	deriving	from
this	interface	needs	to	implement	this	Dispose	method:

public	IDisposable

{

		void	Dispose();

}

The	using	statement	uses	this	interface.	You	can	use	this	statement	with	any
class	(here,	the	Resource	class)	implementing	this	interface:

using	(Resource	resource	=	new())

{

		//	use	the	resource

}

The	compiler	converts	the	using	statement	to	this	code	to	invoke	the	Dispose
method	in	the	finally	block	of	the	try	/	finally	statement:

Resource	resource	=	new();

try

{

		//	use	the	resource

}

finally

{

		resource.Dispose();

}

NOTE The	try	/	finally	block	is	covered	in	Chapter	10,	“Errors	and
Exceptions.”

Another	example	where	an	interface	is	used	with	a	language	keyword	is	the
foreach	statement	that's	using	the	IEnumerator	and	IEnumerable	interfaces.
This	code	snippet

string[]	names	=	{	"James",	"Jack",	"Jochen"	};

foreach	(var	name	in	names)

{

		Console.WriteLine(name);

}

is	converted	to	access	the	GetEnumerator	method	of	the	IEnumerable	interface
and	uses	a	while	loop	to	access	the	MoveNext	method	and	the	Current	property
of	the	IEnumerator	interface:

string[]	names	=	{	"James",	"Jack",	"Jochen"	};

var	enumerator	=	names.GetEnumerator();

while	(enumerator.MoveNext())

{

		var	name	=	enumerator.Current;

		Console.WriteLine(name);

}

NOTE Creating	a	custom	implementation	of	the	IEnumerable	and
IEnumerator	interfaces	with	the	help	of	the	yield	statement	is	covered	in
Chapter	6,	“Arrays.”

Let's	look	at	an	example	where	an	interface	is	used	from	a	.NET	class,	and	you
can	easily	implement	this	interface.	The	interface	IComparable<T>	defines	the
CompareTo	method	to	sort	objects	of	the	type	you	need	to	specify	with	the
generic	parameter	T.	This	interface	is	used	by	various	classes	in	.NET	to	order
objects	of	any	type:

public	interface	IComparable<in	T>

{

		int	CompareTo(T?	other);

}

With	the	following	code	snippet,	the	record	Person	implements	this	interface
specifying	Person	as	a	generic	parameter.	Person	specifies	the	properties
FirstName	and	LastName.	The	CompareTo	method	is	defined	to	return	0	if	both
values	(this	and	other)	are	the	same,	a	value	lower	than	0	if	this	object	should
come	before	the	other	object,	and	a	value	greater	than	0	if	other	should	be	first.
Because	the	string	type	also	implements	IComparable,	this	implementation	is
used	to	compare	the	LastName	properties.	If	the	comparison	on	the	last	name
returns	0,	a	comparison	is	done	on	the	FirstName	property	as	well	(code	file
UsingInterfaces/Person.cs):

public	record	Person(string	FirstName,	string	LastName)	:	

IComparable<Person>

{

		public	int	CompareTo(Person?	other)

		{

				int	compare	=	LastName.CompareTo(other?.LastName);

				if	(compare	is	0)

				{

						return	FirstName.CompareTo(other?.FirstName);

				}

				return	compare;

		}

}

With	the	top-level	statements	in	Program.cs,	three	Person	records	are	created
within	an	array,	and	the	array's	Sort	method	is	used	to	sort	the	elements	in	the
array	(code	file	UsingInterfaces/Program.cs):

Person	p1	=	new("Jackie",	"Stewart");

Person	p2	=	new("Graham",	"Hill");

Person	p3	=	new("Damon",	"Hill");

	

Person[]	people	=	{	p1,	p2,	p3	};

Array.Sort(people);

foreach	(var	p	in	people)

{

		Console.WriteLine(p);

}

Running	the	application	shows	the	ToString	output	of	the	record	type	in	a	sorted
order:

Person	{	FirstName	=	Damon,	LastName	=	Hill	}

Person	{	FirstName	=	Graham,	LastName	=	Hill	}

Person	{	FirstName	=	Jackie,	LastName	=	Stewart	}

Interfaces	can	act	as	a	contract.	The	record	Person	implements	the	IComparable
contract	that	is	used	by	the	Sort	method	of	the	Array	class.	The	Array	class	just
needs	to	know	the	contract	definition	(the	members	of	the	interface)	to	know
what	it	can	use.

Dependency	Injection	with	Interfaces
Let's	create	a	custom	interface.	With	the	shapes	sample,	the	Shape	and
Rectangle	types	used	the	Console.WriteLine	method	to	write	a	message	to	the
console:

protected	virtual	void	DisplayShape()

{

		Console.WriteLine($"Shape	with	{Position}	and	{Size}");

}

This	way,	the	method	DisplayShape	has	a	strong	dependency	on	the	Console
class.	To	make	this	implementation	independent	of	the	Console	class	and	to
write	to	either	the	console	or	a	file,	you	can	define	a	contract	such	as	the
ILogger	interface	in	the	following	code	snippet.	This	interface	specifies	the	Log
method	where	a	string	can	be	passed	as	an	argument	(code	file
UsingInterfaces/ILogger.cs):

public	interface	ILogger

{

		void	Log(string	message);

}

A	new	version	of	the	Shape	class	uses	constructor	injection	where	the	interface
is	injected	into	an	object	of	this	class.	In	the	constructor,	the	object	passed	with
the	parameter	is	assigned	to	the	read-only	property	Logger.	With	the
implementation	of	the	DisplayShape	method,	the	property	of	type	ILogger	is
used	to	write	a	message	(code	file	UsingInterfaces/Shape.cs):

public	abstract	class	Shape

{

		public	Shape(ILogger	logger)

		{

				Logger	=	logger;

		}

	

		protected	ILogger	Logger	{	get;	}

		public	Position?	Position	{	get;	init;	}

		public	Size?	Size	{	get;	init;	}

	

		public	void	Draw()	=>	DisplayShape();

	

		protected	virtual	void	DisplayShape()

		{

				Logger.Log($"Shape	with	{Position}	and	{Size}");

		}

}

With	a	concrete	implementation	of	the	abstract	Shape	class,	in	the	constructor,
the	ILogger	interface	is	forwarded	to	the	constructor	of	the	base	class.	With	the
DisplayShape	method,	the	protected	property	Logger	is	used	from	the	base	class
(code	file	UsingInterfaces/ConcreteShapes.cs):

public	class	Ellipse	:	Shape

{

		public	Ellipse(ILogger	logger)	:	base(logger)	{	}

	

		protected	override	void	DisplayShape()

		{

				Logger.Log($"Ellipse	at	position	{Position}	with	size	

{Size}");

		}

}

Next,	a	concrete	implementation	of	the	ILogger	interface	is	required.	One	way
you	can	implement	writing	a	message	to	the	console	is	with	the	ConsoleLogger
class.	This	class	implements	the	ILogger	interface	to	write	a	message	to	the
console	(code	file	UsingInterfaces/ConsoleLogger.cs):

public	class	ConsoleLogger	:	ILogger

{

		public	void	Log(string	message)	=>	Console.WriteLine(message);				

}

NOTE Using	the	ILogger	interface	from	the
Microsoft.Extensions.Logging	namespace	is	discussed	in	Chapter	16,
“Diagnostics	and	Metrics.”

For	creating	a	Rectangle,	the	ConsoleLogger	can	be	created	on	passing	an
instance	to	implement	the	ILogger	interface	(code	file
UsingInterfaces/Program.cs):

Ellipse	e1	=	new(new	ConsoleLogger())	

{	

		Position	=	new(20,	30),	

		Size	=	new(100,	120)	

};

r1.Draw();

NOTE With	dependency	injection,	the	responsibility	is	turned	over.
Instead	of	having	a	strong	dependency	with	the	implementation	of	the	shape
for	the	Console	class,	the	responsibility	for	what	is	used	is	turned	over
outside	of	the	Shape	type.	This	way	what	is	used	can	be	specified	from	the
outside.	This	is	also	known	as	the	Hollywood	Principle—“Don't	call	us,	we
call	you.”	Dependency	injection	makes	unit	testing	easier	because
dependencies	can	be	easily	replaced	with	mock	types.	Another	advantage
when	using	dependency	injection	is	that	you	can	create	platform-specific
implementations.	For	example,	showing	a	message	box	is	different	with	the

Universal	Windows	Platform	(MessageDialog.ShowAsync),	WPF
(MessageBox.Show),	and	Xamarin.Forms	(Page.Alert).	With	a	common
view	model,	you	can	use	the	interface	IDialogService	and	define	different
implementations	with	the	different	platforms.	Read	more	about	dependency
injection	using	a	dependency	injection	container	in	Chapter	15,
“Dependency	Injection	and	Configuration.”	Unit	testing	is	covered	in
Chapter	23,	“Tests.”

Explicit	and	Implicit	Implemented	Interfaces
Interfaces	can	be	explicitly	or	implicitly	implemented.	With	the	example	so	far,
you've	seen	implicitly	implemented	interfaces,	such	as	with	the	ConsoleLogger
class:

public	class	ConsoleLogger	:	ILogger

{

		public	void	Log(string	message)	=>	Console.WriteLine(message);				

}

With	an	explicit	interface	implementation,	the	member	implemented	doesn't
have	an	access	modifier	and	has	the	interface	prefixed	to	the	method	name:

public	class	ConsoleLogger	:	ILogger

{

		void	ILogger.Log(string	message)	=>	

Console.WriteLine(message);

}

With	an	explicit	interface	implementation,	the	interface	is	not	accessible	when
you	use	a	variable	of	type	ConsoleLogger	(it's	not	public).	If	you	use	a	variable
of	the	interface	type	(ILogger),	you	can	invoke	the	Log	method;	the	contract	of
the	interface	is	fulfilled.	You	can	also	cast	the	ConsoleLogger	variable	to	the
interface	ILogger	to	invoke	this	method.

Why	would	you	want	to	do	this?	One	reason	is	to	resolve	a	conflict.	If	different
interfaces	define	the	same	method	signature,	your	class	needs	to	implement	all
these	interfaces,	and	the	implementations	need	to	differ,	you	can	use	explicit
interface	implementation.

Another	reason	to	use	explicit	interface	implementation	is	to	hide	the	interface
method	from	code	outside	of	the	class	but	still	fulfill	the	contract	from	the
interface.	An	example	is	the	StringCollection	class	from	the
System.Collections.Specialized	namespace	and	the	IList	interface.	One	of

the	members	that's	defined	by	the	IList	interface	is	the	Add	method:

int	Add(object?	value);

The	StringCollection	class	is	optimized	for	strings	and	thus	prefers	to	use	the
string	type	with	the	Add	method:

public	int	Add(string?	value);

The	version	to	pass	an	object	is	hidden	from	the	StringCollection	class
because	the	StringCollection	class	has	an	explicit	interface	implementation
with	this	method.	To	use	this	type	directly,	you	just	pass	a	string	parameter.	If	a
method	uses	IList	as	a	parameter,	then	you	can	use	any	object	that	implements
IList	for	that	parameter.	In	particular,	you	can	use	a	StringCollection	for	the
parameter	because	that	class	still	implements	that	interface.

Comparing	Interfaces	and	Classes
Now	that	you've	seen	the	foundations	of	interfaces,	let's	compare	interfaces,
classes,	records,	and	structs	with	regard	to	object	orientation:

You	can	declare	a	variable	of	the	type	of	all	these	C#	constructs.	You	can
declare	a	variable	of	a	class,	an	interface,	a	record,	or	a	struct.

You	can	instantiate	a	new	object	with	classes,	records,	and	structs.	You
cannot	instantiate	a	new	object	with	an	abstract	class	or	an	interface.

With	a	class,	you	can	derive	from	a	base	class.	With	a	record,	you	can
derive	from	a	base	record.	Both	with	classes	and	records,	implementation
inheritance	is	supported.	Structs	don't	support	inheritance.

Classes,	records,	and	structs	can	implement	multiple	interfaces.
Implementing	interfaces	is	not	possible	with	ref	structs.

Default	Interface	Methods
Before	C#	8,	changing	an	interface	was	always	a	breaking	change.	Even	just
adding	a	member	to	an	interface	is	a	breaking	change.	The	type	implementing
this	interface	needs	to	implement	this	new	interface	member.	Because	of	this,
many	.NET	libraries	are	built	with	abstract	base	classes.	When	you	add	a	new
member	to	an	abstract	base	class,	if	it's	not	an	abstract	member,	it	is	not	a
breaking	change.	With	Microsoft's	Component	Object	Model	(COM),	which	is
based	on	interfaces,	always	a	new	interface	was	defined	when	a	breaking	change
was	introduced—for	example,	IViewObject,	IViewObjectEx,	IViewObject2,

IViewObject3.

As	of	C#	8,	interfaces	can	have	implementations.	However,	you	need	to	be
aware	where	you	can	use	this	feature.	C#	8	is	supported	by	.NET	Core	3.x.	With
older	technologies,	you	can	change	the	compiler	version	at	your	own	risk.	To
support	default	interface	members,	a	runtime	change	is	required.	This	runtime
change	is	available	only	with	.NET	Core	3.x+	and	.NET	Standard	2.1+.	You
cannot	use	default	interface	members	with	.NET	Framework	applications	or
UWP	applications	without	.NET	5	support.

Avoiding	Breaking	Changes
Let's	get	into	the	main	feature	of	default	interface	members	to	avoid	breaking
changes.	In	a	previous	code	sample,	the	ILogger	interface	has	been	specified:

public	interface	ILogger

{

		void	Log(string	message);

}

If	you	add	any	member	without	implementation,	the	ConsoleLogger	class	needs
to	be	updated.	To	avoid	a	breaking	change,	an	implementation	to	the	new	Log
method	with	the	Exception	parameter	is	added.	With	the	implementation,	the
previous	Log	method	is	invoked	by	passing	a	string	(code	file
DefaultInterfaceMethods/ILogger.cs):

public	interface	ILogger

{

		void	Log(string	message);

		public	void	Log(Exception	ex)	=>	Log(ex.Message);

}

NOTE The	implementation	of	the	Log	method	has	the	public	access
modifier	applied.	With	interface	members,	public	is	the	default,	so	this
access	modifier	is	not	required.	However,	with	implementations	in	the
interface,	you	can	use	the	same	modifiers	you've	seen	with	classes,	including
virtual,	abstract,	sealed,	and	so	on.

The	application	can	be	built	without	changing	the	implementation	of	the
ConsoleLogger	class.	If	a	variable	of	the	interface	type	is	used,	both	Log
methods	can	be	invoked:	the	Log	method	with	the	string	parameter	and	the	Log
method	with	the	Exception	parameter	(code	file

DefaultInterfaceMethods/Program.cs):

ILogger	logger	=	new	ConsoleLogger();

logger.Log("message");

logger.Log(new	Exception("sample	exception"));

With	a	new	implementation	of	the	ConsoleLogger	class,	a	different
implementation	of	the	new	Log	method	defined	with	the	ILogger	interface	can
be	created.	In	this	case,	using	the	ILogger	interface	invokes	the	method
implemented	with	the	ConsoleLogger	class.	The	method	is	implemented	with
explicit	interface	implementation	but	could	be	implemented	with	implicit
interface	implementation	as	well	(code	file
DefaultInterfaceMethods/ConsoleLogger.cs):

public	class	ConsoleLogger	:	ILogger

{

		public	void	Log(string	message)	=>	Console.WriteLine(message);

	

		void	ILogger.Log(Exception	ex)

		{

				Console.WriteLine(

						$"exception	type:	{ex.GetType().Name},	message:	

{ex.Message}");

		}

}

Traits	with	C#
Default	interface	members	can	be	used	to	implement	traits	with	C#.	Traits	allow
you	to	define	methods	for	a	group	of	types.	One	way	to	implement	traits	is	with
extension	methods;	the	other	option	is	using	default	interface	methods.

With	Language	Integrated	Query	(LINQ),	many	LINQ	operators	have	been
implemented	with	extension	methods.	With	this	new	feature,	it	would	be
possible	to	implement	these	methods	with	default	interface	members	instead.

NOTE Extension	methods	are	introduced	in	Chapter	3.	Chapter	9,
“Language	Integrated	Query,”	covers	all	the	extension	methods
implemented	with	LINQ.

To	demonstrate	this,	the	IEnumerableEx<T>	interface	is	defined	that	derives
from	the	interface	IEnumerable<T>.	Deriving	from	this	interface,
IEnumerableEx<T>	specifies	the	same	contract	as	the	base	interface,	but	the

Where	method	is	added.	This	method	receives	a	delegate	parameter	to	pass	a
predicate	method	that	returns	a	Boolean	value,	iterates	through	all	the	items,	and
invokes	the	method	referenced	by	the	predicate.	If	the	predicate	returns	true,	the
Where	method	returns	the	item	with	yield	return.

using	System;

using	System.Collections.Generic;

	

public	interface	IEnumerableEx<T>	:	IEnumerable<T>

{

		public	IEnumerable<T>	Where(Func<T,	bool>	pred)

		{

				foreach	(T	item	in	this)

				{

						if	(pred(item))

						{

								yield	return	item;

						}

				}

		}

}

NOTE The	yield	statement	is	covered	in	detail	in	Chapter	6.

Now	you	need	a	collection	to	implement	the	interface	IEnumerableEx<T>.	You
can	do	this	easily	by	creating	a	new	collection	type,	MyCollection,	that	derives
from	the	Collection<T>	base	class	defined	in	the
System.Collections.ObjectModel	namespace.	Because	the	Collection<T>
class	already	implements	the	interface	IEnumerable<T>,	no	additional
implementation	is	needed	to	support	IEnumerableEx<T>	(code	file
DefaultInterfaceMethods/MyCollection.cs):

class	MyCollection<T>	:	Collection<T>,	IEnumerableEx<T>

{

}

With	this	in	place,	a	collection	of	type	MyCollections<string>	is	created	that's
filled	with	names.	A	lambda	expression	that	returns	a	Boolean	value	and
receives	a	string	is	passed	to	the	Where	method	that's	defined	with	the	interface.
The	foreach	statement	iterates	through	the	result	and	only	displays	the	names
starting	with	J	(code	file	DefaultInterfaceMethods/Program.cs):

IEnumerableEx<string>	names	=	new	MyCollection<string>	

		{	"James",	"Jack",	"Jochen",	"Sebastian",	"Lewis",	"Juan"	};

	

var	jNames	=	names.Where(n	=>	n.StartsWith("J"));

foreach	(var	name	in	jNames)

{

		Console.WriteLine(name);

}

NOTE When	you	invoke	default	interface	members,	you	always	need	a
variable	of	the	interface	type,	similar	to	explicitly	implemented	interfaces.

What	cannot	be	done	with	interfaces	and	default	interface	members	is	to	add
members	that	keep	state.	Fields,	events	(with	delegates),	and	auto	properties
add	state—these	members	are	not	allowed.	If	state	is	required,	you	should
use	abstract	classes	instead.

GENERICS
One	way	to	reduce	the	code	you	need	to	write	is	by	using	inheritance	and	adding
functionality	to	base	classes.	Another	way	is	to	create	generics	where	a	type
parameter	is	used,	which	allows	specifying	the	type	when	instantiating	the
generic	(which	can	also	be	combined	with	inheritance).

Let's	get	into	an	example	to	create	a	linked	list	of	objects	where	every	item
references	the	next	and	previous	items.	The	first	generic	type	created	is	a	record.
The	generic	type	parameter	is	specified	using	angle	brackets.	T	is	the	placeholder
type	parameter	name.	With	the	primary	constructor,	a	property	with	an	init-only
set	accessor	is	created.	The	record	has	two	additional	properties,	Next	and	Prev,
to	reference	the	next	and	previous	items.	With	these	additional	properties,	the
internal	access	modifier	is	used	to	allow	calling	the	set	accessor	only	from
within	the	same	assembly	(code	file	GenericTypes/LinkedListNode.cs):

public	record	LinkedListNode<T>(T	Value)

{

		public	LinkedListNode<T>?	Next	{	get;	internal	set;	}

		public	LinkedListNode<T>?	Prev	{	get;	internal	set;	}

		public	override	string?	ToString()	=>	Value?.ToString();

}

NOTE Because	the	LinkedListNode	type	is	a	record,	it's	important	to
override	the	ToString	method.	With	the	default	implementation	of	the
ToString	method,	the	value	of	all	property	members	is	shown,	which	invokes

ToString	with	every	property	value.	Because	the	Next	and	Prev	properties
reference	other	objects,	a	stack	overflow	can	occur.

The	generic	class	LinkedList	contains	the	properties	First	and	Last	to	access
the	first	and	last	elements	of	the	list,	the	method	AddLast	to	add	a	new	node	at
the	end	of	the	list,	and	an	implementation	of	the	IEnumerable<T>	interface,
which	allows	iterating	through	all	elements	(code	file
GenericTypes/LinkedList.cs):

public	class	LinkedList<T>	:	IEnumerable<T>

{

		public	LinkedListNode<T>?	First	{	get;	private	set;	}

		public	LinkedListNode<T>?	Last	{	get;	private	set;	}

		public	LinkedListNode<T>	AddLast(T	node)

		{

				LinkedListNode<T>	newNode	=	new(node);

				if	(First	is	null	||	Last	is	null)

				{

						First	=	newNode;

						Last	=	First;

				}

				else

				{

						newNode.Prev	=	Last;

						LinkedListNode<T>	previous	=	Last;

						Last.Next	=	newNode;

						Last	=	newNode;

				}

				return	newNode;

		}

	

		public	IEnumerator<T>	GetEnumerator()

		{

				LinkedListNode<T>?	current	=	First;

				while	(current	is	not	null)

				{

						yield	return	current.Value;

						current	=	current.Next;

				}

		}

	

		IEnumerator	IEnumerable.GetEnumerator()	=>	GetEnumerator();

}

In	the	generated	Main	method,	the	LinkedList	is	initiated	by	using	the	int	type

by	using	the	string	type,	a	tuple,	and	a	record.	LinkedList	works	with	any	type
(code	file	GenericTypes/Program.cs):

LinkedList<int>	list1	=	new();

list1.AddLast(1);

list1.AddLast(3);

list1.AddLast(2);

	

foreach	(var	item	in	list1)

{

		Console.WriteLine(item);

}

Console.WriteLine();

	

LinkedList<string>	list2	=	new();

list2.AddLast("two");

list2.AddLast("four");

list2.AddLast("six");

	

Console.WriteLine(list2.Last);

	

LinkedList<(int,	int)>	list3	=	new();

list3.AddLast((1,	2));

list3.AddLast((3,	4));

foreach	(var	item	in	list3)

{

		Console.WriteLine(item);

}

Console.WriteLine();

	

LinkedList<Person>	list4	=	new();

list4.AddLast(new	Person("Stephanie",	"Nagel"));

list4.AddLast(new	Person("Matthias",	"Nagel"));

list4.AddLast(new	Person("Katharina",	"Nagel"));

	

//	show	the	first

Console.WriteLine(list4.First);

	

public	record	Person(string	FirstName,	string	LastName);

Constraints
With	the	previous	implementation	of	the	LinkedListNode<T>	and
LinkedList<T>	types	there	was	not	a	special	requirement	on	the	generic	type;
any	type	can	be	used.	This	prevents	you	from	using	any	nonobject	members	with
the	implementation.	The	compiler	doesn't	accept	invoking	any	property	or

method	on	the	generic	type	T.

Adding	the	DisplayAllTitles	method	to	the	LinkedList<T>	class	results	in	a
compiler	error.	T	does	not	contain	a	definition	for	Title,	and	no	accessible
extension	method	Title	accepting	a	first	argument	of	type	T	could	be	found
(code	file	GenericTypesWithConstraints/LinkedList.cs):

		public	void	DisplayAllTitles()

		{

				foreach	(T	item	in	this)

				{

						Console.WriteLine(item.Title);

				}

		}

To	resolve	this,	the	interface	ITitle	is	specified	that	defines	a	Title	property
that	needs	to	be	implemented	with	the	implementation	of	this	interface:

public	interface	ITitle

{

		string	Title	{	get;	}

}

Defining	the	generic	LinkedList<T>,	now	the	constraint	for	the	generic	type	T,
can	be	specified	to	implement	the	interface	ITitle.	Constraints	are	specified
with	the	where	keyword	followed	by	the	requirement	on	the	type:

public	class	LinkedList<T>	:	IEnumerable<T>

				where	T	:	ITitle

{

		//…

}

With	this	change	in	place,	the	DisplayAllTitles	method	compiles.	This	method
uses	the	members	specified	by	the	ITitle	interface,	and	this	is	a	requirement	on
the	generic	type.	You	can	no	longer	use	int	and	string	for	the	generic	type
parameter,	but	the	Person	record	can	be	changed	to	implement	this	constraint
(code	file	GenericTypesWithConstraints/Program.cs):

public	record	Person(string	FirstName,	string	LastName,	string	

Title)	

		:	ITitle	{	}

The	following	table	lists	the	constraints	you	can	specify	with	a	generic:

CONSTRAINT DESCRIPTION

where	T	:

struct
With	a	struct	constraint,	T	must	be	a	value	type.

where	T	:

class

With	a	class	constraint,	T	must	be	a	reference	type.

where	T	:

class?

T	must	be	a	nullable	or	a	non-nullable	reference	type.

where	T	:

notnull

T	must	be	a	non-nullable	type.	This	can	be	a	value	or	a
reference	type.

where	T	:

unmanaged

T	must	be	a	non-nullable	unmanaged	type.

where	T	:

IFoo

This	specifies	that	the	type	T	is	required	to	implement
interface	IFoo.

where	T	:	Foo This	specifies	that	the	type	T	is	required	to	derive	from	base
class	Foo.

where	T	:

new()

A	constructor	constraint;	this	specifies	that	T	must	have	a
parameterless	constructor.	You	cannot	specify	a	constraint	for
constructors	with	parameters.

where	T1	:	T2 With	constraints,	it	is	also	possible	to	specify	that	type	T1
derives	from	a	generic	type	T2.

SUMMARY
This	chapter	described	how	to	code	inheritance	in	C#.	You	saw	the	rich	support
for	both	implementing	multiple	interfaces	and	single	inheritance	with	classes	and
records.	You	saw	how	C#	provides	a	number	of	useful	syntactical	constructs
designed	to	assist	in	making	code	more	robust,	which	includes	different	access
modifiers,	and	the	concept	of	nonvirtual	and	virtual	methods.	You	also	saw	the
new	feature	for	interfaces,	which	allows	adding	code	implementation.	Generics
have	been	covered	as	another	concept	to	reuse	code.

The	next	chapter	continues	with	all	the	C#	operators	and	casts.

5
Operators	and	Casts

WHAT'S	IN	THIS	CHAPTER?

Operators	in	C#

Implicit	and	explicit	conversions

Overloading	standard	operators	for	custom	types

Comparing	objects	for	equality

Implementing	custom	indexers

User-defined	conversions

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/OperatorsAndCasts.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

OperatorsSample

BinaryCalculations

OperatorOverloadingSample

EqualitySample

CustomIndexerSample

UserDefinedConversion

All	the	projects	have	nullable	reference	types	enabled.

The	preceding	chapters	have	covered	most	of	what	you	need	to	start	writing
useful	programs	using	C#.	This	chapter	continues	the	discussion	with

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

essential	language	elements	and	illustrates	some	powerful	aspects	of	C#	that
enable	you	to	extend	its	capabilities.	This	chapter	also	covers	information
about	using	operators	and	extending	custom	types	with	operator	overloading
and	custom	conversion.

OPERATORS
C#	supports	the	operators	and	expressions	listed	in	the	following	table.	In	the
table,	the	operators	start	with	the	highest	precedence	and	go	down	to	the	lowest.

CATEGORY OPERATOR
Primary x.y	x?.y	f(x)	a[x]	x++	x--	x!	x->y	new	typeof	default

checked	unchecked	delegate	nameof	sizeof	delegate

stackalloc

Unary +x	-x	!x	~x	++x	--x	^x	(T)x	await	&x	*x	true	false

Range x..y

Multiplicative x*y	x/y	x%y

Additive x+y	x-y

Shift x<<y	x>>y

Relational x<y	x>y	x<=y	x>=y

Type	testing is	as

Equality x==y	x!=y

Logical x&y	x^y	x|y

Conditional
logical

x&&y	x||y

Null
coalescing

x??y

Conditional
operator

c?t:f

Assignment x=y	x+=y	x-=y	x*=y	x/=y	x%=y	x&=y	x|=y	x^=y	x<<=y

x>>=y	x??=y

Lambda
expression

=>

NOTE Four	specific	operators	(sizeof,	*,	->,	and	&)	are	available	only	in
unsafe	code	(code	that	bypasses	C#'s	type-safety	checking),	which	is
discussed	in	Chapter	13,	“Managed	and	Unmanaged	Memory.”

Using	the	new	range	and	hat	operators	with	strings	is	covered	in	Chapter	2,
“Core	C#.”	Using	these	operators	with	arrays	is	covered	in	Chapter	6,
“Arrays,”	where	you	also	can	read	how	to	support	custom	collections	with
these	operators.

Compound	Assignment	Operators
Compound	assignment	operators	are	a	shortcut	to	using	the	assignment	operator
with	another	operator.	Instead	of	writing	x	=	x	+	2,	you	can	use	the	compound
assignment	x	+=	2.	Incrementing	by	1	is	required	even	more	often,	so	there's
another	shortcut,	x++	:

int	x	=	1;

int	x	+=	2;	//	shortcut	for	int	x	=	x	+	2;

x++;	//	shortcut	for	x	=	x	+	1;

Shortcuts	can	be	used	with	all	the	other	compound	assignment	operators.	A	new
compound	assignment	operator	has	been	available	since	C#	8:	the	null-
coalescing	compound	assignment	operator.	This	operator	is	discussed	later	in
this	chapter.

You	may	be	wondering	why	there	are	two	examples	for	the	++	increment
operator.	Placing	the	operator	before	the	expression	is	known	as	a	prefix;	placing
the	operator	after	the	expression	is	known	as	a	postfix.	Note	that	there	is	a
difference	in	the	way	they	behave.

The	increment	and	decrement	operators	can	act	both	as	entire	expressions	and
within	expressions.	When	used	by	themselves,	the	effect	of	both	the	prefix	and
postfix	versions	is	identical	and	corresponds	to	the	statement	x	=	x	+	1.	When
used	within	larger	expressions,	the	prefix	operator	increments	the	value	of	x
before	the	expression	is	evaluated;	in	other	words,	x	is	incremented,	and	the	new
value	is	used	as	the	result	of	the	expression.	Conversely,	the	postfix	operator
increments	the	value	of	x	after	the	expression	is	evaluated.	The	result	of	the
expression	returns	the	original	value	of	x.	The	following	example	uses	the
increment	operator	(++)	as	an	example	to	demonstrate	the	difference	between	the
prefix	and	postfix	behavior	(code	file	OperatorsSample/Program.cs):

void	PrefixAndPostfix()

{

		int	x	=	5;

		if	(++x	==	6)	//	true	–	x	is	incremented	to	6	before	the	

evaluation

		{

				Console.WriteLine("This	will	execute");

		}

		if	(x++	==	6)	//	true	–	x	is	incremented	to	7	after	the	

evaluation

		{

				Console.WriteLine("The	value	of	x	is:	{x}");	//	x	has	the	

value	7

		}

}

The	following	sections	look	at	some	of	the	commonly	used	and	new	operators
that	you	will	frequently	use	within	your	C#	code.

The	Conditional-Expression	Operator	(?:)
The	conditional-expression	operator	(?:),	also	known	as	the	ternary	operator,	is
a	shorthand	form	of	the	if…else	construction.	It	gets	its	name	from	the	fact	that
it	involves	three	operands.	It	allows	you	to	evaluate	a	condition,	returning	one
value	if	that	condition	is	true	or	another	value	if	it	is	false.	The	syntax	is	as
follows:

condition	?	true_value:	false_value

Here,	condition	is	the	Boolean	expression	to	be	evaluated,	true	_	value	is	the
value	that	is	returned	if	condition	is	true,	and	false	_	value	is	the	value	that	is
returned	otherwise.

When	used	sparingly,	the	conditional-expression	operator	can	add	a	dash	of
terseness	to	your	programs.	It	is	especially	handy	for	providing	one	of	a	couple
of	arguments	to	a	function	that	is	being	invoked.	You	can	use	it	to	quickly
convert	a	Boolean	value	to	a	string	value	of	true	or	false.	It	is	also	handy	for
displaying	the	correct	singular	or	plural	form	of	a	word	(code	file
OperatorsSample/Program.cs):

int	x	=	1;

string	s	=	x	+	"	";

s	+=	(x	==	1	?	"man":	"men");

Console.WriteLine(s);

This	code	displays	1	man	if	x	is	equal	to	one	but	displays	the	correct	plural	form
for	any	other	number.	Note,	however,	that	if	your	output	needs	to	be	localized	to
different	languages,	you	have	to	write	more	sophisticated	routines	to	take	into
account	the	different	grammatical	rules	of	different	languages.	Read	Chapter	22,
“Localization,”	for	globalizing	and	localizing	.NET	applications.

The	checked	and	unchecked	Operators
Consider	the	following	code:

byte	b	=	byte.MaxValue;

b++;

Console.WriteLine(b);

The	byte	data	type	can	hold	values	only	in	the	range	0	to	255.	Assigning
byte.MaxValue	to	a	byte	results	in	255.	With	255,	all	bits	of	the	8	available	bits
in	the	byte	are	set:	11111111.	Incrementing	this	value	by	one	causes	an	overflow
and	results	in	0.

To	get	exceptions	in	such	cases,	C#	provides	the	checked	and	unchecked
operators.	If	you	mark	a	block	of	code	as	checked,	the	CLR	enforces	overflow
checking,	throwing	an	OverflowException	if	an	overflow	occurs.	The	following
changes	the	preceding	code	to	include	the	checked	operator	(code	file
OperatorsSample/Program.cs):

byte	b	=	255;

checked

{

		b++;

}

Console.WriteLine(b);

Instead	of	writing	a	checked	block,	you	also	can	use	the	checked	keyword	in	an
expression:

b	=	checked(b	+	3);

When	you	try	to	run	this	code,	the	OverflowException	is	thrown.

You	can	enforce	overflow	checking	for	all	unmarked	code	by	adding	the
CheckForOverflowUnderflow	setting	in	the	csproj	file:

<PropertyGroup>

		<OutputType>Exe</OutputType>

		<TargetFramework>net5.0</TargetFramework>

		<Nullable>enable</Nullable>

		<CheckForOverflowUnderflow>true</CheckForOverflowUnderflow>

</PropertyGroup>

With	a	project	setting	to	be	configured	for	overflow	checking,	you	can	mark
code	that	should	not	be	checked	using	the	unchecked	operator.

NOTE By	default,	overflow	and	underflow	are	not	checked	because
enforcing	checks	has	a	performance	impact.	When	you	use	checked	as	the
default	setting	with	your	project,	the	result	of	every	arithmetic	operation
needs	to	be	verified	regardless	of	whether	the	value	is	out	of	bounds.	i++	is
an	arithmetic	operation	that's	used	a	lot	with	for	loops.	To	avoid	having	this
performance	impact,	it's	better	to	keep	the	default	setting	(Check	for
Arithmetic	Overflow/Underflow)	unchecked	and	use	the	checked	operator
where	needed.

The	is	and	as	Operators
You	can	use	the	is	and	as	operators	to	determine	whether	an	object	is
compatible	with	a	specific	type.	This	is	useful	with	class	hierarchies.

Let's	assume	a	simple	class	hierarchy.	The	class	DerivedClass	derives	from	the
class	BaseClass.	You	can	assign	a	variable	of	type	DerivedClass	to	a	variable
of	type	BaseClass	;	all	the	members	of	the	BaseClass	are	available	with	the
DerivedClass.	In	the	following	example,	an	implicit	conversion	is	taking	place:

BaseClass	=	new();

DerivedClass	=	new();

baseClass	=	derivedClass;	

If	you	have	a	parameter	of	the	BaseClass	and	want	to	assign	it	to	a	variable	of
the	DerivedClass,	implicit	conversion	is	not	possible.	To	the	SomeAction
method,	an	instance	of	the	BaseClass	or	any	type	that	derives	from	this	class	can
be	passed.	This	will	not	necessarily	succeed.	Here,	you	can	use	the	as	operator.
The	as	operator	either	returns	a	DerivedClass	instance	(if	the	variable	is	of	this
type)	or	returns	null	:

public	void	SomeAction(BaseClass	baseClass)

{

		DerivedClass?	derivedClass	=	baseClass	as	DerivedClass;

		if	(derivedClass	!=	null)

		{

				//	use	the	derivedClass	variable

		}	

}

Instead	of	using	the	as	operator,	you	can	use	the	is	operator.	The	is	operator
returns	true	if	the	conversion	succeeds;	otherwise,	it	returns	false.	With	the	is
operator,	a	variable	can	be	specified	that	is	assigned	if	the	is	operator	returns
true:

public	void	SomeAction(BaseClass	baseClass)

{

		if	(baseClass	is	DerivedClass	derivedClass)

		{

				//	use	the	derivedClass	variable

		}

}

NOTE Chapter	2	covers	pattern	matching	with	the	is	operator	using
const,	type,	and	relational	patterns.

The	sizeof	Operator
You	can	determine	the	size	(in	bytes)	required	on	the	stack	by	a	value	type	using
the	sizeof	operator	(code	file	OperatorsSample/Program.cs):

Console.WriteLine(sizeof(int));

This	displays	the	number	4	because	an	int	is	4	bytes	long.

You	can	also	use	the	sizeof	operator	with	structs	if	the	struct	contains	only
value	types—for	example,	the	Point	class	as	shown	here	(code	file
OperatorsSample/Point.cs):

public	readonly	struct	Point

{

		public	Point(int	x,	int	y)	=>	(X,	Y)	=	(x,	y);

	

		public	int	X	{	get;	}

		public	int	Y	{	get;	}

}

NOTE You	cannot	use	sizeof	with	classes.

When	you	use	sizeof	with	custom	types,	you	need	to	write	the	code	within	an
unsafe	code	block	(code	file	OperatorsSample/Program.cs):

unsafe

{

		Console.WriteLine(sizeof(Point));

}

	

NOTE By	default,	unsafe	code	is	not	allowed.	You	need	to	specify	the
AllowUnsafeBlocks	in	the	csproj	project	file.	Chapter	13	looks	at	unsafe
code	in	more	detail.

The	typeof	Operator
The	typeof	operator	returns	a	System.Type	object	representing	a	specified	type.
For	example,	typeof(string)	returns	a	Type	object	representing	the
System.String	type.	This	is	useful	when	you	want	to	use	reflection	to	find
information	about	an	object	dynamically.	For	more	information,	see	Chapter	12,
“Reflection,	Metadata,	and	Source	Generators.”

The	nameof	Expression
The	nameof	operator	is	of	practical	use	when	strings	are	needed	as	parameters
that	are	already	known	at	compile	time.	This	operator	accepts	a	symbol,
property,	or	method	and	returns	the	name.

One	use	example	is	when	the	name	of	a	variable	is	needed,	as	in	checking	a
parameter	for	null,	as	shown	here:

public	void	Method(object	o)

{

		if	(o	==	null)	throw	new	ArgumentNullException(nameof(o));	

}

Of	course,	it	would	be	similar	to	throw	the	exception	by	passing	a	string	instead
of	using	the	nameof	operator.	However,	using	nameof	prevents	you	from
misspelling	the	parameter	name	when	you	pass	it	to	the	exception's	constructor.
Also,	when	you	change	the	name	of	the	parameter,	you	can	easily	miss	changing
the	string	passed	to	the	ArgumentNullException	constructor.	Refactoring
features	also	help	changing	all	occurrences	where	nameof	is	used:

if	(o	==	null)	throw	new	ArgumentNullException("o");

Using	the	nameof	operator	for	the	name	of	a	variable	is	just	one	use	case.	You
can	also	use	it	to	get	the	name	of	a	property—for	example,	for	firing	a	change

event	(using	the	interface	INotifyPropertyChanged)	in	a	property	set	accessor
and	passing	the	name	of	a	property.

public	string	FirstName

{

		get	=>	_firstName;

		set

		{

				_firstName	=	value;

				OnPropertyChanged(nameof(FirstName));

		}

}

The	nameof	operator	can	also	be	used	to	get	the	name	of	a	method.	This	also
works	if	the	method	is	overloaded	because	all	overloads	result	in	the	same	value:
the	name	of	the	method.

public	void	Method()

{

		Log($"{nameof(Method)}	called");

The	Indexer
You	use	the	indexer	(brackets)	for	accessing	arrays	in	Chapter	6.	In	the	following
code	snippet,	the	indexer	is	used	to	access	the	third	element	of	the	array	named
arr1	by	passing	the	number	2:

int[]	arr1	=	{1,	2,	3,	4};

int	x	=	arr1[2];	//	x	==	3	

Similarly	to	accessing	elements	of	an	array,	the	indexer	is	implemented	with
collection	classes	(discussed	in	Chapter	8,	“Collections”).

The	indexer	doesn't	require	an	integer	within	the	brackets.	Indexers	can	be
defined	with	any	type.	The	following	code	snippet	creates	a	generic	dictionary
where	the	key	is	a	string	and	the	value	an	int.	With	dictionaries,	the	key	can	be
used	with	the	indexer.	In	the	following	sample,	the	string	first	is	passed	to	the
indexer	to	set	this	element	in	the	dictionary,	and	then	the	same	string	is	passed	to
the	indexer	to	retrieve	this	element:

Dictionary<string,	int>	dict	=	new();

dict["first"]	=	1;

int	x	=	dict["first"];

NOTE Later	in	this	chapter	in	the	“Implementing	Custom	Indexers”

section,	you	can	read	how	to	create	index	operators	in	your	own	classes.

The	Null-Coalescing	and	Null-Coalescing	Assignment
Operators
The	null-coalescing	operator	(??)	provides	a	shorthand	mechanism	to	cater	to	the
possibility	of	null	values	when	working	with	nullable	and	reference	types.	The
operator	is	placed	between	two	operands—the	first	operand	must	be	a	nullable
type	or	reference	type,	and	the	second	operand	must	be	of	the	same	type	as	the
first	or	of	a	type	that	is	implicitly	convertible	to	the	type	of	the	first	operand.	The
null-coalescing	operator	evaluates	as	follows:

If	the	first	operand	is	not	null,	then	the	overall	expression	has	the	value	of
the	first	operand.

If	the	first	operand	is	null,	then	the	overall	expression	has	the	value	of	the
second	operand.

Here's	an	example:

int?	a	=	null;

int	b;

b	=	a	??	10;	//	b	has	the	value	10

a	=	3;

b	=	a	??	10;	//	b	has	the	value	3

If	the	second	operand	cannot	be	implicitly	converted	to	the	type	of	the	first
operand,	a	compile-time	error	is	generated.

The	null-coalescing	operator	is	not	only	important	with	nullable	types	but	also
with	reference	types.	In	the	following	code	snippet,	the	property	Val	returns	the
value	of	the	_val	variable	only	if	it	is	not	null.	In	case	it	is	null,	a	new	instance
of	MyClass	is	created,	assigned	to	the	_val	variable,	and	finally	returned	from
the	property.	This	second	part	of	the	expression	within	the	get	accessor	only
happens	when	the	variable	_val	is	null:

private	MyClass	_val;

public	MyClass	Val

{

		get	=>	_val	??	(_val	=	new	MyClass());

}

Using	the	null-coalescing	assignment	operator,	the	preceding	code	can	now	be
simplified	to	create	a	new	MyClass	and	assign	it	to	_val	if	_val	is	null	:

private	MyClass	_val;

public	MyClass	Val

{

		get	=>	_val	??=	new	MyClass();

}

The	Null-Conditional	Operator
The	null-conditional	operator,	is	a	feature	of	C#	that	reduces	the	number	of	code
lines.	A	great	number	of	code	lines	in	production	code	verify	null	conditions.
Before	accessing	members	of	a	variable	that	is	passed	as	a	method	parameter,	the
variable	needs	to	be	checked	to	determine	whether	it	has	a	value	of	null.
Otherwise,	a	NullReferenceException	would	be	thrown.	A	.NET	design
guideline	specifies	that	code	should	never	throw	exceptions	of	these	types	and
should	always	check	for	null	conditions.	However,	such	checks	could	be	missed
easily.	This	code	snippet	verifies	whether	the	passed	parameter	p	is	not	null.	In
case	it	is	null,	the	method	just	returns	without	continuing:

public	void	ShowPerson(Person?	p)

{

		if	(p	is	null)	return;

		string	firstName	=	p.FirstName;

		//…

}

Using	the	null-conditional	operator	to	access	the	FirstName	property
(p?.FirstName),	when	p	is	null,	only	null	is	returned	without	continuing	to	the
right	side	of	the	expression	(code	file	OperatorsSample/Program.cs):

public	void	ShowPerson(Person?	p)

{

		string	firstName	=	p?.FirstName;

		//…

}

When	a	property	of	an	int	type	is	accessed	using	the	null-conditional	operator,
the	result	cannot	be	directly	assigned	to	an	int	type	because	the	result	can	be
null.	One	option	to	resolve	this	is	to	assign	the	result	to	a	nullable	int	:

int?	age	=	p?.Age;

Of	course,	you	can	also	solve	this	issue	by	using	the	null-coalescing	operator	and
defining	another	result	(for	example,	0)	in	case	the	result	of	the	left	side	is	null	:

int	age1	=	p?.Age	??	0;

You	also	can	combine	multiple	null-conditional	operators.	In	the	following
example,	the	Address	property	of	a	Person	object	is	accessed,	and	this	property
in	turn	defines	a	City	property.	Null	checks	need	to	be	done	for	the	Person
object	and,	if	it	is	not	null,	also	for	the	result	of	the	Address	property:

Person	p	=	GetPerson();

string	city	=	null;

if	(p	!=	null	&&	p.HomeAddress	!=	null)

{

		city	=	p.HomeAddress.City;

}

When	you	use	the	null-conditional	operator,	the	code	becomes	much	simpler:

string	city	=	p?.HomeAddress?.City;

You	can	also	use	the	null-conditional	operator	with	arrays.	With	the	following
code	snippet,	a	NullReferenceException	is	thrown	using	the	index	operator	to
access	an	element	of	an	array	variable	that	is	null	:

int[]	arr	=	null;

int	x1	=	arr[0];

Of	course,	traditional	null	checks	could	be	done	to	avoid	this	exceptional
condition.	A	simpler	version	uses	?[0]	to	access	the	first	element	of	the	array.	In
case	the	result	is	null,	the	null-coalescing	operator	returns	the	value	0	for	the	x1
variable:

int	x1	=	arr?[0]	??	0;

USING	BINARY	OPERATORS
Working	with	binary	values	historically	has	been	an	important	concept	to
understand	when	learning	programming	because	the	computer	works	with	0s	and
1s.	Many	people	who	are	newer	to	programming	may	have	missed	learning	this
because	they	start	to	learn	programming	with	Blocks,	Scratch,	Python,	and
possibly	JavaScript.	If	you	are	already	fluent	with	0s	and	1s,	this	section	might
still	help	you	as	a	refresher.

First,	let's	start	with	simple	calculations	using	binary	operators.	The	method
SimpleCalculations	first	declares	and	initializes	the	variables	binary1	and
binary2	with	binary	values—using	the	binary	literal	and	digit	separators.	Using
the	&	operator,	the	two	values	are	combined	with	the	binary	AND	operator	and
written	to	the	variable	binaryAnd.	In	the	following	code,	the	|	operator	is	used

to	create	the	binaryOr	variable,	the	^	operator	for	the	binaryXOR	variable,	and
the	~	operator	for	the	reverse1	variable	(code	file
BinaryCalculations/Program.cs):

void	SimpleCalculations()

{

		Console.WriteLine(nameof(SimpleCalculations));

		uint	binary1	=	0b1111_0000_1100_0011_1110_0001_0001_1000;

		uint	binary2	=	0b0000_1111_1100_0011_0101_1010_1110_0111;

		uint	binaryAnd	=	binary1	&	binary2;

		DisplayBits("AND",	binaryAnd,	binary1,	binary2);

		uint	binaryOR	=	binary1	|	binary2;

		DisplayBits("OR",	binaryOR,	binary1,	binary2);

		uint	binaryXOR	=	binary1	^	binary2;

		DisplayBits("XOR",	binaryXOR,	binary1,	binary2);

		uint	reverse1	=	~binary1;

		DisplayBits("NOT",	reverse1,	binary1);

		Console.WriteLine();

}

To	display	uint	and	int	variables	in	a	binary	form,	the	extension	method
ToBinaryString	is	created.	Convert.ToString	offers	an	overload	with	two	int
parameters,	where	the	second	int	value	is	the	toBase	parameter.	Using	this,	you
can	format	the	output	string	binary	by	passing	the	value	2	(for	binary),	8	(for
octal),	10	(for	decimal),	and	16	(for	hexadecimal).	By	default,	if	a	binary	value
starts	with	0	values,	these	values	are	ignored	and	not	printed.	The	PadLeft
method	fills	up	these	0	values	in	the	string.	The	number	of	string	characters
needed	is	calculated	by	the	sizeof	operator	and	a	left	shift	of	four	bits.	The
sizeof	operator	returns	the	number	of	bytes	for	the	specified	type,	as	discussed
earlier	in	this	chapter.	For	displaying	the	bits,	the	number	of	bytes	needs	to	be
multiplied	by	8,	which	is	the	same	as	shifting	three	bits	to	the	left.	Another
extension	method	is	AddSeparators,	which	adds	_	separators	after	every	four
digits	using	LINQ	methods	(code	file
BinaryCalculations/BinaryExtensions.cs):

public	static	class	BinaryExtensions

{

		public	static	string	ToBinaryString(this	uint	number)	=>		

				Convert.ToString(number,	toBase:	2).PadLeft(sizeof(uint)	<<	

3,	'0');

	

		public	static	string	ToBinaryString(this	int	number)	=>	

				Convert.ToString(number,	toBase:	2).PadLeft(sizeof(int)	<<	

3,	'0');

	

		public	static	string	AddSeparators(this	string	number)	=>

				string.Join('_',

						Enumerable.Range(0,	number.Length	/	4)

								.Select(i	=>	number.Substring(i	*	4,	4)).ToArray());

}

NOTE The	AddSeparators	method	makes	use	of	LINQ.	LINQ	is	discussed
in	detail	in	Chapter	9,	“Language	Integrated	Query.”

The	method	DisplayBits,	which	is	invoked	from	the	previously	shown
SimpleCalculations	method,	makes	use	of	the	ToBinaryString	and
AddSeparators	extension	methods.	Here,	the	operands	used	for	the	operation	are
displayed,	as	well	as	the	result	(code	file	BinaryCalculations/Program.cs):

void	DisplayBits(string	title,	uint	result,	uint	left,	

		uint?	right	=	null)

{

		Console.WriteLine(title);

		Console.WriteLine(left.ToBinaryString().AddSeparators());

		if	(right.HasValue)

		{

				

Console.WriteLine(right.Value.ToBinaryString().AddSeparators());

		}

		Console.WriteLine(result.ToBinaryString().AddSeparators());

		Console.WriteLine();

}

When	you	run	the	application,	you	can	see	the	following	output	using	the	binary
&	operator.	With	this	operator,	the	resulting	bits	are	only	1	when	both	input
values	are	also	1:

AND

1111_0000_1100_0011_1110_0001_0001_1000

0000_1111_1100_0011_0101_1010_1110_0111

0000_0000_1100_0011_0100_0000_0000_0000

When	you	apply	the	binary	|	operator,	the	result	bit	is	set	(1)	if	one	of	the	input
bits	is	set:

OR

1111_0000_1100_0011_1110_0001_0001_1000

0000_1111_1100_0011_0101_1010_1110_0111

1111_1111_1100_0011_1111_1011_1111_1111

With	the	^	operator,	the	result	is	set	if	just	one	of	the	original	bits	is	set,	but	not
both:

XOR

1111_0000_1100_0011_1110_0001_0001_1000

0000_1111_1100_0011_0101_1010_1110_0111

1111_1111_0000_0000_1011_1011_1111_1111

And	finally,	with	the	~	operator,	the	result	is	the	negation	of	the	original:

NOT

1111_0000_1100_0011_1110_0001_0001_1000

0000_1111_0011_1100_0001_1110_1110_0111

NOTE For	working	with	binary	values,	read	about	using	the	BitArray
class	in	Chapter	6.

Shifting	Bits
As	you've	already	seen	in	the	previous	sample,	shifting	three	bits	to	the	left	is	a
multiplication	by	8.	A	shift	by	one	bit	is	a	multiplication	by	2.	This	is	a	lot	faster
than	invoking	the	multiply	operator—in	case	you	need	to	multiply	by	2,	4,	8,	16,
32,	and	so	on.

The	following	code	snippet	sets	one	bit	in	the	variable	s1,	and	in	the	for	loop
the	bit	always	shifts	by	one	bit	(code	file	BinaryCalculations/Program.cs):

void	ShiftingBits()

{

		Console.WriteLine(nameof(ShiftingBits));

		ushort	s1	=	0b01;

		Console.WriteLine($"{"Binary",16}	{"Decimal",8}	{"Hex",6}");

		for	(int	i	=	0;	i	<	16;	i++)

		{	

				Console.WriteLine($"{s1.ToBinaryString(),16}	{s1,8}	hex:	

{s1,6:X}");

				s1	=	(ushort)(s1	<<	1);

		}

		Console.WriteLine();

}

In	the	program	output,	you	can	see	binary,	decimal,	and	hexadecimal	values	with
the	loop:

										Binary		Decimal				Hex

0000000000000001								1						1

0000000000000010								2						2

0000000000000100								4						4

0000000000001000								8						8

0000000000010000							16					10

0000000000100000							32					20

0000000001000000							64					40

0000000010000000						128					80

0000000100000000						256				100

0000001000000000						512				200

0000010000000000					1024				400

0000100000000000					2048				800

0001000000000000					4096			1000

0010000000000000					8192			2000

0100000000000000				16384			4000

1000000000000000				32768			8000

Signed	and	Unsigned	Numbers
One	important	thing	to	remember	when	working	with	binary	numbers	is	that
when	using	signed	types,	such	as	int,	long,	and	short,	the	leftmost	bit	is	used	to
represent	the	sign.	When	you	use	an	int,	the	highest	number	available	is
2147483647	—the	positive	number	of	31	bits	or	0x7FFF_FFFF.	With	a	uint,	the
highest	number	available	is	4294967295	or	0xFFFF_FFFF.	This	represents	the
positive	number	of	32	bits.	With	the	int,	the	other	half	of	the	number	range	is
used	for	negative	numbers.

To	understand	how	negative	numbers	are	represented,	the	following	code	snippet
initializes	the	maxNumber	variable	to	the	highest	positive	number	that	fits	into	15
bits	using	short.MaxValue.	Then,	in	a	for	loop,	the	variable	is	incremented
three	times.	In	the	results,	binary,	decimal,	and	hexadecimal	values	are	shown
(code	file	BinaryCalculations/Program.cs):

void	SignedNumbers()

{

		Console.WriteLine(nameof(SignedNumbers));

	

		void	DisplayNumber(string	title,	short	x)	=>

				Console.WriteLine($"{title,-11}	"	+

						$"bin:	{x.ToBinaryString().AddSeparators()},	"	+					

						$"dec:	{x,6},	hex:	{x,4:X}");

	

		short	maxNumber	=	short.MaxValue;

		DisplayNumber("max	short",	maxNumber);

		for	(int	i	=	0;	i	<	3;	i++)

		{

				maxNumber++;

				DisplayNumber($"added	{i	+	1}",	maxNumber);

		}

		Console.WriteLine();

		//…

}

With	the	output	of	the	application,	you	can	see	all	the	bits—except	the	sign	bit—
are	set	to	achieve	the	maximum	integer	value.	The	output	shows	the	same	value
in	different	formats—binary,	decimal,	and	hexadecimal.	Adding	1	to	the	first
output	results	in	an	overflow	of	the	short	type	setting	the	sign	bit,	and	all	other
bits	are	0.	This	is	the	highest	negative	value	for	the	int	type.	After	this	result,
two	more	increments	are	done:

max	short				bin:	0111_1111_1111_1111,	dec:		32767,	hex:	7FFF

added	1						bin:	1000_0000_0000_0000,	dec:	-32768,	hex:	8000

added	2						bin:	1000_0000_0000_0001,	dec:	-32767,	hex:	8001

added	3						bin:	1000_0000_0000_0010,	dec:	-32766,	hex:	8002

With	the	next	code	snippet,	the	variable	zero	is	initialized	to	0.	In	the	for	loop,
this	variable	is	decremented	three	times:

short	zero	=	0;

DisplayNumber("zero",	zero);

for	(int	i	=	0;	i	<	3;	i++)

{

		zero--;

		DisplayNumber($"subtracted	{i	+	1}",	zero);

}

Console.WriteLine();

With	the	output,	you	can	see	0	is	represented	with	all	the	bits	not	set.	Doing	a
decrement	results	in	decimal	-1,	which	is	all	the	bits	set,	including	the	sign	bit:

zero									bin:	0000_0000_0000_0000,	dec:						0,	hex:				0

subtracted	1	bin:	1111_1111_1111_1111,	dec:					-1,	hex:	FFFF

subtracted	2	bin:	1111_1111_1111_1110,	dec:					-2,	hex:	FFFE

subtracted	3	bin:	1111_1111_1111_1101,	dec:					-3,	hex:	FFFD

Next,	start	with	the	largest	negative	number	for	a	short.	The	number	is
incremented	three	times:

short	minNumber	=	short.MinValue;

DisplayNumber("min	number",	minNumber);

for	(int	i	=	0;	i	<	3;	i++)

{

		minNumber++;

		DisplayNumber($"added	{i	+	1}",	minNumber);

}

Console.WriteLine();

The	highest	negative	number	was	already	shown	earlier	when	overflowing	the
highest	positive	number.	Earlier	you	saw	this	same	number	when	int.MinValue
was	used.	This	number	is	then	incremented	three	times:

min	number			bin:	1000_0000_0000_0000,	dec:	-32768,	hex:	8000

added	1						bin:	1000_0000_0000_0001,	dec:	-32767,	hex:	8001

added	2						bin:	1000_0000_0000_0010,	dec:	-32766,	hex:	8002

added	3						bin:	1000_0000_0000_0011,	dec:	-32765,	hex:	8003

TYPE	SAFETY
The	Intermediate	Language	(IL)	enforces	strong	type	safety	upon	its	code.
Strong	typing	enables	many	of	the	services	provided	by	.NET,	including	security
and	language	interoperability.	As	you	would	expect	from	a	language	compiled
into	IL,	C#	is	also	strongly	typed.	Among	other	things,	this	means	that	data	types
are	not	always	seamlessly	interchangeable.	This	section	looks	at	conversions
between	primitive	types.

NOTE C#	also	supports	conversions	between	different	reference	types	and
allows	you	to	define	how	data	types	that	you	create	behave	when	converted
to	and	from	other	types.	Both	of	these	topics	are	discussed	later	in	this
chapter.

Generics,	however,	enable	you	to	avoid	some	of	the	most	common	situations
in	which	you	would	need	to	perform	type	conversions.	See	Chapter	4,
“Object-Oriented	Programming	in	C#”,	and	Chapter	8	when	using	many
generic	collection	classes.

Type	Conversions
Often,	you	need	to	convert	data	from	one	type	to	another.	Consider	the	following
code:

byte	value1	=	10;

byte	value2	=	23;

byte	total	=	value1	+	value2;

Console.WriteLine(total);

When	you	attempt	to	compile	these	lines,	you	get	the	following	error	message:

Cannot	implicitly	convert	type	'int'	to	'byte'

The	problem	here	is	that	when	you	add	2	bytes	together,	the	result	is	returned	as
an	int,	not	another	byte.	This	is	because	a	byte	can	contain	only	8	bits	of	data,
so	adding	2	bytes	together	could	easily	result	in	a	value	that	cannot	be	stored	in	a
single	byte.	If	you	want	to	store	this	result	in	a	byte	variable,	you	have	to
convert	it	back	to	a	byte.	The	following	sections	discuss	two	conversion
mechanisms	supported	by	C#—implicit	and	explicit.

Implicit	Conversions
Conversion	between	types	can	normally	be	achieved	automatically	(implicitly)
only	if	you	can	guarantee	that	the	value	is	not	changed	in	any	way.	This	is	why
the	previous	code	failed;	by	attempting	a	conversion	from	an	int	to	a	byte,	you
were	potentially	losing	3	bytes	of	data.	The	compiler	won't	let	you	do	that	unless
you	explicitly	specify	that's	what	you	want	to	do.	If	you	store	the	result	in	a	long
instead	of	a	byte,	however,	you	will	have	no	problems:

byte	value1	=	10;

byte	value2	=	23;

long	total	=	value1	+	value2;	//	this	will	compile	fine

Console.WriteLine(total);

Your	program	has	compiled	with	no	errors	at	this	point	because	a	long	holds
more	bytes	of	data	than	a	byte,	so	there	is	no	risk	of	data	being	lost.	In	these
circumstances,	the	compiler	is	happy	to	make	the	conversion	for	you	without
you	needing	to	ask	for	it	explicitly.	As	you	would	expect,	you	can	perform
implicit	conversions	only	from	a	smaller	integer	type	to	a	larger	one,	not	from
larger	to	smaller.	You	can	also	convert	between	integers	and	floating-point
values;	however,	the	rules	are	slightly	different	here.	Though	you	can	convert
between	types	of	the	same	size,	such	as	int	/	uint	to	float	and	long	/	ulong	to
double,	you	can	also	convert	from	long	/	ulong	to	float.	You	might	lose	4
bytes	of	data	doing	this,	but	it	only	means	that	the	value	of	the	float	you	receive
will	be	less	precise	than	if	you	had	used	a	double	;	the	compiler	regards	this	as
an	acceptable	possible	error	because	the	magnitude	of	the	value	is	not	affected.
You	can	also	assign	an	unsigned	variable	to	a	signed	variable	as	long	as	the
value	limits	of	the	unsigned	type	fit	between	the	limits	of	the	signed	variable.

Nullable	value	types	introduce	additional	considerations	when	you're	implicitly
converting	value	types:

Nullable	value	types	implicitly	convert	to	other	nullable	value	types
following	the	conversion	rules	described	for	non-nullable	types	in	the
previous	rules;	that	is,	int?	implicitly	converts	to	long?,	float?,	double?,
and	decimal	?.

Non-nullable	value	types	implicitly	convert	to	nullable	value	types
according	to	the	conversion	rules	described	in	the	preceding	rules;	that	is,
int	implicitly	converts	to	long?,	float?,	double?,	and	decimal?.

Nullable	value	types	do	not	implicitly	convert	to	non-nullable	value	types;
you	must	perform	an	explicit	conversion	as	described	in	the	next	section.
That's	because	there	is	a	chance	that	a	nullable	value	type	will	have	the
value	null,	which	cannot	be	represented	by	a	non-nullable	type.

Explicit	Conversions
Many	conversions	cannot	be	implicitly	made	between	types,	and	the	compiler
returns	an	error	if	any	are	attempted.	The	following	are	some	of	the	conversions
that	cannot	be	made	implicitly:

int	to	short	—Data	loss	is	possible.

int	to	uint	—Data	loss	is	possible.

uint	to	int	—Data	loss	is	possible.

float	to	int	—Everything	is	lost	after	the	decimal	point.

Any	numeric	type	to	char	—Data	loss	is	possible.

decimal	to	any	other	numeric	type—The	decimal	type	is	internally
structured	differently	from	both	integers	and	floating-point	numbers.

int?	to	int	—The	nullable	type	may	have	the	value	null.

However,	you	can	explicitly	carry	out	such	conversions	using	casts.	When	you
cast	one	type	to	another,	you	deliberately	force	the	compiler	to	make	the
conversion.	A	cast	looks	like	this:

long	val	=	30000;

int	i	=	(int)val;	//	A	valid	cast.	The	maximum	int	is	2147483647

You	indicate	the	type	to	which	you	are	casting	by	placing	its	name	in	parentheses
before	the	value	to	be	converted.

Casting	can	be	a	dangerous	operation	to	undertake.	Even	a	simple	cast	from	a
long	to	an	int	can	cause	problems	if	the	value	of	the	original	long	is	greater

than	the	maximum	value	of	an	int	:

long	val	=	3000000000;

int	i	=	(int)val;	//	An	invalid	cast.	The	maximum	int	is	

2147483647

In	this	case,	you	get	neither	an	error	nor	the	result	you	expect.	If	you	run	this
code	and	output	the	value	stored	in	i,	this	is	what	you	get:

-1294967296

It	is	good	practice	to	assume	that	an	explicit	cast	does	not	return	the	results	you
expect.	As	shown	earlier,	C#	provides	a	checked	operator	that	you	can	use	to	test
whether	an	operation	causes	an	arithmetic	overflow.	You	can	use	the	checked
operator	to	confirm	that	a	cast	is	safe	and	to	force	the	runtime	to	throw	an
overflow	exception	if	it	is	not:

long	val	=	3000000000;

int	i	=	checked((int)val);

Bearing	in	mind	that	all	explicit	casts	are	potentially	unsafe,	make	sure	you
include	code	in	your	application	to	deal	with	possible	failures	of	the	casts.
Chapter	10,	“Errors	and	Exceptions,”	introduces	structured	exception	handling
using	the	try	and	catch	statements.

Using	casts,	you	can	convert	most	primitive	data	types	from	one	type	to	another;
for	example,	in	the	following	code,	the	value	0.5	is	added	to	price,	and	the	total
is	cast	to	an	int	:

double	price	=	25.30;

int	approximatePrice	=	(int)(price	+	0.5);

This	gives	the	price	rounded	to	the	nearest	dollar.	However,	in	this	conversion,
data	is	lost—namely,	everything	after	the	decimal	point.	Therefore,	such	a
conversion	should	never	be	used	if	you	want	to	continue	to	do	more	calculations
using	this	modified	price	value.	However,	it	is	useful	if	you	want	to	output	the
approximate	value	of	a	completed	or	partially	completed	calculation—if	you
don't	want	to	bother	the	user	with	a	lot	of	figures	after	the	decimal	point.

This	example	shows	what	happens	if	you	convert	an	unsigned	integer	into	a	char
:

ushort	c	=	43;

char	symbol	=	(char)c;

Console.WriteLine(symbol);

The	output	is	the	character	that	has	an	ASCII	number	of	43,	which	is	the	+	sign.
This	will	work	for	any	kind	of	conversion	you	want	between	the	numeric	types
(including	char),	such	as	converting	a	decimal	into	a	char,	or	vice	versa.

Converting	between	value	types	is	not	restricted	to	isolated	variables,	as	you
have	seen.	You	can	convert	an	array	element	of	type	double	to	a	struct	member
variable	of	type	int	:

struct	ItemDetails

{

		public	string	Description;

		public	int	ApproxPrice;

}

//…

double[]	Prices	=	{	25.30,	26.20,	27.40,	30.00	};

ItemDetails	id;

id.Description	=	"Hello	there.";

id.ApproxPrice	=	(int)(Prices[0]	+	0.5);

To	convert	a	nullable	type	to	a	non-nullable	type	or	another	nullable	type	where
data	loss	may	occur,	you	must	use	an	explicit	cast.	This	is	true	even	when
converting	between	elements	with	the	same	basic	underlying	type—for	example,
int?	to	int	or	float?	to	float.	This	is	because	the	nullable	type	may	have	the
value	null,	which	cannot	be	represented	by	the	non-nullable	type.	As	long	as	an
explicit	cast	between	two	equivalent	non-nullable	types	is	possible,	so	is	the
explicit	cast	between	nullable	types.	However,	when	casting	from	a	nullable	type
to	a	non-nullable	type	and	the	variable	has	the	value	null,	an
InvalidOperationException	is	thrown.	Here	is	an	example:

int?	a	=	null;

int	b	=	(int)a;	//	Will	throw	exception

By	using	explicit	casts	and	a	bit	of	care	and	attention,	you	can	convert	any
instance	of	a	simple	value	type	to	almost	any	other.	However,	there	are
limitations	on	what	you	can	do	with	explicit	type	conversions—as	far	as	value
types	are	concerned,	you	can	only	convert	to	and	from	the	numeric	and	char
types	and	enum	types.	You	cannot	directly	cast	Booleans	to	any	other	type	or	vice
versa.

If	you	need	to	convert	between	numeric	and	string,	you	can	use	methods
provided	in	the	.NET	class	library.	The	Object	class	implements	a	ToString
method,	which	has	been	overridden	in	all	the	.NET	predefined	types	and	which
returns	a	string	representation	of	the	object:

int	i	=	10;

string	s	=	i.ToString();

Similarly,	if	you	need	to	parse	a	string	to	retrieve	a	numeric	or	Boolean	value,
you	can	use	the	Parse	method	supported	by	all	the	predefined	value	types:

string	s	=	"100";

int	i	=	int.Parse(s);

Console.WriteLine(i	+	50);	//	Add	50	to	prove	it	is	really	an	

int

Note	that	Parse	registers	an	error	by	throwing	an	exception	if	it	is	unable	to
convert	the	string	(for	example,	if	you	try	to	convert	the	string	Hello	to	an
integer).	Again,	exceptions	are	covered	in	Chapter	10.	Instead	of	using	the	Parse
method,	you	can	also	use	TryParse,	which	doesn't	throw	an	exception	in	case	of
an	error,	but	returns	true	if	it	succeeds.

Boxing	and	Unboxing
Chapter	2	explains	that	all	types—both	the	simple	predefined	types,	such	as	int
and	char,	and	the	complex	types,	such	as	classes	and	structs—derive	from	the
object	type.	This	means	you	can	treat	even	literal	values	as	though	they	are
objects:

string	s	=	10.ToString();

However,	you	also	saw	that	C#	data	types	are	divided	into	value	types,	which	are
allocated	on	the	stack,	and	reference	types,	which	are	allocated	on	the	managed
heap.	How	does	this	work	with	the	capability	to	call	methods	on	an	int,	if	the
int	is	nothing	more	than	a	4-byte	value	on	the	stack?

C#	achieves	this	through	a	bit	of	magic	called	boxing.	Boxing	and	its
counterpart,	unboxing,	enable	you	to	convert	value	types	to	reference	types	and
then	back	to	value	types.	I	include	this	topic	in	the	section	on	casting	because
this	is	essentially	what	you	are	doing—you	are	casting	your	value	to	the	object
type.	Boxing	is	the	term	used	to	describe	the	transformation	of	a	value	type	to	a
reference	type.	Basically,	the	runtime	creates	a	temporary	reference-type	box	for
the	object	on	the	heap.

This	conversion	can	occur	implicitly,	as	in	the	preceding	example,	but	you	can
also	perform	it	explicitly:

int	myIntNumber	=	20;

object	myObject	=	myIntNumber;

Unboxing	is	the	term	used	to	describe	the	reverse	process,	whereby	the	value	of
a	previously	boxed	value	type	is	cast	back	to	a	value	type.	Here,	I	use	the	term
cast	because	this	has	to	be	done	explicitly.	The	syntax	is	similar	to	explicit	type
conversions	already	described:

int	myIntNumber	=	20;

object	myObject	=	myIntNumber;	//	Box	the	int

int	mySecondNumber	=	(int)myObject;	//	Unbox	it	back	into	an	int

A	variable	can	be	unboxed	only	if	it	has	been	boxed.	If	you	execute	the	last	line
when	myObject	is	not	a	boxed	int,	you	get	a	runtime	exception.

One	word	of	warning:	When	unboxing,	you	have	to	be	careful	that	the	receiving
value	is	of	the	same	type	as	the	value	that	was	boxed.	Even	if	the	resulting	type
has	enough	room	to	store	all	the	bytes	in	the	value	being	unboxed,	an
InvalidCastException	is	thrown.	You	can	avoid	this	by	casting	from	the
original	type	in	the	new	type,	as	shown	here:

int	myIntNumber	=	42;

object	myObject	=	(object)myIntNumber;

long	myLongNumber	=	(long)(int)myObject;

OPERATOR	OVERLOADING
Instead	of	invoking	methods,	the	code	can	become	more	readable	using
operators.	Just	compare	these	two	code	lines	to	add	two	vectors:

vect3	=	vect1	+	vect2;

vect3	=	vect1.Add(vect2);

With	predefined	number	types,	you	can	use	+,	-,	/,	*,	and	%	operators,	and	you
can	also	concatenate	strings	with	the	+	operator.	Using	such	operators	is	not	only
possible	with	predefined	types,	but	also	with	custom	types	as	long	as	they	make
sense	with	the	types.	What	would	a	+	operator	used	with	two	Person	objects	do?

You	can	overload	the	following	operators:

OPERATORS DESCRIPTION
+x,	-x,	!x,	~x,	++,	--,	true,	false These	are	unary	operators	that	can	be

overloaded.
x	+	y,	x	-	y,	x	*	y,	x	/	y,	x	%	y,
x	&	y,	x	|	y,	x	^	y,	x	<<	y,	x	>>
y,	x	==	y,	x	!=	y,	x	<	y,	x	>	y,	x

These	are	binary	operators	that	can	be
overloaded.

<=	y,	x	>=	y
a[i],	a?[i] Element	access	cannot	be	overloaded

with	an	operator	overload,	but	you	can
create	an	indexer,	which	is	shown	later	in
this	chapter.

(T)x Instead	of	using	an	operator	overload,
you	can	use	the	cast	to	create	a	user-
defined	conversion,	which	is	shown	later
in	this	chapter	as	well.

NOTE You	might	wonder	what	the	reason	is	for	overloading	the	true	and
false	operators.	Conditional	logical	operators	&&	and	||	cannot	be	directly
overloaded.	To	create	a	custom	implementation	for	these	operators,	you	can
overload	the	true	,	the	false	,	the	&	,	and	the	|	operators.

Similarly,	you	can't	explicitly	overload	compound	conversion	operators	such
as	+=	and	-=.	If	you	overload	the	binary	operator,	compound	conversion	is
implicitly	overloaded.

Some	operators	need	to	be	overloaded	in	pairs.	If	you	overload	==	,	you	also
must	overload	!=	.	If	you	overload	<	,	then	you	must	overload	>	,	and	if	you
overload	<=	,	then	you	must	overload	>=	.

How	Operators	Work
To	understand	how	to	overload	operators,	it's	useful	to	think	about	what	happens
when	the	compiler	encounters	an	operator.	Using	the	addition	operator	(+)	as	an
example,	suppose	that	the	compiler	processes	the	following	lines	of	code:

int	x	=	1;

int	y	=	2;

long	z	=	x	+	y;

The	compiler	identifies	that	it	needs	to	add	two	integers	and	assign	the	result	to	a
long.	The	expression	x	+	y	is	just	an	intuitive	and	convenient	syntax	for	calling
a	method	that	adds	two	numbers.	The	method	takes	two	parameters,	x	and	y,	and
returns	their	sum.	Therefore,	the	compiler	does	the	same	thing	it	does	for	any
method	call:	it	looks	for	the	best	matching	overload	of	the	addition	operator
based	on	the	parameter	types—in	this	case,	one	that	takes	two	integers.	As	with
normal	overloaded	methods,	the	desired	return	type	does	not	influence	the

compiler's	choice	as	to	which	version	of	a	method	it	calls.	As	it	happens,	the
overload	called	in	the	example	takes	two	int	parameters	and	returns	an	int	;	this
return	value	is	subsequently	converted	to	a	long.	This	can	result	in	an	overflow
if	the	two	added	int	values	don't	fit	into	an	int	although	a	long	is	declared	to
write	the	result	to.

The	next	lines	cause	the	compiler	to	use	a	different	overload	of	the	addition
operator:

double	d1	=	4.0;

double	d2	=	d1	+	x;

In	this	instance,	the	parameters	are	a	double	and	an	int,	but	there	is	no	overload
of	the	addition	operator	that	takes	this	combination	of	parameters.	Instead,	the
compiler	identifies	the	best	matching	overload	of	the	addition	operator	as	being
the	version	that	takes	two	double	s	as	its	parameters,	and	it	implicitly	casts	the
int	to	a	double.	Adding	two	double	s	requires	a	different	process	from	adding
two	integers.	Floating-point	numbers	are	stored	as	a	mantissa	and	an	exponent.
Adding	them	involves	bit-shifting	the	mantissa	of	one	of	the	double	s	so	that	the
two	exponents	have	the	same	value,	adding	the	mantissas,	and	then	shifting	the
mantissa	of	the	result	and	adjusting	its	exponent	to	maintain	the	highest	possible
accuracy	in	the	answer.

Now	you	are	in	a	position	to	see	what	happens	if	the	compiler	finds	something
like	this:

Vector	vect1,	vect2,	vect3;

//	initialize	vect1	and	vect2

vect3	=	vect1	+	vect2;

vect1	=	vect1	*	2;

Here,	Vector	is	the	struct,	which	is	defined	in	the	following	section.	The
compiler	sees	that	it	needs	to	add	two	Vector	instances,	vect1	and	vect2,
together.	It	looks	for	an	overload	of	the	addition	operator,	which	takes	two
Vector	instances	as	its	parameters.

If	the	compiler	finds	an	appropriate	overload,	it	calls	up	the	implementation	of
that	operator.	If	it	cannot	find	one,	it	checks	whether	there	is	any	other	overload
for	+	that	it	can	use	as	a	best	match—perhaps	something	with	two	parameters	of
other	data	types	that	can	be	implicitly	converted	to	Vector	instances.	If	the
compiler	cannot	find	a	suitable	overload,	it	raises	a	compilation	error,	just	as	it
would	if	it	could	not	find	an	appropriate	overload	for	any	other	method	call.

Operator	Overloading	with	the	Vector	Type
This	section	demonstrates	operator	overloading	through	developing	a	struct
named	Vector	that	represents	a	three-dimensional	vector.	The	3D	vector	is	just	a
set	of	three	numbers	(doubles)	that	tell	you	how	far	something	is	moving.	The
variables	representing	the	numbers	are	called	X,	Y,	and	Z	:	the	X	tells	you	how	far
something	moves	east,	Y	tells	you	how	far	it	moves	north,	and	Z	tells	you	how	far
it	moves	upward.	Combine	the	three	numbers	and	you	get	the	total	movement.

You	can	add	or	multiply	vectors	by	other	vectors	or	by	numbers.	Incidentally,	in
this	context,	we	use	the	term	scalar,	which	is	math-speak	for	a	simple	number—
in	C#	terms	that	is	just	a	double.	The	significance	of	addition	should	be	clear.	If
you	move	first	by	the	vector	(3.0,	3.0,	1.0)	and	then	move	by	the	vector
(2.0,	-4.0,	-4.0),	the	total	amount	you	have	moved	can	be	determined	by
adding	the	two	vectors.	Adding	vectors	means	adding	each	component
individually,	so	you	get	(5.0,	-1.0,	-3.0).	In	this	context,	mathematicians
write	c=a+b,	where	a	and	b	are	the	vectors	and	c	is	the	resulting	vector.	You	want
to	be	able	to	use	the	Vector	struct	the	same	way.

NOTE The	fact	that	this	example	is	developed	as	a	struct	rather	than	a
class	is	not	significant	with	operator	overloading.	Operator	overloading
works	in	the	same	way	for	structs,	classes,	and	records.

The	following	is	the	definition	for	Vector	—containing	the	read-only	public
fields,	constructors,	and	a	ToString	override	so	you	can	easily	view	the	contents
of	a	Vector.	Operator	overloads	are	added	next	(code	file
OperatorOverloadingSample/Vector.cs):

readonly	struct	Vector

{

		public	Vector(double	x,	double	y,	double	z)	=>	(X,	Y,	Z)	=	(x,	

y,	z);

	

		public	Vector(Vector	v)	=>	(X,	Y,	Z)	=	(v.X,	v.Y,	v.Z);

	

		public	readonly	double	X;

		public	readonly	double	Y;

		public	readonly	double	Z;

		public	override	string	ToString()	=>	$"({X},	{Y},	{Z})";

}

This	example	has	two	constructors	that	require	specifying	the	initial	value	of	the

vector,	either	by	passing	in	the	values	of	each	component	or	by	supplying
another	Vector	whose	value	can	be	copied.	Constructors	like	the	second	one,
which	takes	a	single	Vector	argument,	are	often	termed	copy	constructors
because	they	effectively	enable	you	to	initialize	a	class	or	struct	instance	by
copying	another	instance.

Here	is	the	interesting	part	of	the	Vector	struct—the	operator	overload	that
provides	support	for	the	addition	operator:

public	static	Vector	operator	+(Vector	left,	Vector	right)	=>

		new	Vector(left.X	+	right.X,	left.Y	+	right.Y,	left.Z	+	

right.Z);	

The	operator	overload	is	declared	in	much	the	same	way	as	a	static	method,
except	that	the	operator	keyword	tells	the	compiler	it	is	actually	an	operator
overload	you	are	defining.	The	operator	keyword	is	followed	by	the	actual
symbol	for	the	relevant	operator,	in	this	case	the	addition	operator	(+).	The	return
type	is	whatever	type	you	get	when	you	use	this	operator.	Adding	two	vectors
results	in	a	vector;	therefore,	the	return	type	is	also	a	Vector.	For	this	particular
override	of	the	addition	operator,	the	return	type	is	the	same	as	the	containing
class,	but	that	is	not	necessarily	the	case,	as	you	see	later	in	this	example.	The
two	parameters	are	the	things	you	are	operating	on.	For	binary	operators	(those
that	take	two	parameters),	such	as	the	addition	and	subtraction	operators,	the	first
parameter	is	the	value	on	the	left	of	the	operator,	and	the	second	parameter	is	the
value	on	the	right.

The	implementation	of	this	operator	returns	a	new	Vector	that	is	initialized
using	the	X,	Y,	and	Z	fields	from	the	left	and	right	variables.

C#	requires	that	all	operator	overloads	be	declared	as	public	and	static,	which
means	they	are	associated	with	their	class	or	struct,	not	with	a	particular
instance.	Because	of	this,	the	body	of	the	operator	overload	has	no	access	to
nonstatic	class	members	or	the	this	identifier.	This	is	fine	because	the
parameters	provide	all	the	input	data	the	operator	needs	to	know	to	perform	its
task.

Now	all	you	need	to	do	is	write	some	simple	code	to	test	the	Vector	struct	(code
file	OperatorOverloadingSample/Program.cs):

Vector	vect1,	vect2,	vect3;

vect1	=	new(3.0,	3.0,	1.0);

vect2	=	new(2.0,	-4.0,	-4.0);

vect3	=	vect1	+	vect2;

Console.WriteLine($"vect1	=	{vect1}");

Console.WriteLine($"vect2	=	{vect2}");

Console.WriteLine($"vect3	=	{vect3}");

Compiling	and	running	this	code	returns	the	following	result:

vect1	=	(3,	3,	1)

vect2	=	(2,	-4,	-4)

vect3	=	(5,	-1,	-3)

Just	by	implementing	the	+	operator,	you	can	use	the	compound	assignment
operator	+=.	Let's	add	vect2	to	the	existing	value	of	vect3	:

vect3	+=	vect2;

Console.WriteLine($"vect3	=	{vect3}");

This	compiles	and	runs,	resulting	in	the	following:

vect3	=	(7,	-5,	-7)

In	addition	to	adding	vectors,	you	can	multiply	and	subtract	them	and	compare
their	values.	These	operators	can	be	implemented	in	the	same	way	as	the	+
operator.	What	might	be	more	interesting	is	multiplying	a	vector	by	a	double.
With	the	following	three	operator	overloads,	a	vector	is	multiplied	by	a	vector,	a
vector	is	multiplied	by	a	double,	and	a	double	is	multiplied	by	a	vector.	You	need
to	implement	the	different	operators	depending	what's	on	the	left	and	right	sides,
but	you	can	reuse	implementations.	The	operator	overload	where	the	vector	is	on
the	left	and	the	double	on	the	right	just	reuses	the	operator	overload	where	the
arguments	are	changed	(code	file	OperatorOverloadingSample/Vector.cs):

public	static	Vector	operator	*(Vector	left,	Vector	right)	=>

		new	Vector(left.X	*	right.X,	left.Y	*	right.Y,	left.Z	*	

right.Z);

	

public	static	Vector	operator	*(double	left,	Vector	right)	=>

		new	Vector(left	*	right.X,	left	*	right.Y,	left	*	right.Z);

	

public	static	Vector	operator	*(Vector	left,	double	right)	=>

		right	*	left;

The	operators	are	used	in	the	following	code	snippet.	The	int	number	used	is
converted	to	a	double	because	this	is	the	best	match	for	the	overload:

Console.WriteLine($"2	*	vect3	=	{2	*	vect3}");

Console.WriteLine($"vect3	+=	vect2	gives	{vect3	+=	vect2}");

Console.WriteLine($"vect3	=	vect1	*	2	gives	{vect3	=	vect1	*	

2}");

Console.WriteLine($"vect1	*	vect3	=	{vect1	*	vect3}");

NOTE There's	an	important	restriction	on	operator	overloading.	Because
operator	overloads	are	defined	using	a	static	member,	you	cannot	add	static
members	to	an	interface	contract.	This	might	change	in	a	future	C#	version;
interfaces	just	got	an	improvement	with	C#	8	and	default	interface	methods.
Some	more	improvements	have	already	been	discussed.

In	case	you	need	operator	overloads	with	generic	types,	you	can	create
constraints	on	classes.	The	types	can	also	be	abstract	classes	and	generic
types.	With	generic	types,	you	can	implement	operator	overloads.

COMPARING	OBJECTS	FOR	EQUALITY
Comparing	objects	for	equality	has	become	easier	with	C#	9	and	records.
Records	already	have	built-in	functionality	to	compare	the	values	of	the	type.
Let's	look	at	what's	implemented	with	records	(what	you	can	override)	and	what
you	need	to	do	with	classes	and	structs.

To	compare	references,	the	object	class	defines	the	static	method
ReferenceEquals.	This	is	not	a	comparison	by	value;	instead	it	just	compares
the	variables	if	they	reference	the	same	object	in	the	heap.	The	functionality	is
the	same	for	classes	and	records.	Comparing	two	variables	referencing	the	same
object	in	the	heap	returns	true.	If	the	two	variables	reference	different	objects	in
the	heap,	the	method	returns	false,	even	if	the	content	of	the	two	objects	is	the
same.	Using	this	method	to	compare	two	variables	referencing	structs,	new
objects	are	created	to	reference	the	value	type	(known	as	boxing)	and	thus
always	returns	false.	The	compiler	warns	on	comparing	structs	this	way.

The	default	implementation	of	the	object	class	Equals	method	just	invokes
object.ReferenceEquals.	In	case	you	need	to	compare	the	values	for	equality,
you	can	use	the	built-in	functionality	of	the	record	type	or	create	a	custom
implementation	with	the	class.	To	compare	the	values	of	two	reference	types,
you	need	to	consider	what's	automatically	implemented	by	a	record	and	what
you	can	implement	when	comparing	classes	for	equality:

The	object	type	defines	the	virtual	method	bool	Equals(object?)	that	can
be	overridden.

The	interface	IEquatable<T>	defines	the	generic	method	bool	Equals(T?
object)	that	can	be	implemented.

The	operators	==	and	!=	can	be	overridden.

Records	also	implement	an	EqualityContract,	which	is	used	with	the
comparison	to	not	only	compare	the	values,	but	also	if	the	comparison	is
done	with	the	same	contract.

To	compare	references,	the	Book	class	implements	the	IEquatable<Book>
interface	with	the	bool	Equals(Book?	other)	method.	This	method	compares
the	Title	and	Publisher	properties.	Similar	to	the	record	type,	the	Book	class
specifies	the	EqualityContract	property	to	also	compare	the	type	of	the	class.
This	way,	comparing	the	Title	and	Publisher	properties	with	an	object	of
another	type	returns	always	false.	The	implementation	for	equality	comparison
is	only	done	with	this	method.	The	overridden	Equals	method	from	the	base
class	invokes	this	method,	as	well	as	the	implementation	for	the	operators	==	and
!=.	Implementing	equality	also	requires	overriding	the	GetHashCode	method
from	the	base	class	(code	file	EqualitySample/Book.cs):

class	Book	:	IEquatable<Book>

{

		public	Book(string	title,	string	publisher)

		{

				Title	=	title;

				Publisher	=	publisher;

		}

		public	string	Title	{	get;	}

		public	string	Publisher	{	get;	}

	

		protected	virtual	Type	EqualityContract	{	get;	}	=	

typeof(Book);

	

		public	override	string	ToString()	=>	Title;

	

		public	override	bool	Equals(object?	obj)	=>

				this	==	obj	as	Book;

	

		public	override	int	GetHashCode()	=>

				Title.GetHashCode()	^	Publisher.GetHashCode();

	

		public	virtual	bool	Equals(Book?	other)	=>

				this	==	other;

	

		public	static	bool	operator	==(Book?	left,	Book?	right)	=>

				left?.Title	==	right?.Title	&&	left?.Publisher	==	

right?.Publisher	&&

				left?.EqualityContract	==	right?.EqualityContract;

	

		public	static	bool	operator	!=(Book?	left,	Book?	right)	=>

				!(left	==	right);

}

NOTE Don't	be	tempted	to	overload	the	comparison	operator	by	only
calling	the	instance	version	of	the	Equals	method	inherited	from
System.Object.	If	you	do	so	and	then	an	attempt	is	made	to	evaluate	(objA
==	objB),	when	objA	happens	to	be	null,	you	get	an	exception	because	the
.NET	runtime	tries	to	evaluate	null.Equals(objB).	Working	the	other	way
around	(overriding	Equals	to	call	the	comparison	operator)	should	be	safe.

		

NOTE To	implement	equality	comparison,	some	work	is	needed.	With	the
record	type,	this	work	is	done	from	the	compiler.	If	you	use	records	within
records,	everything	works	out	of	the	box.	However,	if	you	use	classes	as
record	members,	only	references	are	compared—unless	you	implement
equality	comparison.

In	the	Program.cs	file,	two	Book	objects	are	created	that	have	the	same	content.
Because	there	are	two	different	objects	in	the	heap,	object.ReferenceEquals
returns	false.	Next,	the	Equals	method	from	the	IEquatable<Book>	interface,
the	overloaded	object	Equals,	and	the	operator	==	are	used,	and	they	all	return
true	because	of	the	implemented	value	comparison	(code	file
EqualitySample/Program.cs):

Book	book1	=	new("Professional	C#",	"Wrox	Press");

Book	book2	=	new("Professional	C#",	"Wrox	Press");

	

if	(!object.ReferenceEquals(book1,	book2))

{

		Console.WriteLine("Not	the	same	reference");

}

	

if	(book1.Equals(book2))

{

		Console.WriteLine("The	same	object	using	the	generic	Equals	

method");

}

	

object	book3	=	book2;

if	(book1.Equals(book3))

{

		Console.WriteLine("The	same	object	using	the	overridden	Equals	

method");

}

	

if	(book1	==	book2)

{

		Console.WriteLine("The	same	book	using	the	==	operator");

}

NOTE For	struct	types,	similar	functionality	to	classes	applies;	there	are
just	a	few	important	differences.	Remember,	you	can't	use
object.ReferenceEquals	with	value	types.	Another	difference	is	that	the
object.Equals	method	is	already	overridden	to	compare	the	values.	For
more	functionality	with	equality,	similar	to	what	has	been	shown	with	the
Book	class,	implement	the	IEquality<T>	interface	and	override	the	==	and
!=	operators.

IMPLEMENTING	CUSTOM	INDEXERS
Custom	indexers	cannot	be	implemented	using	the	operator	overloading	syntax,
but	they	can	be	implemented	with	a	syntax	that	looks	similar	to	properties.

With	the	following	code	snippet,	an	array	is	created,	and	the	indexer	is	used	to
access	array	elements.	The	second	code	line	uses	the	indexer	to	access	the
second	element	and	pass	42	to	it.	The	third	line	uses	the	indexer	to	access	the
third	element	and	pass	the	value	of	the	element	to	the	variable	x.

int[]	arr1	=	{1,	2,	3};

arr1[1]	=	42;

int	x	=	arr1[2];

NOTE Arrays	are	explained	in	Chapter	6.

To	create	a	custom	indexer,	first	create	a	Person	record	with	the	properties
FirstName,	LastName,	and	Birthday	(code	file
CustomIndexerSample/Person.cs):

public	record	Person(string	FirstName,	string	LastName,	DateTime	

Birthday)

{

		public	override	string	ToString()	=>	$"{FirstName}	

{LastName}";

}

The	class	PersonCollection	defines	a	private	array	field	that	contains	Person
elements	and	a	constructor	where	a	number	of	Person	objects	can	be	passed
(code	file	CustomIndexerSample/PersonCollection.cs):

public	class	PersonCollection

{

		private	Person[]	_people;

	

		public	PersonCollection(params	Person[]	people)	=>

				_people	=	people.ToArray();

}

For	allowing	indexer-syntax	to	be	used	to	access	the	PersonCollection	and
return	Person	objects,	you	can	create	an	indexer.	The	indexer	looks	very	similar
to	a	property	because	it	also	contains	get	and	set	accessors.	What's	different	is
the	name.	Specifying	an	indexer	makes	use	of	the	this	keyword.	The	brackets
that	follow	the	this	keyword	specify	the	type	that	is	used	with	the	index.	An
array	offers	indexers	with	the	int	type,	so	int	types	are	used	here	to	pass	the
information	directly	to	the	contained	array	_people.	The	use	of	the	set	and	get
accessors	is	similar	to	properties.	The	get	accessor	is	invoked	when	a	value	is
retrieved;	the	set	accessor	is	invoked	when	a	Person	object	is	passed	on	the
right	side.

public	Person	this[int	index]

{

		get	=>	_people[index];

		set	=>	_people[index]	=	value;

}

With	indexers,	any	type	can	be	used	as	the	indexing	type.	With	the	sample
application,	the	DateTime	struct	is	used.	This	indexer	is	used	to	return	every
person	with	a	specified	birthday.	Because	multiple	people	can	have	the	same
birthday,	not	a	single	Person	object	is	returned;	instead,	a	list	of	people	is
returned	with	the	interface	IEnumerable<Person>.	With	the	implementation	of
the	indexer,	the	Where	method	is	used.	A	lambda	expression	is	passed	with	the
argument.	The	Where	method	is	defined	in	the	namespace	System.Linq	:

public	IEnumerable<Person>	this[DateTime	birthDay]

{

		get	=>	_people.Where(p	=>	p.Birthday	==	birthDay);

}

The	indexer	using	the	DateTime	type	lets	you	retrieve	Person	objects	but	doesn't
allow	you	to	set	Person	objects	because	there's	a	get	accessor	but	no	set
accessor.	A	shorthand	notation	exists	to	create	the	same	code	with	an	expression-
bodied	member	(the	same	syntax	available	with	properties):

public	IEnumerable<Person>	this[DateTime	birthDay]	=>

		_people.Where(p	=>	p.Birthday	==	birthDay);	

With	the	top-level	statements	of	the	sample	application,	a	PersonCollection
object	with	four	Person	objects	is	created.	With	the	first	WriteLine	method,	the
third	element	is	accessed	using	the	get	accessor	of	the	indexer	with	the	int
parameter.	Within	the	foreach	loop,	the	indexer	with	the	DateTime	parameter	is
used	to	pass	a	specified	date	(code	file	CustomIndexerSample/Program.cs):

		Person	p1	=	new("Ayrton",	"Senna",	new	DateTime(1960,	3,	21));

		Person	p2	=	new("Ronnie",	"Peterson",	new	DateTime(1944,	2,	

14));

		Person	p3	=	new("Jochen",	"Rindt",	new	DateTime(1942,	4,	18));

		Person	p4	=	new("Francois",	"Cevert",	new	DateTime(1944,	2,	

25));

		PersonCollection	coll	=	new(p1,	p2,	p3,	p4);

		Console.WriteLine(coll[2]);

		foreach	(var	r	in	coll[new	DateTime(1960,	3,	21)])

		{

				Console.WriteLine(r);

		}

		Console.ReadLine();

When	you	run	the	program,	the	first	WriteLine	method	writes	Jochen	Rindt	to
the	console;	the	result	of	the	foreach	loop	is	Ayrton	Senna	because	that	person
has	the	same	birthday	as	is	assigned	within	the	second	indexer.

USER-DEFINED	CONVERSIONS
Earlier	in	this	chapter	(see	the	“Explicit	Conversions”	section),	you	learned	that
you	can	convert	values	between	predefined	data	types	through	a	process	of
casting.	You	also	saw	that	C#	allows	two	different	types	of	casts:	implicit	and
explicit.	This	section	looks	at	these	types	of	casts.

For	an	explicit	cast,	you	explicitly	mark	the	cast	in	your	code	by	including	the

destination	data	type	inside	parentheses:

int	i	=	3;

long	l	=	i;	//	implicit

short	s	=	(short)i;	//	explicit

For	the	predefined	data	types,	explicit	casts	are	required	where	there	is	a	risk	that
the	cast	might	fail	or	some	data	might	be	lost.	The	following	are	some	examples:

When	converting	from	an	int	to	a	short,	the	short	might	not	be	large
enough	to	hold	the	value	of	the	int.

When	converting	from	signed	to	unsigned	data	types,	incorrect	results	are
returned	if	the	signed	variable	holds	a	negative	value.

When	converting	from	floating-point	to	integer	data	types,	the	fractional
part	of	the	number	will	be	lost.

When	converting	from	a	nullable	type	to	a	non-nullable	type,	a	value	of
null	causes	an	exception.

By	making	the	cast	explicit	in	your	code,	C#	forces	you	to	affirm	that	you
understand	there	is	a	risk	of	data	loss,	and	therefore	presumably	you	have	written
your	code	to	take	this	into	account.

Because	C#	allows	you	to	define	your	own	data	types	(structs	and	classes),	it
follows	that	you	need	the	facility	to	support	casts	to	and	from	those	data	types.
The	mechanism	is	to	define	a	cast	as	a	member	operator	of	one	of	the	relevant
classes.	Your	cast	operator	must	be	marked	as	either	implicit	or	explicit	to
indicate	how	you	intend	it	to	be	used.	The	expectation	is	that	you	follow	the
same	guidelines	as	for	the	predefined	casts:	if	you	know	that	the	cast	is	always
safe	regardless	of	the	value	held	by	the	source	variable,	then	you	define	it	as
implicit.	Conversely,	if	you	know	there	is	a	risk	of	something	going	wrong	for
certain	values—perhaps	some	loss	of	data	or	an	exception	being	thrown—then
you	should	define	the	cast	as	explicit.

NOTE You	should	define	any	custom	casts	you	write	as	explicit	if	there	are
any	source	data	values	for	which	the	cast	will	fail	or	if	there	is	any	risk	of	an
exception	being	thrown.

The	syntax	for	defining	a	cast	is	similar	to	that	for	overloading	operators
discussed	earlier	in	this	chapter.	This	is	not	a	coincidence—a	cast	is	regarded	as
an	operator	whose	effect	is	to	convert	from	the	source	type	to	the	destination

type.	To	illustrate	the	syntax,	the	following	is	taken	from	an	example	struct
named	Currency,	which	is	introduced	in	the	next	section,	“Implementing	User-
Defined	Casts”:

public	static	implicit	operator	float	(Currency	value)

{

		//	processing

}

The	return	type	of	the	operator	defines	the	target	type	of	the	cast	operation,	and
the	single	parameter	is	the	source	object	for	the	conversion.	The	cast	defined
here	allows	you	to	implicitly	convert	the	value	of	a	Currency	into	a	float.	Note
that	if	a	conversion	has	been	declared	as	implicit,	the	compiler	permits	its	use
either	implicitly	or	explicitly.	If	it	has	been	declared	as	explicit,	the	compiler
only	permits	it	to	be	used	explicitly.	Similar	to	other	operator	overloads,	casts
must	be	declared	as	both	public	and	static.

Implementing	User-Defined	Casts
This	section	illustrates	the	use	of	implicit	and	explicit	user-defined	casts	in	an
example	called	CastingSample.	In	this	example,	you	define	a	struct,	Currency,
which	holds	a	positive	USD	($)	monetary	value.	C#	provides	the	decimal	type
for	this	purpose,	but	it	is	possible	you	still	will	want	to	write	your	own	struct	or
class	to	represent	monetary	values	if	you	need	to	perform	sophisticated	financial
processing	and	therefore	want	to	implement	specific	methods	on	such	a	class.

NOTE The	syntax	for	casting	is	the	same	for	structs	and	classes.	This
example	happens	to	be	for	a	struct,	but	it	would	work	just	as	well	if	you
declared	Currency	as	a	class.

Initially,	the	definition	of	the	Currency	struct	is	as	follows	(code	file
CastingSample/Currency.cs):

public	readonly	struct	Currency

{

		public	readonly	uint	Dollars;

		public	readonly	ushort	Cents;

	

		public	Currency(uint	dollars,	ushort	cents)	=>	(Dollars,	

Cents)	=	(dollars,	cents);

	

		public	override	string	ToString()	=>	$"${Dollars}.

{Cents,-2:00}";

}

The	use	of	unsigned	data	types	for	the	Dollar	and	Cents	fields	ensures	that	a
Currency	instance	can	hold	only	positive	values.	It	is	restricted	this	way	to
illustrate	some	points	about	explicit	casts	later.	You	might	want	to	use	a	type	like
this	to	hold,	for	example,	salary	information	for	company	employees	(people's
salaries	tend	not	to	be	negative!).

Start	by	assuming	that	you	want	to	be	able	to	convert	Currency	instances	to
float	values,	where	the	integer	part	of	the	float	represents	the	dollars.	In	other
words,	you	want	to	be	able	to	write	code	like	this:

Currency	balance	=	new(10,	50);

float	f	=	balance;	//	We	want	f	to	be	set	to	10.5

To	be	able	to	do	this,	you	need	to	define	a	cast.	Hence,	you	add	the	following	to
your	Currency	definition:

public	static	implicit	operator	float	(Currency	value)	=>

		value.Dollars	+	(value.Cents/100.0f);

The	preceding	cast	is	implicit.	It	is	a	sensible	choice	in	this	case	because,	as	it
should	be	clear	from	the	definition	of	Currency,	any	value	that	can	be	stored	in
the	Currency	can	also	be	stored	in	a	float.	There	is	no	way	that	anything	should
ever	go	wrong	in	this	cast.

NOTE There	is	a	slight	cheat	here.	In	fact,	when	converting	a	uint	to	a
float	,	there	can	be	a	loss	in	precision,	but	Microsoft	has	deemed	this	error
sufficiently	marginal	to	count	the	uint	-to-	float	cast	as	implicit.

However,	if	you	have	a	float	that	you	would	like	to	be	converted	to	a	Currency,
the	conversion	is	not	guaranteed	to	work.	A	float	can	store	negative	values,
whereas	Currency	instances	can't,	and	a	float	can	store	numbers	of	a	far	higher
magnitude	than	can	be	stored	in	the	(uint)	Dollar	field	of	Currency.	Therefore,
if	a	float	contains	an	inappropriate	value,	converting	it	to	a	Currency	could
give	unpredictable	results.	Because	of	this	risk,	the	conversion	from	float	to
Currency	should	be	defined	as	explicit.	Here	is	the	first	attempt,	which	does	not
return	quite	the	correct	results,	but	it	is	instructive	to	examine	why:

public	static	explicit	operator	Currency	(float	value)

{

		uint	dollars	=	(uint)value;

		ushort	cents	=	(ushort)((value-dollars)*100);

		return	new	Currency(dollars,	cents);

}

The	following	code	now	successfully	compiles:

float	amount	=	45.63f;

Currency	amount2	=	(Currency)amount;

However,	the	following	code,	if	you	tried	it,	would	generate	a	compilation	error
because	it	attempts	to	use	an	explicit	cast	implicitly:

float	amount	=	45.63f;

Currency	amount2	=	amount;	//	wrong

By	making	the	cast	explicit,	you	warn	the	developer	to	be	careful	because	data
loss	might	occur.	However,	as	you	will	soon	see,	this	is	not	how	you	want	your
Currency	struct	to	behave.	Try	writing	a	test	harness	and	running	the	sample.
Here	is	the	Main	method,	which	instantiates	a	Currency	struct	and	attempts	a	few
conversions.	At	the	start	of	this	code,	you	write	out	the	value	of	balance	in	two
different	ways—this	is	needed	to	illustrate	something	later	in	the	example	(code
file	CastingSample/Program.cs):

		try

		{

				Currency	balance	=	new(50,35);

				Console.WriteLine(balance);

				Console.WriteLine($"balance	is	{balance}");	//	implicitly	

invokes	ToString

				float	balance2	=	balance;

				Console.WriteLine($"After	converting	to	float,	=	

{balance2}");

				balance	=	(Currency)	balance2;

				Console.WriteLine($"After	converting	back	to	Currency,	=	

{balance}");

				Console.WriteLine("Now	attempt	to	convert	out	of	range	value	

of	"	+

						"-$50.50	to	a	Currency:");

	

				checked

				{

						balance	=	(Currency)	(-50.50);

						Console.WriteLine($"Result	is	{balance}");

				}

		}

		catch(Exception	e)

		{

				Console.WriteLine($"Exception	occurred:	{e.Message}");

		}

Notice	that	the	entire	code	is	placed	in	a	try	block	to	catch	any	exceptions	that
occur	during	your	casts.	In	addition,	the	lines	that	test	converting	an	out-of-range
value	to	Currency	are	placed	in	a	checked	block	in	an	attempt	to	trap	negative
values.	Running	this	code	produces	the	following	output:

50.35

Balance	is	$50.35

After	converting	to	float,	=	50.35

After	converting	back	to	Currency,	=	$50.34

Now	attempt	to	convert	out	of	range	value	of	-$50.50	to	a	

Currency:

Result	is	$4294967246.00

This	output	shows	that	the	code	did	not	quite	work	as	expected.	First,	converting
back	from	float	to	Currency	gave	a	wrong	result	of	$50.34	instead	of	$50.35.
Second,	no	exception	was	generated	when	you	tried	to	convert	an	obviously	out-
of-range	value.

The	first	problem	is	caused	by	rounding	errors.	If	a	cast	is	used	to	convert	from	a
float	to	a	uint,	the	computer	truncates	the	number	rather	than	rounds	it.	The
computer	stores	numbers	in	binary	rather	than	decimal,	and	the	fraction	0.35
cannot	be	exactly	represented	as	a	binary	fraction	(just	as	1⁄3	cannot	be
represented	exactly	as	a	decimal	fraction;	it	comes	out	as	0.3333	recurring).	The
computer	ends	up	storing	a	value	very	slightly	lower	than	0.35	that	can	be
represented	exactly	in	binary	format.	Multiply	by	100,	and	you	get	a	number
fractionally	less	than	35,	which	is	truncated	to	34	cents.	Clearly,	in	this	situation,
such	errors	caused	by	truncation	are	serious,	and	the	way	to	avoid	them	is	to
ensure	that	some	intelligent	rounding	is	performed	in	numerical	conversions.

Luckily,	Microsoft	has	written	a	class	that	does	this:	System.Convert.	The
System.Convert	object	contains	a	large	number	of	static	methods	to	perform
various	numerical	conversions,	and	the	one	that	we	want	is	Convert.ToUInt16.
Note	that	the	extra	care	taken	by	the	System.Convert	methods	comes	at	a
performance	cost.	You	should	use	them	only	when	necessary.

Let's	examine	the	second	problem—why	the	expected	overflow	exception	wasn't
thrown.	The	issue	here	is	that	the	place	where	the	overflow	really	occurs	isn't
actually	in	the	Main	routine	at	all—it	is	inside	the	code	for	the	cast	operator,
which	is	called	from	the	Main	method.	The	code	in	this	method	was	not	marked
as	checked.

The	solution	is	to	ensure	that	the	cast	itself	is	computed	in	a	checked	context,
too.	With	both	this	change	and	the	fix	for	the	first	problem,	the	revised	code	for
the	conversion	looks	like	the	following:

public	static	explicit	operator	Currency	(float	value)

{

		checked

		{

				uint	dollars	=	(uint)value;

				ushort	cents	=	Convert.ToUInt16((value-dollars)*100);

				return	new	Currency(dollars,	cents);

		}

}

Note	that	you	use	Convert.ToUInt16	to	calculate	the	cents,	as	described	earlier,
but	you	do	not	use	it	for	calculating	the	dollar	part	of	the	amount.
System.Convert	is	not	needed	when	calculating	the	dollar	amount	because
truncating	the	float	value	is	what	you	want	there.

NOTE The	System.Convert	methods	also	carry	out	their	own	overflow
checking.	Hence,	for	the	particular	case	we	are	considering,	there	is	no	need
to	place	the	call	to	Convert.ToUInt16	inside	the	checked	context.	The
checked	context	is	still	required,	however,	for	the	explicit	casting	of	value	to
dollars.

You	won't	look	at	the	new	results	with	this	new	checked	cast	just	yet	because
you	have	some	more	modifications	to	make	to	the	CastingSample	example	later
in	this	section.

NOTE If	you	are	defining	a	cast	that	will	be	used	very	often,	and	for
which	performance	is	at	an	absolute	premium,	you	may	prefer	not	to	do	any
error	checking.	That	is	also	a	legitimate	solution,	provided	that	the	behavior
of	your	cast	and	the	lack	of	error	checking	are	very	clearly	documented.

Casts	Between	Classes
The	Currency	example	involves	only	classes	that	convert	to	or	from	float	—
one	of	the	predefined	data	types.	However,	it	is	not	necessary	to	involve	any	of
the	simple	data	types.	It	is	perfectly	legitimate	to	define	casts	to	convert	between
instances	of	different	structs	or	classes	that	you	have	defined.	You	need	to	be

aware	of	a	couple	of	restrictions,	however:

You	cannot	define	a	cast	if	one	of	the	classes	is	derived	from	the	other
(these	types	of	casts	already	exist,	as	you	will	see	later).

The	cast	must	be	defined	inside	the	definition	of	either	the	source	or	the
destination	data	type.

To	illustrate	these	requirements,	suppose	that	you	have	the	class	hierarchy	shown
in	Figure	5-1.

FIGURE	5-1

In	other	words,	classes	C	and	D	are	indirectly	derived	from	A.	In	this	case,	the
only	legitimate	user-defined	cast	between	A,	B,	C,	or	D	would	be	to	convert
between	classes	C	and	D,	because	these	classes	are	not	derived	from	each	other.
The	code	for	this	might	look	like	the	following	(assuming	you	want	the	casts	to
be	explicit,	which	is	usually	the	case	when	defining	casts	between	user-defined
classes):

public	static	explicit	operator	D(C	value)

{

		//…

}

	

public	static	explicit	operator	C(D	value)

{

		//…

}

For	each	of	these	casts,	you	can	choose	where	you	place	the	definitions—inside
the	class	definition	of	C	or	inside	the	class	definition	of	D,	but	not	anywhere	else.
C#	requires	you	to	put	the	definition	of	a	cast	inside	either	the	source	class	(or
struct)	or	the	destination	class	(or	struct).	A	side	effect	of	this	is	that	you	cannot
define	a	cast	between	two	classes	unless	you	have	access	to	edit	the	source	code
for	at	least	one	of	them.	This	is	sensible	because	it	prevents	third	parties	from
introducing	casts	into	your	classes.

After	you	have	defined	a	cast	inside	one	of	the	classes,	you	cannot	also	define
the	same	cast	inside	the	other	class.	Obviously,	there	should	be	only	one	cast	for
each	conversion;	otherwise,	the	compiler	would	not	know	which	one	to	use.

Casts	Between	Base	and	Derived	Classes
To	see	how	these	casts	work,	start	by	considering	the	case	in	which	both	the
source	and	the	destination	are	reference	types	and	consider	two	classes,	MyBase
and	MyDerived,	where	MyDerived	is	derived	directly	or	indirectly	from	MyBase.

First,	from	MyDerived	to	MyBase,	it	is	always	possible	(assuming	the	constructors
are	available)	to	write	this:

MyDerived	derivedObject	=	new	MyDerived();

MyBase	baseCopy	=	derivedObject;

Here,	you	are	casting	implicitly	from	MyDerived	to	MyBase.	This	works	because
of	the	rule	that	any	reference	to	a	type	MyBase	is	allowed	to	refer	to	objects	of
class	MyBase	or	anything	derived	from	MyBase.	In	object-oriented	programming,
instances	of	a	derived	class	are,	in	a	real	sense,	instances	of	the	base	class,	plus
something	extra.	All	the	functions	and	fields	defined	on	the	base	class	are
defined	in	the	derived	class,	too.

Alternatively,	you	can	write	this:

MyBase	derivedObject	=	new	MyDerived();

MyBase	baseObject	=	new	MyBase();

MyDerived	derivedCopy1	=	(MyDerived)	derivedObject;	//	OK

MyDerived	derivedCopy2	=	(MyDerived)	baseObject;	//	Throws	

exception

This	code	is	perfectly	legal	C#	(in	a	syntactic	sense,	that	is)	and	illustrates
casting	from	a	base	class	to	a	derived	class.	However,	the	final	statement	throws
an	exception	when	executed.	When	you	perform	the	cast,	the	object	being
referred	to	is	examined.	Because	a	base	class	reference	can,	in	principle,	refer	to
a	derived	class	instance,	it	is	possible	that	this	object	is	actually	an	instance	of
the	derived	class	that	you	are	attempting	to	cast	to.	If	that	is	the	case,	the	cast
succeeds,	and	the	derived	reference	is	set	to	refer	to	the	object.	If,	however,	the
object	in	question	is	not	an	instance	of	the	derived	class	(or	of	any	class	derived
from	it),	the	cast	fails,	and	an	exception	is	thrown.

Notice	that	the	casts	that	the	compiler	has	supplied,	which	convert	between	base
and	derived	class,	do	not	actually	do	any	data	conversion	on	the	object	in
question.	All	they	do	is	set	the	new	reference	to	refer	to	the	object	if	it	is	legal
for	that	conversion	to	occur.	To	that	extent,	these	casts	are	very	different	in
nature	from	the	ones	that	you	normally	define	yourself.	For	example,	in	the
CastingSample	example	earlier,	you	defined	casts	that	convert	between	a
Currency	struct	and	a	float.	In	the	float	-to-	Currency	cast,	you	actually
instantiated	a	new	Currency	struct	and	initialized	it	with	the	required	values.	The
predefined	casts	between	base	and	derived	classes	do	not	do	this.	If	you	want	to
convert	a	MyBase	instance	into	a	real	MyDerived	object	with	values	based	on	the
contents	of	the	MyBase	instance,	you	cannot	use	the	cast	syntax	to	do	this.	The
most	sensible	option	is	usually	to	define	a	derived	class	constructor	that	takes	a
base	class	instance	as	a	parameter	and	have	this	constructor	perform	the	relevant
initializations:

class	DerivedClass:	BaseClass

{

		public	DerivedClass(BaseClass	base)

		{

				//	initialize	object	from	the	Base	instance

		}

		//	…

Boxing	and	Unboxing	Casts
The	previous	discussion	focused	on	casting	between	base	and	derived	classes
where	both	participants	were	reference	types.	Similar	principles	apply	when
casting	value	types,	although	in	this	case	it	is	not	possible	to	simply	copy
references—some	copying	of	data	must	occur.

It	is	not,	of	course,	possible	to	derive	from	structs	or	primitive	value	types.
Casting	between	base	and	derived	structs	invariably	means	casting	between	a

primitive	type	or	a	struct	and	System.Object.	(Theoretically,	it	is	possible	to	cast
between	a	struct	and	System.ValueType,	though	it	is	hard	to	see	why	you	would
want	to	do	this.)

The	cast	from	any	struct	(or	primitive	type)	to	object	is	always	available	as	an
implicit	cast—because	it	is	a	cast	from	a	derived	type	to	a	base	type—and	is	just
the	familiar	process	of	boxing.	Here's	an	example	using	the	Currency	struct:

Currency	balance	=	new(40,0);

object	baseCopy	=	balance;

When	this	implicit	cast	is	executed,	the	contents	of	balance	are	copied	onto	the
heap	into	a	boxed	object,	and	the	baseCopy	object	reference	is	set	to	this	object.
What	actually	happens	behind	the	scenes	is	this:	when	you	originally	defined	the
Currency	struct,	.NET	implicitly	supplied	another	(hidden)	class,	a	boxed
Currency	class,	which	contains	all	the	same	fields	as	the	Currency	struct	but	is	a
reference	type,	stored	on	the	heap.	This	happens	whenever	you	define	a	value
type,	whether	it	is	a	struct	or	an	enum,	and	similar	boxed	reference	types	exist
corresponding	to	all	the	primitive	value	types	of	int,	double,	uint,	and	so	on.	It
is	not	possible,	or	necessary,	to	gain	direct	programmatic	access	to	any	of	these
boxed	classes	in	source	code,	but	they	are	the	objects	that	are	working	behind
the	scenes	whenever	a	value	type	is	cast	to	object.	When	you	implicitly	cast
Currency	to	object,	a	boxed	Currency	instance	is	instantiated	and	initialized
with	all	the	data	from	the	Currency	struct.	In	the	preceding	code,	it	is	this	boxed
Currency	instance	to	which	baseCopy	refers.	By	these	means,	it	is	possible	for
casting	from	derived	to	base	type	to	work	syntactically	in	the	same	way	for	value
types	as	for	reference	types.

Casting	the	other	way	is	known	as	unboxing.	Like	casting	between	a	base
reference	type	and	a	derived	reference	type,	it	is	an	explicit	cast	because	an
exception	is	thrown	if	the	object	being	cast	is	not	of	the	correct	type:

object	derivedObject	=	new	Currency(40,0);

object	baseObject	=	new	object();

Currency	derivedCopy1	=	(Currency)derivedObject;	//	OK

Currency	derivedCopy2	=	(Currency)baseObject;	//	Exception	

thrown

This	code	works	in	a	way	similar	to	the	code	presented	earlier	for	reference
types.	Casting	derivedObject	to	Currency	works	fine	because	derivedObject
actually	refers	to	a	boxed	Currency	instance—the	cast	is	performed	by	copying
the	fields	out	of	the	boxed	Currency	object	into	a	new	Currency	struct.	The
second	cast	fails	because	baseObject	does	not	refer	to	a	boxed	Currency	object.

When	using	boxing	and	unboxing,	it	is	important	to	understand	that	both
processes	actually	copy	the	data	into	the	new	boxed	or	unboxed	object.	Hence,
manipulations	on	the	boxed	object,	for	example,	do	not	affect	the	contents	of	the
original	value	type.

Multiple	Casting
One	thing	you	have	to	watch	for	when	you	are	defining	casts	is	that	if	the	C#
compiler	is	presented	with	a	situation	in	which	no	direct	cast	is	available	to
perform	a	requested	conversion,	it	attempts	to	find	a	way	of	combining	casts	to
do	the	conversion.	For	example,	with	the	Currency	struct,	suppose	the	compiler
encounters	a	few	lines	of	code	like	this:

Currency	balance	=	new(10,50);

long	amount	=	(long)balance;

double	amountD	=	balance;

You	first	initialize	a	Currency	instance,	and	then	you	attempt	to	convert	it	to	a
long.	The	trouble	is	that	you	haven't	defined	the	cast	to	do	that.	However,	this
code	still	compiles	successfully.	Here's	what	happens:	the	compiler	realizes	that
you	have	defined	an	implicit	cast	to	get	from	Currency	to	float,	and	the
compiler	already	knows	how	to	explicitly	cast	a	float	to	a	long.	Hence,	it
compiles	that	line	of	code	into	IL	code	that	converts	balance	first	to	a	float	and
then	converts	that	result	to	a	long.	The	same	thing	happens	in	the	final	line	of
the	code,	when	you	convert	balance	to	a	double.	However,	because	the	cast
from	Currency	to	float	and	the	predefined	cast	from	float	to	double	are	both
implicit,	you	can	write	this	conversion	in	your	code	as	an	implicit	cast.	If	you
prefer,	you	could	also	specify	the	casting	route	explicitly:

Currency	balance	=	new(10,50);

long	amount	=	(long)(float)balance;

double	amountD	=	(double)(float)balance;

However,	in	most	cases,	this	would	be	seen	as	needlessly	complicating	your
code.	The	following	code,	by	contrast,	produces	a	compilation	error:

Currency	balance	=	new(10,50);

long	amount	=	balance;

The	reason	is	that	the	best	match	for	the	conversion	that	the	compiler	can	find	is
still	to	convert	first	to	float	and	then	to	long.	The	conversion	from	float	to
long	needs	to	be	specified	explicitly,	though.

Not	all	of	this	by	itself	should	give	you	too	much	trouble.	The	rules	are,	after	all,

fairly	intuitive	and	designed	to	prevent	any	data	loss	from	occurring	without	the
developer	knowing	about	it.	However,	the	problem	is	that	if	you	are	not	careful
when	you	define	your	casts,	it	is	possible	for	the	compiler	to	select	a	path	that
leads	to	unexpected	results.	For	example,	suppose	that	it	occurs	to	someone	else
in	the	group	writing	the	Currency	struct	that	it	would	be	useful	to	be	able	to
convert	a	uint	containing	the	total	number	of	cents	in	an	amount	into	a
Currency	(cents,	not	dollars,	because	the	idea	is	not	to	lose	the	fractions	of	a
dollar).	Therefore,	this	cast	might	be	written	to	try	to	achieve	this:

//	Do	not	do	this!

public	static	implicit	operator	Currency(uint	value)	=>

		new	Currency(value/100u,	(ushort)(value%100));

Note	the	u	after	the	first	100	in	this	code	ensures	that	value/100u	is	interpreted
as	a	uint.	If	you	had	written	value/100,	the	compiler	would	have	interpreted
this	as	an	int,	not	a	uint.

The	comment	Do	not	do	this!	is	clearly	noted	in	this	code,	and	here	is	why:
the	following	code	snippet	merely	converts	a	uint	containing	350	into	a
Currency	and	back	again;	but	what	do	you	think	bal2	will	contain	after
executing	this?

uint	bal	=	350;

Currency	balance	=	bal;

uint	bal2	=	(uint)balance;

The	answer	is	not	350	but	3	!	Moreover,	it	all	follows	logically.	You	convert	350
implicitly	to	a	Currency,	giving	the	result	balance.Dollars	=	3,
balance.Cents	=	50.	Then	the	compiler	does	its	usual	figuring	out	of	the	best
path	for	the	conversion	back.	Balance	ends	up	being	implicitly	converted	to	a
float	(value	3.5),	and	this	is	converted	explicitly	to	a	uint	with	value	3.	One
way	to	fix	this	would	be	to	create	a	user-defined	cast	to	uint.

Of	course,	other	instances	exist	in	which	converting	to	another	data	type	and
back	again	causes	data	loss.	For	example,	converting	a	float	containing	5.8	to
an	int	and	back	to	a	float	again	loses	the	fractional	part,	giving	you	a	result	of
5,	but	there	is	a	slight	difference	in	principle	between	losing	the	fractional	part	of
a	number	and	dividing	an	integer	by	more	than	100.	Currency	has	suddenly
become	a	rather	dangerous	class	that	does	strange	things	to	integers!

The	problem	is	that	there	is	a	conflict	between	how	your	casts	interpret	integers.
The	casts	between	Currency	and	float	interpret	an	integer	value	of	1	as
corresponding	to	one	dollar,	but	the	latest	uint	-to-	Currency	cast	interprets	this

value	as	one	cent.	This	is	an	example	of	poor	design.	If	you	want	your	classes	to
be	easy	to	use,	you	should	ensure	that	all	your	casts	behave	in	ways	that	are
mutually	compatible,	in	the	sense	that	they	intuitively	give	the	same	results.	In
this	case,	the	solution	is	obviously	to	rewrite	the	uint	-to-	Currency	cast	so	that
it	interprets	an	integer	value	of	1	as	one	dollar:

public	static	implicit	operator	Currency	(uint	value)	=>

		new	Currency(value,	0);

Incidentally,	you	might	wonder	whether	this	new	cast	is	necessary	at	all.	The
answer	is	that	it	could	be	useful.	Without	this	cast,	the	only	way	for	the	compiler
to	carry	out	a	uint	-to-	Currency	conversion	would	be	via	a	float.	Converting
directly	is	a	lot	more	efficient	in	this	case,	so	having	this	extra	cast	provides
performance	benefits,	though	you	need	to	ensure	that	it	provides	the	same	result
as	via	a	float,	which	you	have	now	done.	In	other	situations,	you	may	also	find
that	separately	defining	casts	for	different	predefined	data	types	enables	more
conversions	to	be	implicit	rather	than	explicit,	though	that	is	not	the	case	here.

A	good	test	of	whether	your	casts	are	compatible	is	to	ask	whether	a	conversion
will	give	the	same	results	(other	than	perhaps	a	loss	of	accuracy	as	in	float	-to-
int	conversions)	regardless	of	which	path	it	takes.	The	Currency	class	provides
a	good	example	of	this.	Consider	this	code:

Currency	balance	=	new(50,	35);

ulong	bal	=	(ulong)	balance;

At	present,	there	is	only	one	way	that	the	compiler	can	achieve	this	conversion:
by	converting	the	Currency	to	a	float	implicitly	and	then	to	a	ulong	explicitly.
The	float	-to-	ulong	conversion	requires	an	explicit	conversion,	but	that	is	fine
because	you	have	specified	one	here.

Suppose,	however,	that	you	then	added	another	cast	to	convert	implicitly	from	a
Currency	to	a	uint.	You	actually	do	this	by	modifying	the	Currency	struct	by
adding	the	casts	both	to	and	from	uint	(code	file	CastingSample/Currency.cs):

public	static	implicit	operator	Currency(uint	value)	=>	

		new	Currency(value,	0);

public	static	implicit	operator	uint(Currency	value)	=>	

value.Dollars;

Now	the	compiler	has	another	possible	route	to	convert	from	Currency	to	ulong
:	to	convert	from	Currency	to	uint	implicitly	and	then	to	ulong	implicitly.
Which	of	these	two	routes	will	it	take?	C#	has	some	precise	rules	about	the	best
route	for	the	compiler	when	there	are	several	possibilities.	(The	rules	are	not

covered	in	this	book,	but	if	you	are	interested	in	the	details,	see	the	MSDN
documentation.)	The	best	answer	is	that	you	should	design	your	casts	so	that	all
routes	give	the	same	answer	(other	than	possible	loss	of	precision),	in	which	case
it	doesn't	really	matter	which	one	the	compiler	picks.	(As	it	happens	in	this	case,
the	compiler	picks	the	Currency	-to-	uint	-to-	ulong	route	in	preference	to
Currency	-to-	float	-to-	ulong.)

To	test	casting	the	Currency	to	uint,	add	this	test	code	to	the	Main	method	(code
file	UserDefinedConversion/Program.cs):

try

{

		Currency	balance	=	new(50,35);

		Console.WriteLine(balance);

		Console.WriteLine($"balance	is	{balance}");

		uint	balance3	=	(uint)	balance;

		Console.WriteLine($"Converting	to	uint	gives	{balance3}");

}

catch	(Exception	ex)

{

		Console.WriteLine($"Exception	occurred:	{ex.Message}");

}

Running	the	sample	now	gives	you	these	results:

50

balance	is	$50.35

Converting	to	uint	gives	50

The	output	shows	that	the	conversion	to	uint	has	been	successful,	though,	as
expected,	you	have	lost	the	cents	part	of	the	Currency	in	making	this	conversion.

However,	the	output	also	demonstrates	one	last	potential	problem	that	you	need
to	be	aware	of	when	working	with	casts.	The	first	line	of	output	does	not	display
the	balance	correctly,	displaying	50	instead	of	50.35.

So,	what	is	going	on?	The	problem	here	is	that	when	you	combine	casts	with
method	overloads,	you	get	another	source	of	unpredictability.

The	WriteLine	statement	using	the	format	string	implicitly	calls	the
Currency.ToString	method,	ensuring	that	the	Currency	is	displayed	as	a	string.

The	first	code	line	with	WriteLine,	however,	simply	passes	a	raw	Currency
struct	to	the	WriteLine	method.	Now,	WriteLine	has	many	overloads,	but	none
of	them	takes	a	Currency	struct.	Therefore,	the	compiler	starts	fishing	around	to
see	what	it	can	cast	the	Currency	to	in	order	to	make	it	match	up	with	one	of	the

overloads	of	WriteLine.	As	it	happens,	one	of	the	WriteLine	overloads	is
designed	to	display	uint	s	quickly	and	efficiently,	and	it	takes	a	uint	as	a
parameter—you	have	now	supplied	a	cast	that	converts	Currency	implicitly	to
uint.

In	fact,	WriteLine	has	another	overload	that	takes	a	float	as	a	parameter	and
displays	the	value	of	that	float.	If	you	look	closely	at	the	output	running	the
example	previously	where	the	cast	to	uint	did	not	exist,	you	see	that	the	first
line	of	output	displayed	Currency	as	a	float,	using	this	overload.	In	that
example,	there	wasn't	a	direct	cast	from	Currency	to	uint,	so	the	compiler
picked	Currency	-to-	float	as	its	preferred	way	of	matching	up	the	available
casts	to	the	available	WriteLine	overloads.	However,	now	that	there	is	a	direct
cast	to	uint	available	in	Currency,	the	compiler	has	opted	for	that	route.

The	upshot	of	this	is	that	if	you	have	a	method	call	that	takes	several	overloads
and	you	attempt	to	pass	it	a	parameter	whose	data	type	doesn't	match	any	of	the
overloads	exactly,	then	you	are	forcing	the	compiler	to	decide	not	only	what
casts	to	use	to	perform	the	data	conversion,	but	also	which	overload,	and	hence
which	data	conversion,	to	pick.	The	compiler	always	works	logically	and
according	to	strict	rules,	but	the	results	may	not	be	what	you	expect.	If	there	is
any	doubt,	you	are	better	off	specifying	which	cast	to	use	explicitly.

SUMMARY
This	chapter	looked	at	the	standard	operators	provided	by	C#,	described	the
mechanics	of	object	equality,	and	examined	how	the	compiler	converts	the
standard	data	types	from	one	to	another.	It	also	demonstrated	how	you	can
implement	custom	operator	support	on	your	data	types	using	operator	overloads.
Finally,	you	looked	at	a	special	type	of	operator	overload,	the	cast	operator,
which	enables	you	to	specify	how	instances	of	your	types	are	converted	to	other
data	types.

The	next	chapter	dives	into	arrays	where	the	index	operator	has	an	important
role.

6
Arrays

WHAT'S	IN	THIS	CHAPTER?

Simple	arrays

Multidimensional	arrays

Jagged	arrays

The	Array	class

Arrays	as	parameters

Enumerators

Spans

Indices	and	ranges

Array	pools

Bit	arrays

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Arrays.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

SimpleArrays

SortingSample

YieldSample

SpanSample

IndicesAndRanges

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

ArrayPoolSample

BitArraySample

All	the	projects	have	nullable	reference	types	enabled.

MULTIPLE	OBJECTS	OF	THE	SAME	TYPE
If	you	need	to	work	with	multiple	objects	of	the	same	type,	you	can	use
collections	(see	Chapter	8,	“Collections”)	and	arrays.	C#	has	a	special	notation
to	declare,	initialize,	and	use	arrays.	Behind	the	scenes,	the	Array	class	comes
into	play,	which	offers	several	methods	to	sort	and	filter	the	elements	inside	the
array.	Using	an	enumerator,	you	can	iterate	through	all	the	elements	of	the	array.

NOTE For	using	multiple	objects	of	different	types,	you	can	combine	them
using	classes,	structs,	records,	and	tuples,	which	are	covered	in	Chapter	3.

SIMPLE	ARRAYS
If	you	need	to	use	multiple	objects	of	the	same	type,	you	can	use	an	array.	An
array	is	a	data	structure	that	contains	a	number	of	elements	of	the	same	type.

Array	Declaration	and	Initialization
An	array	is	declared	by	defining	the	type	of	elements	inside	the	array,	followed
by	empty	brackets	and	a	variable	name.	For	example,	an	array	containing	integer
elements	is	declared	like	this:

int[]	myArray;

After	declaring	an	array,	memory	must	be	allocated	to	hold	all	the	elements	of
the	array.	An	array	is	a	reference	type,	so	memory	on	the	heap	must	be	allocated.
You	do	this	by	initializing	the	variable	of	the	array	using	the	new	operator,	with
the	type	and	the	number	of	elements	inside	the	array.	Here,	you	specify	the	size
of	the	array:

myArray	=	new	int[4];

With	this	declaration	and	initialization,	the	variable	myArray	references	four

integer	values	that	are	allocated	on	the	managed	heap	(see	Figure	6-1).

FIGURE	6-1

NOTE An	array	cannot	be	resized	after	its	size	is	specified	without
copying	all	the	elements.	If	you	don't	know	how	many	elements	should	be	in
the	array	in	advance,	you	can	use	a	collection	(see	Chapter	8).

Instead	of	using	a	separate	line	to	declare	and	initialize	an	array,	you	can	use	a
single	line:

int[]	myArray	=	new	int[4];

You	can	also	assign	values	to	every	array	element	using	an	array	initializer.	The
following	code	samples	all	declare	an	array	with	the	same	content	but	with	less
code	for	you	to	write.	The	compiler	can	count	the	number	of	elements	in	the
array	by	itself,	which	is	why	the	array	size	is	left	out	with	the	second	line.	The
compiler	also	can	map	the	values	defined	in	the	initializer	list	to	the	type	used	on
the	left	side,	so	you	also	can	remove	the	new	operator	left	of	the	initializer.	The
code	generated	from	the	compiler	is	always	the	same:

int[]	myArray1	=	new	int[4]	{4,	7,	11,	2};

int[]	myArray2	=	new	int[]	{4,	7,	11,	2};

int[]	myArray3	=	{4,	7,	11,	2};

Accessing	Array	Elements
After	an	array	is	declared	and	initialized,	you	can	access	the	array	elements

using	an	indexer.	Arrays	support	only	indexers	that	have	parameters	of	type	int.

With	the	indexer,	you	pass	the	element	number	to	access	the	array.	The	indexer
always	starts	with	a	value	of	0	for	the	first	element.	Therefore,	the	highest
number	you	can	pass	to	the	indexer	is	the	number	of	elements	minus	one
because	the	index	starts	at	zero.	In	the	following	example,	the	array	myArray	is
declared	and	initialized	with	four	integer	values.	The	elements	can	be	accessed
with	indexer	values	0,	1,	2,	and	3.

int[]	myArray	=	new	int[]	{4,	7,	11,	2};

int	v1	=	myArray[0];	//	read	first	element

int	v2	=	myArray[1];	//	read	second	element

myArray[3]	=	44;	//	change	fourth	element

NOTE If	you	use	a	wrong	indexer	value	that	is	bigger	than	the	length	of
the	array,	an	exception	of	type	IndexOutOfRangeException	is	thrown.

If	you	don't	know	the	number	of	elements	in	the	array,	you	can	use	the	Length
property,	as	shown	in	this	for	statement:

for	(int	i	=	0;	i	<	myArray.Length;	i++)

{

		Console.WriteLine(myArray[i]);

}

Instead	of	using	a	for	statement	to	iterate	through	all	the	elements	of	the	array,
you	can	also	use	the	foreach	statement:

foreach	(var	val	in	myArray)

{

		Console.WriteLine(val);

}

NOTE The	foreach	statement	makes	use	of	the	IEnumerable	and
IEnumerator	interfaces	and	traverses	through	the	array	from	the	first	index
to	the	last.	This	is	discussed	in	detail	later	in	this	chapter.

Using	Reference	Types
In	addition	to	being	able	to	declare	arrays	of	predefined	types,	you	also	can
declare	arrays	of	custom	types.	Let's	start	with	the	following	Person	record
using	positional	record	syntax	to	declare	the	init-only	setter	properties

FirstName	and	LastName	(code	file	SimpleArrays/Person.cs):

public	record	Person(string	FirstName,	string	LastName);

	

Declaring	an	array	of	two	Person	elements	is	similar	to	declaring	an	array	of	int
:

Person[]	myPersons	=	new	Person[2];

However,	be	aware	that	if	the	elements	in	the	array	are	reference	types,	memory
must	be	allocated	for	every	array	element.	If	you	use	an	item	in	the	array	for
which	no	memory	was	allocated,	a	NullReferenceException	is	thrown.

NOTE For	information	about	errors	and	exceptions,	see	Chapter	10,
“Errors	and	Exceptions.”

You	can	allocate	every	element	of	the	array	by	using	an	indexer	starting	from	0.
When	you	create	the	second	object,	you	make	use	of	C#	9	target-typed	new	as
the	type	(code	file	SimpleArrays/Program.cs):

myPersons[0]	=	new	Person("Ayrton",	"Senna");

myPersons[1]	=	new("Michael",	"Schumacher");

Figure	6-2	shows	the	objects	in	the	managed	heap	with	the	Person	array.
myPersons	is	a	variable	that	is	stored	on	the	stack.	This	variable	references	an
array	of	Person	elements	that	is	stored	on	the	managed	heap.	This	array	has
enough	space	for	two	references.	Every	item	in	the	array	references	a	Person
object	that	is	also	stored	in	the	managed	heap.

FIGURE	6-2

As	with	the	int	type,	you	can	use	an	array	initializer	with	custom	types:

Person[]	myPersons2	=

{

		new("Ayrton",	"Senna"),

		new("Michael",	"Schumacher")

};

MULTIDIMENSIONAL	ARRAYS
Ordinary	arrays	(also	known	as	one-dimensional	arrays)	are	indexed	by	a	single
integer.	A	multidimensional	array	is	indexed	by	two	or	more	integers.

Figure	6-3	shows	the	mathematical	notation	for	a	two-dimensional	array	that	has
three	rows	and	three	columns.	The	first	row	has	the	values	1,	2,	and	3,	and	the
third	row	has	the	values	7,	8,	and	9.

FIGURE	6-3

To	declare	this	two-dimensional	array	with	C#,	you	put	a	comma	inside	the
brackets.	The	array	is	initialized	by	specifying	the	size	of	every	dimension	(also
known	as	rank).	Then	the	array	elements	can	be	accessed	by	using	two	integers
with	the	indexer	(code	file	SimpleArrays/Program.cs):

int[,]	twodim	=	new	int[3,	3];

twodim[0,	0]	=	1;

twodim[0,	1]	=	2;

twodim[0,	2]	=	3;

twodim[1,	0]	=	4;

twodim[1,	1]	=	5;

twodim[1,	2]	=	6;

twodim[2,	0]	=	7;

twodim[2,	1]	=	8;

twodim[2,	2]	=	9;

NOTE After	declaring	an	array,	you	cannot	change	the	rank.

You	can	also	initialize	the	two-dimensional	array	by	using	an	array	indexer	if

you	know	the	values	for	the	elements	in	advance.	To	initialize	the	array,	one
outer	curly	bracket	is	used,	and	every	row	is	initialized	by	using	curly	brackets
inside	the	outer	curly	brackets:

int[,]	twodim	=	{

		{1,	2,	3},

		{4,	5,	6},

		{7,	8,	9}

};

NOTE When	using	an	array	initializer,	you	must	initialize	every	element
of	the	array.	It	is	not	possible	to	defer	the	initialization	of	some	values	until
later.

By	using	two	commas	inside	the	brackets,	you	can	declare	a	three-dimensional
array	by	placing	initializers	for	two-dimensional	arrays	inside	brackets	separated
by	commas:

int[,,]	threedim	=	{

		{	{	1,	2	},	{	3,	4	}	},

		{	{	5,	6	},	{	7,	8	}	},

		{	{	9,	10	},	{	11,	12	}	}

};

Console.WriteLine(threedim[0,	1,	1]);

Using	a	foreach	loop,	you	can	iterate	through	all	the	items	of	a
multidimensional	array.

JAGGED	ARRAYS
A	two-dimensional	array	has	a	rectangular	size	(for	example,	3	×	3	elements).	A
jagged	array	provides	more	flexibility	in	sizing	the	array.	With	a	jagged	array,
every	row	can	have	a	different	size.

Figure	6-4	contrasts	a	two-dimensional	array	that	has	3	×	3	elements	with	a
jagged	array.	The	jagged	array	shown	contains	three	rows:	the	first	row	contains
two	elements,	the	second	row	contains	six	elements,	and	the	third	row	contains
three	elements.

FIGURE	6-4

A	jagged	array	is	declared	by	placing	one	pair	of	opening	and	closing	brackets
after	another.	To	initialize	the	jagged	array,	in	the	following	code	snippet	an
array	initializer	is	used.	The	first	array	is	initialized	by	items	of	arrays.	Each	of
these	items	again	is	initialized	with	its	own	array	initializer	(code	file
SimpleArrays/Program.cs):

int[][]	jagged	=

{

		new[]	{	1,	2	},

		new[]	{	3,	4,	5,	6,	7,	8	},

		new[]	{	9,	10,	11	}

};

You	can	iterate	through	all	the	elements	of	a	jagged	array	with	nested	for	loops.
In	the	outer	for	loop,	every	row	is	iterated,	and	the	inner	for	loop	iterates
through	every	element	inside	a	row:

for	(int	row	=	0;	row	<	jagged.Length;	row++)

{

		for	(int	element	=	0;	element	<	jagged[row].Length;	element++)

		{

				Console.WriteLine($"row:	{row},	element:	{element},	"	+

						$"value:	{jagged[row][element]}");

		}

}

The	output	of	the	iteration	displays	the	rows	and	every	element	within	the	rows:

row:	0,	element:	0,	value:	1

row:	0,	element:	1,	value:	2

row:	1,	element:	0,	value:	3

row:	1,	element:	1,	value:	4

row:	1,	element:	2,	value:	5

row:	1,	element:	3,	value:	6

row:	1,	element:	4,	value:	7

row:	1,	element:	5,	value:	8

row:	2,	element:	0,	value:	9

row:	2,	element:	1,	value:	10

row:	2,	element:	2,	value:	11

ARRAY	CLASS
Declaring	an	array	with	brackets	is	a	C#	notation	using	the	Array	class.	Using
the	C#	syntax	behind	the	scenes	creates	a	new	class	that	derives	from	the
abstract	base	class	Array.	This	makes	it	possible	to	use	methods	and	properties
that	are	defined	with	the	Array	class	with	every	C#	array.	For	example,	you've
already	used	the	Length	property	or	iterated	through	the	array	by	using	the
foreach	statement.	By	doing	this,	you	are	using	the	GetEnumerator	method	of
the	Array	class.

Other	properties	implemented	by	the	Array	class	are	LongLength,	for	arrays	in
which	the	number	of	items	doesn't	fit	within	an	integer,	and	Rank,	to	get	the
number	of	dimensions.

Let's	take	a	look	at	other	members	of	the	Array	class	by	getting	into	various
features.

Creating	Arrays
The	Array	class	is	abstract,	so	you	cannot	create	an	array	by	using	a	constructor.
However,	instead	of	using	the	C#	syntax	to	create	array	instances,	it	is	also
possible	to	create	arrays	by	using	the	static	CreateInstance	method.	This	is
extremely	useful	if	you	don't	know	the	type	of	elements	in	advance	because	the
type	can	be	passed	to	the	CreateInstance	method	as	a	Type	object.

The	following	example	shows	how	to	create	an	array	of	type	int	with	a	size	of
5.	The	first	argument	of	the	CreateInstance	method	requires	the	type	of	the
elements,	and	the	second	argument	defines	the	size.	You	can	set	values	with	the
SetValue	method	and	read	values	with	the	GetValue	method	(code	file
SimpleArrays/Program.cs):

Array	intArray1	=	Array.CreateInstance(typeof(int),	5);

for	(int	i	=	0;	i	<	5;	i++)

{

		intArray1.SetValue(3	*	i,	i);

}

	

for	(int	i	=	0;	i	<	5;	i++)

{

		Console.WriteLine(intArray1.GetValue(i));

}

You	can	also	cast	the	created	array	to	an	array	declared	as	int[]	:

int[]	intArray2	=	(int[])intArray1;

The	CreateInstance	method	has	many	overloads	to	create	multidimensional
arrays	and	to	create	arrays	that	are	not	0	based.	The	following	example	creates	a
two-dimensional	array	with	2	×	3	elements.	The	first	dimension	is	1	based;	the
second	dimension	is	10	based:

int[]	lengths	=	{	2,	3	};

int[]	lowerBounds	=	{	1,	10	};

Array	racers	=	Array.CreateInstance(typeof(Person),	lengths,	

lowerBounds);

Setting	the	elements	of	the	array,	the	SetValue	method	accepts	indices	for	every
dimension:

racers.SetValue(new	Person("Alain",	"Prost"),	1,	10);

racers.SetValue(new	Person("Emerson",	"Fittipaldi",	1,	11);

racers.SetValue(new	Person("Ayrton",	"Senna"),	1,	12);

racers.SetValue(new	Person("Michael",	"Schumacher"),	2,	10);

racers.SetValue(new	Person("Fernando",	"Alonso"),	2,	11);

racers.SetValue(new	Person("Jenson",	"Button"),	2,	12);

Although	the	array	is	not	0	based,	you	can	assign	it	to	a	variable	with	the	normal
C#	notation.	You	just	have	to	take	care	not	to	cross	the	array	boundaries:

Person[,]	racers2	=	(Person[,])racers;

Person	first	=	racers2[1,	10];

Person	last	=	racers2[2,	12];

Copying	Arrays
Because	arrays	are	reference	types,	assigning	an	array	variable	to	another
variable	just	gives	you	two	variables	referencing	the	same	array.	For	copying
arrays,	the	array	implements	the	interface	ICloneable.	The	Clone	method	that	is
defined	with	this	interface	creates	a	shallow	copy	of	the	array.

If	the	elements	of	the	array	are	value	types,	as	in	the	following	code	segment,	all
values	are	copied	(see	Figure	6-5):

FIGURE	6-5

int[]	intArray1	=	{1,	2};

int[]	intArray2	=	(int[])intArray1.Clone();	

If	the	array	contains	reference	types,	only	the	references	are	copied,	not	the
elements.	Figure	6-6	shows	the	variables	beatles	and	beatlesClone,	where
beatlesClone	is	created	by	calling	the	Clone	method	from	beatles.	The	Person
objects	that	are	referenced	are	the	same	for	beatles	and	beatlesClone.	If	you
change	a	property	of	an	element	of	beatlesClone,	you	change	the	same	object
of	beatles	(code	file	SimpleArray/Program.cs):

FIGURE	6-6

Person[]	beatles	=	{

		new("John",	"Lennon"),

		new("Paul",	"McCartney")

};

Person[]	beatlesClone	=	(Person[])beatles.Clone();	

Instead	of	using	the	Clone	method,	you	can	use	the	Array.Copy	method,	which
also	creates	a	shallow	copy.	However,	there's	one	important	difference	between
Clone	and	Copy	:	Clone	creates	a	new	array;	with	Copy	you	have	to	pass	an
existing	array	with	the	same	rank	and	enough	elements.

NOTE If	you	need	a	deep	copy	of	an	array	containing	reference	types,	you
have	to	iterate	the	array	and	create	new	objects.

Sorting
The	Array	class	uses	the	Quicksort	algorithm	to	sort	the	elements	in	the	array.
The	Sort	method	requires	the	interface	IComparable	to	be	implemented	by	the
elements	in	the	array.	Simple	types	such	as	System.String	and	System.Int32
implement	IComparable,	so	you	can	sort	elements	containing	these	types.

With	the	sample	program,	the	array	names	contains	elements	of	type	string,	and
this	array	can	be	sorted	(code	file	SortingSample/Program.cs):

string[]	names	=	{

		"Lady	Gaga",

		"Shakira",

		"Beyonce",

		"Ava	Max"

};

Array.Sort(names);

foreach	(var	name	in	names)

{

		Console.WriteLine(name);

}

The	output	of	the	application	shows	the	sorted	result	of	the	array:

Ava	Max

Beyonce

Lady	Gaga

Shakira

If	you	are	using	custom	classes	with	the	array,	you	must	implement	the	interface
IComparable.	This	interface	defines	just	one	method,	CompareTo,	which	must
return	0	if	the	objects	to	compare	are	equal;	a	value	smaller	than	0	if	the	instance
should	go	before	the	object	from	the	parameter;	and	a	value	larger	than	0	if	the
instance	should	go	after	the	object	from	the	parameter.

Change	the	Person	record	to	implement	the	interface	IComparable<Person>.
The	comparison	is	first	done	on	the	value	of	the	LastName	by	using	the	Compare
method	of	the	String	class.	If	the	LastName	has	the	same	value,	the	FirstName
is	compared	(code	file	SortingSample/Person.cs):

public	record	Person(string	FirstName,	string	LastName)	:	

IComparable<Person>

{

		public	int	CompareTo(Person?	other)

		{

				if	(other	==	null)	return	1;

				int	result	=	string.Compare(this.LastName,	other.LastName);

				if	(result	==	0)

				{

						result	=	string.Compare(this.FirstName,	other.FirstName);

				}

				return	result;

		}

		//…

Now	it	is	possible	to	sort	an	array	of	Person	objects	by	the	last	name	(code	file
SortingSample/Program.cs):

Person[]	persons	=	{

		new("Damon",	"Hill"),

		new("Niki",	"Lauda"),

		new("Ayrton",	"Senna"),

		new("Graham",	"Hill")

};

	

Array.Sort(persons);

foreach	(var	p	in	persons)

{

		Console.WriteLine(p);

}

Using	Array.Sort	with	Person	objects,	the	output	returns	the	names	sorted	by
last	name:

Damon	Hill

Graham	Hill

Niki	Lauda

Ayrton	Senna

If	the	Person	object	should	be	sorted	differently	than	the	implementation	within
the	Person	class,	a	comparer	type	can	implement	the	interface	IComparer<T>.
This	interface	specifies	the	method	Compare,	which	defines	two	arguments	that
should	be	compared.	The	return	value	is	similar	to	the	result	of	the	CompareTo
method	that's	defined	with	the	IComparable	interface.

With	the	sample	code,	the	class	PersonComparer	implements	the
IComparer<Person>	interface	to	sort	Person	objects	either	by	FirstName	or	by
LastName.	The	enumeration	PersonCompareType	defines	the	different	sorting
options	that	are	available	with	PersonComparer	:	FirstName	and	LastName.	How
the	compare	should	be	done	is	defined	with	the	constructor	of	the	class
PersonComparer,	where	a	PersonCompareType	value	is	set.	The	Compare	method
is	implemented	with	a	switch	statement	to	compare	either	by	LastName	or	by
FirstName	(code	file	SortingSample/PersonComparer.cs):

public	enum	PersonCompareType

{

		FirstName,

		LastName

}

	

public	class	PersonComparer	:	IComparer<Person>

{

		private	PersonCompareType	_compareType;

		public	PersonComparer(PersonCompareType	compareType)	=>

				_compareType	=	compareType;

	

		public	int	Compare(Person?	x,	Person?	y)

		{

				if	(x	is	null	&&	y	is	null)	return	0;

				if	(x	is	null)	return	1;

				if	(y	is	null)	return	-1;

	

				return	_compareType	switch

				{

						PersonCompareType.FirstName	=>	

x.FirstName.CompareTo(y.FirstName),

						PersonCompareType.LastName	=>	

x.LastName.CompareTo(y.LastName),

						_	=>	throw	new	ArgumentException("unexpected	compare	

type")

				};

		}

}

Now	you	can	pass	a	PersonComparer	object	to	the	second	argument	of	the
Array.Sort	method.	Here,	the	people	are	sorted	by	first	name	(code	file
SortingSample/Program.cs):

Array.Sort(persons,	new	

PersonComparer(PersonCompareType.FirstName));

foreach	(var	p	in	persons)

{

		Console.WriteLine(p);

}

The	persons	array	is	now	sorted	by	first	name:

Ayrton	Senna

Damon	Hill

Graham	Hill

Niki	Lauda

NOTE The	Array	class	also	offers	Sort	methods	that	require	a	delegate	as
an	argument.	With	this	argument,	you	can	pass	a	method	to	do	the
comparison	of	two	objects	rather	than	relying	on	the	IComparable	or
IComparer	interfaces.	Chapter	7,	“Delegates,	Lambdas,	and	Events,”
discusses	how	to	use	delegates.

ARRAYS	AS	PARAMETERS
Arrays	can	be	passed	as	parameters	to	methods	and	returned	from	methods.	To
return	an	array,	you	just	have	to	declare	the	array	as	the	return	type,	as	shown
with	the	following	method	GetPersons	:

static	Person[]	GetPersons()	=>

		new	Person[]	{

				new	Person("Damon",	"Hill"),

				new	Person("Niki",	"Lauda"),

				new	Person("Ayrton",	"Senna"),

				new	Person("Graham",	"Hill")

		};

When	passing	arrays	to	a	method,	the	array	is	declared	with	the	parameter,	as

shown	with	the	method	DisplayPersons	:

static	void	DisplayPersons(Person[]	persons)

{

		//…

}

ENUMERATORS
By	using	the	foreach	statement,	you	can	iterate	elements	of	a	collection	(see
Chapter	8)	without	needing	to	know	the	number	of	elements	inside	the
collection.	The	foreach	statement	uses	an	enumerator.	Figure	6-7	shows	the
relationship	between	the	client	invoking	the	foreach	method	and	the	collection.
The	array	or	collection	implements	the	IEnumerable	interface	with	the
GetEnumerator	method.	The	GetEnumerator	method	returns	an	enumerator
implementing	the	IEnumerator	interface.	The	interface	IEnumerator	is	then
used	by	the	foreach	statement	to	iterate	through	the	collection.

FIGURE	6-7

NOTE The	GetEnumerator	method	is	defined	with	the	interface
IEnumerable.	The	foreach	statement	doesn't	really	need	this	interface
implemented	in	the	collection	class.	It's	enough	to	have	a	method	with	the
name	GetEnumerator	that	returns	an	object	implementing	the	IEnumerator
interface.

IEnumerator	Interface
The	foreach	statement	uses	the	methods	and	properties	of	the	IEnumerator
interface	to	iterate	all	elements	in	a	collection.	For	this,	IEnumerator	defines	the

property	Current	to	return	the	element	where	the	cursor	is	positioned	and
defines	the	method	MoveNext	to	move	to	the	next	element	of	the	collection.
MoveNext	returns	true	if	there's	an	element	and	false	if	no	more	elements	are
available.
The	generic	version	of	the	interface	IEnumerator<T>	derives	from	the	interface
IDisposable	and	thus	defines	a	Dispose	method	to	clean	up	resources	allocated
by	the	enumerator.

NOTE The	IEnumerator	interface	also	defines	the	Reset	method	for	COM
interoperability.	Many	.NET	enumerators	implement	this	by	throwing	an
exception	of	type	NotSupportedException	.

foreach	Statement
The	C#	foreach	statement	is	not	resolved	to	a	foreach	statement	in	the	IL	code.
Instead,	the	C#	compiler	converts	the	foreach	statement	to	methods	and
properties	of	the	IEnumerator	interface.	Here's	a	simple	foreach	statement	to
iterate	all	elements	in	the	persons	array	and	display	them	person	by	person:

foreach	(var	p	in	persons)

{

		Console.WriteLine(p);

}

The	foreach	statement	is	resolved	to	the	following	code	fragment.	First,	the
GetEnumerator	method	is	invoked	to	get	an	enumerator	for	the	array.	Inside	a
while	loop,	as	long	as	MoveNext	returns	true,	the	elements	of	the	array	are
accessed	using	the	Current	property:

IEnumerator<Person>	enumerator	=	persons.GetEnumerator();

while	(enumerator.MoveNext())

{

		Person	p	=	enumerator.Current;

		Console.WriteLine(p);

}

yield	Statement
Using	the	foreach	statement,	it's	easy	to	use	the	IEnumerable	and	IEnumerator
interfaces—the	compiler	converts	the	code	to	use	the	members	of	these
interfaces.	To	create	classes	implementing	these	interfaces,	the	compiler	offers

the	yield	statement.	When	you	use	yield	return	and	yield	break,	the
compiler	generates	a	state	machine	to	iterate	through	a	collection	implementing
the	members	of	these	interfaces.	yield	return	returns	one	element	of	a
collection	and	moves	the	position	to	the	next	element;	yield	break	stops	the
iteration.	The	iteration	also	ends	when	the	method	is	completed,	so	a	yield
break	is	only	needed	to	stop	earlier.

The	next	example	shows	the	implementation	of	a	simple	collection	using	the
yield	return	statement.	The	class	HelloCollection	contains	the	method
GetEnumerator.	The	implementation	of	the	GetEnumerator	method	contains	two
yield	return	statements	where	the	strings	Hello	and	World	are	returned	(code
file	YieldSample/Program.cs):

class	HelloCollection

{

		public	IEnumerator<string>	GetEnumerator()

		{

				yield	return	"Hello";

				yield	return	"World";

		}

}

NOTE A	method	or	property	that	contains	yield	statements	is	also	known
as	an	iterator	block.	An	iterator	block	must	be	declared	to	return	an
IEnumerator	or	IEnumerable	interface	or	the	generic	versions	of	these
interfaces.	This	block	may	contain	multiple	yield	return	or	yield	break
statements;	a	return	statement	is	not	allowed.

Now	it	is	possible	to	iterate	through	the	collection	using	a	foreach	statement:

public	void	HelloWorld()

{

		HelloCollection	helloCollection	=	new();

		foreach	(string	s	in	helloCollection)

		{

				Console.WriteLine(s);

		}

}

NOTE Remember	that	the	yield	statement	produces	an	enumerator	and
not	just	a	list	filled	with	items.	This	enumerator	is	invoked	by	the	foreach
statement.	As	each	item	is	accessed	from	the	foreach	,	the	enumerator	is

accessed.	This	makes	it	possible	to	iterate	through	huge	amounts	of	data
without	reading	all	the	data	into	memory	in	one	turn.

Different	Ways	to	Iterate	Through	Collections
In	a	slightly	larger	and	more	realistic	way	than	the	Hello	World	example,	you
can	use	the	yield	return	statement	to	iterate	through	a	collection	in	different
ways.	The	class	MusicTitles	enables	iterating	the	titles	in	a	default	way	with	the
GetEnumerator	method,	in	reverse	order	with	the	Reverse	method,	and	through
a	subset	with	the	Subset	method	(code	file	YieldSample/MusicTitles.cs):

public	class	MusicTitles

{

		string[]	names	=	{"Tubular	Bells",	"Hergest	Ridge",	

"Ommadawn",	"Platinum"};

	

		public	IEnumerator<string>	GetEnumerator()

		{

				for	(int	i	=	0;	i	<	4;	i++)

				{

						yield	return	names[i];

				}

		}

	

		public	IEnumerable<string>	Reverse()

		{

				for	(int	i	=	3;	i>=	0;	i--)

				{

						yield	return	names[i];

				}

		}

	

		public	IEnumerable<string>	Subset(int	index,	int	length)

		{

				for	(int	i	=	index;	i	<	index	+	length;	i++)

				{

						yield	return	names[i];

				}

		}

}

NOTE The	default	iteration	supported	by	a	class	is	the	GetEnumerator
method,	which	is	defined	to	return	IEnumerator	.	Named	iterations	return
IEnumerable	.

The	client	code	to	iterate	through	the	string	array	first	uses	the	GetEnumerator
method,	which	you	don't	have	to	write	in	your	code	because	it	is	used	by	default
with	the	implementation	of	the	foreach	statement.	Then	the	titles	are	iterated	in
reverse,	and	finally	a	subset	is	iterated	by	passing	the	index	and	number	of	items
to	iterate	to	the	Subset	method	(code	file	YieldSample/Program.cs):

MusicTitles	titles	=	new();

foreach	(var	title	in	titles)

{

		Console.WriteLine(title);

}

Console.WriteLine();

	

Console.WriteLine("reverse");

foreach	(var	title	in	titles.Reverse())

{

		Console.WriteLine(title);

}

Console.WriteLine();

	

Console.WriteLine("subset");

foreach	(var	title	in	titles.Subset(2,	2))

{

		Console.WriteLine(title);

}

USING	SPAN	WITH	ARRAYS
For	a	fast	way	to	access	managed	or	unmanaged	continuous	memory,	you	can
use	the	Span<T>	struct.	One	example	where	Span<T>	can	be	used	is	an	array;	the
Span<T>	struct	holds	continuous	memory	behind	the	scenes.	Another	example	of
a	use	for	Span<T>	is	a	long	string.

Using	Span<T>,	you	can	directly	access	array	elements.	The	elements	of	the
array	are	not	copied,	but	they	can	be	used	directly,	which	is	faster	than	a	copy.

In	the	following	code	snippet,	first	a	simple	int	array	is	created	and	initialized.
A	Span<int>	object	is	created,	invoking	the	constructor	and	passing	the	array	to
the	Span<int>.	The	Span<T>	type	offers	an	indexer,	and	thus	the	elements	of	the
Span<T>	can	be	accessed	using	this	indexer.	Here,	the	second	element	is	changed
to	the	value	11.	Because	the	array	arr1	is	referenced	from	the	span,	the	second
element	of	the	array	is	changed	by	changing	the	Span<T>	element.	Finally,	the

span	is	returned	from	this	method	because	it	is	used	within	top-level	statements
to	pass	it	on	to	the	next	methods	that	follow	(code	file
SpanSample/Program.cs):

Span<int>	IntroSpans()

{

		int[]	arr1	=	{	1,	4,	5,	11,	13,	18	};

		Span<int>	span1	=	new(arr1);

		span1[1]	=	11;

		Console.WriteLine($"arr1[1]	is	changed	via	span1[1]:	

{arr1[1]}");

		return	span1;

}

Creating	Slices
A	powerful	feature	of	Span<T>	is	that	you	can	use	it	to	access	parts,	or	slices,	of
an	array.	By	using	the	slices,	the	array	elements	are	not	copied;	they're	directly
accessed	from	the	span.

The	following	code	snippet	shows	two	ways	to	create	slices.	With	the	first	one,	a
constructor	overload	is	used	to	pass	the	start	and	length	of	the	array	that	should
be	used.	With	the	variable	span3	that	references	this	newly	created	Span<int>,
it's	only	possible	to	access	three	elements	of	the	array	arr2,	starting	with	the
fourth	element.	Another	overload	of	the	constructor	exists	where	you	can	pass
just	the	start	of	the	slice.	With	this	overload,	the	remains	of	the	array	are	taken
until	the	end.	You	can	also	create	a	slice	from	a	Span<T>	object,	invoking	the
Slice	method.	Similar	overloads	exist	here.	With	the	variable	span4,	the
previously	created	span1	is	used	to	create	a	slice	with	four	elements	starting	with
the	third	element	of	span1	(code	file	SpanSample/Program.cs):

private	static	Span<int>	CreateSlices(Span<int>	span1)

{

		Console.WriteLine(nameof(CreateSlices));

		int[]	arr2	=	{	3,	5,	7,	9,	11,	13,	15	};

		Span<int>	span2	=	new(arr2);

		Span<int>	span3	=	new(arr2,	start:	3,	length:	3);

		Span<int>	span4	=	span1.Slice(start:	2,	length:	4);

	

		DisplaySpan("content	of	span3",	span3);

		DisplaySpan("content	of	span4",	span4);

		Console.WriteLine();

		return	span2;

}

You	use	the	DisplaySpan	method	to	display	the	contents	of	a	span.	The
following	code	snippet	makes	use	of	the	ReadOnlySpan.	You	can	use	this	span
type	if	you	don't	need	to	change	the	content	that	the	span	references,	which	is	the
case	in	the	DisplaySpan	method.	ReadOnlySpan<T>	is	discussed	later	in	this
chapter	in	more	detail:

private	static	void	DisplaySpan(string	title,	ReadOnlySpan<int>	

span)

{

		Console.WriteLine(title);

		for	(int	i	=	0;	i	<	span.Length;	i++)

		{

				Console.Write($"{span[i]}.");

		}

		Console.WriteLine();

}

When	you	run	the	application,	the	content	of	span3	and	span4	is	shown—a
subset	of	the	arr2	and	arr1	:

content	of	span3

9.11.13.

content	of	span4

6.8.10.12.

NOTE Span<T>	is	safe	from	crossing	the	boundaries.	If	you're	creating
spans	that	exceed	the	contained	array	length,	an	exception	of	type
ArgumentOutOfRangeException	is	thrown.	Read	Chapter	10	for	more
information	on	exception	handling.

Changing	Values	Using	Spans
You've	seen	how	to	directly	change	elements	of	the	array	that	are	referenced	by
the	span	using	the	indexer	of	the	Span<T>	type.	There	are	more	options	as	shown
in	the	following	code	snippet.

You	can	invoke	the	Clear	method,	which	fills	a	span	containing	int	types	with	0
;	you	can	invoke	the	Fill	method	to	fill	the	span	with	the	value	passed	to	the
Fill	method;	and	you	can	copy	a	Span<T>	to	another	Span<T>.	With	the	CopyTo
method,	if	the	destination	span	is	not	large	enough,	an	exception	of	type
ArgumentException	is	thrown.	You	can	avoid	this	outcome	by	using	the
TryCopyTo	method.	This	method	doesn't	throw	an	exception	if	the	destination

span	is	not	large	enough;	instead,	it	returns	false	as	being	not	successful	with
the	copy	(code	file	SpanSample/Program.cs):

private	static	void	ChangeValues(Span<int>	span1,	Span<int>	

span2)

{

		Console.WriteLine(nameof(ChangeValues));

		Span<int>	span4	=	span1.Slice(start:	4);

		span4.Clear();

		DisplaySpan("content	of	span1",	span1);

		Span<int>	span5	=	span2.Slice(start:	3,	length:	3);

		span5.Fill(42);

		DisplaySpan("content	of	span2",	span2);

		span5.CopyTo(span1);

		DisplaySpan("content	of	span1",	span1);

	

		if	(!span1.TryCopyTo(span4))

		{

				Console.WriteLine("Couldn't	copy	span1	to	span4	because	

span4	is	"	+

						"too	small");

				Console.WriteLine($"length	of	span4:	{span4.Length},	length	

of	"	+	

						$"span1:	{span1.Length}");

		}

		Console.WriteLine();

}

When	you	run	the	application,	you	can	see	the	content	of	span1	where	the	last
two	numbers	have	been	cleared	using	span4,	the	content	of	span2	where	span5
was	used	to	fill	the	value	42	with	three	elements,	and	again	the	content	of	span1
where	the	first	three	numbers	have	been	copied	over	from	span5.	Copying	span1
to	span4	was	not	successful	because	span4	has	just	a	length	of	4,	whereas	span1
has	a	length	of	6:

content	of	span1

2.11.6.8.0.0.

content	of	span2

3.5.7.42.42.42.15.

content	of	span1

42.42.42.8.0.0.

Couldn't	copy	span1	to	span4	because	span4	is	too	small

length	of	span4:	2,	length	of	span1:	6

ReadOnly	Spans

If	you	need	only	read-access	to	an	array	segment,	you	can	use	ReadOnlySpan<T>
as	was	already	shown	in	the	DisplaySpan	method.	With	ReadOnlySpan<T>,	the
indexer	is	read-only,	and	this	type	doesn't	offer	Clear	and	Fill	methods.	You
can,	however,	invoke	the	CopyTo	method	to	copy	the	content	of	the
ReadOnlySpan<T>	to	a	Span<T>.

The	following	code	snippet	creates	readOnlySpan1	from	an	array	with	the
constructor	of	ReadOnlySpan<T>.	readOnlySpan2	and	readOnlySpan3	are
created	by	direct	assignments	from	Span<int>	and	int[].	Implicit	cast	operators
are	available	with	ReadOnlySpan<T>	(code	file	SpanSample/Program.cs):

void	ReadonlySpan(Span<int>	span1)

{

		Console.WriteLine(nameof(ReadonlySpan));

		int[]	arr	=	span1.ToArray();

		ReadOnlySpan<int>	readOnlySpan1	=	new(arr);

		DisplaySpan("readOnlySpan1",	readOnlySpan1);

	

		ReadOnlySpan<int>	readOnlySpan2	=	span1;

		DisplaySpan("readOnlySpan2",	readOnlySpan2);

		ReadOnlySpan<int>	readOnlySpan3	=	arr;

		DisplaySpan("readOnlySpan3",	readOnlySpan3);

		Console.WriteLine();

}

NOTE How	to	implement	implicit	cast	operators	is	discussed	in	Chapter
5,	“Operators	and	Casts.”	Read	more	information	on	spans	in	Chapter	13,
“Managed	and	Unmanaged	Memory.”

NOTE Previous	editions	of	this	book	demonstrated	the	use	of
ArraySegment<T>.	Although	ArraySegment<T>	is	still	available,	it	has	some
shortcomings,	and	you	can	use	the	more	flexible	Span<T>	as	a	replacement.
In	case	you're	already	using	ArraySegment<T>,	you	can	keep	the	code	and
interact	with	spans.	The	constructor	of	Span<T>	also	allows	passing	an
ArraySegment<T>	to	create	a	Span<T>	instance.

INDICES	AND	RANGES
Starting	with	C#	8,	indices	and	ranges	based	on	the	Index	and	Range	types	were
included,	along	with	the	range	and	hat	operators.	Using	the	hat	operator,	you	can

access	elements	counting	from	the	end.

Indices	and	the	Hat	Operator
Let's	start	with	the	following	array,	which	consists	of	nine	integer	values	(code
file	IndicesAndRanges/Program.cs):

int[]	data	=	{	1,	2,	3,	4,	5,	6,	7,	8,	9	};

The	traditional	way	to	access	the	first	and	last	elements	of	this	array	is	to	use	the
indexer	implemented	with	the	Array	class,	pass	an	integer	value	for	the	nth
element	starting	with	0	for	the	first	element,	and	use	the	length	minus	1	for	the
last	element:

int	first1	=	data[0];

int	last1	=	data[data.Length	-	1];

Console.WriteLine($"first:	{first1},	last:	{last1}");

With	the	hat	operator	(^),	you	can	use	^1	to	access	the	last	element,	and	the
calculation	based	on	the	length	is	no	longer	necessary:

int	last2	=	data[^1];

Console.WriteLine(last2);

Behind	the	scenes,	the	Index	struct	type	is	used.	An	implicit	cast	from	int	to
Index	is	implemented,	so	you	can	assign	int	values	to	the	Index	type.	Using	the
hat	operator,	the	compiler	creates	an	Index	that	initializes	the	IsFromEnd
property	to	true.	Passing	the	Index	to	an	indexer,	the	compiler	converts	the
value	to	an	int.	If	the	Index	starts	from	the	end,	calculation	is	done	with	either	a
Length	or	a	Count	property	(depending	on	what	property	is	available):

Index	firstIndex	=	0;

Index	lastIndex	=	^1;

int	first3	=	data[firstIndex];

int	last3	=	data[lastIndex];

Console.WriteLine($"first:	{first3},	last:	{last3}");

Ranges
To	access	a	range	of	the	array,	the	range	operator	(..)	can	be	used	with	the
underlying	Range	type.	In	the	sample	code,	the	ShowRange	method	is
implemented	to	display	the	values	of	an	array	with	a	string	output	(code	file
IndicesAndRanges/Program.cs):

void	ShowRange(string	title,	int[]	data)

{

		Console.WriteLine(title);

		Console.WriteLine(string.Join("	",	data));

		Console.WriteLine();

}

By	invoking	this	method	with	different	values	passed	using	the	range	operator,
you	can	see	the	various	forms	of	ranges.	A	range	is	defined	with	..	embedded
with	an	Index	on	the	left	and	an	Index	on	the	right.	Starting	with	..	and
omitting	the	Index	from	the	left	side	just	starts	from	the	beginning.	Omitting	the
Index	from	the	right	side,	the	range	goes	up	to	the	end.	Using	..	with	the	array
just	returns	the	complete	array.

The	Index	on	the	left	side	specifies	an	inclusive	value,	whereas	the	Index	on	the
right	side	is	exclusive.	With	the	end	of	the	range,	you	need	to	specify	the
element	following	the	last	element	you	want	to	access.	When	the	Index	type	was
used	before,	you've	seen	that	^1	references	the	last	value	of	the	collection.	When
using	the	Index	on	the	right	side	of	a	range,	you	must	specify	^0	to	address	the
element	after	the	last	element	(remember	the	right	side	of	the	range	is	exclusive).

With	the	code	sample,	a	full	range	is	used	(..),	the	first	three	elements	are
passed	with	0..3	;	the	fourth	to	the	sixth	elements	are	passed	with	3..6	;	and
counting	from	the	end,	the	last	three	elements	are	passed	with	^3..^0	:

ShowRange("full	range",	data[..]);

ShowRange("first	three",	data[0..3]);

ShowRange("fourth	to	sixth",	data[3..6]);

ShowRange("last	three",	data[^3..^0]);

Behind	the	scenes,	the	Range	struct	type	is	used,	and	you	can	assign	ranges	to
variables:

Range	fullRange	=	..;

Range	firstThree	=	0..3;

Range	fourthToSixth	=	3..6;

Range	lastThree	=	^3..^0;

The	Range	type	specifies	a	constructor	that	passes	two	Index	values	for	the	start
and	the	end,	End	and	Start	properties	that	return	an	Index,	and	a
GetOffsetAndLength	method	that	returns	a	tuple	consisting	of	the	offset	and
length	of	a	range.

Efficiently	Changing	Array	Content

Using	a	range	of	an	array,	the	array	elements	are	copied.	Changing	values	within
the	range,	the	original	values	of	the	array	do	not	change.	However,	as	described
in	the	section	“Using	Span	with	Arrays,”	a	Span	allows	accessing	a	slice	of	an
array	directly.	The	Span	type	also	supports	indices	and	ranges,	and	you	can
change	the	content	of	an	array	by	accessing	a	range	of	the	Span	type.

The	following	code	snippet	demonstrates	accessing	a	slice	of	an	array	and
changing	the	first	element	of	the	slice;	the	original	value	of	the	array	didn't
change	because	a	copy	was	done.	In	the	code	lines	that	follow,	a	Span	is	created
to	access	the	array	using	the	AsSpan	method.	With	this	Span,	the	range	operator
is	used,	which	in	turn	invokes	the	Slice	method	of	the	Span.	Changing	values
from	this	slice,	the	array	is	directly	accessed	and	changed	using	an	indexer	on
the	slice	(code	file	IndicesAndRanges/Program.cs):

var	slice1	=	data[3..5];

slice1[0]	=	42;

Console.WriteLine($"value	in	array	didn't	change:	{data[3]},	"	+	

		$"value	from	slice:	{slice1[0]}");

	

var	sliceToSpan	=	data.AsSpan()[3..5];

sliceToSpan[0]	=	42;

Console.WriteLine($"value	in	array:	{data[3]},	value	from	slice:	

{sliceToSpan[0]}");

Indices	and	Ranges	with	Custom	Collections
To	support	indices	and	ranges	with	custom	collections,	not	a	lot	of	work	is
required.	To	support	the	hat	operator,	the	MyCollection	class	implements	an
indexer	and	the	Length	property.	To	support	ranges,	you	can	either	create	a
method	that	receives	a	Range	type	or—a	simpler	way—create	a	method	with	the
name	Slice	that	has	two	int	parameters	and	can	have	the	return	type	you	need.
The	compiler	converts	the	range	to	calculate	the	start	and	length	(code	file
IndicesAndRanges/MyCollection.cs):

using	System;

using	System.Linq;

	

public	class	MyCollection

{

		private	int[]	_array	=	Enumerable.Range(1,	100).ToArray();

	

		public	int	Length	=>	_array.Length;

	

		public	int	this[int	index]

		{

				get	=>	_array[index];

				set	=>	_array[index]	=	value;

		}

	

		public	int[]	Slice(int	start,	int	length)

		{

				var	slice	=	new	int[length];

				Array.Copy(_array,	start,	slice,	0,	length);

				return	slice;

		}

}

The	collection	is	initialized.	With	just	the	few	lines	that	have	been	implemented,
the	hat	operator	can	be	used	with	the	indexer,	and	with	the	range	operator,	the
compiler	converts	this	to	invoke	the	Slice	method	(code	file
IndicesAndRanges/Program.cs):

MyCollection	coll	=	new();

int	n	=	coll[^20];

Console.WriteLine($"Item	from	the	collection:	{n}");

ShowRange("Using	custom	collection",	coll[45..^40]);

ARRAY	POOLS
If	you	have	an	application	where	a	lot	of	arrays	are	created	and	destroyed,	the
garbage	collector	has	some	work	to	do.	To	reduce	the	work	of	the	garbage
collector,	you	can	use	array	pools	with	the	ArrayPool	class	(from	the	namespace
System.Buffers).	ArrayPool	manages	a	pool	of	arrays.	Arrays	can	be	rented
from	and	returned	to	the	pool.	Memory	is	managed	from	the	ArrayPool	itself.

Creating	the	Array	Pool
You	can	create	an	ArrayPool<T>	by	invoking	the	static	Create	method.	For
efficiency,	the	array	pool	manages	memory	in	multiple	buckets	for	arrays	of
similar	sizes.	With	the	Create	method,	you	can	define	the	maximum	array	length
and	the	number	of	arrays	within	a	bucket	before	another	bucket	is	required:

ArrayPool<int>	customPool	=	ArrayPool<int>.Create(

		maxArrayLength:	40000,	maxArraysPerBucket:	10);

The	default	for	the	maxArrayLength	is	1024	×	1024	bytes,	and	the	default	for
maxArraysPerBucket	is	50.	The	array	pool	uses	multiple	buckets	for	faster
access	to	arrays	when	many	arrays	are	used.	Arrays	of	similar	sizes	are	kept	in

the	same	bucket	as	long	as	possible,	and	the	maximum	number	of	arrays	is	not
reached.

You	can	also	use	a	predefined	shared	pool	by	accessing	the	Shared	property	of
the	ArrayPool<T>	class:

ArrayPool<int>	sharedPool	=	ArrayPool<int>.Shared;

Renting	Memory	from	the	Pool
Requesting	memory	from	the	pool	happens	by	invoking	the	Rent	method.	The
Rent	method	accepts	the	minimum	array	length	that	should	be	requested.	If
memory	is	already	available	in	the	pool,	it	is	returned.	If	it	is	not	available,
memory	is	allocated	for	the	pool	and	returned	afterward.	In	the	following	code
snippet,	an	array	of	1024,	2048,	3096,	and	so	on	elements	is	requested	in	a	for
loop	(code	file	ArrayPoolSample/Program.cs):

private	static	void	UseSharedPool()

{

		for	(int	i	=	0;	i	<	10;	i++)

		{

				int	arrayLength	=	(i	+	1)	<<	10;

				int[]	arr	=	ArrayPool<int>.Shared.Rent(arrayLength);

				Console.WriteLine($"requested	an	array	of	{arrayLength}	"	+

						$"and	received	{arr.Length}");

				//…

		}

}

The	Rent	method	returns	an	array	with	at	least	the	requested	number	of
elements.	The	array	returned	could	have	more	memory	available.	The	shared
pool	keeps	arrays	with	at	least	16	elements.	The	element	count	of	the	managed
arrays	always	doubles—for	example,	16,	32,	64,	128,	256,	512,	1024,	2048,
4096,	8192	elements,	and	so	on.

When	you	run	the	application,	you	can	see	that	larger	arrays	are	returned	if	the
requested	array	size	doesn't	fit	the	arrays	managed	by	the	pool:

requested	an	array	of	1024	and	received	1024

requested	an	array	of	2048	and	received	2048

requested	an	array	of	3072	and	received	4096

requested	an	array	of	4096	and	received	4096

requested	an	array	of	5120	and	received	8192

requested	an	array	of	6144	and	received	8192

requested	an	array	of	7168	and	received	8192

requested	an	array	of	8192	and	received	8192

requested	an	array	of	9216	and	received	16384

requested	an	array	of	10240	and	received	16384

Returning	Memory	to	the	Pool
After	you	no	longer	need	the	array,	you	can	return	it	to	the	pool.	After	the	array
is	returned,	you	can	later	reuse	it	by	renting	it	again.

You	return	the	array	to	the	pool	by	invoking	the	Return	method	of	the	array	pool
and	passing	the	array	to	the	Return	method.	With	an	optional	parameter,	you	can
specify	whether	the	array	should	be	cleared	before	it	is	returned	to	the	pool.
Without	clearing	it,	the	next	one	renting	an	array	from	the	pool	could	read	the
data.	By	clearing	the	data,	you	avoid	this,	but	you	need	more	CPU	time	(code
file:	ArrayPoolSample/Program.cs):

ArrayPool<int>.Shared.Return(arr,	clearArray:	true);

NOTE Information	about	the	garbage	collector	and	how	to	get
information	about	memory	addresses	is	in	Chapter	13.

BITARRAY
If	you	need	to	work	with	an	array	of	bits,	you	can	use	the	BitArray	type	(from
the	namespace	System.Collections).	BitArray	is	a	reference	type	that	contains
an	array	of	int	s,	where	for	every	32	bits	a	new	integer	is	used.	BitArray
defines	Count	and	Length	properties,	an	indexer,	a	SetAll	method	to	set	all	the
bits	according	to	the	parameters	passed,	a	Not	method	to	inverse	the	bits,	as	well
as	And,	Or,	and	Xor	methods	for	binary	AND,	binary	OR,	and	exclusive	OR.

NOTE Chapter	5	covers	bitwise	operators	that	can	be	used	with	number
types	such	as	byte	,	short	,	int	,	and	long	.	The	BitArray	class	has	similar
functionality	but	can	be	used	with	a	different	number	of	bits	than	the	C#
types.

With	the	code	sample,	the	extension	method	GetBitsFormat	iterates	through	a
BitArray	and	writes	1	or	0	to	a	StringBuilder,	depending	on	whether	the	bit	is
set.	For	better	readability,	a	separator	character	is	added	every	four	bits	(code	file
BitArraySample/BitArrayExtensions.cs):

public	static	class	BitArrayExtensions

{

		public	static	string	GetBitsFormat(this	BitArray	bits)

		{

				StringBuilder	sb	=	new();

				for	(int	i	=	bits.Length	-	1;	i>=	0;	i--)

				{

						sb.Append(bits[i]	?	1	:	0);

						if	(i	!=	0	&&	i	%	4	==	0)

						{

								sb.Append("_");

						}

				}

				return	sb.ToString();

		}

}

The	following	example	demonstrates	the	BitArray	class	creating	a	bit	array	with
nine	bits,	indexed	from	0	to	8.	The	SetAll	method	sets	all	nine	bits	to	true.
Then	the	Set	method	changes	bit	1	to	false.	Instead	of	the	Set	method,	you	can
also	use	an	indexer,	as	shown	with	index	5	and	7	(code	file
BitArraySample/Program.cs):

BitArray	bits1	=	new(9);

bits1.SetAll(true);

bits1.Set(1,	false);

bits1[5]	=	false;

bits1[7]	=	false;

Console.Write("initialized:	");

Console.WriteLine(bits1.GetBitsFormat());

Console.WriteLine();

This	is	the	displayed	result	of	the	initialized	bits:

initialized:	1_0101_1101

The	Not	method	generates	the	inverse	of	the	bits	of	the	BitArray	:

Console.WriteLine($"NOT	{bits1.FormatString()}");

bits1.Not();

Console.WriteLine($"	=		{bits1.FormatString()}");

Console.WriteLine();

The	result	of	Not	is	all	bits	inverted.	If	the	bit	were	true,	it	is	false	;	and	if	it
were	false,	it	is	true	:

NOT	1_0101_1101

	=		0_1010_0010

In	the	following	example,	a	new	BitArray	is	created.	With	the	constructor,	the
variable	bits1	is	used	to	initialize	the	array,	so	the	new	array	has	the	same
values.	Then	the	values	for	bits	0,	1,	and	4	are	set	to	different	values.	Before	the
Or	method	is	used,	the	bit	arrays	bits1	and	bits2	are	displayed.	The	Or	method
changes	the	values	of	bits1	:

BitArray	bits2	=	new(bits1);

bits2[0]	=	true;

bits2[1]	=	false;

bits2[4]	=	true;

Console.WriteLine($"			{bits1.FormatString()}");

Console.WriteLine($"OR	{bits2.FormatString()}");

bits1.Or(bits2);

Console.WriteLine($"=		{bits1.FormatString()}");

Console.WriteLine();

With	the	Or	method,	the	set	bits	are	taken	from	both	input	arrays.	In	the	result,
the	bit	is	set	if	it	was	set	with	either	the	first	or	the	second	array:

			0_1010_0010

OR	0_1011_0001

=		0_1011_0011

Next,	the	And	method	is	used	to	operate	on	bits2	and	bits1	:

Console.WriteLine($"				{bits2.FormatString()}");

Console.WriteLine($"AND	{bits1.FormatString()}");

bits2.And(bits1);

Console.WriteLine($"=			{bits2.FormatString()}");

Console.WriteLine();

The	result	of	the	And	method	only	sets	the	bits	where	the	bit	was	set	in	both	input
arrays:

				0_1011_0001

AND	0_1011_0011

=			0_1011_0001

Finally,	the	Xor	method	is	used	for	an	exclusive	OR	:

Console.WriteLine($"				{bits1.FormatString()}	");

Console.WriteLine($"XOR	{bits2.FormatString()}");

bits1.Xor(bits2);

Console.WriteLine($"=			{bits1.FormatString()}");

Console.ReadLine();

With	the	Xor	method,	the	resultant	bit	is	set	only	if	the	bit	was	set	either	in	the

first	or	second	input,	but	not	both:

				0_1011_0011

XOR	0_1011_0001

=			0_0000_0010

SUMMARY
This	chapter	covered	how	to	use	the	C#	notation	to	create	and	use	simple,
multidimensional,	and	jagged	arrays.	The	Array	class	is	used	behind	the	scenes
of	C#	arrays,	enabling	you	to	invoke	properties	and	methods	of	this	class	with
array	variables.

You	saw	how	to	sort	elements	in	the	array	by	using	the	IComparable	and
IComparer	interfaces;	and	you	learned	how	to	create	and	use	enumerators,	the
interfaces	IEnumerable	and	IEnumerator,	and	the	yield	statement.

With	the	Span<T>	type,	you	saw	efficient	ways	to	access	a	slice	of	the	array.	You
also	saw	range	and	index	enhancements	with	C#.

The	last	sections	of	this	chapter	showed	you	how	to	efficiently	use	arrays	with
the	ArrayPool,	as	well	as	how	to	use	the	BitArray	type	to	deal	with	an	array	of
bits.

The	next	chapter	gets	into	details	of	more	important	features	of	C#:	delegates,
lambdas,	and	events.

7
Delegates,	Lambdas,	and	Events

WHAT'S	IN	THIS	CHAPTER?

Delegates

Lambda	expressions

Closures

Events

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Delegates.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

SimpleDelegates

MulticastDelegates

LambdaExpressions

EventsSample

All	the	projects	have	nullable	reference	types	enabled.

REFERENCING	METHODS
Delegates	are	the	.NET	variant	of	addresses	to	methods.	A	delegate	is	an	object-
oriented	type-safe	pointer	to	one	or	multiple	methods.	Lambda	expressions	are
directly	related	to	delegates.	When	the	parameter	is	a	delegate	type,	you	can	use
a	lambda	expression	to	implement	a	method	that's	referenced	from	the	delegate.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

This	chapter	explains	the	basics	of	delegates	and	lambda	expressions,	and	it
shows	you	how	to	implement	methods	called	by	delegates	with	lambda
expressions.	It	also	demonstrates	how	.NET	uses	delegates	as	the	means	of
implementing	events.

NOTE C#	9	also	has	the	concept	of	a	function	pointer—a	direct	pointer	to
a	managed	or	native	method	without	the	overhead	of	a	delegate.	Function
pointers	are	explained	in	Chapter	13,	“Managed	and	Unmanaged	Memory.”

DELEGATES
In	Chapter	4,	“Object-Oriented	Programming	in	C#,”	you	read	about	using
interfaces	as	contracts.	If	the	parameter	of	a	method	has	the	type	of	an	interface,
with	the	implementation	of	the	method	any	members	of	the	interface	can	be	used
without	being	dependent	on	any	interface	implementation.	Indeed,	the
implementation	of	the	interface	can	be	done	independently	of	the	method
implementation.	Similarly,	a	method	can	be	declared	to	receive	a	parameter	of	a
delegate	type.	The	method	receiving	the	delegate	parameter	can	invoke	the
method	that's	referenced	from	the	delegate.	Similar	to	interfaces,	the
implementation	of	the	method	that's	referenced	by	the	delegate	can	be	done
independently	of	the	method	that's	invoking	the	delegate.

The	concept	of	passing	delegates	to	methods	can	become	clearer	with	some
examples:

Tasks—With	tasks	you	can	define	a	sequence	of	execution	that	should	run
in	parallel	with	what	currently	is	running	in	the	main	task.	You	can	invoke
the	Run	method	of	a	Task	and	pass	the	address	of	a	method	via	a	delegate	to
invoke	this	method	from	the	task.	Tasks	are	explained	in	Chapter	11,	“Tasks
and	Asynchronous	Programming.”

LINQ—LINQ	is	implemented	via	extension	methods	that	require	a
delegate	as	a	parameter.	Here	you	can	pass	functionality	such	as	how	to
define	the	implementation	to	compare	two	values.	LINQ	is	explained	in
detail	in	Chapter	9,	“Language	Integrated	Query.”

Events—With	events,	you	separate	the	producer	that	fires	events	and	the
subscribers	that	listen	to	events.	The	publisher	and	subscriber	are
decoupled.	What's	common	between	them	is	the	contract	of	a	delegate.

Events	are	explained	in	detail	later	in	this	chapter.

Declaring	Delegates
When	you	want	to	use	a	class	in	C#,	you	do	so	in	two	stages.	First,	you	need	to
define	the	class—that	is,	you	need	to	tell	the	compiler	what	fields	and	methods
make	up	the	class.	Then	(unless	you	are	using	only	static	methods),	you
instantiate	an	object	of	that	class.	With	delegates,	it	is	the	same	process.	You
start	by	declaring	the	delegates	you	want	to	use.	Declaring	delegates	means
telling	the	compiler	what	kind	of	method	a	delegate	of	that	type	will	represent.
Then,	you	have	to	create	one	or	more	instances	of	that	delegate.	Behind	the
scenes,	a	delegate	type	is	a	class,	but	there's	specific	syntax	for	delegates	that
hide	details.

The	syntax	for	declaring	delegates	looks	like	this:

delegate	void	IntMethodInvoker(int	x);

This	declares	a	delegate	called	IntMethodInvoker	and	indicates	that	each
instance	of	this	delegate	can	hold	a	reference	to	a	method	that	takes	one	int
parameter	and	returns	void.	The	crucial	point	to	understand	about	delegates	is
that	they	are	type-safe.	When	you	define	the	delegate,	you	have	to	provide	full
details	about	the	signature	and	the	return	type	of	the	method	that	it	represents.

NOTE One	good	way	to	understand	delegates	is	to	think	of	a	delegate	as
something	that	gives	a	name	to	a	method	signature	and	the	return	type.

Suppose	that	you	want	to	define	a	delegate	called	TwoLongsOp	that	represents	a
method	that	takes	two	long	s	as	its	parameters	and	returns	a	double.	You	could
do	so	like	this:

delegate	double	TwoLongsOp(long	first,	long	second);

Or,	to	define	a	delegate	that	represents	a	method	that	takes	no	parameters	and
returns	a	string,	you	might	write	this	(code	file	GetAStringDemo/Program.cs):

//…

delegate	string	GetAString();

The	syntax	is	similar	to	that	for	a	method	definition,	except	there	is	no	method
body	and	the	definition	is	prefixed	with	the	keyword	delegate.	Because	what
you	are	doing	here	is	basically	defining	a	new	class,	you	can	define	a	delegate	in

any	of	the	same	places	that	you	would	define	a	class—that	is	to	say,	either	inside
another	class,	outside	of	any	class,	or	in	a	namespace	as	a	top-level	object.
Depending	on	how	visible	you	want	your	definition	to	be	and	the	scope	of	the
delegate,	you	can	apply	any	of	the	access	modifiers	that	also	apply	to	classes	to
define	its	visibility:

public	delegate	string	GetAString();

NOTE Delegates	are	implemented	as	classes	derived	from	the	class
System.MulticastDelegate	,	which	is	derived	from	the	base	class
System.Delegate	.	The	C#	compiler	is	aware	of	this	class	and	uses	the
delegate	syntax	to	hide	the	details	of	the	operations	of	this	class.

After	you	have	defined	a	delegate,	you	can	create	an	instance	of	it	so	that	you
can	use	it	to	store	details	about	a	particular	method.

Using	Delegates
The	following	code	snippet	demonstrates	the	use	of	a	delegate.	It	is	a	rather
long-winded	way	of	calling	the	ToString	method	on	an	int	(code	file
GetAStringDemo/Program.cs):

int	x	=	40;

GetAString	firstStringMethod	=	new	GetAString(x.ToString);

Console.WriteLine($"String	is	{firstStringMethod()}");

//…

This	code	instantiates	a	delegate	of	type	GetAString	and	initializes	it	so	it	refers
to	the	ToString	method	of	the	integer	variable	x.	Delegates	always	take	a	one-
parameter	constructor,	which	is	the	address	of	a	method.	This	method	must
match	the	signature	and	return	type	with	which	the	delegate	was	defined.
Because	ToString	is	an	instance	method	(as	opposed	to	a	static	method),	the
instance	needs	to	be	supplied	with	the	parameter.

The	next	line	invokes	the	delegate	to	display	the	string.	In	any	code,	supplying
the	name	of	a	delegate	instance,	followed	by	parentheses	containing	any
parameters,	has	exactly	the	same	effect	as	calling	the	method	wrapped	by	the
delegate.

In	fact,	supplying	parentheses	to	the	delegate	instance	is	the	same	as	calling	the
Invoke	method	of	the	delegate	class.	Because	firstStringMethod	is	a	variable
of	a	delegate	type,	the	C#	compiler	replaces	firstStringMethod	with

firstStringMethod.Invoke	:

firstStringMethod();

firstStringMethod.Invoke();

For	less	typing,	at	every	place	where	a	delegate	instance	is	needed,	you	can	just
pass	the	name	of	the	address.	This	is	known	by	the	term	delegate	inference.	This
C#	feature	works	as	long	as	the	compiler	can	resolve	the	delegate	instance	to	a
specific	type.	The	example	initialized	the	variable	firstStringMethod	of	type
GetAString	with	a	new	instance	of	the	delegate	GetAString	:

GetAString	firstStringMethod	=	new	GetAString(x.ToString);

You	can	write	the	same	just	by	passing	the	method	name	with	the	variable	x	to
the	variable	firstStringMethod	:

GetAString	firstStringMethod	=	x.ToString;

The	code	that	is	created	by	the	C#	compiler	is	the	same.	The	compiler	detects
that	a	delegate	type	is	required	with	firstStringMethod,	so	it	creates	an
instance	of	the	delegate	type	GetAString	and	passes	the	address	of	the	method
with	the	object	x	to	the	constructor.

NOTE Be	aware	that	you	can't	add	the	parentheses	to	the	method	name	as
x.ToString()	and	pass	it	to	the	delegate	variable.	This	would	be	an
invocation	of	the	method.	The	invocation	of	the	ToString	method	returns	a
string	object	that	can't	be	assigned	to	the	delegate	variable.	You	can	only
assign	the	address	of	a	method	to	the	delegate	variable.

Delegate	inference	can	be	used	anywhere	a	delegate	instance	is	required.
Delegate	inference	can	also	be	used	with	events	because	events	are	based	on
delegates	(as	you'll	see	later	in	this	chapter).

One	feature	of	delegates	is	that	they	are	type-safe	to	the	extent	that	they	ensure
that	the	signature	of	the	method	being	called	is	correct.	However,	interestingly,
they	don't	care	what	type	of	object	the	method	is	being	called	against	or	even
whether	the	method	is	a	static	method	or	an	instance	method.

NOTE An	instance	of	a	given	delegate	can	refer	to	any	instance	or	static
method	on	any	object	of	any	type	provided	that	the	signature	of	the	method
matches	the	signature	of	the	delegate.

To	demonstrate	this,	the	following	example	expands	the	previous	code	snippet	so
that	it	uses	the	firstStringMethod	delegate	to	call	a	couple	of	other	methods	on
another	object—an	instance	method	and	a	static	method.	For	this,	the	Currency
struct	is	defined.	This	type	has	its	own	overload	of	ToString	and	a	static	method
with	the	same	signature	to	GetCurrencyUnit.	This	way,	the	same	delegate
variable	can	be	used	to	invoke	these	methods	(code	file
GetAStringDemo/Currency.cs):

struct	Currency

{

		public	uint	Dollars;

		public	ushort	Cents;

		public	Currency(uint	dollars,	ushort	cents)

		{

				Dollars	=	dollars;

				Cents	=	cents;

		}

	

		public	override	string	ToString()	=>	$"${Dollars}.

{Cents,2:00}";

	

		public	static	string	GetCurrencyUnit()	=>	"Dollar";

	

		public	static	explicit	operator	Currency	(float	value)

		{

				checked

				{

						uint	dollars	=	(uint)value;

						ushort	cents	=	(ushort)((value	—	dollars)	*	100);

						return	new	Currency(dollars,	cents);

				}

		}

	

		public	static	implicit	operator	float	(Currency	value)	=>

				value.Dollars	+	(value.Cents	/	100.0f);

	

		public	static	implicit	operator	Currency	(uint	value)	=>

				new	Currency(value,	0);

	

		public	static	implicit	operator	uint	(Currency	value)	=>

				value.Dollars;

}

Now	you	can	use	the	GetAString	instance	as	follows	(code	file
GetAStringDemo/Program.cs):

private	delegate	string	GetAString();

	

//…

var	balance	=	new	Currency(34,	50);

	

//	firstStringMethod	references	an	instance	method

firstStringMethod	=	balance.ToString;

Console.WriteLine($"String	is	{firstStringMethod()}");

	

//	firstStringMethod	references	a	static	method

firstStringMethod	=	new	GetAString(Currency.GetCurrencyUnit);

Console.WriteLine($"String	is	{firstStringMethod()}");

This	code	shows	how	you	can	call	a	method	via	a	delegate	and	subsequently
reassign	the	delegate	to	refer	to	different	methods	on	different	instances	of
classes,	even	static	methods	or	methods	against	instances	of	different	types	of
class,	provided	that	the	signature	of	each	method	matches	the	delegate
definition.

When	you	run	the	application,	you	get	the	output	from	the	different	methods	that
are	referenced	by	the	delegate:

String	is	40

String	is	$34.50

String	is	Dollar

Now	that	you've	been	introduced	to	the	foundations	of	delegates,	it's	time	to
move	onto	something	more	useful	and	practical:	passing	delegates	to	methods.

Passing	Delegates	to	Methods
This	example	defines	a	MathOperations	class	that	uses	a	couple	of	static
methods	to	perform	two	operations	on	doubles.	Then	you	use	delegates	to
invoke	these	methods.	The	MathOperations	class	looks	like	this	(code	file
SimpleDelegates/MathOperations):

public	static	class	MathOperations

{

		public	static	double	MultiplyByTwo(double	value)	=>	value	*	2;

		public	static	double	Square(double	value)	=>	value	*	value;

}

You	invoke	these	methods	as	follows	(code	file	SimpleDelegates/Program.cs):

using	System;

	

DoubleOp[]	operations	=

{

		MathOperations.MultiplyByTwo,

		MathOperations.Square

};

	

for	(int	i=0;	i	<	operations.Length;	i++)

{

		Console.WriteLine($"Using	operations[{i}]");

		ProcessAndDisplayNumber(operations[i],	2.0);

		ProcessAndDisplayNumber(operations[i],	7.94);

		ProcessAndDisplayNumber(operations[i],	1.414);

		Console.WriteLine();

}

	

void	ProcessAndDisplayNumber(DoubleOp	action,	double	value)

{

		double	result	=	action(value);

		Console.WriteLine($"Value	is	{value},	result	of	operation	is	

{result}");

}

	

delegate	double	DoubleOp(double	x);

In	this	code,	you	instantiate	an	array	of	DoubleOp	delegates	(remember	that	after
you	have	defined	a	delegate	class,	you	can	basically	instantiate	instances	just	as
you	can	with	normal	classes,	so	putting	some	into	an	array	is	no	problem).	Each
element	of	the	array	is	initialized	to	refer	to	a	different	operation	implemented	by
the	MathOperations	class.	Then,	you	loop	through	the	array,	applying	each
operation	to	three	different	values.	This	illustrates	one	way	of	using	delegates—
to	group	methods	together	into	an	array	so	that	you	can	call	several	methods	in	a
loop.

The	key	lines	in	this	code	are	the	ones	in	which	you	actually	pass	each	delegate
to	the	ProcessAndDisplayNumber	method,	such	as	this:

ProcessAndDisplayNumber(operations[i],	2.0);

This	passes	in	the	name	of	a	delegate	but	without	any	parameters.	Given	that
operations[i]	is	a	delegate,	syntactically	the	following	is	true:

operations[i]	means	the	delegate	(that	is,	the	method	represented	by	the
delegate).

operations[i](2.0)	means	actually	calling	this	method,	passing	in	the
value	in	parentheses.

The	ProcessAndDisplayNumber	method	is	defined	to	take	a	delegate	as	its	first
parameter:

void	ProcessAndDisplayNumber(DoubleOp	action,	double	value)

Then,	within	the	implementation	of	this	method,	you	call	this:

double	result	=	action(value);

This	actually	causes	the	method	that	is	wrapped	up	by	the	action	delegate
instance	to	be	called,	and	its	return	result	is	stored	in	Result.	Running	this
example	gives	you	the	following:

Using	operations[0]:

Value	is	2,	result	of	operation	is	4

Value	is	7.94,	result	of	operation	is	15.88

Value	is	1.414,	result	of	operation	is	2.828

	

Using	operations[1]:

Value	is	2,	result	of	operation	is	4

Value	is	7.94,	result	of	operation	is	63.043600000000005

Value	is	1.414,	result	of	operation	is	1.9993959999999997

NOTE With	the	outcome	you're	seeing,	you	might	expect	different	results
with	some	of	the	multiplications,	but	if	you	round	the	results,	they	match.
This	is	because	of	how	double	values	are	stored.	Depending	on	the	data
you're	working	with,	this	might	not	be	good	enough—for	example	with
financial	data.	Here	you	should	use	the	decimal	type	instead.

Action<T>	and	Func<T>	Delegates
Instead	of	defining	a	new	delegate	type	with	every	parameter	and	return	type,
you	can	use	the	Action<T>	and	Func<T>	delegates.	The	generic	Action<T>
delegate	is	meant	to	reference	a	method	with	void	return.	This	delegate	class
exists	in	different	variants	so	that	you	can	pass	up	to	16	different	parameter
types.	The	Action	class	without	the	generic	parameter	is	for	calling	methods
without	parameters.	Action<in	T>	is	for	calling	a	method	with	one	parameter;
Action<in	T1,	in	T2>	is	for	a	method	with	two	parameters;	and	Action<in
T1,	in	T2,	in	T3,	in	T4,	in	T5,	in	T6,	in	T7,	in	T8>	is	for	a	method
with	eight	parameters.

The	Func<T>	delegates	can	be	used	in	a	similar	manner.	Func<T>	allows	you	to
invoke	methods	with	a	return	type.	Similar	to	Action<T>,	Func<T>	is	defined	in

different	variants	to	pass	up	to	16	parameter	types	and	a	return	type.	Func<out
TResult>	is	the	delegate	type	to	invoke	a	method	with	a	return	type	and	without
parameters.	Func<in	T,	out	TResult>	is	for	a	method	with	one	parameter,	and
Func<in	T1,	in	T2,	in	T3,	in	T4,	out	TResult>	is	for	a	method	with	four
parameters.

The	example	in	the	preceding	section	declared	a	delegate	with	a	double
parameter	and	a	double	return	type:

delegate	double	DoubleOp(double	x);

Instead	of	declaring	the	custom	delegate	DoubleOp,	you	can	use	the	Func<in	T,
out	TResult>	delegate.	You	can	declare	a	variable	of	the	delegate	type	or,	as
shown	here,	an	array	of	the	delegate	type:

Func<double,	double>[]	operations	=

{

		MathOperations.MultiplyByTwo,

		MathOperations.Square

};

and	use	it	with	the	ProcessAndDisplayNumber	method	as	a	parameter:

static	void	ProcessAndDisplayNumber(Func<double,	double>	action,

		double	value)

{

		double	result	=	action(value);

		Console.WriteLine($"Value	is	{value},	result	of	operation	is	

{result}");

}

Multicast	Delegates
So	far,	each	of	the	delegates	you	have	used	wraps	just	one	method	call.	Calling
the	delegate	amounts	to	calling	that	method.	If	you	want	to	call	more	than	one
method,	you	need	to	make	an	explicit	call	through	a	delegate	more	than	once.
However,	it	is	possible	for	a	delegate	to	wrap	more	than	one	method.	Such	a
delegate	is	known	as	a	multicast	delegate.	When	a	multicast	delegate	is	called,	it
successively	calls	each	method	in	order.	For	this	to	work,	the	delegate	signature
should	return	a	void	;	otherwise,	you	would	only	get	the	result	of	the	last	method
invoked	by	the	delegate.

With	a	void	return	type,	you	can	use	the	Action<double>	delegate	(code	file
MulticastDelegates/Program.cs):

Action<double>	operations	=	MathOperations.MultiplyByTwo;

operations	+=	MathOperations.Square;

In	the	earlier	example,	you	wanted	to	store	references	to	two	methods,	so	you
instantiated	an	array	of	delegates.	Here,	you	simply	add	both	operations	into	the
same	multicast	delegate.	Multicast	delegates	recognize	the	operators	+,	+=,	and	-
=.	Alternatively,	you	can	expand	the	last	two	lines	of	the	preceding	code,	as	in
this	snippet:

Action<double>	operation1	=	MathOperations.MultiplyByTwo;

Action<double>	operation2	=	MathOperations.Square;

Action<double>	operations	=	operation1	+	operation2;

With	the	sample	project	MulticastDelegates,	the	MathOperations	type	from
SimpleDelegates	has	been	changed	to	return	void	and	to	display	the	results	on
the	console	(code	file	MulticastDelegates/MathOperations.cs):

public	static	class	MathOperations

{

		public	static	void	MultiplyByTwo(double	value)	=>

				Console.WriteLine($"Multiplying	by	2:	{value}	gives	{value	*	

2}");

	

		public	static	void	Square(double	value)	=>

				Console.WriteLine($"Squaring:	{value}	gives	{value	*	

value}");

}

To	accommodate	this	change,	you	also	have	to	rewrite
ProcessAndDisplayNumber	(code	file	MulticastDelegates/Program.cs):

static	void	ProcessAndDisplayNumber(Action<double>	action,	

double	value)

{

		Console.WriteLine($"ProcessAndDisplayNumber	called	with	value	

=	{value}");

		action(value);

		Console.WriteLine();

}

Now	you	can	try	your	multicast	delegate:

Action<double>	operations	=	MathOperations.MultiplyByTwo;

operations	+=	MathOperations.Square;

ProcessAndDisplayNumber(operations,	2.0);

ProcessAndDisplayNumber(operations,	7.94);

ProcessAndDisplayNumber(operations,	1.414);

Each	time	ProcessAndDisplayNumber	is	called,	it	displays	a	message	saying	that
it	has	been	called.	Then	the	following	statement	causes	each	of	the	method	calls
in	the	action	delegate	instance	to	be	called	in	succession:

action(value);

Running	the	preceding	code	produces	this	result:

ProcessAndDisplayNumber	called	with	value	=	2

Multiplying	by	2:	2	gives	4

Squaring:	2	gives	4

	

ProcessAndDisplayNumber	called	with	value	=	7.94

Multiplying	by	2:	7.94	gives	15.88

Squaring:	7.94	gives	63.043600000000005

	

ProcessAndDisplayNumber	called	with	value	=	1.414

Multiplying	by	2:	1.414	gives	2.828

Squaring:	1.414	gives	1.9993959999999997

If	you	are	using	multicast	delegates,	be	aware	that	the	order	in	which	methods
chained	to	the	same	delegate	will	be	called	is	formally	undefined.	Therefore,
avoid	writing	code	that	relies	on	such	methods	being	called	in	any	particular
order.

Invoking	multiple	methods	by	one	delegate	might	cause	an	even	bigger	problem.
The	multicast	delegate	contains	a	collection	of	delegates	to	invoke	one	after	the
other.	If	one	of	the	methods	invoked	by	a	delegate	throws	an	exception,	the
complete	iteration	stops.	Consider	the	following	MulticastIteration	example.
Here,	the	simple	delegate	Action	is	used.	This	delegate	is	meant	to	invoke	the
methods	One	and	Two,	which	fulfill	the	parameter	and	return	type	requirements	of
the	delegate.	Be	aware	that	method	One	throws	an	exception	(code	file
MulticastDelegatesUsingInvocationList/Program.cs):

static	void	One()

{

		Console.WriteLine("One");

		throw	new	Exception("Error	in	One");

}

	

static	void	Two()

{

		Console.WriteLine("Two");

}

With	the	top-level	statements,	delegate	d1	is	created	to	reference	method	One	;

next,	the	address	of	method	Two	is	added	to	the	same	delegate.	d1	is	invoked	to
call	both	methods.	The	exception	is	caught	in	a	try	/	catch	block:

Action	d1	=	One;

d1	+=	Two;

try

{

		d1();

}

catch	(Exception)

{

		Console.WriteLine("Exception	caught");

}

Only	the	first	method	is	invoked	by	the	delegate.	Because	the	first	method
throws	an	exception,	iterating	the	delegates	stops	here,	and	method	Two	is	never
invoked.	The	result	might	differ	because	the	order	of	calling	the	methods	is	not
defined:

One

Exception	Caught

NOTE Errors	and	exceptions	are	explained	in	detail	in	Chapter	10,
“Errors	and	Exceptions.”

In	such	a	scenario,	you	can	avoid	the	problem	by	iterating	the	list	on	your	own.
The	Delegate	class	defines	the	method	GetInvocationList	that	returns	an	array
of	Delegate	objects.	You	can	now	use	these	delegates	to	invoke	the	methods
associated	with	them	directly,	catch	exceptions,	and	continue	with	the	next
iteration	(code	file	MulticastDelegatesUsingInvocationList/Program.cs):

Action	d1	=	One;

d1	+=	Two;

Delegate[]	delegates	=	d1.GetInvocationList();

foreach	(Action	d	in	delegates)

{

		try

		{

				d();

		}

		catch	(Exception)

		{

				Console.WriteLine("Exception	caught");

		}

}

When	you	run	the	application	with	the	code	changes,	you	can	see	that	the
iteration	continues	with	the	next	method	after	the	exception	is	caught:

One

Exception	caught

Two

Anonymous	Methods
Up	to	this	point,	a	method	must	already	exist	for	the	delegate	to	work	(that	is,	the
delegate	is	defined	with	the	same	signature	as	the	method(s)	it	will	be	used
with).	However,	there	is	another	way	to	use	delegates—with	anonymous
methods.	An	anonymous	method	is	a	block	of	code	that	is	used	as	the	parameter
for	the	delegate.

The	syntax	for	defining	a	delegate	with	an	anonymous	method	doesn't	change.
It's	when	the	delegate	is	instantiated	that	things	change.	The	following	simple
console	application	shows	how	using	an	anonymous	method	can	work	(code	file
AnonymousMethods/Program.cs):

string	mid	=	",	middle	part,";

Func<string,	string>	anonDel	=	delegate(string	param)

{

		param	+=	mid;

		param	+=	"	and	this	was	added	to	the	string.";

		return	param;

};

Console.WriteLine(anonDel("Start	of	string"));

The	delegate	Func<string,	string>	takes	a	single	string	parameter	and	returns
a	string.	anonDel	is	a	variable	of	this	delegate	type.	Instead	of	assigning	the
name	of	a	method	to	this	variable,	a	simple	block	of	code	is	used,	prefixed	by	the
delegate	keyword	and	followed	by	a	string	parameter.

As	you	can	see,	the	block	of	code	uses	a	method-level	string	variable,	mid,
which	is	defined	outside	of	the	anonymous	method	and	adds	it	to	the	parameter
that	was	passed	in.	The	code	then	returns	the	string	value.	When	the	delegate	is
called,	a	string	is	passed	in	as	the	parameter,	and	the	returned	string	is	output	to
the	console.

The	benefit	of	using	anonymous	methods	is	that	it	reduces	the	amount	of	code
you	have	to	write.	You	don't	need	to	define	a	method	just	to	use	it	with	a
delegate.	This	becomes	evident	when	you	define	the	delegate	for	an	event

(events	are	discussed	later	in	this	chapter),	and	it	helps	reduce	the	complexity	of
the	code,	especially	where	several	events	are	defined.	With	anonymous	methods,
the	code	does	not	perform	faster.	The	compiler	still	defines	a	method;	the
method	just	has	an	automatically	assigned	name	that	you	don't	need	to	know.

You	must	follow	a	couple	of	rules	when	using	anonymous	methods.	An
anonymous	method	can't	have	a	jump	statement	(break,	goto,	or	continue)	that
has	a	target	outside	of	the	anonymous	method.	The	reverse	is	also	true:	a	jump
statement	outside	the	anonymous	method	cannot	have	a	target	inside	the
anonymous	method.

If	you	have	to	write	the	same	functionality	more	than	once,	don't	use	anonymous
methods.	In	this	case,	instead	of	duplicating	the	code,	write	a	named	method.
You	have	to	write	it	only	once	and	reference	it	by	its	name.

NOTE The	syntax	for	anonymous	methods	was	introduced	with	C#	2.	With
new	programs,	you	really	don't	need	this	syntax	anymore	because	lambda
expressions	(explained	in	the	next	section)	offer	the	same—and	more—
functionality.	However,	you'll	find	the	syntax	for	anonymous	methods	in
many	places	in	existing	source	code,	which	is	why	it's	good	to	know	it.

Lambda	expressions	have	been	available	since	C#	3.

LAMBDA	EXPRESSIONS
One	way	lambda	expressions	are	used	is	to	assign	code—using	a	lambda
expression—to	a	parameter.	You	can	use	lambda	expressions	whenever	you	have
a	delegate	parameter	type.	The	previous	example	using	anonymous	methods	is
modified	in	the	following	snippet	to	use	a	lambda	expression:

string	mid	=	",	middle	part,";

Func<string,	string>	lambda	=	param	=>

{

		param	+=	mid;

		param	+=	"	and	this	was	added	to	the	string.";

		return	param;

};

Console.WriteLine(lambda("Start	of	string"));

The	left	side	of	the	lambda	operator,	=>,	lists	the	necessary	parameters.	The	right
side	following	the	lambda	operator	defines	the	implementation	of	the	method

assigned	to	the	variable	lambda.

Parameters
With	lambda	expressions,	there	are	several	ways	to	define	parameters.	If	there's
only	one	parameter,	just	the	name	of	the	parameter	is	enough.	The	following
lambda	expression	uses	the	parameter	named	s.	Because	the	delegate	type
defines	a	string	parameter,	s	is	of	type	string.	The	implementation	returns	a
formatted	string	that	is	finally	written	to	the	console	when	the	delegate	is
invoked:	change	uppercase	TEST	(code	file	LambdaExpressions/Program.cs):

Func<string,	string>	oneParam	=	s	=>	$"change	uppercase	

{s.ToUpper()}";

Console.WriteLine(oneParam("test"));

If	a	delegate	uses	more	than	one	parameter,	you	can	combine	the	parameter
names	inside	brackets.	Here,	the	parameters	x	and	y	are	of	type	double	as
defined	by	the	Func<double,	double,	double>	delegate:

Func<double,	double,	double>	twoParams	=	(x,	y)	=>	x	*	y;

Console.WriteLine(twoParams(3,	2));

For	convenience,	you	can	add	the	parameter	types	to	the	variable	names	inside
the	brackets.	If	the	compiler	can't	match	an	overloaded	version,	using	parameter
types	can	help	resolve	the	matching	delegate:

Func<double,	double,	double>	twoParamsWithTypes	=	

		(double	x,	double	y)	=>	x	*	y;

Console.WriteLine(twoParamsWithTypes(4,	2));

Multiple	Code	Lines
If	the	lambda	expression	consists	of	a	single	statement,	a	method	block	with
curly	brackets	and	a	return	statement	are	not	needed.	There's	an	implicit	return
added	by	the	compiler:

Func<double,	double>	square	=	x	=>	x	*	x;

It's	completely	legal	to	add	curly	brackets,	a	return	statement,	and	semicolons.
Usually	it's	just	easier	to	read	without	them:

Func<double,	double>	square	=	x	=>

{

		return	x	*	x;

};

However,	if	you	need	multiple	statements	in	the	implementation	of	the	lambda
expression,	curly	brackets	and	the	return	statement	are	required:

Func<string,	string>	lambda	=	param	=>

{

		param	+=	mid;

		param	+=	"	and	this	was	added	to	the	string.";

		return	param;

};

Closures
With	lambda	expressions,	you	can	access	variables	outside	the	block	of	the
lambda	expression.	This	is	known	as	closure.	Closures	are	a	great	feature,	but
they	can	also	be	dangerous	if	not	used	correctly.

In	the	following	example,	a	lambda	expression	of	type	Func<int,	int>	requires
one	int	parameter	and	returns	an	int.	The	parameter	for	the	lambda	expression
is	defined	with	the	variable	x.	The	implementation	also	accesses	the	variable
someVal,	which	is	outside	the	lambda	expression.	As	long	as	you	do	not	assume
that	the	lambda	expression	creates	a	new	method	that	is	used	later	when	f	is
invoked,	this	might	not	look	confusing	at	all.	Looking	at	this	code	block,	the
returned	value	calling	f	should	be	the	value	from	x	plus	5,	but	this	might	not	be
the	case	(code	file	LambdaExpressions/Program.cs):

int	someVal	=	5;

Func<int,	int>	f	=	x	=>	x	+	someVal;

Assuming	the	variable	someVal	is	later	changed	and	then	the	lambda	expression
is	invoked,	the	new	value	of	someVal	is	used.	The	result	of	invoking	f(3)	is	10	:

someVal	=	7;

Console.WriteLine(f(3));

Similarly,	when	you're	changing	the	value	of	a	closure	variable	within	the
lambda	expression,	you	can	access	the	changed	value	outside	of	the	lambda
expression.

Now,	you	might	wonder	how	it	is	possible	at	all	to	access	variables	outside	of
the	lambda	expression	from	within	the	lambda	expression.	To	understand	this,
consider	what	the	compiler	does	when	you	define	a	lambda	expression.	With	the
lambda	expression	x	=>	x	+	someVal,	the	compiler	creates	an	anonymous	class
that	has	a	constructor	to	pass	the	outer	variable.	The	constructor	depends	on	how
many	variables	you	access	from	the	outside.	With	this	simple	example,	the

constructor	accepts	an	int.	The	anonymous	class	contains	an	anonymous
method	that	has	the	implementation	as	defined	by	the	lambda	expression,	with
the	parameters	and	return	type:

public	class	AnonymousClass

{

		private	int	_someVal;

		public	AnonymousClass(int	someVal)	=>	_someVal	=	someVal;

		

		public	int	AnonymousMethod(int	x)	=>	x	+	_someVal;

}

In	case	a	value	outside	of	the	scope	of	the	lambda	expression	needs	to	be
returned,	a	reference	type	is	used.

Using	the	lambda	expression	and	invoking	the	method	creates	an	instance	of	the
anonymous	class	and	passes	the	value	of	the	variable	from	the	time	when	the	call
is	made.

NOTE In	case	you	are	using	closures	with	multiple	threads,	you	can	get
into	concurrency	conflicts.	It's	best	to	use	only	immutable	types	for	closures.
This	way	it's	guaranteed	the	value	can't	change,	and	synchronization	is	not
needed.

NOTE You	can	use	lambda	expressions	anywhere	the	type	is	a	delegate.
Another	use	of	lambda	expressions	is	when	the	type	is	Expression	or
Expression<T>	,	in	which	case	the	compiler	creates	an	expression	tree.	This
feature	is	discussed	in	Chapter	9.

EVENTS
Events	are	based	on	delegates	and	offer	a	publish/subscribe	mechanism	to
delegates.	You	can	find	events	everywhere	across	the	framework.	In	Windows
applications,	the	Button	class	offers	the	Click	event.	This	type	of	event	is	a
delegate.	A	handler	method	that	is	invoked	when	the	Click	event	is	fired	needs
to	be	defined	and	to	include	parameters	as	defined	by	the	delegate	type.

NOTE See	design	guidelines	for	events	in	the	Microsoft	documentation:
https://docs.microsoft.com/en-us/dotnet/standard/design-

https://docs.microsoft.com/en-us/dotnet/standard/design-guidelines/event

guidelines/event.

In	the	code	example	shown	in	this	section,	events	are	used	to	connect	the
CarDealer	and	Consumer	classes.	The	CarDealer	class	offers	an	event	when	a
new	car	arrives.	The	Consumer	class	subscribes	to	the	event	to	be	informed	when
a	new	car	arrives.

Event	Publisher
You	start	with	a	CarDealer	class	that	offers	a	subscription	based	on	events.
CarDealer	defines	the	event	named	NewCarCreated	of	type
EventHandler<CarInfoEventArgs>	with	the	event	keyword.	Inside	the	method
CreateANewCar,	the	event	NewCarCreated	is	fired	by	invoking	the	method
RaiseNewCarCreated.	The	implementation	of	this	method	verifies	whether	the
delegate	is	not	null	and	raises	the	event	(code	file
EventsSample/CarDealer.cs):

public	class	CarInfoEventArgs:	EventArgs

{

		public	CarInfoEventArgs(string	car)	=>	Car	=	car;

		public	string	Car	{	get;	}

}

	

public	class	CarDealer

{

		public	event	EventHandler<CarInfoEventArgs>?	NewCarInfo;

		public	void	CreateANewCar(string	car)

		{

				Console.WriteLine($"CarDealer,	new	car	{car}");

				RaiseNewCarCreated(car);

		}

	

		private	void	RaiseNewCarCreated(string	car)	=>

				NewCarCreated?.Invoke(this,	new	CarInfoEventArgs(car));

}

The	class	CarDealer	offers	the	event	NewCarCreated	of	type
EventHandler<CarInfoEventArgs>.	As	a	convention,	events	typically	use
methods	with	two	parameters;	the	first	parameter	is	an	object	and	contains	the
sender	of	the	event,	and	the	second	parameter	provides	information	about	the
event.	The	second	parameter	is	different	for	various	event	types.	You	could
create	a	specific	delegate	type	such	as

public	delegate	void	NewCarCreatedHandler(object	sender,	

CarInfoEventArgs	e);

or	use	the	generic	type	EventHandler	as	shown	in	the	sample	code.	With
EventHandler<TEventArgs>,	the	first	parameter	needs	to	be	of	type	object,	and
the	second	parameter	is	of	type	T.	EventHandler<TEventArgs>	also	defines	a
constraint	on	T	;	it	must	derive	from	the	base	class	EventArgs,	which	is	the	case
with	CarInfoEventArgs.

public	event	EventHandler<CarInfoEventArgs>	NewCarInfo;

The	delegate	EventHandler<TEventArgs>	is	defined	as	follows:

public	delegate	void	EventHandler<TEventArgs>(object	sender,	

TEventArgs	e)

		where	TEventArgs:	EventArgs

Defining	the	event	in	one	line	is	a	C#	shorthand	notation.	The	compiler	creates	a
variable	of	the	delegate	type	EventHandler<CarInfoEventArgs	>	and	adds
methods	to	subscribe	and	unsubscribe	from	the	delegate.	The	long	form	of	the
shorthand	notation	is	shown	next.	This	is	similar	to	auto-properties	and	full
properties.	With	events,	the	add	and	remove	keywords	are	used	to	add	and
remove	a	handler	to	the	delegate:

private	EventHandler<CarInfoEventArgs>?	_newCarCreated;

public	event	EventHandler<CarInfoEventArgs>?	NewCarCreated

{

		add	=>	_newCarCreated	+=	value;

		remove	=>	_newCarCreated	-=	value;

}

NOTE The	long	notation	to	define	events	is	useful	if	more	needs	to	be
done	than	just	adding	and	removing	the	event	handler,	such	as	adding
synchronization	for	multiple	thread	access.	The	UWP,	WPF,	and	WinUI
controls	make	use	of	the	long	notation	to	add	bubbling	and	tunneling
functionality	with	the	events.

The	class	CarDealer	fires	the	event	by	calling	the	Invoke	method	of	the
delegate.	This	invokes	all	the	handlers	that	are	subscribed	to	the	event.
Remember,	as	previously	shown	with	multicast	delegates,	the	order	of	the
methods	invoked	is	not	guaranteed.	To	have	more	control	over	calling	the
handler	methods,	you	can	use	the	Delegate	class	method	GetInvocationList	to
access	every	item	in	the	delegate	list	and	invoke	each	on	its	own,	as	shown

earlier.

NewCarCreated?.Invoke(this,	new	CarInfoEventArgs(car));

Firing	the	event	requires	only	a	one-liner.	Prior	to	C#	6,	firing	the	event	was
more	complex—checking	the	delegate	for	null	(if	no	subscriber	was	registered)
before	invoking	the	method,	which	should	have	been	done	in	a	thread-safe
manner.	Now,	checking	for	null	is	done	using	the	?.	operator.

Event	Listener
The	class	Consumer	is	used	as	the	event	listener.	This	class	subscribes	to	the
event	of	the	CarDealer	and	defines	the	method	NewCarIsHere	that	in	turn	fulfills
the	requirements	of	the	EventHandler<CarInfoEventArgs>	delegate	with
parameters	of	type	object	and	CarInfoEventArgs	(code	file
EventsSample/Consumer.cs):

public	record	Consumer(string	Name)

{

		public	void	NewCarIsHere(object?	sender,	CarInfoEventArgs	e)	

=>

				Console.WriteLine($"{Name}:	car	{e.Car}	is	new");		

}

Now	the	event	publisher	and	subscriber	need	to	connect.	You	do	this	by	using
the	NewCarInfo	event	of	the	CarDealer	to	create	a	subscription	with	+=.	The
consumer	sebastian	subscribes	to	the	event,	and	after	the	car	Williams	is
created,	the	consumer	max	subscribes.	After	the	car	Aston	Martin	is	created,
sebastian	unsubscribes	with	-=	(code	file	EventsSample/Program.cs):

CarDealer	dealer	=	new();

Consumer	sebastian	=	new("Sebastian");

dealer.NewCarInfo	+=	sebastian.NewCarIsHere;

dealer.NewCar("Williams");

	

Consumer	max	=	new("Max");

dealer.NewCarInfo	+=	max.NewCarIsHere;

dealer.NewCar("Aston	Martin");

dealer.NewCarInfo	-=	sebastian.NewCarIsHere;

dealer.NewCar("Ferrari");

When	you	run	the	application,	a	Williams	arrives,	and	Sebastian	is	informed.
After	that,	Max	registers	for	the	subscription	as	well,	and	both	Sebastian	and
Max	are	informed	about	the	new	Aston	Martin.	Then	Sebastian	unsubscribes,
and	only	Max	is	informed	about	the	Ferrari:

CarDealer,	new	car	Williams

Sebastian:	car	Williams	is	new

CarDealer,	new	car	Aston	Martin

Sebastian:	car	Aston	Martin	is	new

Max:	car	Aston	Martin	is	new

CarDealer,	new	car	Ferrari

Max:	car	Ferrari	is	new

SUMMARY
This	chapter	provided	the	basics	of	delegates,	lambda	expressions,	and	events.
You	learned	how	to	declare	a	delegate	and	add	methods	to	the	delegate	list;	you
learned	how	to	implement	methods	called	by	delegates	with	lambda	expressions;
and	you	learned	the	process	of	declaring	event	handlers	to	respond	to	an	event,
as	well	as	how	to	create	a	custom	event	and	use	the	patterns	for	raising	the	event.

Using	delegates	and	events	in	the	design	of	a	large	application	can	reduce
dependencies	and	the	coupling	of	layers.	This	enables	you	to	develop
components	that	have	a	higher	reusability	factor.

Lambda	expressions	are	C#	language	features	based	on	delegates.	With	these,
you	can	reduce	the	amount	of	code	you	need	to	write.

The	next	chapter	covers	the	use	of	different	forms	of	collections.

8
Collections

WHAT'S	IN	THIS	CHAPTER?

Understanding	collection	interfaces	and	types

Working	with	lists,	queues,	and	stacks

Working	with	linked	and	sorted	lists

Using	dictionaries	and	sets

Evaluating	performance

Using	immutable	collections

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Collections.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

ListSamples

QueueSample

LinkedListSample

SortedListSample

DictionarySample

SetSample

ImmutableCollectionsSample

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

OVERVIEW
Chapter	6,	“Arrays,”	covers	arrays	and	the	interfaces	implemented	by	the	Array
class.	The	size	of	arrays	is	fixed.	If	the	number	of	elements	is	dynamic,	you
should	use	a	collection	class	instead	of	an	array.

List<T>	is	a	collection	class	that	can	be	compared	to	arrays,	but	there	are	also
other	kinds	of	collections:	queues,	stacks,	linked	lists,	dictionaries,	and	sets.	The
other	collection	classes	have	partly	different	APIs	to	access	the	elements	in	the
collection	and	often	a	different	internal	structure	for	how	the	items	are	stored	in
memory.	This	chapter	covers	all	of	these	collection	classes	and	their	differences,
including	performance	differences.

COLLECTION	INTERFACES	AND	TYPES
Most	collection	classes	are	in	the	System.Collections	and
System.Collections.Generic	namespaces.	Generic	collection	classes	are
located	in	the	System.Collections.Generic	namespace.	Collection	classes	that
are	specialized	for	a	specific	type	are	located	in	the
System.Collections.Specialized	namespace.	Thread-safe	collection	classes
are	in	the	System.Collections.Concurrent	namespace.	Immutable	collection
classes	are	in	the	System.Collections.Immutable	namespace.

Of	course,	there	are	also	other	ways	to	group	collection	classes.	Collections	can
be	grouped	into	lists,	collections,	and	dictionaries	based	on	the	interfaces	that	are
implemented	by	the	collection	class.

NOTE You	can	read	detailed	information	about	the	interfaces
IEnumerable	and	IEnumerator	in	Chapter	6.

The	following	table	describes	the	most	important	interfaces	implemented	by
collections	and	lists:

INTERFACE DESCRIPTION
IEnumerable<T> The	interface	IEnumerable	is	required	by	the	foreach

statement.	This	interface	defines	the	method
GetEnumerator,	which	returns	an	enumerator	that
implements	the	IEnumerator	interface.

ICollection<T> ICollection<T>	is	implemented	by	generic	collection

classes.	With	this	you	can	get	the	number	of	items	in
the	collection	(Count	property)	and	copy	the	collection
to	an	array	(CopyTo	method).	You	can	also	add	and
remove	items	from	the	collection	(Add,	Remove,	Clear).

IList<T> The	IList<T>	interface	is	for	lists	where	elements	can
be	accessed	from	their	position.	This	interface	defines
an	indexer,	as	well	as	ways	to	insert	or	remove	items
from	specific	positions	(Insert,	RemoveAt	methods).
IList<T>	derives	from	ICollection<T>.

ISet<T> This	interface	is	implemented	by	sets.	Sets	allow
combining	different	sets	into	a	union,	getting	the
intersection	of	two	sets,	and	checking	whether	two	sets
overlap.	ISet<T>	derives	from	ICollection<T>.

IDictionary<TKey,

TValue>

The	interface	IDictionary<TKey,	TValue>	is
implemented	by	generic	collection	classes	that	have	a
key	and	a	value.	With	this	interface,	all	the	keys	and
values	can	be	accessed,	items	can	be	accessed	with	an
indexer	of	type	TKey,	and	items	can	be	added	or
removed.

ILookup<TKey,

TValue>

Similar	to	the	IDictionary<TKey,	TValue>	interface,
lookups	have	keys	and	values.	However,	with	lookups,
the	collection	can	contain	multiple	values	with	one
key.

IComparer<T> The	interface	IComparer<T>	is	implemented	by	a
comparer	and	used	to	sort	elements	inside	a	collection
with	the	Compare	method.

IEqualityComparer<T> IEqualityComparer<T>	is	implemented	by	a	comparer
that	can	be	used	for	keys	in	a	dictionary.	With	this
interface,	the	objects	can	be	compared	for	equality.

LISTS
For	resizable	lists,	.NET	offers	the	generic	class	List<T>.	This	class	implements
the	IList,	ICollection,	IEnumerable,	IList<T>,	ICollection<T>,	and
IEnumerable<T>	interfaces.

The	following	examples	use	the	members	of	the	record	Racer	as	elements	to	be

added	to	the	collection	to	represent	a	Formula	1	racer.	This	type	has	five
properties:	Id,	FirstName,	LastName,	Country,	and	the	number	of	Wins	as
specified	with	the	positional	record	constructor.	An	overloaded	constructor
allows	you	to	specify	only	four	values	when	initializing	the	object.	The	method
ToString	is	overridden	to	return	the	name	of	the	racer.	The	record	Racer	also
implements	the	generic	interface	IComparable<T>	for	sorting	racer	elements	and
IFormattable	to	allow	passing	custom	format	strings	(code	file
ListSamples/Racer.cs):

public	record	Racer(int	ID,	string	FirstName,	string	LastName,	

string	Country,	

		int	Wins)	:	IComparable<Racer>,	IFormattable

{

		public	Racer(int	id,	string	firstName,	string	lastName,	string	

country)

				:	this(id,	firstName,	lastName,	country,	Wins:	0)

		{	}

	

		public	override	string	ToString()	=>	$"{FirstName}	

{LastName}";

	

		public	string	ToString(string?	format,	IFormatProvider?	

formatProvider)	=>

				format?.ToUpper()	switch

				{

						null	=>	ToString(),

						"N"	=>	ToString(),

						"F"	=>	FirstName,

						"L"	=>	LastName,

						"W"	=>	$"{ToString()},	Wins:	{Wins}",

						"C"	=>	Country,

						"A"	=>	$"{ToString()},	Country:	{Country},	Wins:	{Wins}",

						_	=>	throw	new	

FormatException(string.Format(formatProvider,

								"Format	{0}	is	not	supported",	format))

				};

	

		public	string?	ToString(string	format)	=>	ToString(format,	

null);

	

		public	int	CompareTo(Racer?	other)

		{

				int	compare	=	LastName?.CompareTo(other?.LastName)	??	-1;

				if	(compare	==	0)

				{

						return	FirstName?.CompareTo(other?.FirstName)	??	-1;

				}

				return	compare;

		}

}

Creating	Lists
You	can	create	list	objects	by	invoking	the	default	constructor.	With	the	generic
class	List<T>,	you	must	specify	the	type	for	the	values	of	the	list	with	the
declaration.	The	following	code	shows	how	to	declare	a	List<T>	with	int	and	a
list	with	Racer	elements.	ArrayList	is	a	nongeneric	list	that	accepts	any	Object
type	for	its	elements.

List<int>	intList	=	new();

List<Racer>	racers	=	new();

Using	the	default	constructor	creates	an	empty	list.	As	soon	as	elements	are
added	to	the	list,	the	capacity	of	the	list	is	extended	to	allow	4	elements.	If	the
fifth	element	is	added,	the	list	is	resized	to	allow	8	elements.	If	8	elements	are
not	enough,	the	list	is	resized	again	to	contain	16	elements.	With	every	resize,
the	capacity	of	the	list	is	doubled.

When	the	capacity	of	the	list	changes,	the	complete	collection	is	reallocated	to	a
new	memory	block.	With	the	implementation	of	List<T>,	an	array	of	type	T	is
used.	With	reallocation,	a	new	array	is	created,	and	Array.Copy	copies	the
elements	from	the	old	array	to	the	new	array.	To	save	time,	if	you	know	the
number	of	elements	that	should	be	in	the	list	in	advance,	you	can	define	the
capacity	with	the	constructor.	The	following	example	creates	a	collection	with	a
capacity	of	10	elements.	If	the	capacity	is	not	large	enough	for	the	elements
added,	the	capacity	is	resized	to	20	and	then	to	40	elements—doubled	again:

List<int>	intList	=	new(10);

You	can	get	and	set	the	capacity	of	a	collection	by	using	the	Capacity	property:

intList.Capacity	=	20;

The	capacity	is	not	the	same	as	the	number	of	elements	in	the	collection.	The
number	of	elements	in	the	collection	can	be	read	with	the	Count	property.	Of
course,	the	capacity	is	always	larger	or	equal	to	the	number	of	items.	As	long	as
no	element	was	added	to	the	list,	the	count	is	0:

Console.WriteLine(intList.Count);

If	you	are	finished	adding	elements	to	the	list	and	don't	want	to	add	any	more,
you	can	get	rid	of	the	unneeded	capacity	by	invoking	the	TrimExcess	method;
however,	because	the	relocation	takes	time,	TrimExcess	has	no	effect	if	the	item
count	is	more	than	90	percent	of	capacity:

intList.TrimExcess();

Collection	Initializers
You	can	also	assign	values	to	collections	using	collection	initializers.	The	syntax
of	collection	initializers	is	similar	to	array	initializers,	which	are	explained	in
Chapter	6.	With	a	collection	initializer,	values	are	assigned	to	the	collection
within	curly	brackets	at	the	time	the	collection	is	initialized:

List<int>	intList	=	new()	{1,	2};

List<string>	stringList	=	new()	{	"one",	"two"	};

NOTE Collection	initializers	are	not	reflected	within	the	IL	code	of	the
compiled	assembly.	The	compiler	converts	the	collection	initializer	to	invoke
the	Add	method	for	every	item	from	the	initializer	list.

Adding	Elements
You	can	add	elements	to	the	list	with	the	Add	method,	shown	in	the	following
example.	The	generic	instantiated	type	defines	the	parameter	type	of	the	Add
method:

List<int>	intList	=	new();

intList.Add(1);

intList.Add(2);

List<string>	stringList	=	new();

stringList.Add("one");

stringList.Add("two");

The	variable	racers	is	defined	as	type	List<Racer>.	With	the	new	operator,	a
new	object	of	the	same	type	is	created.	Because	the	class	List<T>	was
instantiated	with	the	concrete	class	Racer,	now	only	Racer	objects	can	be	added
with	the	Add	method.	In	the	following	sample	code,	five	Formula	1	racers	are
created	and	added	to	the	collection.	The	first	three	are	added	using	the	collection
initializer,	and	the	last	two	are	added	by	explicitly	invoking	the	Add	method
(code	file	ListSamples/Program.cs):

Racer	graham	=	new(7,	"Graham",	"Hill",	"UK",	14);

Racer	emerson	=	new(13,	"Emerson",	"Fittipaldi",	"Brazil",	14);

Racer	mario	=	new(16,	"Mario",	"Andretti",	"USA",	12);

List<Racer>	racers	=	new(20)	{graham,	emerson,	mario};

racers.Add(new	Racer(24,	"Michael",	"Schumacher",	"Germany",	

91));

racers.Add(new	Racer(27,	"Mika",	"Hakkinen",	"Finland",	20));

With	the	AddRange	method	of	the	List<T>	class,	you	can	add	multiple	elements
to	the	collection	at	once.	The	method	AddRange	accepts	an	object	of	type
IEnumerable<T>,	so	you	can	also	pass	an	array	as	shown	here	(code	file
ListSamples/Program.cs):

racers.AddRange(new	Racer[]	{

		new(14,	"Niki",	"Lauda",	"Austria",	25),

		new(21,	"Alain",	"Prost",	"France",	51)});

NOTE The	collection	initializer	can	be	used	only	during	declaration	of	the
collection.	The	AddRange	method	can	be	invoked	after	the	collection	is
initialized.	In	case	you	get	the	data	dynamically	after	creating	the	collection,
you	need	to	invoke	AddRange	.

If	you	know	some	elements	of	the	collection	when	instantiating	the	list,	you	can
also	pass	any	object	that	implements	IEnumerable<T>	to	the	constructor	of	the
class.	This	is	similar	to	the	AddRange	method	(code	file
ListSamples/Program.cs):

List<Racer>	racers	=	new(

		new	Racer[]	{

				new	(12,	"Jochen",	"Rindt",	"Austria",	6),

				new	(22,	"Ayrton",	"Senna",	"Brazil",	41)	});

Inserting	Elements
You	can	insert	elements	at	a	specified	position	with	the	Insert	method	(code	file
ListSamples/Program.cs):

racers.Insert(3,	new	Racer(6,	"Phil",	"Hill",	"USA",	3));

The	method	InsertRange	offers	the	capability	to	insert	a	number	of	elements,
similar	to	the	AddRange	method	shown	earlier.

If	the	index	set	is	larger	than	the	number	of	elements	in	the	collection,	an
exception	of	type	ArgumentOutOfRangeException	is	thrown.

Accessing	Elements
All	classes	that	implement	the	IList	and	IList<T>	interfaces	offer	an	indexer,
so	you	can	access	the	elements	by	using	an	indexer	and	passing	the	item	number.
The	first	item	can	be	accessed	with	an	index	value	0.	By	specifying	racers[3],
for	example,	you	access	the	fourth	element	of	the	list:

Racer	r1	=	racers[3];

When	you	use	the	Count	property	to	get	the	number	of	elements,	you	can	do	a
for	loop	to	iterate	through	every	item	in	the	collection,	and	you	can	use	the
indexer	to	access	every	item	(code	file	ListSamples/Program.cs):

for	(int	i	=	0;	i	<	racers.Count;	i++)

{

		Console.WriteLine(racers[i]);

}

Because	List<T>	implements	the	interface	IEnumerable,	you	can	iterate	through
the	items	in	the	collection	using	the	foreach	statement	as	well	(code	file
ListSamples/Program.cs):

foreach	(var	r	in	racers)

{

		Console.WriteLine(r);

}

NOTE Chapter	6	explains	how	the	foreach	statement	is	resolved	by	the
compiler	to	make	use	of	the	IEnumerable	and	IEnumerator	interfaces.

Removing	Elements
You	can	remove	elements	by	index	or	by	passing	the	item	that	should	be
removed.	Here,	the	fourth	element	is	removed	from	the	collection:

racers.RemoveAt(3);

Instead	of	using	the	RemoveAt	method,	you	can	also	directly	pass	a	Racer	object
to	the	Remove	method	to	remove	this	element.	However,	removing	by	index	with
the	RemoveAt	method	is	faster.	The	Remove	method	first	searches	in	the
collection	to	get	the	index	of	the	item	with	the	IndexOf	method	and	then	uses	the
index	to	remove	the	item.	IndexOf	first	checks	whether	the	item	type
implements	the	interface	IEquatable<T>.	If	it	does,	the	Equals	method	of	this

interface	is	invoked	to	find	the	item	in	the	collection	that	is	the	same	as	the	one
passed	to	the	method.	If	this	interface	is	not	implemented,	the	Equals	method	of
the	Object	class	is	used	to	compare	the	items.	The	default	implementation	of	the
Equals	method	in	the	Object	class	does	a	bitwise	comparison	with	value	types,
but	compares	only	references	with	reference	types.

NOTE Chapter	5,	“Operators	and	Casts,”	explains	how	you	can	override
the	Equals	method.

In	the	following	example,	the	racer	referenced	by	the	variable	graham	is	removed
from	the	collection	(code	file	ListSamples/Program.cs):

if	(!racers.Remove(graham))

{

		Console.WriteLine("object	not	found	in	collection");

}

The	method	RemoveRange	removes	a	number	of	items	from	the	collection.	The
first	parameter	specifies	the	index	where	the	removal	of	items	should	begin;	the
second	parameter	specifies	the	number	of	items	to	be	removed:

int	index	=	3;

int	count	=	5;

racers.RemoveRange(index,	count);

To	remove	all	items	with	some	specific	characteristics	from	the	collection,	you
can	use	the	RemoveAll	method.	This	method	uses	the	Predicate<T>	parameter
when	searching	for	elements,	which	is	discussed	next.	To	remove	all	elements
from	the	collection,	use	the	Clear	method	defined	with	the	ICollection<T>
interface.

Searching
There	are	different	ways	to	search	for	elements	in	the	collection.	You	can	get	the
index	to	the	found	item	or	a	reference	to	the	item	itself.	You	can	use	methods
such	as	IndexOf,	LastIndexOf,	FindIndex,	FindLastIndex,	Find,	and
FindLast.	To	just	check	whether	an	item	exists,	the	List<T>	class	offers	the
Exists	method.

The	method	IndexOf	requires	an	object	as	a	parameter	and	returns	the	index	of
the	item	if	it	is	found	inside	the	collection.	If	the	item	is	not	found,	–1	is
returned.	Remember	that	IndexOf	is	using	the	IEquatable<T>	interface	to

compare	the	elements	(code	file	ListSamples/Program.cs):

int	index1	=	racers.IndexOf(mario);

With	the	IndexOf	method,	you	can	also	specify	that	the	complete	collection
should	not	be	searched,	and	instead	specify	an	index	where	the	search	should
start	and	the	number	of	elements	that	should	be	iterated	for	the	comparison.	To
start	from	the	end	of	the	list	to	search	for	the	index,	you	can	use	the
LastIndexOf	method.

Instead	of	searching	a	specific	item	with	the	IndexOf	method,	you	can	search	for
an	item	that	has	some	specific	characteristics	that	you	can	define	with	the
FindIndex	method.	FindIndex	requires	a	parameter	of	type	Predicate	:

public	int	FindIndex(Predicate<T>	match);

The	Predicate<T>	type	is	a	delegate	that	returns	a	Boolean	value	and	requires
type	T	as	a	parameter.	If	the	predicate	returns	true,	there's	a	match,	and	the
element	is	found.	If	it	returns	false,	the	element	is	not	found,	and	the	search
continues.

public	delegate	bool	Predicate<T>(T	obj);

With	the	List<T>	class	that	is	using	Racer	objects	for	type	T,	you	can	pass	the
address	of	a	method	that	returns	a	bool	and	defines	a	parameter	of	type	Racer	to
the	FindIndex	method.	Finding	the	first	racer	of	a	specific	country,	you	can	use
a	lambda	expression	with	a	Racer	parameter	and	a	bool	return	as	specified	by
the	delegate.	The	following	code	uses	a	lambda	expression	that	defines	the
implementation	to	search	for	an	item	where	the	Country	property	is	set	to
Finland	:

int	index2	=	racers.FindIndex(r	=>	r.Country	==	"Finland");

Similar	to	the	IndexOf	method,	with	the	FindIndex	method	you	can	also	specify
the	index	where	the	search	should	start	and	the	count	of	items	that	should	be
iterated	through.	To	do	a	search	for	an	index	beginning	from	the	last	element	in
the	collection,	you	can	use	the	FindLastIndex	method.

The	method	FindIndex	method	returns	the	index	of	the	found	item.	Instead	of
getting	the	index,	you	can	also	go	directly	to	the	item	in	the	collection.	The	Find
method	requires	a	parameter	of	type	Predicate<T>,	much	like	the	FindIndex
method.	The	Find	method	in	the	following	example	searches	for	the	first	racer	in
the	list	who	has	the	FirstName	property	set	to	Niki.	Of	course,	you	can	also	do	a
FindLast	search	to	find	the	last	item	that	fulfills	the	predicate.

Racer	racer	=	racers.Find(r	=>	r.FirstName	==	"Niki");

To	get	not	only	one	but	all	the	items	that	fulfill	the	requirements	of	a	predicate,
you	can	use	the	FindAll	method.	The	FindAll	method	uses	the	same
Predicate<T>	delegate	as	the	Find	and	FindIndex	methods.	The	FindAll
method	does	not	stop	when	the	first	item	is	found;	instead,	the	FindAll	method
iterates	through	every	item	in	the	collection	and	returns	all	items	for	which	the
predicate	returns	true.

With	the	FindAll	method	invoked	in	the	next	example,	all	Racer	items	are
returned	where	the	property	Wins	is	set	to	more	than	20.	All	racers	who	won
more	than	20	races	are	referenced	from	the	bigWinners	list:

List<Racer>	bigWinners	=	racers.FindAll(r	=>	r.Wins>	20);

Iterating	through	the	variable	bigWinners	with	a	foreach	statement	gives	the
following	result:

foreach	(Racer	r	in	bigWinners)

{

		Console.WriteLine($"{r:A}");

}

Michael	Schumacher,	Germany	Wins:	91

Niki	Lauda,	Austria	Wins:	25

Alain	Prost,	France	Wins:	51

The	result	is	not	sorted,	but	the	next	section	covers	that.

Sorting
The	List<T>	class	enables	sorting	its	elements	by	using	the	Sort	method.	Sort
uses	the	Quicksort	algorithm	whereby	all	elements	are	compared	until	the
complete	list	is	sorted.	You	can	use	several	overloads	of	the	Sort	method.	You
can	pass	a	delegate	of	type	Comparison<T>,	and	an	object	implementing
IComparer<T>.	Using	the	Sort	method	without	arguments	is	possible	only	if	the
elements	in	the	collection	implement	the	interface	IComparable.

With	the	IComparable<T>	implementation	of	the	Racer	type,	the	Sort	method
sorts	racers	by	last	name	followed	by	first	name:

racers.Sort();

If	you	need	to	do	a	sort	other	than	the	default	supported	by	the	item	types,	you
need	to	use	other	techniques,	such	as	passing	an	object	that	implements	the
IComparer<T>	interface.

The	class	RacerComparer	implements	the	interface	IComparer<T>	for	Racer
types.	This	class	enables	you	to	sort	by	the	first	name,	last	name,	country,	or
number	of	wins.	The	kind	of	sort	that	should	be	done	is	defined	with	the	inner
enumeration	type	CompareType.	The	CompareType	is	set	with	the	constructor	of
the	class	RacerComparer.	The	interface	IComparer<Racer>	defines	the	method
Compare,	which	is	required	for	sorting.	In	the	implementation	of	this	method,	the
Compare	and	CompareTo	methods	of	the	string	and	int	types	are	used	(code	file
ListSamples/RacerComparer.cs):

public	class	RacerComparer	:	IComparer<Racer>

{

		public	enum	CompareType

		{

				FirstName,

				LastName,

				Country,

				Wins

		}

	

		private	CompareType	_compareType;

		public	RacerComparer(CompareType	compareType)	=>

				_compareType	=	compareType;

	

		public	int	Compare(Racer?	x,	Racer?	y)

		{

				if	(x	is	null	&&	y	is	null)	return	0;

				if	(x	is	null)	return	-1;

				if	(y	is	null)	return	1;

	

				int	CompareCountry(Racer	x,	Racer	y)

				{

						int	result	=	string.Compare(x.Country,	y.Country);

						if	(result	==	0)

						{

								result	=	string.Compare(x.LastName,	y.LastName);

						}

						return	result;

				}

	

				return	_compareType	switch

				{

						CompareType.FirstName	=>	string.Compare(x.FirstName,	

y.FirstName),

						CompareType.LastName	=>	string.Compare(x.LastName,	

y.LastName),

						CompareType.Country	=>	CompareCountry(x,	y),

						CompareType.Wins	=>	x.Wins.CompareTo(y.Wins),

						_	=>	throw	new	ArgumentException("Invalid	Compare	Type")

				};		

		}

}

NOTE The	Compare	method	returns	0	if	the	two	elements	passed	to	it	are
equal	with	the	order.	If	a	value	less	than	0	is	returned,	the	first	argument	is
less	than	the	second.	With	a	value	larger	than	0,	the	first	argument	is	greater
than	the	second.	Passing	null	with	an	argument,	the	method	shouldn't	throw
a	NullReferenceException	or	ArgumentNullException.	Instead,	null
should	take	its	place	before	any	other	element;	thus,	–1	is	returned	if	the	first
argument	is	null,	and	+1	if	the	second	argument	is	null	and	0	if	both
arguments	are	null.

You	can	now	use	an	instance	of	the	RacerComparer	class	with	the	Sort	method.
Passing	the	enumeration	RacerComparer.CompareType.Country	sorts	the
collection	by	the	property	Country	:

racers.Sort(new	

RacerComparer(RacerComparer.CompareType.Country));

Another	way	to	do	the	sort	is	by	using	the	overloaded	Sort	method,	which
requires	a	Comparison<T>	delegate.	Comparison<T>	is	a	delegate	to	a	method
that	has	two	parameters	of	type	T	and	a	return	type	int.	If	the	parameter	values
are	equal,	the	method	must	return	0.	If	the	first	parameter	is	less	than	the	second,
a	value	less	than	zero	must	be	returned;	otherwise,	a	value	greater	than	zero	is
returned:

public	delegate	int	Comparison<T>(T	x,	T	y);

Now	you	can	pass	a	lambda	expression	to	the	Sort	method	to	do	a	sort	by	the
number	of	wins.	The	two	parameters	are	of	type	Racer,	and	in	the
implementation	the	Wins	properties	are	compared	by	using	the	int	method
CompareTo.	Also	in	the	implementation,	r2	and	r1	are	used	in	reverse	order,	so
the	number	of	wins	is	sorted	in	descending	order.	After	the	method	has	been
invoked,	the	complete	racer	list	is	sorted	based	on	the	racer's	number	of	wins:

racers.Sort((r1,	r2)	=>	r2.Wins.CompareTo(r1.Wins));

You	can	also	reverse	the	order	of	a	complete	collection	by	invoking	the	Reverse

method.

Read-Only	Collections
After	collections	are	created,	they	are	read/write,	of	course;	otherwise,	you
couldn't	fill	them	with	any	values.	However,	after	the	collection	is	filled,	you	can
create	a	read-only	collection.	The	List<T>	collection	has	the	method
AsReadOnly	that	returns	an	object	of	type	ReadOnlyCollection<T>.	The	class
ReadOnlyCollection<T>	implements	the	same	interfaces	as	List<T>,	but	all
methods	and	properties	that	change	the	collection	throw	a
NotSupportedException.	Besides	the	interfaces	of	List<T>,
ReadOnlyCollection<T>	also	implements	the	interfaces
IReadOnlyCollection<T>	and	IReadOnlyList<T>.	With	the	members	of	these
interfaces,	the	collection	cannot	be	changed.

Queues
A	queue	is	a	collection	whose	elements	are	processed	according	to	first	in,	first
out	(FIFO)	order,	meaning	the	item	that	is	put	first	in	the	queue	is	read	first.
Examples	of	queues	are	standing	in	line	at	the	airport,	a	human	resources	queue
to	process	employee	applicants,	print	jobs	waiting	to	be	processed	in	a	print
queue,	and	a	thread	waiting	for	the	CPU	in	a	round-robin	fashion.	Sometimes	the
elements	of	a	queue	differ	in	their	priority.	For	example,	in	the	queue	at	the
airport,	business	passengers	are	processed	before	economy	passengers.	In	this
case,	multiple	queues	can	be	used,	one	queue	for	each	priority.	At	the	airport	this
is	easily	handled	with	separate	check-in	queues	for	business	and	economy
passengers.	The	same	is	true	for	print	queues	and	threads.	You	can	have	an	array
or	a	list	of	queues	whereby	one	item	in	the	array	stands	for	a	priority.	Within
every	array	item	there's	a	queue	where	processing	happens	using	the	FIFO
principle.

NOTE Later	in	this	chapter,	a	different	implementation	with	a	linked	list	is
used	to	define	a	list	of	priorities.

A	queue	is	implemented	with	the	Queue<T>	class.	Internally,	the	Queue<T>	class
uses	an	array	of	type	T,	similar	to	the	List<T>	type.	It	implements	the	interfaces
IEnumerable<T>	and	ICollection,	but	it	doesn't	implement	ICollection<T>
because	this	interface	defines	Add	and	Remove	methods	that	shouldn't	be
available	for	queues.

The	Queue<T>	class	does	not	implement	the	interface	IList<T	>,	so	you	cannot
access	the	queue	using	an	indexer.	The	queue	just	allows	you	to	add	an	item	to
the	end	of	the	queue	(with	the	Enqueue	method)	and	to	get	items	from	the	head
of	the	queue	(with	the	Dequeue	method).

Figure	8-1	shows	the	items	of	a	queue.	The	Enqueue	method	adds	items	to	one
end	of	the	queue;	the	items	are	read	and	removed	at	the	other	end	of	the	queue
with	the	Dequeue	method.	Invoking	the	Dequeue	method	once	more	removes	the
next	item	from	the	queue.

FIGURE	8-1

The	following	table	describes	the	important	methods	of	the	Queue<T>	class:

SELECTED
QUEUE
<T>
MEMBERS

DESCRIPTION

Count Returns	the	number	of	items	in	the	queue.
Enqueue Adds	an	item	to	the	end	of	the	queue.
Dequeue Reads	and	removes	an	item	from	the	head	of	the	queue.	If	there

are	no	more	items	in	the	queue	when	the	Dequeue	method	is
invoked,	an	exception	of	type	InvalidOperationException	is
thrown.

Peek Reads	an	item	from	the	head	of	the	queue	but	does	not	remove
the	item.

TrimExcess Resizes	the	capacity	of	the	queue.	The	Dequeue	method	removes
items	from	the	queue,	but	it	doesn't	resize	the	capacity	of	the
queue.	To	get	rid	of	the	empty	items	at	the	beginning	of	the
queue,	use	the	TrimExcess	method.

When	creating	queues,	you	can	use	constructors	similar	to	those	used	with	the
List<T>	type.	The	default	constructor	creates	an	empty	queue,	but	you	can	also
use	a	constructor	to	specify	the	capacity.	With	an	overload	of	the	constructor,

you	can	also	pass	any	other	collection	that	implements	the	IEnumerable<T>
interface	that	is	copied	to	the	queue.

The	following	example	demonstrating	the	use	of	the	Queue<T>	class	is	a
document	management	application.	One	task	is	used	to	add	documents	to	the
queue,	and	another	task	reads	documents	from	the	queue	and	processes	them.

NOTE To	make	the	queue	sample	more	interesting,	different	tasks	are	used
to	work	with	the	queue.	One	task	writes	messages	to	the	queue,	and	another
task	reads	messages	from	the	queue.	Reading	and	writing	happens	after	a
random	time	delay;	you	can	monitor	how	the	queue	grows	larger	and
smaller.	Tasks	are	used	in	a	simple	way	here,	but	you	might	want	to	read
Chapter	11,	“Tasks	and	Asynchronous	Programming,”	before	getting	into
this	sample	code.

The	items	stored	in	the	queue	are	of	type	Document.	The	record	Document	defines
a	title	and	content	(code	file	QueueSample/Document.cs):

public	record	Document(string	Title,	string	Content);

The	DocumentManager	class	is	a	thin	layer	around	the	Queue<T>	class.	It	defines
how	to	handle	documents:	adding	documents	to	the	queue	with	the	AddDocument
method	and	getting	documents	from	the	queue	with	the	GetDocument	method.

Inside	the	AddDocument	method,	the	document	is	added	to	the	end	of	the	queue
using	the	Enqueue	method.	The	first	document	from	the	queue	is	read	with	the
Dequeue	method	inside	GetDocument.	Because	multiple	tasks	can	access	the
DocumentManager	concurrently,	access	to	the	queue	is	locked	with	the	lock
statement.	The	AddDocument	method	returns	the	number	of	items	in	the	queue	to
allow	monitoring	the	queue	size.

IsDocumentAvailable	is	a	read-only	Boolean	property	that	returns	true	if	there
are	documents	in	the	queue	and	false	if	there	are't	(code	file
QueueSample/DocumentManager.cs):

public	class	DocumentManager

{

		private	readonly	object	_syncQueue	=	new	object();

		private	readonly	Queue<Document>	_documentQueue	=	new();

	

		public	int	AddDocument(Document	doc)

		{

				lock	(_syncQueue)

				{

						_documentQueue.Enqueue(doc);

						return	_documentQueue.Count;

				}

		}

	

		public	Document	GetDocument()

		{

				Document	doc	=	null;

				lock	(_syncQueue)

				{

						doc	=	_documentQueue.Dequeue();

				}

				return	doc;

		}

	

		public	bool	IsDocumentAvailable	=>	_documentQueue.Count>	0;

}

The	class	ProcessDocuments	processes	documents	from	the	queue	in	a	separate
task.	The	only	method	that	can	be	accessed	from	the	outside	is	Start.	In	the
StartAsync	method,	a	new	task	is	instantiated.	A	ProcessDocuments	object	is
created	to	start	the	task,	and	the	RunAsync	method	is	defined	as	the	start	method
of	the	task.	With	the	Task.Run	method,	you	can	pass	an	Action	delegate.	Here,
the	RunAsync	instance	method	of	the	ProcessDocuments	class	is	invoked	from
the	task.

With	the	RunAsync	method	of	the	ProcessDocuments	class,	a	do…while	loop	is
defined.	Within	this	loop,	the	property	IsDocumentAvailable	is	used	to
determine	whether	there	is	a	document	in	the	queue.	If	so,	the	document	is	taken
from	the	DocumentManager	and	processed.	If	the	task	waits	more	than	five
seconds,	waiting	stops.	Processing	in	this	example	is	writing	information	only	to
the	console.	In	a	real	application,	the	document	could	be	written	to	a	file,	written
to	the	database,	or	sent	across	the	network	(code	file
QueueSample/ProcessDocuments.cs):

public	class	ProcessDocuments

{

		public	static	Task	StartAsync(DocumentManager	dm)	=>

				Task.Run(new	ProcessDocuments(dm).RunAsync);

	

		protected	ProcessDocuments(DocumentManager	dm)	=>	

				_documentManager	=	dm	??	throw	new	

ArgumentNullException(nameof(dm));

	

		private	readonly	DocumentManager	_documentManager;

	

		protected	async	Task	RunAsync()

		{

				Random	random	=	new();

				Stopwatch	stopwatch	=	new();

				stopwatch.Start();

				bool	stop	=	false;

				do

				{

						if	(stopwatch.Elapsed>=	TimeSpan.FromSeconds(5))

						{

								stop	=	true;

						}

						if	(_documentManager.IsDocumentAvailable)

						{

								stopwatch.Restart();

								Document	doc	=	_documentManager.GetDocument();

								Console.WriteLine($"Processing	document	{doc.Title}");

						}

						//	wait	a	random	time	before	processing	the	next	document

						await	Task.Delay(random.Next(20));

				}	while	(!stop)	;

				Console.WriteLine("stopped	reading	documents");

		}

}

With	the	start	of	the	application,	a	DocumentManager	object	is	instantiated,	and
the	document	processing	task	is	started.	Then	1,000	documents	are	created	and
added	to	the	DocumentManager	(code	file	QueueSample/Program.cs):

DocumentManager	dm	=	new();

	

Task	processDocuments	=	ProcessDocuments.StartAsync(dm);

	

//	Create	documents	and	add	them	to	the	DocumentManager

Random	random	=	new();

for	(int	i	=	0;	i	<	1000;	i++)

{

		var	doc	=	new	Document($"Doc	{i}",	"content");

		int	queueSize	=	dm.AddDocument(doc);

		Console.WriteLine($"Added	document	{doc.Title},	queue	size:	

{queueSize}");

		await	Task.Delay(random.Next(20));

}

Console.WriteLine($"finished	adding	documents");

await	processDocuments;

Console.WriteLine("bye!");

When	you	start	the	application,	the	documents	are	added	to	and	removed	from
the	queue,	and	you	get	output	similar	to	the	following:

Added	document	Doc	318,	queue	size:	6

Added	document	Doc	319,	queue	size:	7

Processing	document	Doc	313

Added	document	Doc	320,	queue	size:	7

Processing	document	Doc	314

Processing	document	Doc	315

Added	document	Doc	321,	queue	size:	7

Processing	document	Doc	316

A	real-life	scenario	using	the	task	described	with	the	sample	application	might
be	an	application	that	processes	documents	received	with	a	Web	API	service.

STACKS
A	stack	is	another	container	that	is	similar	to	the	queue.	You	just	use	different
methods	to	access	the	stack.	The	item	that	is	added	last	to	the	stack	is	read	first,
so	the	stack	is	a	last	in,	first	out	(LIFO)	container.

Figure	8-2	shows	the	representation	of	a	stack	where	the	Push	method	adds	an
item	to	the	stack,	and	the	Pop	method	gets	the	item	that	was	added	last.

FIGURE	8-2

Similar	to	the	Queue<T>	class,	the	Stack<T>	class	implements	the	interfaces
IEnumerable<T>	and	ICollection.

Important	members	of	the	Stack<T>	class	are	listed	in	the	following	table:

SELECTED
STACK<T>
MEMBERS

DESCRIPTION

Count Returns	the	number	of	items	in	the	stack.
Push Adds	an	item	on	top	of	the	stack.
Pop Removes	and	returns	an	item	from	the	top	of	the	stack.	If	the

stack	is	empty,	an	exception	of	type
InvalidOperationException	is	thrown.

Peek Returns	an	item	from	the	top	of	the	stack	but	does	not
remove	the	item.

Contains Checks	whether	an	item	is	in	the	stack	and	returns	true	if	it
is.

In	this	example,	three	items	are	added	to	the	stack	with	the	Push	method.	With
the	foreach	method,	all	items	are	iterated	using	the	IEnumerable	interface.	The
enumerator	of	the	stack	does	not	remove	the	items;	it	just	returns	them	item	by
item	(code	file	StackSample/Program.cs):

Stack<char>	alphabet	=	new();

alphabet.Push('A');

alphabet.Push('B');

alphabet.Push('C');

foreach	(char	item	in	alphabet)

{

		Console.Write(item);

}

Console.WriteLine();

Because	the	items	are	read	in	order	from	the	last	item	added	to	the	first,	the
following	result	is	produced:

CBA

Reading	the	items	with	the	enumerator	does	not	change	the	state	of	the	items.
With	the	Pop	method,	every	item	that	is	read	is	also	removed	from	the	stack.
This	way,	you	can	iterate	the	collection	using	a	while	loop	and	verify	the	Count
property	if	items	still	exist:

Stack<char>	alphabet	=	new();

alphabet.Push('A');

alphabet.Push('B');

alphabet.Push('C');

Console.Write("First	iteration:	");

foreach	(char	item	in	alphabet)

{

		Console.Write(item);

}

Console.WriteLine();

Console.Write("Second	iteration:	");

while	(alphabet.Count>	0)

{

		Console.Write(alphabet.Pop());

}

Console.WriteLine();

The	result	gives	CBA	twice—once	for	each	iteration.	After	the	second	iteration,
the	stack	is	empty	because	the	second	iteration	used	the	Pop	method:

First	iteration:	CBA

Second	iteration:	CBA

LINKED	LISTS
LinkedList<T>	is	a	doubly	linked	list,	whereby	one	element	references	the	next
and	the	previous	one,	as	shown	in	Figure	8-3.	This	way	you	can	easily	walk
forward	through	the	complete	list	by	moving	to	the	next	element	or	backward	by
moving	to	the	previous	element.

FIGURE	8-3

The	advantage	of	a	linked	list	is	that	if	items	are	inserted	anywhere	in	the	list,
the	linked	list	is	very	fast.	When	an	item	is	inserted,	only	the	Next	reference	of
the	previous	item	and	the	Previous	reference	of	the	next	item	must	be	changed
to	reference	the	inserted	item.	With	the	List<T>	class,	when	an	element	is
inserted,	all	subsequent	elements	must	be	moved.

Of	course,	there's	also	a	disadvantage	with	linked	lists.	Items	of	linked	lists	can
be	accessed	only	one	after	the	other.	It	takes	a	long	time	to	find	an	item	that's
somewhere	in	the	middle	or	at	the	end	of	the	list.

A	linked	list	cannot	just	store	the	items	inside	the	list;	together	with	every	item,
the	linked	list	must	have	information	about	the	next	and	previous	items.	That's
why	the	LinkedList<T>	contains	items	of	type	LinkedListNode<T>.	With	the
class	LinkedListNode<T>,	you	can	get	to	the	next	and	previous	items	in	the	list.
The	LinkedListNode<T>	class	defines	the	properties	List,	Next,	Previous,	and
Value.	The	List	property	returns	the	LinkedList<T>	object	that	is	associated
with	the	node.	Next	and	Previous	are	for	iterating	through	the	list	and	accessing
the	next	or	previous	item.	Value	returns	the	item	that	is	associated	with	the	node.
Value	is	of	type	T.

The	LinkedList<T>	class	itself	defines	members	to	access	the	first	(First)	and
last	(Last)	items	of	the	list,	to	insert	items	at	specific	positions	(AddAfter,
AddBefore,	AddFirst,	AddLast),	to	remove	items	from	specific	positions
(Remove,	RemoveFirst,	RemoveLast),	and	to	find	elements	where	the	search
starts	from	either	the	beginning	(Find)	or	the	end	(FindLast)	of	the	list.

With	the	sample	application,	a	Document	record	is	defined	to	put	it	into	the
LinkedList	(code	file	LinkedListSample/Program.cs):

record	Document(int	Id,	string	Text);

The	following	code	snippet	creates	a	LinkedList	and	adds	the	first	item	to	the
start	of	the	list	using	AddFirst.	The	AddFirst	method	returns	a	LinkedListNode
object	that's	used	with	the	next	invocation	to	the	list	to	add	the	document	with	an
ID	of	2	after	the	first	object.	The	document	with	an	ID	of	3	is	added	last	to	the
list	using	the	AddLast	method	(which	is	also	at	that	stage	after	the	document
with	ID	of	2).	Using	the	AddBefore	method,	the	document	with	an	ID	of	4	is
added	before	the	last	one.	After	filling	the	list,	the	LinkedList	is	iterated	using
the	foreach	statement:

LinkedList<Document>	list	=	new();

LinkedListNode<Document>	first	=	list.AddFirst(new	Document(1,	

"first"));

list.AddAfter(first,	new	Document(2,	"after	first"));

LinkedListNode<Document>	last	=	list.AddLast(new	Document(3,	

"Last"));

Document	doc4	=	new(4,	"before	last");

list.AddBefore(last,	doc4);

	

foreach	(var	item	in	list)

{

		Console.WriteLine(item);

}

Instead	of	using	the	foreach	statement,	you	can	easily	iterate	through	all
elements	of	the	collection	by	accessing	the	Next	property	of	every
LinkedListNode	:

void	IterateUsingNext(LinkedListNode<Document>	start)

{

		if	(start.Value	is	null)	return;

		LinkedListNode<Document>?	current	=	start;

		do

		{

				Console.WriteLine(current.Value);

				current	=	current.Next;

		}	while	(current	is	not	null);

}

The	method	IterateUsingNext	is	invoked	from	the	top-level	statements	passing
the	first	object:

if	(list.First	is	not	null)

{

				IterateUsingNext(list.First);

}

Running	the	application,	you'll	see	two	times	the	documents	iterated.	One
iteration	is	shown	here:

Document	{	Id	=	1,	Text	=	first	}

Document	{	Id	=	2,	Text	=	after	first	}

Document	{	Id	=	4,	Text	=	before	last	}

Document	{	Id	=	3,	Text	=	Last	}

Using	the	Remove	method	passing	a	Document	object	requires	the	Remove	method
to	iterate	through	the	collection	until	the	Document	can	be	found	and	removed:

list.Remove(doc4);

	

Console.WriteLine("after	removal");

foreach	(var	item	in	list)

{

				Console.WriteLine(item);

}

Later	in	this	chapter,	in	the	section	“Performance,”	you'll	see	a	table	with	the

big-O	notation	where	you	can	compare	the	performance	of	different	collection
classes	based	on	the	operations,	so	you	can	decide	for	the	collection	type	to	use
more	easily.

SORTED	LIST
If	the	collection	you	need	should	be	sorted	based	on	a	key,	you	can	use
SortedList<TKey,	TValue>.	This	class	sorts	the	elements	based	on	a	key.	You
can	use	any	type	for	the	value	and	also	for	the	key.

The	following	example	creates	a	sorted	list	for	which	both	the	key	and	the	value
are	of	type	string.	The	default	constructor	creates	an	empty	list,	and	then	two
books	are	added	with	the	Add	method.	With	overloaded	constructors,	you	can
define	the	capacity	of	the	list	and	pass	an	object	that	implements	the	interface
IComparer<TKey>,	which	is	used	to	sort	the	elements	in	the	list.

The	first	parameter	of	the	Add	method	is	the	key	(the	book	title);	the	second
parameter	is	the	value	(the	ISBN).	Instead	of	using	the	Add	method,	you	can	use
the	indexer	to	add	elements	to	the	list.	The	indexer	requires	the	key	as	index
parameter.	If	a	key	already	exists,	the	Add	method	throws	an	exception	of	type
ArgumentException.	If	the	same	key	is	used	with	the	indexer,	the	new	value
replaces	the	old	value	(code	file	SortedListSample/Program.cs):

SortedList<string,	string>	books	=	new();

books.Add("Front-end	Development	with	ASP.NET	Core",	"978-1-119-

18140-8");

books.Add("Beginning	C#	7	Programming",	"978-1-119-45866-1");

	

books["Enterprise	Services"]	=	"978-0321246738";

books["Professional	C#	7	and	.NET	Core	2.1"]	=	"978-1-119-44926-

3";

	

NOTE SortedList<TKey,	TValue>	allows	only	one	value	per	key.	If	you
need	multiple	values	per	key,	you	can	use	Lookup<TKey,	TElement>	.

You	can	iterate	through	the	list	using	a	foreach	statement.	Elements	returned	by
the	enumerator	are	of	type	KeyValuePair<TKey,	TValue>,	which	contains	both
the	key	and	the	value.	The	key	can	be	accessed	with	the	Key	property,	and	the
value	can	be	accessed	with	the	Value	property:

foreach	(KeyValuePair<string,	string>	book	in	books)

{

		Console.WriteLine($"{book.Key},	{book.Value}");

}

The	iteration	displays	book	titles	and	ISBN	numbers	ordered	by	the	key:

Beginning	C#	7	Programming,	978-1-119-45866-1

Enterprise	Services,	978-0321246738

Front-end	Development	with	ASP.NET	Core,	978-1-119-18140-8

Professional	C#	7	and	.NET	Core	2.1,	978-1-119-44926-3

You	can	also	access	the	values	and	keys	by	using	the	Values	and	Keys
properties.	The	Values	property	returns	IList<TValue>,	and	the	Keys	property
returns	IList<TKey>,	so	you	can	use	these	properties	with	a	foreach	:

foreach	(string	isbn	in	books.Values)

{

		Console.WriteLine(isbn);

}

foreach	(string	title	in	books.Keys)

{

		Console.WriteLine(title);

}

The	first	loop	displays	the	values	and	next	the	keys:

978-1-119-45866-1

978-0321246738

978-1-119-18140-8

978-1-119-44926-3

Beginning	C#	7	Programming

Enterprise	Services

Front-end	Development	with	ASP.NET	Core

Professional	C#	7	and	.NET	Core	2.1

	

If	you	try	to	access	an	element	with	an	indexer	and	pass	a	key	that	does	not	exist,
an	exception	of	type	KeyNotFoundException	is	thrown.	To	avoid	that	exception,
you	can	use	the	method	ContainsKey,	which	returns	true	if	the	key	passed
exists	in	the	collection,	or	you	can	invoke	the	method	TryGetValue,	which	tries
to	get	the	value	but	doesn't	throw	an	exception	if	it	isn't	found:

string	title	=	"Professional	C#	10";

if	(!books.TryGetValue(title,	out	string	isbn))

{

		Console.WriteLine($"{title}	not	found");

}

else

{

		Console.WriteLine($"{title}	found:	{isbn}");

}

DICTIONARIES
A	dictionary	represents	a	sophisticated	data	structure	that	enables	you	to	access
an	element	based	on	a	key.	Dictionaries	are	also	known	as	hash	tables	or	maps.
The	main	feature	of	dictionaries	is	fast	lookup	based	on	keys.	You	can	also	add
and	remove	items	freely,	as	with	List<T>,	but	without	the	performance	overhead
of	having	to	shift	subsequent	items	in	memory.

Figure	8-4	shows	a	simplified	representation	of	a	dictionary.	Here	employee	IDs
such	as	B4711	are	the	keys	added	to	the	dictionary.	The	key	is	transformed	into	a
hash.	With	the	hash,	a	number	is	created	to	associate	an	index	with	the	values.
The	index	then	contains	a	link	to	the	value.	The	figure	is	simplified	because	it	is
possible	for	a	single	index	entry	to	be	associated	with	multiple	values,	and	the
index	can	be	stored	in	a	hash	table.

FIGURE	8-4

.NET	offers	several	dictionary	classes.	The	main	class	you	use	is
Dictionary<TKey,	TValue>.

Dictionary	Initializers
C#	offers	a	syntax	to	initialize	dictionaries	at	declaration	with	dictionary
initializers.	A	dictionary	with	a	key	of	int	and	a	value	of	string	can	be
initialized	as	follows:

Dictionary<int,	string>	dict	=	new()

{

		[3]	=	"three",

		[7]	=	"seven"

};

Here,	two	elements	are	added	to	the	dictionary.	The	first	element	has	a	key	of	3
and	a	string	value	three	;	the	second	element	has	a	key	of	7	and	a	string	value
seven.	This	initializer	syntax	is	easily	readable	and	is	an	adaptation	of	the

collection	initializer	syntax	shown	earlier	in	this	chapter.

Key	Type
A	type	that	is	used	as	a	key	in	the	dictionary	must	override	the	method
GetHashCode	of	the	Object	class.	Whenever	a	dictionary	class	needs	to
determine	where	an	item	should	be	located,	it	calls	the	GetHashCode	method.
The	int	that	is	returned	by	GetHashCode	is	used	by	the	dictionary	to	calculate	an
index	of	where	to	place	the	element.	I	won't	go	into	this	part	of	the	algorithm;
what	you	should	know	is	that	it	involves	prime	numbers,	so	the	capacity	of	a
dictionary	is	a	prime	number.

The	implementation	of	GetHashCode	must	satisfy	the	following	requirements:

The	same	object	should	always	return	the	same	value.

Different	objects	can	return	the	same	value.

It	must	not	throw	exceptions.

It	should	use	at	least	one	instance	field.

The	hash	code	should	not	change	during	the	lifetime	of	the	object.

Besides	the	requirements	that	must	be	satisfied	by	the	GetHashCode
implementation,	it's	also	good	practice	to	satisfy	these	requirements:

It	should	execute	as	quickly	as	possible;	it	must	be	inexpensive	to	compute.

The	hash	code	value	should	be	evenly	distributed	across	the	entire	range	of
numbers	that	an	int	can	store.

NOTE Good	performance	of	the	dictionary	is	based	on	a	good
implementation	of	the	method	GetHashCode	.

What's	the	reason	for	having	hash	code	values	evenly	distributed	across	the
range	of	integers?	If	two	keys	return	hashes	that	have	the	same	index,	the
dictionary	class	needs	to	start	looking	for	the	nearest	available	free	location	to
store	the	second	item—and	it	will	have	to	do	some	searching	to	retrieve	this	item
later.	This	is	obviously	going	to	hurt	performance.	In	addition,	if	a	lot	of	your
keys	tend	to	provide	the	same	storage	indexes	for	where	they	should	be	stored,
this	kind	of	clash	becomes	more	likely.	However,	because	of	the	way	that
Microsoft's	part	of	the	algorithm	works,	this	risk	is	minimized	when	the
calculated	hash	values	are	evenly	distributed	between	int.MinValue	and

int.MaxValue.

Besides	having	an	implementation	of	GetHashCode,	the	key	type	also	must
implement	the	IEquatable<T>.Equals	method	or	override	the	Equals	method
from	the	Object	class.	Because	different	key	objects	may	return	the	same	hash
code,	the	method	Equals	is	used	by	the	dictionary	comparing	keys.	The
dictionary	examines	whether	two	keys,	such	as	A	and	B,	are	equal;	it	invokes
A.Equals(B).	This	means	you	must	ensure	that	the	following	is	always	true:	If
A.Equals(B)	is	true,	then	A.GetHashCode	and	B.GetHashCode	must	always
return	the	same	hash	code.

This	may	seem	a	fairly	subtle	point,	but	it	is	crucial.	If	you	contrived	some	way
of	overriding	these	methods	so	that	the	preceding	statement	were	not	always
true,	a	dictionary	that	uses	instances	of	this	class	as	its	keys	would	not	work
properly.	Instead,	you'd	find	funny	things	happening.	For	example,	you	might
place	an	object	in	the	dictionary	and	then	discover	that	you	could	never	retrieve
it,	or	you	might	try	to	retrieve	an	entry	and	have	the	wrong	entry	returned.

NOTE For	this	reason,	the	C#	compiler	displays	a	compilation	warning	if
you	supply	an	override	for	Equals	but	don't	supply	an	override	for
GetHashCode.

For	System.Object,	this	condition	is	true	because	Equals	simply	compares
references,	and	GetHashCode	actually	returns	a	hash	that	is	based	solely	on	the
address	of	the	object.	This	means	that	hash	tables	based	on	a	key	that	doesn't
override	these	methods	will	work	correctly.	However,	the	problem	with	this
approach	is	that	keys	are	regarded	as	equal	only	if	they	are	the	same	object.	That
means	when	you	place	an	object	in	the	dictionary,	you	have	to	hang	onto	the
reference	to	the	key;	you	can't	simply	instantiate	another	key	object	later	with
the	same	value.	If	you	don't	override	Equals	and	GetHashCode,	the	type	is	not
very	convenient	to	use	in	a	dictionary	as	a	key.

Incidentally,	System.String	implements	the	interface	IEquatable	and	overloads
GetHashCode	appropriately.	Equals	provides	value	comparison,	and
GetHashCode	returns	a	hash	based	on	the	value	of	the	string.	Strings	can	be	used
conveniently	as	keys	in	dictionaries.

Number	types	such	as	Int32	also	implement	the	interface	IEquatable	and
overload	GetHashCode.	However,	the	hash	code	returned	by	these	types	simply
maps	to	the	value.	If	the	number	you	would	like	to	use	as	a	key	is	not	itself

distributed	around	the	possible	values	of	an	integer,	using	integers	as	keys
doesn't	fulfill	the	rule	of	evenly	distributing	key	values	to	get	the	best
performance.	Int32	is	not	meant	to	be	used	in	a	dictionary.

A	C#	9	record	is	a	class,	but	offers	value	semantics.	With	this,	it	also	implements
the	IEquatable	interface	and	overrides	GetHashCode.

If	you	need	to	use	a	key	type	that	does	not	implement	IEquatable	and	does	not
override	GetHashCode	according	to	the	key	values	you	store	in	the	dictionary,
you	can	create	a	comparer	implementing	the	interface	IEqualityComparer<T>.
This	interface	defines	the	methods	GetHashCode	and	Equals	with	an	argument	of
the	object	passed,	so	you	can	offer	an	implementation	different	from	the	object
type	itself.	An	overload	of	the	Dictionary<TKey,	TValue>	constructor	allows
passing	an	object	implementing	IEqualityComparer<T>.	If	such	an	object	is
assigned	to	the	dictionary,	this	class	is	used	to	generate	the	hash	codes	and
compare	the	keys.

Dictionary	Example
The	dictionary	example	in	this	section	is	a	program	that	sets	up	a	dictionary	of
employees.	The	dictionary	is	indexed	by	EmployeeId	objects,	and	each	item
stored	in	the	dictionary	is	an	Employee	object	that	stores	details	of	an	employee.

The	struct	EmployeeId	is	implemented	to	define	a	key	to	be	used	in	a	dictionary.
The	members	of	the	class	are	a	prefix	character	and	a	number	for	the	employee.
Both	of	these	variables	are	read-only	and	can	be	initialized	only	in	the
constructor	to	ensure	that	keys	within	the	dictionary	cannot	change.	The	default
implementation	of	the	record's	GetHashCode	uses	all	of	its	fields	to	generate	the
hash	code.	When	you	have	read-only	variables,	it	is	guaranteed	that	they	can't	be
changed.	The	fields	are	filled	within	the	constructor.	The	ToString	method	is
overloaded	to	get	a	string	representation	of	the	employee	ID.	As	required	for	a
key	type,	EmployeeId	implements	the	interface	IEquatable	and	overloads	the
method	GetHashCode	(code	file	DictionarySample/EmployeeId.cs):

public	class	EmployeeIdException	:	Exception

{

		public	EmployeeIdException(string	message)	:	base(message)	{	}

}

	

public	struct	EmployeeId	:	IEquatable<EmployeeId>

{

		private	readonly	char	_prefix;

		private	readonly	int	_number;

		public	EmployeeId(string	id)

		{

				if	(id	==	null)	throw	new	ArgumentNullException(nameof(id));

				_prefix	=	(id.ToUpper())[0];

				int	last	=	id.Length>	7	?	7	:	id.Length;

				try

				{

						_number	=	int.Parse(id[1..last]);

				}

				catch	(FormatException)

				{

						throw	new	EmployeeIdException("Invalid	EmployeeId	

format");

				}

		}

	

		public	override	string	ToString()	=>	_prefix.ToString()	+	

				$"{_number,6:000000}";

	

		public	override	int	GetHashCode()	=>	(_number	ˆ	_number	<<	16)	

*	0x15051505;

	

		public	bool	Equals(EmployeeId	other)	=>

				_prefix	==	other._prefix	&&	_number	==	other._number;

	

		public	override	bool	Equals(object	obj)	=>	

Equals((EmployeeId)obj);

	

		public	static	bool	operator	==(EmployeeId	left,	EmployeeId	

right)	=>

				left.Equals(right);

	

		public	static	bool	operator	!=(EmployeeId	left,	EmployeeId	

right)	=>

				!(left	==	right);

}

The	Equals	method	that	is	defined	by	the	IEquatable<T>	interface	compares	the
values	of	two	EmployeeId	objects	and	returns	true	if	both	values	are	the	same.
Instead	of	implementing	the	Equals	method	from	the	IEquatable<T>	interface,
you	can	also	override	the	Equals	method	from	the	Object	class:

public	bool	Equals(EmployeeId	other)	=>

		_prefix	==	other._prefix	&&	_number	==	other._number;

With	the	_number	variable,	a	value	from	1	to	around	190,000	is	expected	for	the
employees.	This	doesn't	fill	the	range	of	an	integer.	The	algorithm	used	by

GetHashCode	shifts	the	number	16	bits	to	the	left,	then	does	an	XOR	(exclusive
OR)	with	the	original	number,	and	finally	multiplies	the	result	by	the	hex	value
15051505.	The	hash	code	is	fairly	evenly	distributed	across	the	range	of	an
integer:

public	override	int	GetHashCode()	=>	(number	ˆ	number	<<	16)	*	

0x1505_1505;

The	Employee	type	is	a	simple	record	with	private	fields	for	the	name,	salary,
and	ID	of	the	employee.	The	constructor	initializes	all	values,	and	the	method
ToString	returns	a	string	representation	of	an	instance.	The	implementation	of
ToString	uses	a	format	string	to	create	the	string	representation	for	performance
reasons	(code	file	DictionarySample/Employee.cs):

public	record	Employee

{

		private	readonly	string	_name;

		private	readonly	decimal	_salary;

		private	readonly	EmployeeId	_id;

		public	Employee(EmployeeId	id,	string	name,	decimal	salary)

		{

				_id	=	id;

				_name	=	name;

				_salary	=	salary;

		}

	

		public	override	string	ToString()	=>	

				$"{_id.ToString()}:	{_name,	-20}	{_salary,12:C}";

}

In	the	Program.cs	file,	a	new	Dictionary<TKey,	TValue>	instance	is	created,
where	the	key	is	of	type	EmployeeId	and	the	value	is	of	type	Employee.	The
constructor	allocates	a	capacity	of	31	elements.	Remember	that	capacity	is	based
on	prime	numbers.	However,	when	you	assign	a	value	that	is	not	a	prime
number,	you	don't	need	to	worry.	The	Dictionary<TKey,	TValue>	class	itself
takes	the	next	prime	number	from	a	list	of	specially	selected	prime	numbers	that
follows	the	integer	passed	to	the	constructor	to	allocate	the	capacity.	After
creating	the	employee	objects	and	IDs,	they	are	added	to	the	newly	created
dictionary	using	the	new	dictionary	initializer	syntax.	Of	course,	you	can	also
invoke	the	Add	method	of	the	dictionary	to	add	objects	instead	(code	file
DictionarySample/Program.cs):

EmployeeId	idKyle	=	new("J18");

Employee	kyle	=	new	Employee(idKyle,	"Kyle	Bush",	138_000.00m);

	

EmployeeId	idMartin	=	new("J19");

Employee	martin	=	new(idMartin,	"Martin	Truex	Jr",	73_000.00m);

	

EmployeeId	idKevin	=	new("S4");

Employee	kevin	=	new(idKevin,	"Kevin	Harvick",	116_000.00m);

	

EmployeeId	idDenny	=	new	EmployeeId("J11");

Employee	denny	=	new	Employee(idDenny,	"Denny	Hamlin",	

127_000.00m);

	

EmployeeId	idJoey	=	new("T22");

Employee	joey	=	new(idJoey,	"Joey	Logano",	96_000.00m);

	

EmployeeId	idKyleL	=	new	("C42");

Employee	kyleL	=	new	(idKyleL,	"Kyle	Larson",	80_000.00m);

	

	

Dictionary<EmployeeId,	Employee>	employees	=	new(31)

{

		[idKyle]	=	kyle,

		[idMartin]	=	martin,

		[idKevin]	=	kevin,

		[idDenny]	=	denny,

		[idJoey]	=	joey,

};

	

foreach	(var	employee	in	employees.Values)

{

		Console.WriteLine(employee);

}

//…

After	the	entries	are	added	to	the	dictionary,	employees	are	read	from	the
dictionary	inside	a	while	loop.	The	user	is	asked	to	enter	an	employee	number	to
store	in	the	variable	userInput,	and	the	user	can	exit	the	application	by	pressing
the	key	X.	If	the	key	is	in	the	dictionary,	it	is	examined	with	the	TryGetValue
method	of	the	Dictionary<TKey,	TValue>	class.	TryGetValue	returns	true	if
the	key	is	found	or	false	otherwise.	If	the	value	is	found,	the	value	associated
with	the	key	is	stored	in	the	employee	variable.	This	value	is	written	to	the
console.

NOTE You	can	also	use	an	indexer	of	the	Dictionary<TKey,	TValue>
class	instead	of	TryGetValue	to	access	a	value	stored	in	the	dictionary.

However,	if	the	key	is	not	found,	the	indexer	throws	an	exception	of	type
KeyNotFoundException	.

while	(true)

{

		Console.Write("Enter	employee	id	(X	to	exit)>	");

		string?	userInput	=	Console.ReadLine();

		userInput	=	userInput?.ToUpper();

		if	(userInput	==	null	||	userInput	==	"X")	break;

	

		try

		{

				EmployeeId	id	=	new(userInput);

				if	(!employees.TryGetValue(id,	out	Employee?	employee))

				{

						Console.WriteLine($"Employee	with	id	{id}	does	not	

exist");

				}

				else

				{

						Console.WriteLine(employee);

				}

		}

		catch	(EmployeeIdException	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

Running	the	application	produces	the	following	output:

J000018:	Kyle	Bush												$138.000,00

J000019:	Martin	Truex	Jr							$73.000,00

S000004:	Kevin	Harvick								$116.000,00

J000011:	Denny	Hamlin									$127.000,00

T000022:	Joey	Logano											$96.000,00

Enter	employee	id	(X	to	exit)>	T22

T000022:	Joey	Logano											$96.000,00

Enter	employee	id	(X	to	exit)>	J18

J000018:	Kyle	Bush												$138.000,00

Enter	employee	id	(X	to	exit)>	X

Lookups
Dictionary<TKey,	TValue>	supports	only	one	value	per	key.	The	class
Lookup<TKey,	TElement>	resembles	a	Dictionary<TKey,	TValue>	but	maps

keys	to	a	collection	of	values.	This	class	is	defined	with	the	namespace
System.Linq.

Lookup<TKey,	TElement>	cannot	be	created	like	the	dictionary.	Instead,	you
have	to	invoke	the	method	ToLookup,	which	returns	a	Lookup<TKey,	TElement>
object.	The	method	ToLookup	is	an	extension	method	that	is	available	with	every
class	implementing	IEnumerable<T>.	In	the	following	example,	a	list	of	Racer
objects	is	filled.	Because	List<T>	implements	IEnumerable<T>,	the	ToLookup
method	can	be	invoked	on	the	racers	list.	This	method	requires	a	delegate	of	type
Func<TSource,	TKey>	that	defines	the	selector	of	the	key.	Here,	the	racers	are
selected	based	on	their	country	by	using	the	lambda	expression	r	=>	r.Country.
The	foreach	loop	accesses	only	the	racers	from	Australia	by	using	the	indexer
(code	file	LookupSample/Program.cs):

List<Racer>	racers	=	new();

racers.Add(new	Racer(26,	"Jacques",	"Villeneuve",	"Canada",	

11));

racers.Add(new	Racer(18,	"Alan",	"Jones",	"Australia",	12));

racers.Add(new	Racer(11,	"Jackie",	"Stewart",	"United	Kingdom",	

27));

racers.Add(new	Racer(15,	"James",	"Hunt",	"United	Kingdom",	

10));

racers.Add(new	Racer(5,	"Jack",	"Brabham",	"Australia",	14));

	

var	lookupRacers	=	racers.ToLookup(r	=>	r.Country);

	

foreach	(Racer	r	in	lookupRacers["Australia"])

{

		Console.WriteLine(r);

}

NOTE You	can	read	more	about	extension	methods	in	Chapter	9,
“Language	Integrated	Query.”	Lambda	expressions	are	explained	in
Chapter	7,	“Delegates,	Lambdas,	and	Events.”

The	output	shows	the	racers	from	Australia:

Alan	Jones

Jack	Brabham

Sorted	Dictionaries
SortedDictionary<TKey,	TValue>	is	a	binary	search	tree	in	which	the	items	are

sorted	based	on	the	key.	The	key	type	must	implement	the	interface
IComparable<TKey>.	If	the	key	type	is	not	sortable,	you	can	also	create	a
comparer	implementing	IComparer<TKey>	and	assign	the	comparer	as	a
constructor	argument	of	the	sorted	dictionary.

Earlier	in	this	chapter	you	read	about	SortedList<TKey,	TValue>.
SortedDictionary<TKey,	TValue>	and	SortedList<TKey,	TValue>	have
similar	functionality,	but	because	SortedList<TKey,	TValue>	is	implemented	as
a	list	that	is	based	on	an	array,	and	SortedDictionary<TKey,	TValue>	is
implemented	as	a	tree,	the	classes	have	different	characteristics:

SortedList<TKey,	TValue>	uses	less	memory	than
SortedDictionary<TKey,	TValue>.

SortedDictionary<TKey,	TValue>	has	faster	insertion	and	removal	of
elements.

When	populating	the	collection	with	already	sorted	data,
SortedList<TKey,	TValue>	is	faster	if	capacity	changes	are	not	needed.

NOTE SortedList	consumes	less	memory	than	SortedDictionary.
SortedDictionary	is	faster	with	inserts	and	the	removal	of	unsorted	data.

SETS
A	collection	that	contains	only	distinct	items	is	known	by	the	term	set.	.NET
Core	includes	two	sets,	HashSet<T>	and	SortedSet<T>,	that	both	implement	the
interface	ISet<T>.	HashSet<T>	contains	a	hash	table	of	distinct	items	that	is
unordered;	with	SortedSet<T>,	the	list	is	ordered.

The	ISet<T>	interface	offers	methods	to	create	a	union	of	multiple	sets,	to	create
an	intersection	of	sets,	or	to	provide	information	if	one	set	is	a	superset	or	subset
of	another.

In	the	following	sample	code,	three	new	sets	of	type	string	are	created	and
filled	with	Formula	1	cars.	The	HashSet<T>	class	implements	the
ICollection<T>	interface.	However,	the	Add	method	is	implemented	explicitly,
and	a	different	Add	method	is	offered	by	the	class,	as	you	can	see	in	the
following	code	snippet.	The	Add	method	differs	by	the	return	type;	a	Boolean
value	is	returned	to	provide	the	information	if	the	element	was	added.	If	the
element	was	already	in	the	set,	it	is	not	added,	and	false	is	returned	(code	file

SetSample/Program.cs):

HashSet<string>	companyTeams	=	new()

{	"Ferrari",	"McLaren",	"Mercedes"	};

	

HashSet<string>	traditionalTeams	=	new()	{	"Ferrari",	"McLaren"	

};

	

HashSet<string>	privateTeams	=	new()

{	"Red	Bull",	"Toro	Rosso",	"Force	India",	"Sauber"	};

	

if	(privateTeams.Add("Williams"))

{

		Console.WriteLine("Williams	added");

}

	

if	(!companyTeams.Add("McLaren"))

{

		Console.WriteLine("McLaren	was	already	in	this	set");

}

The	result	of	these	two	Add	methods	is	written	to	the	console:

Williams	added

McLaren	was	already	in	this	set

The	methods	IsSubsetOf	and	IsSupersetOf	compare	a	set	with	a	collection	that
implements	the	IEnumerable<T>	interface	and	returns	a	Boolean	result.	Here,
IsSubsetOf	verifies	whether	every	element	in	traditionalTeams	is	contained	in
companyTeams,	which	is	the	case;	IsSupersetOf	verifies	whether
traditionalTeams	has	any	additional	elements	compared	to	companyTeams	:

if	(traditionalTeams.IsSubsetOf(companyTeams))

{

		Console.WriteLine("traditionalTeams	is	subset	of	

companyTeams");

}

if	(companyTeams.IsSupersetOf(traditionalTeams))

{

		Console.WriteLine("companyTeams	is	a	superset	of	

traditionalTeams");

}

The	output	of	this	verification	is	shown	here:

traditionalTeams	is	a	subset	of	companyTeams

companyTeams	is	a	superset	of	traditionalTeams

Williams	is	a	traditional	team	as	well,	which	is	why	this	team	is	added	to	the
traditionalTeams	collection:

traditionalTeams.Add("Williams");

if	(privateTeams.Overlaps(traditionalTeams))

{

		Console.WriteLine("At	least	one	team	is	the	same	with	

traditional	"	+

				"and	private	teams");

}

Because	there's	an	overlap,	this	is	the	result:

At	least	one	team	is	the	same	with	traditional	and	private	

teams.

The	variable	allTeams	that	references	a	new	SortedSet<string>	is	filled	with	a
union	of	companyTeams,	privateTeams,	and	traditionalTeams	by	calling	the
UnionWith	method:

SortedSet<string>	allTeams	=	new(companyTeams);

allTeams.UnionWith(privateTeams);

allTeams.UnionWith(traditionalTeams);

Console.WriteLine();

Console.WriteLine("all	teams");

foreach	(var	team	in	allTeams)

{

		Console.WriteLine(team);

}

Here,	all	teams	are	returned,	but	every	team	is	listed	just	once	because	the	set
contains	only	unique	values;	and	because	the	container	is	a	SortedSet<string>,
the	result	is	ordered:

Ferrari

Force	India

Lotus

McLaren

Mercedes

Red	Bull

Sauber

Toro	Rosso

Williams

The	method	ExceptWith	removes	all	private	teams	from	the	allTeams	set:

allTeams.ExceptWith(privateTeams);

Console.WriteLine();

Console.WriteLine("no	private	team	left");

foreach	(var	team	in	allTeams)

{

		Console.WriteLine(team);

}

The	remaining	elements	in	the	collection	do	not	contain	any	private	teams:

Ferrari

McLaren

Mercedes

PERFORMANCE
Many	collection	classes	offer	the	same	functionality	as	others;	for	example,
SortedList	offers	nearly	the	same	features	as	SortedDictionary.	However,
often	there's	a	big	difference	in	performance.	Whereas	one	collection	consumes
less	memory,	the	other	collection	class	is	faster	with	the	retrieval	of	elements.
The	Microsoft	documentation	often	provides	performance	hints	about	methods
of	the	collection,	giving	you	information	about	the	time	the	operation	requires	in
big-O	notation:

O(1):	This	means	that	the	time	this	operation	needs	is	constant	no	matter
how	many	items	are	in	the	collection.	For	example,	the	ArrayList	has	an
Add	method	with	O(1)	behavior.	No	matter	how	many	elements	are	in	the
list,	it	always	takes	the	same	amount	of	time	when	adding	a	new	element	to
the	end	of	the	list.	The	Count	property	provides	the	number	of	items,	so	it	is
easy	to	find	the	end	of	the	list.

O(log	n):	This	means	that	the	time	needed	for	the	operation	increases	with
every	element	in	the	collection,	but	the	increase	of	time	for	each	element	is
not	linear	but	logarithmic.	SortedDictionary<TKey,	TValue>	has	O(log	n)
behavior	for	inserting	operations	inside	the	collection;	SortedList<TKey,
TValue>	has	O(n)	behavior	for	the	same	functionality.	Here,
SortedDictionary<TKey,	TValue>	is	a	lot	faster	because	it	is	more
efficient	to	insert	elements	into	a	tree	structure	than	into	a	list.

O(n):	This	means	it	takes	the	worst-case	amount	of	time	of	n	to	perform	an
operation	on	the	collection.	The	Add	method	of	ArrayList	can	be	an	O(n)
operation	if	a	reallocation	of	the	collection	is	required.	Changing	the
capacity	causes	the	list	to	be	copied,	and	the	time	for	the	copy	increases
linearly	with	every	element.

The	following	table	lists	collection	classes	and	their	performance	for	different
actions	such	as	adding,	inserting,	and	removing	items.	With	this	table,	you	can
select	the	best	collection	class	for	your	purpose.	The	left	column	lists	the
collection	class.	The	Add	column	gives	timing	information	about	adding	items	to
the	collection.	The	List<T>	and	the	HashSet<T>	classes	define	Add	methods	to
add	items	to	the	collection.	With	other	collection	classes,	use	a	different	method
to	add	elements	to	the	collection;	for	example,	the	Stack<T>	class	defines	a	Push
method,	and	the	Queue<T>	class	defines	an	Enqueue	method.	You	can	find	this
information	in	the	table	as	well.

If	there	are	multiple	big-O	values	in	a	cell,	the	reason	is	that	if	a	collection	needs
to	be	resized,	resizing	takes	a	while.	For	example,	with	the	List<T>	class,	adding
items	needs	O(1).	If	the	capacity	of	the	collection	is	not	large	enough	and	the
collection	needs	to	be	resized,	the	resize	requires	O(n)	time.	The	larger	the
collection,	the	longer	the	resize	operation	takes.	It's	best	to	avoid	resizes	by
setting	the	capacity	of	the	collection	when	you	create	it	to	a	value	that	can	hold
all	the	elements.

If	the	table	cell	contents	is	n/a,	the	operation	is	not	applicable	with	this	collection
type.

COLLECTION ADD INSERT REMOVE ITEM SORT FIND
List<T> O(1)	or

O(n)	if
the
collection
must	be
resized

O(n) O(n) O(1) O	(n
log	n),
worst
case
O(n	^
2)

O(n)

Stack<T> Push,
O(1),	or
O(n)	if
the	stack
must	be
resized

n/a Pop,	O(1) n/a n/a n/a

Queue<T> Enqueue,
O(1),	or
O(n)	if
the	queue
must	be

n/a Dequeue,
O(1)

n/a n/a n/a

resized
HashSet<T> O(1)	or

O(n)	if
the	set
must	be
resized

Add	O(1)
or	O(n)

O(1) n/a n/a n/a

SortedSet<T> O(1)	or
O(n)	if
the	set
must	be
resized

Add
O(1)	or
O(n)

O(1) n/a n/a n/a

LinkedList<T> AddLast

O(1)
Add

After

O(1)

O(1) n/a n/a O(n)

Dictionary	<TKey,

TValue>

O(1)	or
O(n)

n/a O(1) O(1) n/a n/a

SortedDictionary<TKey,

TValue>

O(log	n) n/a O(log	n) O(log
n)

n/a n/a

SortedList	<TKey,

TValue>

O(n)	for
unsorted
data,
O(log	n)
for	end	of
list,	O(n)
if	resize
is	needed

n/a O(n) O(log
n)	to
read/
write,
O(log
n)	if
the
key	is
in	the
list,
O(n)
if	the
key	is
not	in
the	list

n/a n/a

IMMUTABLE	COLLECTIONS
If	an	object	can	change	its	state,	it	is	hard	to	use	it	from	multiple	simultaneously

running	tasks.	Synchronization	is	necessary	with	these	collections.	If	an	object
cannot	change	state,	it's	a	lot	easier	to	use	it	from	multiple	threads.	An	object
that	can't	change	is	an	immutable	object.	Collections	that	cannot	be	changed	are
immutable	collections.

NOTE The	topics	of	using	multiple	tasks	and	threads	and	programming
with	asynchronous	methods	are	explained	in	detail	in	Chapter	11,	“Tasks
and	Asynchronous	Programming,”	and	Chapter	17,	“Parallel
Programming.”

When	you	compare	read-only	collections	like	those	discussed	earlier	in	this
chapter	with	immutable	collections,	there's	a	big	difference:	read-only
collections	make	use	of	an	interface	to	mutable	collections.	Using	this	interface,
the	collection	cannot	be	changed.	However,	if	someone	still	has	a	reference	to
the	mutable	collection,	it	still	can	be	changed.	With	immutable	collections,
nobody	can	change	this	collection.

Let's	start	with	a	simple	immutable	string	array	using	the	class	ImmutableArray.
This	class	is	defined	in	the	System.Collections.Immutable	namespace.	You
can	create	the	array	with	the	static	Create	method	as	shown.	The	Create	method
is	overloaded	where	other	variants	of	this	method	allow	passing	any	number	of
elements.	Notice	that	two	different	types	are	used	here:	the	nongeneric
ImmutableArray	class	with	the	static	Create	method	and	the	generic
ImmutableArray	struct	that	is	returned	from	the	Create	method.	In	the	following
code	snippet,	an	empty	array	is	created	(code	file
ImmutableCollectionSample/Program.cs):

ImmutableArray<string>	a1	=	ImmutableArray.Create<string>();

An	empty	array	is	not	very	useful.	The	ImmutableArray<T>	type	offers	an	Add
method	to	add	elements.	However,	contrary	to	other	collection	classes,	the	Add
method	does	not	change	the	immutable	collection	itself.	Instead,	a	new
immutable	collection	is	returned.	So,	after	the	call	of	the	Add	method,	a1	is	still
an	empty	collection,	and	a2	is	an	immutable	collection	with	one	element.	The
Add	method	returns	the	new	immutable	collection:

ImmutableArray<string>	a2	=	a1.Add("Williams");

With	this,	it	is	possible	to	use	this	API	in	a	fluent	way	and	invoke	one	Add
method	after	the	other.	The	variable	a3	now	references	an	immutable	collection
containing	four	elements:

ImmutableArray<string>	a3	=

		a2.Add("Ferrari").Add("Mercedes").Add("Red	Bull	Racing");

With	each	of	these	stages	using	the	immutable	array,	the	complete	collections	are
not	copied	with	every	step.	Instead,	the	immutable	types	make	use	of	a	shared
state	and	copy	the	collection	only	when	it's	necessary.

However,	it's	even	more	efficient	to	first	fill	the	collection	and	then	make	it	an
immutable	array.	When	some	manipulation	needs	to	take	place,	you	can	again
use	a	mutable	collection.	A	builder	class	offered	by	the	immutable	types	helps
with	that.

To	see	this	in	action,	first	an	Account	record	is	created	that	is	put	into	the
collection.	This	type	itself	is	immutable	and	cannot	be	changed	by	using	read-
only	auto	properties	(code	file	ImmutableCollectionSample/Account.cs)	:

public	record	Account(string	Name,	decimal	Amount);

Next	a	List<Account>	collection	is	created	and	filled	with	sample	accounts
(code	file	ImmutableCollectionSample/Program.cs):

List<Account>	accounts	=	new()

{

		new("Scrooge	McDuck",	667377678765m),

		new("Donald	Duck",	-200m),

		new("Ludwig	von	Drake",	20000m)

};

From	the	accounts	collection,	an	immutable	collection	can	be	created	with	the
extension	method	ToImmutableList.	This	extension	method	is	available	as	soon
as	the	namespace	System.Collections.Immutable	is	opened.

ImmutableList<Account>	immutableAccounts	=	

accounts.ToImmutableList();

The	variable	immutableAccounts	can	be	enumerated	like	other	collections.	It
just	cannot	be	changed:

foreach	(var	account	in	immutableAccounts)

{

		Console.WriteLine($"{account.Name}	{account.Amount}");

}

Instead	of	using	the	foreach	statement	to	iterate	immutable	lists,	you	can	use	the
ForEach	method	that	is	defined	with	ImmutableList<T>.	This	method	requires
an	Action<T>	delegate	as	parameter,	and	thus	a	lambda	expression	can	be

assigned:

immutableAccounts.ForEach(a	=>	Console.WriteLine($"{a.Name}	

{a.Amount}"));

When	you	work	with	these	collections,	methods	like	Contains,	FindAll,
FindLast,	IndexOf,	and	others	are	available.	Because	these	methods	are	like	the
methods	from	other	collection	classes	discussed	earlier	in	this	chapter,	they	are
not	explicitly	shown	here.

In	case	you	need	to	change	the	content	for	immutable	collections,	the	collections
offer	methods	such	as	Add,	AddRange,	Remove,	RemoveAt,	RemoveRange,	Replace,
and	Sort.	These	methods	are	very	different	from	normal	collection	classes
because	the	immutable	collection	that	is	used	to	invoke	the	methods	is	never
changed,	but	these	methods	return	a	new	immutable	collection.

Using	Builders	with	Immutable	Collections
Creating	new	immutable	collections	from	existing	ones	can	be	done	easily	with
the	previously	mentioned	Add,	Remove,	and	Replace	methods.	However,	this	is
not	very	efficient	if	you	need	to	do	multiple	changes	that	involve	adding	and
removing	many	elements	for	the	new	collection.	For	creating	new	immutable
collections	that	involve	even	more	changes,	you	can	create	a	builder.

Let's	continue	with	the	sample	code	and	make	multiple	changes	to	the	account
objects	in	the	collection.	To	do	this,	you	can	create	a	builder	by	invoking	the
ToBuilder	method.	This	method	returns	a	collection	that	you	can	change.	In	the
sample	code,	all	accounts	with	an	amount	larger	than	zero	are	removed.	The
original	immutable	collection	is	not	changed.	After	the	change	with	the	builder
is	completed,	a	new	immutable	collection	is	created	by	invoking	the
ToImmutable	method	of	the	Builder.	This	collection	is	used	next	to	output	all
overdrawn	accounts	(code	file	ImmutableCollectionSample/Program.cs):

ImmutableList<Account>.Builder	builder	=	

immutableAccounts.ToBuilder();

for	(int	i	=	builder.Count	-	1;	i>=	0;	i--)

{

		Account	a	=	builder[i];

		if	(a.Amount>	0)

		{

				builder.Remove(a);

		}

}

ImmutableList<Account>	overdrawnAccounts	=	

builder.ToImmutable();

overdrawnAccounts.ForEach(a	=>	Console.WriteLine($"overdrawn:	

{a.Name}	{a.Amount}"));

Other	than	removing	elements	with	the	Remove	method,	the	Builder	type	offers
the	methods	Add,	AddRange,	Insert,	RemoveAt,	RemoveAll,	Reverse,	and	Sort	to
change	the	mutable	collection.	After	finishing	the	mutable	operations,	invoke
ToImmutable	to	get	the	immutable	collection	again.

Immutable	Collection	Types	and	Interfaces
Other	than	ImmutableArray	and	ImmutableList,	the	NuGet	package
System.Collections.Immutable	offers	some	more	immutable	collection	types
as	shown	in	the	following	table:

IMMUTABLE	TYPE DESCRIPTION
ImmutableArray<T> ImmutableArray<T>	is	a	struct	that	uses

an	array	type	internally	but	doesn't	allow
changes	to	the	underlying	type.	This
struct	implements	the	interface
IImmutableList<T>.

ImmutableList<T> ImmutableList<T>	uses	a	binary	tree
internally	to	map	the	objects	and
implements	the	interface
IImmutableList<T>.

ImmutableQueue<T> ImmutableQueue<T>	implements	the
interface	IImmutableQueue<T>	that
allows	access	to	elements	FIFO	with
Enqueue,	Dequeue,	and	Peek.

ImmutableStack<T> ImmutableStack<T>	implements	the
interface	IImmutableStack<T>	that
allows	access	to	elements	LIFO	with
Push,	Pop,	and	Peek.

ImmutableDictionary<TKey,

TValue>

ImmutableDictionary<TKey,	TValue>	is
an	immutable	collection	with	unordered
key/value	pair	elements	implementing	the
interface	IImmutableDictionary<TKey,
TValue>.

ImmutableSortedDictionary<TKey, ImmutableSortedDictionary<TKey,

TValue> TValue>	is	an	immutable	collection	with
ordered	key/value	pair	elements
implementing	the	interface
IImmutableDictionary<TKey,	TValue>.

ImmutableHashSet<T> ImmutableHashSet<T>	is	an	immutable
unordered	hash	set	implementing	the
interface	IImmutableSet<T>.	This
interface	offers	set	functionality
explained	earlier	in	this	chapter.

ImmutableSortedSet<T> ImmutableSortedSet<T>	is	an	immutable
ordered	set	implementing	the	interface
IImmutableSet<T>.

Like	the	normal	collection	classes,	immutable	collections	implement	interfaces
as	well—such	as	IImmutableList<T>,	IImmutableQueue<T>,	and
IImmutableStack<T>.	The	big	difference	with	these	immutable	interfaces	is	that
all	the	methods	that	make	a	change	in	the	collection	return	a	new	collection.

Using	LINQ	with	Immutable	Arrays
For	using	LINQ	with	immutable	arrays,	the	class	ImmutableArrayExtensions
defines	optimized	versions	for	LINQ	methods	such	as	Where,	Aggregate,	All,
First,	Last,	Select,	and	SelectMany.	All	that	you	need	to	use	the	optimized
versions	is	to	directly	use	the	ImmutableArray	type	and	open	the	System.Linq
namespace.

The	Where	method	defined	with	the	ImmutableArrayExtensions	type	looks	like
this	to	extend	the	ImmutableArray<T>	type:

public	static	IEnumerable<T>	Where<T>(this	ImmutableArray<T>	

immutableArray,	Func<T,	bool>	predicate);

The	normal	LINQ	extension	method	extends	IEnumerable<T>.	Because
ImmutableArray<T>	is	a	better	match,	the	optimized	version	is	used	when	you
are	invoking	LINQ	methods.

SUMMARY
This	chapter	took	a	look	at	working	with	different	kinds	of	generic	collections.
Arrays	are	fixed	in	size,	but	you	can	use	lists	for	dynamically	growing

collections.	For	accessing	elements	on	a	FIFO	basis,	there's	a	queue;	and	you	can
use	a	stack	for	LIFO	operations.	Linked	lists	allow	for	fast	insertion	and	removal
of	elements	but	are	slow	for	searching.	With	keys	and	values,	you	can	use
dictionaries,	which	are	fast	for	searching	and	inserting	elements.	Sets	are	useful
for	unique	items	and	can	be	ordered	(SortedSet<T>)	or	not	ordered
(HashSet<T>).

Chapter	9	gives	you	details	about	working	with	arrays	and	collections	by	using
LINQ	syntax.

9
Language	Integrated	Query

WHAT'S	IN	THIS	CHAPTER?

Working	with	traditional	queries	across	objects	using	List

Using	extension	methods

Getting	to	know	LINQ	query	operators

Working	with	Parallel	LINQ

Working	with	expression	trees

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/LINQ.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

LINQIntro

EnumerableSample

ParallelLINQ

ExpressionTrees

All	the	sample	projects	have	nullable	reference	types	configured.

LINQ	OVERVIEW
Language	Integrated	Query	(LINQ)	integrates	query	syntax	inside	the	C#
programming	language,	making	it	possible	to	access	different	data	sources	with
the	same	syntax.	LINQ	accomplishes	this	by	offering	an	abstraction	layer.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

This	chapter	describes	the	core	principles	of	LINQ	and	the	language	extensions
for	C#	that	make	the	C#	LINQ	query	possible.

NOTE For	details	about	using	LINQ	across	a	database,	read	Chapter	21,
“Entity	Framework	Core.”

This	chapter	starts	with	a	simple	LINQ	query	before	diving	into	the	full	potential
of	LINQ.	The	C#	language	offers	an	integrated	query	language	that	is	converted
to	method	calls.	This	section	shows	you	what	the	conversion	looks	like	so	you
can	use	all	the	possibilities	of	LINQ.

Lists	and	Entities
The	LINQ	queries	in	this	chapter	are	performed	on	a	collection	containing
Formula	1	champions	from	1950	to	2020.	This	data	needs	to	be	prepared	with
classes	and	lists	within	a	.NET	5.0	library.

For	the	entities,	the	record	type	Racer	is	defined	(as	shown	in	the	following	code
snippet).	Racer	defines	several	properties	and	an	overloaded	ToString	method
to	display	a	racer	in	a	string	format.	This	class	implements	the	interface
IFormattable	to	support	different	variants	of	format	strings,	and	the	interface
IComparable<Racer>,	which	can	be	used	to	sort	a	list	of	racers	based	on	the
LastName.	For	more	advanced	queries,	the	class	Racer	contains	not	only	single-
value	properties	such	as	FirstName,	LastName,	Wins	Country,	and	Starts,	but
also	properties	that	contain	a	collection,	such	as	Cars	and	Years.	The	Years
property	lists	all	the	years	of	the	championship	title.	Some	racers	have	won	more
than	one	title.	The	Cars	property	is	used	to	list	all	the	cars	used	by	the	driver
during	the	title	years	(code	file	DataLib/Racer.cs):

public	record	Racer(string	FirstName,	string	LastName,	string	

Country,	

		int	Starts,	int	Wins,	IEnumerable<int>	Years,	

IEnumerable<string>	Cars)	:	

		IComparable<Racer>,	IFormattable

{

		public	Racer(string	FirstName,	string	LastName,	string	

Country,	

				int	Starts,	int	Wins)

				:	this(FirstName,	LastName,	Country,	Starts,	Wins,	new	int[]	

{	},	

						new	string[]	{	})

		{	}

	

		public	override	string	ToString()	=>	$"{FirstName}	

{LastName}";

	

		public	int	CompareTo(Racer?	other)	=>	

LastName.CompareTo(other?.LastName);

	

		public	string	ToString(string	format)	=>	ToString(format,	

null);

	

		public	string	ToString(string?	format,	IFormatProvider?	

formatProvider)	=>

				format	switch

				{

						null	=>	ToString(),

						"N"	=>	ToString(),

						"F"	=>	FirstName,

						"L"	=>	LastName,

						"C"	=>	Country,

						"S"	=>	Starts.ToString(),

						"W"	=>	Wins.ToString(),

						"A"	=>	$"{FirstName}	{LastName},	country:	{Country},	

starts:	{Starts},	

								wins:	{Wins}",

						_	=>	throw	new	FormatException($"Format	{format}	not	

supported")

				};								

		}

}

NOTE With	the	Formula	1	racing	series,	in	every	calendar	year,	a	driver
championship	and	a	constructor	championship	take	place.	With	the	driver
championship,	the	best	driver	is	world	champion.	With	the	constructor
championship,	the	best	team	wins	the	award.	See
https://www.formula1.com	for	details,	current	standings,	and	an	archive
going	back	to	1950.

A	second	entity	class	is	Team.	This	class	just	contains	the	team	name	and	an
array	of	years	for	constructor	championships	(code	file	DataLib/Team.cs):

public	record	Team

{

		public	Team(string	name,	params	int[]	years)

		{

				Name	=	name;

https://www.formula1.com

				Years	=	years	!=	null	?	new	List<int>(years)	:	new	List<int>

();

		}

		public	string	Name	{	get;	}

		public	IEnumerable<int>	Years	{	get;	}

}

The	class	Formula1	returns	a	list	of	racers	in	the	method	GetChampions.	The	list
is	filled	with	all	Formula	1	champions	from	the	years	1950	to	2020	with	the
method	InitializeRacers	(code	file	DataLib/Formula1.cs):

public	static	class	Formula1

{

		private	static	List<Racer>	s_racers;

		public	static	IList<Racer>	GetChampions()	=>	s_racers	??=	

InitalizeRacers();

	

		private	static	List<Racer>	InitializeRacers	=>	new()

		{

				new	("Nino",	"Farina",	"Italy",	33,	5,	new	int[]	{	1950	},	

						new	string[]	{	"Alfa	Romeo"	}),

				new	("Alberto",	"Ascari",	"Italy",	32,	10,	new	int[]	{	1952,	

1953	},	

						new	string[]	{	"Ferrari"	}),

				new	("Juan	Manuel",	"Fangio",	"Argentina",	51,	24,

						new	int[]	{	1951,	1954,	1955,	1956,	1957	},

						new	string[]	{	"Alfa	Romeo",	"Maserati",	"Mercedes",	

"Ferrari"	}),

				new	("Mike",	"Hawthorn",	"UK",	45,	3,	new	int[]	{	1958	},	

						new	string[]	{	"Ferrari"	}),

				new	("Phil",	"Hill",	"USA",	48,	3,	new	int[]	{	1961	},

						new	string[]	{	"Ferrari"	}),

				new	("John",	"Surtees",	"UK",	111,	6,	new	int[]	{	1964	},	

						new	string[]	{	"Ferrari"	}),

				new	("Jim",	"Clark",	"UK",	72,	25,	new	int[]	{	1963,	1965	},	

						new	string[]	{	"Lotus"	}),

				//…

		};

		//…

}

Where	queries	are	done	across	multiple	lists,	the	GetConstructorChampions
method	in	the	following	code	snippet	returns	the	list	of	all	constructor
championships	(these	championships	have	been	around	since	1958):

private	static	List<Team>	s_teams;

public	static	IList<Team>	GetConstructorChampions()	=>	s_teams	

??=	new()

{

		new	("Vanwall",	1958),

		new	("Cooper",	1959,	1960),

		new	("Ferrari",	1961,	1964,	1975,	1976,	1977,	1979,	1982,	

1983,	1999,	

						2000,	2001,	2002,	2003,	2004,	2007,	2008),

		new	("BRM",	1962),

		new	("Lotus",	1963,	1965,	1968,	1970,	1972,	1973,	1978),

		new	("Brabham",	1966,	1967),

		new	("Matra",	1969),

		new	("Tyrrell",	1971),

		new	("McLaren",	1974,	1984,	1985,	1988,	1989,	1990,	1991,	

1998),

		new	("Williams",	1980,	1981,	1986,	1987,	1992,	1993,	1994,	

1996,	1997),

		new	("Benetton",	1995),

		new	("Renault",	2005,	2006),

		new	("Brawn	GP",	2009),

		new	("Red	Bull	Racing",	2010,	2011,	2012,	2013),

		new	("Mercedes",	2014,	2015,	2016,	2017,	2018,	2019,	2020)

};

LINQ	Query
Using	these	prepared	lists	and	objects	from	the	previously	created	library,	you
can	do	a	LINQ	query—for	example,	a	query	to	get	all	world	champions	from
Brazil	sorted	by	the	highest	number	of	wins.	To	accomplish	this,	you	could	use
methods	of	the	List<T>	class—for	example,	the	FindAll	and	Sort	methods.
However,	with	LINQ	there's	a	simpler	syntax	(code	file
LINQIntro/Program.cs):

static	void	LinqQuery()

{

		var	query	=	from	r	in	Formula1.GetChampions()

														where	r.Country	==	"Brazil"

														orderby	r.Wins	descending

														select	r;

	

		foreach	(Racer	r	in	query)

		{

				Console.WriteLine($"{r:A}");

		}

}

The	result	of	this	query	shows	world	champions	from	Brazil	ordered	by	number

of	wins:

Ayrton	Senna,	country:	Brazil,	starts:	161,	wins:	41

Nelson	Piquet,	country:	Brazil,	starts:	204,	wins:	23

Emerson	Fittipaldi,	country:	Brazil,	starts:	143,	wins:	14

The	expression

from	r	in	Formula1.GetChampions()

where	r.Country	==	"Brazil"

orderby	r.Wins	descending

select	r;

is	a	LINQ	query.	The	clauses	from,	where,	orderby,	descending,	and	select	are
predefined	keywords	in	this	query.

The	query	expression	must	begin	with	a	from	clause	and	end	with	a	select	or
group	clause.	In	between,	you	can	optionally	use	where,	orderby,	join,	let,	and
additional	from	clauses.

NOTE The	variable	query	just	has	the	LINQ	query	assigned	to	it.	The
query	is	not	performed	by	this	assignment	but	rather	as	soon	as	the	query	is
accessed	using	the	foreach	loop.	This	is	discussed	in	more	detail	later	in	the
section	“Deferred	Query	Execution.”

Extension	Methods
The	compiler	converts	the	LINQ	query	to	method	calls.	At	runtime,	extension
methods	will	be	invoked.	LINQ	offers	various	extension	methods	for	the
IEnumerable<T>	interface,	so	you	can	use	the	LINQ	query	across	any	collection
that	implements	this	interface.	An	extension	method	is	defined	as	a	static	method
whose	first	parameter	defines	the	type	it	extends,	and	it	is	declared	in	a	static
class.

NOTE Extension	methods	are	covered	in	Chapter	3,	“Classes,	Records,
Structs,	and	Tuples.”

One	of	the	classes	that	define	LINQ	extension	methods	is	Enumerable	in	the
namespace	System.Linq.	You	just	have	to	import	the	namespace	to	open	the
scope	of	the	extension	methods	of	this	class.	A	sample	implementation	of	the
Where	extension	method	is	shown	in	the	following	code.	The	first	parameter	of

the	Where	method	that	includes	the	this	keyword	is	of	type	IEnumerable<T>.
This	enables	the	Where	method	to	be	used	with	every	type	that	implements
IEnumerable<T>.	A	few	examples	of	types	that	implement	this	interface	are
arrays	and	List<T>.	The	second	parameter	is	a	Func<T,	bool>	delegate	that
references	a	method	that	returns	a	Boolean	value	and	requires	a	parameter	of
type	T.	This	predicate	is	invoked	within	the	implementation	to	examine	whether
the	item	from	the	IEnumerable<T>	source	should	be	added	into	the	destination
collection.	If	the	method	is	referenced	by	the	delegate,	the	yield	return
statement	returns	the	item	from	the	source	to	the	destination:

public	static	IEnumerable<TSource>	Where<TSource>(

		this	IEnumerable<TSource>	source,

		Func<TSource,	bool>	predicate)

{

		foreach	(TSource	item	in	source)

		{

				if	(predicate(item))

						yield	return	item;

		}

}

Because	Where	is	implemented	as	a	generic	method,	it	works	with	any	type	that
is	contained	in	a	collection.	Any	collection	implementing	IEnumerable<T>	is
supported.

Now	it's	possible	to	use	the	extension	methods	Where,	OrderByDescending,	and
Select	from	the	class	Enumerable.	Because	each	of	these	methods	returns
IEnumerable<TSource	>,	it	is	possible	to	invoke	one	method	after	the	other	by
using	the	previous	result.	With	the	arguments	of	the	extension	methods,
anonymous	methods	that	define	the	implementation	for	the	delegate	parameters
are	used	(code	file	LINQIntro/Program.cs):

static	void	ExtensionMethods()

{

		List<Racer>	champions	=	new(Formula1.GetChampions());

		var	brazilChampions	=

				champions.Where(r	=>	r.Country	==	"Brazil")

						.OrderByDescending(r	=>	r.Wins)

						.Select(r	=>	r);

	

		foreach	(Racer	r	in	brazilChampions)

		{

				Console.WriteLine($"{r:A}");

		}

}

Deferred	Query	Execution
During	runtime,	the	query	expression	does	not	run	immediately	as	it	is	defined.
The	query	runs	only	when	the	items	are	iterated.	The	reason	is	that	the	extension
method	shown	earlier	makes	use	of	the	yield	return	statement	to	return	the
elements	where	the	predicate	is	true.	Because	the	yield	return	statement	is
used,	the	compiler	creates	an	enumerator	and	returns	the	items	as	soon	as	they
are	accessed	from	the	enumeration.

This	has	a	very	interesting	and	important	effect.	In	the	following	example,	a
collection	of	string	elements	is	created	and	filled	with	first	names.	Next,	a
query	is	defined	to	get	all	the	names	from	the	collection	whose	first	letter	is	J.
The	collection	should	also	be	sorted.	The	iteration	does	not	happen	when	the
query	is	defined.	Instead,	the	iteration	happens	with	the	foreach	statement,
where	all	items	are	iterated.	Only	one	element	of	the	collection	fulfills	the
requirements	of	the	where	expression	to	start	with	the	letter	J:	Juan.	After	the
iteration	is	done	and	Juan	is	written	to	the	console,	four	new	names	are	added	to
the	collection.	Then	the	iteration	is	done	again	(code	file
LINQIntro/Program.cs):

void	DeferredQuery()

{

		List<string>	names	=	new()	{	"Nino",	"Alberto",	"Juan",	

"Mike",	"Phil"	};

		var	namesWithJ	=	from	n	in	names

																			where	n.StartsWith("J")

																			orderby	n

																			select	n;

	

		Console.WriteLine("First	iteration");

		foreach	(string	name	in	namesWithJ)

		{

				Console.WriteLine(name);

		}

		Console.WriteLine();

	

		names.Add("John");

		names.Add("Jim");

		names.Add("Jack");

		names.Add("Denny");

		Console.WriteLine("Second	iteration");

	

		foreach	(string	name	in	namesWithJ)

		{

				Console.WriteLine(name);

		}

}

Because	the	iteration	does	not	happen	when	the	query	is	defined,	but	does
happen	with	every	foreach,	the	output	from	the	application	changes:

First	iteration

Juan

Second	iteration

Jack

Jim

John

Juan

Of	course,	you	also	must	be	aware	that	the	extension	methods	are	invoked	every
time	the	query	is	used	within	an	iteration.	Most	of	the	time,	this	is	very	practical
because	you	can	detect	changes	in	the	source	data.	However,	sometimes	this	is
impractical.	You	can	change	this	behavior	by	invoking	the	extension	methods
ToArray,	ToList,	and	the	like.	In	the	following	example,	you	can	see	that
ToList	iterates	through	the	collection	immediately	and	returns	a	collection
implementing	IList<string>.	The	returned	list	is	then	iterated	through	twice;	in
between	iterations,	the	data	source	gets	new	names:

List<string>	names	=	new()	{	"Nino",	"Alberto",	"Juan",	"Mike",	

"Phil"	};

var	namesWithJ	=	(from	n	in	names

																		where	n.StartsWith("J")

																		orderby	n

																		select	n).ToList();

	

Console.WriteLine("First	iteration");

foreach	(string	name	in	namesWithJ)

{

		Console.WriteLine(name);

}

Console.WriteLine();

	

names.Add("John");

names.Add("Jim");

names.Add("Jack");

names.Add("Denny");

	

Console.WriteLine("Second	iteration");

foreach	(string	name	in	namesWithJ)

{

		Console.WriteLine(name);

}

The	result	indicates	that	in	between	the	iterations,	the	output	stays	the	same
although	the	collection	values	have	changed:

First	iteration

Juan

Second	iteration

Juan

STANDARD	QUERY	OPERATORS
Where,	OrderByDescending,	and	Select	are	only	a	few	of	the	query	operators
defined	by	LINQ.	The	LINQ	query	defines	a	declarative	syntax	for	the	most
common	operators.	There	are	many	more	query	operators	available	with	the
Enumerable	class.

The	following	table	lists	the	standard	query	operators	defined	by	the	Enumerable
class.

STANDARD
QUERY
OPERATORS

DESCRIPTION

Where	
OfType<TResult>

Filtering	operators	define	a	restriction	to	the	elements
returned.	With	the	Where	query	operator,	you	can	use	a
predicate;	for	example,	a	lambda	expression	that	returns
a	bool.	OfType<TResult>	filters	the	elements	based	on
the	type	and	returns	only	the	elements	of	the	type
TResult.

Select	
SelectMany

Projection	operators	are	used	to	transform	an	object	into
a	new	object	of	a	different	type.	Select	and	SelectMany
define	a	projection	to	select	values	of	the	result	based	on
a	selector	function.

OrderBy	
ThenBy	
OrderByDescending

ThenByDescending	
Reverse

Sorting	operators	change	the	order	of	elements	returned.
OrderBy	sorts	values	in	ascending	order.
OrderByDescending	sorts	values	in	descending	order.
ThenBy	and	ThenByDescending	operators	are	used	for	a
secondary	sort	if	the	first	sort	gives	similar	results.

Reverse	reverses	the	elements	in	the	collection.
Join	
GroupJoin

Join	operators	are	used	to	combine	collections	that	might
not	be	directly	related	to	each	other.	With	the	Join
operator,	you	can	do	a	join	of	two	collections	based	on
key	selector	functions.	This	is	similar	to	the	JOIN	you
know	from	SQL.	The	GroupJoin	operator	joins	two
collections	and	groups	the	results.

GroupBy	
ToLookup

Grouping	operators	put	the	data	into	groups.	The
GroupBy	operator	groups	elements	with	a	common	key.
ToLookup	groups	the	elements	by	creating	a	one-to-many
dictionary.

Any	
All	
Contains

Quantifier	operators	return	a	Boolean	value	if	elements
of	the	sequence	satisfy	a	specific	condition.	Any,	All,	and
Contains	are	quantifier	operators.	Any	determines
whether	any	element	in	the	collection	satisfies	a	predicate
function.	All	determines	whether	all	elements	in	the
collection	satisfy	a	predicate.	Contains	checks	whether	a
specific	element	is	in	the	collection.

Take	
Skip	
TakeWhile	
SkipWhile

Partitioning	operators	return	a	subset	of	the	collection.
Take,	Skip,	TakeWhile,	and	SkipWhile	are	partitioning
operators.	With	these,	you	get	a	partial	result.	With	Take,
you	have	to	specify	the	number	of	elements	to	take	from
the	collection.	Skip	ignores	the	specified	number	of
elements	and	takes	the	rest.	TakeWhile	takes	the
elements	as	long	as	a	condition	is	true.	SkipWhile	skips
the	elements	as	long	as	the	condition	is	true.

Distinct	
Union	
Intersect	
Except	
Zip

Set	operators	return	a	collection	set.	Distinct	removes
duplicates	from	a	collection.	With	the	exception	of
Distinct,	the	other	set	operators	require	two	collections.
Union	returns	unique	elements	that	appear	in	either	of	the
two	collections.	Intersect	returns	elements	that	appear
in	both	collections.	Except	returns	elements	that	appear
in	just	one	collection.	Zip	combines	two	collections	into
one.

First	
FirstOrDefault	
Last	

Element	operators	return	just	one	element.	First	returns
the	first	element	that	satisfies	a	condition.
FirstOrDefault	is	similar	to	First,	but	it	returns	a

LastOrDefault	
ElementAt	
ElementAtOrDefault

Single	
SingleOrDefault

default	value	of	the	type	if	the	element	is	not	found.	Last
returns	the	last	element	that	satisfies	a	condition.	With
ElementAt,	you	specify	the	position	of	the	element	to
return.	Single	returns	only	the	one	element	that	satisfies
a	condition.	If	more	than	one	element	satisfies	the
condition,	an	exception	is	thrown.	All	the	XXOrDefault
methods	are	similar	to	the	methods	that	start	with	the
same	prefix,	but	they	return	the	default	value	of	the	type
if	the	element	is	not	found.

Count	
Sum	
Min	
Max	
Average	
Aggregate

Aggregate	operators	compute	a	single	value	from	a
collection.	With	aggregate	operators,	you	can	get	the	sum
of	all	values,	the	number	of	all	elements,	the	element
with	the	lowest	or	highest	value,	an	average	number,	and
so	on.

ToArray	
AsEnumerable	
ToList	
ToDictionary	
Cast<TResult>

Conversion	operators	convert	the	collection	to	an	array:
IEnumerable,	IList,	IDictionary,	and	so	on.	The	Cast
method	casts	every	item	of	the	collection	to	the	generic
argument	type.

Empty	
Range	
Repeat

Generation	operators	return	a	new	sequence.	The	Empty
operator	returns	an	empty	IEnumerable,	Range	returns
IEnumerable	containing	a	sequence	of	numbers,	and
Repeat	returns	IEnumerable	with	one	repeated	value.

The	following	sections	provide	examples	demonstrating	how	to	use	these
operators.

Filter
This	section	looks	at	some	examples	for	a	query.	This	sample	application
available	with	the	code	download	offers	passing	command-line	arguments	for
every	different	feature	shown.	With	the	Debug	section	in	the	Properties	of	Visual
Studio,	you	can	configure	the	command-line	arguments	as	needed	to	run	the
different	sections	of	the	application.	Using	the	command	line	with	the	installed
SDK,	you	can	invoke	the	commands	using	.NET	CLI	in	this	way:

>	dotnet	run	--	filter	simplefilter

which	passes	the	arguments	filter	simplefilter	to	the	application.

With	the	where	clause,	you	can	combine	multiple	expressions—for	example,	get
only	the	racers	from	Brazil	and	Austria	who	won	more	than	15	races.	The	result
type	of	the	expression	passed	to	the	where	clause	just	needs	to	be	of	type	bool
(code	file	EnumerableSample/FilterSamples.cs):

public	static	void	SimpleFilter()

{

		var	racers	=	from	r	in	Formula1.GetChampions()

															where	r.Wins	>	15	&&	

															(r.Country	==	"Brazil"	||	r.Country	==	"Austria")

															select	r;

	

		foreach	(var	r	in	racers)

		{

				Console.WriteLine($"{r:A}");

		}

}

Starting	the	program	with	this	LINQ	query	(filter	simplefilter)	returns	Niki
Lauda,	Nelson	Piquet,	and	Ayrton	Senna,	as	shown	here:

Niki	Lauda,	country:	Austria,	Starts:	173,	Wins:	25

Nelson	Piquet,	country:	Brazil,	Starts:	204,	Wins:	23

Ayrton	Senna,	country:	Brazil,	Starts:	161,	Wins:	41

Not	all	queries	can	be	done	with	the	LINQ	query	syntax,	and	not	all	extension
methods	are	mapped	to	LINQ	query	clauses.	Advanced	queries	require	using
extension	methods.	To	better	understand	complex	queries	with	extension
methods,	it's	good	to	see	how	simple	queries	are	mapped.	The	following	code
uses	the	Where	extension	method	instead	of	a	LINQ	query.	The	Select	extension
method	would	return	the	same	object	returned	by	the	Where	method,	so	it	isn't
needed	here	(code	file	EnumerableSample/FilterSamples.cs):

public	static	void	FilterWithMethods()

{

		var	racers	=	Formula1.GetChampions()

				.Where(r	=>	r.Wins	>	15	&&	

						(r.Country	==	"Brazil"	||	r.Country	==	"Austria"));

		//…

}

Filter	with	Index
One	scenario	in	which	you	can't	use	the	LINQ	query	is	an	overload	of	the	Where
method.	With	an	overload	of	the	Where	method,	you	can	pass	a	second	parameter

that	is	the	index.	The	index	is	a	counter	for	every	result	returned	from	the	filter.
You	can	use	the	index	within	the	expression	to	do	some	calculation	based	on	the
index.	In	the	following	example,	the	index	is	used	within	the	code	that	is	called
by	the	Where	extension	method	to	return	only	racers	whose	last	name	starts	with
A	if	the	index	is	even	(code	file	EnumerableSample/FilterSamples.cs):

public	static	void	FilteringWithIndex()

{

		var	racers	=	Formula1.GetChampions()

				.Where((r,	index)	=>	r.LastName.StartsWith("A")	&&	index	%	2	

!=	0);

	

		foreach	(var	r	in	racers)

		{

				Console.WriteLine($"{r:A}");

		}

}

The	racers	with	last	names	beginning	with	the	letter	A	are	Alberto	Ascari,	Mario
Andretti,	and	Fernando	Alonso.	Because	Mario	Andretti	is	positioned	within	an
index	that	is	odd,	he	is	not	in	the	result:

Alberto	Ascari,	Italy;	starts:	32,	wins:	13

Fernando	Alonso,	Spain;	starts:	314,	wins:	32

Type	Filtering
For	filtering	based	on	a	type,	you	can	use	the	OfType	extension	method.	Here	the
array	data	contains	both	string	and	int	objects.	When	you	use	the	extension
method	OfType,	passing	the	string	class	to	the	generic	parameter	returns	only	the
strings	from	the	collection	(code	file	EnumerableSample/FilterSamples.cs):

public	static	void	TypeFilter()

{

		object[]	data	=	{	"one",	2,	3,	"four",	"five",	6	};

		var	query	=	data.OfType<string>();

	

		foreach	(var	s	in	query)

		{

				Console.WriteLine(s);

		}

}

When	you	run	this	code,	the	strings	one,	four,	and	five	are	displayed:

one

four

five

Compound	from
If	you	need	to	do	a	filter	based	on	a	member	of	the	object	that	itself	is	a
sequence,	you	can	use	a	compound	from.	The	Racer	class	defines	a	property
Cars,	where	Cars	is	a	string	array.	For	a	filter	of	all	racers	who	were	champions
with	a	Ferrari,	you	can	use	the	LINQ	query	shown	next.	The	first	from	clause
accesses	the	Racer	objects	returned	from	Formula1.GetChampions.	The	second
from	clause	accesses	the	Cars	property	of	the	Racer	class	to	return	all	cars	of
type	string.	Next	the	cars	are	used	with	the	where	clause	to	filter	only	the	racers
who	were	champions	with	a	Ferrari	(code	file
EnumerableSample/CompoundFromSamples.cs):

public	static	void	CompoundFrom()

{

		var	ferrariDrivers	=	from	r	in	Formula1.GetChampions()

																							from	c	in	r.Cars

																							where	c	==	"Ferrari"

																							orderby	r.LastName

																							select	r.FirstName	+	"	"	+	r.LastName;

		//…

}

If	you	are	curious	about	the	result	of	this	query,	following	are	all	Formula	1
champions	driving	a	Ferrari:

Alberto	Ascari

Juan	Manuel	Fangio

Mike	Hawthorn

Phil	Hill

Niki	Lauda

Kimi	Räikkönen

Jody	Scheckter

Michael	Schumacher

John	Surtees

The	C#	compiler	converts	a	compound	from	clause	with	a	LINQ	query	to	the
SelectMany	extension	method.	You	can	use	SelectMany	to	iterate	a	sequence	of
a	sequence.	The	overload	of	the	SelectMany	method	that	is	used	with	the
example	is	shown	here:

public	static	IEnumerable<TResult>	SelectMany<TSource,	

TCollection,	TResult>	(

		this	IEnumerable<TSource>	source,

		Func<TSource,

		IEnumerable<TCollection>>	collectionSelector,

		Func<TSource,	TCollection,	TResult>	resultSelector);

The	first	parameter	is	the	implicit	parameter	that	receives	the	sequence	of	Racer
objects	from	the	GetChampions	method.	The	second	parameter	is	the
collectionSelector	delegate	where	the	inner	sequence	is	defined.	With	the
lambda	expression	r	=>	r.Cars,	the	collection	of	cars	should	be	returned.	The
third	parameter	is	a	delegate	that	is	now	invoked	for	every	car	and	receives	the
Racer	and	Car	objects.	The	lambda	expression	creates	an	anonymous	type	with	a
Racer	and	a	Car	property.	As	a	result	of	this	SelectMany	method,	the	hierarchy
of	racers	and	cars	is	flattened,	and	a	collection	of	new	objects	of	an	anonymous
type	for	every	car	is	returned.

This	new	collection	is	passed	to	the	Where	method	so	that	only	the	racers	driving
a	Ferrari	are	filtered.	Finally,	the	OrderBy	and	Select	methods	are	invoked	(code
file	EnumerableSample/CompoundFromSamples.cs):

public	static	void	CompoundFromWithMethods()

{

		var	ferrariDrivers	=	Formula1.GetChampions()

				.SelectMany(r	=>	r.Cars,	(r,	c)	=>	new	{	Racer	=	r,	Car	=	c	

})

				.Where(r	=>	r.Car	==	"Ferrari")

				.OrderBy(r	=>	r.Racer.LastName)

				.Select(r	=>	$"{r.Racer.FirstName}	{r.Racer.LastName}");

		//…

}

Resolving	the	generic	SelectMany	method	to	the	types	that	are	used	here,	the
types	are	resolved	as	follows.	In	this	case,	the	source	is	of	type	Racer,	the
filtered	collection	is	a	string	array,	and,	of	course,	the	name	of	the	anonymous
type	that	is	returned	is	not	known	and	is	shown	here	as	TResult	:

public	static	IEnumerable<TResult>	SelectMany<Racer,	string,	

TResult>	(

		this	IEnumerable<Racer>	source,

		Func<Racer,	IEnumerable<string>>	collectionSelector,

		Func<Racer,	string,	TResult>	resultSelector);

Because	the	query	was	just	converted	from	a	LINQ	query	to	extension	methods,
the	result	is	the	same	as	before.

Sorting

To	sort	a	sequence,	the	orderby	clause	was	used	already.	This	section	reviews
the	earlier	example,	now	with	the	orderby	descending	clause.	Here	the	racers
are	sorted	based	on	the	number	of	wins	as	specified	by	the	key	selector	in
descending	order	(code	file	EnumerableSample/SortingSamples.cs):

public	static	void	SortDescending()

{

		var	racers	=	from	r	in	Formula1.GetChampions()

															where	r.Country	==	"Brazil"

															orderby	r.Wins	descending

															select	r;

		//…

}

The	orderby	clause	is	resolved	to	the	OrderBy	method,	and	the	orderby
descending	clause	is	resolved	to	the	OrderByDescending	method:

public	static	void	SortDescendingWithMethods()

{

		var	racers	=	Formula1.GetChampions()

				.Where(r	=>	r.Country	==	"Brazil")

				.OrderByDescending(r	=>	r.Wins)

				.Select(r	=>	r);

		//…

}

The	OrderBy	and	OrderByDescending	methods	return
IOrderedEnumerable<TSource>.	This	interface	derives	from	the	interface
IEnumerable<TSource>	but	contains	an	additional	method,
CreateOrderedEnumerable<TSource>.	This	method	is	used	for	further	ordering
of	the	sequence.	If	two	items	are	the	same	based	on	the	key	selector,	ordering
can	continue	with	the	ThenBy	and	ThenByDescending	methods.	These	methods
require	an	IOrderedEnumerable<TSource>	to	work	on	but	return	this	interface	as
well.	Therefore,	you	can	add	any	number	of	ThenBy	and	ThenByDescending
methods	to	sort	the	collection.

When	using	the	LINQ	query,	you	just	add	all	the	different	keys	(with	commas)
for	sorting	to	the	orderby	clause.	In	the	next	example,	the	sort	of	all	racers	is
done	first	based	on	country,	next	on	last	name,	and	finally	on	first	name.	The
Take	extension	method	that	is	added	to	the	result	of	the	LINQ	query	is	used	to
return	the	first	10	results:

public	static	void	SortMultiple()

{

		var	racers	=	(from	r	in	Formula1.GetChampions()

																orderby	r.Country,	r.LastName,	r.FirstName

																select	r).Take(10);

		//…

}

The	sorted	result	is	shown	here:

Argentina:	Fangio,	Juan	Manuel

Australia:	Brabham,	Jack

Australia:	Jones,	Alan

Austria:	Lauda,	Niki

Austria:	Rindt,	Jochen

Brazil:	Fittipaldi,	Emerson

Brazil:	Piquet,	Nelson

Brazil:	Senna,	Ayrton

Canada:	Villeneuve,	Jacques

Finland:	Hakkinen,	Mika

Doing	the	same	with	extension	methods	makes	use	of	the	OrderBy	and	ThenBy
methods:

public	static	void	SortMultipleWithMethods()

{

		var	racers	=	Formula1.GetChampions()

				.OrderBy(r	=>	r.Country)

				.ThenBy(r	=>	r.LastName)

				.ThenBy(r	=>	r.FirstName)

				.Take(10);

		//…

}

Grouping
To	group	query	results	based	on	a	key	value,	you	can	use	the	group	clause.	Now
the	Formula	1	champions	should	be	grouped	by	country,	and	the	number	of
champions	within	a	country	should	be	listed.	The	clause	group	r	by	r.Country
into	g	groups	all	the	racers	based	on	the	Country	property	and	defines	a	new
identifier	g	that	you	can	use	later	to	access	the	group	result	information.	In	the
following	example,	the	result	from	the	group	clause	is	ordered	based	on	the
extension	method	Count	that	is	applied	on	the	group	result;	and	if	the	count	is
the	same,	the	ordering	is	done	based	on	the	key.	This	is	the	country	because	this
was	the	key	used	for	grouping.	The	where	clause	filters	the	results	based	on
groups	that	have	at	least	two	items,	and	the	select	clause	creates	an	anonymous
type	with	the	Country	and	Count	properties	(code	file
EnumerableSample/GroupSamples.cs):

public	static	void	Grouping()

{

		var	countries	=	from	r	in	Formula1.GetChampions()

																		group	r	by	r.Country	into	g

																		orderby	g.Count()	descending,	g.Key

																		where	g.Count()>=	2

																		select	new	

																		{

																				Country	=	g.Key,

																				Count	=	g.Count()

																		};

	

		foreach	(var	item	in	countries)

		{

				Console.WriteLine($"{item.Country,	-10}	{item.Count}");

		}

}

The	result	displays	the	collection	of	objects	with	the	Country	and	Count
properties:

UK	10

Brazil	3

Finland	3

Germany	3

Australia	2

Austria	2

Italy	2

USA	2

Doing	the	same	with	extension	methods,	the	groupby	clause	is	resolved	to	the
GroupBy	method.	What's	interesting	with	the	declaration	of	the	GroupBy	method
is	that	it	returns	an	enumeration	of	objects	implementing	the	IGrouping
interface.	The	IGrouping	interface	defines	the	Key	property,	so	you	can	access
the	key	of	the	group	after	defining	the	call	to	this	method:

public	static	IEnumerable<IGrouping<TKey,	TSource>>	

GroupBy<TSource,	TKey>(

		this	IEnumerable<TSource>	source,	Func<TSource,	TKey>	

keySelector);

The	group	r	by	r.Country	into	g	clause	is	resolved	to	GroupBy(r	=>
r.Country)	and	returns	the	group	sequence.	The	group	sequence	is	first	ordered
by	the	OrderByDescending	method,	then	by	the	ThenBy	method.	Next,	the	Where
and	Select	methods	that	you	already	know	are	invoked	(code	file
EnumerableSample/GroupSamples.cs):

public	static	void	GroupingWithMethods()

{

		var	countries	=	Formula1.GetChampions()

				.GroupBy(r	=>	r.Country)

				.OrderByDescending(g	=>	g.Count())

				.ThenBy(g	=>	g.Key)

				.Where(g	=>	g.Count()>=	2)

				.Select(g	=>	new	

				{	

						Country	=	g.Key,	

						Count	=	g.Count()

				});

		//…

}

Variables	Within	the	LINQ	Query
With	the	LINQ	query	as	it	is	written	for	grouping,	the	Count	method	is	called
multiple	times.	You	can	change	this	by	using	the	let	clause.	let	allows	defining
variables	within	the	LINQ	query	(code	file
EnumerableSample/GroupSamples.cs):

public	static	void	GroupingWithVariables()

{

		var	countries	=	from	r	in	Formula1.GetChampions()

																		group	r	by	r.Country	into	g

																		let	count	=	g.Count()

																		orderby	count	descending,	g.Key

																		where	count>=	2

																		select	new

																		{

																				Country	=	g.Key,

																				Count	=	count

																		};

		//…

}

NOTE Why	is	it	a	bad	idea	to	invoke	the	Count	method	multiple	times	on
a	LINQ	query?	Of	course,	it's	always	faster	to	cache	the	result	of	a	method
instead	of	calling	it	multiple	items.	With	the	implementation	of	the	extension
method	Count	that's	based	on	the	IEnumerable	interface,	you	should	also
think	about	how	this	method	can	be	implemented.	With	the	members	of	the
IEnumerable	interface,	it's	possible	to	iterate	through	all	the	elements	and
count	the	number	of	items	in	the	list.	The	longer	the	list	is,	the	longer	it

takes.

Using	the	method	syntax,	the	Count	method	was	invoked	multiple	times	as	well.
To	define	extra	data	to	pass	to	the	next	method	(what	is	really	done	by	the	let
clause),	you	can	use	the	Select	method	to	create	anonymous	types.	Here,	an
anonymous	type	with	Group	and	Count	properties	is	created.	A	collection	of
items	with	these	properties	is	passed	to	the	OrderByDescending	method	where
the	sort	is	based	on	the	Count	property	of	this	anonymous	type:

public	static	void	GroupingWithAnonymousTypes()

{

		var	countries	=	Formula1.GetChampions()

				.GroupBy(r	=>	r.Country)

				.Select(g	=>	new	{	Group	=	g,	Count	=	g.Count()	})

				.OrderByDescending(g	=>	g.Count)

				.ThenBy(g	=>	g.Group.Key)

				.Where(g	=>	g.Count>=	2)

				.Select(g	=>	new

				{

						Country	=	g.Group.Key,

						Count	=	g.Count

				});

		//…

}	

Be	aware	of	the	number	of	interim	objects	created	based	on	the	let	clause	or
Select	method.	When	you	query	through	large	lists,	the	number	of	objects
created	that	need	to	be	garbage	collected	later	on	can	have	a	huge	impact	on
performance.

Grouping	with	Nested	Objects
If	the	grouped	objects	should	contain	nested	sequences,	you	can	do	that	by
changing	the	anonymous	type	created	by	the	select	clause.	With	this	example,
the	returned	countries	should	contain	not	only	the	properties	for	the	name	of	the
country	and	the	number	of	racers,	but	also	a	sequence	of	the	names	of	the	racers.
This	sequence	is	assigned	by	using	an	inner	from	/	in	clause	assigned	to	the
Racers	property.	The	inner	from	clause	is	using	the	g	group	to	get	all	racers	from
the	group,	order	them	by	last	name,	and	create	a	new	string	based	on	the	first	and
last	name	(code	file	EnumerableSample/GroupSamples.cs):

public	static	void	GroupingAndNestedObjects()

{

		var	countries	=	from	r	in	Formula1.GetChampions()

																		group	r	by	r.Country	into	g

																		let	count	=	g.Count()

																		orderby	count	descending,	g.Key

																		where	count>=	2

																		select	new

																		{

																				Country	=	g.Key,

																				Count	=	count,

																				Racers	=	from	r1	in	g

																													orderby	r1.LastName

																													select	r1.FirstName	+	"	"	+	

r1.LastName

																		};

	

		foreach	(var	item	in	countries)

		{

				Console.WriteLine($"{item.Country,	-10}	{item.Count}");

				foreach	(var	name	in	item.Racers)

				{

						Console.Write($"{name};	");

				}

				Console.WriteLine();

		}

}

Using	extension	methods,	the	inner	Racer	objects	are	created	using	the	group
variable	g	of	type	IGrouping	where	the	Key	property	is	the	key	for	the	grouping
—the	country	in	this	case—and	the	items	of	a	group	can	be	accessed	using	the
Group	property:

public	static	void	GroupingAndNestedObjectsWithMethods()

{

		var	countries	=	Formula1.GetChampions()

				.GroupBy(r	=>	r.Country)

				.Select(g	=>	new

				{

						Group	=	g,

						Key	=	g.Key,

						Count	=	g.Count()

				})

				.OrderByDescending(g	=>	g.Count)

				.ThenBy(g	=>	g.Key)

				.Where(g	=>	g.Count>=	2)

				.Select(g	=>	new

				{

						Country	=	g.Key,

						Count	=	g.Count,

						Racers	=	g.Group.OrderBy(r	=>	r.LastName)

								.Select(r	=>	r.FirstName	+	"	"	+	r.LastName)

				});

		//…

}

The	output	now	lists	all	champions	from	the	selected	countries:

UK								10

Jenson	Button;	Jim	Clark;	Lewis	Hamilton;	Mike	Hawthorn;	Graham	

Hill;

Damon	Hill;	James	Hunt;	Nigel	Mansell;	Jackie	Stewart;	John	

Surtees;

Brazil					3

Emerson	Fittipaldi;	Nelson	Piquet;	Ayrton	Senna;

Finland				3

Mika	Hakkinen;	Kimi	Raikkonen;	Keke	Rosberg;

Germany				3

Nico	Rosberg;	Michael	Schumacher;	Sebastian	Vettel;

Australia		2

Jack	Brabham;	Alan	Jones;

Austria				2

Niki	Lauda;	Jochen	Rindt;

Italy						2

Alberto	Ascari;	Nino	Farina;

USA								2

Mario	Andretti;	Phil	Hill;

Inner	Join
You	can	use	the	join	clause	to	combine	two	sources	based	on	specific	criteria.
First,	however,	let's	get	two	lists	that	should	be	joined.	With	Formula	1,	there	are
drivers	and	constructor	champions.	The	drivers	are	returned	from	the	method
GetChampions,	and	the	constructors	are	returned	from	the	method
GetConstructorChampions.	It	would	be	interesting	to	get	a	list	that	lists	the
driver	and	the	constructor	champions	for	each	year.

To	do	this,	the	first	two	queries	for	the	racers	and	the	teams	are	defined	(code	file
EnumerableSample/JoinSamples.cs):

public	static	void	InnerJoin()

{

		var	racers	=	from	r	in	Formula1.GetChampions()

															from	y	in	r.Years

															select	new

															{

																	Year	=	y,

																	Name	=	r.FirstName	+	"	"	+	r.LastName

															};

	

		var	teams	=	from	t	in	Formula1.GetConstructorChampions()

														from	y	in	t.Years

														select	new

														{

																Year	=	y,

																Name	=	t.Name

														};

		//…

}

Using	these	two	queries,	a	join	is	done	based	on	the	year	of	the	driver	champion
and	the	year	of	the	team	champion	with	the	join	clause.	The	select	clause
defines	a	new	anonymous	type	containing	Year,	Racer,	and	Team	properties:

var	racersAndTeams	=	(from	r	in	racers

																						join	t	in	teams	on	r.Year	equals	t.Year

																						select	new

																						{

																								r.Year,

																								Champion	=	r.Name,

																								Constructor	=	t.Name

																						}).Take(10);

Console.WriteLine("Year	World	Champion\t\t			Constructor	

Title");

	

foreach	(var	item	in	racersAndTeams)

{

		Console.WriteLine($"{item.Year}:	{item.Champion,-20}	

{item.Constructor}");

}

Of	course,	you	can	also	combine	this	to	just	one	LINQ	query,	but	that's	a	matter
of	taste:

var	racersAndTeams	=

		(from	r	in

			from	r1	in	Formula1.GetChampions()

			from	yr	in	r1.Years

			select	new

			{

					Year	=	yr,

					Name	=	r1.FirstName	+	"	"	+	r1.LastName

			}

			join	t	in

					from	t1	in	Formula1.GetConstructorChampions()

					from	yt	in	t1.Years

					select	new

					{

							Year	=	yt,

							Name	=	t1.Name

					}

			on	r.Year	equals	t.Year

			orderby	t.Year

			select	new

			{

					Year	=	r.Year,

					Racer	=	r.Name,

					Team	=	t.Name

			}).Take(10);

Using	extension	methods,	the	racers	and	teams	can	be	joined	by	invoking	the
Join	method,	passing	the	teams	with	the	first	argument	to	join	them	with	the
racers,	specifying	the	key	selectors	for	the	outer	and	inner	collections,	and
defining	the	result	selector	with	the	last	argument	(code	file
EnumerableSample/JoinSamples.cs):

static	void	InnerJoinWithMethods()

{

		var	racers	=	Formula1.GetChampions()

				.SelectMany(r	=>	r.Years,	(r1,	year)	=>

				new

				{

						Year	=	year,

						Name	=	$"{r1.FirstName}	{r1.LastName}"

				});

	

		var	teams	=	Formula1.GetConstructorChampions()

				.SelectMany(t	=>	t.Years,	(t,	year)	=>

				new

				{

						Year	=	year,

						Name	=	t.Name

				});

	

		var	racersAndTeams	=	racers.Join(

				teams,	

				r	=>	r.Year,	

				t	=>	t.Year,	

				(r,	t)	=>

						new

						{

								Year	=	r.Year,

								Champion	=	r.Name,

								Constructor	=	t.Name

						}).OrderBy(item	=>	item.Year).Take(10);

		//…

}

The	output	displays	data	from	the	anonymous	type	for	the	first	10	years	in	which
both	a	driver	and	constructor	championship	took	place:

Year		World	Champion			Constructor	Title

1958:	Mike	Hawthorn				Vanwall

1959:	Jack	Brabham					Cooper

1960:	Jack	Brabham					Cooper

1961:	Phil	Hill								Ferrari

1962:	Graham	Hill						BRM

1963:	Jim	Clark								Lotus

1964:	John	Surtees					Ferrari

1965:	Jim	Clark								Lotus

1966:	Jack	Brabham					Brabham

1967:	Denny	Hulme						Brabham

Figure	9-1	shows	a	graphical	presentation	of	two	collections	combined	with	an
inner	join.	Using	an	inner	join,	the	results	are	matches	with	both	collections.

FIGURE	9-1

Left	Outer	Join
The	output	from	the	previous	join	sample	started	with	the	year	1958—the	first
year	when	both	the	driver	and	constructor	championships	started.	The	driver
championship	had	started	earlier	in	the	year	1950.	With	an	inner	join,	results	are
returned	only	when	matching	records	are	found.	To	get	a	result	with	all	the	years
included,	you	can	use	a	left	outer	join.	A	left	outer	join	returns	all	the	elements	in
the	left	sequence	even	when	no	match	is	found	in	the	right	sequence.

The	earlier	LINQ	query	is	changed	to	a	left	outer	join.	A	left	outer	join	is	defined
with	the	join	clause	together	with	the	DefaultIfEmpty	method.	If	the	left	side
of	the	query	(the	racers)	does	not	have	a	matching	constructor	champion,	the
default	value	for	the	right	side	is	defined	by	the	DefaultIfEmpty	method	(code
file	EnumerableSample/JoinSamples.cs):

public	static	void	LeftOuterJoin()

{

		//…

		var	racersAndTeams	=

				(from	r	in	racers

					join	t	in	teams	on	r.Year	equals	t.Year	into	rt

					from	t	in	rt.DefaultIfEmpty()

					orderby	r.Year

					select	new

					{

							Year	=	r.Year,

							Champion	=	r.Name,

							Constructor	=	t	==	null	?	"no	constructor	championship"	:	

t.Name

					}).Take(10);

		//…

}

When	you	do	the	same	query	with	the	extension	methods,	you	use	the
GroupJoin	method.	The	first	three	parameters	are	similar	with	Join	and
GroupJoin.	The	result	of	GroupJoin	is	different.	Instead	of	a	flat	list	that	is
returned	from	the	Join	method,	GroupJoin	returns	a	list	where	every	matching
item	of	the	first	list	contains	a	list	of	matches	from	the	second	list.	Using	the
following	SelectMany	method,	the	list	is	flattened	again.	In	case	no	teams	are
available	for	a	match,	the	Constructors	property	is	assigned	to	the	default	value
of	the	type,	which	is	null	with	classes.	Creating	the	anonymous	type,	the
Constructor	property	gets	the	string	“no	constructor	championship”	assigned	if
the	team	is	null	(code	file	EnumerableSample/JoinSamples.cs):

public	static	void	LeftOuterJoinWithMethods()

{

		//…

		var	racersAndTeams	=

				racers.GroupJoin(

						teams,

						r	=>	r.Year,

						t	=>	t.Year,

						(r,	ts)	=>	new

						{

								Year	=	r.Year,

								Champion	=	r.Name,

								Constructors	=	ts

						})

						.SelectMany(

								rt	=>	rt.Constructors.DefaultIfEmpty(),

								(r,	t)	=>	new

								{

										Year	=	r.Year,

										Champion	=	r.Champion,

										Constructor	=	t?.Name	??	"no	constructor	championship"

								});

		//…

}

NOTE Other	usages	of	the	GroupJoin	method	are	shown	in	the	next
section.

When	you	run	the	application	with	this	query,	the	output	starts	with	the	year
1950	as	shown	here:

Year	Champion												Constructor	Title

1950:	Nino	Farina								no	constructor	championship

1951:	Juan	Manuel	Fangio	no	constructor	championship

1952:	Alberto	Ascari					no	constructor	championship

1953:	Alberto	Ascari					no	constructor	championship

1954:	Juan	Manuel	Fangio	no	constructor	championship

1955:	Juan	Manuel	Fangio	no	constructor	championship

1956:	Juan	Manuel	Fangio	no	constructor	championship

1957:	Juan	Manuel	Fangio	no	constructor	championship

1958:	Mike	Hawthorn						Vanwall

1959:	Jack	Brabham							Cooper

Figure	9-2	shows	a	graphical	presentation	of	two	collections	combined	with	a
left	outer	join.	When	you	use	a	left	outer	join,	the	results	are	not	just	matches

with	both	collections	A	and	B	but	also	include	the	left	collection	A.

FIGURE	9-2

Group	Join
A	left	outer	join	makes	use	of	a	group	join	together	with	the	into	clause.	It	uses
partly	the	same	syntax	as	the	group	join.	The	group	join	just	doesn't	need	the
DefaultIfEmpty	method.

With	a	group	join,	two	independent	sequences	can	be	joined,	whereby	one
sequence	contains	a	list	of	items	for	one	element	of	the	other	sequence.

The	following	example	uses	two	independent	sequences.	One	is	the	list	of
champions	that	you	already	know	from	previous	examples.	The	second	sequence
is	a	collection	of	Championship	types.	The	Championship	type	is	shown	in	the
next	code	snippet.	This	class	contains	the	year	of	the	championship	and	the
racers	with	the	first,	second,	and	third	positions	of	the	year	with	the	properties
Year,	First,	Second,	and	Third	(code	file	DataLib/Championship.cs):

public	record	Championship(int	Year,	string	First,	string	

Second,	

		string	Third);

The	collection	of	championships	is	returned	from	the	method	GetChampionships
as	shown	in	the	following	code	snippet	(code	file	DataLib/Formula1.cs):

private	static	List<Championship>	s_championships;

public	static	IEnumerable<Championship>	GetChampionships()	=>

		s_championships	??=	new()

		{

				new	(1950,	"Nino	Farina",	"Juan	Manuel	Fangio",	"Luigi	

Fagioli"),

				new	(1951,	"Juan	Manuel	Fangio",	"Alberto	Ascari",	"Froilan	

Gonzalez"),

				//…

		};

The	list	of	champions	should	be	combined	with	the	list	of	racers	that	are	found
within	the	first	three	positions	in	every	year	of	championships,	and	for	every
world	champion	the	results	for	every	year	should	be	displayed.

Because	in	the	list	of	championships	every	item	contains	three	racers,	this	list
needs	to	be	flattened	first.	One	way	to	do	this	is	by	using	a	compound	from.	As
there's	no	collection	available	with	a	property	of	a	single	item,	but	instead	the
three	properties	First,	Second,	and	Third	need	to	be	combined	and	flattened,	a
new	List<T>	is	created	that	is	filled	with	information	from	these	properties.	For
a	newly	created	object,	custom	classes	and	anonymous	types	can	be	used	as
you've	already	seen	several	times.	This	time,	you’ll	create	a	tuple.	Tuples	contain
members	of	different	types	and	can	be	created	using	tuple	literals	with
parentheses	as	shown	in	the	following	code	snippet.	Here,	the	code	creates	a	flat
list	of	tuples	containing	the	year,	position	in	the	championship,	first	name,	and
last	name	information	from	racers	(code	file
EnumerableSample/JoinSamples.cs):

static	void	GroupJoin()

{

		var	racers	=	from	cs	in	Formula1.GetChampionships()

															from	r	in	new	List<

																	(int	Year,	int	Position,	string	FirstName,	

string	LastName)>()

															{

																	(cs.Year,	Position:	1,	FirstName:	

cs.First.FirstName(),		

																		LastName:	cs.First.LastName()),

																	(cs.Year,	Position:	2,	FirstName:	

cs.Second.FirstName(),	

																		LastName:	cs.Second.LastName()),

																	(cs.Year,	Position:	3,	FirstName:	

cs.Third.FirstName(),	

																		LastName:	cs.Third.LastName())

															}

															select	r;

		//…

}

The	extension	methods	FirstName	and	LastName	just	use	the	last	blank	character
to	split	up	the	string	(code	file	EnumerableSample/StringExtensions.cs):

public	static	class	StringExtensions

{

		public	static	string	FirstName(this	string	name)	=>

				name.Substring(0,	name.LastIndexOf('	'));

	

		public	static	string	LastName(this	string	name)	=>

				name.Substring(name.LastIndexOf('	')	+	1);

}

With	a	join	clause,	the	racers	from	both	lists	can	be	combined.
Formula1.GetChampions	returns	a	list	of	Racers,	and	the	racers	variable
returns	the	list	of	tuples	that	contains	the	year,	the	result,	and	the	names	of
racers.	It's	not	enough	to	compare	the	items	from	these	two	collections	by	using
the	last	name.	Sometimes	a	racer	and	his	father	can	be	found	in	the	list	(for
example,	Damon	Hill	and	Graham	Hill),	so	it's	necessary	to	compare	the	items
by	both	FirstName	and	LastName.	You	do	this	by	creating	a	new	tuple	type	for
both	lists.	Using	the	into	clause,	the	result	from	the	second	collection	is	put	into
the	variable	yearResults.	yearResults	is	created	for	every	racer	in	the	first
collection	and	contains	the	results	of	the	matching	first	name	and	last	name	from
the	second	collection.	Finally,	with	the	LINQ	query,	a	new	tuple	type	is	created
that	contains	the	needed	information	(code	file
EnumerableSample/JoinSamples.cs):

static	void	GroupJoin()

{

		//…

		var	q	=	(from	r	in	Formula1.GetChampions()

											join	r2	in	racers	on

											(

													r.FirstName,

													r.LastName

)

											equals

											(

													r2.FirstName,

													r2.LastName

)

											into	yearResults

											select

											(

													r.FirstName,

													r.LastName,

													r.Wins,

													r.Starts,

													Results:	yearResults

));

	

		foreach	(var	r	in	q)

		{

				Console.WriteLine($"{r.FirstName}	{r.LastName}");

				foreach	(var	results	in	r.Results)

				{

						Console.WriteLine($"\t{results.Year}	{results.Position}");

				}

		}

}

The	last	results	from	the	foreach	loop	are	shown	next.	Jenson	Button	has	been
among	the	top	three	for	three	years—in	2004	as	third,	2009	as	first,	and	2011	as
second;	Sebastian	Vettel	was	world	champion	four	times,	had	the	second
position	three	times,	and	the	third	in	2015;	and	Nico	Rosberg	was	world
champion	in	2016	and	in	the	second	position	two	times:

Jenson	Button

								2004	3

								2009	1

								2011	2

Sebastian	Vettel

								2009	2

								2010	1

								2011	1

								2012	1

								2013	1

								2015	3

								2017	2

								2018	2

Nico	Rosberg

								2014	2

								2015	2

								2016	1

Using	GroupJoin	with	extension	methods,	the	syntax	probably	looks	a	bit	easier
to	catch.	First,	the	compound	from	is	done	with	the	SelectMany	method.	This
part	is	not	very	different,	and	tuples	are	used	again.	The	GroupJoin	method	is

invoked	by	passing	the	racers	with	the	first	parameter	to	join	the	champions	with
the	flattened	racers,	and	the	match	for	both	collections	with	the	second	and	third
parameters.	The	fourth	parameter	receives	the	racer	from	the	first	collection	and
a	collection	of	the	second.	These	are	the	results	containing	the	position	and	the
year	which	are	written	to	the	Results	tuple	member	(code	file
EnumerableSample/Program.cs):

static	void	GroupJoinWithMethods()

{

		var	racers	=	Formula1.GetChampionships()

				.SelectMany(cs	=>	new	List<(int	Year,	int	Position,	string	

FirstName,	

							string	LastName)>

				{

						(cs.Year,	Position:	1,	FirstName:	cs.First.FirstName(),	

								LastName:	cs.First.LastName()),

						(cs.Year,	Position:	2,	FirstName:	cs.Second.FirstName(),	

								LastName:	cs.Second.LastName()),

						(cs.Year,	Position:	3,	FirstName:	cs.Third.FirstName(),	

								LastName:	cs.Third.LastName())

				});

	

		var	q	=	Formula1.GetChampions()

				.GroupJoin(racers,

						r1	=>	(r1.FirstName,	r1.LastName),

						r2	=>	(r2.FirstName,	r2.LastName),

						(r1,	r2s)	=>	(r1.FirstName,	r1.LastName,	r1.Wins,	

r1.Starts,	

								Results:	r2s));

		//…

}

Set	Operations
The	extension	methods	Distinct,	Union,	Intersect,	and	Except	are	set
operations.	The	following	example	creates	a	sequence	of	Formula	1	champions
driving	a	Ferrari	and	another	sequence	of	Formula	1	champions	driving	a
McLaren	and	then	determines	whether	any	driver	has	been	a	champion	driving
both	of	these	cars.	Of	course,	that's	where	the	Intersect	extension	method	can
help.

First,	you	need	to	get	all	champions	driving	a	Ferrari.	This	uses	a	simple	LINQ
query	with	a	compound	from	to	access	the	property	Cars	that's	returning	a
sequence	of	string	objects:

var	ferrariDrivers	=	from	r	in	Formula1.GetChampions()

																					from	c	in	r.Cars

																					where	c	==	"Ferrari"

																					orderby	r.LastName

																					select	r;

Now	the	same	query	with	a	different	parameter	of	the	where	clause	is	needed	to
get	all	McLaren	racers.	It's	not	a	good	idea	to	write	the	same	query	again.
Another	option	is	to	create	a	method	in	which	you	can	pass	the	parameter	car.	In
case	the	method	wouldn't	be	needed	in	other	places,	you	can	create	a	local
function.	racersByCar	is	the	name	of	a	local	function	that	is	implemented	as	a
lambda	expression	containing	a	LINQ	query.	The	local	function	racersByCar	is
defined	within	the	scope	of	the	method	SetOperations,	and	thus	it	can	only	be
invoked	within	this	method.	The	LINQ	Intersect	extension	method	is	used	to
get	all	racers	who	won	the	championship	with	a	Ferrari	and	a	McLaren	(code	file
EnumerableSample/LinqSamples.cs):

static	void	SetOperations()

{

		IEnumerable<Racer>	racersByCar(string	car)	=>

				from	r	in	Formula1.GetChampions()

				from	c	in	r.Cars

				where	c	==	car

				orderby	r.LastName

				select	r;

	

		Console.WriteLine("World	champion	with	Ferrari	and	McLaren");

		foreach	(var	racer	in	

racersByCar("Ferrari").Intersect(racersByCar("McLaren")))

		{

				Console.WriteLine(racer);

		}

}

The	result	is	just	one	racer,	Niki	Lauda:

World	champion	with	Ferrari	and	McLaren

Niki	Lauda

NOTE The	set	operations	compare	the	objects	by	invoking	the
GetHashCode	and	Equals	methods	of	the	entity	class.	For	custom
comparisons,	you	can	also	pass	an	object	that	implements	the	interface
IEqualityComparer<T>.	In	the	preceding	example,	the	GetChampions
method	always	returns	the	same	objects,	so	the	default	comparison	works.	If

that's	not	the	case,	the	set	methods	offer	overloads	in	which	a	comparison
can	be	defined.

Zip
The	Zip	method	enables	you	to	merge	two	related	sequences	into	one	with	a
predicate	function.

First,	two	related	sequences	are	created,	both	with	the	same	filtering	(country
Italy)	and	ordering.	For	merging,	this	is	important	because	item	1	from	the	first
collection	is	merged	with	item	1	from	the	second	collection,	item	2	with	item	2,
and	so	on.	In	case	the	count	of	the	two	sequences	is	different,	Zip	stops	when	the
end	of	the	smaller	collection	is	reached.

The	items	in	the	first	collection	have	a	Name	property,	and	the	items	in	the	second
collection	have	LastName	and	Starts	properties.

Using	the	Zip	method	on	the	collection,	racerNames	requires	the	second
collection	racerNamesAndStarts	as	the	first	parameter.	The	second	parameter	is
of	type	Func<TFirst,	TSecond,	TResult>.	This	parameter	is	implemented	as	a
lambda	expression	and	receives	the	elements	of	the	first	collection	with	the
parameter	first,	and	the	elements	of	the	second	collection	with	the	parameter
second.	The	implementation	creates	and	returns	a	string	containing	the	Name
property	of	the	first	element	and	the	Starts	property	of	the	second	element
(code	file	EnumerableSample/LinqSamples.cs):

static	void	ZipOperation()

{

		var	racerNames	=	from	r	in	Formula1.GetChampions()

																			where	r.Country	==	"Italy"

																			orderby	r.Wins	descending

																			select	new

																			{

																					Name	=	r.FirstName	+	"	"	+	r.LastName

																			};

	

		var	racerNamesAndStarts	=	from	r	in	Formula1.GetChampions()

																												where	r.Country	==	"Italy"

																												orderby	r.Wins	descending

																												select	new

																												{

																														r.LastName,

																														r.Starts

																												};

	

		var	racers	=	racerNames.Zip(racerNamesAndStarts,

																(first,	second)	=>	first.Name	+	",	starts:	"	+	

second.Starts);

	

		foreach	(var	r	in	racers)

		{

				Console.WriteLine(r);

		}

}

The	result	of	this	merge	is	shown	here:

Alberto	Ascari,	starts:	32

Nino	Farina,	starts:	33

Partitioning
Partitioning	operations	such	as	the	extension	methods	Take	and	Skip	can	be	used
for	easy	paging—for	example,	to	display	just	five	racers	on	the	first	page,	and
continue	with	the	next	five	on	the	following	pages.

With	the	LINQ	query	shown	here,	the	extension	methods	Skip	and	Take	are
added	to	the	end	of	the	query.	The	Skip	method	first	ignores	a	number	of	items
calculated	based	on	the	page	size	and	the	actual	page	number;	the	Take	method
then	takes	a	number	of	items	based	on	the	page	size	(code	file
EnumerableSample/LinqSamples.cs):

public	static	void	Partitioning()

{

		int	pageSize	=	5;

		int	numberPages	=	

(int)Math.Ceiling(Formula1.GetChampions().Count()	/

				(double)pageSize);

	

		for	(int	page	=	0;	page	<	numberPages;	page++)

		{

				Console.WriteLine($"Page	{page}");

	

				var	racers	=	(from	r	in	Formula1.GetChampions()

																		orderby	r.LastName,	r.FirstName

																		select	r.FirstName	+	"	"	+	r.LastName)

																		.Skip(page	*	pageSize).Take(pageSize);

	

				foreach	(var	name	in	racers)

				{

						Console.WriteLine(name);

				}

				Console.WriteLine();

		}

}

Here	is	the	output	of	the	first	three	pages:

Page	0

Fernando	Alonso

Mario	Andretti

Alberto	Ascari

Jack	Brabham

Jenson	Button

	

Page	1

Jim	Clark

Juan	Manuel	Fangio

Nino	Farina

Emerson	Fittipaldi

Mika	Hakkinen

	

Page	2

Lewis	Hamilton

Mike	Hawthorn

Damon	Hill

Graham	Hill

Phil	Hill

Paging	can	be	extremely	useful	with	Windows	or	web	applications	for	showing
the	user	only	a	part	of	the	data.

NOTE This	paging	mechanism	has	an	important	behavior:	Because	the
query	is	done	with	every	page,	changing	the	underlying	data	affects	the
results	(for	example	when	accessing	a	database).	New	objects	are	shown	as
paging	continues.	Depending	on	your	scenario,	this	can	be	advantageous	to
your	application.	If	this	behavior	is	not	what	you	need,	you	can	do	the
paging	not	over	the	original	data	source	but	by	using	a	cache	that	maps	to
the	original	data.

With	the	TakeWhile	and	SkipWhile	extension	methods,	you	can	also	pass	a
predicate	to	retrieve	or	skip	items	based	on	the	result	of	the	predicate.

Aggregate	Operators
The	aggregate	operators	such	as	Count,	Sum,	Min,	Max,	Average,	and	Aggregate
do	not	return	a	sequence;	instead	they	return	a	single	value.

The	Count	extension	method	returns	the	number	of	items	in	the	collection.	In	the
following	example,	the	Count	method	is	applied	to	the	Years	property	of	a	Racer
to	filter	the	racers	and	return	only	those	who	won	more	than	three
championships.	Because	the	same	count	is	needed	more	than	once	in	the	same
query,	a	variable	numberYears	is	defined	by	using	the	let	clause	(code	file
EnumerableSample/LinqSamples.cs):

									static	void	AggregateCount()

									{

											var	query	=	from	r	in	Formula1.GetChampions()

																							let	numberYears	=	r.Years.Count()

																							where	numberYears>=	3

																							orderby	numberYears	descending,	

r.LastName

																							select	new

																							{

																									Name	=	r.FirstName	+	"	"	+	r.LastName,

																									TimesChampion	=	numberYears

																							};

	

											foreach	(var	r	in	query)

											{

													Console.WriteLine($"{r.Name}	{r.TimesChampion}");

											}

									}

The	result	is	shown	here:

Michael	Schumacher	7

Lewis	Hamilton	6

Juan	Manuel	Fangio	5

Alain	Prost	4

Sebastian	Vettel	4

Jack	Brabham	3

Niki	Lauda	3

Nelson	Piquet	3

Ayrton	Senna	3

Jackie	Stewart	3

The	Sum	method	summarizes	all	numbers	of	a	sequence	and	returns	the	result.	In
the	next	example,	Sum	is	used	to	calculate	the	sum	of	all	race	wins	for	a	country.

First	the	racers	are	grouped	based	on	country;	then,	with	the	new	anonymous
type	created,	the	Wins	property	is	assigned	to	the	sum	of	all	wins	from	a	single
country	(code	file	EnumerableSample/Program.cs):

static	void	AggregateSum()

{

		var	countries	=	(from	c	in

																			from	r	in	Formula1.GetChampions()

																			group	r	by	r.Country	into	c

																			select	new

																			{

																					Country	=	c.Key,

																					Wins	=	(from	r1	in	c

																													select	r1.Wins).Sum()

																			}

																			orderby	c.Wins	descending,	c.Country

																			select	c).Take(5);

	

		foreach	(var	country	in	countries)

		{

				Console.WriteLine($"{country.Country}	{country.Wins}");

		}

}

The	most	successful	countries	based	on	the	Formula	1	race	champions	are	as
follows:

UK	245

Germany	168

Brazil	78

France	51

Finland	46

The	methods	Min,	Max,	Average,	and	Aggregate	are	used	in	the	same	way	as
Count	and	Sum.	Min	returns	the	minimum	number	of	the	values	in	the	collection,
and	Max	returns	the	maximum	number.	Average	calculates	the	average	number.
With	the	Aggregate	method,	you	can	pass	a	lambda	expression	that	performs	an
aggregation	of	all	the	values.

Conversion	Operators
In	this	chapter,	you've	already	seen	that	query	execution	is	deferred	until	the
items	are	accessed.	Using	the	query	within	an	iteration,	the	query	is	executed.
With	a	conversion	operator,	the	query	is	executed	immediately	and	the	result	is
returned	in	an	array,	a	list,	or	a	dictionary.

In	the	next	example,	the	ToList	extension	method	is	invoked	to	immediately
execute	the	query	and	put	the	result	into	a	List<T>	(code	file
EnumerableSample/LinqSamples.cs):

static	void	ToList()

{

		List<Racer>	racers	=	(from	r	in	Formula1.GetChampions()

																								where	r.Starts>	220

																								orderby	r.Starts	descending

																								select	r).ToList();

	

		foreach	(var	racer	in	racers)

		{

				Console.WriteLine($"{racer}	{racer:S}");

		}

}

The	result	of	this	query	shows	Jenson	Button	first:

Kimi	Räikkönen	323

Fernando	Alonso	314

Jenson	Button	306

Michael	Schumacher	287

Lewis	Hamilton	260

Sebastian	Vettel	250

It's	not	always	that	simple	to	get	the	returned	objects	into	the	list.	For	example,
for	fast	access	from	a	car	to	a	racer	within	a	collection	class,	you	can	use	the	new
class	Lookup<TKey,	TElement>.

NOTE The	Dictionary<TKey	,	TValue>	class	supports	only	a	single	value
for	a	key.	With	the	class	Lookup<TKey,	TElement>	from	the	namespace
System.Linq	,	you	can	have	multiple	values	for	a	single	key.	These	classes
are	covered	in	detail	in	Chapter	8,	“Collections.”

In	the	following	example	when	you	use	the	compound	from	query,	the	sequence
of	racers	and	cars	is	flattened,	and	an	anonymous	type	with	the	properties	Car
and	Racer	is	created.	With	the	lookup	that	is	returned,	the	key	should	be	of	type
string	referencing	the	car,	and	the	value	should	be	of	type	Racer.	To	make	this
selection,	you	can	pass	a	key	and	an	element	selector	to	one	overload	of	the
ToLookup	method.	The	key	selector	references	the	Car	property,	and	the	element
selector	references	the	Racer	property:

public	static	void	ToLookup()

{

		var	racers	=	(from	r	in	Formula1.GetChampions()

																from	c	in	r.Cars

																select	new

																{

																		Car	=	c,

																		Racer	=	r

																}).ToLookup(cr	=>	cr.Car,	cr	=>	cr.Racer);

	

		foreach	(var	williamsRacer	in	racers["Williams"])

		{

				Console.WriteLine(williamsRacer);

		}

}

The	result	of	all	“Williams”	champions	accessed	using	the	indexer	of	the	Lookup
class	is	shown	here:

Alan	Jones

Keke	Rosberg

Nelson	Piquet

Nigel	Mansell

Alain	Prost

Damon	Hill

Jacques	Villeneuve

In	case	you	need	to	use	a	LINQ	query	over	an	untyped	collection,	such	as	the
ArrayList,	you	can	use	the	Cast	method.	In	the	following	example,	an
ArrayList	collection	that	is	based	on	the	Object	type	is	filled	with	Racer
objects.	To	make	it	possible	to	define	a	strongly	typed	query,	you	can	use	the
Cast	method:

public	static	void	ConvertWithCast()

{

		var	list	=	new	

System.Collections.ArrayList(Formula1.GetChampions()

				as	System.Collections.ICollection);

	

		var	query	=	from	r	in	list.Cast<Racer>()

														where	r.Country	==	"USA"

														orderby	r.Wins	descending

														select	r;

	

		foreach	(var	racer	in	query)

		{

				Console.WriteLine($"{racer:A}");

		}

}

The	results	include	the	only	Formula	1	champion	from	the	United	States:

Mario	Andretti,	country:	USA,	starts:	128,	wins:	12

Phil	Hill,	country:	USA,	starts:	48,	wins:	3

Generation	Operators
The	generation	operators	Range,	Empty,	and	Repeat	are	not	extension	methods
but	normal	static	methods	that	return	sequences.	With	LINQ	to	Objects,	these
methods	are	available	with	the	Enumerable	class.

Have	you	ever	needed	a	range	of	numbers	filled?	Nothing	is	easier	than	using
the	Range	method.	This	method	receives	the	start	value	with	the	first	parameter
and	the	number	of	items	with	the	second	parameter:

static	void	GenerateRange()

{

		var	values	=	Enumerable.Range(1,	20);

		foreach	(var	item	in	values)

		{

				Console.Write($"{item}	",	item);

		}

		Console.WriteLine();

}

NOTE The	Range	method	does	not	return	a	collection	filled	with	the
values	as	defined.	This	method	does	a	deferred	query	execution	similar	to
the	other	methods.	It	returns	a	RangeEnumerator	that	simply	does	a	yield
return	with	the	values	incremented.

Of	course,	the	result	now	looks	like	this:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

You	can	combine	the	result	with	other	extension	methods	to	get	a	different	result
—for	example,	using	the	Select	extension	method:

var	values	=	Enumerable.Range(1,	20).Select(n	=>	n	*	3);

The	Empty	method	returns	an	iterator	that	does	not	return	values.	This	can	be
used	for	parameters	that	require	a	collection	for	which	you	can	pass	an	empty
collection.

The	Repeat	method	returns	an	iterator	that	returns	the	same	value	a	specific
number	of	times.

PARALLEL	LINQ
The	class	ParallelEnumerable	in	the	System.Linq	namespace	splits	the	work
of	queries	across	multiple	threads	that	run	simultaneously	on	multiple
processors.	Although	the	Enumerable	class	defines	extension	methods	to	the
IEnumerable<T>	interface,	most	extension	methods	of	the	ParallelEnumerable
class	are	extensions	for	the	class	ParallelQuery<TSource>.	One	important
exception	is	the	AsParallel	method,	which	extends	IEnumerable<TSource>	and
returns	ParallelQuery<TSource>,	so	a	normal	collection	class	can	be	queried	in
a	parallel	manner.

Parallel	Queries
To	demonstrate	Parallel	LINQ	(PLINQ),	a	large	collection	is	needed.	With	small
collections,	you	don’t	see	any	effect	when	the	collection	fits	inside	the	CPU's
cache.	In	the	following	code,	a	large	int	collection	is	filled	with	random	values
(code	file	ParallelLinqSample/Program.cs):

static	IEnumerable<int>	SampleData()

{

		const	int	arraySize	=	500_00_000;

		var	r	=	new	Random();

		return	Enumerable.Range(0,	arraySize).Select(x	=>	

r.Next(140)).ToList();

}

Now	you	can	use	a	LINQ	query	to	filter	the	data,	do	some	calculations,	and	get
an	average	of	the	filtered	data.	The	query	defines	a	filter	with	the	where	clause	to
summarize	only	the	items	with	values	whose	natural	logarithm	is	less	than	four,
and	then	the	aggregation	function	Average	is	invoked.	The	only	difference	from
the	LINQ	queries	you've	seen	so	far	is	the	call	to	the	AsParallel	method:

static	void	LinqQuery(IEnumerable<int>	data)

{

		var	res	=	(from	x	in	data.AsParallel()

													where	Math.Log(x)	<	4

													select	x).Average();

		//…

}

Like	the	LINQ	queries	shown	already,	the	compiler	changes	the	syntax	to	invoke
the	methods	AsParallel,	Where,	Select,	and	Average.	AsParallel	is	defined
with	the	ParallelEnumerable	class	to	extend	the	IEnumerable<T>	interface,	so
it	can	be	called	with	a	simple	array.	AsParallel	returns
ParallelQuery<TSource	>.	Because	of	the	returned	type,	the	Where	method
chosen	by	the	compiler	is	ParallelEnumerable.Where	instead	of
Enumerable.Where.

In	the	following	code,	the	Select	and	Average	methods	are	from
ParallelEnumerable	as	well.	In	contrast	to	the	implementation	of	the
Enumerable	class,	with	the	ParallelEnumerable	class,	the	query	is	partitioned
so	that	multiple	threads	can	work	on	the	query.	The	collection	can	be	split	into
multiple	parts	whereby	different	threads	work	on	each	part	to	filter	the	remaining
items.	After	the	partitioned	work	is	completed,	merging	must	occur	to	get	the
summary	result	of	all	parts:

static	void	ExtensionMethods(IEnumerable<int>	data)

{

		var	res	=	data.AsParallel()

				.Where(x	=>	Math.Log(x)	<	4)

				.Select(x	=>	x).Average();

		//…

}

When	you	run	this	code,	you	can	also	start	the	task	manager	so	you	can	confirm
that	all	CPUs	of	your	system	are	busy.	If	you	remove	the	AsParallel	method,
multiple	CPUs	might	not	be	used.	Of	course,	if	you	don't	have	multiple	CPUs	on
your	system,	then	don't	expect	to	see	an	improvement	with	the	parallel	version.
On	my	system	with	8	logical	processors,	the	method	runs	0.351	seconds	with
AsParallel	and	1.23	seconds	without.

NOTE You	can	customize	parallel	queries	using	extension	methods	such
as	WithExecutionMode	,	WithDegreeOfParallelism	,	and	even	custom
partitioners.	With	WithExecutionMode	you	can	pass	a	value	of
ParallelExecutionMode	,	which	can	be	Default	or	ForceParallelism	.	By
default,	Parallel	LINQ	avoids	parallelism	with	high	overhead.	With	the
method	WithDegreeOfParallelism	,	you	can	pass	an	integer	value	to
specify	the	maximum	number	of	tasks	that	should	run	in	parallel.	This	is
useful	if	not	all	CPU	cores	should	be	used	by	the	query.	.NET	contains
specific	partitioners	that	are	used	based	on	the	collection	types,	e.g.	for
arrays,	and	the	generic	List	type.	You	might	have	different	requirements,	or

specific	collection	types	with	other	layouts	that	could	take	advantage	of
partitioning	of	the	data	in	other	ways.	Here	you	can	write	a	custom
partitioner	deriving	from	the	generic	base	classes	OrderablePartitioner
or	Partitioner	in	the	namespace	System.Collections.Generic	.

Cancellation
.NET	offers	a	standard	way	to	cancel	long-running	tasks,	and	this	is	also	true	for
Parallel	LINQ.	The	classes	needed	for	cancellation	are	defined	in	the
System.Threading	namespace.

To	cancel	a	long-running	query,	you	can	add	the	method	WithCancellation	to
the	query	and	pass	a	CancellationToken	to	the	parameter.	The
CancellationToken	is	created	from	the	CancellationTokenSource	instance	that
you	create.	The	query	is	run	in	a	separate	thread	where	the	exception	of	type
OperationCanceledException	is	caught.	This	exception	is	fired	if	the	query	is
canceled.	From	the	main	thread,	the	task	can	be	canceled	by	invoking	the	Cancel
method	of	the	CancellationTokenSource	(code	file
ParallelLinqSample/Program.cs):

public	static	void	UseCancellation(IEnumerable<int>	data)

{

		CancellationTokenSource	cts	=	new();

	

		Task.Run(()	=>

		{

				try

				{

						var	res	=	(from	x	in	

data.AsParallel().WithCancellation(cts.Token)

																	where	Math.Log(x)	<	4

																	select	x).Average();

	

						Console.WriteLine($"Query	finished,	sum:	{res}");

				}

				catch	(OperationCanceledException	ex)

				{

						Console.WriteLine(ex.Message);

				}

		});

		Console.WriteLine("Query	started");

		Console.Write("Cancel?	");

		string	input	=	Console.ReadLine();

		if	(input.ToLower().Equals("y"))

		{

				cts.Cancel();

		}

}

NOTE You	can	read	more	about	cancellation	and	the	CancellationToken
in	Chapter	17,	“Parallel	Programming.”

EXPRESSION	TREES
With	LINQ	to	Objects,	the	extension	methods	require	a	delegate	type	as
parameter;	this	way,	a	lambda	expression	can	be	assigned	to	the	parameter.
Lambda	expressions	can	also	be	assigned	to	parameters	of	type	Expression<T>.
The	C#	compiler	defines	different	behavior	for	lambda	expressions	depending
on	the	type.	If	the	type	is	Expression<T>,	the	compiler	creates	an	expression	tree
from	the	lambda	expression	and	stores	it	in	the	assembly.	The	expression	tree
can	be	analyzed	during	runtime	and	optimized	for	querying	against	the	data
source.

Consider	the	following	query:

var	brazilRacers	=	from	r	in	Formula1.GetChampions()

																			where	r.Country	==	"Brazil"

																			orderby	r.Wins	descending

																			select	r;

The	preceding	query	expression	uses	the	extension	methods	Where,
OrderByDescending,	and	Select.	The	Enumerable	class	defines	the	Where
extension	method	with	the	delegate	type	Func<T,	bool>	as	a	parameter
predicate:

public	static	IEnumerable<TSource>	Where<TSource>(

		this	IEnumerable<TSource>	source,	Func<TSource,	bool>	

predicate);

This	way,	the	lambda	expression	is	assigned	to	the	predicate.	Here,	the	lambda
expression	is	similar	to	an	anonymous	method,	as	explained	earlier:

Func<Racer,	bool>	predicate	=	r	=>	r.Country	==	"Brazil";

The	Enumerable	class	is	not	the	only	class	for	defining	the	Where	extension
method.	The	Where	extension	method	is	also	defined	by	the	class	Queryable<T>.

This	class	has	a	different	definition	of	the	Where	extension	method:

public	static	IQueryable<TSource>	Where<TSource>(

		this	IQueryable<TSource>	source,

		Expression<Func<TSource,	bool>>	predicate);

Here,	the	lambda	expression	is	assigned	to	the	type	Expression<T>	(namespace
System.Linq.Expressions)	which	behaves	differently:

Expression<Func<Racer,	bool>>	predicate	=	r	=>	r.Country	==	

"Brazil";

Instead	of	using	delegates,	the	compiler	emits	an	expression	tree	to	the	assembly.
The	expression	tree	can	be	read	during	runtime.	Expression	trees	are	built	from
classes	derived	from	the	abstract	base	class	Expression.	The	Expression	class
is	not	the	same	as	Expression<T>.	Some	of	the	expression	classes	that	inherit
from	Expression	include	BinaryExpression,	ConstantExpression,
InvocationExpression,	LambdaExpression,	NewExpression,
NewArrayExpression,	TernaryExpression,	UnaryExpression,	and	more.	The
compiler	creates	an	expression	tree	resulting	from	the	lambda	expression.

For	example,	the	lambda	expression	r.Country	==	"Brazil"	makes	use	of
ParameterExpression,	MemberExpression,	ConstantExpression,	and
MethodCallExpression	to	create	a	tree	and	store	the	tree	in	the	assembly.	This
tree	is	then	used	during	runtime	to	create	an	optimized	query	to	the	underlying
data	source.

With	the	sample	application,	the	method	DisplayTree	is	implemented	to	display
an	expression	tree	graphically	on	the	console.	In	the	following	example,	an
Expression	object	can	be	passed,	and	depending	on	the	expression	type,	some
information	about	the	expression	is	written	to	the	console.	Depending	on	the
type	of	the	expression,	DisplayTree	is	called	recursively	(code	file
ExpressionTreeSample/Program.cs):

static	void	DisplayTree(int	indent,	string	message,

		Expression	expression)

{

		string	output	=	$"{string.Empty.PadLeft(indent,	'>')}	

{message}"	+

				$"!	NodeType:	{expression.NodeType};	Expr:	{expression}";

	

		indent++;

	

		switch	(expression.NodeType)

		{

				case	ExpressionType.Lambda:

						Console.WriteLine(output);

						LambdaExpression	lambdaExpr	=	

(LambdaExpression)expression;

						foreach	(var	parameter	in	lambdaExpr.Parameters)

						{

								DisplayTree(indent,	"Parameter",	parameter);

						}

						DisplayTree(indent,	"Body",	lambdaExpr.Body);

						break;

				case	ExpressionType.Constant:

						ConstantExpression	constExpr	=	

(ConstantExpression)expression;

						Console.WriteLine($"{output}	Const	Value:	

{constExpr.Value}");

						break;

				case	ExpressionType.Parameter:

						ParameterExpression	paramExpr	=	

(ParameterExpression)expression;

						Console.WriteLine($"{output}	Param	Type:	

{paramExpr.Type.Name}");

						break;

				case	ExpressionType.Equal:

				case	ExpressionType.AndAlso:

				case	ExpressionType.GreaterThan:

						BinaryExpression	binExpr	=	(BinaryExpression)expression;

						if	(binExpr.Method	!=	null)

						{

								Console.WriteLine($"{output}	Method:	

{binExpr.Method.Name}");

						}

						else

						{

								Console.WriteLine(output);

						}

						DisplayTree(indent,	"Left",	binExpr.Left);

						DisplayTree(indent,	"Right",	binExpr.Right);

						break;

				case	ExpressionType.MemberAccess:

						MemberExpression	memberExpr	=	

(MemberExpression)expression;

						Console.WriteLine($"{output}	Member	Name:	

{memberExpr.Member.Name},	"	+

								"	Type:	{memberExpr.Expression}");

						DisplayTree(indent,	"Member	Expr",	memberExpr.Expression);

						break;

				default:

						Console.WriteLine();

						Console.WriteLine($"{expression.NodeType}	

{expression.Type.Name}");

						break;

		}

}

NOTE The	method	DisplayTree	does	not	deal	with	all	expression	types—
only	the	types	that	are	used	with	the	following	example	expression.

The	expression	that	is	used	for	showing	the	tree	is	already	well	known.	It's	a
lambda	expression	with	a	Racer	parameter,	and	the	body	of	the	expression	takes
racers	from	Brazil	only	if	they	have	won	more	than	six	races.	This	expression	is
passed	to	the	DisplayTree	method	to	see	the	tree:

Expression<Func<Racer,	bool>>	expression	=

		r	=>	r.Country	==	"Brazil"	&&	r.Wins>	6;

	

DisplayTree(0,	"Lambda",	expression);

Looking	at	the	tree	result,	you	can	see	from	the	output	that	the	lambda
expression	consists	of	a	Parameter	and	an	AndAlso	node	type.	The	AndAlso
node	type	has	an	Equal	node	type	to	the	left	and	a	GreaterThan	node	type	to	the
right.	The	Equal	node	type	to	the	left	of	the	AndAlso	node	type	has	a
MemberAccess	node	type	to	the	left	and	a	Constant	node	type	to	the	right,	and	so
on:

Lambda!	NodeType:	Lambda;	Expr:	r	=>	((r.Country	==	"Brazil")	

AndAlso	(r.Wins>	6))

>	Parameter!	NodeType:	Parameter;	Expr:	r	Param	Type:	Racer

>	Body!	NodeType:	AndAlso;	Expr:	((r.Country	==	"Brazil")	

AndAlso	(r.Wins>	6))

>>	Left!	NodeType:	Equal;	Expr:	(r.Country	==	"Brazil")	Method:	

op_Equality

>>>	Left!	NodeType:	MemberAccess;	Expr:	r.Country	Member	Name:	

Country,	Type:	String

>>>>	Member	Expr!	NodeType:	Parameter;	Expr:	r	Param	Type:	Racer

>>>	Right!	NodeType:	Constant;	Expr:	"Brazil"	Const	Value:	

Brazil

>>	Right!	NodeType:	GreaterThan;	Expr:	(r.Wins>	6)

>>>	Left!	NodeType:	MemberAccess;	Expr:	r.Wins	Member	Name:	

Wins,	Type:	Int32

>>>>	Member	Expr!	NodeType:	Parameter;	Expr:	r	Param	Type:	Racer

>>>	Right!	NodeType:	Constant;	Expr:	6	Const	Value:	6

Entity	Framework	Core	(EF	Core)	is	an	example	where	the	Expression<T>	type
is	used.	EF	Core	providers	convert	LINQ	expression	trees	to	SQL	statements.

LINQ	PROVIDERS
.NET	includes	several	LINQ	providers.	A	LINQ	provider	implements	the
standard	query	operators	for	a	specific	data	source.	LINQ	providers	might
implement	more	extension	methods	than	are	defined	by	LINQ,	but	the	standard
operators	must	at	least	be	implemented.	LINQ	to	XML	implements	additional
methods	that	are	particularly	useful	with	XML,	such	as	the	methods	Elements,
Descendants,	and	Ancestors	defined	by	the	class	Extensions	in	the
System.Xml.Linq	namespace.

Implementation	of	the	LINQ	provider	is	selected	based	on	the	namespace	and
the	type	of	the	first	parameter.	The	namespace	of	the	class	that	implements	the
extension	methods	must	be	opened;	otherwise,	the	extension	class	is	not	in
scope.	The	parameter	of	the	Where	method	defined	by	LINQ	to	Objects	and	the
Where	method	defined	by	LINQ	to	Entities	is	different.

The	Where	method	of	LINQ	to	Objects	is	defined	with	the	Enumerable	class:

public	static	IEnumerable<TSource>	Where<TSource>(

		this	IEnumerable<TSource>	source,	Func<TSource,	bool>	

predicate);

Inside	the	System.Linq	namespace	is	another	class	that	implements	the	operator
Where.	This	implementation	is	used	by	LINQ	to	Entities.	You	can	find	the
implementation	in	the	class	Queryable	:

public	static	IQueryable<TSource>	Where<TSource>(

		this	IQueryable<TSource>	source,

		Expression<Func<TSource,	bool>>	predicate);

Both	of	these	classes	are	implemented	in	the	System.Core	assembly	in	the
System.Linq	namespace.	How	does	the	compiler	select	what	method	to	use,	and
what's	the	magic	in	the	Expression	type?	The	lambda	expression	is	the	same
regardless	of	whether	it	is	passed	with	a	Func<TSource,	bool>	parameter	or	an
Expression<Func<TSource,	bool>>	parameter—only	the	compiler	behaves
differently.	The	selection	is	done	based	on	the	source	parameter.	The	method
that	matches	best	based	on	its	parameters	is	chosen	by	the	compiler.	Properties
of	Entity	Framework	Core	contexts	are	of	type	DbSet<TEntity>.
DbSet<TEntity>	implements	IQueryable<TEntity>,	and	thus	Entity	Framework

Core	uses	the	Where	method	of	the	Queryable	class.

SUMMARY
This	chapter	described	and	demonstrated	the	LINQ	query	and	the	language
constructs	on	which	the	query	is	based,	such	as	extension	methods	and	lambda
expressions.	You've	looked	at	the	various	LINQ	query	operators—not	only	for
filtering	and	ordering	of	data	sources,	but	also	for	partitioning,	grouping,	doing
conversions,	joins,	and	so	on.

With	Parallel	LINQ,	you've	seen	how	longer	queries	can	easily	be	parallelized.

Another	important	concept	of	this	chapter	is	the	expression	tree.	Expression	trees
allow	a	program	to	build	the	tree	at	compile	time,	store	it	in	the	assembly,	and
then	optimize	it	at	runtime.	You	can	read	about	its	great	advantages	in	Chapter
21.

The	next	chapter	covers	error	handling—getting	into	the	try,	catch,	and	throw
keywords.

10
Errors	and	Exceptions

WHAT'S	IN	THIS	CHAPTER?

Looking	at	the	exception	classes

Using	try…catch…finally	to	capture	exceptions

Filtering	exceptions

Creating	user-defined	exceptions

Retrieving	caller	information

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/ErrorsAndExceptions.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

SimpleExceptions

ExceptionFilters

RethrowExceptions

SolicitColdCall

CallerInformation

All	the	sample	projects	have	nullable	reference	types	configured.

HANDLING	ERRORS
Errors	happen,	and	they	are	not	always	caused	by	the	person	who	coded	the

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

application.	Sometimes	your	application	generates	an	error	because	of	an	action
that	was	initiated	by	the	end	user	of	the	application,	or	it	might	be	simply	due	to
the	environmental	context	in	which	your	code	is	running.	In	any	case,	you
should	anticipate	errors	occurring	in	your	applications	and	code	accordingly.

.NET	has	enhanced	the	ways	in	which	you	deal	with	errors.	C#'s	mechanism	for
handling	error	conditions	enables	you	to	provide	custom	handling	for	each	type
of	error	condition	and	to	separate	the	code	that	identifies	errors	from	the	code
that	handles	them.

Your	programs	should	be	capable	of	handling	any	possible	errors	that	might
occur.	For	example,	in	the	middle	of	some	complex	processing	of	your	code,	you
might	discover	that	it	doesn't	have	permission	to	read	a	file;	or,	while	it	is
sending	network	requests,	the	network	might	go	down.	In	such	exceptional
situations,	it	is	not	enough	for	a	method	to	simply	return	an	appropriate	error
code—there	might	be	15	or	20	nested	method	calls,	so	what	you	really	want	the
program	to	do	is	jump	back	up	through	all	those	calls	to	exit	the	task	completely
and	take	the	appropriate	counteractions.	The	C#	language	has	very	good
facilities	for	handling	this	kind	of	situation	through	the	mechanism	known	as
exception	handling.

This	chapter	covers	catching	and	throwing	exceptions	in	many	different
scenarios.	You	see	exception	types	from	different	namespaces	and	their
hierarchy,	and	you	find	out	how	to	create	custom	exception	types.	You	discover
different	ways	to	catch	exceptions—for	example,	how	to	catch	exceptions	with
the	exact	exception	type	or	a	base	class.	You	also	see	how	to	deal	with	nested
try	blocks	and	how	you	could	catch	exceptions	that	way.	For	code	that	should
be	invoked	no	matter	whether	an	exception	occurs	or	the	code	continues	with
any	error,	you	are	introduced	to	creating	try	/	finally	code	blocks.

By	the	end	of	this	chapter,	you	will	have	a	good	grasp	of	advanced	exception
handling	in	your	C#	applications.

PREDEFINED	EXCEPTION	CLASSES
In	C#,	an	exception	is	an	object	created	(or	thrown)	when	a	particular
exceptional	error	condition	occurs.	This	object	contains	information	that	should
help	identify	the	problem.	Although	you	can	create	your	own	exception	classes
(and	you	do	so	later),	.NET	includes	many	predefined	exception	classes.	You	can
find	all	the	.NET	exceptions	in	the	Microsoft	documentation	in	the	list	of	classes
that	derive	from	the	Exception	base	class	at

https://docs.microsoft.com/dotnet/api/system.exception.	This	large	list
only	shows	the	exceptions	that	directly	derive	from	Exception.	When	you	click
every	other	base	class,	for	example	https://docs.microsoft.com/en-
us/dotnet/api/system.systemexception,	you	see	another	large	list	of
exception	classes	driving	from	SystemException.

Here	some	really	important	exception	types	are	explained:

When	receiving	arguments	with	a	method,	you	should	check	the	arguments
to	determine	whether	they	contain	values	as	expected.	If	this	is	not	the	case,
you	can	throw	an	ArgumentException	or	an	exception	that	derives	from
this	exception	class	like	ArgumentNullException	and
ArgumentOutOfRangeException.

The	NotSupportedException	is	thrown	when	a	method	is	not	supported—
for	example,	from	classes	that	implement	interfaces	but	do	not	implement
all	the	members	of	the	interface.	You	should	not	invoke	methods	that	throw
this	exception,	so	you	should	not	handle	this	exception.	This	exception
gives	good	information	during	development	time	to	change	your	code.

The	StackOverflowException	is	thrown	by	the	runtime	when	the	area	of
memory	allocated	for	the	stack	is	full.	A	stack	overflow	can	occur	if	a
method	continuously	calls	itself	recursively.	This	is	generally	a	fatal	error
because	it	prevents	your	application	from	doing	anything	apart	from
terminating	(in	which	case	it	is	unlikely	that	even	the	finally	block	will
execute).	Trying	to	handle	errors	like	this	yourself	is	usually	pointless;
instead,	you	should	have	the	application	gracefully	exit.

The	OverflowException	is	thrown	after	an	arithmetic	calculation	and	the
value	does	not	fit	into	the	variable	type—in	a	checked	context.	Remember,
you	can	create	checked	contexts	with	the	checked	keyword.	Within	the
checked	context,	if	you	attempt	to	cast	an	int	containing	a	value	of	–40	to
an	uint,	an	OverflowException	is	thrown.	Creating	checked	contexts	is
covered	in	Chapter	5,	“Operators	and	Casts.”

For	exceptions	with	file	I/O,	the	base	class	IOException	is	defined.
FileLoadException,	FileNotFoundException,	EndOfStreamException,
and	DriveNotFoundException	are	some	examples	that	derive	from	this
base	class.

The	InvalidOperationException	is	typically	thrown	if	methods	of	a	class
are	not	invoked	in	the	correct	order,	for	example,	an	initialization	call	was
missing.

https://docs.microsoft.com/dotnet/api/system.exception
https://docs.microsoft.com/en-us/dotnet/api/system.systemexception

The	TaskCanceledException	is	thrown	on	cancellation	of	tasks	or
timeouts.

NOTE Read	the	Microsoft	documentation	for	methods	you	invoke.	Every
method	that	might	throw	exceptions	has	documentation	in	the	section
“Exceptions”	of	which	exceptions	can	be	thrown.	For	example,	the
documentation	for	GetStreamSync	from	the	HttpClient	class
(https://docs.microsoft.com/en-
us/dotnet/api/system.net.http.httpclient.getstreamasync)	lists
ArgumentNullException	,	HttpRequestException	,	and
TaskCanceledException	.

NOTE Looking	at	the	hierarchy	of	the	exception	types,	you	might	be
wondering	about	the	purpose	of	the	base	classes	SystemException	and
ApplicationException.	With	the	original	design	of	.NET,	it	was	planned	to
have	SystemException	as	a	base	class	for	all	exceptions	thrown	from	the
runtime,	and	ApplicationException	as	a	base	class	for	all	application-
defined	exceptions.	As	it	turned	out,	ApplicationException	was	rarely	used
as	the	base	class	for	specific	exceptions.	Nowadays,	it's	okay	to	directly
derive	your	custom	exception	from	the	Exception	base	class.

CATCHING	EXCEPTIONS
Given	that	.NET	includes	a	selection	of	predefined	base	class	exception	objects,
this	section	describes	how	you	use	them	in	your	code	to	trap	error	conditions.	In
dealing	with	possible	error	conditions	in	C#	code,	you	typically	divide	the
relevant	part	of	your	program	into	blocks	of	three	different	types:

try	blocks	encapsulate	the	code	that	forms	part	of	the	normal	operation	of
your	program	and	that	might	encounter	some	serious	error	conditions.

catch	blocks	encapsulate	the	code	dealing	with	the	various	error	conditions
that	your	code	might	have	encountered	by	working	through	any	of	the	code
in	the	accompanying	try	block.	This	block	could	also	be	used	for	logging
errors.

finally	blocks	encapsulate	the	code	that	cleans	up	any	resources	or	takes
any	other	action	that	you	normally	want	handled	at	the	end	of	a	try	or

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.getstreamasync

catch	block.	It	is	important	to	understand	that	the	finally	block	is
executed	whether	an	exception	is	thrown.	Because	the	purpose	of	the
finally	block	is	to	contain	cleanup	code	that	should	always	be	executed,
the	compiler	flags	an	error	if	you	place	a	return	statement	inside	a	finally
block.	An	example	of	using	the	finally	block	is	closing	any	connections
that	were	opened	in	the	try	block.	Understand	that	the	finally	block	is
completely	optional.	If	your	application	does	not	require	any	cleanup	code
(such	as	disposing	of	or	closing	any	open	objects),	then	there	is	no	need	for
this	block.

NOTE finally	blocks	are	a	great	way	to	write	some	cleanup	code.	This
block	is	executed	in	every	case	the	try/finally	block	is	left.	It's	executed	on
a	successful	return	of	the	try	block	and	also	executed	if	an	exception	is
thrown.

The	following	steps	outline	how	these	blocks	work	together	to	trap	error
conditions:

1.	 The	execution	flow	first	enters	the	try	block.

2.	 If	no	errors	occur	in	the	try	block,	execution	proceeds	normally	through
the	block,	and	when	the	end	of	the	try	block	is	reached,	the	flow	of
execution	jumps	to	the	finally	block	if	one	is	present	(step	5).	However,	if
an	error	does	occur	within	the	try	block,	execution	jumps	to	a	catch	block
(step	3).

3.	 The	error	condition	is	handled	in	the	catch	block.

4.	 At	the	end	of	the	catch	block,	execution	automatically	transfers	to	the
finally	block	if	one	is	present.

5.	 The	finally	block	is	executed	(if	present).

The	C#	syntax	used	to	bring	all	this	about	looks	roughly	like	this:

try

{

		//	code	for	normal	execution

}

catch

{

		//	error	handling

}

finally

{

		//	clean	up

}

A	few	variations	on	this	theme	exist:

You	can	omit	the	finally	block	because	it	is	optional.

You	can	also	supply	as	many	catch	blocks	as	you	want	to	handle	specific
types	of	errors.	However,	you	don't	want	to	get	too	carried	away	and	have	a
huge	number	of	catch	blocks.

You	can	define	filters	with	catch	blocks	to	catch	the	exception	with	the
specific	block	only	if	the	filter	matches.

You	can	omit	the	catch	blocks	altogether,	in	which	case	the	syntax	serves
not	to	identify	exceptions	but	to	guarantee	that	code	in	the	finally	block
will	be	executed	when	execution	leaves	the	try	block.	This	is	useful	if	the
try	block	contains	several	exit	points.	If	you	don't	write	a	catch	block,	a
finally	block	is	required.	You	cannot	use	just	a	try	block.	What	would	a
try	block	be	good	for	without	try	or	finally	?

So	far	so	good,	but	the	question	that	has	yet	to	be	answered	is	this:	if	the	code	is
running	in	the	try	block,	how	does	it	know	when	to	switch	to	the	catch	block	if
an	error	occurs?	If	an	error	is	detected,	the	code	does	something	known	as
throwing	an	exception.	In	other	words,	it	instantiates	an	exception	object	class
and	throws	it:

throw	new	OverflowException();

Here,	you	have	instantiated	an	exception	object	of	the	OverflowException	class.
As	soon	as	the	application	encounters	a	throw	statement	inside	a	try	block,	it
immediately	looks	for	the	catch	block	associated	with	that	try	block.	If	more
than	one	catch	block	is	associated	with	the	try	block,	it	identifies	the	correct
catch	block	by	checking	which	exception	class	the	catch	block	is	associated
with.	For	example,	when	the	OverflowException	object	is	thrown,	execution
jumps	to	the	following	catch	block:

catch	(OverflowException	ex)

{

		//	exception	handling	here

}

In	other	words,	the	application	looks	for	the	catch	block	that	indicates	a
matching	exception	class	instance	of	the	same	class	(or	of	a	base	class).

With	this	extra	information,	you	can	extend	the	try	block	with	multiple	catch
blocks.	Assume,	for	the	sake	of	argument,	that	two	possible	serious	errors	can
occur	in	the	try	block:	an	overflow	and	an	array	out	of	bounds.	Assume	also	that
your	code	contains	two	Boolean	variables,	Overflow	and	OutOfBounds,	which
indicate	whether	these	conditions	exist.	You	have	already	seen	that	a	predefined
exception	class	exists	to	indicate	overflow	(OverflowException);	similarly,	an
IndexOutOfRangeException	class	exists	to	handle	an	array	that	is	out	of	bounds.

Now	your	try	block	looks	like	this:

try

{

		//	code	for	normal	execution

		if	(Overflow	==	true)

		{

				throw	new	OverflowException();

		}

		//	more	processing

		if	(OutOfBounds	==	true)

		{

				throw	new	IndexOutOfRangeException();

		}

		//	otherwise	continue	normal	execution

}

catch	(OverflowException	ex)

{

		//	error	handling	for	the	overflow	error	condition

}

catch	(IndexOutOfRangeException	ex)

{

		//	error	handling	for	the	index	out	of	range	error	condition

}

finally

{

		//	clean	up

}

This	is	because	you	can	have	throw	statements	that	are	nested	in	several	method
calls	inside	the	try	block,	but	the	same	try	block	continues	to	apply	even	as
execution	flow	enters	these	other	methods.	If	the	application	encounters	a	throw
statement,	it	immediately	goes	back	up	through	all	the	method	calls	on	the	stack,
looking	for	the	end	of	the	containing	try	block	and	the	start	of	the	appropriate
catch	block.	During	this	process,	all	the	local	variables	in	the	intermediate
method	calls	will	correctly	go	out	of	scope.	This	makes	the	try…catch
architecture	well	suited	to	the	situation	described	at	the	beginning	of	this	section,

whereby	the	error	occurs	inside	a	method	call	that	is	nested	inside	15	or	20
method	calls,	and	processing	must	stop	immediately.

As	you	can	probably	gather	from	this	discussion,	try	blocks	can	play	a
significant	role	in	controlling	the	flow	of	your	code's	execution.	However,	it	is
important	to	understand	that	exceptions	are	intended	for	exceptional	conditions,
hence	their	name.	You	wouldn't	want	to	use	them	as	a	way	of	controlling	when
to	exit	a	do…while	loop.

Exceptions	and	Performance
Exception	handling	has	a	performance	implication.	In	cases	that	are	common,
you	shouldn't	use	exceptions	to	deal	with	errors.	For	example,	when	converting	a
string	to	a	number,	you	can	use	the	Parse	method	of	the	int	type.	This	method
throws	a	FormatException	in	case	the	string	passed	to	this	method	can't	be
converted	to	a	number,	and	it	throws	an	OverflowException	if	a	number	can	be
converted	but	it	doesn't	fit	into	an	int	:

void	NumberDemo1(string	n)

{

		if	(n	is	null)	throw	new	ArgumentNullException(nameof(n));

		try

		{

				int	i	=	int.Parse(n);

				Console.WriteLine($"converted:	{i}");

		}

		catch	(FormatException	ex)

		{

				Console.WriteLine(ex.Message);

		}

		catch	(OverflowException	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

If	the	method	NumberDemo1	is	typically	used	only	in	a	way	to	pass	numbers	in	a
string	and	receiving	something	other	than	a	number	is	exceptional,	it's	okay	to
program	it	this	way.	However,	in	cases	when	it's	normal	for	the	program	flow	to
expect	strings	that	cannot	be	converted,	you	can	use	the	TryParse	method.	This
method	doesn't	throw	an	exception	if	the	string	cannot	be	converted	to	a	number.
Instead,	TryParse	returns	true	if	parsing	succeeds,	and	it	returns	false	if
parsing	fails:

void	NumberDemo2(string	n)

{

		if	(n	is	null)	throw	new	ArgumentNullException(nameof(n));

		if	(int.TryParse(n,	out	int	result))

		{

				Console.WriteLine($"converted	{result}");

		}

		else

		{

				Console.WriteLine("not	a	number");

		}

}

Implementing	Multiple	Catch	Blocks
The	easiest	way	to	see	how	try…catch…finally	blocks	work	in	practice	is	with
a	couple	of	examples.	The	first	example	is	called	SimpleExceptions.	It
repeatedly	asks	the	user	to	type	a	number	and	then	displays	it.	However,	for	the
sake	of	this	example,	imagine	that	the	number	must	be	between	0	and	5;
otherwise,	the	program	isn't	able	to	process	the	number	properly.	Therefore,	you
throw	an	exception	if	the	user	types	anything	outside	this	range.	The	program
then	continues	to	ask	for	more	numbers	for	processing	until	the	user	presses	the
Enter	key	without	entering	anything.

NOTE You	should	note	that	this	code	does	not	provide	a	good	example	of
when	to	use	exception	handling,	but	it	does	show	good	practice	on	how	to
use	exception	handling.	As	their	name	suggests,	exceptions	are	provided	for
other	than	normal	circumstances.	Users	often	type	silly	things,	so	this
situation	doesn't	really	count.	Normally,	your	program	handles	incorrect
user	input	by	performing	an	instant	check	and	asking	the	user	to	retype	the
input	if	it	isn't	valid.	However,	generating	exceptional	situations	is	difficult
in	a	small	example	that	you	can	read	through	in	a	few	minutes,	so	I'm
making	do	with	this	less-than-ideal	one	to	demonstrate	how	exceptions	work.
The	examples	that	follow	present	more	realistic	situations.

The	code	for	SimpleExceptions	looks	like	this	(code	file
SimpleExceptions/Program.cs):

while	(true)

{

		try

		{

				Console.Write("Input	a	number	between	0	and	5	"	+

						"(or	just	hit	return	to	exit)>	");

				string?	userInput	=	Console.ReadLine();

	

				if	(string.IsNullOrEmpty(userInput))

				{

						break;

				}

	

				int	index	=	Convert.ToInt32(userInput);

	

				if	(index	<	0	||	index>	5)

				{

						throw	new	IndexOutOfRangeException($"You	typed	in	

{userInput}");

				}

				Console.WriteLine($"Your	number	was	{index}");

		}

		catch	(IndexOutOfRangeException	ex)

		{

				Console.WriteLine("Exception:	"	+

						$"Number	should	be	between	0	and	5.	{ex.Message}");

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"An	exception	was	thrown.	Exception	type:	

{ex.GetType().Name}	"	+				

						$"Message:	{ex.Message}");

		}

		finally

		{

				Console.WriteLine("Thank	you\n");

		}

}

The	core	of	this	code	is	a	while	loop,	which	continually	uses	ReadLine	to	ask	for
user	input.	ReadLine	returns	a	string,	so	your	first	task	is	to	convert	it	to	an	int
using	the	System.Convert.ToInt32	method.	The	System.Convert	class	contains
various	useful	methods	to	perform	data	conversions,	and	it	provides	an
alternative	to	the	int.Parse	method.	In	general,	System.Convert	contains
methods	to	perform	various	type	conversions.	Recall	that	the	C#	compiler
resolves	int	to	instances	of	the	System.Int32	base	class.

NOTE It	is	also	worth	pointing	out	that	the	parameter	passed	to	the	catch
block	is	scoped	to	that	catch	block—which	is	why	you	can	use	the	same

parameter	name,	ex	,	in	successive	catch	blocks	in	the	preceding	code.

In	the	preceding	example,	you	also	check	for	an	empty	string	because	it	is	your
condition	for	exiting	the	while	loop.	Notice	how	the	break	statement	breaks
right	out	of	the	enclosing	try	block	as	well	as	the	while	loop	because	this	is
valid	behavior.	Of	course,	when	execution	breaks	out	of	the	try	block,	the
Console.WriteLine	statement	in	the	finally	block	is	executed.	Although	you
just	display	a	greeting	here,	more	commonly	you	will	be	doing	tasks	such	as
closing	file	handles	and	calling	the	Dispose	method	of	various	objects	to
perform	any	cleanup.	After	the	application	leaves	the	finally	block,	it	simply
carries	on	executing	into	the	next	statement	that	it	would	have	executed	had	the
finally	block	not	been	present.	In	the	case	of	this	example,	though,	you	iterate
back	to	the	start	of	the	while	loop	and	enter	the	try	block	again	(unless	the
finally	block	was	entered	as	a	result	of	executing	the	break	statement	in	the
while	loop,	in	which	case	you	simply	exit	the	while	loop).

Next,	you	check	for	your	exception	condition:

if	(index	<	0	||	index>	5)

{

		throw	new	IndexOutOfRangeException($"You	typed	in	

{userInput}");

}

When	throwing	an	exception,	you	need	to	specify	what	type	of	exception	to
throw.	Although	the	class	System.Exception	is	available,	it	is	intended	only	as	a
base	class.	It	is	considered	bad	programming	practice	to	throw	an	instance	of	this
class	as	an	exception	because	it	conveys	no	information	about	the	nature	of	the
error	condition.	.NET	contains	many	other	exception	classes	that	are	derived
from	Exception.	Each	of	these	matches	a	particular	type	of	exception	condition,
and	you	are	free	to	define	your	own	as	well.	The	goal	is	to	provide	as	much
information	as	possible	about	the	particular	exception	condition	by	throwing	an
instance	of	a	class	that	matches	the	particular	error	condition.	In	the	preceding
example,	System.IndexOutOfRangeException	is	the	best	choice	for	the
circumstances.	IndexOutOfRangeException	has	several	constructor	overloads.
The	one	chosen	in	the	example	takes	a	string	describing	the	error.	Alternatively,
you	might	choose	to	derive	your	own	custom	Exception	object	that	describes
the	error	condition	in	the	context	of	your	application.

Suppose	that	the	user	next	types	a	number	that	is	not	between	0	and	5.	The
number	is	picked	up	by	the	if	statement,	and	an	IndexOutOfRangeException

object	is	instantiated	and	thrown.	At	this	point,	the	application	immediately	exits
the	try	block	and	hunts	for	a	catch	block	that	handles
IndexOutOfRangeException.	The	first	catch	block	it	encounters	is	this:

catch	(IndexOutOfRangeException	ex)

{

		Console.WriteLine($"Exception:	Number	should	be	between	0	and	

5."	+			

				$"{ex.Message}");

}

Because	this	catch	block	takes	a	parameter	of	the	appropriate	class,	the	catch
block	receives	the	exception	instance	and	is	executed.	In	this	case,	you	display
an	error	message	and	the	Exception.Message	property	(which	corresponds	to
the	string	passed	to	the	IndexOutOfRangeException	's	constructor).	After
executing	this	catch	block,	control	then	switches	to	the	finally	block,	just	as	if
no	exception	had	occurred.

Notice	that	in	the	example	you	have	also	provided	another	catch	block:

catch	(Exception	ex)

{

		Console.WriteLine($"An	exception	was	thrown.	Message	was:	

{ex.Message}");

}

This	catch	block	would	also	be	capable	of	handling	an
IndexOutOfRangeException	if	it	weren't	for	the	fact	that	such	exceptions	will
already	have	been	caught	by	the	previous	catch	block.	A	reference	to	a	base
class	can	also	refer	to	any	instances	of	classes	derived	from	it,	and	all	exceptions
are	derived	from	Exception.	This	catch	block	isn't	executed	because	the
application	executes	only	the	first	suitable	catch	block	it	finds	from	the	list	of
available	catch	blocks.	This	catch	block	isn't	executed	when	an	exception	of
type	IndexOutOfRangeException	is	thrown.	The	application	executes	only	the
first	suitable	catch	block	it	finds	from	the	list	of	available	catch	blocks.	This
second	catch	block	catches	other	exceptions	derived	from	the	Exception	base
class.	Be	aware	that	the	three	separate	calls	to	methods	within	the	try	block
(Console.ReadLine,	Console.Write,	and	Convert.ToInt32)	might	throw	other
exceptions.

If	the	user	types	something	that	is	not	a	number—say	a	or	hello	—the
Convert.ToInt32	method	throws	an	exception	of	the	class
System.FormatException	to	indicate	that	the	string	passed	into	ToInt32	is	not

in	a	format	that	can	be	converted	to	an	int.	When	this	happens,	the	application
traces	back	through	the	method	calls,	looking	for	a	handler	that	can	handle	this
exception.	Your	first	catch	block	(the	one	that	takes	an
IndexOutOfRangeException)	will	not	do.	The	application	then	looks	at	the
second	catch	block.	This	one	will	do	because	FormatException	is	derived	from
Exception,	so	a	FormatException	instance	can	be	passed	in	as	a	parameter	here.

The	structure	of	the	example	is	fairly	typical	of	a	situation	with	multiple	catch
blocks.	You	start	with	catch	blocks	that	are	designed	to	trap	specific	error
conditions.	Then,	you	finish	with	more	general	blocks	that	cover	any	errors	for
which	you	have	not	written	specific	error	handlers.	Indeed,	the	order	of	the
catch	blocks	is	important.	Had	you	written	the	previous	two	blocks	in	the
opposite	order,	the	code	would	not	have	compiled	because	the	second	catch
block	is	unreachable	(the	Exception	catch	block	would	catch	all	exceptions).
Therefore,	the	uppermost	catch	blocks	should	be	the	most	granular	options
available,	ending	with	the	most	general	options.

Now	that	you	have	analyzed	the	code	for	the	example,	you	can	run	it.	The
following	output	illustrates	what	happens	with	different	inputs	and	demonstrates
both	the	IndexOutOfRangeException	and	the	FormatException	being	thrown:

Input	a	number	between	0	and	5	(or	just	hit	return	to	exit)>	4

Your	number	was	4

Thank	you

Input	a	number	between	0	and	5	(or	just	hit	return	to	exit)>	0

Your	number	was	0

Thank	you

Input	a	number	between	0	and	5	(or	just	hit	return	to	exit)>	10

Exception:	Number	should	be	between	0	and	5.	You	typed	in	10

Thank	you

Input	a	number	between	0	and	5	(or	just	hit	return	to	exit)>	

hello

An	exception	was	thrown.	Exception	type:	FormatException,	

Message:	Input	string	was	not	in	a	correct	format.

Thank	you

Input	a	number	between	0	and	5	(or	just	hit	return	to	exit)>

Thank	you

Catching	Exceptions	from	Other	Code
The	previous	example	demonstrates	the	handling	of	two	exceptions.	One	of
them,	IndexOutOfRangeException,	was	thrown	by	your	own	code.	The	other,
FormatException,	was	thrown	from	inside	one	of	the	base	classes.	It	is	common

for	code	in	a	library	to	throw	an	exception	if	it	detects	that	a	problem	has
occurred	or	if	one	of	the	methods	has	been	called	inappropriately	by	being
passed	the	wrong	parameters.	However,	library	code	rarely	attempts	to	catch
exceptions;	this	is	regarded	as	the	responsibility	of	the	client	code.

Often,	exceptions	are	thrown	from	the	base	class	libraries	while	you	are
debugging.	The	process	of	debugging	to	some	extent	involves	determining	why
exceptions	have	been	thrown	and	removing	the	causes.	Your	aim	should	be	to
ensure	that	by	the	time	the	code	is	actually	shipped,	exceptions	occur	only	in
exceptional	circumstances	and,	if	possible,	are	handled	appropriately	in	your
code.

System.Exception	Properties
The	example	illustrated	the	use	of	only	the	Message	property	of	the	exception
object.	However,	a	number	of	other	properties	are	available	in
System.Exception,	as	shown	in	the	following	table:

PROPERTY DESCRIPTION
Data Enables	you	to	add	key/value	statements	to	the	exception	that

can	be	used	to	supply	extra	information	about	it.
HelpLink A	link	to	a	help	file	that	provides	more	information	about	the

exception.
HResult A	numerical	value	that	is	assigned	to	the	exception.
InnerException If	this	exception	was	thrown	inside	a	catch	block,	then

InnerException	contains	the	exception	object	that	sent	the
code	into	that	catch	block.

Message Text	that	describes	the	error	condition.
Source The	name	of	the	application	or	object	that	caused	the

exception.
StackTrace Provides	details	about	the	method	calls	on	the	stack	(to	help

track	down	the	method	that	threw	the	exception).
TargetSite A	.NET	reflection	object	that	describes	the	method	that	threw

the	exception.

The	property	value	for	StackTrace	is	supplied	automatically	by	the	.NET
runtime	if	a	stack	trace	is	available.	Source	will	always	be	filled	in	by	the	.NET
runtime	as	the	name	of	the	assembly	in	which	the	exception	was	raised	(though

you	might	want	to	modify	the	property	in	your	code	to	give	more	specific
information),	whereas	Data,	Message,	HelpLink,	and	InnerException	must	be
filled	in	by	the	code	that	threw	the	exception,	by	setting	these	properties
immediately	before	throwing	the	exception.	For	example,	the	code	to	throw	an
exception	might	look	something	like	this:

if	(ErrorCondition)

{

		ClassMyException	myException	=	new("Help!!!!");

		myException.Source	=	"My	Application	Name";

		myException.HelpLink	=	"MyHelpFile.txt";

		myException.Data["ErrorDate"]	=	DateTime.Now;

		myException.Data.Add("AdditionalInfo",	"Contact	Bill	from	the	

Blue	Team");

		throw	myException;

}

Here,	ClassMyException	is	the	name	of	the	particular	exception	class	you	are
throwing.	Note	that	it	is	common	practice	for	the	names	of	all	exception	classes
to	end	with	Exception.	The	string	passed	to	the	constructor	sets	the	Message
property.	In	addition,	note	that	the	Data	property	is	assigned	in	two	possible
ways.

Exception	Filters
With	the	many	different	exception	types	and	the	hierarchy	of	exceptions,	the
original	plan	with	.NET	was	as	soon	as	you	need	to	handle	errors	differently,	use
a	different	exception	type.	With	many	technologies	used	with	.NET,	this	turned
out	to	not	be	a	practical	scenario.	For	example,	using	the	Windows	Runtime
often	results	in	COM	exceptions,	and	you	want	to	handle	COMException
differently	based	on	the	error	code	from	this	exception.	To	deal	with	this,	C#	6
was	enhanced	to	support	exception	filters.	A	catch	block	runs	only	if	the	filter
returns	true.	You	can	have	different	catch	blocks	that	act	differently	when
catching	different	exception	types.	In	some	scenarios,	it's	useful	to	have	the
catch	blocks	act	differently	based	on	the	content	of	an	exception.	When	doing
network	calls,	you	get	a	network	exception	for	many	different	scenarios—for
example,	if	the	server	is	not	available	or	the	data	supplied	do	not	match	the
expectations.	It's	good	to	react	to	these	errors	differently.	Some	exceptions	can
be	recovered	in	different	ways,	whereas	with	others,	the	user	might	need	some
information.

The	following	code	sample	throws	the	exception	of	type	MyCustomException

and	sets	the	ErrorCode	property	of	this	exception	(code	file
ExceptionFilters/Program.cs):

public	static	void	ThrowWithErrorCode(int	code)

{

		throw	new	MyCustomException("Error	in	Foo")	{	ErrorCode	=	code	

};

}

In	the	following	example,	the	try	block	safeguards	the	method	invocation	with
two	catch	blocks.	The	first	catch	block	uses	the	when	keyword	to	filter	only
exceptions	if	the	ErrorCode	property	equals	405.	The	expression	for	the	when
clause	needs	to	return	a	Boolean	value.	If	the	result	is	true,	this	catch	block
handles	the	exception.	If	it	is	false,	other	catches	are	looked	for.	When	passing
405	to	the	method	ThrowWithErrorCode,	the	filter	returns	true,	and	the	first
catch	handles	the	exception.	When	passing	another	value,	the	filter	returns
false,	and	the	second	catch	handles	the	exception.	With	filters,	you	can	have
multiple	handlers	to	handle	the	same	exception	type.

Of	course,	you	can	also	remove	the	second	catch	block	and	not	handle	the
exception	in	that	circumstance.

try

{

		ThrowWithErrorCode(405);

}

catch	(MyCustomException	ex)	when	(ex.ErrorCode	==	405)

{

		Console.WriteLine($"Exception	caught	with	filter	{ex.Message}	

"	+	

				$"and	{ex.ErrorCode}");

}

catch	(MyCustomException	ex)

{

		Console.WriteLine($"Exception	caught	{ex.Message}	and	

{ex.ErrorCode}");

}

Rethrowing	Exceptions
When	you	catch	exceptions,	it's	common	to	rethrow	exceptions,	which	means
you	can	change	the	exception	type	while	throwing	the	exception	again.	With	this
method,	you	can	give	the	caller	more	information	about	what	happened.	The
original	exception	might	not	have	enough	information	about	the	context	of	what

was	going	on.	You	can	also	log	exception	information	and	give	the	caller
different	information.	For	example,	for	a	user	running	the	application,	exception
information	does	not	really	help.	A	system	administrator	reading	log	files	can
react	accordingly.

An	issue	with	rethrowing	exceptions	is	that	the	caller	often	needs	to	find	out	the
reason	for	what	happened	with	the	earlier	exception,	and	where	it	happened.
Depending	on	how	exceptions	are	thrown,	stack	trace	information	might	be	lost.
For	you	to	see	the	different	options	on	rethrowing	exceptions,	the	sample
program	RethrowExceptions	shows	the	different	options.

For	this	sample,	two	custom	exception	types	are	created.	The	first	one,
MyCustomException,	defines	the	property	ErrorCode	in	addition	to	the	members
of	the	base	class	Exception	;	the	second	one,	AnotherCustomException,
supports	passing	an	inner	exception	(code	file
RethrowExceptions/MyCustomException.cs):

public	class	MyCustomException	:	Exception

{

		public	MyCustomException(string	message)

				:	base(message)	{	}

	

		public	int	ErrorCode	{	get;	set;	}

}

	

public	class	AnotherCustomException	:	Exception

{

		public	AnotherCustomException(string	message,	Exception	

innerException)

				:	base(message,	innerException)	{	}

}

The	method	HandleAll	invokes	the	methods	HandleAndThrowAgain,
HandleAndThrowWithInnerException,	HandleAndRethrow,	and
HandleWithFilter.	The	exception	that	is	thrown	is	caught	to	write	the	exception
message	as	well	as	the	stack	trace	to	the	console.	To	better	find	what	line
numbers	are	referenced	from	the	stack	trace,	the	#line	preprocessor	directive	is
used	that	restarts	the	line	numbering.	With	this,	the	invocation	of	the	methods
using	the	delegate	m	is	in	line	114	(code	file	RethrowExceptions/Program.cs):

#line	100

public	static	void	HandleAll()

{

		Action[]	methods	=	

		{

				HandleAndThrowAgain,

				HandleAndThrowWithInnerException,

				HandleAndRethrow,

				HandleWithFilter

		};

	

		foreach	(var	m	in	methods)

		{

				try

				{

						m();	//	line	114

				}

				catch	(Exception	ex)

				{

						Console.WriteLine(ex.Message);

						Console.WriteLine(ex.StackTrace);

						if	(ex.InnerException	!=	null)

						{

								Console.WriteLine($"\tInner	

Exception{ex.InnerException.Message}");

								Console.WriteLine(ex.InnerException.StackTrace);

						}

						Console.WriteLine();

				}

		}

}

The	method	ThrowAnException	is	the	one	to	throw	the	first	exception.	This
exception	is	thrown	in	line	8002.	During	development,	it	helps	to	know	where
this	exception	is	thrown:

#line	8000

public	static	void	ThrowAnException(string	message)

{

		throw	new	MyCustomException(message);	//	line	8002

}

Naïvely	Rethrowing	the	Exception
The	method	HandleAndThrowAgain	does	nothing	more	than	log	the	exception	to
the	console	and	throw	it	again	using	throw	ex	:

#line	4000

public	static	void	HandleAndThrowAgain()

{

		try

		{

				ThrowAnException("test	1");

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"Log	exception	{ex.Message}	and	throw	

again");

				throw	ex;	//	you	shouldn't	do	that	-	line	4009

		}

}

After	running	the	application,	the	following	simplified	output	shows	the	stack
trace	(without	the	namespace	and	the	full	path	to	the	code	files):

Log	exception	test	1	and	throw	again

test	1

at	Program.HandleAndThrowAgain()	in	Program.cs:line	4009

at	Program.HandleAll()	in	Program.cs:line	114

The	stack	trace	shows	the	call	to	the	m	method	within	the	HandleAll	method,
which	in	turn	invokes	the	HandleAndThrowAgain	method.	The	information	where
the	exception	is	thrown	at	first	is	completely	lost	in	the	call	stack	of	the	final
catch.	This	makes	it	hard	to	find	the	original	reason	of	an	error.	Usually	it's	not	a
good	idea	to	just	throw	the	same	exception	with	throw	passing	the	exception
object.	The	C#	compiler	now	gives	you	the	warning	CA2200:	re-throwing
caught	exception	changes	stack	information.

Changing	the	Exception
One	useful	scenario	is	to	change	the	type	of	the	exception	and	add	information	to
the	error.	This	is	done	in	the	method	HandleAndThrowWithInnerException.
After	logging	the	error,	a	new	exception	of	type	AnotherCustomException	is
thrown	to	pass	ex	as	the	inner	exception:

#line	3000

public	static	void	HandleAndThrowWithInnerException()

{

		try

		{

				ThrowAnException("test	2");	//	line	3004

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"Log	exception	{ex.Message}	and	throw	

again");

				throw	new	AnotherCustomException("throw	with	inner	

exception",	ex);	//	3009

		}

}

By	checking	the	stack	trace	of	the	outer	exception,	you	see	line	numbers	3009
and	114	similar	to	before.	However,	the	inner	exception	gives	the	original	reason
of	the	error.	It	gives	the	line	of	the	method	that	invoked	the	erroneous	method
(3004)	and	the	line	where	the	original	(the	inner)	exception	was	thrown	(8002):

Log	exception	test	2	and	throw	again

throw	with	inner	exception

at	Program.HandleAndThrowWithInnerException()	in	Program.cs:line	

3009

at	Program.HandleAll()	in	Program.cs:line	114

Inner	Exception	throw	with	inner	exception

at	Program.ThrowAnException(String	message)	in	Program.cs:line	

8002

at	Program.HandleAndThrowWithInnerException()	in	Program.cs:line	

3004

No	information	is	lost	this	way.

NOTE When	trying	to	find	reasons	for	an	error,	take	a	look	at	whether	an
inner	exception	exists.	This	often	gives	helpful	information.

NOTE When	catching	exceptions,	it's	good	practice	to	change	the
exception	when	rethrowing.	For	example,	catching	an	SqlException	can
result	in	throwing	a	business-related	exception	such	as
InvalidIsbnException.

Rethrowing	the	Exception
If	the	exception	type	should	not	be	changed,	the	same	exception	can	be	rethrown
just	with	the	throw	statement.	Using	throw	without	passing	an	exception	object
throws	the	current	exception	of	the	catch	block	and	keeps	the	exception
information:

#line	2000

public	static	void	HandleAndRethrow()

{

		try

		{

				ThrowAnException("test	3");

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"Log	exception	{ex.Message}	and	

rethrow");

				throw;	//	line	2009

		}

}	

With	this	in	place,	the	stack	information	is	not	lost.	The	exception	was	originally
thrown	in	line	8002	and	rethrown	in	line	2009.	Line	114	contains	the	delegate	m
that	invoked	HandleAndRethrow	:

Log	exception	test	3	and	rethrow

test	3

at	Program.ThrowAnException(String	message)	in	Program.cs:line	

8002

at	Program.HandleAndRethrow()	in	Program.cs:line	2009

at	Program.HandleAll()	in	Program.cs:line	114

Using	Filters	to	Add	Functionality
When	rethrowing	exceptions	using	the	throw	statement,	the	call	stack	contains
the	address	of	the	throw.	When	you	use	exception	filters,	it	is	possible	not	to
change	the	call	stack	at	all.	Now	add	a	when	keyword	that	passes	a	filter	method.
This	filter	method	named	Filter	logs	the	message	and	always	returns	false.
That's	why	the	catch	block	is	never	invoked:

#line	1000

public	void	HandleWithFilter()

{

		try

		{

				ThrowAnException("test	4");	//	line	1004

		}

		catch	(Exception	ex)	when(Filter(ex))

		{

				Console.WriteLine("block	never	invoked");

		}

}

#line	1500

public	bool	Filter(Exception	ex)

{

		Console.WriteLine($"just	log	{ex.Message}");

		return	false;

}

Now	when	you	look	at	the	stack	trace,	the	exception	originates	in	the	HandleAll
method	in	line	114	that	in	turn	invokes	HandleWithFilter,	line	1004	contains
the	invocation	to	ThrowAnException,	and	line	8002	contains	the	line	where	the
exception	was	thrown:

just	log	test	4

test	4

at	Program.ThrowAnException(String	message)	in	Program.cs:line	

8002

at	Program.HandleWithFilter()	in	Program.cs:line	1004

at	RethrowExceptions.Program.HandleAll()	in	Program.cs:line	114

NOTE The	primary	use	of	exception	filters	is	to	filter	exceptions	based	on
a	value	of	the	exception.	Exception	filters	can	also	be	used	for	other	effects,
such	as	writing	log	information	without	changing	the	call	stack.	However,
exception	filters	should	be	fast	running,	so	you	should	do	only	simple	checks
and	avoid	side	effects.	Logging	is	one	of	the	excusable	exceptions.

What	Happens	If	an	Exception	Isn't	Handled?
Sometimes	an	exception	might	be	thrown,	but	there	is	no	catch	block	in	your
code	that	is	able	to	handle	that	kind	of	exception.	The	SimpleExceptions
example	can	serve	to	illustrate	this.	Suppose,	for	example,	that	you	omitted	the
FormatException	and	catchall	catch	blocks,	and	you	supplied	only	the	block
that	traps	an	IndexOutOfRangeException.	In	that	circumstance,	what	would
happen	if	a	FormatException	were	thrown?

The	answer	is	that	the	.NET	runtime	would	catch	it.	Later	in	this	section,	you
learn	how	you	can	nest	try	blocks;	and,	in	fact,	there	is	already	a	nested	try
block	behind	the	scenes	in	the	example.	The	.NET	runtime	has	effectively	placed
the	entire	program	inside	another	huge	try	block—it	does	this	for	every	.NET
program.	This	try	block	has	a	catch	handler	that	can	catch	any	type	of
exception.	If	an	exception	occurs	that	your	code	does	not	handle,	the	execution
flow	simply	passes	right	out	of	your	program	and	is	trapped	by	this	catch	block
in	the	.NET	runtime.	However,	the	results	of	this	probably	will	not	be	what	you
want	because	the	execution	of	your	code	is	terminated	promptly.	The	user	sees	a
dialog	that	complains	that	your	code	has	not	handled	the	exception	and	provides
any	details	about	the	exception	the	.NET	runtime	was	able	to	retrieve.	At	least
the	exception	has	been	caught!

In	general,	if	you	are	writing	an	executable,	try	to	catch	as	many	exceptions	as
you	reasonably	can	and	handle	them	in	a	sensible	way.	If	you	are	writing	a
library,	it	is	normally	best	to	catch	exceptions	that	you	can	handle	in	a	useful
way,	or	where	you	can	add	information	to	the	context	and	throw	other	exception
types	as	shown	in	the	previous	section.	Assume	that	the	calling	code	handles	any
errors	it	encounters.

USER-DEFINED	EXCEPTION	CLASSES
In	the	previous	section,	you	already	created	a	user-defined	exception.	You	are
now	ready	to	look	at	a	larger	example	that	illustrates	exceptions.	This	example,
called	SolicitColdCall,	contains	two	nested	try	blocks	and	illustrates	the
practice	of	defining	your	own	custom	exception	classes	and	throwing	another
exception	from	inside	a	try	block.

This	example	assumes	that	a	sales	company	wants	to	increase	its	customer	base.
The	company's	sales	team	is	going	to	phone	a	list	of	people	to	invite	them	to
become	customers,	a	practice	known	in	sales	jargon	as	cold-calling.	To	this	end,
you	have	a	text	file	available	that	contains	the	names	of	the	people	to	be	cold-
called.	The	file	should	be	in	a	well-defined	format	in	which	the	first	line	contains
the	number	of	people	in	the	file	and	each	subsequent	line	contains	the	name	of
the	next	person.	In	other	words,	a	correctly	formatted	file	of	names	might	look
like	this:

4

George	Washington

Benedict	Arnold

John	Adams

Thomas	Jefferson

This	version	of	cold-calling	is	designed	to	display	the	name	of	the	person	on	the
screen	(perhaps	for	the	salesperson	to	read).	That	is	why	only	the	names,	and	not
the	phone	numbers,	of	the	individuals	are	contained	in	the	file.

For	this	example,	your	program	asks	the	user	for	the	name	of	the	file	and	then
simply	reads	it	in	and	displays	the	names	of	people.	That	sounds	like	a	simple
task,	but	even	so,	a	couple	of	things	can	go	wrong	and	require	you	to	abandon
the	entire	procedure:

The	user	might	type	the	name	of	a	file	that	does	not	exist.	This	is	caught	as
a	FileNotFound	exception.

The	file	might	not	be	in	the	correct	format.	There	are	two	possible	problems
here.	One,	the	first	line	of	the	file	might	not	be	an	integer.	Two,	there	might
not	be	as	many	names	in	the	file	as	the	first	line	of	the	file	indicates.	In	both
cases,	you	want	to	trap	this	oddity	as	a	custom	exception	that	has	been
written	especially	for	this	purpose,	ColdCallFileFormatException.

There	is	something	else	that	can	go	wrong	that	doesn't	cause	you	to	abandon	the
entire	process	but	does	mean	you	need	to	abandon	a	person's	name	and	move	on
to	the	next	name	in	the	file	(and	therefore	trap	it	by	an	inner	try	block).	Some
people	are	spies	working	for	rival	sales	companies,	so	you	obviously	do	not	want
to	let	these	people	know	what	you	are	up	to	by	accidentally	phoning	one	of
them.	For	simplicity,	assume	that	you	can	identify	who	the	spies	are	because
their	names	begin	with	B.	Such	people	should	have	been	screened	out	when	the
data	file	was	first	prepared,	but	in	case	any	have	slipped	through,	you	need	to
check	each	name	in	the	file	and	throw	a	SalesSpyFoundException	if	you	detect
a	sales	spy.	This,	of	course,	is	another	custom	exception	object.

Finally,	you	implement	this	example	by	coding	a	class,	ColdCallFileReader,
which	maintains	the	connection	to	the	cold-call	file	and	retrieves	data	from	it.
You	code	this	class	in	a	safe	way,	which	means	that	its	methods	all	throw
exceptions	if	they	are	called	inappropriately—for	example,	if	a	method	that
reads	a	file	is	called	before	the	file	has	even	been	opened.	For	this	purpose,	you
write	another	exception	class:	UnexpectedException.

Catching	the	User-Defined	Exceptions
Start	with	the	top-level	statements	of	the	SolicitColdCall	sample,	which
catches	your	user-defined	exceptions.	Note	that	you	need	to	call	up	file-handling
classes	in	the	System.IO	namespace	as	well	as	the	System	namespace	(code	file
SolicitColdCall/Program.cs):

Console.Write("Please	type	in	the	name	of	the	file	"	+

		"containing	the	names	of	the	people	to	be	cold	called>	");

string?	fileName	=	Console.ReadLine();

if	(fileName	!=	null)

{

		ColdCallFileReaderLoop1(fileName);

		Console.WriteLine();

}

Console.ReadLine();

	

void	ColdCallFileReaderLoop1(string	fileName)

{

		ColdCallFileReader	peopleToRing	=	new();

		try

		{

				peopleToRing.Open(fileName);

				for	(int	i	=	0;	i	<	peopleToRing.NPeopleToRing;	i++)

				{

						peopleToRing.ProcessNextPerson();

				}

				Console.WriteLine("All	callers	processed	correctly");

		}

		catch(FileNotFoundException)

		{

				Console.WriteLine($"The	file	{fileName}	does	not	exist");

		}

		catch(ColdCallFileFormatException	ex)

		{

				Console.WriteLine($"The	file	{fileName}	appears	to	have	been	

corrupted");

				Console.WriteLine($"Details	of	problem	are:	{ex.Message}");

				if	(ex.InnerException	!=	null)

				{

						Console.WriteLine($"Inner	exception	was:	

{ex.InnerException.Message}");

				}

		}

		catch(Exception	ex)

		{

				Console.WriteLine($"Exception	occurred:\n{ex.Message}");

		}

		finally

		{

				peopleToRing.Dispose();

		}

}

This	code	is	a	little	more	than	just	a	loop	to	process	people	from	the	file.	You
start	by	asking	the	user	for	the	name	of	the	file.	Then	you	instantiate	an	object	of
a	class	called	ColdCallFileReader,	which	is	defined	shortly.	The
ColdCallFileReader	class	is	the	class	that	handles	the	file	reading.	Notice	that
you	do	this	outside	the	initial	try	block—that's	because	the	variables	that	you
instantiate	here	need	to	be	available	in	the	subsequent	catch	and	finally
blocks,	and	if	you	declare	them	inside	the	try	block,	they	would	go	out	of	scope
at	the	closing	curly	brace	of	the	try	block,	where	the	compiler	would	complain
about	it.

In	the	try	block,	you	open	the	file	(using	the	ColdCallFileReader.Open

method)	and	loop	over	all	the	people	in	it.	The
ColdCallFileReader.ProcessNextPerson	method	reads	in	and	displays	the
name	of	the	next	person	in	the	file,	and	the
ColdCallFileReader.NPeopleToRing	property	indicates	how	many	people
should	be	in	the	file	(obtained	by	reading	the	file's	first	line).	There	are	three
catch	blocks:	one	for	FileNotFoundException,	one	for
ColdCallFileFormatException,	and	one	to	trap	any	other	.NET	exceptions.

NOTE With	the	sample	application,	the	object	of	type
ColdCallFileReader	is	instantiated	outside	of	the	try	block.	It's	a	good
practice	to	create	constructors	that	can't	fail	and	don't	take	a	long
processing	time.	In	case	you	use	such	types,	you	can	create	an	outer
try/catch	block	or	declare	the	variable	outside	the	try	block	and	instantiate
it	within	the	try	block.

In	the	case	of	a	FileNotFoundException,	you	display	a	message	to	that	effect.
Notice	that	in	this	catch	block,	the	exception	instance	is	not	actually	used	at	all.
This	catch	block	is	used	to	illustrate	the	user-friendliness	of	the	application.
Exception	objects	generally	contain	technical	information	that	is	useful	for
developers,	but	not	the	sort	of	stuff	you	want	to	show	to	end	users.	Therefore,	in
this	case,	you	create	a	simpler	message	of	your	own.

For	the	ColdCallFileFormatException	handler,	you	have	done	the	opposite,
specifying	how	to	obtain	fuller	technical	information,	including	details	about	the
inner	exception,	if	one	is	present.

Finally,	if	you	catch	any	other	generic	exceptions,	you	display	a	user-friendly
message,	instead	of	letting	any	such	exceptions	fall	through	to	the	.NET	runtime.

The	finally	block	is	there	to	clean	up	resources.	In	this	case,	that	means	closing
any	open	file—performed	by	the	ColdCallFileReader.Dispose	method.

NOTE C#	offers	the	using	statement	and	the	using	declaration	where	the
compiler	itself	creates	a	try/finally	block	calling	the	Dispose	method	in
the	finally	block.	The	using	keyword	can	be	used	with	objects
implementing	the	IDisposable	interface.	You	can	read	the	details	of	the
using	statement	and	declaration	in	Chapter	13,	“Managed	and	Unmanaged
Memory.”

Throwing	the	User-Defined	Exceptions
Now	take	a	look	at	the	definition	of	the	class	that	handles	the	file	reading	and
(potentially)	throws	your	user-defined	exceptions:	ColdCallFileReader.
Because	this	class	maintains	an	external	file	connection,	you	need	to	ensure	that
it	is	disposed	of	correctly	in	accordance	with	the	principles	outlined	for	the
disposing	of	objects	in	Chapter	13.	Therefore,	you	derive	this	class	from
IDisposable.

First,	you	declare	some	private	fields	(code	file
SolicitColdCall/ColdCallFileReader.cs):

public	class	ColdCallFileReader:	IDisposable

{

		private	FileStream?	_fileStream;

		private	StreamReader?	_streamReader;

		private	uint	_nPeopleToRing;

		private	bool	_isDisposed	=	false;

		private	bool	_isOpen	=	false;

FileStream	and	StreamReader,	both	in	the	System.IO	namespace,	are	the	base
classes	that	you	use	to	read	the	file.	FileStream	enables	you	to	connect	to	the
file	in	the	first	place,	whereas	StreamReader	is	designed	to	read	text	files	and
implements	a	method,	ReadLine,	which	reads	a	line	of	text	from	a	file.	You	look
at	StreamReader	more	closely	in	Chapter	18,	“Files	and	Streams,”	which
discusses	file	handling	in	depth.

The	_isDisposed	field	indicates	whether	the	Dispose	method	has	been	called.
ColdCallFileReader	is	implemented	so	that	after	Dispose	has	been	called,	it	is
not	permitted	to	reopen	connections	and	reuse	the	object.	_	isOpen	is	also	used
for	error	checking—in	this	case,	checking	whether	the	StreamReader	actually
connects	to	an	open	file.

The	process	of	opening	the	file	and	reading	in	that	first	line—the	one	that	tells
you	how	many	people	are	in	the	file—is	handled	by	the	Open	method:

public	void	Open(string	fileName)

{

		if	(_isDisposed)

		{

				throw	new	

ObjectDisposedException(nameof(ColdCallFileReader));

		}

	

		_fileStream	=	new(fileName,	FileMode.Open);

		_streamReader	=	new(_fileStream);

	

		try

		{

				string?	firstLine	=	_streamReader.ReadLine();

				if	(firstLine	!=	null)

				{

						_nPeopleToRing	=	uint.Parse(firstLine);

						_isOpen	=	true;

				}

		}

		catch	(FormatException	ex)

		{

				throw	new	ColdCallFileFormatException(

						$"First	line	isn't	an	integer	{ex}");

		}

}

The	first	thing	you	do	in	this	method	(as	with	all	other	ColdCallFileReader
methods)	is	check	whether	the	client	code	has	inappropriately	called	it	after	the
object	has	been	disposed	of	and,	if	so,	throw	a	predefined
ObjectDisposedException	object.	The	Open	method	checks	the	_	isDisposed
field	to	determine	whether	Dispose	has	already	been	called.	Because	calling
Dispose	implies	that	the	caller	has	now	finished	with	this	object,	you	regard	it	as
an	error	to	attempt	to	open	a	new	file	connection	if	Dispose	has	been	called.

Next,	the	method	contains	a	try	/	catch	block.	The	purpose	of	this	one	is	to
catch	any	errors	resulting	from	a	file	in	which	the	first	line	does	not	contain	an
integer.	If	the	method	uint.Parse	cannot	parse	the	first	line	successfully,	a
FormatException	can	be	thrown.	If	that	problem	arises,	the	exception	is	caught
and	converted	to	a	more	meaningful	exception	that	indicates	a	problem	with	the
format	of	the	cold-call	file.	Note	that	System.FormatException	is	there	to
indicate	format	problems	with	basic	data	types,	not	with	files,	so	it's	not	a
particularly	useful	exception	to	pass	back	to	the	calling	routine	in	this	case.	The
new	exception	thrown	will	be	trapped	by	the	outermost	try	block.	Because	no
cleanup	is	needed	here,	there	is	no	need	for	a	finally	block.	Other	exceptions
that	can	happen	such	as	the	IOException	on	calling	the	ReadLine	method	are	not
caught	here	and	are	forwarded	to	the	next	try	block.

If	everything	is	fine,	you	set	the	_isOpen	field	to	true	to	indicate	that	there	is
now	a	valid	file	connection	from	which	data	can	be	read.

The	ProcessNextPerson	method	also	contains	an	inner	try	block:

public	void	ProcessNextPerson()

{

		if	(_isDisposed)

		{

				throw	new	

ObjectDisposedException(nameof(ColdCallFileReader));

		}

	

		if	(!_isOpen)

		{

				throw	new	UnexpectedException(

						"Attempted	to	access	coldcall	file	that	is	not	open");

		}

	

		try

		{

				string?	name	=	_streamReader?.ReadLine();

				if	(name	is	null)

				{

						throw	new	ColdCallFileFormatException("Not	enough	names");

				}

				if	(name[0]	is	'B')

				{

						throw	new	SalesSpyFoundException(name);

				}

				Console.WriteLine(name);

		}

		catch(SalesSpyFoundException	ex)

		{

				Console.WriteLine(ex.Message);

		}

		finally

		{

		}

}

Two	possible	problems	can	exist	when	reading	the	file	in	the
ProcessNextPerson	method	(assuming	there	actually	is	an	open	file	connection
that	is	checked	first).	The	first	error	that	is	handled	is	when	null	is	returned
from	the	ReadLine	method.	This	method	returns	null	if	it	has	gone	past	the	end
of	the	file.	Because	the	file	contains	the	number	of	names	at	the	start	of	the	file,
a	ColdCallFileFormatException	is	thrown	on	a	mismatch,	and	there	are	fewer
names	than	there	should	be.	This	is	then	caught	by	the	outer	exception	handler,
which	causes	the	execution	to	terminate.

With	the	second,	the	line	is	accessed.	If	it	is	discovered	that	the	name	is	a	sales

spy,	a	SalesSpyFoundException	is	thrown.	Because	that	exception	has	been
caught	here,	inside	the	loop,	it	means	that	execution	can	subsequently	continue
in	the	Main	method	of	the	program,	and	the	subsequent	names	in	the	file
continue	to	be	processed.

Again,	you	don't	need	a	finally	block	here	because	there	is	no	cleanup	to	do;
however,	this	time	an	empty	finally	block	is	included	just	to	show	that	you	can
do	so,	if	you	want.

The	example	is	nearly	finished.	You	have	just	two	more	members	of
ColdCallFileReader	to	look	at:	the	NPeopleToRing	property,	which	returns	the
number	of	people	who	are	supposed	to	be	in	the	file,	and	the	Dispose	method,
which	closes	an	open	file.	Notice	that	the	Dispose	method	returns	immediately	if
it	has	already	been	called—this	is	the	recommended	way	of	implementing	it.	It
also	confirms	that	there	actually	is	a	file	stream	to	close	before	closing	it.	This
example	is	shown	here	to	illustrate	defensive	coding	techniques:

public	uint	NPeopleToRing

{

		get

		{

				if	(_isDisposed)

				{

						throw	new	ObjectDisposedException("peopleToRing");

				}

				if	(!_isOpen)

				{

						throw	new	UnexpectedException(

								"Attempted	to	access	cold–call	file	that	is	not	open");

				}

				return	_nPeopleToRing;

		}

}

	

public	void	Dispose()

{

		if	(_isDisposed)

		{

				return;

		}

		_isDisposed	=	true;

		_isOpen	=	false;

	

		_streamReader?.Dispose();

		_streamReader	=	null;

}

Defining	the	User-Defined	Exception	Classes
Finally,	you	need	to	define	three	of	your	own	exception	classes.	Defining	your
own	exception	is	quite	easy	because	there	are	rarely	any	extra	methods	to	add.	It
is	just	a	case	of	implementing	a	constructor	to	ensure	that	the	base	class
constructor	is	called	correctly.	Here	is	the	full	implementation	of
SalesSpyFoundException	(code	file
SolicitColdCall/SalesSpyFoundException.cs):

public	class	SalesSpyFoundException:	Exception

{

		public	SalesSpyFoundException(string	spyName)

				:	base($"Sales	spy	found,	with	name	{spyName}")	{	}

	

		public	SalesSpyFoundException(string	spyName,	Exception	

innerException)

				:	base($"Sales	spy	found	with	name	{spyName}",	

innerException)	{		}

}

Notice	that	it	is	derived	from	Exception,	as	you	would	expect	for	a	custom
exception.	In	fact,	in	practice,	you	would	probably	have	added	an	intermediate
class,	something	like	ColdCallFileException,	derived	from	Exception,	and
then	derived	both	of	your	exception	classes	from	this	class.	This	ensures	that	the
handling	code	has	that	extra-fine	degree	of	control	over	which	exception	handler
handles	each	exception.	However,	to	keep	the	example	simple,	you	will	not	do
that.

You	have	done	one	bit	of	processing	in	SalesSpyFoundException.	You	have
assumed	that	the	message	passed	into	its	constructor	is	just	the	name	of	the	spy
found,	so	you	turn	this	string	into	a	more	meaningful	error	message.	You	have
also	provided	two	constructors:	one	that	simply	takes	a	message,	and	one	that
also	takes	an	inner	exception	as	a	parameter.	When	defining	your	own	exception
classes,	it	is	best	to	include,	at	a	minimum,	at	least	these	two	constructors
(although	you	will	not	actually	be	using	the	second	SalesSpyFoundException
constructor	in	this	example).

The	ColdCallFileFormatException	follows	the	same	principles	as	the	previous
exception,	but	you	don't	do	any	processing	on	the	message	(code	file
SolicitColdCall/ColdCallFileFormatException.cs):

public	class	ColdCallFileFormatException:	Exception

{

		public	ColdCallFileFormatException(string	message)

				:	base(message)	{}

	

		public	ColdCallFileFormatException(string	message,	Exception	

innerException)

				:	base(message,	innerException)	{}

}

Finally,	you	have	UnexpectedException,	which	looks	much	the	same	as
ColdCallFileFormatException	(code	file
SolicitColdCall/UnexpectedException.cs):

public	class	UnexpectedException:	Exception

{

		public	UnexpectedException(string	message)

				:	base(message)	{	}

	

		public	UnexpectedException(string	message,	Exception	

innerException)

				:	base(message,	innerException)	{	}

}

Now	you	are	ready	to	test	the	program.	First,	try	the	people.txt	file.	The
contents	are	defined	here:

4

George	Washington

Benedict	Arnold

John	Adams

Thomas	Jefferson

This	has	four	names	(which	match	the	number	given	in	the	first	line	of	the	file),
including	one	spy.	Then	try	the	following	people2.txt	file,	which	has	an
obvious	formatting	error:

49

George	Washington

Benedict	Arnold

John	Adams

Thomas	Jefferson

Finally,	try	the	example,	but	specify	the	name	of	a	file	that	does	not	exist,	such
as	people3.txt.	Running	the	program	three	times	for	the	three	filenames	returns
these	results:

SolicitColdCall

Please	type	in	the	name	of	the	file	containing	the	names	of	the	

people	to	be	cold

called>	people.txt

George	Washington

Sales	spy	found,	with	name	Benedict	Arnold

John	Adams

Thomas	Jefferson

All	callers	processed	correctly

	

SolicitColdCall

Please	type	in	the	name	of	the	file	containing	the	names	of	the	

people	to	be	cold

called>	people2.txt

George	Washington

Sales	spy	found,	with	name	Benedict	Arnold

John	Adams

Thomas	Jefferson

The	file	people2.txt	appears	to	have	been	corrupted.

Details	of	the	problem	are:	Not	enough	names

	

SolicitColdCall

Please	type	in	the	name	of	the	file	containing	the	names	of	the	

people	to	be	cold

called>	people3.txt

The	file	people3.txt	does	not	exist.

This	application	has	demonstrated	a	number	of	different	ways	in	which	you	can
handle	the	errors	and	exceptions	that	you	might	find	in	your	own	applications.

CALLER	INFORMATION
When	dealing	with	errors,	it	is	often	helpful	to	get	information	about	the	error
where	it	occurred.	Earlier	in	this	chapter,	the	#line	preprocessor	directive	was
used	to	change	the	line	numbering	of	the	code	to	get	better	information	with	the
call	stack.	A	method	can	get	caller	information	through	optional	parameters.	You
can	use	attributes	to	get	the	line	numbers,	filenames,	and	member	names	from
within	code.	The	attributes	CallerLineNumber,	CallerFilePath,	and
CallerMemberName	defined	within	the	namespace
System.Runtime.CompilerServices	are	directly	supported	by	the	C#	compiler,
which	sets	these	values.

The	Log	method	from	the	following	code	snippet	demonstrates	how	to	use	these
attributes.	With	the	implementation,	the	information	is	written	to	the	console
(code	file	CallerInformation/Program.cs):

public	void	Log([CallerLineNumber]	int	line	=	-1,

		[CallerFilePath]	string	path	=	default,

		[CallerMemberName]	string	name	=	default)

{

		Console.WriteLine($"Line	{line}");

		Console.WriteLine(path);

		Console.WriteLine(name);

		Console.WriteLine();

}

Let's	invoke	this	method	with	some	different	scenarios.	In	the	following	Main
method,	the	Log	method	is	called	by	using	an	instance	of	the	Program	class,
within	the	set	accessor	of	the	property,	and	within	a	lambda	expression.
Argument	values	are	not	assigned	to	the	method,	enabling	the	compiler	to	fill
them	in:

public	static	void	Main()

{

		Program	p	=	new();

		p.Log();

		p.SomeProperty	=	33;

		Action	a1	=	()	=>	p.Log();

		a1();

}

	

private	int	_someProperty;

public	int	SomeProperty

{

		get	=>	_someProperty;

		set

		{

				Log();

				_someProperty	=	value;

		}

}

The	result	of	the	running	program	is	shown	next.	Where	the	Log	method	was
invoked,	you	can	see	the	line	numbers,	the	filename,	and	the	caller	member
name.	With	the	Log	inside	the	Main	method,	the	member	name	is	Main.	The
invocation	of	the	Log	method	inside	the	set	accessor	of	the	property
SomeProperty	shows	SomeProperty.	The	Log	method	inside	the	lambda
expression	doesn't	show	the	name	of	the	generated	method,	but	instead	the	name
of	the	method	where	the	lambda	expression	was	invoked	(Main),	which	is	more
useful,	of	course.

Line	9

C:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs

Main

	

Line	21

C:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs

SomeProperty

	

Line	11

C:\ProCSharp\ErrorsAndExceptions\CallerInformation\Program.cs

Main

Using	the	Log	method	within	a	constructor,	the	caller	member	name	shows	ctor.
With	a	destructor,	the	caller	member	name	is	Finalize,	as	this	is	the	method
name	generated.

NOTE The	destructor	and	finalizer	are	covered	in	Chapter	13.

NOTE A	great	use	of	the	CallerMemberName	attribute	is	with	the
implementation	of	the	interface	INotifyPropertyChanged	.	This	interface
requires	the	name	of	the	property	to	be	passed	with	the	method
implementation.	You	can	see	the	implementation	of	this	interface	in	Chapter
30,	“Patterns	with	XAML	Apps.”

SUMMARY
This	chapter	examined	the	rich	mechanism	C#	provides	for	dealing	with	error
conditions	through	exceptions.	You	are	not	limited	to	the	generic	error	codes	that
could	be	output	from	your	code;	instead,	you	have	the	capability	to	go	in	and
uniquely	handle	the	most	granular	of	error	conditions.	Sometimes	these	error
conditions	are	provided	to	you	through	.NET	itself;	at	other	times,	though,	you
might	want	to	code	your	own	error	conditions	as	illustrated	in	this	chapter.	In
either	case,	you	have	many	ways	to	protect	the	workflow	of	your	applications
from	unnecessary	and	dangerous	faults.

Detailed	information	on	logging	errors	is	covered	in	Chapter	16,	“Diagnostics
and	Metrics.”

The	next	chapter	goes	into	important	keywords	for	asynchronous	programming:
async	and	await.

11
Tasks	and	Asynchronous	Programming

WHAT'S	IN	THIS	CHAPTER?

The	importance	of	asynchronous	programming

Using	the	async	and	await	keywords	with	the	task-based	async	pattern

Creating	and	using	tasks

Foundations	of	asynchronous	programming

Error	handling	with	asynchronous	methods

Cancellation	of	asynchronous	methods

Async	streams

Asynchronous	programming	with	Windows	apps

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Tasks.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

TaskBasedAsyncPattern

TaskFoundations

ErrorHandling

AsyncStreams

AsyncDesktopWindowsApp

All	the	sample	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

WHY	ASYNCHRONOUS	PROGRAMMING	IS
IMPORTANT
Users	find	it	annoying	when	an	application	does	not	immediately	react	to
requests.	As	we	scroll	through	a	list,	we	have	become	accustomed	to
experiencing	a	delay	because	we've	learned	that	behavior	over	several	decades.
We	are	accustomed	to	this	behavior	when	using	the	mouse.	However,	with	a
touch	UI,	we	often	don't	accept	such	a	delay.	An	application	with	a	touch	UI
needs	to	react	immediately	to	requests.	Otherwise,	the	user	tries	to	redo	the
action,	possibly	by	touching	the	screen	more	firmly.

Because	asynchronous	programming	was	hard	to	achieve	with	older	versions	of
.NET,	it	was	not	always	done	when	it	should	have	been.	One	of	the	applications
that	blocked	the	UI	thread	fairly	often	is	an	older	version	of	Visual	Studio.	With
that	version,	opening	a	solution	containing	hundreds	of	projects	meant	you	could
take	a	long	coffee	break.	Visual	Studio	2017	offered	the	Lightweight	Solution
Load	feature,	which	loads	projects	only	as	needed	and	with	the	selected	project
loaded	first.	Since	Visual	Studio	2015,	the	NuGet	package	manager	is	no	longer
implemented	as	a	modal	dialog.	The	new	NuGet	package	manager	can	load
information	about	packages	asynchronously	while	you	do	other	things	at	the
same	time.	These	are	just	a	few	examples	of	important	changes	built	into	Visual
Studio	related	to	asynchronous	programming.

Many	APIs	with	.NET	offer	both	a	synchronous	and	an	asynchronous	version.
Because	the	synchronous	version	of	the	API	was	a	lot	easier	to	use,	it	was	often
used	where	it	wasn't	appropriate.	With	the	Windows	Runtime	(WinRT),	if	an
API	call	is	expected	to	take	longer	than	40	milliseconds,	only	an	asynchronous
version	is	available.	Since	C#	5.0,	programming	asynchronously	is	as	easy	as
programming	in	a	synchronous	manner,	so	there	shouldn't	be	any	barriers	to
using	the	asynchronous	APIs,	but	of	course	there	can	be	traps,	which	are	covered
in	this	chapter.

C#	8	introduced	async	streams	that	make	it	easy	to	consume	async	results
continuously.	This	topic	is	covered	in	this	chapter	as	well.

NOTE .NET	offers	different	patterns	for	asynchronous	programming.
.NET	1.0	defined	the	async	pattern.	With	this	pattern,	BeginXX	and	EndXX
methods	are	offered.	One	example	is	the	WebRequest	class	in	the
System.Net	namespace	with	the	BeginGetResponse	and	EndGetResponse
methods.	This	pattern	is	based	on	the	IAsyncResult	interface	and	the

AsyncCallback	delegate.	When	using	this	pattern	with	the	implementation	of
Windows	applications,	it	is	necessary	to	switch	back	to	the	user	interface
(UI)	thread	after	the	result	is	received.

.NET	2.0	introduced	the	event-based	async	pattern.	With	this	pattern,	an
event	is	used	to	receive	the	asynchronous	result,	and	the	method	to	invoke
has	the	Async	postfix.	An	example	is	the	WebClient	class	(an	abstraction	of
WebRequest)	with	the	method	DownloadStringAsync	and	the	corresponding
event	DownloadStringCompleted.	Using	this	pattern	with	Windows
applications	where	a	synchronization	context	is	created,	it's	not	necessary	to
switch	to	the	UI	thread	manually.	This	is	done	from	the	event.

With	new	applications,	you	can	ignore	the	methods	offered	by	these	patterns.
Instead,	C#	5	introduced	the	task-based	async	pattern.	This	pattern	is	based
on	.NET	4	features,	the	task	parallel	library	(TPL).	With	this	pattern,	an
asynchronous	method	returns	a	Task	(or	other	types	offering	the	GetAwaiter
method),	and	you	can	use	the	await	keyword	to	wait	for	the	result.	Methods
usually	have	the	Async	postfix	with	this	pattern	as	well.	A	modern	class	for
doing	network	requests	for	implementing	this	pattern	is	HttpClient	with	the
GetAsync	method.

Both	the	WebClient	and	WebRequest	classes	offer	the	new	pattern	as	well.
To	avoid	a	naming	conflict	with	the	older	pattern,	WebClient	adds	Task	to
the	method	name—for	example,	DownloadStringTaskAsync	.

With	new	clients,	just	ignore	the	Begin	/	End	methods,	and	the	events	based
on	the	async	pattern	with	the	classes	that	offer	this	functionality	to	support
legacy	applications.

TASK-BASED	ASYNC	PATTERN
Let's	start	with	using	an	implementation	of	the	task-based	async	pattern.	The
HttpClient	class	(which	is	explained	in	more	detail	in	Chapter	19,
“Networking”)	among	many	other	classes	implements	this	pattern.	Nearly	all
methods	of	this	class	are	named	with	an	Async	postfix	and	return	a	Task.	This	is
the	declaration	of	one	overload	of	the	GetAsync	method:

public	Task<HttpResponseMessage>	GetAsync(Uri?	requestUri);

The	sample	application	uses	these	namespaces	besides	the	System	namespace:

System.Net.Http

System.Threading.Tasks

With	the	sample	application,	a	command-line	argument	can	be	passed	to	start	the
application.	If	a	command-line	argument	is	not	set,	the	user	is	asked	to	enter	a
link	to	a	website.	After	the	HttpClient	is	instantiated,	the	GetAsync	method	is
invoked.	Using	the	await	keyword,	the	calling	thread	is	not	blocked,	but	the
result	variable	response	is	only	filled	as	soon	as	the	Task	returned	from	the
GetAsync	method	is	completed	(the	task	status	will	have	the	state
RunToCompletion).	When	you	use	the	async	keyword,	there's	no	need	to	specify
an	event	handler	or	pass	a	completion	delegate	as	was	necessary	with	the	older
async	patterns.	The	HttpResponseMessage	has	a	IsSuccessStatusCode	property
that	is	used	to	verify	if	the	response	from	the	service	was	successful.	With	a
successful	return,	the	content	is	retrieved	using	the	ReadAsStringAsync	method.
This	method	returns	Task<string>	that	can	be	awaited	as	well.	As	soon	as	the
result	is	available,	the	first	200	characters	of	the	string	HTML	are	written	to	the
console	(code	file	TaskBasedAsyncPattern/Program.cs):

using	System;

using	System.Net.Http;

using	System.Threading.Tasks;

	

string	uri	=	(args.Length>=	1)	?	args[0]	:	string.Empty;

if	(string.IsNullOrEmpty(uri))

{

		Console.Write("enter	an	URL	(e.g.	

https://csharp.christiannagel.com):	");

		uri	=	Console.ReadLine()	??	throw	new	

InvalidOperationException();

}

using	HttpClient	httpClient	=	new();

try

{

		using	HttpResponseMessage	response	=	await	

httpClient.GetAsync(new	Uri(uri));

		if	(response.IsSuccessStatusCode)

		{

				string	html	=	await	response.Content.ReadAsStringAsync();

				Console.WriteLine(html[..200]);

		}

		else

		{

				Console.WriteLine($"Status	code:	{response.StatusCode}");

		}

}

catch	(UriFormatException	ex)

{

		Console.WriteLine($"Error	parsing	the	Uri	{ex.Message}");

}

catch	(HttpRequestException	ex)

{

		Console.WriteLine($"HTTP	request	exception:	{ex.Message}");

}

catch	(TaskCanceledException	ex)

{

		Console.WriteLine($"Task	canceled:	{ex.Message}");

}

NOTE The	using	declaration	that's	used	with	the	HttpClient	and	the
HttpResponseMessage	invokes	the	Dispose	method	at	the	end	of	the
variable	scope.	This	is	explained	in	detail	in	Chapter	13,	“Managed	and
Unmanaged	Memory.”

To	run	the	program	and	pass	command-line	arguments	using	the	.NET	CLI,	you
need	to	pass	two	dashes	to	distinguish	the	command-line	arguments	that	are
meant	for	the	application	from	the	arguments	used	for	the	.NET	CLI	and	start	the
application	this	way:

>	dotnet	run	--	https://csharp.christiannagel.com

Using	top-level	statements,	the	variable	args	is	created	automatically.	Using
await	with	the	top-level	statements,	the	generated	Main	method	is	defined	with
an	async	scope.	When	you	write	a	custom	Main	method	that	uses	await,	it	needs
to	be	declared	to	return	a	Task	:

public	class	Program

{

		static	async	Task	Main(string[]	args)

		{

				//…

		}

}

TASKS
The	async	and	await	keywords	are	compiler	features.	The	compiler	creates	code
by	using	functionality	from	the	Task	class,	which	you	also	can	write	yourself.

This	section	gives	information	about	the	Task	class	and	what	the	compiler	does
with	the	async	and	await	keywords.	It	shows	you	an	effortless	way	to	create	an
asynchronous	method	and	demonstrates	how	to	invoke	multiple	asynchronous
methods	in	parallel.	You	also	see	how	you	can	change	a	class	to	offer	the
asynchronous	pattern	with	the	async	and	await	keywords.

The	sample	application	uses	these	namespaces	besides	the	System	namespace:

System.Collections.Generic

System.IO

System.Linq

System.Net

System.Runtime.CompilerServices

System.Threading

System.Threading.Tasks

NOTE This	downloadable	sample	application	makes	use	of	command-line
arguments,	so	you	can	easily	verify	each	scenario.	For	example,	using	the
.NET	CLI,	you	can	pass	the	async	command-line	parameter	with	this
command:	dotnet	run	--	-async	.	When	using	Visual	Studio,	you	can	also
configure	the	application	arguments	in	Debug	Project	Settings.

To	better	understand	what's	going	on,	the	TraceThreadAndTask	method	is
created	to	write	thread	and	task	information	to	the	console.	Task.CurrentId
returns	the	identifier	of	the	task.	Thread.CurrentThread.ManagedThreadId
returns	the	identifier	of	the	current	thread	(code	file
TaskFoundations/Program.cs):

public	static	void	TraceThreadAndTask(string	info)

{

		string	taskInfo	=	Task.CurrentId	==	null	?	"no	task"	:	"task	"	

+	

				Task.CurrentId;

	

		Console.WriteLine($"{info}	in	thread	

{Thread.CurrentThread.ManagedThreadId}	"	+	

				$"and	{taskInfo}");

}

Creating	Tasks
Let's	start	with	the	synchronous	method	Greeting,	which	takes	a	while	before
returning	a	string	(code	file	TaskFoundations/Program.cs):

static	string	Greeting(string	name)

{

		TraceThreadAndTask($"running	{nameof(Greeting)}");

		Task.Delay(3000).Wait();

		return	$"Hello,	{name}";

}

To	make	such	a	method	asynchronously,	you	define	the	method	GreetingAsync.
The	task-based	asynchronous	pattern	specifies	that	an	asynchronous	method	is
named	with	the	Async	suffix	and	returns	a	Task.	GreetingAsync	is	defined	to
have	the	same	input	parameters	as	the	Greeting	method	but	returns
Task<string>.	Task<string>	defines	a	task	that	returns	a	string	in	the	future.
A	simple	way	to	return	a	task	is	by	using	the	Task.Run	method.	This	method
creates	a	new	task	and	starts	it.	The	generic	version	Task.Run<string>()	creates
a	task	that	returns	a	string.	Because	the	compiler	already	knows	the	return	type
from	the	implementation	(Greeting	returns	a	string),	you	can	also	simplify	the
implementation	by	using	Task.Run()	:

static	Task<string>	GreetingAsync(string	name)	=>	

		Task.Run(()	=>	

		{

				TraceThreadAndTask($"running	{nameof(GreetingAsync)}");

				return	Greeting(name);

		});

Calling	an	Asynchronous	Method
You	can	call	this	asynchronous	method	GreetingAsync	by	using	the	await
keyword	on	the	task	that	is	returned.	The	await	keyword	requires	the	method	to
be	declared	with	the	async	modifier.	The	code	within	this	method	does	not
continue	before	the	GreetingAsync	method	is	completed.	However,	you	can
reuse	the	thread	that	started	the	CallerWithAsync	method.	This	thread	is	not
blocked	(code	file	TaskFoundations/Program.cs):

private	async	static	void	CallerWithAsync()

{

		TraceThreadAndTask($"started	{nameof(CallerWithAsync)}");

		string	result	=	await	GreetingAsync("Stephanie");

		Console.WriteLine(result);

		TraceThreadAndTask($"ended	{nameof(CallerWithAsync)}");

}	

When	you	run	the	application,	you	can	see	from	the	first	output	that	there's	no
task.	The	GreetingAsync	method	is	running	in	a	task,	and	this	task	is	using	a
different	thread	from	the	caller.	The	synchronous	Greeting	method	then	runs	in
this	task.	As	the	Greeting	method	returns,	the	GreetingAsync	method	returns,
and	the	scope	is	back	in	the	CallerWithAsync	method	after	the	await.	Now,	the
CallerWithAsync	method	runs	in	a	different	thread	than	before.	There's	not	a
task	anymore,	but	although	the	method	started	with	thread	1,	after	the	await
thread	4	was	used.	The	await	made	sure	that	the	continuation	happens	after	the
task	was	completed,	but	it	now	uses	a	different	thread.	This	behavior	is	different
between	Console	applications	and	applications	that	have	a	synchronization
context,	which	is	described	later	in	this	chapter	in	the	“Async	with	Windows
Apps”	section:

started	CallerWithAsync	in	thread	1	and	no	task

running	GreetingAsync	in	thread	4	and	task	1

running	Greeting	in	thread	4	and	task	1

Hello,	Stephanie

ended	CallerWithAsync	in	thread	4	and	no	task

NOTE The	async	modifier	can	be	used	with	methods	that	return	void	or
return	an	object	that	offers	the	GetAwaiter	method.	.NET	offers	the	Task
and	ValueTask	types.	With	the	Windows	Runtime,	you	also	can	use
IAsyncOperation	.	You	should	avoid	using	the	async	modifier	with	void
methods;	read	more	about	this	in	the	“Error	Handling”	section	later	in	this
chapter.

The	next	section	explains	what's	driving	the	await	keyword.	Behind	the	scenes,
continuation	tasks	are	used.

Using	the	Awaiter
You	can	use	the	async	keyword	with	any	object	that	offers	the	GetAwaiter
method	and	returns	an	awaiter.	An	awaiter	implements	the	interface
INotifyCompletion	with	the	method	OnCompleted.	This	method	is	invoked
when	the	task	is	completed.	With	the	following	code	snippet,	instead	of	using
await	on	the	task,	the	GetAwaiter	method	of	the	task	is	used.	GetAwaiter	from
the	Task	class	returns	a	TaskAwaiter.	Using	the	OnCompleted	method,	a	local
function	is	assigned	that	is	invoked	when	the	task	is	completed	(code	file

TaskFoundations/Program.cs):

private	static	void	CallerWithAwaiter()

{

		TraceThreadAndTask($"starting	{nameof(CallerWithAwaiter)}");

		TaskAwaiter<string>	awaiter	=	

GreetingAsync("Matthias").GetAwaiter();

		awaiter.OnCompleted(OnCompleteAwaiter);

	

		void	OnCompleteAwaiter()

		{

				Console.WriteLine(awaiter.GetResult());

				TraceThreadAndTask($"ended	{nameof(CallerWithAwaiter)}");

		}

}

When	you	run	the	application,	you	can	see	a	result	similar	to	the	scenario	in
which	you	used	the	await	keyword:

starting	CallerWithAwaiter	in	thread	1	and	no	task

running	GreetingAsync	in	thread	4	and	task	1

running	Greeting	in	thread	4	and	task	1

Hello,	Matthias

ended	CallerWithAwaiter	in	thread	4	and	no	task

The	compiler	converts	the	await	keyword	by	putting	all	the	code	that	follows
within	the	block	of	an	OnCompleted	method.

Continuation	with	Tasks
You	can	also	handle	continuation	by	using	features	of	the	Task	object.
GreetingAsync	returns	a	Task<string>	object.	The	Task	object	contains
information	about	the	task	created	and	allows	waiting	for	its	completion.	The
ContinueWith	method	of	the	Task	class	defines	the	code	that	should	be	invoked
as	soon	as	the	task	is	finished.	The	delegate	assigned	to	the	ContinueWith
method	receives	the	completed	task	with	its	argument,	which	allows	accessing
the	result	from	the	task	using	the	Result	property	(code	file
TaskFoundations/Program.cs):

private	static	void	CallerWithContinuationTask()

{

		TraceThreadAndTask("started	CallerWithContinuationTask");

	

		var	t1	=	GreetingAsync("Stephanie");

	

		t1.ContinueWith(t	=>

		{

				string	result	=	t.Result;

				Console.WriteLine(result);

	

				TraceThreadAndTask("ended	CallerWithContinuationTask");

		});

}

Synchronization	Context
If	you	verify	the	thread	that	is	used	within	the	methods,	you	will	find	that	in	all
three	methods—	CallerWithAsync,	CallerWithAwaiter,	and
CallerWithContinuationTask	—different	threads	are	used	during	the	lifetime
of	the	methods.	One	thread	is	used	to	invoke	the	method	GreetingAsync,	and
another	thread	takes	action	after	the	await	keyword	or	within	the	code	block	in
the	ContinueWith	method.

With	a	console	application,	usually	this	is	not	an	issue.	However,	you	have	to
ensure	that	at	least	one	foreground	thread	is	still	running	before	all	background
tasks	that	should	be	completed	are	finished.	The	sample	application	invokes
Console.ReadLine	to	keep	the	main	thread	running	until	the	Return	key	is
pressed.

With	applications	that	are	bound	to	a	specific	thread	for	some	actions	(for
example,	with	WPF,	UWP,	and	WinUI	applications,	UI	elements	can	be	accessed
only	from	the	UI	thread).	This	is	an	issue.

Using	the	async	and	await	keywords	you	don't	have	to	do	any	special	actions	to
access	the	UI	thread	after	an	await	completion.	By	default,	the	generated	code
switches	the	thread	to	the	thread	that	has	the	synchronization	context.	A	WPF
application	sets	a	DispatcherSynchronizationContext,	and	a	Windows	Forms
application	sets	a	WindowsFormsSynchronizationContext.	Windows	apps	use
the	WinRTSynchronizationContext.	If	the	calling	thread	of	the	asynchronous
method	is	assigned	to	the	synchronization	context,	then	with	the	continuous
execution	after	the	await,	the	same	synchronization	context	is	used	by	default.	If
the	same	synchronization	context	shouldn't	be	used,	you	must	invoke	the	Task
method	ConfigureAwait(continueOnCapturedContext:	false).	An	example
that	illustrates	this	usefulness	is	a	Windows	app	in	which	the	code	that	follows
the	await	is	not	using	any	UI	elements.	In	this	case,	it	is	faster	to	avoid	the
switch	to	the	synchronization	context.

Using	Multiple	Asynchronous	Methods

Within	an	asynchronous	method,	you	can	call	multiple	asynchronous	methods.
How	you	code	this	depends	on	whether	the	results	from	one	asynchronous
method	are	needed	by	another.

Calling	Asynchronous	Methods	Sequentially
You	can	use	the	await	keyword	to	call	every	asynchronous	method.	In	cases
where	one	method	is	dependent	on	the	result	of	another	method,	this	is	useful.	In
the	following	code	snippet,	await	is	used	with	every	invocation	of
GreetingAsync	(code	file	TaskFoundations/Program.cs):

private	async	static	void	MultipleAsyncMethods()

{

		string	s1	=	await	GreetingAsync("Stephanie");

		string	s2	=	await	GreetingAsync("Matthias");

		Console.WriteLine($"Finished	both	methods.

{Environment.NewLine}	"	+

				$"Result	1:	{s1}{Environment.NewLine}	Result	2:	{s2}");

}

Using	Combinators
If	the	asynchronous	methods	are	not	dependent	on	each	other,	it	is	a	lot	faster	not
to	await	on	each	separately;	instead,	assign	the	return	of	the	asynchronous
method	to	a	Task	variable.	The	GreetingAsync	method	returns	Task<string>.
Both	these	methods	can	now	run	in	parallel.	Combinators	can	help	with	this.	A
combinator	accepts	multiple	parameters	of	the	same	type	and	returns	a	value	of
the	same	type.	The	passed	parameters	are	“combined”	to	one.	Task	combinators
accept	multiple	Task	objects	as	parameters	and	return	a	Task.

The	sample	code	invokes	the	Task.WhenAll	combinator	method	that	you	can
await	to	have	both	tasks	finished	(code	file	TaskFoundations/Program.cs):

private	async	static	void	MultipleAsyncMethodsWithCombinators1()

{

		Task<string>	t1	=	GreetingAsync("Stephanie");

		Task<string>	t2	=	GreetingAsync("Matthias");

		await	Task.WhenAll(t1,	t2);

		Console.WriteLine($"Finished	both	methods.

{Environment.NewLine}	"	+

				$"Result	1:	{t1.Result}{Environment.NewLine}	Result	2:	

{t2.Result}");

}

The	Task	class	defines	the	WhenAll	and	WhenAny	combinators.	The	Task	returned

from	the	WhenAll	method	is	completed	as	soon	as	all	tasks	passed	to	the	method
are	completed;	the	Task	returned	from	the	WhenAny	method	is	completed	as	soon
as	one	of	the	tasks	passed	to	the	method	is	completed.

The	WhenAll	method	of	the	Task	type	defines	several	overloads.	If	all	the	tasks
return	the	same	type,	you	can	use	an	array	of	this	type	for	the	result	of	the	await.
The	GreetingAsync	method	returns	a	Task<string>,	and	awaiting	for	this
method	results	in	a	string.	Therefore,	you	can	use	Task.WhenAll	to	return	a
string	array:

private	async	static	void	MultipleAsyncMethodsWithCombinators2()

{

		Task<string>	t1	=	GreetingAsync("Stephanie");

		Task<string>	t2	=	GreetingAsync("Matthias");

		string[]	result	=	await	Task.WhenAll(t1,	t2);

		Console.WriteLine($"Finished	both	methods.

{Environment.NewLine}	"	+

				$"Result	1:	{result[0]}{Environment.NewLine}	Result	2:	

{result[1]}");

}

The	WhenAll	method	is	of	practical	use	when	the	waiting	task	can	continue	only
when	all	tasks	it's	waiting	for	are	finished.	The	WhenAny	method	can	be	used
when	the	calling	task	can	do	some	work	when	any	task	it's	waiting	for	is
completed.	It	can	use	a	result	from	the	task	to	go	on.

Using	ValueTasks
Previous	to	C#	7,	the	await	keyword	required	a	Task	to	wait	for.	Since	C#	7,	any
class	implementing	the	GetAwaiter	method	can	be	used.	A	type	that	can	be	used
with	await	is	ValueTask.	Task	is	a	class,	but	ValueTask	is	a	struct.	This	has	a
performance	advantage	because	the	ValueTask	doesn't	have	an	object	on	the
heap.

What	is	the	real	overhead	of	a	Task	object	compared	to	the	asynchronous
method	call?	A	method	that	needs	to	be	invoked	asynchronously	typically	has	a
lot	more	overhead	than	an	object	on	the	heap.	Most	times,	the	overhead	of	a
Task	object	on	the	heap	can	be	ignored—but	not	always.	For	example,	a	method
can	have	one	path	where	data	is	retrieved	from	a	service	with	an	asynchronous
API.	With	this	data	retrieval,	the	data	is	written	to	a	local	cache.	When	you
invoke	the	method	the	second	time,	the	data	can	be	retrieved	in	a	fast	manner
without	needing	to	create	a	Task	object.

The	sample	method	GreetingValueTaskAsync	does	exactly	this.	In	case	the
name	is	already	found	in	the	dictionary,	the	result	is	returned	as	a	ValueTask.	If
the	name	isn't	in	the	dictionary,	the	GreetingAsync	method	is	invoked,	which
returns	a	Task.	This	task	is	awaited.	The	result	received	is	used	to	return	it	in	a
ValueTask	(code	file	TaskFoundations/Program.cs):

private	readonly	static	Dictionary<string,	string>	names	=	new	

Dictionary<string,	string>();

	

static	async	ValueTask<string>	GreetingValueTaskAsync(string	

name)

{

		if	(names.TryGetValue(name,	out	string	result))

		{

				return	result;

		}

		else

		{

				result	=	await	GreetingAsync(name);

				names.Add(name,	result);

				return	result;																

		}

}

The	UseValueTask	method	invokes	the	method	GreetingValueTaskAsync	two
times	with	the	same	name.	The	first	time,	the	data	is	retrieved	using	the
GreetingAsync	method;	the	second	time,	data	is	found	in	the	dictionary	and
returned	from	there:

private	static	async	void	UseValueTask()

{

		string	result	=	await	GreetingValueTaskAsync("Katharina");

		Console.WriteLine(result);

		string	result2	=	await	GreetingValueTaskAsync("Katharina");

		Console.WriteLine(result2);

}

If	a	method	doesn't	use	the	async	modifier	and	a	ValueTask	needs	to	be
returned,	ValueTask	objects	can	be	created	using	the	constructor	passing	the
result	or	passing	a	Task	object:

static	ValueTask<string>	GreetingValueTask2Async(string	name)

{

		if	(names.TryGetValue(name,	out	string	result))

		{

				return	new	ValueTask<string>(result);

		}

		else

		{

				Task<string>	t1	=		GreetingAsync(name);

																

				TaskAwaiter<string>	awaiter	=	t1.GetAwaiter();

				awaiter.OnCompleted(OnCompletion);

				return	new	ValueTask<string>(t1);

	

				void	OnCompletion()

				{

						names.Add(name,	awaiter.GetResult());

				}

		}

}

ERROR	HANDLING
Chapter	10,	“Errors	and	Exceptions,”	provides	detailed	coverage	of	errors	and
exception	handling.	However,	in	the	context	of	asynchronous	methods,	you
should	be	aware	of	some	special	handling	of	errors.

The	code	for	the	ErrorHandling	example	makes	use	of	the
System.Threading.Tasks	namespace	in	addition	to	the	System	namespace.

Let's	start	with	a	simple	method	that	throws	an	exception	after	a	delay	(code	file
ErrorHandling/Program.cs):

static	async	Task	ThrowAfter(int	ms,	string	message)

{

		await	Task.Delay(ms);

		throw	new	Exception(message);

}

If	you	call	the	asynchronous	method	without	awaiting	it,	you	can	put	the
asynchronous	method	within	a	try	/	catch	block—and	the	exception	will	not	be
caught.	That's	because	the	method	DontHandle	that's	shown	in	the	following
code	snippet	has	already	completed	before	the	exception	from	ThrowAfter	is
thrown.	You	need	to	await	the	ThrowAfter	method,	as	shown	in	the	example	that
follows	in	the	next	section.	Pay	attention	that	the	exception	is	not	caught	in	this
code	snippet:

private	static	void	DontHandle()

{

		try

		{

				ThrowAfter(200,	"first");

				//	exception	is	not	caught	because	this	method	is	finished

				//	before	the	exception	is	thrown

		}

		catch	(Exception	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

WARNING Asynchronous	methods	that	return	void	cannot	be	awaited.
The	issue	with	this	is	that	exceptions	that	are	thrown	from	async	void
methods	cannot	be	caught.	That's	why	it	is	best	to	return	a	Task	type	from	an
asynchronous	method.	Handler	methods	or	overridden	base	methods	are
exempted	from	this	rule	because	you	can't	change	the	return	type	here.	In
cases	where	you	need	async	void	methods,	it's	best	to	handle	exceptions
directly	within	this	method;	otherwise,	the	exception	can	be	missed.

Handling	Exceptions	with	Asynchronous	Methods
A	good	way	to	deal	with	exceptions	from	asynchronous	methods	is	to	use	await
and	put	a	try	/	catch	statement	around	it,	as	shown	in	the	following	code
snippet.	The	HandleOnError	method	releases	the	thread	after	calling	the
ThrowAfter	method	asynchronously,	but	it	keeps	the	Task	referenced	to	continue
as	soon	as	the	task	is	completed.	When	that	happens	(which,	in	this	case,	is	when
the	exception	is	thrown	after	two	seconds),	the	catch	matches	and	the	code
within	the	catch	block	is	invoked	(code	file	ErrorHandling/Program.cs):

private	static	async	void	HandleOnError()

{

		try

		{

				await	ThrowAfter(2000,	"first");

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"handled	{ex.Message}");

		}

}

Handling	Exceptions	with	Multiple	Asynchronous	Methods

What	if	two	asynchronous	methods	are	invoked	and	both	throw	exceptions?	In
the	following	example,	first	the	ThrowAfter	method	is	invoked,	which	throws	an
exception	with	the	message	first	after	two	seconds.	After	this	method	is
completed,	the	ThrowAfter	method	is	invoked,	throwing	an	exception	after	one
second.	Because	the	first	call	to	ThrowAfter	already	throws	an	exception,	the
code	within	the	try	block	does	not	continue	to	invoke	the	second	method,
instead	landing	within	the	catch	block	to	deal	with	the	first	exception	(code	file
ErrorHandling/Program.cs):

private	static	async	void	StartTwoTasks()

{

		try

		{

				await	ThrowAfter(2000,	"first");

				await	ThrowAfter(1000,	"second");	//	the	second	call	is	not	

invoked

				//	because	the	first	method	throws

				//	an	exception

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"handled	{ex.Message}");

		}

}

Now	start	the	two	calls	to	ThrowAfter	in	parallel.	The	first	method	throws	an
exception	after	two	seconds	and	the	second	one	after	one	second.	With
Task.WhenAll,	you	wait	until	both	tasks	are	completed,	whether	an	exception	is
thrown	or	not.	Therefore,	after	a	wait	of	about	two	seconds,	Task.WhenAll	is
completed,	and	the	exception	is	caught	with	the	catch	statement.	However,	you
only	see	the	exception	information	from	the	first	task	that	is	passed	to	the
WhenAll	method.	It's	not	the	task	that	threw	the	exception	first	(which	is	the
second	task),	but	the	first	task	in	the	list:

private	async	static	void	StartTwoTasksParallel()

{

		try

		{

				Task	t1	=	ThrowAfter(2000,	"first");

				Task	t2	=	ThrowAfter(1000,	"second");

				await	Task.WhenAll(t1,	t2);

		}

		catch	(Exception	ex)

		{

				//	just	display	the	exception	information	of	the	first	task

				//	that	is	awaited	within	WhenAll

				Console.WriteLine($"handled	{ex.Message}");

		}

}

One	way	to	get	the	exception	information	from	all	tasks	is	to	declare	the	task
variables	t1	and	t2	outside	of	the	try	block,	so	they	can	be	accessed	from
within	the	catch	block.	Here	you	can	check	the	status	of	the	task	to	determine
whether	they	are	in	a	faulted	state	with	the	IsFaulted	property.	In	case	of	an
exception,	the	IsFaulted	property	returns	true.	The	exception	information	itself
can	be	accessed	by	using	Exception.InnerException	of	the	Task	class.
Another,	and	usually	better,	way	to	retrieve	exception	information	from	all	tasks
is	demonstrated	next.

Using	AggregateException	Information
To	get	the	exception	information	from	all	failing	tasks,	you	can	write	the	result
from	Task.WhenAll	to	a	Task	variable.	This	task	is	then	awaited	until	all	tasks
are	completed.	Otherwise,	the	exception	would	still	be	missed.	As	described	in
the	preceding	section,	with	the	catch	statement,	only	the	exception	of	the	first
task	can	be	retrieved.	However,	now	you	have	access	to	the	Exception	property
of	the	outer	task.	The	Exception	property	is	of	type	AggregateException.	This
exception	type	defines	the	property	InnerExceptions	(not	only
InnerException),	which	contains	a	list	of	all	the	exceptions	that	have	been
awaited	for.	Now	you	can	easily	iterate	through	all	the	exceptions	(code	file
ErrorHandling/Program.cs):

private	static	async	void	ShowAggregatedException()

{

		Task	taskResult	=	null;

		try

		{

				Task	t1	=	ThrowAfter(2000,	"first");

				Task	t2	=	ThrowAfter(1000,	"second");

				await	(taskResult	=	Task.WhenAll(t1,	t2));

		}

		catch	(Exception	ex)

		{

				Console.WriteLine($"handled	{ex.Message}");

				foreach	(var	ex1	in	taskResult.Exception.InnerExceptions)

				{

						Console.WriteLine($"inner	exception	{ex1.Message}");

				}

		}

}

CANCELLATION	OF	ASYNC	METHODS
To	cancel	asynchronous	operations,	.NET	includes	a	cancellation	framework.
The	heart	of	this	is	the	CancellationToken	that's	created	from	a
CancellationTokenSource	defined	in	the	System.Threading	namespace.	To
allow	for	cleanup	of	resources,	a	task	should	never	be	killed.	To	demonstrate
how	this	can	be	done,	the	RunTaskAsync	method	receives	a	CancellationToken
with	a	parameter.	Within	the	implementation,	the	cancellation	token	is	checked	if
cancellation	is	requested.	If	it	is,	the	task	has	time	for	cleanup	of	some	resources
and	exits	by	invoking	the	ThrowIfCancellationRequested	method	of	the
CancellationToken.	In	case	cleanup	is	not	required,	you	can	immediately
invoke	ThrowIfCancellationRequired,	which	throws	the
OperationCanceledException	if	cancellation	is	required	(code	file
TaskCancellation/Program.cs):

Task	RunTaskAsync(CancellationToken	cancellationToken)	=>

		Task.Run(async	()	=>

		{

				while	(true)

				{

						Console.Write(".");

						await	Task.Delay(100);

						if	(cancellationToken.IsCancellationRequested)

						{

								//	do	some	cleanup

								Console.WriteLine("resource	cleanup	and	good	bye!");

								cancellationToken.ThrowIfCancellationRequested();

						}

				}

		});

The	Task.Delay	method	offers	an	overload	where	you	can	pass	the
CancellationToken	as	well.	This	method	throws	an
OperationCanceledException	as	well.	If	you	use	this	overloaded	Task.Delay
method	and	need	some	resource	cleanup	in	the	code,	you	need	to	catch	the
OperationCanceledException	to	do	the	cleanup	and	re-throw	the	exception.

When	you	start	the	RunTaskAsync	method,	a	CancellationTokenSource	is
created.	Passing	a	TimeSpan	to	the	constructor	cancels	the	associated	token	after
the	specified	time.	If	you	have	some	other	task	that	should	do	the	cancellation,

this	task	can	invoke	the	Cancel	method	of	the	CancellationTokenSource.	The
try/catch	block	catches	the	previously	mentioned	OperationCanceledException
when	cancellation	occurs.

CancellationTokenSource	cancellation	=	

new(TimeSpan.FromSeconds(5));

	

try

{

		await	RunTaskAsync(cancellation.Token);

}

catch	(OperationCanceledException	ex)

{

		Console.WriteLine(ex.Message);

}

ASYNC	STREAMS
A	great	enhancement	since	C#	8	is	the	support	of	async	streams.	Instead	of
getting	just	one	result	from	an	asynchronous	method,	a	stream	of	async	results
can	be	received.	Async	streams	is	based	on	the	interfaces	IAsyncDisposable,
IAsyncEnumerable,	and	IAsyncEnumerator,	and	updated	implementations	for
the	foreach	and	yield	statements.	IAsyncDisposable	defines	the	DisposeAsync
method	for	asynchronously	disposing	of	resources.	IAsyncEnumerable
corresponds	to	the	synchronous	IEnumerable	interface	and	defines	the
GetAsyncEnumerator	method.	IAsyncEnumerator	corresponds	to	the
synchronous	IEnumerator	interface	and	defines	the	MoveNextAsync	method	and
the	Current	property.	The	foreach	statement	has	been	updated	with	the	syntax
await	foreach	to	iterate	through	async	streams.	The	yield	statement	has	been
modified	to	support	returning	IAsyncEnumerable	and	IAsyncEnumerator.

NOTE Read	Chapter	6,	“Arrays,”	for	information	about	how	the	foreach
and	yield	statements	make	use	of	the	synchronous	iterator	interfaces.

To	see	async	streams	in	action,	a	virtual	device	represented	from	the	class
ADevice	returns	random	sensor	data	in	an	async	stream.	The	sensor	data	is
defined	with	the	record	SensorData.	The	device	returns	sensor	data	until	it	is
canceled.	Adding	the	attribute	EnumeratorCancellation	to	the
CancellationToken	allows	cancellation	via	an	extension	method	shown	later.
Within	the	endless	loop	implementation,	the	yield	return	statement	is	used	to

return	stream	values	for	the	IAsyncEnumerable	interface	(code	file
AsyncStreams/Program.cs):

public	record	SensorData(int	Value1,	int	Value2);

	

public	class	ADevice

{

		private	Random	_random	=	new();

		public	async	IAsyncEnumerable<SensorData>	GetSensorData(

				[EnumeratorCancellation]	CancellationToken	=	default)

		{

				while(true)

				{

						await	Task.Delay(250,	cancellationToken);

						yield	return	new	SensorData(_random.Next(20),	

_random.Next(20));

				}

		}

}

After	defining	a	method	that	returns	an	async	stream	with	the	help	of	the	yield
return	statement,	let's	use	this	from	an	await	foreach.	Here,	the	async	stream
is	iterated,	and	the	cancellation	token	is	passed	using	the	WithCancellation
method	to	stop	the	stream	after	five	seconds:

using	System;

using	System.Threading;

using	System.Threading.Tasks;

	

CancellationTokenSource	cancellation	=	

new(TimeSpan.FromSeconds(5));

	

var	aDevice	=	new	ADevice();

try

{

		await	foreach	(var	data	in	

aDevice.GetSensorData().WithCancellation(cancellation.Token))

		{

				Console.WriteLine($"{data.Value1}	{data.Value2}");

		}

}

catch	(OperationCanceledException	ex)

{

		Console.WriteLine(ex.Message);

}

NOTE See	Chapter	25,	“Services,”	and	Chapter	28,	“SignalR,”	for
information	about	how	async	streaming	can	be	used	to	asynchronously
stream	data	across	the	network.

ASYNC	WITH	WINDOWS	APPS
Using	the	async	keyword	with	Windows	apps	works	the	same	as	what	you've
already	seen	in	this	chapter.	However,	you	need	to	be	aware	that	after	calling
await	from	the	UI	thread,	when	the	asynchronous	method	returns,	you're	back	in
the	UI	thread	by	default.	This	makes	it	easy	to	update	UI	elements	after	the
asynchronous	method	is	completed.

NOTE The	Windows	apps	sample	code	in	this	chapter	uses	the	new
technology	WinUI	to	create	a	Windows	application.	Because	this	technology
is	so	new,	please	check	for	updated	readme	files	in	the	directory	of	the	code
samples	for	what	you	need	to	run	this	application.	Using	WPF	or	UWP
instead	is	not	a	lot	different,	and	you	can	change	the	code	for	these
technologies	easily.

Let's	create	a	WinUI	Desktop	application	with	Visual	Studio.	This	app	contains
five	buttons	and	a	TextBlock	element	to	demonstrate	different	scenarios	(code
file	AsyncWindowsApps/MainWindow.xaml):

<StackPanel>

		<Button	Content="Start	Async"	Click="OnStartAsync"	

Margin="4"/>

		<Button	Content="Start	Async	with	ConfigureAwait"	

Click="OnStartAsyncConfigureAwait"	

				Margin="4"/>

		<Button	Content="Start	Async	with	Thread	Switch"	

				Click="OnStartAsyncWithThreadSwitch"	Margin="4"/>

		<Button	Content="Use	IAsyncOperation"	

Click="OnIAsyncOperation"	Margin="4"/>

		<Button	Content="Deadlock"	Click="OnStartDeadlock"	

Margin="4"/>

		<TextBlock	x:Name="text1"	Margin="4"/>

</StackPanel>

NOTE Programming	WinUI	apps	is	covered	in	detail	in	Chapters	29

through	32.

In	the	OnStartAsync	method,	the	thread	ID	of	the	UI	thread	is	written	to	the
TextBlock	element.	Next,	the	asynchronous	method	Task.Delay,	which	does	not
block	the	UI	thread,	is	invoked,	and	after	this	method	is	completed,	the	thread	ID
is	written	to	the	TextBlock	again	(code	file
AsyncWindowsDesktopApp/MainWindow.xaml.cs):

private	async	void	OnStartAsync(object	sender,	RoutedEventArgs	

e)

{

		text1.Text	=	$"UI	thread:	{GetThread()}";

		await	Task.Delay(1000);

		text1.Text	+=	$"\n	after	await:	{GetThread()}";

}

For	accessing	the	thread	ID,	WinUI	can	now	use	the	Thread	class.	With	older
UWP	versions,	you	need	to	use	Environment.CurrentManagedThreadId	instead:

private	string	GetThread()	=>	$"thread:	

{Thread.CurrentThread.ManagedThreadId}";

When	you	run	the	application,	you	can	see	similar	output	in	the	text	element.
Contrary	to	console	applications,	with	Windows	apps	defining	a	synchronization
context,	after	the	await	you	can	see	the	same	thread	as	before.	This	allows	direct
access	to	UI	elements:

UI	thread:	thread	1

after	await:	thread	1

Configure	Await
If	you	don't	need	access	to	UI	elements,	you	can	configure	await	not	to	use	the
synchronization	context.	The	next	code	snippet	demonstrates	the	configuration
and	also	shows	why	you	shouldn't	access	UI	elements	from	a	background	thread.

With	the	method	OnStartAsyncConfigureAwait,	after	writing	the	ID	of	the	UI
thread	to	the	text	information,	the	local	function	AsyncFunction	is	invoked.	In
this	local	function,	the	starting	thread	is	written	before	the	asynchronous	method
Task.Delay	is	invoked.	Using	the	task	returned	from	this	method,	the
ConfigureAwait	is	invoked.	With	this	method,	the	task	is	configured	by	passing
the	continueOnCapturedContext	argument	set	to	false.	With	this	context
configuration,	you	see	that	the	thread	after	the	await	is	not	the	UI	thread

anymore.	Using	a	different	thread	to	write	the	result	to	the	result	variable	is
okay.	What	you	should	never	do	is	shown	in	the	try	block:	accessing	UI
elements	from	a	non-UI	thread.	The	exception	you	get	contains	the	HRESULT
value	as	shown	in	the	when	clause.	Just	this	exception	is	caught	in	the	catch	:	the
result	is	returned	to	the	caller.	With	the	caller,	ConfigureAwait	is	invoked	as
well,	but	this	time	the	continueOnCapturedContext	is	set	to	true.	Here,	both
before	and	after	the	await,	the	method	is	running	in	the	UI	thread	(code	file
AsyncWindowsDesktopApp/MainWindow.xaml.cs):

private	async	void	OnStartAsyncConfigureAwait(object	sender,	

RoutedEventArgs	e)

{

		text1.Text	=	$"UI	thread:	{GetThread()}";

	

		string	s	=	await	AsyncFunction().ConfigureAwait(

				continueOnCapturedContext:	true);

	

		//	after	await,	with	continueOnCapturedContext	true	we	are	

back	in	the	UI	thread

		text1.Text	+=	$"\n{s}\nafter	await:	{GetThread()}";

	

		async	Task<string>	AsyncFunction()

		{

				string	result	=	$"\nasync	function:	{GetThread()}\n";

				await	

Task.Delay(1000).ConfigureAwait(continueOnCapturedContext:	

false);

				result	+=	$"\nasync	function	after	await	:	{GetThread()};";

	

				try

				{

						text1.Text	=	"this	is	a	call	from	the	wrong	thread";

						return	"not	reached";

				}

				catch	(Exception	ex)	when	(ex.HResult	==	-2147417842)

				{

						result	+=	$"exception:	{ex.Message}";

						return	result;

						//	we	know	it's	the	wrong	thread

						//	don't	access	UI	elements	from	the	previous	try	block

				}

		}

}

NOTE Exception	handling	and	filtering	is	explained	in	Chapter	10.

When	you	run	the	application,	you	can	see	output	similar	to	the	following.	In	the
async	local	function	after	the	await,	a	different	thread	is	used.	The	text	“	not
reached	”	is	never	written,	because	the	exception	is	thrown:

UI	thread:	thread	1

async	function:	thread	1

async	function	after	await:	thread	5;	exception:	The	application	

called	an	interface

that	was	marshalled	for	a	different	thread.

after	await:	thread	1

NOTE In	later	WinUI	chapters	in	this	book,	data	binding	is	used	instead
of	directly	accessing	properties	of	UI	elements.	However,	with	WinUI,	you
also	can't	write	properties	that	are	bound	to	UI	elements	from	a	non-UI
thread.

Switch	to	the	UI	Thread
In	some	scenarios,	there's	no	effortless	way	around	using	a	background	thread
and	accessing	UI	elements.	Here,	you	can	switch	to	the	UI	thread	with	the
DispatcherQueue	object	that	is	returned	from	the	DispatcherQueue	property.
The	DispatcherQueue	property	is	defined	in	the	DependencyObject	class.
DependencyObject	is	a	base	class	of	UI	elements.	Invoking	the	TryEnqueu
method	of	the	DispatcherQueue	object	runs	the	passed	lambda	expression	again
in	a	UI	thread	(code	file	AsyncWindowsDesktopApp/MainWindow.xaml.cs):

private	async	void	OnStartAsyncWithThreadSwitch(object	sender,	

RoutedEventArgs	e)

{

		text1.Text	=	$"UI	thread:	{GetThread()}";

	

		string	s	=	await	AsyncFunction();

	

		text1.Text	+=	$"\nafter	await:	{GetThread()}";

	

		async	Task<string>	AsyncFunction()

		{

				string	result	=	$"\nasync	function:	{GetThread()}\n";

				await	

Task.Delay(1000).ConfigureAwait(continueOnCapturedContext:	

false);

				result	+=	$"\nasync	function	after	await	:	{GetThread()}";

	

				text1.DispatcherQueue.TryEnqueue(()	=>

				{

						text1.Text	+=	

								$"\nasync	function	switch	back	to	the	UI	thread:	

{GetThread()}";

				}

				return	result;

		}

}

When	you	run	the	application,	you	can	see	the	UI	thread	used	when	using
RunAsync	:

UI	Thread:	thread	1

async	function	switch	back	to	the	UI	thread:	thread	1

async	function:	thread	1

async	function	after	await:	thread	4

after	await:	thread	1

Using	IAsyncOperation
Asynchronous	methods	are	defined	by	the	Windows	Runtime	not	to	return	a
Task	or	a	ValueTask.	Task	and	ValueTask	are	not	part	of	the	Windows	Runtime.
Instead,	these	methods	return	an	object	that	implements	the	interface
IAsyncOperation.	IAsyncOperation	does	not	define	the	method	GetAwaiter	as
needed	by	the	await	keyword.	However,	an	IAsyncOperation	is	automatically
converted	to	a	Task	when	you	use	the	await	keyword.	You	can	also	use	the
AsTask	extension	method	to	convert	an	IAsyncOperation	object	to	a	task.

With	the	example	application,	in	the	method	OnIAsyncOperation,	the	ShowAsync
method	of	the	MessageDialog	is	invoked.	This	method	returns	an
IAsyncOperation,	and	you	can	simply	use	the	await	keyword	to	get	the	result
(code	file	AsyncDesktopWindowsApp/MainWindow.xaml.cs):

private	async	void	OnIAsyncOperation(object	sender,	

RoutedEventArgs	e)

{

		MessageDialog	dlg	=	new("Select	One,	Two,	Or	Three",	

"Sample");

	

		dlg.Commands.Add(new	UICommand("One",	null,	1));

		dlg.Commands.Add(new	UICommand("Two",	null,	2));

		dlg.Commands.Add(new	UICommand("Three",	null,	3));

	

		IUICommand	command	=	await	dlg.ShowAsync();

	

		text1.Text	=	$"Command	{command.Id}	with	the	label	

{command.Label}	invoked";

}

Avoid	Blocking	Scenarios
It's	dangerous	using	Wait	on	a	Task	and	the	async	keyword	together.	With
applications	using	the	synchronization	context,	this	can	easily	result	in	a
deadlock.

In	the	method	OnStartDeadlock,	the	local	function	DelayAsync	is	invoked.
DelayAsync	waits	on	the	completion	of	Task.Delay	before	continuing	in	the
foreground	thread.	However,	the	caller	invokes	the	Wait	method	on	the	task
returned	from	DelayAsync.	The	Wait	method	blocks	the	calling	thread	until	the
task	is	completed.	In	this	case,	the	Wait	is	invoked	from	the	foreground	thread,
so	the	Wait	blocks	the	foreground	thread.	The	await	on	Task.Delay	can	never
complete,	because	the	foreground	thread	is	not	available.	This	is	a	classical
deadlock	scenario	(code	file	AsyncWindowsDesktopApp/MainWindow.xaml.cs):

private	void	OnStartDeadlock(object	sender,	RoutedEventArgs	e)

{

		DelayAsync().Wait();

}

	

private	async	Task	DelayAsync()

{

		await	Task.Delay(1000);

}

WARNING Avoid	using	Wait	and	await	together	in	applications	using
the	synchronization	context.

SUMMARY
This	chapter	introduced	the	async	and	await	keywords.	In	the	examples
provided,	you've	seen	the	advantages	of	the	task-based	asynchronous	pattern
compared	to	the	asynchronous	pattern	and	the	event-based	asynchronous	pattern
available	with	earlier	editions	of	.NET.

You've	also	seen	how	easy	it	is	to	create	asynchronous	methods	with	the	help	of
the	Task	class	and	learned	how	to	use	the	async	and	await	keywords	to	wait	for
these	methods	without	blocking	threads.	You	looked	at	the	error-handling	and
cancelation	aspects	of	asynchronous	methods,	and	you've	seen	how	async
streams	are	supported	with	C#.	For	invoking	asynchronous	methods	in	parallel,
you've	seen	the	use	of	Task.WhenAll.

For	more	information	on	parallel	programming	and	details	about	threads	and
tasks,	see	Chapter	17,	“Parallel	Programming.”

The	next	chapter	continues	with	core	features	of	C#	and	.NET	and	gives	detailed
information	on	reflection,	metadata,	and	source	generators.

12
Reflection,	Metadata,	and	Source	Generators

WHAT'S	IN	THIS	CHAPTER?

Using	custom	attributes

Inspecting	the	metadata	at	runtime	using	reflection

Working	with	the	dynamic	type

Creating	dynamic	objects	with	ExpandoObject

Compiling	code	with	source	generators

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/ReflectionAndSourceGenerators.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

LookupWhatsNew

TypeView

VectorClass

WhatsNewAttributes

Dynamic

DynamicFileReader

CodeGenerationSample

All	the	sample	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

INSPECTING	CODE	AT	RUNTIME	AND	DYNAMIC
PROGRAMMING
This	chapter	focuses	on	custom	attributes,	reflection,	dynamic	programming,	and
source	code	generation	during	the	build	process	with	C#	9	source	generators.
Custom	attributes	are	mechanisms	that	enable	you	to	associate	custom	metadata
with	program	elements.	This	metadata	is	created	at	compile	time	and	embedded
in	an	assembly.	Reflection	is	a	generic	term	that	describes	the	capability	to
inspect	and	manipulate	program	elements	at	runtime.	For	example,	reflection
allows	you	to	do	the	following:

Enumerate	the	members	of	a	type

Instantiate	a	new	object

Execute	the	members	of	an	object

Find	out	information	about	a	type

Find	out	information	about	an	assembly

Inspect	the	custom	attributes	applied	to	a	type

Create	and	compile	a	new	assembly

This	list	represents	a	great	deal	of	functionality	and	encompasses	some	of	the
most	powerful	and	complex	capabilities	provided	by	.NET.	Because	one	chapter
does	not	have	the	space	to	cover	all	the	capabilities	of	reflection,	I	focus	on	those
elements	that	you	are	likely	to	use	most	frequently.

To	demonstrate	custom	attributes	and	reflection,	in	this	chapter,	you	first	develop
an	example	based	on	a	company	that	regularly	ships	upgrades	of	its	software	and
wants	to	have	details	about	these	upgrades	documented	automatically.	In	the
example,	you	define	custom	attributes	that	indicate	the	date	when	program
elements	were	last	modified	and	what	changes	were	made.	You	then	use
reflection	to	develop	an	application	that	looks	for	these	attributes	in	an	assembly
and	can	automatically	display	all	the	details	about	what	upgrades	have	been
made	to	the	software	since	a	given	date.

Another	example	in	this	chapter	considers	an	application	that	reads	from	or
writes	to	a	database	and	uses	custom	attributes	as	a	way	to	mark	which	classes
and	properties	correspond	to	which	database	tables	and	columns.	By	reading
these	attributes	from	the	assembly	at	runtime,	the	program	can	automatically
retrieve	or	write	data	to	the	appropriate	location	in	the	database	without

requiring	specific	logic	for	each	table	or	column.

The	second	aspect	of	this	chapter	is	dynamic	programming,	which	has	been	a
part	of	the	C#	language	since	version	4	when	the	dynamic	type	was	added.
Although	C#	is	a	statically	typed	language,	the	additions	for	dynamic
programming	give	the	C#	language	capabilities	for	calling	script	functions	from
within	C#.

In	this	chapter,	you	look	at	the	dynamic	type	and	the	rules	for	using	it.	You	also
see	what	an	implementation	of	DynamicObject	looks	like	and	how	you	can	use
it.	ExpandoObject,	which	is	an	implementation	of	DynamicObject,	is	also
covered.

The	third	big	aspect	of	this	chapter	is	a	C#	9	enhancement—source	generators.
With	source	generators,	code	can	be	created	while	you	start	the	build	process.
The	source	code	you	write	can	be	enhanced,	and	you	can	also	use	other	data
sources	to	create	C#	source	code.	In	this	chapter,	you'll	see	source	generators
checking	attributes.	This	results	in	generating	code	that's	available	during
compile	time	instead	of	using	reflection	during	runtime.

CUSTOM	ATTRIBUTES
You	have	already	seen	in	this	book	how	you	can	define	attributes	on	various
items	within	your	program.	These	attributes	have	been	defined	by	Microsoft	as
part	of	.NET,	and	many	of	them	receive	special	support	from	the	C#	compiler.
This	means	that	for	those	particular	attributes,	the	compiler	can	customize	the
compilation	process	in	specific	ways—for	example,	laying	out	a	struct	in
memory	according	to	the	details	in	the	StructLayout	attributes.

.NET	also	enables	you	to	define	attributes.	By	default,	custom	attributes	don't
have	any	effect	on	the	compilation	process	because	the	compiler	has	no	intrinsic
awareness	of	them	(later	you'll	see	source	generators	where	custom	attributes
can	have	an	effect	on	the	compilation	process).	These	attributes	are	emitted	as
metadata	in	the	compiled	assembly	when	they	are	applied	to	program	elements.

By	itself,	this	metadata	might	be	useful	for	documentation	purposes,	but	what
makes	attributes	really	powerful	is	that	by	using	reflection,	your	code	can	read
this	metadata	and	use	it	to	make	decisions	at	runtime.	This	means	that	the
custom	attributes	that	you	define	can	directly	affect	how	your	code	runs.	For
example,	custom	attributes	can	be	used	to	enable	declarative	code	access
security	checks	for	custom	permission	classes,	to	associate	information	with

program	elements	that	can	then	be	used	by	testing	tools,	or	when	developing
extensible	frameworks	that	allow	the	loading	of	plug-ins	or	modules.

Writing	Custom	Attributes
To	understand	how	to	write	custom	attributes,	it	is	useful	to	know	what	the
compiler	does	when	it	encounters	an	element	in	your	code	that	has	a	custom
attribute	applied	to	it.	Suppose	that	you	have	a	C#	property	declaration	that	looks
like	this:

[FieldName("SocialSecurityNumber")]

public	string	SocialSecurityNumber

{

		get	{

				//…

When	the	C#	compiler	recognizes	that	this	property	has	an	attribute	applied	to	it
(FieldName),	it	first	appends	the	string	Attribute	to	this	name,	forming	the
combined	name	FieldNameAttribute.	The	compiler	then	searches	all	the
namespaces	in	its	search	path	(those	namespaces	that	have	been	mentioned	in	a
using	directive)	for	a	class	with	the	specified	name.	Note	that	if	you	mark	an
item	with	an	attribute	whose	name	already	ends	in	the	string	Attribute,	the
compiler	does	not	add	the	string	to	the	name	a	second	time;	it	leaves	the	attribute
name	unchanged.	Therefore,	the	preceding	code	is	equivalent	to	this:

[FieldNameAttribute("SocialSecurityNumber")]

public	string	SocialSecurityNumber

{

		get	{

				//…

The	compiler	expects	to	find	a	class	with	this	name,	and	it	expects	this	class	to
be	derived	directly	or	indirectly	from	System.Attribute.	The	compiler	also
expects	that	this	class	contains	information	governing	the	use	of	the	attribute.	In
particular,	the	attribute	class	needs	to	specify	the	following:

The	types	of	program	elements	to	which	the	attribute	can	be	applied
(classes,	structs,	properties,	methods,	and	so	on)

Whether	it	is	legal	for	the	attribute	to	be	applied	more	than	once	to	the	same
program	element

Whether	the	attribute,	when	applied	to	a	class	or	interface,	is	inherited	by
derived	classes	and	interfaces

The	mandatory	and	optional	parameters	the	attribute	takes

If	the	compiler	cannot	find	a	corresponding	attribute	class	or	if	it	finds	one	but
the	way	that	you	have	used	that	attribute	does	not	match	the	information	in	the
attribute	class,	the	compiler	raises	a	compilation	error.	For	example,	if	the
attribute	class	indicates	that	the	attribute	can	be	applied	only	to	classes,	but	you
have	applied	it	to	a	struct	definition,	a	compilation	error	occurs.

Continuing	with	the	example,	assume	that	you	have	defined	the	FieldName
attribute	like	this:

[AttributeUsage(AttributeTargets.Property,

		AllowMultiple=false,	Inherited=false)]

public	class	FieldNameAttribute:	Attribute

{

		private	string	_name;

		public	FieldNameAttribute(string	name)	=>	_name	=	name;

}

The	following	sections	discuss	each	element	of	this	definition.

Specifying	the	AttributeUsage	Attribute
The	first	thing	to	note	is	that	the	attribute	class	is	marked	with	an	attribute—the
System.AttributeUsage	attribute.	This	is	an	attribute	defined	by	Microsoft	for
which	the	C#	compiler	provides	special	support.	The	primary	purpose	of
AttributeUsage	is	to	identify	the	types	of	program	elements	to	which	your
custom	attribute	can	be	applied.	This	information	is	provided	by	the	first
parameter	of	the	AttributeUsage	attribute.	This	parameter	is	mandatory,	and	it
is	of	an	enumerated	type,	AttributeTargets.	In	the	previous	example,	you	have
indicated	that	the	FieldName	attribute	can	be	applied	only	to	properties,	which	is
fine,	because	that	is	exactly	what	you	have	applied	it	to	in	the	earlier	code
fragment.	The	AttributeTargets	enum	type	defines	members	to	apply
attributes	on	the	assembly,	classes,	constructors,	fields,	events,	methods,
interfaces,	structs,	return	values,	and	more.

Note	that	when	applying	the	attribute	to	a	program	element,	you	place	the
attribute	in	square	brackets	immediately	before	the	element.	However,	two
values	in	the	preceding	list	do	not	correspond	to	any	program	element:	Assembly
and	Module.	An	attribute	can	be	applied	to	an	assembly	or	a	module	as	a	whole,
rather	than	to	an	element	in	your	code;	in	this	case	the	attribute	can	be	placed
anywhere	in	your	source	code,	but	it	must	be	prefixed	with	the	assembly	or
module	keyword:

[assembly:SomeAssemblyAttribute(Parameters)]

[module:SomeAssemblyAttribute(Parameters)]

When	indicating	the	valid	target	elements	of	a	custom	attribute,	you	can	combine
these	values	using	the	bitwise	OR	operator.	For	example,	if	you	want	to	indicate
that	your	FieldName	attribute	can	be	applied	to	both	properties	and	fields,	you
use	the	following:

[AttributeUsage(AttributeTargets.Property	|	

AttributeTargets.Field,

		AllowMultiple=false,	Inherited=false)]

public	class	FieldNameAttribute:	Attribute

You	can	also	use	AttributeTargets.All	to	indicate	that	your	attribute	can	be
applied	to	all	types	of	program	elements.	The	AttributeUsage	attribute	also
contains	two	other	parameters:	AllowMultiple	and	Inherited.	These	are
specified	using	the	syntax	of	<ParameterName>=<ParameterValue>	instead	of
simply	specifying	the	values	for	these	parameters.	These	parameters	are	optional
—you	can	omit	them.

The	AllowMultiple	parameter	indicates	whether	an	attribute	can	be	applied
more	than	once	to	the	same	item.	The	fact	that	it	is	set	to	false	indicates	that	the
compiler	should	raise	an	error	if	it	sees	something	like	this:

[FieldName("SocialSecurityNumber")]

[FieldName("NationalInsuranceNumber")]

public	string	SocialSecurityNumber

{

		//…

If	the	Inherited	parameter	is	set	to	true,	an	attribute	applied	to	a	class	or
interface	is	also	automatically	applied	to	all	derived	classes	or	interfaces.	If	the
attribute	is	applied	to	a	method	or	property,	it	automatically	applies	to	any
overrides	of	that	method	or	property,	and	so	on.

Specifying	Attribute	Parameters
This	section	demonstrates	how	you	can	specify	the	parameters	that	your	custom
attribute	takes.	When	the	compiler	encounters	a	statement	such	as	the	following,
it	examines	the	parameters	passed	into	the	attribute—which	is	a	string—and
looks	for	a	constructor	for	the	attribute	that	takes	exactly	those	parameters:

[FieldName("SocialSecurityNumber")]

public	string	SocialSecurityNumber

{

		//…

If	the	compiler	finds	an	appropriate	constructor,	it	emits	the	specified	metadata
to	the	assembly.	If	the	compiler	does	not	find	an	appropriate	constructor,	a
compilation	error	occurs.	As	discussed	later	in	this	chapter,	reflection	involves
reading	metadata	(attributes)	from	assemblies	and	instantiating	the	attribute
classes	they	represent.	Because	of	this,	the	compiler	must	ensure	that	an
appropriate	constructor	exists	that	allows	the	runtime	instantiation	of	the
specified	attribute.

In	the	example,	you	have	supplied	just	one	constructor	for	FieldNameAttribute,
and	this	constructor	takes	one	string	parameter.	Therefore,	when	applying	the
FieldName	attribute	to	a	property,	you	must	supply	one	string	as	a	parameter,	as
shown	in	the	preceding	code.

To	allow	a	choice	of	what	types	of	parameters	should	be	supplied	with	an
attribute,	you	can	provide	different	constructor	overloads,	although	normal
practice	is	to	supply	just	one	constructor	and	use	properties	to	define	any	other
optional	parameters,	as	explained	next.

Specifying	Optional	Attribute	Parameters
As	demonstrated	with	the	AttributeUsage	attribute,	an	alternative	syntax
enables	optional	parameters	to	be	added	to	an	attribute.	This	syntax	involves
specifying	the	names	and	values	of	the	optional	parameters.	It	works	through
public	properties	or	fields	in	the	attribute	class.	For	example,	suppose	that	you
modify	the	definition	of	the	SocialSecurityNumber	property	as	follows:

[FieldName("SocialSecurityNumber",	Comment="This	is	the	primary	

key	field")]

public	string	SocialSecurityNumber	{	get;	set;	}

{

		//…

In	this	case,	the	compiler	recognizes	the	<ParameterName>=<ParameterValue>
syntax	of	the	second	parameter	and	does	not	attempt	to	match	this	parameter	to	a
FieldNameAttribute	constructor.	Instead,	it	looks	for	a	public	property	or	field
(although	public	fields	are	not	considered	good	programming	practice,	so
normally	you	will	work	with	properties)	of	that	name	that	it	can	use	to	set	the
value	of	this	parameter.	If	you	want	the	previous	code	to	work,	you	have	to	add
some	code	to	FieldNameAttribute	:

[AttributeUsage(AttributeTargets.Property,

		AllowMultiple=false,	Inherited=false)]

public	class	FieldNameAttribute	:	Attribute

{

		public	string	Comment	{	get;	set;	}

		private	string	_fieldName;

		public	FieldNameAttribute(string	fieldName)

		{

				_fieldName	=	fieldName;

		}

		//…

}

Custom	Attribute	Example:	WhatsNewAttributes
In	this	section,	you	start	developing	the	example	mentioned	at	the	beginning	of
the	chapter.	WhatsNewAttributes	provides	for	an	attribute	that	indicates	when	a
program	element	was	last	modified.	This	is	a	more	ambitious	code	example	than
many	of	the	others	in	that	it	consists	of	three	separate	projects:

WhatsNewAttributes	—This	library	contains	the	definitions	of	the	attribute
classes	LastModifiedAttribute	and	SupportsWhatsNewAttribute.

VectorClass	—This	library	makes	use	of	the	custom	attributes.	Types	and
members	are	annotated	with	these	attributes.

LookUpWhatsNew	—This	executable	reads	the	attributes	with	reflection.

The	WhatsNewAttributes	Library
This	section	starts	with	the	core	WhatsNewAttributes	.NET	library.	The	source
code	is	contained	in	the	file	WhatsNewAttributes.cs,	which	is	located	in	the
WhatsNewAttributes	project	of	the	WhatsNewAttributes	solution	in	the
example	code	for	this	chapter.

The	WhatsNewAttributes.cs	file	defines	two	attribute	classes,
LastModifiedAttribute	and	SupportsWhatsNewAttribute.	You	use	the
attribute	LastModifiedAttribute	to	mark	when	an	item	was	last	modified.	It
takes	two	mandatory	parameters	(parameters	that	are	passed	to	the	constructor):
the	date	of	the	modification	and	a	string	containing	a	description	of	the	changes.
One	optional	parameter	named	Issues	(for	which	a	public	property	exists)	can
be	used	to	describe	any	outstanding	issues	for	the	item.

In	practice,	you	would	probably	want	this	attribute	to	apply	to	anything.	To	keep
the	code	simple,	its	usage	is	limited	here	to	classes,	methods,	and	constructors.
You	allow	it	to	be	applied	more	than	once	to	the	same	item

(AllowMultiple=true)	because	an	item	might	be	modified	more	than	once,	and
each	modification	has	to	be	marked	with	a	separate	attribute	instance.

SupportsWhatsNew	is	a	smaller	class	representing	an	attribute	that	doesn't	take
any	parameters.	The	purpose	of	this	assembly	attribute	is	to	mark	an	assembly
for	which	you	are	maintaining	documentation	via	the	LastModifiedAttribute.
This	way,	the	program	that	examines	this	assembly	later	knows	that	the	assembly
it	is	reading	is	one	on	which	you	are	actually	using	your	automated
documentation	process.	Here	is	the	complete	source	code	for	this	part	of	the
example	(code	file
ReflectionSamlpes/WhatsNewAttributes/WhatsNewAttributes.cs):

[AttributeUsage(AttributeTargets.Class	|	AttributeTargets.Method	

|			

		AttributeTargets.Constructor	|	AttributeTargets.Property,	

AllowMultiple=true,	

		Inherited=false)]

public	class	LastModifiedAttribute:	Attribute

{

		private	readonly	DateTime	_dateModified;

		private	readonly	string	_changes;

		public	LastModifiedAttribute(string	dateModified,	string	

changes)

		{

				_dateModified	=	DateTime.Parse(dateModified);

				_changes	=	changes;

		}

	

		public	DateTime	DateModified	=>	_dateModified;

	

		public	string	Changes	=>	_changes;

	

		public	string	Issues	{	get;	set;	}

}

	

[AttributeUsage(AttributeTargets.Assembly)]

public	class	SupportsWhatsNewAttribute:	Attribute

{

}

Based	on	what	has	been	discussed,	this	code	should	be	fairly	clear.	Notice,
however,	that	the	properties	DateModified	and	Changes	are	read-only.	Using	the
expression	syntax,	the	compiler	creates	get	accessors.	There	is	no	need	for	set
accessors	because	you	are	requiring	these	parameters	to	be	set	in	the	constructor
as	mandatory	parameters.	You	need	the	get	accessors	so	that	you	can	read	the

values	of	these	attributes.

The	VectorClass	Library
The	VectorClass	.NET	library	references	the	WhatsNewAttributes	library.
After	adding	the	using	directives,	the	global	assembly	attribute	marks	the
assembly	to	support	the	WhatsNew	attributes	(code	file
ReflectionSamples/VectorClass/Vector.cs):

[assembly:	SupportsWhatsNew]

Now	for	the	code	for	the	Vector	class.	Some	LastModified	attributes	are	added
to	the	class	to	mark	changes:

[LastModified("2020/12/19",	"updated	for	C#	9	and	.NET	5")]

[LastModified("2017/7/19",	"updated	for	C#	7	and	.NET	Core	2")]

[LastModified("2015/6/6",	"updated	for	C#	6	and	.NET	Core")]

[LastModified("2010/12/14",	"IEnumerable	interface	implemented:	

"	+

		"Vector	can	be	treated	as	a	collection")]

[LastModified("2010/2/10",	"IFormattable	interface	implemented	"	

+

		"Vector	accepts	N	and	VE	format	specifiers")]

public	class	Vector	:	IFormattable,	IEnumerable<double>

{

		[LastModified("2020/12/19",	"changed	to	use	deconstruction	

syntax")]

		public	Vector(double	x,	double	y,	double	z)	=>	(X,	Y,	Z)	=	(x,	

y,	z);

	

		[LastModified("2017/7/19",	"Reduced	the	number	of	code	

lines")]

		public	Vector(Vector	vector)

				:	this	(vector.X,	vector.Y,	vector.Z	{	}

	

		public	double	X	{	get;	}

		public	double	Y	{	get;	}

		public	double	Z	{	get;	}

	

		//…

}

	

You	also	mark	the	contained	VectorEnumerator	class:

[LastModified("2015/6/6",

		"Changed	to	implement	the	generic	interface	IEnumerator<T>")]

[LastModified("2010/2/14",

		"Class	created	as	part	of	collection	support	for	Vector")]

private	class	VectorEnumerator	:	IEnumerator<double>

{

The	version	number	for	the	library	is	defined	in	the	csproj	project	file	(project
file	VectorClass/VectorClass.csproj):

<PropertyGroup>

		<TargetFramework>net5.0</TargetFramework>

		<Nullable>enable</Nullable>

		<Version>5.2.0</Version>

</PropertyGroup>

That's	as	far	as	you	can	get	with	this	example	for	now.	You	are	unable	to	run
anything	yet	because	all	you	have	are	two	libraries.	After	taking	a	look	at
reflection	in	the	next	section,	you	will	develop	the	final	part	of	the	example,	in
which	you	look	up	and	display	these	attributes.

USING	REFLECTION
In	this	section,	you	take	a	closer	look	at	the	System.Type	class,	which	enables
you	to	access	information	concerning	the	definition	of	any	data	type.	You	also
look	at	the	System.Reflection.Assembly	class,	which	you	can	use	to	access
information	about	an	assembly	or	to	load	that	assembly	into	your	program.
Finally,	you	combine	the	code	in	this	section	with	the	code	in	the	previous
section	to	complete	the	WhatsNewAttributes	example.

The	System.Type	Class
So	far,	you	have	used	the	Type	class	only	to	hold	the	reference	to	a	type	as
follows:

Type	t	=	typeof(double);

Although	previously	referred	to	as	a	class,	Type	is	an	abstract	base	class.
Whenever	you	instantiate	a	Type	object,	you	are	actually	instantiating	a	class
derived	from	Type.	Type	has	one	derived	class	corresponding	to	each	actual	data
type,	though	in	general	the	derived	classes	simply	provide	different	overloads	of
the	various	Type	methods	and	properties	that	return	the	correct	data	for	the
corresponding	data	type.	They	do	not	typically	add	new	methods	or	properties.
In	general,	there	are	three	common	ways	to	obtain	a	Type	reference	that	refers	to
any	given	type.

You	can	use	the	C#	typeof	operator	as	shown	in	the	preceding	code.	This
operator	takes	the	name	of	the	type	(not	in	quotation	marks,	however)	as	a
parameter.

You	can	use	the	GetType	method,	which	all	classes	inherit	from
System.Object	:

double	d	=	10;

Type	t	=	d.GetType();

GetType	is	called	against	a	variable,	rather	than	taking	the	name	of	a	type.
Note,	however,	that	the	Type	object	returned	is	still	associated	with	only
that	data	type.	It	does	not	contain	any	information	that	relates	to	that
instance	of	the	type.	The	GetType	method	can	be	useful	if	you	have	a
reference	to	an	object	but	you	are	not	sure	what	class	that	object	is	actually
an	instance	of.

You	can	call	the	static	method	of	the	Type	class,	GetType	:

Type	t	=	Type.GetType("System.Double");

Type	is	really	the	gateway	to	much	of	the	reflection	functionality.	It	implements
a	huge	number	of	methods	and	properties—far	too	many	to	provide	a
comprehensive	list	here.	However,	the	following	sections	should	give	you	a
good	idea	of	the	kinds	of	things	you	can	do	with	the	Type	class.	Note	that	the
available	properties	are	all	read-only;	you	use	Type	to	find	out	about	the	data
type—you	cannot	use	it	to	make	any	modifications	to	the	type!

Type	Properties
You	can	divide	the	properties	implemented	by	Type	into	three	categories.	First,	a
number	of	properties	retrieve	the	strings	containing	various	names	associated
with	the	class,	as	shown	in	the	following	table:

PROPERTY RETURNS
Name The	name	of	the	data	type
FullName The	fully	qualified	name	of	the	data	type	(including	the

namespace	name)
Namespace The	name	of	the	namespace	in	which	the	data	type	is	defined

Second,	it	is	possible	to	retrieve	references	to	further	type	objects	that	represent
related	classes,	as	shown	in	the	following	table:

PROPERTY RETURNS	TYPE	REFERENCE
CORRESPONDING	TO

BaseType The	immediate	base	type	of	this	type.
UnderlyingSystemType The	type	to	which	this	type	maps	in	the	.NET	runtime

(recall	that	certain	.NET	base	types	actually	map	to
specific	predefined	types	recognized	by	IL).	This
member	is	only	available	in	the	full	Framework.

A	number	of	Boolean	properties	indicate	whether	this	type	is,	for	example,	a
class,	an	enum,	and	so	on.	These	properties	include	IsAbstract,	IsArray,
IsClass,	IsEnum,	IsInterface,	IsPointer,	IsPrimitive	(one	of	the	predefined
primitive	data	types),	IsPublic,	IsSealed,	and	IsValueType.	The	following
example	uses	a	primitive	data	type:

Type	intType	=	typeof(int);

Console.WriteLine(intType.IsAbstract);	//	writes	false

Console.WriteLine(intType.IsClass);	//	writes	false

Console.WriteLine(intType.IsEnum);	//	writes	false

Console.WriteLine(intType.IsPrimitive);	//	writes	true

Console.WriteLine(intType.IsValueType);	//	writes	true

This	example	uses	the	Vector	class:

Type	vecType	=	typeof(Vector);

Console.WriteLine(vecType.IsAbstract);	//	writes	false

Console.WriteLine(vecType.IsClass);	//	writes	true

Console.WriteLine(vecType.IsEnum);	//	writes	false

Console.WriteLine(vecType.IsPrimitive);	//	writes	false

Console.WriteLine(vecType.IsValueType);	//	writes	false

Finally,	you	can	also	retrieve	a	reference	to	the	assembly	in	which	the	type	is
defined.	This	is	returned	as	a	reference	to	an	instance	of	the
System.Reflection.Assembly	class,	which	is	examined	shortly:

Type	t	=	typeof	(Vector);

Assembly?	containingAssembly	=	Assembly.GetAssembly(t);

Methods
Most	of	the	methods	of	System.Type	are	used	to	obtain	details	about	the
members	of	the	corresponding	data	type—the	constructors,	properties,	methods,
events,	and	so	on.	Quite	a	large	number	of	methods	exist,	but	they	all	follow	the
same	pattern.	For	example,	two	methods	retrieve	details	about	the	methods	of
the	data	type:	GetMethod	and	GetMethods.	GetMethod	returns	a	reference	to	a

System.Reflection.MethodInfo	object,	which	contains	details	about	a	method.
GetMethods	returns	an	array	of	such	references.	As	the	names	suggest,	the
difference	is	that	GetMethods	returns	details	about	all	the	methods,	whereas
GetMethod	returns	details	about	just	one	method	with	a	specified	parameter	list.
Both	methods	have	overloads	that	take	an	extra	parameter,	a	BindingFlags
enumerated	value	that	indicates	which	members	should	be	returned—for
example,	whether	to	return	public	members,	instance	members,	static	members,
and	so	on.	If	you	add	binding	flags,	you	need	to	include	one	of	Instance	or
Static	and	one	of	Private	or	Public.	Otherwise,	you	don't	get	anything.

For	example,	the	simplest	overload	of	GetMethods	takes	no	parameters	and
returns	details	about	all	the	public	methods	of	the	data	type:

Type	t	=	typeof(double);

foreach	(MethodInfo	nextMethod	in	t.GetMethods())

{

		Console.WriteLine(nextMethod.Name);

}

The	member	methods	of	Type	that	follow	the	same	pattern	are	shown	in	the
following	table.	Note	that	plural	names	return	an	array.

TYPE	OF	OBJECT
RETURNED

METHOD(S)

ConstructorInfo GetConstructor,	GetConstructors
EventInfo GetEvent,	GetEvents
FieldInfo GetField,	GetFields
MemberInfo GetMember,	GetMembers,

GetDefaultMembers

MethodInfo GetMethod,	GetMethods
PropertyInfo GetProperty,	GetProperties

The	GetMember	and	GetMembers	methods	return	details	about	any	or	all	members
of	the	data	type,	regardless	of	whether	these	members	are	constructors,
properties,	methods,	and	so	on.

The	TypeView	Example
This	section	demonstrates	some	of	the	features	of	the	Type	class	with	a	short
example,	TypeView,	which	you	can	use	to	list	the	members	of	a	data	type.	The
example	demonstrates	how	to	use	TypeView	for	a	double	;	however,	you	can

swap	this	type	with	any	other	data	type	just	by	changing	one	line	of	the	code	in
the	example.

The	result	of	running	the	application	is	this	output	to	the	console:

Analysis	of	type	Double

Type	Name:	Double

Full	Name:	System.Double

Namespace:	System

Base	Type:	ValueType

	

public	methods

IsFinite	IsInfinity	IsNaN	IsNegative	IsNegativeInfinity	IsNormal	

IsPositiveInfinity	

IsSubnormal	CompareTo	Equals	op_Equality	op_Inequality	

op_LessThan	op_GreaterThan	

op_LessThanOrEqual	op_GreaterThanOrEqual	GetHashCode	ToString	

TryFormat	Parse	TryParse	

GetTypeCode	GetType

	

public	fields

MinValue	MaxValue	Epsilon	NegativeInfinity	PositiveInfinity	NaN

The	console	displays	the	name,	full	name,	and	namespace	of	the	data	type	as
well	as	the	name	of	the	base	type.	Next,	it	simply	iterates	through	all	the	public
instance	members	of	the	data	type,	displaying	for	each	member	the	declaring
type,	the	type	of	member	(method,	field,	and	so	on),	and	the	name	of	the
member.	The	declaring	type	is	the	name	of	the	class	that	actually	declares	the
type	member	(for	example,	System.Double	if	it	is	defined	or	overridden	in
System.Double,	or	the	name	of	the	relevant	base	type	if	the	member	is	simply
inherited	from	a	base	class).

TypeView	does	not	display	signatures	of	methods	because	you	are	retrieving
details	about	all	public	instance	members	through	MemberInfo	objects,	and
information	about	parameters	is	not	available	through	a	MemberInfo	object.	To
retrieve	that	information,	you	would	need	references	to	MethodInfo	and	other
more	specific	objects,	which	means	that	you	would	need	to	obtain	details	about
each	type	of	member	separately.

The	sample	code	for	TypeView	makes	use	of	these	namespaces	besides	the
System	namespace:	System.Collections.Generic,	System.Linq,
System.Reflection,	System.Text.

TypeView	displays	details	about	all	public	instance	members,	but	doubles	only
define	fields	and	methods.	The	main	program	is	defined	with	top-level

statements.	It	uses	a	StringBuilder	instance	called	OutputText	to	build	the	text
to	be	displayed.

Using	the	typeof	statement,	a	Type	object	is	retrieved,	and	this	is	passed	to	the
AnalyzeType	method.	Finally,	the	output	is	written	to	the	console	(code	file
ReflectionSamples/TypeView/Program.cs):

StringBuilder	OutputText	=	new();

	

//	modify	this	line	to	retrieve	details	of	any	other	data	type

Type	t	=	typeof(double);

AnalyzeType(t);

Console.WriteLine($"Analysis	of	type	{t.Name}");

Console.WriteLine(OutputText.ToString());

Console.ReadLine();

You	implement	the	AnalyzeType	method	by	calling	various	properties	and
methods	of	the	Type	object	to	get	the	information	you	need	concerning	the	type
names.	Instead	of	invoking	the	methods	GetConstructors,	GetMethods,	and	so
on,	you	could	invoke	the	method	GetMembers,	which	returns	all	the	members	of
the	type.	The	ShowMembers	local	function	makes	use	of	LINQ	to	select	the	Name
property	of	the	member	(this	is	common	with	all	member	types)	and	to	remove
overloaded	members	using	the	Distinct	method.	AddToOutput	is	a	helper
method	to	write	the	text	to	the	StringBuilder	:

void	AnalyzeType(Type	t)

{

		TypeInfo	typeInfo	=	t.GetTypeInfo();

		AddToOutput($"Type	Name:	{t.Name}");

		AddToOutput($"Full	Name:	{t.FullName}");

		AddToOutput($"Namespace:	{t.Namespace}");

			Type?	tBase	=	typeInfo.BaseType;

	

		if	(tBase	!=	null)

		{

				AddToOutput($"Base	Type:	{tBase.Name}");

		}

	

		ShowMembers("constructors",	t.GetConstructors());

		ShowMembers("methods",	t.GetMethods());

		ShowMembers("properties",	t.GetProperties());

		ShowMembers("fields",	t.GetFields());

		ShowMembers("events",	t.GetEvents());

	

		void	ShowMembers(string	title,	IList<MemberInfo>	members)

		{

				if	(members.Count	==	0)	return;

				AddToOutput($"\npublic	{title}:");

				var	names	=	members.Select(m	=>	m.Name).Distinct();

				AddToOutput(string.Join("	",	names));

		}

	

		void	AddToOutput(string	Text)	=>

				OutputText.Append($"{Text}{Environment.NewLine}");

}

The	Assembly	Class
The	Assembly	class	is	defined	in	the	System.Reflection	namespace	and
provides	access	to	the	metadata	for	a	given	assembly.	It	also	contains	methods
that	enable	you	to	load	and	even	execute	an	assembly—assuming	that	the
assembly	is	an	executable.	As	with	the	Type	class,	Assembly	contains	too	many
methods	and	properties	to	cover	here,	so	this	section	is	confined	to	covering
those	methods	and	properties	that	you	need	to	get	started	and	that	you	use	to
complete	the	WhatsNewAttributes	example.

To	analyze	the	code	of	the	current	assembly,	you	can	invoke	the	method
Assembly.GetExecutingAssembly.	For	code	defined	in	other	assemblies,	you
need	to	load	the	corresponding	assembly	into	the	running	process.	You	can	do
this	with	either	the	static	members	Assembly.Load	or	Assembly.LoadFrom.
The	difference	between	these	methods	is	that	Load	takes	the	name	of	the
assembly,	and	the	runtime	searches	in	a	variety	of	locations	in	an	attempt	to
locate	the	assembly.	These	locations	include	the	local	directory	and	the	global
assembly	cache.	LoadFrom	takes	the	full	path	name	of	an	assembly	and	does	not
attempt	to	find	the	assembly	in	any	other	location:

Assembly	assembly1	=	Assembly.Load("SomeAssembly");

Assembly	assembly2	=	Assembly.LoadFrom

		(@"C:\My	Projects\Software\SomeOtherAssembly");

A	number	of	other	overloads	of	both	methods	exist,	which	supply	additional
security	information.	After	you	have	loaded	an	assembly,	you	can	use	various
properties	on	it	to	find	out,	for	example,	its	full	name:

string	name	=	assembly1.FullName;

Getting	Details	About	Types	Defined	in	an	Assembly
One	nice	feature	of	the	Assembly	class	is	that	it	enables	you	to	obtain	details

about	all	the	types	that	are	defined	in	the	corresponding	assembly.	You	simply
call	the	Assembly.GetTypes	method,	which	returns	an	array	of	System.Type
references	containing	details	about	all	the	types.	You	can	then	manipulate	these
Type	references	as	explained	in	the	previous	section:

Type[]	types	=	theAssembly.GetTypes();

foreach(Type	definedType	in	types)

{

		DoSomethingWith(definedType);

}

Getting	Details	About	Custom	Attributes
The	methods	you	use	to	find	out	which	custom	attributes	are	defined	on	an
assembly	or	type	depend	on	the	type	of	object	to	which	the	attribute	is	attached.
If	you	want	to	find	out	what	custom	attributes	are	attached	to	an	assembly	as	a
whole,	you	need	to	call	a	static	method	of	the	Attribute	class,
GetCustomAttributes,	passing	in	a	reference	to	the	assembly:

NOTE You	might	have	wondered	why,	when	you	defined	custom	attributes,
you	had	to	go	to	all	the	trouble	of	actually	writing	classes	for	them.	The
custom	attributes	genuinely	exist	as	objects,	and	when	an	assembly	is
loaded,	you	can	read	in	these	attribute	objects,	examine	their	properties,	and
call	their	methods.

Attribute[]	definedAttributes	=	

Attribute.GetCustomAttributes(assembly1);

//	assembly1	is	an	Assembly	object

GetCustomAttributes,	which	is	used	to	get	assembly	attributes,	has	a	few
overloads.	If	you	call	it	without	specifying	any	parameters	other	than	an
assembly	reference,	it	simply	returns	all	the	custom	attributes	defined	for	that
assembly.	You	can	also	call	GetCustomAttributes	by	specifying	a	second
parameter,	which	is	a	Type	object	that	indicates	the	attribute	class	in	which	you
are	interested.	In	this	case,	GetCustomAttributes	returns	an	array	consisting	of
all	the	attributes	present	that	are	of	the	specified	type.

Note	that	all	attributes	are	retrieved	as	plain	Attribute	references.	If	you	want
to	call	any	of	the	methods	or	properties	you	defined	for	your	custom	attributes,
you	need	to	cast	these	references	explicitly	to	the	relevant	custom	attribute
classes.	You	can	obtain	details	about	custom	attributes	that	are	attached	to	a

given	data	type	by	calling	another	overload	of	Assembly.GetCustomAttributes,
this	time	passing	a	Type	reference	that	describes	the	type	for	which	you	want	to
retrieve	any	attached	attributes.	To	obtain	attributes	that	are	attached	to	methods,
constructors,	fields,	and	so	on,	however,	you	need	to	call	a
GetCustomAttributes	method	that	is	a	member	of	one	of	the	classes
MethodInfo,	ConstructorInfo,	FieldInfo,	and	so	on.

If	you	expect	only	a	single	attribute	of	a	given	type,	you	can	call	the
GetCustomAttribute	method	instead,	which	returns	a	single	Attribute	object.
You	use	GetCustomAttribute	in	the	WhatsNewAttributes	example	to	find	out
whether	the	SupportsWhatsNew	attribute	is	present	in	the	assembly.	To	do	this,
you	call	GetCustomAttribute,	passing	in	a	reference	to	the
WhatsNewAttributes	assembly	and	the	type	of	the
SupportsWhatsNewAttribute	attribute.	If	this	attribute	is	present,	you	get	an
Attribute	instance.	If	no	instances	of	it	are	defined	in	the	assembly,	you	get
null.	If	two	or	more	instances	are	found,	GetCustomAttribute	throws	a
System.Reflection.AmbiguousMatchException.	This	is	what	that	call	would
look	like:

Attribute	supportsAttribute	=

		Attribute.GetCustomAttributes(assembly1,	

typeof(SupportsWhatsNewAttribute));

Completing	the	WhatsNewAttributes	Example
You	now	have	enough	information	to	complete	the	WhatsNewAttributes
example	by	writing	the	source	code	for	the	final	assembly	in	the	sample—the
LookUpWhatsNew	assembly.	This	part	of	the	application	is	a	console	application.
However,	it	needs	to	reference	the	other	assemblies	of	WhatsNewAttributes	and
VectorClass.

The	Program	class	contains	the	main	program	entry	point	as	well	as	the	other
methods.	All	the	methods	you	define	are	in	this	class,	which	also	has	two	static
fields—	outputText,	which	contains	the	text	as	you	build	it	in	preparation	for
writing	it	to	the	console	window,	and	backDateTo,	which	stores	the	date	you
have	selected.	All	modifications	made	since	this	date	will	be	displayed.
Normally,	you	would	display	a	dialog	inviting	the	user	to	pick	this	date,	but	for
this	example,	you	don't	want	to	get	sidetracked	into	that	kind	of	code.	For	this
reason,	backDateTo	is	hard-coded	to	a	value	of	2019/2/1.	You	can	easily	change
this	date	when	you	download	the	code	(code	file
ReflectionSamples/LookupWhatsNew/Program.cs):

StringBuilder	outputText	=	new(1000);

DateTime	backDateTo	=	new(2019,	2,	1);

	

Assembly	theAssembly	=	Assembly.Load(new	

AssemblyName("VectorClass"));

Attribute?	supportsAttribute	=	theAssembly.GetCustomAttribute(

		typeof(SupportsWhatsNewAttribute));

	

AddToOutput($"Assembly:	{theAssembly.FullName}");

if	(supportsAttribute	is	null)

{

		Console.WriteLine("This	assembly	does	not	support	WhatsNew	

attributes");

		return;

}

else

{

		AddToOutput("Defined	Types:");

}

	

IEnumerable<Type>	types	=	theAssembly.ExportedTypes;

foreach(Type	definedType	in	types)

{

		DisplayTypeInfo(definedType);

}

	

Console.WriteLine($"What's	New	since	{backDateTo:D}");

Console.WriteLine(outputText.ToString());

Console.ReadLine();

	

//…

With	the	top-level	statements,	first	the	VectorClass	assembly	is	loaded.	If	the
assembly	is	not	annotated	with	the	SupportsWhatsNew	attribute,	the	program
exits.	Assuming	that	all	is	well,	you	use	the	Assembly.ExportedTypes	property
to	get	a	collection	of	all	the	types	defined	in	this	assembly	and	then	loop	through
them.	For	each	one,	you	call	a	method,	DisplayTypeInfo,	which	adds	the
relevant	text,	including	details	regarding	any	instances	of
LastModifiedAttribute,	to	the	outputText	field.	Finally,	you	show	the
complete	text	to	the	console.	The	DisplayTypeInfo	method	looks	like	this	(code
file	ReflectionSamples/LookupWhatsNew/Program.cs):

void	DisplayTypeInfo(Type	type)

{

		//	make	sure	we	only	pick	out	classes

		if	(!type.GetTypeInfo().IsClass)

		{

				return;

		}

	

		AddToOutput($"{Environment.NewLine}class	{type.Name}");

	

		IEnumerable<LastModifiedAttribute>	lastModifiedAttributes	=	

				type.GetTypeInfo().GetCustomAttributes()

				.OfType<LastModifiedAttribute>()

				.Where(a	=>	a.DateModified>=	backDateTo).ToArray();

	

		if	(lastModifiedAttributes.Count()	==	0)

		{

				AddToOutput($"\tNo	changes	to	the	class	{type.Name}"	+

						$"{Environment.NewLine}");

		}

		else

		{

				foreach	(LastModifiedAttribute	attribute	in	

lastModifiedAttributes)

				{

						WriteAttributeInfo(attribute);

				}

		}

	

		AddToOutput("changes	to	methods	of	this	class:");

	

		foreach	(MethodInfo	method	in

				type.GetTypeInfo().DeclaredMembers.OfType<MethodInfo>())

		{

				IEnumerable<LastModifiedAttribute>	attributesToMethods	=

						method.GetCustomAttributes().OfType<LastModifiedAttribute>

()

								.Where(a	=>	a.DateModified>=	backDateTo).ToArray();

	

				if	(attributesToMethods.Count()>	0)

				{

						AddToOutput($"{method.ReturnType}	{method.Name}()");

						foreach	(Attribute	attribute	in	attributesToMethods)

						{

								WriteAttributeInfo(attribute);

						}

				}

		}

}

Notice	that	the	first	thing	you	do	in	this	method	is	check	whether	the	Type

reference	you	have	been	passed	actually	represents	a	class.	Because,	to	keep
things	simple,	you	have	specified	that	the	LastModified	attribute	can	be	applied
only	to	classes	or	member	methods,	you	would	be	wasting	time	by	doing	any
processing	if	the	item	is	not	a	class	(it	could	be	a	class,	delegate,	or	enum).

Next,	you	use	the	type.GetTypeInfo().GetCustomAttributes()	method	to
determine	whether	this	class	has	any	LastModifiedAttribute	instances	attached
to	it.	If	so,	you	add	their	details	to	the	output	text,	using	a	helper	method,
WriteAttributeInfo.

Finally,	you	use	the	DeclaredMembers	property	of	the	TypeInfo	type	to	iterate
through	all	the	member	methods	of	this	data	type	and	then	do	the	same	with	each
method	as	you	did	for	the	class—check	whether	it	has	any
LastModifiedAttribute	instances	attached	to	it;	if	so,	you	display	them	using
WriteAttributeInfo.

The	next	bit	of	code	shows	the	WriteAttributeInfo	method,	which	is
responsible	for	determining	what	text	to	display	for	a	given
LastModifiedAttribute	instance.	Note	that	this	method	is	passed	an	Attribute
reference,	so	it	needs	to	cast	this	to	a	LastModifiedAttribute	reference	first.
After	it	has	done	that,	it	uses	the	properties	that	you	originally	defined	for	this
attribute	to	retrieve	its	parameters.	It	confirms	that	the	date	of	the	attribute	is
sufficiently	recent	before	actually	adding	it	to	the	text	for	display	(code	file
ReflectionSamples/LookupWhatsNew/Program.cs):

void	WriteAttributeInfo(Attribute	attribute)

{

		if	(attribute	is	LastModifiedAttribute	lastModifiedAttribute)

		{

				AddToOutput($"\tmodified:	

{lastModifiedAttribute.DateModified:D}:	"	+

						$"{lastModifiedAttribute.Changes}");

	

				if	(lastModifiedAttribute.Issues	!=	null)

				{

						AddToOutput($"\tOutstanding	issues:	

{lastModifiedAttribute.Issues}");

				}

		}

}

Finally,	here	is	the	helper	AddToOutput	method:

static	void	AddToOutput(string	text)	=>

		outputText.Append($"{Environment.NewLine}{text}");

Running	this	code	produces	the	results	shown	here:

What's	New	since	Friday,	February	1,	2019

	

Assembly:	VectorClass,	Version=5.2.0.0,	Culture=neutral,	

PublicKeyToken=null

Defined	Types:

	

class	Vector

								modified:	Sunday,	February	28,	2021:	changed	the	

LastModified	dates

								modified:	Saturday,	December	19,	2020:	updated	for	C#	9	

and	.NET	5

changes	to	methods	of	this	class:

System.Boolean	Equals()

								modified:	Sunday,	February	28,	2021:	changed	for	

nullability

System.String	ToString()

								modified:	Saturday,	December	19,	2020:	changed	to	use	

switch	expression

								modified:	Saturday,	December	19,	2020:	changed	with	

nullability	annotations

Note	that	when	you	list	the	types	defined	in	the	VectorClass	assembly,	you
actually	pick	up	two	classes:	Vector	and	the	embedded	VectorEnumerator	class.
In	addition,	note	that	because	the	backDateTo	date	of	2019/2/1	is	hard-coded	in
this	example,	you	actually	pick	up	the	attributes	that	are	dated	2020/12/19	and
2021/2/28	but	not	those	dated	earlier.

USING	DYNAMIC	LANGUAGE	EXTENSIONS	FOR
REFLECTION
Until	now,	you've	used	reflection	for	reading	metadata.	You	can	also	use
reflection	to	create	instances	dynamically	from	types	that	aren't	known	at
compile	time.	The	next	sample	shows	creating	an	instance	of	the	Calculator
class	without	the	compiler	knowing	of	this	type	at	compile	time.	The	assembly
CalculatorLib	is	loaded	dynamically	without	adding	a	reference.	During
runtime,	the	Calculator	object	is	instantiated,	and	a	method	is	called.	After	you
know	how	to	use	the	Reflection	API,	you'll	do	the	same	using	the	C#	dynamic
keyword.

Creating	the	Calculator	Library
The	library	that	is	loaded	is	a	simple	.NET	library	containing	the	type
Calculator	with	implementations	of	the	Add	and	Subtract	methods.	Because
the	methods	are	really	simple,	they	are	implemented	using	the	expression	syntax
(code	file	DynamicSamlpes/CalculatorLib/Calculator.cs):

public	class	Calculator

{

		public	double	Add(double	x,	double	y)	=>	x	+	y;

		public	double	Subtract(double	x,	double	y)	=>	x	-	y;

}

After	you	compile	the	library,	copy	the	generated	DLL	to	the	folder	c:/addins.
The	client	application	doesn't	add	a	fixed	dependency	to	this	library;	it	loads	the
file	dynamically.	Using	the	.NET	CLI	you	can	specify	the	output	path	with	the	-
-output	option:

>	dotnet	build	--output	c:/addins.

Instantiating	a	Type	Dynamically
For	using	reflection	to	create	the	Calculator	instance	dynamically,	create	a
console	project	with	the	name	ClientApp.

The	constant	CalculatorTypeName	defines	the	name	of	the	Calculator	type,
including	the	namespace.	The	start	of	the	application	requires	a	command-line
argument	with	the	path	to	the	library	and	then	invokes	the	methods
UsingReflection	and	UsingReflectionWithDynamic,	two	variants	doing
reflection	(code	file	DynamicSamples/ClientApp/Program.cs):

		const	string	CalculatorTypeName	=	"CalculatorLib.Calculator";

	

		if	(args.Length	!=	1)

		{

				ShowUsage();

				return;

		}

		UsingReflection(args[0]);

		UsingReflectionWithDynamic(args[0]);

	

		void	ShowUsage()

		{

				Console.WriteLine($"Usage:	{nameof(ClientApp)}	path");

				Console.WriteLine();

				Console.WriteLine("Copy	CalculatorLib.dll	to	an	addin	

directory");

				Console.WriteLine("and	pass	the	absolute	path	of	this	

directory	"	+

						"when	starting	the	application	to	load	the	library");

		}

Before	using	reflection	to	invoke	a	method,	you	need	to	instantiate	the
Calculator	type.	The	method	GetCalculator	loads	the	assembly	dynamically
using	the	method	LoadFile	of	the	Assembly	class	and	creates	an	instance	of	the
Calculator	type	with	the	CreateInstance	method:

object?	GetCalculator(string	addinPath)

{

		Assembly	assembly	=	Assembly.LoadFile(addinPath);

		return	assembly.CreateInstance(CalculatorTypeName);

}

The	sample	code	for	the	ClientApp	makes	use	of	these	namespaces:
System.Reflection	and	Microsoft.CSharp.RuntimeBinder.

Invoking	a	Member	with	the	Reflection	API
The	Reflection	API	is	used	to	invoke	the	method	Add	of	the	Calculator
instance.	First,	the	calculator	instance	is	retrieved	with	the	helper	method
GetCalculator.	If	you	would	like	to	add	a	reference	to	the	CalculatorLib,	you
could	use	new	Calculator	to	create	an	instance.	But	here	it's	not	that	easy.

Invoking	the	method	using	reflection	has	the	advantage	that	the	type	does	not
need	to	be	available	at	compile	time.	You	could	add	it	at	a	later	time	just	by
copying	the	library	in	the	specified	directory.	To	invoke	the	member	using
reflection,	the	Type	object	of	the	instance	is	retrieved	using	GetType	—a	method
of	the	base	class	Object.	With	the	help	of	the	extension	method	GetMethod,	a
MethodInfo	object	for	the	method	Add	is	accessed.	The	MethodInfo	defines	the
Invoke	method	to	call	the	method	using	any	number	of	parameters.	The	first
parameter	of	the	Invoke	method	needs	the	instance	of	the	type	where	the
member	is	invoked.	The	second	parameter	is	of	type	object[]	to	pass	all	the
parameters	needed	by	the	invocation.	You're	passing	the	values	of	the	x	and	y
variables	here	(code	file	DynamicSamples/ClientApp/Program.cs):

void	UsingReflection(string	addinPath)

{

		double	x	=	3;

		double	y	=	4;

		object	calc	=	GetCalculator(addinPath)	

				??	throw	new	InvalidOperationException("GetCalculator	

returned	null");

	

		object?	result	=	calc.GetType().GetMethod("Add")

				?.Invoke(calc,	new	object[]	{	x,	y	})	

				??	throw	new	InvalidOperationException("Add	method	not	

found");

		Console.WriteLine($"the	result	of	{x}	and	{y}	is	{result}");

}

When	you	run	the	program,	the	calculator	is	invoked	and	writes	the	result	to	the
console.	Using	the	reflection	APIs	to	get	the	type,	get	a	method,	call	the	Invoke
method,	and	pass	an	object	array	to	pass	arguments	requires	some	work.	Let's
take	a	look	at	how	you	can	do	this	using	the	dynamic	keyword.

Invoking	a	Member	with	the	Dynamic	Type
When	you	use	reflection	with	the	dynamic	keyword,	the	object	that	is	returned
from	the	GetCalculator	method	is	assigned	to	a	variable	of	a	dynamic	type.	The
GetCalculator	method	doesn't	change;	it	still	returns	an	object.	The	result	is
returned	to	a	variable	that	is	of	type	dynamic.	With	this,	the	Add	method	is
invoked,	and	two	double	values	are	passed	to	it	(code	file
DynamicSamples/ClientApp/Program.cs):

void	UsingReflectionWithDynamic(string	addinPath)

{

		double	x	=	3;

		double	y	=	4;

		dynamic	calc	=	GetCalculator(addinPath)	

				??	throw	new	InvalidOperationException("GetCalculator	

returned	null");

		double	result	=	calc.Add(x,	y);

		Console.WriteLine($"the	result	of	{x}	and	{y}	is	{result}");

	

		//…

}

The	syntax	is	really	simple;	it	looks	like	calling	a	method	with	strongly	typed
access.	However,	there's	no	IntelliSense,	so	it's	easy	to	make	typos.	There's	also
no	compile-time	check.	The	compiler	runs	fine	when	you	invoke	the	Multiply
method.	Just	remember	that	you	only	defined	Add	and	Subtract	methods	with
the	calculator.

try

{

		result	=	calc.Multiply(x,	y);

}

catch	(RuntimeBinderException	ex)

{

		Console.WriteLine(ex);

}

When	you	run	the	application	and	invoke	the	Multiply	method,	you	get	a
RuntimeBinderException	:

Microsoft.CSharp.RuntimeBinder.RuntimeBinderException:	

'CalculatorLib.Calculator'	

			does	not	contain	a	definition	for	'Multiply'

			at	CallSite.Target(Closure	,	CallSite	,	Object	,	Double	,	

Double)

			at	

System.Dynamic.UpdateDelegates.UpdateAndExecute3[T0,T1,T2,TRet]

(CallSite	

			site,	T0	arg0,	T1	arg1,	T2	arg2)

			at	ClientApp.Program.UsingReflectionWithDynamic(String	

addinPath)	in…	

Using	the	dynamic	type	also	has	more	overhead	compared	to	accessing	objects
in	a	strongly	typed	manner.	Therefore,	the	keyword	is	useful	only	in	some
specific	scenarios	such	as	reflection.	You	don't	have	a	compiler	check	invoking
the	InvokeMember	method	of	the	Type	;	instead,	a	string	is	passed	for	the	name	of
the	member.	Using	the	dynamic	type,	which	has	a	simpler	syntax,	has	a	big
advantage	compared	to	using	the	Reflection	API	in	such	scenarios.

The	dynamic	type	can	also	be	used	with	COM	integration	and	scripting
environments	as	shown	after	discussing	the	dynamic	keyword	more	in	detail.

EXPANDOOBJECT
What	if	you	want	to	create	your	own	dynamic	object?	You	can	implement	the
interface	IDynamicMetaObjectProvider.	A	class	that's	already	implementing
this	interface	is	the	base	class	DynamicObject.	This	class	defines	virtual	methods
that	you	can	override.	For	example,	TrySetMember	is	a	method	you	can	override
to	set	a	property.	TryInvokeMember	is	a	method	you	can	override	to	invoke	a
method.	An	easier	option	is	to	use	the	ExpandoObject	class.	This	class
implements	the	interface	IDynamicMetaObjectProvider	and	is	ready	to	use
without	the	need	to	derive	from	ExpandoObject.	Indeed,	you	cannot	derive	from
ExpandoObject	because	this	class	is	sealed.

You	can	create	a	variable	of	type	dynamic	and	assign	an	ExpandoObject	to	it.	All
the	properties	you	set	with	this	dynamic	variable	and	all	the	methods	you	invoke
get	added	to	a	dictionary	within	the	ExpandoObject	and	are	available	as	soon	as
you	invoke	them.

With	the	next	code	snippet,	an	ExpandoObject	is	instantiated	and	assigned	to	a
variable	of	type	dynamic.	Because	it's	a	dynamic,	the	compiler	doesn't	verify	the
members	you	invoke,	such	as	setting	properties	(FirstName	and	LastName)	and
assigning	a	delegate	to	the	name	GetNextDay,	which	turns	into	a	method	with	a
DateTime	parameter	and	a	string	return.	It's	also	possible	to	create	a	deeper
hierarchy.	The	Friends	property	is	created,	and	a	list	of	Person	objects	is
assigned	to	it	(code	file	DynamicSamples/DynamicSample/Program.cs):

void	UseExpando()

{

		dynamic	expObj	=	new	ExpandoObject();

		expObj.FirstName	=	"Daffy";

		expObj.LastName	=	"Duck";

		Console.WriteLine($"{expObj.FirstName}	{expObj.LastName}");

	

		expObj.GetNextDay	=	new	Func<DateTime,	string>(day	=>	

day.AddDays(1).ToString("d"));

	

		Console.WriteLine($"next	day:	{expObj.GetNextDay(new	

DateTime(2021,	1,	3))}");

	

		expObj.Friends	=	new	List<Person>();

		expObj.Friends.Add(new	Person()	{	FirstName	=	"Bob",	LastName	

=	"Jones"	});

		expObj.Friends.Add(new	Person()	{	FirstName	=	"Robert",	

LastName	=	"Jones"	});

		expObj.Friends.Add(new	Person()	{	FirstName	=	"Bobby",	

LastName	=	"Jones"	});

	

		foreach	(dynamic	friend	in	expObj.Friends)

		{

				Console.WriteLine($"{friend.FirstName}	{friend.LastName}");

		}

}

The	following	is	another	example	of	using	dynamic	and	ExpandoObject.	Assume
that	the	requirement	is	to	develop	a	general-purpose	comma-separated	values
(CSV)	file	parsing	tool.	You	won't	know	from	one	execution	to	another	what
data	will	be	in	the	file,	only	that	the	values	will	be	comma-separated	and	the	first
line	will	contain	the	field	names.

First,	open	the	file	and	read	in	the	stream.	You	can	use	a	simple	helper	method	to
do	this	(code	file
DynamicSamples/DynamicFileReader/DynamicFileHelper.cs):

public	static	class	DynamicFileHelper

{

		//…

		private	static	StreamReader?	OpenFile(string	fileName)

		{

				if	(File.Exists(fileName))

				{

						return	new	StreamReader(fileName);

				}

				return	null;

		}

}

This	just	opens	the	file	and	creates	a	new	StreamReader	to	read	the	file	contents.

Now	you	want	to	get	the	field	names,	which	you	can	do	easily	by	reading	in	the
first	line	from	the	file	and	using	the	Split	function	to	create	a	string	array	of
field	names:

string[]	headerLine	=	reader.ReadLine()?.Split(',').Select(s	=>	

Trim()).ToArray();

Next	is	the	interesting	part.	You	read	in	the	next	line	from	the	file,	create	a	string
array	just	like	you	did	with	the	field	names,	and	start	creating	your	dynamic
objects.	Here's	what	the	code	looks	like	(code	file
DynamicSamples/DynamicFileReader/DynamicFileHelper.cs):

public	static	class	DynamicFileHelper

{

		public	static	IEnumerable<dynamic>	ParseFile(string	fileName)

		{

				List<dynamic>	retList	=	new();

				using	StreamReader?	reader	=	OpenFile(fileName);

				if	(reader	!=	null)

				{

						string[]	headerLine	=	

reader.ReadLine()?.Split(',').Select(

								s	=>	s.Trim()).ToArray()	

								??	throw	new	InvalidOperationException("reader.ReadLine	

returned	null");

						while	(reader.Peek()>	0)

						{

								string[]	dataLine	=	reader.ReadLine()?.Split(',')	

										??	throw	new	

InvalidOperationException("reader.Readline	returned	null");

								dynamic	dynamicEntity	=	new	ExpandoObject();

								for	(int	i	=	0;	i	<	headerLine.Length;	i++)

								{

										((IDictionary<string,	

object>)dynamicEntity).Add(headerLine[i],	dataLine[i]);

								}

								retList.Add(dynamicEntity);

						}

				}

				return	retList;

		}

		//…

}

After	you	have	the	string	array	of	field	names	and	data	elements,	you	create	a
new	ExpandoObject	and	add	the	data	to	it.	Notice	that	you	cast	the
ExpandoObject	to	a	Dictionary	object.	You	use	the	field	name	as	the	key	and
the	data	as	the	value.	Then	you	can	add	the	new	object	to	the	retList	object	you
created	and	return	it	to	the	code	that	called	the	method.

This	is	nice	because	you	have	a	section	of	code	that	can	handle	any	data	you
give	it.	The	only	requirements	in	this	case	are	ensuring	that	the	field	names	are
the	first	line	and	that	everything	is	comma-separated.	This	concept	could	be
expanded	to	other	file	types	or	even	to	a	DataReader.

The	file	EmployeeList.tx	t	available	in	the	download	contains	the	following
CSV	data:

FirstName,	LastName,	City,	State

Mario	Andretti,	Nazareth,	Pennsylvania

Carlos,	Reutemann,	Santa	Fe,	Argentine

Sebastian,	Vettel,	Thurgovia,	Switzerland

This	file	is	read	in	the	following	code	in	Program.cs	(code	file
DynamicSamples/DynamicFileReader/Program.cs)

var	employeeList	=	

DynamicFileHelper.ParseFile("EmployeeList.txt");

foreach	(var	employee	in	employeeList)

{

		Console.WriteLine($"{employee.FirstName}	{employee.LastName}	

lives	in	"	+

				$"{employee.City},	{employee.State}.");

}

Console.ReadLine();

and	results	in	this	output	to	the	console:

Mario	Andretti	lives	in	Nazareth,	Pennsylvania.

Carlos	Reutemann	lives	in	Santa	Fe,	Argentine.

Sebastian	Vettel	lives	in	Thurgovia,	Switzerland.

SOURCE	GENERATORS
A	great	extension	of	C#	9	is	the	new	component	source	generator.	This	is	not	a
C#	syntax	enhancement	but	an	enhancement	of	the	compilation	process.	During
the	compilation,	C#	source	code	can	be	generated	and	added	to	the	project.

In	this	chapter,	you've	read	about	adding	metadata	to	source	code	using
attributes.	Some	of	the	attributes	are	known	by	the	compiler,	others	are	used	by
developer	tools	such	as	Visual	Studio,	and	others	are	read	during	runtime—for
example,	from	libraries.	In	this	chapter,	you've	read	about	using	reflection	to
read	information	dynamically.

Using	reflection	has	some	disadvantages,	though.	It	takes	extra	overhead	during
runtime	and	also	has	issues	with	trimming	code	during	the	compilation	process.
As	reflection	is	done	during	runtime,	the	compiler	might	trim	methods	and
classes	that	are	required	with	dynamic	invocations.	When	using	trimming	of
assemblies,	you	might	need	to	configure	methods	and	classes	that	should	not	be
trimmed	because	of	reflection.

NOTE Chapter	1,	“.NET	Applications	and	Tools,”	covered	configuring
trimming	of	applications.

Instead	of	using	reflection	during	runtime,	you	can	use	a	source	generator,	which
can	read	attributes	during	compile	time	and,	because	of	the	attributes,	generate
code	that's	also	compiled	during	build	time.	The	need	for	reflection	can	be
reduced.

Attributes	might	not	be	the	only	source	for	source	generators.	A	source	generator
can	also	use	other	sources,	such	as	JSON	or	other	files,	to	generate	code.

Hello,	World	Source	Generator
Let's	start	with	the	foundation	of	source	generators—a	simple	generator	that

creates	a	method	with	a	HelloWorld	class	and	a	Hello	method.	This	method	will
be	invoked	from	a	.NET	console	application.

To	implement	a	source	generator,	you	need	to	create	a	.NET	library.	For	the
source	generator	to	work	with	Visual	Studio	2019,	it	needs	to	be	a	.NET
Standard	2.0	library.	The	NuGet	package	Microsoft.CodeAnalysis	needs	to	be
added.	To	add	support	to	use	the	C#	compiler	in	the	later	sample,	the
Microsoft.CodeAnalysis.CSharp.Workspaces	package	needs	to	be	added	as
well.	The	namespaces	Microsoft.CodeAnalysis,
Microsoft.CodeAnalysis.Text,	System.Collections.Generic,	and
System.Text	are	used.

A	source	generator	class	needs	to	implement	the	interface	ISourceGenerator
and	have	the	Generator	attribute	applied	(source	file
SourceGenerator/CodeGenerationSample/HelloWorldGenerator.cs):

[Generator]

public	class	HelloWorldGenerator	:	ISourceGenerator

{

		//…

}

			

The	interface	ISourceGenerator	defines	the	methods	Initialize	and	Execute.
Initialize	is	invoked	before	the	code	generation	starts.	The	Execute	method
then	does	the	main	job	of	the	generator.	With	the	first	sample,	an	implementation
of	the	Initialize	method	is	not	required:

public	void	Initialize(GeneratorInitializationContext	context)

{

		//	No	initialization	required

}

With	the	implementation	of	the	Execute	method,	a	StringBuilder	is	initialized
with	a	string	containing	the	start	of	the	source	code:	the	namespace
CodeGenerationSample,	the	class	HelloWorld,	and	the	Hello	methods	are
generated.	The	method,	class,	and	namespace	are	not	closed	yet	because	in	the
Hello	method,	code	will	be	added	that's	using	the	GeneratorExecutionContext
parameter:

public	void	Execute(GeneratorExecutionContext	context)

{

		StringBuilder	sourceBuilder	=	new(@"

using	System;

namespace	CodeGenerationSample

{

		public	static	class	HelloWorld

		{

				public	static	void	Hello()	

				{

						Console.WriteLine(""Hello	from	generated	code!"");

						Console.WriteLine(""The	following	source	files	existed	in	

the	compilation:"");

");

		//…							

The	GeneratorExecutionContext	is	used	to	access	syntax	trees	from	the
compilation.	Here,	the	code	where	the	source	generator	is	used	can	be	accessed
to	modify	or	extend	it.	With	the	first	source	code	generator,	just	the	file	path	of
all	the	source	files	that	are	part	of	the	compilation	is	written	to	the	console:

public	void	Execute(GeneratorExecutionContext	context)

{

		//…

		IEnumerable<SyntaxTree>	syntaxTrees	=	

context.Compilation.SyntaxTrees;

	

		foreach	(SyntaxTree	tree	in	syntaxTrees)

		{

				sourceBuilder.AppendLine($@"Console.WriteLine(@""source	

file:	{tree.FilePath}"");");																

		}

	

		sourceBuilder.Append(@"

				}

		}

}");

	

		context.AddSource("helloWorld",	

SourceText.From(sourceBuilder.ToString(),	

				Encoding.UTF8));

}

For	using	a	source	generator	in	a	project,	you	need	to	add	the	Analyzer	element
and	reference	the	library	(project	configuration	file
SourceGenerator/SampleApp/SampleApp.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

	

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

		<ItemGroup>

				<Analyzer	

Include="c:\sourcegenerators\CodeGenerationSample.dll"	/>

		</ItemGroup>

	

</Project>

With	this	in	place,	you	can	add	code	to	invoke	the	static	Hello	method	of	the
HelloWorld	class	(code	file	SampleApp/Program.cs):

using	System;

using	SampleApp;

	

CodeGenerationSample.HelloWorld.Hello();

Running	the	application	shows	the	hello	message	as	well	as	the	source	code	files
that	are	available	with	the	build	within	the	source	code	generator.	The	directory
names	will	differ	on	your	system:

Hello	from	generated	code!

The	following	source	files	existed	in	the	compilation:

source	file:	C:\SampleApp\HelloControl.cs

source	file:	C:\SampleApp\Program.cs

source	file:	

C:\SampleApp\obj\Debug\net5.0\.NETCoreApp,Version=v5.0.AssemblyAttributes.cs

source	file:	

C:\CodeGenerationSample\SampleApp\obj\Debug\net5.0\SampleApp.AssemblyInfo.cs

Source	Generators	Using	Partial	Methods
Let's	get	into	a	more	advanced	scenario	where	a	partial	method	is	used	from	a
source	generator.	With	C#	9,	the	syntax	for	partial	methods	has	been	enhanced.
As	a	reminder,	the	partial	modifier	with	a	class	allows	having	the	class	to	span
multiple	files.	The	compiler	combines	the	partial	classes	from	multiple	files	with
the	same	name	to	one	class.	Before	C#	9,	partial	methods	had	to	be	declared
with	the	return	type	void.	A	partial	method	didn't	need	to	have	any
implementation.	Code	generators	often	created	partial	methods,	which	have	been
invoked	by	the	generated	code.	With	your	part	of	the	implementation,	you	could
then	define	an	implementation	of	the	partial	method	that's	invoked	by	the
generated	code.	With	C#	9,	partial	methods	can	return	a	type.	This	partial

method	needs	to	have	a	private	access	modifier,	and	an	implementation	is
required	as	well.

Chapter	5,	“Operators	and	Casts,”	discusses	that	implementing	equality	for	class
types	requires	some	boilerplate	code:	overriding	the	object.Equals	method,
implementing	the	IEquality<T>	interface,	and	implementing	the	==	and	!=
operators.	When	you	use	code	generators,	the	Book	class	has	the	attribute
ImplementEquatable	applied	and	implements	the	partial	method	IsTheSame	to
compare	for	the	values	(code	file	SourceGenerator/SampleApp/Book.cs):

using	CodeGenerationSample;

	

namespace	SampleApp

{

		[ImplementEquatable]

		public	partial	class	Book

		{

				public	Book(string	title,	string	publisher)

				{

						Title	=	title;

						Publisher	=	publisher;

				}

				public	string	Title	{	get;	}

				public	string	Publisher	{	get;	}

	

				private	static	partial	bool	IsTheSame(Book?	left,	Book?	

right)	=>

						left?.Title	==	right?.Title	&&	left?.Publisher	==	

right?.Publisher;

	

				public	override	int	GetHashCode()	=>

							Title.GetHashCode()	^	Publisher.GetHashCode();

		}

}

The	ImplementEquatable	attribute	that's	used	by	the	Book	class	is	one	part	of	the
source	code	that's	generated	from	the	source	generator.	The	member	field
attributeText	contains	the	complete	content	for	the	attribute.	The	following
code	will	be	injected	(code	file
SourceGenerator/CodeGenerationSample/EquatableGenerator.cs):

private	const	string	attributeText	=	@"

using	System;

namespace	CodeGenerationSample

{

		[AttributeUsage(AttributeTargets.Class,	Inherited	=	false,	

AllowMultiple	=	false)]

		sealed	class	ImplementEquatableAttribute	:	Attribute

		{

				public	ImplementEquatableAttribute()	{	}

		}

}

";

The	new	source	generator	EquatableGenerator	implements	the	Initialize
method	to	register	the	SyntaxReceiver	type	for	syntax	notifications.
RegisterForSyntaxNotifications	is	a	method	of	the
GeneratorInitializationContext	that	requires	a	SyntaxReceiverCreator
delegate	as	a	parameter.	This	delegate	just	specifies	that	an	object	implementing
ISyntaxReceiver	needs	to	be	returned:

[Generator]

public	class	EquatableGenerator	:	ISourceGenerator

{

		public	void	Initialize(GeneratorInitializationContext	context)

		{

				context.RegisterForSyntaxNotifications(()	=>	new	

SyntaxReceiver());

		}

		//…

}

The	SyntaxReceiver	class	implements	this	interface	with	the	implementation	of
the	OnVisitSyntaxNode	method.	As	the	compiler	visits	the	user's	source	code,
this	method	is	invoked	for	every	syntax	node.	If	the	syntax	node	is	a	class	with
at	least	one	attribute,	it	is	added	to	the	CandidateClasses	collection.	These
classes	might	be	expanded	with	an	implementation	for	equality,	as	shown	here:

internal	class	SyntaxReceiver	:	ISyntaxReceiver

{

		public	List<ClassDeclarationSyntax>	CandidateClasses	{	get;	}	

=	new();

	

		public	void	OnVisitSyntaxNode(SyntaxNode	syntaxNode)

		{

				if	(syntaxNode	is	ClassDeclarationSyntax	

classDeclarationSyntax

						&&	classDeclarationSyntax.AttributeLists.Count>	0)

				{

						CandidateClasses.Add(classDeclarationSyntax);

				}

		}

}

With	the	implementation	of	the	Execute	method,	the	source	code	for	the
attribute	is	retrieved	from	the	attributeText	variable	and	passed	to	the
GeneratorExecutionContext	with	the	AddSource	method.	To	retrieve	the	syntax
tree	and	get	the	symbol	for	comparison	with	the	user	source	code,	the
compilation	of	this	attribute	is	retrieved:

public	void	Execute(GeneratorExecutionContext	context)

{

		context.AddSource("ImplementEquatableAttribute",	

SourceText.From(attributeText,	

				Encoding.UTF8));

	

		if	(!(context.SyntaxReceiver	is	SyntaxReceiver	

syntaxReceiver))	

				return;

	

		CSharpParseOptions?	options	=	(context.Compilation	as	

CSharpCompilation)?.

				SyntaxTrees[0].Options	as	CSharpParseOptions;

		Compilation	compilation	=	context.Compilation.AddSyntaxTrees(

				CSharpSyntaxTree.ParseText(SourceText.From(attributeText,	

Encoding.UTF8),	options));

	

		INamedTypeSymbol?	attributeSymbol	=	

compilation.GetTypeByMetadataName(

				"CodeGenerationSample.ImplementEquatableAttribute");

		//…

}

Next,	each	candidate	class	stored	within	the	SyntaxReceiver	is	verified	if	it	has
the	ImplementEquatableAttribute	applied.	If	a	class	has	this	attribute,	the
typed	symbol	is	added	to	the	typedSymbols	collection.	After	the	iteration	of	the
candidates,	the	remaining	candidates	are	iterated	to	add	the	source	code	for
every	one	of	these	types.	The	source	code	is	coming	from	the	helper	method
GetClassSource	:

public	void	Execute(GeneratorExecutionContext	context)

{

		//…

	

		List<ITypeSymbol>	typeSymbols	=	new();

		foreach	(ClassDeclarationSyntax	@class	in	

syntaxReceiver.CandidateClasses)

		{

				SemanticModel	model	=	

compilation.GetSemanticModel(@class.SyntaxTree);

	

				INamedTypeSymbol?	typeSymbol	=	

model.GetDeclaredSymbol(@class);

				if	(typeSymbol!.GetAttributes().Any(attr	=>	

						attr.AttributeClass!.Equals(attributeSymbol,	

SymbolEqualityComparer.Default)))

				{

						typeSymbols.Add(typeSymbol);

				}

		}

	

		foreach	(INamedTypeSymbol	typeSymbol	in	typeSymbols)

		{

				string	classSource	=	GetClassSource(typeSymbol);

				context.AddSource(typeSymbol.Name,	

SourceText.From(classSource,	Encoding.UTF8));

		}

}

The	helper	method	GetClassSources	receives	the	ITypesSymbol	as	a	parameter
to	use	the	namespace	name	and	the	class	name	with	the	generated	code.	The
implementation	of	the	IEquatable	interface	and	the	operator	overloads	are
returned:

private	string	GetClassSource(ITypeSymbol	typeSymbol)

{

		string	namespaceName	=	

typeSymbol.ContainingNamespace.ToDisplayString();

	

		StringBuilder	source	=	new($@"

using	System;

	

namespace	{namespaceName}

{{

		public	partial	class	{typeSymbol.Name}	:	

IEquatable<{typeSymbol.Name}>

		{{

				private	static	partial	bool	IsTheSame(

						{typeSymbol.Name}?	left,	{typeSymbol.Name}?	right);

	

				public	override	bool	Equals(object?	obj)	=>	this	==	obj	as	

{typeSymbol.Name};

	

				public	bool	Equals({typeSymbol.Name}?	other)	=>	this	==	

other;

	

				public	static	bool	operator==({typeSymbol.Name}?	left,	

{typeSymbol.Name}?	right)	

						=>	IsTheSame(left,	right);

	

				public	static	bool	operator!=({typeSymbol.Name}?	left,	

{typeSymbol.Name}?	right)	

						=>	!(left	==	right);

	

		}}

}}

");

		return	source.ToString();

}

With	the	source	generator,	two	Book	objects	can	now	be	instantiated	and
compared	using	the	==	operator	(code	file
SourceGenerator/SampleApp/Program.cs):

Book	b1	=	new("Professional	C#",	"Wrox	Press");

Book	b2	=	new("Professional	C#",	"Wrox	Press");

if	(b1	==	b2)

{

		Console.WriteLine("the	same	book");

}

Instead	of	implementing	the	operators	and	the	IEquatable	interface	every	time
equality	is	needed,	you	can	now	use	a	code	generator.	Many	more	scenarios	are
possible.	You	can	create	classes	from	CSV	files	and	automatically	implement
interfaces	such	as	INotifyPropertyChanged.

Future	versions	of	.NET	will	reduce	reflection	code	during	runtime.	With
ASP.NET	Core,	controllers	are	dynamically	searched	for	at	the	startup	of	the
application.	This	increases	the	startup	time.	If	code	is	instead	generated,	there's
no	need	to	do	this	at	runtime,	and	the	application	can	start	up	faster.

NOTE In	this	chapter,	with	the	source	generator,	it	was	just	possible	to
have	a	focus	on	the	special	features	of	the	source	generator.	Now	you	might
be	interested	in	more	information	on	accessing	the	different	parts	of	the
syntax	tree	in	more	detail.	Source	generators	are	based	on	the	.NET
Compiler	Platform	(Roslyn).	A	complete	book	could	be	written	about	this.
Check	the	Microsoft	documentation	on	the	.NET	Compiler	Platform	SDK	at

https://docs.microsoft.com/dotnet/csharp/roslyn-sdk/.

SUMMARY
This	chapter	illustrated	using	the	Type	and	Assembly	classes,	which	are	the
primary	entry	points	for	accessing	the	extensive	capabilities	provided	by
reflection.

In	addition,	this	chapter	demonstrated	a	specific	aspect	of	reflection	that	you	are
likely	to	use	more	often	than	any	other—the	inspection	of	custom	attributes.	You
learned	how	to	define	and	apply	your	own	custom	attributes	and	how	to	retrieve
information	about	custom	attributes	at	runtime.

The	second	focus	of	this	chapter	was	working	with	a	new	C#	9	feature:	source
code	generators.	With	a	source	generator,	you	can	create	source	code	from
different	sources,	and	this	code	is	combined	with	the	user's	source	code.	A
source	generator	can	also	access	the	syntax	tree	of	the	user's	source	code	and
change	this	accordingly.	With	dotnet	build,	the	source	generator	gets	triggered.

The	next	chapter	gives	details	on	freeing	resources	with	the	IDisposable
interface,	releasing	native	resources,	and	working	with	unsafe	C#	code.

https://docs.microsoft.com/dotnet/csharp/roslyn-sdk/

13
Managed	and	Unmanaged	Memory

WHAT'S	IN	THIS	CHAPTER?

Allocating	space	on	the	stack	and	heap	at	runtime

Garbage	collection

Releasing	unmanaged	resources	using	destructors	and	the
System.IDisposable	interface

Understanding	the	syntax	for	using	pointers	in	C#

Using	the	Span	type

Using	Platform	Invoke	to	access	native	APIs	on	Windows	and	Linux

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	1_CS/Memory.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

PointerPlayground

PointerPlayground2

QuickArray

SpanSample

PlatformInvokeSample

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

MEMORY
Variables	are	stored	on	the	stack.	The	data	they	reference	can	be	on	the	stack
(structs)	or	on	the	heap	(classes).	Structs	also	can	be	boxed	so	objects	on	the
heap	are	created.	The	garbage	collector	needs	to	free	up	unmanaged	objects	that
are	no	longer	needed	from	the	managed	heap.	When	you	use	native	APIs,	you
can	allocate	memory	on	the	native	heap.	The	garbage	collector	is	not	responsible
for	memory	allocated	on	the	native	heap.	You	have	to	free	this	memory	on	your
own.	There's	a	lot	to	consider	with	regard	to	memory.

When	you	use	a	managed	environment,	you	can	easily	be	misled	into	not	paying
attention	to	memory	management	because	the	garbage	collector	(GC)	deals	with
that	anyway.	A	lot	of	work	is	done	by	the	GC;	it's	very	practical	to	know	how	it
works,	what	the	small	and	large	object	heaps	are,	and	what	data	types	are	stored
within	the	stack.	Also,	while	the	garbage	collector	deals	with	managed
resources,	what	about	unmanaged	ones?	You	have	to	free	them	on	your	own.
Probably	your	programs	are	fully	managed	programs,	but	what	about	the	types
defined	with	the	.NET	runtime	and	class	libraries?	For	example,	file	types
(discussed	in	Chapter	18,	“Files	and	Streams”)	wrap	a	native	file	handle.	This
file	handle	needs	to	be	released.	To	release	this	handle	early,	it's	good	to	know
the	IDisposable	interface,	the	using	statement,	and	the	using	declaration	that
are	explained	in	this	chapter.

Other	aspects	are	important	as	well.	Although	several	language	constructs	make
it	easier	to	create	immutable	types,	mutable	objects	have	an	advantage	as	well.
The	string	class	is	an	immutable	type	that's	been	available	since	.NET	1.0.
Nowadays,	people	often	have	to	deal	with	large	strings,	and	the	GC	needs	to
clean	up	a	lot	of	objects.	Directly	accessing	the	memory	of	the	string	and	making
changes	makes	a	mutable—and	in	different	scenarios,	a	more	performant—
program.	The	Span	type	makes	this	possible.	With	arrays	(Chapter	6,	“Arrays”),
you've	also	seen	the	ArrayPool	class	that	also	can	reduce	the	work	of	the	GC.

This	chapter	starts	with	various	aspects	of	memory	management	and	memory
access.	A	good	understanding	of	memory	management	and	knowledge	of	the
pointer	capabilities	provided	by	C#	will	better	enable	you	to	integrate	C#	code
with	legacy	code	and	perform	efficient	memory	manipulation	in	performance-
critical	systems.	This	chapter	covers	ways	to	use	the	ref	keyword	for	return
types	and	local	variables.	This	feature	reduces	the	need	for	unsafe	code	and
using	pointers	with	C#.	This	chapter	also	discusses	more	details	about	using	the
Span	type	to	access	a	different	kind	of	memory,	such	as	the	managed	heap,	the

native	heap,	and	the	stack.

MEMORY	MANAGEMENT	UNDER	THE	HOOD
One	of	the	advantages	of	C#	programming	is	that	the	programmer	does	not	need
to	worry	about	detailed	memory	management;	the	garbage	collector	deals	with
the	problem	of	memory	cleanup	on	your	behalf.	As	a	result,	you	get	something
that	approximates	the	efficiency	of	languages	such	as	C++	without	the
complexity	of	having	to	handle	memory	management	yourself	as	you	do	in	C++.
However,	although	you	do	not	have	to	manage	memory	manually,	it	still	pays	to
understand	what	is	going	on	behind	the	scenes.	Understanding	how	your
program	manages	memory	under	the	covers	will	help	you	increase	the	speed	and
performance	of	your	applications.	This	section	looks	at	what	happens	in	the
computer's	memory	when	you	allocate	variables.

NOTE The	precise	details	of	many	of	the	topics	of	this	section	are	not
presented	here.	This	section	serves	as	an	abbreviated	guide	to	the	general
processes	rather	than	a	statement	of	exact	implementation.

Value	Data	Types
Windows	uses	a	system	known	as	virtual	addressing	in	which	the	mapping	from
the	memory	address	seen	by	your	program	to	the	actual	location	in	hardware
memory	is	entirely	managed	by	Windows.	As	a	result,	each	process	of	a	32-bit
application	sees	4GB	of	available	memory,	regardless	of	how	much	hardware
memory	you	actually	have	in	your	computer	(with	64-bit	applications	on	64-bit
processors	this	number	is	greater).	This	memory	contains	everything	that	is	part
of	the	program,	including	the	executable	code,	any	DLLs	loaded	by	the	code,
and	the	contents	of	all	variables	used	when	the	program	runs.	This	4GB	of
memory	is	known	as	the	virtual	address	space	or	virtual	memory.	For
convenience,	this	chapter	uses	the	shorthand	memory.

NOTE .NET	applications	are	built	as	portable	applications	by	default.	A
portable	application	runs	on	both	32-	and	64-bit	environments	on	Windows
and	on	Linux	as	long	as	the	.NET	runtime	is	installed	on	the	system.	Not	all
APIs	are	available	on	all	platforms,	especially	if	you	use	native	APIs.	For
this,	you	can	specify	platforms	with	your	.NET	application	as	explained	in

Chapter	1,	“.NET	Applications	and	Tools.”

Each	memory	location	in	the	available	4GB	is	numbered	starting	from	zero.	To
access	a	value	stored	at	a	particular	location	in	memory,	you	need	to	supply	the
number	that	represents	that	memory	location.	In	any	compiled	high-level
language,	the	compiler	converts	human-readable	variable	names	into	memory
addresses	that	the	processor	understands.

Somewhere	inside	a	processor's	virtual	memory	is	an	area	known	as	the	stack.
The	stack	stores	value	data	types	that	are	not	members	of	objects.	In	addition,
when	you	call	a	method,	the	stack	is	used	to	hold	a	copy	of	any	parameters
passed	to	the	method.	To	understand	how	the	stack	works,	you	need	to
understand	the	importance	of	variable	scope	in	C#.	If	variable	a	goes	into	scope
before	variable	b,	then	b	always	goes	out	of	scope	first.	Consider	the	following
code:

{

		int	a;

		//	do	something

		{

				int	b;

				//	do	something	else

		}

}

First,	the	variable	a	is	declared.	Then,	inside	the	inner	code	block,	b	is	declared.
Then	the	inner	code	block	terminates,	and	b	goes	out	of	scope;	then	a	goes	out	of
scope.	Therefore,	the	lifetime	of	b	is	entirely	contained	within	the	lifetime	of	a.
The	idea	that	you	always	deallocate	variables	in	the	reverse	order	of	how	you
allocate	them	is	crucial	to	the	way	the	stack	works.

Note	that	b	is	in	a	different	block	from	code	(defined	by	a	different	nesting	of
curly	braces).	For	this	reason,	it	is	contained	within	a	different	scope.	This	is
called	block	scope	or	structure	scope.

You	do	not	know	exactly	where	in	the	address	space	the	stack	is—you	don't	need
to	know	for	C#	development.	A	stack	pointer	(a	variable	maintained	by	the
operating	system)	identifies	the	next	free	location	on	the	stack.	When	your
program	first	starts	running,	the	stack	pointer	points	to	just	past	the	end	of	the
block	of	memory	that	is	reserved	for	the	stack.	The	stack	fills	downward,	from
high	memory	addresses	to	low	addresses.	As	data	is	put	on	the	stack,	the	stack
pointer	is	adjusted	accordingly,	so	it	always	points	to	just	past	the	next	free

location.	This	is	illustrated	in	Figure	13-1,	which	shows	a	stack	pointer	with	a
value	of	800000	(0xC3500	in	hex);	the	next	free	location	is	the	address	799999.

The	following	code	tells	the	compiler	that	you	need	space	in	memory	to	store	an
integer	and	a	double,	and	these	memory	locations	are	referred	to	as	nRacingCars
and	engineSize.	The	line	that	declares	each	variable	indicates	the	point	at	which
you	start	requiring	access	to	this	variable.	The	closing	curly	brace	of	the	block	in
which	the	variables	are	declared	identifies	the	point	at	which	both	variables	go
out	of	scope:

{

		int	nRacingCars	=	10;

		double	engineSize	=	3000.0;

		//	do	calculations;

}

FIGURE	13-1

Assuming	that	you	use	the	stack	shown	in	Figure	13-1,	when	the	variable
nRacingCars	comes	into	scope	and	is	assigned	the	value	10,	this	value	is	placed
in	locations	799996	through	799999	—the	4	bytes	just	below	the	location	pointed
to	by	the	stack	pointer	(4	bytes	because	that's	how	much	memory	is	needed	to
store	an	int).	To	accommodate	this,	4	is	subtracted	from	the	value	of	the	stack
pointer,	so	it	now	points	to	the	location	799996,	just	after	the	new	first	free

location	(799995).

The	next	line	of	code	declares	the	variable	engineSize	(a	double)	and	initializes
it	to	the	value	3000.0.	A	double	occupies	8	bytes,	so	the	value	3000.0	is	placed
in	locations	799988	through	799995	on	the	stack,	and	the	stack	pointer	is
decremented	by	8	so	that	it	again	points	to	the	location	just	after	the	next	free
location	on	the	stack.

When	engineSize	goes	out	of	scope,	the	runtime	knows	that	it	is	no	longer
needed.	Because	of	the	way	variable	lifetimes	are	always	nested,	you	can
guarantee	that	whatever	happened	while	engineSize	was	in	scope,	the	stack
pointer	is	now	pointing	to	the	location	where	engineSize	is	stored.	To	remove
engineSize	from	the	stack,	the	stack	pointer	is	incremented	by	8,	and	it	now
points	to	the	location	immediately	after	the	end	of	engineSize.	At	this	point	in
the	code,	you	are	at	the	closing	curly	brace,	so	nRacingCars	also	goes	out	of
scope.	The	stack	pointer	is	incremented	by	4.	When	another	variable	comes	into
scope	after	engineSize	and	nRacingCars	have	been	removed	from	the	stack,	it
overwrites	the	memory	descending	from	location	799999,	where	nRacingCars
was	stored.

If	the	compiler	hits	a	line	such	as	int	i,	j,	then	the	order	of	variables	coming
into	scope	looks	indeterminate.	Both	variables	are	declared	at	the	same	time	and
go	out	of	scope	at	the	same	time.	In	this	situation,	it	does	not	matter	in	what
order	the	two	variables	are	removed	from	memory.	The	compiler	internally
always	ensures	that	the	one	that	was	put	in	memory	first	is	removed	last,	thus
preserving	the	rule	that	prohibits	crossover	of	variable	lifetimes.

Reference	Data	Types
Although	the	stack	provides	very	high	performance,	it	is	not	flexible	enough	to
be	used	for	all	variables.	The	requirement	that	the	lifetime	of	a	variable	must	be
nested	is	too	restrictive	for	many	purposes.	Often,	you	need	to	use	a	method	to
allocate	memory	for	storing	data	and	keeping	that	data	available	long	after	that
method	has	exited.	This	possibility	exists	whenever	storage	space	is	requested
with	the	new	operator—as	is	the	case	for	all	reference	types.	That	is	where	the
managed	heap	comes	in.

If	you	have	done	any	C++	coding	that	required	low-level	memory	management,
you	are	familiar	with	the	heap.	The	managed	heap	is	not	quite	the	same	as	the
native	heap	C++	uses,	however;	the	managed	heap	works	under	the	control	of
the	garbage	collector	and	provides	significant	benefits	compared	to	traditional

heaps.

The	managed	heap	(or	heap	for	short)	is	just	another	area	of	memory	from	the
processor's	available	memory.	The	following	code	demonstrates	how	the	heap
works	and	how	memory	is	allocated	for	reference	data	types:

void	DoWork()

{

		Customer?	arabel;

		arabel	=	new();

		Customer	otherCustomer2	=	new	EnhancedCustomer();

}

This	code	assumes	the	existence	of	two	classes,	Customer	and
EnhancedCustomer.	The	EnhancedCustomer	class	extends	the	Customer	class.

First,	you	declare	a	Customer	reference	called	arabel.	The	space	for	this	is
allocated	on	the	stack,	but	remember	that	this	is	only	a	reference	rather	than	an
actual	Customer	object.	The	arabel	reference	occupies	4	bytes,	enough	space	to
hold	the	address	at	which	a	Customer	object	will	be	stored.	(You	need	4	bytes	to
represent	a	memory	address	as	an	unsigned	integer	value	between	0	and	4GB.)

The	next	line,

arabel	=	new	Customer();

does	several	things.	First,	it	allocates	memory	on	the	heap	to	store	a	Customer
object	(a	real	object,	not	just	an	address).	Then	it	sets	the	value	of	the	variable
arabel	to	the	address	of	the	memory	it	has	allocated	to	the	new	Customer	object.
(It	also	calls	the	appropriate	Customer	constructor	to	initialize	the	fields	in	the
class	instance,	but	you	don't	need	to	worry	about	that	here.)

The	Customer	instance	is	not	placed	on	the	stack—it	is	placed	on	the	heap.	In
this	example,	you	don't	know	precisely	how	many	bytes	a	Customer	object
occupies,	but	assume	for	the	sake	of	argument	that	it	is	32.	These	32	bytes
contain	the	instance	fields	of	Customer	as	well	as	some	information	that	.NET
uses	to	identify	and	manage	its	class	instances.

To	find	a	storage	location	on	the	heap	for	the	new	Customer	object,	the	.NET
runtime	looks	through	the	heap	and	grabs	the	first	adjacent	unused	block	of	32
bytes.	Again,	for	the	sake	of	argument,	assume	that	this	happens	to	be	at	address
200000	and	that	the	arabel	reference	occupied	locations	799996	through	799999
on	the	stack.	This	means	that	before	instantiating	the	arabel	object,	the	memory
content	looks	like	Figure	13-2.

FIGURE	13-2

After	allocating	the	new	Customer	object,	the	content	of	memory	looks	like
Figure	13-3.	Note	that	unlike	the	stack,	memory	in	the	heap	is	allocated	upward,
so	the	free	space	is	above	the	used	space.

FIGURE	13-3

The	next	line	of	code	both	declares	a	Customer	reference	and	instantiates	a
Customer	object.	In	this	instance,	space	on	the	stack	for	the	otherCustomer2
reference	is	allocated,	and	space	for	the	otherCustomer2	object	is	allocated	on
the	heap	in	a	single	line	of	code:

Customer	otherCustomer2	=	new	EnhancedCustomer();

This	line	allocates	4	bytes	on	the	stack	to	hold	the	otherCustomer2	reference,
stored	at	locations	799992	through	799995.	The	otherCustomer2	object	is
allocated	space	on	the	heap	starting	at	location	200032.

It	is	clear	from	the	example	that	the	process	of	setting	up	a	reference	variable	is
more	complex	than	for	setting	up	a	value	variable,	and	there	is	performance
overhead.	In	fact,	the	process	is	somewhat	oversimplified	here	because	the	.NET
runtime	needs	to	maintain	information	about	the	state	of	the	heap,	and	this
information	needs	to	be	updated	whenever	new	data	is	added	to	the	heap.
Despite	this	overhead,	you	now	have	a	mechanism	for	allocating	variables	that	is
not	constrained	by	the	limitations	of	the	stack.	By	assigning	the	value	of	one
reference	variable	to	another	of	the	same	type,	you	have	two	variables	that
reference	the	same	object	in	memory.	When	a	reference	variable	goes	out	of
scope,	it	is	removed	from	the	stack	as	described	in	the	previous	section,	but	the
data	for	a	referenced	object	is	still	sitting	on	the	heap.	The	data	remains	on	the
heap	until	either	the	program	terminates	or	the	garbage	collector	removes	it,
which	happens	only	when	the	data	is	no	longer	referenced	by	any	variables	and
the	garbage	collector	runs.

The	fact	that	data	can	remain	in	the	heap	for	a	long	time	is	the	power	of
reference	data	types,	and	you	will	see	this	feature	used	extensively	in	C#	code.	It
means	that	you	have	a	high	degree	of	control	over	the	lifetime	of	your	data
because	it	is	guaranteed	to	exist	in	the	heap	as	long	as	you	are	maintaining	some
reference	to	it.

Garbage	Collection
The	previous	discussion	and	diagrams	show	the	managed	heap	working	very
much	like	the	stack,	to	the	extent	that	successive	objects	are	placed	next	to	each
other	in	memory.	This	means	you	can	determine	where	to	place	the	next	object
by	using	a	heap	pointer	that	indicates	the	next	free	memory	location,	which	is
adjusted	as	you	add	more	objects	to	the	heap.	However,	things	are	complicated
by	the	fact	that	the	lives	of	the	heap-based	objects	are	not	coupled	with	the	scope
of	the	individual	stack-based	variables	that	reference	them.

When	the	garbage	collector	runs,	it	removes	all	those	objects	from	the	heap	that
are	no	longer	referenced.	The	GC	finds	all	referenced	objects	from	a	root	table
of	references	and	continues	to	a	tree	of	referenced	objects.	Immediately	after,	the
heap	has	objects	scattered	on	it,	which	are	mixed	up	with	memory	that	has	just
been	freed	(see	Figure	13-4).

FIGURE	13-4

If	the	managed	heap	stayed	like	this,	allocating	space	for	new	objects	would	be
an	awkward	process,	with	the	runtime	having	to	search	through	the	heap	for	a
block	of	memory	big	enough	to	store	each	new	object.	However,	the	garbage
collector	does	not	leave	the	heap	in	this	state.	As	soon	as	the	garbage	collector
has	freed	all	the	objects	it	can,	it	compacts	the	heap	by	moving	all	the	remaining
objects	to	form	one	continuous	block	of	memory.	This	means	that	the	heap	can
continue	working	just	like	the	stack,	as	far	as	locating	where	to	store	new
objects.	Of	course,	when	the	objects	are	moved	about,	all	the	references	to	those
objects	need	to	be	updated	with	the	correct	new	addresses,	but	the	garbage
collector	handles	that,	too.

This	action	of	compacting	by	the	garbage	collector	is	where	the	managed	heap
works	very	differently	from	unmanaged	heaps.	With	the	managed	heap,	it	is	just
a	question	of	reading	the	value	of	the	heap	pointer	rather	than	iterating	through	a

linked	list	of	addresses	to	find	somewhere	to	put	the	new	data.

NOTE Generally,	the	garbage	collector	runs	when	the	.NET	runtime
determines	that	garbage	collection	is	required.	You	can	force	the	garbage
collector	to	run	at	a	certain	point	in	your	code	by	calling
System.GC.Collect	.	System.GC	is	a	.NET	class	that	represents	the	garbage
collector,	and	the	Collect	method	initiates	a	garbage	collection.

Usually	you	shouldn't	invoke	GC.Collect	programmatically	because
surviving	objects	move	faster	in	the	next	generation	(as	described	in	the	next
section).	However,	this	method	has	great	usage	during	testing	when	you	can
see	memory	leaks	where	objects	that	should	have	been	garbage	collected	are
still	alive.	You	also	can	see	other	scenarios	where	an	object	is	garbage
collected	even	if	you	still	expect	a	reference	to	be	available.	Be	aware	that
code	can	behave	differently	in	debug	and	release	builds.	With	release	builds,
more	optimizations	are	taking	place.

When	objects	are	created,	they	are	placed	within	the	managed	heap.	The	first
section	of	the	heap	is	called	the	generation	0	section,	or	gen	0.	As	your	new
objects	are	created,	they	are	moved	into	this	section	of	the	heap.	Therefore,	this
is	where	the	youngest	objects	reside.

Your	objects	remain	there	until	the	first	collection	of	objects	occurs	through	the
garbage	collection	process.	The	objects	that	remain	alive	after	this	cleansing	are
compacted	and	then	moved	to	the	next	section	or	generational	part	of	the	heap—
the	generation	1,	or	gen	1,	section.

At	this	point,	the	generation	0	section	is	empty,	and	all	new	objects	are	again
placed	in	this	section.	Older	objects	that	survived	the	garbage	collection	process
are	further	down	in	the	generation	1	section.	This	movement	of	aged	items
actually	occurs	one	more	time.	The	next	collection	process	that	occurs	is	then
repeated.	This	means	that	the	items	that	survived	the	garbage	collection	process
from	the	generation	1	section	are	moved	to	the	generation	2	section,	and	the	gen
0	items	go	to	gen	1,	again	leaving	gen	0	open	for	new	objects.

NOTE Garbage	collection	occurs	when	you	allocate	an	item	that	exceeds
the	capacity	of	the	generation	0	section	or	when	a	GC.Collect	is	called.

This	process	greatly	improves	the	performance	of	your	application.	Typically,

your	youngest	objects	are	the	ones	that	can	be	collected,	and	a	large	number	of
objects	that	are	associated	with	younger	objects	might	be	reclaimed	as	well.	If
these	objects	reside	next	to	each	other	in	the	heap,	then	the	garbage	collection	is
faster.	In	addition,	because	related	objects	are	residing	next	to	each	other,
program	execution	is	faster	all	around.

Another	performance-related	aspect	of	garbage	collection	in	.NET	is	how	the
framework	deals	with	larger	objects	that	are	added	to	the	heap.	In	.NET,	larger
objects	have	their	own	managed	heap,	referred	to	as	the	large	object	heap.	When
objects	greater	than	85,000	bytes	are	utilized,	they	go	to	this	special	heap	rather
than	the	main	heap.	Your	.NET	application	doesn't	know	the	difference	because
this	is	all	managed	for	you.	Because	compressing	large	items	in	the	heap	is
expensive,	it	isn't	done	for	the	objects	residing	in	the	large	object	heap.

To	improve	garbage	collection	even	more,	collections	in	the	generation	2	section
and	from	the	large	object	heap	are	done	on	a	background	thread.	This	means	that
application	threads	are	only	blocked	for	generation	0	and	generation	1
collections,	which	reduces	the	overall	pause	time,	especially	for	large-scale
server	apps.	This	feature	is	on	by	default	for	both	servers	and	workstations.

Another	optimization	that	helps	in	application	performance	is	garbage	collection
balancing.	This	is	specific	to	server	garbage	collection.	Typically,	a	server	has	a
pool	of	threads	doing	roughly	the	same	thing.	The	memory	allocation	is	similar
across	all	the	threads.	For	servers,	there	is	one	garbage	collection	heap	per
logical	server.	So,	when	one	of	the	heaps	runs	out	of	memory	and	triggers	a
garbage	collection,	all	of	the	other	heaps	most	likely	will	benefit	from	the
garbage	collection	as	well.	If	a	thread	happens	to	use	a	lot	more	memory	than
other	threads	and	it	causes	a	garbage	collection,	the	other	threads	may	not	be
close	to	requiring	the	garbage	collection,	so	it's	not	efficient.	The	GC	balances
the	heaps—both	the	small	object	heap	and	the	large	object	heap.	This	balancing
process	reduces	unnecessary	collection.

To	take	advantage	of	hardware	with	lots	of	memory,	the	GC	class	has	added	the
GCSettings.LatencyMode	property.	Setting	the	property	to	one	of	the	values	in
the	GCLatencyMode	enumeration	gives	a	little	control	over	how	the	GC	performs
collections.	The	following	table	shows	the	possible	values	for	the
GCLatencyMode	that	can	be	used:

MEMBER DESCRIPTION
Batch Disables	the	concurrency	settings	and	sets	the	garbage

collection	for	maximum	throughput	at	the	expense	of

responsiveness.	This	overrides	the	configuration	setting.
Interactive The	default	behavior	on	a	workstation.	This	uses

garbage	collection	concurrency	and	balances	throughput
and	responsiveness.

LowLatency Conservative	garbage	collection.	Full	collections	occur
only	when	there	is	memory	pressure	on	the	system.	This
setting	should	only	be	used	for	short	periods	of	time	to
perform	specific	operations.

SustainedLowLatency Does	full	blocking	collections	only	when	there	is
system	memory	pressure.

NoGCRegion With	GCSettings,	this	is	a	read-only	property.	You	can
set	it	within	a	code	block	by	calling
GC.TryStartNoGCRegion	and	EndNoGCRegion.	By
invoking	TryStartNoGCRegion,	you	define	the	size	of
the	memory	that	needs	to	be	available,	which	the	GC
tries	to	reach.	After	a	successful	call	to
TryStartNoGCRegion,	you	define	that	the	garbage
collector	should	not	run—until	calling	EndNoGCRegion.

The	amount	of	time	that	the	LowLatency	or	NoGCRegion	settings	are	used	should
be	kept	to	a	minimum.	The	amount	of	memory	being	allocated	should	be	as
small	as	possible.	An	out-of-memory	error	could	occur	if	you're	not	careful.

STRONG	AND	WEAK	REFERENCES
The	garbage	collector	cannot	reclaim	memory	of	an	object	that	still	has	a
reference—that	is	a	strong	reference.	It	can	reclaim	managed	memory	that	is	not
referenced	from	the	root	table	directly	or	indirectly.	However,	sometimes
developers	miss	properly	releasing	a	reference.	Memory	leaks	can	easily	happen
when	not	unsubscribing	from	events.

NOTE In	case	you	have	objects	that	reference	each	other	but	are	not
referenced	from	the	root	table—for	example,	object	A	references	B,	B
references	C,	and	C	references	A—the	GC	can	destroy	all	these	objects.

When	the	class	or	struct	is	instantiated	in	the	application	code,	it	has	a	strong
reference	as	long	as	there	is	any	other	code	that	references	it.	For	example,	if

you	have	a	class	called	MyClass	and	you	create	a	reference	to	objects	based	on
that	class	and	call	the	variable	myClassVariable	as	follows,	as	long	as
myClassVariable	is	in	scope,	there	is	a	strong	reference	to	the	MyClass	object:

MyClass?	myClassVariable	=	new();

This	means	that	the	garbage	collector	cannot	clean	up	the	memory	used	by	the
MyClass	object.	Generally,	this	is	a	good	thing	because	you	might	need	to	access
the	MyClass	object.	You	might	create	a	cache	object	that	has	references	to
several	other	objects,	like	this:

MyCache	myCache	=	new();

myCache.Add(myClassVariable);

Now	you've	finished	using	the	myClassVariable.	It	can	go	out	of	scope,	or	you
assign	null	:

myClassVariable	=	null;

In	case	the	garbage	collector	runs	now,	it	can't	release	the	memory	that	was
referenced	by	the	myClassVariable	because	the	object	is	still	referenced	from
the	cache	object.	Such	references	can	easily	be	missed,	and	you	can	avoid	this	by
using	the	WeakReference.

A	weak	reference	allows	the	object	to	be	created	and	used,	but	if	the	garbage
collector	happens	to	run,	it	collects	the	object	and	frees	up	the	memory.	This	is
not	something	you	would	typically	want	to	do	because	of	potential	bugs	and
performance	issues,	but	there	are	certainly	situations	in	which	it	makes	sense.
Weak	references	also	don't	make	sense	with	small	objects	because	weak
references	have	an	overhead	of	their	own,	and	that	might	be	bigger	than	the
small	object.

Weak	references	are	created	using	the	WeakReference	class.	With	the
constructor,	you	can	pass	a	strong	reference.	The	sample	code	creates	a
DataObject	and	passes	the	reference	returned	from	the	constructor.	When	using
WeakReference,	you	can	try	to	access	the	Target	property.	If	the	Target
property	doesn't	return	null,	the	object	is	still	available.	Assigning	it	to	the
variable	strongReference,	a	strong	reference	to	the	object	is	created	again,	and
it	can't	be	garbage	collected:

//	Instantiate	a	weak	reference	to	the	DataObject	object

WeakReference	myWeakReference	=	new(new	DataObject());

DataObject?	strongReference	=	myWeakReference.Target	as	

DataObject;

if	(strongReference	is	not	null)

{

		//	use	the	strongReference

}

else

{

		//	reference	not	available

}

NOTE The	WeakReference	class	defines	the	IsAlive	property.	Accessing
this	property	before	creating	a	strong	reference	is	not	useful.	In	the	time
between	accessing	the	IsAlive	property	and	using	the	Target	property,	the
object	can	be	garbage	collected.	It's	always	necessary	to	check	for	null	after
accessing	the	Target	property.	A	practical	use	of	the	IsAlive	property	is
that	a	strong	reference	is	currently	not	required,	and	you	just	want	to	check
if	the	object	is	not	alive	anymore	(e.g.,	to	set	a	flag	in	a	class	or	do	some
other	cleanup).

WORKING	WITH	UNMANAGED	RESOURCES
The	presence	of	the	garbage	collector	means	that	you	usually	do	not	need	to
worry	about	objects	you	no	longer	need;	you	simply	allow	all	references	to	those
objects	to	go	out	of	scope	and	let	the	garbage	collector	free	memory	as	required.
However,	the	garbage	collector	does	not	know	how	to	free	unmanaged	resources
(such	as	file	handles,	network	connections,	and	database	connections).	When
managed	classes	encapsulate	direct	or	indirect	references	to	unmanaged
resources,	you	need	to	make	special	provisions	to	ensure	that	the	unmanaged
resources	are	released	when	an	instance	of	the	class	is	garbage	collected.

When	defining	a	class,	you	can	use	two	mechanisms	to	automate	the	freeing	of
unmanaged	resources.	These	mechanisms	are	often	implemented	together
because	each	provides	a	slightly	different	approach:

Declare	a	destructor	(or	finalizer)	as	a	member	of	your	class.

Implement	the	System.IDisposable	interface	in	your	class.

The	following	sections	discuss	each	of	these	mechanisms	in	turn	and	then	look
at	how	to	implement	the	mechanisms	together	for	best	results.

Destructors	or	Finalizers

You	have	seen	that	constructors	enable	you	to	specify	actions	that	must	take
place	whenever	an	instance	of	a	class	is	created.	Conversely,	destructors	are
called	before	an	object	is	destroyed	by	the	garbage	collector.	Given	this
behavior,	a	destructor	would	initially	seem	like	a	great	place	to	put	code	to	free
unmanaged	resources	and	perform	a	general	cleanup.	Unfortunately,	things	are
not	always	so	straightforward.

NOTE Although	we	talk	about	destructors	in	C#,	in	the	underlying	.NET
architecture,	these	are	known	as	finalizers.	When	you	define	a	destructor	in
C#,	what	is	emitted	into	the	assembly	by	the	compiler	is	actually	a	Finalize
method.	It	doesn't	affect	any	of	your	source	code,	but	you	need	to	be	aware
of	it	when	examining	generated	Intermediate	Language	(IL)	code.

The	syntax	for	a	destructor	will	be	familiar	to	C++	developers.	It	looks	like	a
method,	with	the	same	name	as	the	containing	class,	but	prefixed	with	a	tilde	(~).
It	has	no	return	type	and	takes	no	parameters	or	access	modifiers.	Here	is	an
example:

class	MyClass

{

		~MyClass()

		{

				//	Finalizer	implementation

		}

}

When	the	C#	compiler	compiles	a	destructor,	it	implicitly	translates	the
destructor	code	to	the	equivalent	of	an	override	of	the	Finalize	method,	which
ensures	that	the	Finalize	method	of	the	parent	class	is	executed.	The	following
example	shows	the	C#	code	equivalent	to	the	IL	that	the	compiler	would
generate	for	the	~MyClass	destructor:

protected	override	void	Finalize()

{

		try

		{

				//	Finalizer	implementation

		}

		finally

		{

				base.Finalize();

		}

}

As	shown,	the	code	implemented	in	the	~MyClass	destructor	is	wrapped	in	a	try
block	contained	in	the	Finalize	method.	A	call	to	the	parent's	Finalize	method
is	ensured	by	placing	the	call	in	a	finally	block.	You	can	read	about	try	and
finally	blocks	in	Chapter	10,	“Errors	and	Exceptions.”

Experienced	C++	developers	make	extensive	use	of	destructors,	sometimes	not
only	to	clean	up	resources	but	also	to	provide	debugging	information	or	perform
other	tasks.	C#	destructors	are	used	far	less	than	their	C++	equivalents.	The
problem	with	C#	destructors	as	compared	to	their	C++	counterparts	is	that	they
are	nondeterministic.	When	a	C++	object	is	destroyed,	its	destructor	runs
immediately.	However,	because	of	the	way	the	garbage	collector	works	when
using	C#,	there	is	no	way	to	know	when	an	object's	destructor	will	actually
execute.	The	destructor	runs	when	a	finalizer	starts.	The	finalizer	is	started	with
a	garbage	collection.	Hence,	you	cannot	place	any	code	in	the	destructor	that
relies	on	being	run	at	a	certain	time,	and	you	should	not	rely	on	the	destructor
being	called	for	different	class	instances	in	any	particular	order.	When	your
object	is	holding	scarce	and	critical	resources	that	need	to	be	freed	as	soon	as
possible,	you	do	not	want	to	wait	for	garbage	collection.

Another	problem	with	C#	destructors	is	that	the	implementation	of	a	destructor
delays	the	final	removal	of	an	object	from	memory.	Objects	that	do	not	have	a
destructor	are	removed	from	memory	in	one	pass	of	the	garbage	collector,	but
objects	that	have	destructors	require	two	passes	to	be	destroyed:	the	first	pass
calls	the	destructor	without	removing	the	object,	and	the	second	pass	actually
deletes	the	object.	In	addition,	the	runtime	uses	a	single	thread	to	execute	the
Finalize	methods	of	all	objects.	If	you	use	destructors	frequently	and	use	them
to	execute	lengthy	cleanup	tasks,	the	impact	on	performance	can	be	noticeable.

The	IDisposable	and	IAsyncDiposable	Interfaces
In	C#,	the	recommended	alternative	to	using	a	destructor	is	using	the
IDisposable	or	IAsyncDiposable	interfaces.	These	interfaces	define	a	pattern
(with	language-level	support)	that	provides	a	deterministic	mechanism	for
freeing	unmanaged	resources	and	avoids	the	garbage	collector–related	problems
inherent	with	destructors.	The	IDisposable	interface	declares	a	single	method
named	Dispose,	which	takes	no	parameters	and	returns	void.	Here	is	an
implementation	for	MyClass	:

class	MyClass:	IDisposable

{

		public	void	Dispose()

		{

				//	implementation

		}

}

The	IAsyncDisposable	interface	defines	the	DisposeAsync	method	that	returns
a	ValueTask.

The	implementation	of	Dispose	should	explicitly	free	all	unmanaged	resources
used	directly	by	an	object	and	call	Dispose	on	any	encapsulated	objects	that	also
implement	the	IDisposable	interface.	In	this	way,	the	Dispose	method	provides
precise	control	over	when	unmanaged	resources	are	freed.

Suppose	that	you	have	a	class	named	ResourceGobbler,	which	relies	on	the	use
of	some	external	resource	and	implements	IDisposable.	If	you	want	to
instantiate	an	instance	of	this	class,	use	it,	and	then	dispose	of	it,	you	could	do	so
like	this:

ResourceGobbler	theInstance	=	new();

//	do	your	processing

theInstance.Dispose();

Unfortunately,	this	code	fails	to	free	the	resources	consumed	by	theInstance	if
an	exception	occurs	during	processing,	so	you	should	write	the	code	as	follows
using	a	try	block	(as	covered	in	detail	in	Chapter	10):

ResourceGobbler?	theInstance	=	null;

try

{

		theInstance	=	new();

		//	do	your	processing

}

finally

{

		theInstance?.Dispose();

}

The	using	Statement	and	the	using	Declaration
Using	try	/	finally	ensures	that	Dispose	is	always	called	on	theInstance	and
that	any	resources	consumed	by	it	are	always	freed,	even	if	an	exception	occurs
during	processing.	However,	if	you	always	had	to	repeat	such	a	construct,	it
would	result	in	confusing	code.	C#	offers	a	syntax	that	you	can	use	to	guarantee
that	Dispose	or	DisposeAsync	is	automatically	called	against	an	object	that

implements	IDisposable	or	IAsyncDisposable	when	its	reference	goes	out	of
scope.	The	syntax	to	do	this	involves	the	using	keyword.	The	following	code
generates	IL	code	equivalent	to	the	try	block	just	shown:

using	(ResourceGobbler	theInstance	=	new())

{

		//	do	your	processing

}

NOTE The	interface	IDisposable	or	IAsyncDisposable	is	required	to	use
an	object	with	the	using	statement	or	the	using	declaration.	There's	one
exception:	because	a	value-only	type	(a	ref	struct)	cannot	implement	any
interface,	with	a	ref	struct,	just	the	implementation	of	a	Dispose	method
is	required	to	use	this	type	with	the	using	statement	or	the	using
declaration.

The	using	statement,	followed	in	parentheses	by	a	reference	variable	declaration
and	instantiation,	causes	that	variable	to	be	scoped	to	the	accompanying
statement	block.	In	addition,	when	that	variable	goes	out	of	scope,	its	Dispose
method	is	called	automatically,	even	if	an	exception	occurs.

Since	C#	8,	a	shorter	form	to	release	resources	is	available:	the	using
declaration.	With	the	using	declaration,	you	don't	write	parentheses,	and	the
curly	brackets	are	not	necessary.	The	compiler	still	creates	code	with	try	/
finally	to	invoke	the	Dispose	or	DisposeAsync	method.	The	resource	is
disposed	when	the	variable	goes	out	of	scope.	Typically,	the	variable	goes	out	of
scope	when	the	method	ends.	As	most	methods	are	very	short,	disposing	should
often	be	done	at	the	end	of	the	method.	That	much	indentation	of	code	using
many	curly	brackets	can	be	reduced	with	the	using	declaration.	With	the	using
declaration,	you	can	also	add	curly	brackets	to	invoke	the	Dipose	method	earlier.

using	ResourceGobbler	theInstance	=	new();

//	do	your	processing

There's	another	difference	with	the	using	statement	and	the	using	declaration.
With	the	using	declaration,	a	variable	is	always	needed.	The	using	statement
can	be	used	with	the	return	of	a	method;	you	don't	necessarily	need	to	declare	a
variable	if	a	variable	is	not	needed	to	invoke	members.

NOTE The	using	keyword	has	multiple	uses	with	C#.	The	using	directive
is	used	to	import	namespaces.	The	using	statement	and	using	declaration

can	be	used	with	objects	implementing	the	IDisposable	interface.	The
Dispose	method	is	invoked	with	the	end	of	the	using	scope.

NOTE With	several	classes,	both	a	Close	and	a	Dispose	method	exist.	If	it
is	common	to	close	a	resource	(such	as	a	file	and	a	database),	both	Close
and	Dispose	have	been	implemented.	Here,	the	Close	method	simply	calls
Dispose.	This	approach	provides	clarity	in	the	use	of	these	classes	and
supports	the	using	statement.	Newer	types	only	implement	the	Dispose
method	as	we're	already	used	to	it.

Implementing	IDisposable	and	a	Destructor
The	previous	sections	discussed	two	alternatives	for	freeing	unmanaged
resources	used	by	the	classes	you	create:

The	execution	of	a	destructor	is	enforced	by	the	runtime	but	is
nondeterministic	and	places	an	unacceptable	overhead	on	the	runtime
because	of	the	way	garbage	collection	works.

The	IDisposable	interface	provides	a	mechanism	that	enables	users	of	a
class	to	control	when	resources	are	freed	but	requires	discipline	to	ensure
that	Dispose	is	called.

If	you	are	creating	a	finalizer,	you	should	also	implement	the	IDisposable
interface.	You	implement	IDisposable	on	the	assumption	that	most
programmers	will	call	Dispose	correctly,	but	implement	a	destructor	as	a	safety
mechanism	in	case	Dispose	is	not	called.	Here	is	an	example	of	a	dual
implementation:

public	class	ResourceHolder:	IDisposable

{

		private	bool	_isDisposed	=	false;

		public	void	Dispose()

		{

				Dispose(true);

				GC.SuppressFinalize(this);

		}

	

		protected	virtual	void	Dispose(bool	disposing)

		{

				if	(!_isDisposed)

				{

						if	(disposing)

						{

								//	Cleanup	managed	objects	by	calling	their

								//	Dispose()	methods.

						}

						//	Cleanup	unmanaged	objects

						_isDisposed	=	true;

				}

		}

	

		~ResourceHolder()

		{

				Dispose(false);

		}

	

		public	void	SomeMethod()

		{

				//	Ensure	object	not	already	disposed	before	execution	of	

any	method

				if(_isDisposed)

				{

						throw	new	ObjectDisposedException(nameof(ResourceHolder));

				}

				//	method	implementation…

		}

}

You	can	see	from	this	code	that	there	is	a	second	protected	overload	of	Dispose
that	takes	one	bool	parameter—and	this	is	the	method	that	does	all	the	cleaning
up.	Dispose(bool)	is	called	by	both	the	destructor	and	IDisposable.Dispose.
The	point	of	this	approach	is	to	ensure	that	all	cleanup	code	is	in	one	place.

The	parameter	passed	to	Dispose(bool)	indicates	whether	Dispose(bool)	has
been	invoked	by	the	destructor	or	by	IDisposable.Dispose.	Dispose(bool)
should	not	be	invoked	from	anywhere	else	in	your	code.	The	idea	is	this:

If	a	consumer	calls	IDisposable.Dispose,	that	consumer	is	indicating	that
all	managed	and	unmanaged	resources	associated	with	that	object	should	be
cleaned	up.

If	a	destructor	has	been	invoked,	all	resources	still	need	to	be	cleaned	up.
However,	in	this	case,	you	know	that	the	destructor	must	have	been	called
by	the	garbage	collector,	and	you	should	not	attempt	to	access	other
managed	objects	because	you	can	no	longer	be	certain	of	their	state.	In	this
situation,	the	best	you	can	do	is	clean	up	the	known	unmanaged	resources

and	hope	that	any	referenced	managed	objects	also	have	destructors	that
will	perform	their	own	cleaning	up.

The	_isDisposed	member	variable	indicates	whether	the	object	has	already	been
disposed	of	and	ensures	that	you	do	not	try	to	dispose	of	member	variables	more
than	once.	It	also	enables	you	to	test	whether	an	object	has	been	disposed	of
before	executing	any	instance	methods,	as	shown	in	SomeMethod.	This	simplistic
approach	is	not	thread-safe	and	depends	on	the	caller	ensuring	that	only	one
thread	is	calling	the	method	concurrently.	Requiring	a	consumer	to	enforce
synchronization	is	a	reasonable	assumption	and	one	that	is	used	repeatedly
throughout	the	.NET	class	libraries	(in	the	Collection	classes,	for	example).
Threading	and	synchronization	are	discussed	in	Chapter	17,	“Parallel
Programming.”

Finally,	IDisposable.Dispose	contains	a	call	to	the	method
System.GC.SuppressFinalize.	GC	is	the	class	that	represents	the	garbage
collector,	and	the	SuppressFinalize	method	tells	the	garbage	collector	that	a
class	no	longer	needs	to	have	its	destructor	called.	Because	your	implementation
of	Dispose	has	already	done	all	the	cleanup	required,	there's	nothing	left	for	the
destructor	to	do.	Calling	SuppressFinalize	means	that	the	garbage	collector
will	treat	that	object	as	if	it	doesn't	have	a	destructor	at	all.

IDisposable	and	Finalizer	Rules
You've	learned	about	finalizers,	the	IDisposable	interface,	the	Dispose	pattern,
and	some	rules	on	using	these	constructs.	Because	releasing	resources	is	such	an
important	aspect	with	managed	code,	the	rules	are	summarized	in	this	list:

If	your	class	defines	a	member	that	implements	IDisposable,	the	class
should	also	implement	IDisposable.

Implementing	IDisposable	does	not	mean	you	should	also	implement	a
finalizer.	Finalizers	create	additional	overhead	with	both	creating	an	object
and	releasing	the	memory	of	the	object	as	an	additional	pass	from	the	GC	is
needed.	You	should	implement	a	finalizer	only	if	needed—for	example,	to
release	native	resources,	a	finalizer	is	really	needed.

If	a	finalizer	is	implemented,	you	should	also	implement	the	interface
IDisposable.	This	way,	the	native	resource	can	be	released	earlier,	not	only
when	the	GC	is	finding	out	about	the	allocated	resource	that's	available	for
releasing	it.

Within	the	finalization	code	implementation,	don't	access	objects	that	might

have	been	finalized	already.	The	order	of	finalizers	is	not	guaranteed.

If	an	object	you	use	implements	the	IDisposable	interface,	call	the
Dispose	method	when	the	object	is	no	longer	needed.	In	case	you're	using
this	object	within	a	method,	the	using	statement	or	using	declaration
comes	in	handy.	In	case	the	object	is	a	member	of	the	class,	make	the	class
implement	IDisposable	as	well.

UNSAFE	CODE
As	you	have	just	seen,	C#	is	good	at	hiding	much	of	the	basic	memory
management	from	the	developer,	thanks	to	the	garbage	collector	and	the	use	of
references.	However,	sometimes	you	will	want	direct	access	to	memory.	For
example,	you	might	want	to	access	a	function	in	an	external	(non-.NET)	DLL
that	requires	a	pointer	to	be	passed	as	a	parameter	(as	many	Windows	API
functions	or	native	Linux	functions	do),	or	possibly	for	performance	reasons.
This	section	examines	the	C#	facilities	that	provide	direct	access	to	the	content
of	memory.

Accessing	Memory	Directly	with	Pointers
Although	I	am	introducing	pointers	as	if	they	are	a	new	topic,	in	reality	pointers
are	not	new	at	all.	You	have	been	using	references	freely	in	your	code,	and	a
reference	is	simply	a	type-safe	pointer.	You	have	already	seen	how	variables	that
represent	objects	and	arrays	actually	store	the	memory	address	of	where	the
corresponding	data	(the	referent)	is	stored.	A	pointer	is	simply	a	variable	that
stores	the	address	of	something	else	in	the	same	way	as	a	reference.	The
difference	is	that	C#	does	not	allow	you	direct	access	to	the	address	contained	in
a	reference	variable.	With	a	reference,	the	variable	is	treated	syntactically	as	if	it
stores	the	actual	content	of	the	referent.

C#	references	are	designed	to	make	the	language	simpler	to	use	and	to	prevent
you	from	inadvertently	doing	something	that	corrupts	the	contents	of	memory.
With	a	pointer,	however,	the	actual	memory	address	is	available	to	you.	This
gives	you	a	lot	of	power	to	perform	new	kinds	of	operations.	For	example,	you
can	add	4	bytes	to	the	address	to	examine	or	even	modify	whatever	data	happens
to	be	stored	4	bytes	further	in	memory.

There	are	two	main	reasons	for	using	pointers:

Backward	compatibility—Despite	all	the	facilities	provided	by	.NET,	it	is

still	possible	to	call	native	Windows	and	Linux	API	functions,	and	for	some
operations,	this	may	be	the	only	way	to	accomplish	your	task.	These	API
functions	are	generally	written	in	C++	or	C	and	often	require	pointers	as
parameters.	However,	in	many	cases,	it	is	possible	to	write	the	DllImport
declaration	in	a	way	that	avoids	use	of	pointers—for	example,	by	using	the
System.IntPtr	class.	Many	features	of	.NET	itself	make	use	of	native
APIs.

Performance—On	those	occasions	when	speed	is	of	the	utmost
importance,	pointers	can	provide	a	route	to	optimized	performance.	If	you
know	what	you	are	doing,	you	can	ensure	that	data	is	accessed	or
manipulated	in	the	most	efficient	way.	However,	be	aware	that	more	often
than	not,	there	are	other	areas	of	your	code	where	you	can	likely	make	the
necessary	performance	improvements	without	resorting	to	using	pointers.
Try	using	a	code	profiler	to	look	for	the	bottlenecks	in	your	code;	Visual
Studio	includes	a	code	profiler.

Low-level	memory	access	has	a	price.	The	syntax	for	using	pointers	is	more
complex	than	that	for	reference	types,	and	pointers	are	unquestionably	more
difficult	to	use	correctly.	You	need	good	programming	skills	and	an	excellent
ability	to	think	carefully	and	logically	about	what	your	code	is	doing	to	use
pointers	successfully.	Otherwise,	it	is	easy	to	introduce	subtle,	difficult-to-find
bugs	into	your	program	when	using	pointers.	For	example,	it	is	easy	to	overwrite
other	variables,	cause	stack	overflows,	access	areas	of	memory	that	don't	store
any	variables,	or	even	overwrite	information	about	your	code	that	is	needed	by
the	.NET	runtime,	thereby	crashing	your	program.

Despite	these	issues,	pointers	remain	a	powerful	and	flexible	tool	in	the	writing
of	efficient	code.

WARNING I	strongly	advise	against	using	pointers	unnecessarily
because	your	code	will	not	only	be	harder	to	write	and	debug,	but	it	will	also
fail	the	memory	type	safety	checks	imposed	by	the	CLR.	An	example	where
pointers	are	necessary	is	to	invoke	native	APIs.

Writing	Unsafe	Code	with	the	unsafe	Keyword
As	a	result	of	the	risks	associated	with	pointers,	C#	allows	the	use	of	pointers
only	in	blocks	of	code	that	you	have	specifically	marked	for	this	purpose.	The
keyword	to	do	this	is	unsafe.	You	can	mark	an	individual	method	as	being

unsafe	like	this:

unsafe	int	GetSomeNumber()

{

		//	code	that	can	use	pointers

}

Any	method	can	be	marked	as	unsafe,	regardless	of	what	other	modifiers	have
been	applied	to	it	(for	example,	static	methods	or	virtual	methods).	In	the
case	of	methods,	the	unsafe	modifier	applies	to	the	method's	parameters,
allowing	you	to	use	pointers	as	parameters.	You	can	also	mark	an	entire	class	or
struct	as	unsafe,	which	means	that	all	its	members	are	assumed	unsafe:

unsafe	class	MyClass

{

		//	any	method	in	this	class	can	now	use	pointers

}

Similarly,	you	can	mark	a	member	as	unsafe	:

class	MyClass

{

		unsafe	int*	pX;	//	declaration	of	a	pointer	field	in	a	class

}

Or	you	can	mark	a	block	of	code	within	a	method	as	unsafe	:

void	MyMethod()

{

		//	code	that	doesn't	use	pointers

		unsafe

		{

				//	unsafe	code	that	uses	pointers	here

		}

	

		//	more	'safe'	code	that	doesn't	use	pointers

}

You	cannot	mark	a	local	variable	by	itself	as	unsafe.	If	you	want	to	use	an
unsafe	local	variable,	you	need	to	declare	and	use	it	inside	a	method	or	block
that	is	unsafe.	There	is	one	more	step	before	you	can	use	pointers.	The	C#
compiler	rejects	unsafe	code	unless	you	tell	it	that	your	code	includes	unsafe
blocks.	You	can	configure	unsafe	code	by	setting	the	AllowUnsafeBlocks	in	the
csproj	project	file,	as	shown	here:

<PropertyGroup>

		<AllowUnsafeBlocks>True</AllowUnsafeBlocks>

</PropertyGroup>

Pointer	Syntax
After	you	have	marked	a	block	of	code	as	unsafe,	you	can	declare	a	pointer
using	the	following	syntax:

int*	pWidth,	pHeight;

double*	pResult;

byte*[]	pFlags;

This	code	declares	four	variables:	pWidth	and	pHeight	are	pointers	to	integers,
pResult	is	a	pointer	to	a	double,	and	pFlags	is	an	array	of	pointers	to	bytes.	It	is
common	practice	to	use	the	prefix	p	in	front	of	names	of	pointer	variables	to
indicate	that	they	are	pointers.	When	used	in	a	variable	declaration,	the	symbol	*
indicates	that	you	are	declaring	a	pointer	(that	is,	something	that	stores	the
address	of	a	variable	of	the	specified	type).

When	you	have	declared	variables	of	pointer	types,	you	can	use	them	in	the
same	way	as	normal	variables,	but	first	you	need	to	learn	two	more	operators:

&	means	take	the	address	of,	and	it	converts	a	value	data	type	to	a	pointer—
for	example,	int	to	*	int.	This	operator	is	known	as	the	address	operator.

*	means	get	the	content	of	this	address	and	convert	a	pointer	to	a	value	data
type—for	example,	*	float	to	float.	This	operator	is	known	as	the
indirection	operator	(or	the	dereference	operator).

You	can	see	from	these	definitions	that	&	and	*	have	opposite	effects.

NOTE You	might	be	wondering	how	it	is	possible	to	use	the	symbols	&	and
*	in	this	manner	because	these	symbols	also	refer	to	the	operators	of	bitwise
AND	(&)	and	multiplication	(*).	Actually,	it	is	always	possible	for	both	you
and	the	compiler	to	know	what	is	meant	in	each	case	because	with	the
pointer	meanings,	these	symbols	always	appear	as	unary	operators—they
act	on	only	one	variable	and	appear	in	front	of	that	variable	in	your	code.
By	contrast,	bitwise	AND	multiplication	are	binary	operators—they	require
two	operands.

The	following	code	shows	examples	of	how	to	use	these	operators:

int	x	=	10;

int*	pX,	pY;

pX	=	&x;

pY	=	pX;

*pY	=	20;

You	start	by	declaring	an	integer,	x,	with	the	value	10	followed	by	two	pointers
to	integers,	pX	and	pY.	You	then	set	pX	to	point	to	x	(that	is,	you	set	the	content	of
pX	to	the	address	of	x).	Then	you	assign	the	value	of	pX	to	pY	so	that	pY	also
points	to	x.	Finally,	in	the	statement	*	pY	=	20,	you	assign	the	value	20	as	the
contents	of	the	location	pointed	to	by	pY	—in	effect	changing	x	to	20	because	pY
happens	to	point	to	x.	Note	that	there	is	no	particular	connection	between	the
variables	pY	and	x.	It	is	just	that	at	the	present	time,	pY	happens	to	point	to	the
memory	location	at	which	x	is	held.

To	get	a	better	understanding	of	what	is	going	on,	consider	that	the	integer	x	is
stored	at	memory	locations	0x12F8C4	through	0x12F8C7	(1243332	to	1243335	in
decimal)	on	the	stack	(there	are	four	locations	because	an	int	occupies	4	bytes).
Because	the	stack	allocates	memory	downward,	this	means	that	the	variables	pX
will	be	stored	at	locations	0x12F8C0	to	0x12F8C3,	and	pY	will	end	up	at	locations
0x12F8BC	to	0x12F8BF.	Note	that	pX	and	pY	also	occupy	4	bytes	each.	That	is	not
because	an	int	occupies	4	bytes,	but	because	on	a	32-bit	application	you	need	4
bytes	to	store	an	address.	With	these	addresses,	after	executing	the	previous
code,	the	stack	will	look	like	Figure	13-5.

FIGURE	13-5

NOTE Although	this	process	is	illustrated	with	integers,	which	are	stored
consecutively	on	the	stack	on	a	32-bit	processor,	this	does	not	happen	for	all

data	types.	The	reason	is	that	32-bit	processors	work	best	when	retrieving
data	from	memory	in	4-byte	chunks.	Memory	on	such	machines	tends	to	be
divided	into	4-byte	blocks,	and	each	block	is	sometimes	known	under
Windows	as	a	DWORD	because	this	was	the	name	of	a	32-bit	unsigned	int
in	pre-.NET	days.	It	is	most	efficient	to	grab	DWORDs	from	memory—
storing	data	across	DWORD	boundaries	normally	results	in	a	hardware
performance	hit.	For	this	reason,	the	.NET	runtime	normally	pads	out	data
types	so	that	the	memory	they	occupy	is	a	multiple	of	4.	For	example,	a	short
occupies	2	bytes,	but	if	a	short	is	placed	on	the	stack,	the	stack	pointer	will
still	be	decremented	by	4,	not	2,	so	the	next	variable	to	go	on	the	stack	will
still	start	at	a	DWORD	boundary.

You	can	declare	a	pointer	to	any	value	type	(that	is,	any	of	the	predefined	types
uint,	int,	byte,	and	so	on,	or	to	a	struct).	However,	it	is	not	possible	to	declare	a
pointer	to	a	class	or	an	array;	this	is	because	doing	so	could	cause	problems	for
the	garbage	collector.	To	work	properly,	the	garbage	collector	needs	to	know
exactly	what	class	instances	have	been	created	on	the	heap,	and	where	they	are;
but	if	your	code	started	manipulating	classes	using	pointers,	you	could	easily
corrupt	the	information	on	the	heap	concerning	classes	that	the	.NET	runtime
maintains	for	the	garbage	collector.	In	this	context,	any	data	type	that	the
garbage	collector	can	access	is	known	as	a	managed	type.	Pointers	can	only	be
declared	as	unmanaged	types	because	the	garbage	collector	cannot	deal	with
them.

Casting	Pointers	to	Integer	Types
Because	a	pointer	really	stores	an	integer	that	represents	an	address,	you	won't
be	surprised	to	know	that	the	address	in	any	pointer	can	be	converted	to	or	from
any	integer	type.	Pointer-to-integer-type	conversions	must	be	explicit.	Implicit
conversions	are	not	available	for	such	conversions.	For	example,	it	is	perfectly
legitimate	to	write	the	following:

int	x	=	10;

int*	pX,	pY;

pX	=	&x;

pY	=	pX;

*pY	=	20;

ulong	y	=	(ulong)pX;

int*	pD	=	(int*)y;

The	address	held	in	the	pointer	pX	is	cast	to	a	ulong	and	stored	in	the	variable	y.

You	have	then	cast	y	back	to	an	int	*	and	store	it	in	the	new	variable	pD.	Hence,
now	pD	also	points	to	the	value	of	x.

The	primary	reason	for	casting	a	pointer	value	to	an	integer	type	is	to	display	it.
The	interpolation	string	(and	similarly	Console.Write)	does	not	have	any
overloads	that	can	take	pointers,	but	they	do	accept	and	display	pointer	values
that	have	been	cast	to	integer	types:

WriteLine($"Address	is	{pX}");	//	wrong	--	will	give	a	

compilation	error

WriteLine($"Address	is	{(ulong)pX}");	//	OK

You	can	cast	a	pointer	to	any	of	the	integer	types.	However,	because	an	address
occupies	4	bytes	on	32-bit	systems,	casting	a	pointer	to	anything	other	than	a
uint,	long,	or	ulong	is	almost	certain	to	lead	to	overflow	errors.	(An	int	causes
problems	because	its	range	is	from	roughly	–2	billion	to	2	billion,	whereas	an
address	runs	from	zero	to	about	4	billion.)	If	you	are	creating	a	64-bit
application,	you	need	to	cast	the	pointer	to	ulong.

It	is	also	important	to	be	aware	that	the	checked	keyword	does	not	apply	to
conversions	involving	pointers.	For	such	conversions,	exceptions	are	not	raised
when	overflows	occur,	even	in	a	checked	context.	The	.NET	runtime	assumes
that	if	you	are	using	pointers,	you	know	what	you	are	doing	and	are	not	worried
about	possible	overflows.

Casting	Between	Pointer	Types
You	can	also	explicitly	convert	between	pointers	pointing	to	different	types.	For
example,	the	following	is	perfectly	legal	code:

byte	aByte	=	8;

byte*	pByte=	&aByte;

double*	pDouble	=	(double*)pByte;

However,	if	you	try	something	like	this,	be	careful.	In	this	example,	if	you	look
at	the	double	value	pointed	to	by	pDouble,	you	are	actually	looking	up	some
memory	that	contains	a	byte	(aByte),	combined	with	some	other	memory,	and
treating	it	as	if	this	area	of	memory	contained	a	double,	which	does	not	give	you
a	meaningful	value.	However,	you	might	want	to	convert	between	types	to
implement	the	equivalent	of	a	C	union,	or	you	might	want	to	cast	pointers	from
other	types	into	pointers	to	sbyte	to	examine	individual	bytes	of	memory.

void	Pointers

If	you	want	to	maintain	a	pointer	but	not	specify	to	what	type	of	data	it	points,
you	can	declare	it	as	a	pointer	to	a	void	:

int	x	=	10;

int*	pointerToInt	=	&x;

void*	pointerToVoid;

pointerToVoid	=	(void*)pointerToInt;

The	main	use	of	this	is	if	you	need	to	call	an	API	function	that	requires	void	*
parameters.	Within	the	C#	language,	there	isn't	a	great	deal	that	you	can	do	using
void	pointers.	In	particular,	the	compiler	flags	an	error	if	you	attempt	to	de-
reference	a	void	pointer	using	the	*	operator.	You	can	cast	the	void*	into	some
other	pointer	type	and	then	use	it	with	other	scenarios.

Pointer	Arithmetic
It	is	possible	to	add	or	subtract	integers	to	and	from	pointers.	However,	the
compiler	is	quite	clever	about	how	it	arranges	this.	For	example,	suppose	that
you	have	a	pointer	to	an	int,	and	you	try	to	add	1	to	its	value.	The	compiler
assumes	that	you	actually	mean	you	want	to	look	at	the	memory	location
following	the	int,	and	hence	it	increases	the	value	by	4	bytes—the	size	of	an
int.	If	it	is	a	pointer	to	a	double,	adding	1	actually	increases	the	value	of	the
pointer	by	8	bytes,	the	size	of	a	double.	Only	if	the	pointer	points	to	a	byte	or
sbyte	(1	byte	each)	does	adding	1	to	the	value	of	the	pointer	actually	change	its
value	by	1.

You	can	use	the	operators	+,	−,	+=,	−	=,	++,	and	−−	with	pointers,	with	the
variable	on	the	right	side	of	these	operators	being	a	long	or	ulong.

NOTE You	may	not	carry	out	arithmetic	operations	on	void	pointers.	You
need	to	cast	the	void	pointer	to	other	pointer	types,	and	then	you	can
perform	pointer	arithmetic.

For	example,	assume	the	following	definitions:

uint	u	=	3;

byte	b	=	8;

double	d	=	10.0;

uint*	pUint=	&u;	//	size	of	a	uint	is	4

byte*	pByte	=	&b;	//	size	of	a	byte	is	1

double*	pDouble	=	&d;	//	size	of	a	double	is	8

Next,	assume	the	addresses	to	which	these	pointers	point	are	as	follows:

pUint	:	1243332

pByte	:	1243328

pDouble	:	1243320

Then	execute	this	code:

++pUint;	//	adds	(1*4)	=	4	bytes	to	pUint

pByte	-=	3;	//	subtracts	(3*1)	=	3	bytes	from	pByte

double*	pDouble2	=	pDouble	+	4;	//	pDouble2	=	pDouble	+	32	bytes	

(4*8	bytes)

The	pointers	now	contain	this:

pUint	:	1243336

pByte	:	1243325

pDouble2	:	1243352

NOTE The	general	rule	is	that	adding	a	number	X	to	a	pointer	to	type	T
with	value	P	gives	the	result	P	+	X*(sizeof(T))	.	If	successive	values	of	a
given	type	are	stored	in	successive	memory	locations,	pointer	addition	works
very	well,	allowing	you	to	move	pointers	between	memory	locations.	If	you
are	dealing	with	types	such	as	byte	or	char	,	though,	with	sizes	not	in
multiples	of	4,	successive	values	will	not,	by	default,	be	stored	in	successive
memory	locations.

You	can	also	subtract	one	pointer	from	another	pointer	if	both	pointers	point	to
the	same	data	type.	In	this	case,	the	result	is	a	long	whose	value	is	given	by	the
difference	between	the	pointer	values	divided	by	the	size	of	the	type	that	they
represent:

double*	pD1	=	(double*)1243324;	//	note	that	it	is	perfectly	

valid	to

//	initialize	a	pointer	like	this.

double*	pD2	=	(double*)1243300;

long	L	=	pD1-pD2;	//	gives	the	result	3	(=24/sizeof(double))

The	sizeof	Operator
This	section	has	been	referring	to	the	size	of	various	data	types.	If	you	need	to
use	the	size	of	a	type	in	your	code,	you	can	use	the	sizeof	operator,	which	takes
the	name	of	a	data	type	as	a	parameter	and	returns	the	number	of	bytes	occupied

by	that	type,	as	shown	in	this	example:

int	x	=	sizeof(double);

This	sets	x	to	the	value	8.

The	advantage	of	using	sizeof	is	that	you	don't	have	to	hard-code	data	type
sizes	in	your	code,	which	makes	your	code	more	portable.	A	byte	(or	sbyte)	has
the	size	of	1	byte,	sizeof(short)	returns	2,	an	int	has	the	length	of	4	bytes,	and
a	long	8	bytes.	You	can	also	use	sizeof	for	structs	that	you	define	yourself,
although,	in	that	case,	the	result	depends	on	what	fields	are	in	the	struct.	You
cannot	use	sizeof	for	classes.

Pointers	to	Structs:	The	Pointer	Member	Access	Operator
Pointers	to	structs	work	in	exactly	the	same	way	as	pointers	to	the	predefined
value	types.	There	is,	however,	one	condition:	the	struct	must	not	contain	any
reference	types.	This	is	due	to	the	restriction	mentioned	earlier	that	pointers
cannot	point	to	any	reference	types.	To	avoid	this,	the	compiler	flags	an	error	if
you	create	a	pointer	to	any	struct	that	contains	any	reference	types.

Suppose	that	you	had	a	struct	defined	like	this:

struct	MyStruct

{

		public	long	X;

		public	float	F;

}

You	could	define	a	pointer	to	it	as	follows:

MyStruct*	pStruct;

Then	you	could	initialize	it	like	this:

MyStruct	myStruct	=	new();

pStruct	=	&myStruct;

It	is	also	possible	to	access	member	values	of	a	struct	through	the	pointer:

(*pStruct).X	=	4;

(*pStruct).F	=	3.4f;

However,	this	syntax	is	a	bit	complex.	For	this	reason,	C#	defines	another
operator	that	enables	you	to	access	members	of	structs	through	pointers	using	a
simpler	syntax.	It	is	known	as	the	pointer	member	access	operator,	and	the
symbol	is	a	dash	followed	by	a	greater-than	sign,	so	it	looks	like	an	arrow:	->.

NOTE C++	developers	will	recognize	the	pointer	member	access
operator	because	C++	also	uses	the	symbol	for	this	purpose.

Using	the	pointer	member	access	operator,	the	previous	code	can	be	rewritten
like	this:

pStruct->X	=	4;

pStruct->F	=	3.4f;

You	can	also	directly	set	up	pointers	of	the	appropriate	type	to	point	to	fields
within	a	struct,

long*	pL	=	&(myStruct.X);

float*	pF	=	&(myStruct.F);

or,

long*	pL	=	&(pStruct->X);

float*	pF	=	&(pStruct->F);

Pointers	to	Class	Members
As	indicated	earlier,	it	is	not	possible	to	create	pointers	to	classes.	That	is
because	the	garbage	collector	does	not	maintain	any	information	about	pointers
—only	about	references—so	creating	pointers	to	classes	could	cause	garbage
collection	not	to	work	properly.

However,	most	classes	contain	value	type	members,	and	you	might	want	to
create	pointers	to	them.	This	is	possible,	but	it	requires	a	special	syntax.	For
example,	suppose	that	you	rewrite	the	struct	from	the	previous	example	as	a
class:

class	MyClass

{

		public	long	X;

		public	float	F;

}

Then	you	might	want	to	create	pointers	to	its	fields,	X	and	F,	in	the	same	way	as
you	did	earlier.	Unfortunately,	doing	so	produces	a	compilation	error:

MyClass	myObject	=	new();

long*	pL	=	&(myObject.X);	//	wrong	--	compilation	error

float*	pF	=	&(myObject.F);	//	wrong	--	compilation	error

Although	X	and	F	are	unmanaged	types,	they	are	embedded	in	an	object,	which
sits	on	the	heap.	During	garbage	collection,	the	garbage	collector	might	move
MyObject	to	a	new	location,	which	would	leave	pL	and	pF	pointing	to	the	wrong
memory	addresses.	Because	of	this,	the	compiler	does	not	let	you	assign
addresses	of	members	of	managed	types	to	pointers	in	this	manner.

The	solution	is	to	use	the	fixed	keyword,	which	tells	the	garbage	collector	that
there	may	be	pointers	referencing	members	of	certain	objects,	so	those	objects
must	not	be	moved.	The	syntax	for	using	fixed	looks	like	this	when	you	want	to
declare	only	one	pointer:

MyClass	myObject	=	new();

fixed	(long*	pObject	=	&(myObject.X))

{

		//	do	something

}

You	define	and	initialize	the	pointer	variable	in	the	brackets	following	the
keyword	fixed.	This	pointer	variable	(pObject	in	the	example)	is	scoped	to	the
fixed	block	identified	by	the	curly	braces.	As	a	result,	the	garbage	collector
knows	not	to	move	the	myObject	object	while	the	code	inside	the	fixed	block	is
executing.

If	you	want	to	declare	more	than	one	pointer,	you	can	place	multiple	fixed
statements	before	the	same	code	block:

MyClass	myObject	=	new();

fixed	(long*	pX	=	&(myObject.X))

fixed	(float*	pF	=	&(myObject.F))

{

		//	do	something

}

You	can	nest	entire	fixed	blocks	if	you	want	to	fix	several	pointers	for	different
periods:

MyClass	myObject	=	new();

fixed	(long*	pX	=	&(myObject.X))

{

		//	do	something	with	pX

		fixed	(float*	pF	=	&(myObject.F))

		{

				//	do	something	else	with	pF

		}

}

You	can	also	initialize	several	variables	within	the	same	fixed	block,	if	they	are
of	the	same	type:

MyClass	myObject	=	new();

MyClass	myObject2	=	new();

fixed	(long*	pX	=	&(myObject.X),	pX2	=	&(myObject2.X))

{

		//…

}

In	all	these	cases,	it	is	immaterial	whether	the	various	pointers	you	are	declaring
point	to	fields	in	the	same	or	different	objects	or	to	static	fields	not	associated
with	any	class	instance.

Pointer	Example:	PointerPlayground
For	understanding	pointers,	it's	best	to	write	a	program	using	pointers	and	to	use
the	debugger.	The	following	code	snippet	is	from	an	example	named
PointerPlayground.	It	does	some	simple	pointer	manipulation	and	displays	the
results,	enabling	you	to	see	what	is	happening	in	memory	and	where	variables
are	stored	(code	file	PointerPlayground/Program.cs):

unsafe	static	void	Main()

{

		int	a	=	10;

		short	b	=	-1;

		byte	c	=	4;

		float	d	=	1.5F;

		int*	pa	=	&a;

		short*	pb	=	&b;

		byte*	pc	=	&c;

		float*	pd	=	&d;

	

		Console.WriteLine($"Address	of	a	is	0x{(ulong)&a:X},	"	+

				$"size	is	{sizeof(int)},	value	is	{a}");

		Console.WriteLine($"Address	of	b	is	0x{(ulong)&b:X},	"	+

				$"size	is	{sizeof(short)},	value	is	{b}");

		Console.WriteLine($"Address	of	c	is	0x{(ulong)&c:X},	"	+

				$"size	is	{sizeof(byte)},	value	is	{c}");

		Console.WriteLine($"Address	of	d	is	0x{(ulong)&d:X},	"	+

				$"size	is	{sizeof(float)},	value	is	{d}");

		Console.WriteLine($"Address	of	pa=&a	is	0x{(ulong)&pa:X},	"	+

				$"size	is	{sizeof(int*)},	value	is	0x{(ulong)pa:X}");

		Console.WriteLine($"Address	of	pb=&b	is	0x{(ulong)&pb:X},	"	+

				$"size	is	{sizeof(short*)},	value	is	0x{(ulong)pb:X}");

		Console.WriteLine($"Address	of	pc=&c	is	0x{(ulong)&pc:X},	"	+

				$"size	is	{sizeof(byte*)},	value	is	0x{(ulong)pc:X}");

		Console.WriteLine($"Address	of	pd=&d	is	0x{(ulong)&pd:X},	"	+

				$"size	is	{sizeof(float*)},	value	is	0x{(ulong)pd:X}");

	

		*pa	=	20;

		Console.WriteLine($"After	setting	*pa,	a	=	{a}");

		Console.WriteLine($"*pa	=	{*pa}");

	

		pd	=	(float*)pa;

		Console.WriteLine($"a	treated	as	a	float	=	{*pd}");

	

		Console.ReadLine();

}

This	code	declares	four	value	variables:	int	a,	short	b,	byte	c,	float	d.	Also,
it	declares	four	pointers	of	these	values:	pa,	pb,	pc,	and	pd.

Next,	you	display	the	values	of	these	variables	as	well	as	their	sizes	and
addresses.	Note	that	in	taking	the	addresses	of	pa,	pb,	pc,	and	pd,	you	are
effectively	looking	at	a	pointer	to	a	pointer—an	address	of	an	address	of	a	value.
Also,	in	accordance	with	the	usual	practice	when	displaying	addresses,	you	have
used	the	{0:X}	format	specifier	in	the	WriteLine	commands	to	ensure	that
memory	addresses	are	displayed	in	hexadecimal	format.

Finally,	you	use	the	pointer	pa	to	change	the	value	of	a	to	20	and	do	some
pointer	casting	to	see	what	happens	if	you	try	to	treat	the	content	of	a	as	if	it
were	a	float,	with	the	same	number	of	bytes	but	a	different	memory
representation.

Compiling	and	running	this	code	results	in	the	following	output:

Address	of	a	is	0x565DD7E53C,	size	is	4,	value	is	10

Address	of	b	is	0x565DD7E538,	size	is	2,	value	is	-1

Address	of	c	is	0x565DD7E534,	size	is	1,	value	is	4

Address	of	d	is	0x565DD7E530,	size	is	4,	value	is	1.5

Address	of	pa=&a	is	0x565DD7E528,	size	is	8,	value	is	

0x565DD7E53C

Address	of	pb=&b	is	0x565DD7E520,	size	is	8,	value	is	

0x565DD7E538,	diff	-4

Address	of	pc=&c	is	0x565DD7E518,	size	is	8,	value	is	

0x565DD7E534,	diff	-4

Address	of	pd=&d	is	0x565DD7E510,	size	is	8,	value	is	

0x565DD7E530,	diff	-4

After	setting	*pa,	a	=	20

*pa	=	20

a	treated	as	a	float	=	2.8E-44

NOTE With	the	new	.NET	runtime,	different	addresses	are	shown	every
time	you	run	the	application.

Checking	through	these	results	confirms	the	description	of	how	the	stack
operates	presented	in	the	“Memory	Management	Under	the	Hood”	section
earlier	in	this	chapter.	It	allocates	successive	variables	moving	downward	in
memory.	Notice	how	it	also	confirms	that	blocks	of	memory	on	the	stack	are
always	allocated	in	multiples	of	4	or	8	bytes.	For	example,	b	is	a	short	(of	size
2)	and	has	the	(hex)	address	0x565DD7E538,	indicating	that	the	memory	locations
reserved	for	it	are	locations	0x565DD7E538	through	0x565DD7E53B.	If	the	.NET
runtime	had	been	strictly	packing	up	variables	next	to	each	other,	b	would	have
occupied	just	two	locations,	0x565DD7E538	and	0x565DD7E539.

The	next	example	illustrates	pointer	arithmetic,	as	well	as	pointers	to	structs	and
class	members.	This	example	is	named	PointerPlayground2.	To	start,	you
define	a	struct	named	CurrencyStruct,	which	represents	a	currency	value	as
dollars	and	cents.	You	also	define	an	equivalent	class	named	CurrencyClass
(code	file	PointerPlayground2/Currency.cs):

internal	struct	CurrencyStruct

{

		public	CurrencyStruct(long	dollars,	byte	cents)	

				=>	(Dollars,	Cents)	=	(dollars,	cents);

	

		public	readonly	long	Dollars;

		public	readonly	byte	Cents;

		public	override	string	ToString()	=>	$"$	{Dollars}.{Cents}";

}

	

internal	class	CurrencyClass

{

		public	CurrencyClass(long	dollars,	byte	cents)	

				=>	(Dollars,	Cents)	=	(dollars,	cents);

	

		public	readonly	long	Dollars	=	0;

		public	readonly	byte	Cents	=	0;

		public	override	string	ToString()	=>	$"$	{Dollars}.{Cents}";

}

Now	that	you	have	your	struct	and	class	defined,	you	can	apply	some	pointers	to
them.	The	following	is	the	code	for	the	new	example.	Because	the	code	is	fairly
long,	I'm	going	through	it	in	pieces.	You	start	by	displaying	the	size	of
CurrencyStruct,	creating	a	couple	of	CurrencyStruct	instances	and	some

CurrencyStruct	pointers.	You	use	the	pAmount	pointer	to	initialize	the	members
of	the	amount1	CurrencyStruct	and	then	display	the	addresses	of	your	variables
(code	file	PointerPlayground2/Program.cs):

unsafe	static	void	Main()

{

		Console.WriteLine($"Size	of	CurrencyStruct	struct	is	"	+			

				$"{sizeof(CurrencyStruct)}");

		CurrencyStruct	amount1	=	new(10,	10),	amount2	=	new(20,	20);

		CurrencyStruct*	pAmount	=	&amount1;

		long*	pDollars	=	&(pAmount->Dollars);

		byte*	pCents	=	&(pAmount->Cents);

	

	

		Console.WriteLine($"Address	of	amount1	is	

0x{(ulong)&amount1:X}");

		Console.WriteLine($"Address	of	amount2	is	

0x{(ulong)&amount2:X}");

		Console.WriteLine($"Address	of	pAmount	is	

0x{(ulong)&pAmount:X}");

		Console.WriteLine($"Value	of	pAmount	is	

0x{(ulong)pAmount:X}");

		Console.WriteLine($"Address	of	pDollars	is	

0x{(ulong)&pDollars:X}");

		Console.WriteLine($"Value	of	pDollars	is	

0x{(ulong)pDollars:X}");

		Console.WriteLine($"Address	of	pCents	is	

0x{(ulong)&pCents:X}");

		Console.WriteLine($"Value	of	pCents	is	0x{(ulong)pCents:X}");

	

		//	because	Dollars	are	declared	readonly	in	CurrencyStruct,	

you	cannot	change	it	

		//	with	a	variable	of	type	CurrencyStruct

		//	pAmount->Dollars	=	20;

		//	but	you	can	change	it	via	a	pointer	referencing	the	memory	

address!

		*pDollars	=	100;

		Console.WriteLine($"amount1	contains	{amount1}");

		//…

}

Now	you	do	some	pointer	manipulation	that	relies	on	your	knowledge	of	how
the	stack	works.	Because	of	the	order	in	which	the	variables	were	declared,	you
know	that	amount2	will	be	stored	at	an	address	immediately	below	amount1.	The
sizeof(CurrencyStruct)	operator	returns	16	(as	demonstrated	in	the	upcoming
screen	output),	so	CurrencyStruct	occupies	a	multiple	of	4	bytes.	Therefore,

after	you	decrement	your	currency	pointer,	it	points	to	amount2	:

--pAmount;	//	this	should	get	it	to	point	to	amount2

Console.WriteLine($"amount2	has	address	0x{(ulong)pAmount:X}	"	+

		$"and	contains	{*pAmount}");

Only	you	know	that,	because	your	knowledge	of	the	stack	means	you	can	tell
what	the	effect	of	decrementing	pAmount	will	be.	After	you	start	doing	pointer
arithmetic,	you	will	find	that	you	can	access	all	sorts	of	variables	and	memory
locations	that	the	compiler	would	usually	stop	you	from	accessing,	hence	the
description	of	pointer	arithmetic	as	unsafe.

Next,	you	do	some	pointer	arithmetic	on	your	pCents	pointer.	pCents	currently
points	to	amount1.Cents,	but	the	aim	here	is	to	get	it	to	point	to	amount2.Cents,
again	using	pointer	operations	instead	of	directly	telling	the	compiler	that's	what
you	want	to	do.	To	do	this,	you	need	to	decrement	the	address	that	pCents
contains	by	sizeof(Currency).	The	following	WriteLine	methods	show	the
value	of	pCents	with	the	new	address,	and	the	value	that's	referenced	from
pCents,	which	is	the	value	for	the	Cents	with	amount2	:

//	do	some	clever	casting	to	get	pCents	to	point	to	cents

//	inside	amount2

CurrencyStruct*	pTempCurrency	=	(CurrencyStruct*)pCents;

pCents	=	(byte*)(--pTempCurrency);

Console.WriteLine("Value	of	pCents	is	now	0x{(ulong)pCents:X}");

Console.WriteLine($"The	value	where	pCents	points	to:	

{*pCents}");

Finally,	you	use	the	fixed	keyword	to	create	some	pointers	that	point	to	the
fields	in	a	class	instance	and	use	these	pointers	to	set	the	value	of	this	instance.
Notice	that	this	is	also	the	first	time	that	you	have	been	able	to	look	at	the
address	of	an	item	stored	on	the	heap,	rather	than	the	stack:

Console.WriteLine("\nNow	with	classes");

//	now	try	it	out	with	classes

CurrencyClass	amount3	=	new(30,	0);

fixed(long*	pDollars2	=	&(amount3.Dollars))

fixed(byte*	pCents2	=	&(amount3.Cents))

{

		Console.WriteLine($"amount3.Dollars	has	address	

0x{(ulong)pDollars2:X}");

		Console.WriteLine($"amount3.Cents	has	address	

0x{(ulong)pCents2:X}");

		*pDollars2	=	-100;

		Console.WriteLine($"amount3	contains	{amount3}");

}

Compiling	and	running	this	code	gives	output	similar	to	this:

Size	of	CurrencyStruct	struct	is	16

Address	of	amount1	is	0x5E5657E2F0

Address	of	amount2	is	0x5E5657E2E0

Address	of	pAmount	is	0x5E5657E2D8

Value	of	pAmount	is	0x5E5657E2F0

Address	of	pDollars	is	0x5E5657E2D0

Value	of	pDollars	is	0x5E5657E2F0

Address	of	pCents	is	0x5E5657E2C8

Value	of	pCents	is	0x5E5657E2F8

amount1	contains	$	100.10

pAmount	contains	the	new	address	5E5657E2E0	and	references	this	

value	$	20.20

Value	of	pCents	is	now	0x5E5657E2E8

The	value	where	pCents	points	to:	20

	

Now	with	classes

amount3.Dollars	has	address	0x1AF3BFFF988

amount3.Cents	has	address	0x1AF3BFFF990

amount3	contains	$	-100.0

Notice	that	the	size	of	the	CurrencyStruct	struct	is	16	—somewhat	larger	than
you	would	expect	given	the	size	of	its	fields	(a	long	and	a	byte	should	total	9
bytes).

Function	Pointers
Function	pointers	are	a	new	feature	with	C#	9.	You've	already	learned	about
delegates	that	are	type-safe	pointers	to	methods.	However,	delegates	are	classes,
and	a	delegate	holds	a	list	of	methods,	so	there's	some	overhead	associated	with
delegates.	With	function	pointers,	just	the	memory	address	is	used	to	reference	a
method—in	a	type-safe	manner.	Type	safety	is	similar	to	the	type	safety	of
delegates,	and	the	delegate	keyword	is	used	here	as	well—a	delegate	combined
with	an	asterisk:	delegate*.

The	following	Calc	method	declares	a	parameter	of	type	delegate*
managed<int,	int,	int>.	You	use	angle	brackets	to	specify—similarly	to	the
Func	delegate—the	parameter	types	and	the	return	type.	The	method	passed	to
the	Calc	method	needs	to	have	two	int	parameters	and	an	int	return.	With	the
managed	modifier,	the	method	needs	to	be	a	.NET	method.	The	managed	modifier
is	optional,	and	you	can	remove	it	without	any	change	in	behavior	(code	file
PointerPlayground2/FunctionPointerSample.cs):

public	static	void	Calc(delegate*	managed<int,	int,	int>	func)

{

		int	result	=	func(42,	11);

		Console.WriteLine($"function	pointer	result:	{result}");

}

The	managed	modifier	is	optional,	but	the	unmanaged	modifier	is	required	on
declaring	function	pointers	to	unmanaged	or	native	functions.	With	the
unmanaged	modifier	you	also	can	specify	the	calling	convention	such	as
StdCall.	The	calling	convention	specifies	how	the	native	function	deals	with
parameters,	in	which	order	they	are	put	on	the	stack,	or	if	they	are	put	on	the
stack	at	all.	The	convention	specified	here	needs	to	match	the	implementation	of
the	native	method.

public	static	void	CalcUnmanaged(delegate*	unmanaged[Stdcall]

<int,	int,	int>	func)

{

		int	result	=	func(42,	11);

		Console.WriteLine($"function	pointer	result:	{result}");

}

Because	function	pointers	are	pointers	in	memory	that	can	be	misused,	they	need
to	be	declared	in	classes	with	the	unsafe	keyword.

NOTE Read	the	section	“Platform	Invoke”	later	in	this	chapter	for
information	on	how	to	invoke	unmanaged	methods	with	P/Invoke.

With	the	Calc	method	in	place,	you	can	declare	a	managed	method	that	supports
the	parameter	and	return	type	requirements	such	as	the	Add	method	defined	here:

static	int	Add(int	x,	int	y)	=>	x	+	y;

and	invoke	the	Calc	method	passing	the	address	of	the	Add	method	with	the	&
operator:

FunctionPointerSample.Calc(&Add);

Using	Pointers	to	Optimize	Performance
Until	now,	all	the	examples	have	been	designed	to	demonstrate	the	various
things	that	you	can	do	with	pointers.	You	have	played	around	with	memory	in	a
way	that	is	probably	interesting	only	to	people	who	like	to	know	what's
happening	under	the	hood,	but	that	doesn't	really	help	you	write	better	code.

Now	you're	going	to	apply	your	understanding	of	pointers	and	see	an	example	of
how	judicious	use	of	pointers	has	a	significant	performance	benefit.

Creating	Stack-Based	Arrays
This	section	explores	one	of	the	main	areas	in	which	pointers	can	be	useful:
creating	high-performance,	low-overhead	arrays	on	the	stack.	As	discussed	in
Chapter	2,	“Core	C#,”	C#	includes	rich	support	for	handling	arrays.	Chapter	6
gives	more	details	on	arrays.	Although	C#	makes	it	easy	to	use	both	one-
dimensional	and	rectangular	or	jagged	multidimensional	arrays,	it	suffers	from
the	disadvantage	that	these	arrays	are	actually	objects;	they	are	instances	of
System.Array.	This	means	that	the	arrays	are	stored	on	the	heap,	with	all	the
overhead	that	this	involves.	There	may	be	occasions	when	you	need	to	create	a
short-lived,	high-performance	array	and	don't	want	the	overhead	of	reference
objects.	You	can	do	this	by	using	pointers,	although	this	is	easy	only	for	one-
dimensional	arrays.

To	create	a	high-performance	array,	you	need	to	use	a	keyword:	stackalloc.
The	stackalloc	command	instructs	the	.NET	runtime	to	allocate	an	amount	of
memory	on	the	stack.	When	you	call	stackalloc,	you	need	to	supply	it	with	two
pieces	of	information:

The	type	of	data	you	want	to	store

The	number	of	these	data	items	you	need	to	store

For	example,	to	allocate	enough	memory	to	store	10	decimal	data	items,	you	can
write	the	following:

decimal*	pDecimals	=	stackalloc	decimal[10];

This	command	simply	allocates	the	stack	memory;	it	does	not	attempt	to
initialize	the	memory	to	any	default	value.	This	is	fine	for	the	purpose	of	this
example	because	you	are	creating	a	high-performance	array,	and	initializing
values	unnecessarily	would	hurt	performance.	Your	program	can	initialize	the
memory	if	necessary.

Remember,	different	than	the	heap,	the	variables	stored	on	the	stack	are	released
when	the	method	completes.	This	is	also	true	for	allocating	an	array	on	the	stack,
so	allocating	memory	with	stackalloc	you	don't	need	to	release	the	memory	on
your	own.

Similarly,	to	store	20	double	data	items,	you	write	this:

double*	pDoubles	=	stackalloc	double[20];

Although	this	line	of	code	specifies	the	number	of	variables	to	store	as	a
constant,	this	can	equally	be	a	quantity	evaluated	at	runtime.	Therefore,	you	can
write	the	previous	example	like	this:

int	size;

size	=	20;	//	or	some	other	value	calculated	at	runtime

double*	pDoubles	=	stackalloc	double[size];

You	can	see	from	these	code	snippets	that	the	syntax	of	stackalloc	is	slightly
unusual.	It	is	followed	immediately	by	the	name	of	the	data	type	you	want	to
store	(which	must	be	a	value	type)	and	then	by	the	number	of	items	you	need
space	for,	in	square	brackets.	The	number	of	bytes	allocated	is	this	number
multiplied	by	sizeof(data	type).	The	use	of	square	brackets	in	the	preceding
code	sample	suggests	an	array,	which	is	not	too	surprising.	If	you	have	allocated
space	for	20	doubles,	then	what	you	have	is	an	array	of	20	doubles.	The
simplest	type	of	array	that	you	can	have	is	a	block	of	memory	that	stores	one
element	after	another	(see	Figure	13-6).

FIGURE	13-6

This	diagram	also	shows	the	pointer	returned	by	stackalloc,	which	is	always	a
pointer	to	the	allocated	data	type	that	points	to	the	top	of	the	newly	allocated
memory	block.	To	use	the	memory	block,	you	simply	dereference	the	returned
pointer.	For	example,	to	allocate	space	for	20	doubles	and	then	set	the	first
element	(element	0	of	the	array)	to	the	value	3.0,	write	this:

double*	pDoubles	=	stackalloc	double[20];

*pDoubles	=	3.0;

To	access	the	next	element	of	the	array,	you	use	pointer	arithmetic.	As	described
earlier,	if	you	add	1	to	a	pointer,	its	value	will	be	increased	by	the	size	of
whatever	data	type	it	points	to.	In	this	case,	that's	just	enough	to	take	you	to	the

next	free	memory	location	in	the	block	that	you	have	allocated.	Therefore,	you
can	set	the	second	element	of	the	array	(element	number	1)	to	the	value	8.4	:

double*	pDoubles	=	stackalloc	double[20];

*pDoubles	=	3.0;

*(pDoubles	+	1)	=	8.4;

By	the	same	reasoning,	you	can	access	the	element	with	index	X	of	the	array
with	the	expression	*(pDoubles+	X).

Effectively,	you	have	a	means	by	which	you	can	access	elements	of	your	array,
but	for	general-purpose	use,	this	syntax	is	too	complex.	Fortunately,	C#	defines
an	alternative	syntax	using	square	brackets.	C#	gives	a	precise	meaning	to
square	brackets	when	they	are	applied	to	pointers;	if	the	variable	p	is	any	pointer
type	and	X	is	an	integer,	then	the	expression	p[X]	is	always	interpreted	by	the
compiler	as	meaning	*(p	+	X).	This	is	true	for	all	pointers,	not	only	those
initialized	using	stackalloc.	With	this	shorthand	notation,	you	now	have	a
convenient	syntax	for	accessing	your	array.	In	fact,	it	means	that	you	have	the
same	syntax	for	accessing	one-dimensional,	stack-based	arrays	as	you	do	for
accessing	heap-based	arrays	that	are	represented	by	the	System.Array	class:

double*	pDoubles	=	stackalloc	double	[20];

pDoubles[0]	=	3.0;	//	pDoubles[0]	is	the	same	as	*pDoubles

pDoubles[1]	=	8.4;	//	pDoubles[1]	is	the	same	as	*(pDoubles+1)

NOTE This	idea	of	applying	array	syntax	to	pointers	is	not	new.	It	has
been	a	fundamental	part	of	both	the	C	and	the	C++	languages	ever	since
those	languages	were	invented.	Indeed,	C++	developers	will	recognize	the
stack-based	arrays	they	can	obtain	using	stackalloc	as	being	essentially
identical	to	classic	stack-based	C	and	C++	arrays.	This	syntax	and	the	way
it	links	pointers	and	arrays	is	one	reason	why	the	C	language	became
popular	in	the	1970s	and	the	main	reason	why	the	use	of	pointers	became
such	a	popular	programming	technique	in	C	and	C++.

Although	your	high-performance	array	can	be	accessed	in	the	same	way	as	a
normal	C#	array,	a	word	of	caution	is	in	order.	The	following	code	in	C#	raises
an	exception:

double[]	myDoubleArray	=	new	double[20];

myDoubleArray[50]	=	3.0;

The	exception	occurs	because	you	are	trying	to	access	an	array	using	an	index

that	is	out	of	bounds;	the	index	is	50,	whereas	the	maximum	allowed	value	is	19.
However,	if	you	declare	the	equivalent	array	using	stackalloc,	there	is	no
object	wrapped	around	the	array	that	can	perform	bounds	checking.	Hence,	the
following	code	does	not	raise	an	exception:

double*	pDoubles	=	stackalloc	double[20];

pDoubles[50]	=	3.0;

In	this	code,	you	allocate	enough	memory	to	hold	20	doubles.	Then	you	use	the
pDoubles	variable	to	reference	memory	that	is	way	outside	the	area	of	memory
that	you	have	allocated	for	the	doubles.	There	is	no	knowing	what	data	might	be
stored	at	that	address.	At	best,	you	might	have	used	some	currently	unused
memory,	but	it	is	equally	possible	that	you	might	have	just	overwritten	some
locations	in	the	stack	that	were	being	used	to	store	other	variables	or	even	the
return	address	from	the	method	currently	being	executed.	Again,	you	see	that	the
high	performance	to	be	gained	from	pointers	comes	at	a	cost;	you	need	to	be
certain	you	know	what	you	are	doing,	or	you	will	get	some	very	strange	runtime
bugs.

QuickArray	Example
The	discussion	of	pointers	ends	with	a	stackalloc	example	called	QuickArray.
In	this	example,	the	program	simply	asks	users	how	many	elements	they	want	to
be	allocated	for	an	array.	The	code	then	uses	stackalloc	to	allocate	an	array	of
long	s	that	size.	The	elements	of	this	array	are	populated	with	the	squares	of	the
integers	starting	with	0,	and	the	results	are	displayed	on	the	console	(code	file
QuickArray/Program.cs):

class	Program

{

		unsafe	public	static	void	Main()

		{

				string?	userInput;

				int	size;

				do

				{

						Console.Write($"How	big	an	array	do	you	want?	

{Environment.NewLine}>");

						userInput	=	Console.ReadLine();

				}	while	(!int.TryParse(userInput,	out	size));

	

				long*	pArray	=	stackalloc	long[size];

				for	(int	i	=	0;	i	<	size;	i++)

				{

						pArray[i]	=	i	*	i;

				}

	

				for	(int	i	=	0;	i	<	size;	i++)

				{

						Console.WriteLine($"Element	{i}	=	{*(pArray	+	i)}");

				}

	

				Console.ReadLine();

		}

}

Here	is	the	output	from	the	QuickArray	example:

How	big	an	array	do	you	want?

>	15

Element	0	=	0

Element	1	=	1

Element	2	=	4

Element	3	=	9

Element	4	=	16

Element	5	=	25

Element	6	=	36

Element	7	=	49

Element	8	=	64

Element	9	=	81

Element	10	=	100

Element	11	=	121

Element	12	=	144

Element	13	=	169

Element	14	=	196

SPAN<T>
Chapter	3,	“Classes,	Records,	Structs,	and	Tuples,”	includes	creating	reference
types	(classes)	and	value	types	(structs).	Instances	of	classes	are	stored	on	the
managed	heap.	The	value	of	structs	can	be	stored	on	the	stack	or,	when	boxing	is
used,	on	the	managed	heap.	Now	we	have	another	kind:	a	type	that	can	have	its
value	only	on	the	stack	but	never	on	the	heap,	which	is	sometimes	called	ref-like
types.	Boxing	is	not	possible	with	these	types.	Such	a	type	is	declared	with	the
ref	struct	keyword.	Using	ref	struct	gives	some	additional	behaviors	and
restrictions.	The	restrictions	are	the	following:

They	can't	be	added	as	array	items.

They	can't	be	used	as	generic	type	arguments.

They	can't	be	boxed.

They	can't	be	static	fields.

They	can	only	be	instance	fields	of	ref-like	types.

Span<T>	and	ReadOnlySpan<T>	are	ref-like	types	covered	in	this	section.	These
types	are	already	covered	in	Chapter	6	with	extension	methods	for	arrays.	Here,
additional	features	are	covered	to	reference	data	on	the	managed	heap,	the	stack,
and	the	native	heap.

Spans	Referencing	the	Managed	Heap
A	Span	can	reference	memory	on	the	managed	heap,	as	you've	seen	in	Chapter	6.
In	the	following	code	snippet,	an	array	is	created,	and	with	the	extension	method
AsSpan,	a	new	Span	is	created	that	references	the	memory	of	the	array	on	the
managed	heap.	After	creating	the	Span	referenced	from	the	variable	span1,	a
slice	of	the	Span	is	created	that	is	filled	with	the	value	42.	Within	comments	in
the	following	source	code,	you	see	the	syntax	using	the	Slice	method	of	the
Span	type.	The	range	operator	is	used	to	fulfill	the	same	functionality.	The	next
Console.WriteLine	writes	the	values	of	the	span	span1	to	the	console	(code	file
SpanSample/Program.cs):

void	SpanOnTheHeap()

{

		Console.WriteLine(nameof(SpanOnTheHeap));

		Span<int>	span1	=	(new	int[]	{	1,	5,	11,	71,	22,	19,	21,	33	

}).AsSpan();

	

		//	span1.Slice(start:	4,	length:	3).Fill(42);

		span1[4..7].Fill(42);

	

		Console.WriteLine(string.Join(",	",	span1.ToArray()));

	

		Console.WriteLine();

}

When	you	run	the	application,	you	can	see	the	output	of	span1	with	the	42	filled
within	the	slice	of	the	span:

SpanOnTheHeap

1,	5,	11,	71,	42,	42,	42,	33

Spans	Referencing	the	Stack
Span	can	be	used	to	reference	memory	on	the	stack.	Referencing	a	single
variable	on	the	stack	is	not	as	interesting	as	referencing	a	block	of	memory;
that's	why	the	following	code	snippet	makes	use	of	the	stackalloc	keyword.
stackalloc	returns	a	long*,	which	requires	the	method	SpanOnTheStack	to	be
declared	unsafe.	A	constructor	of	the	Span	type	allows	passing	a	pointer	with
the	additional	parameter	for	the	size.	Next,	the	variable	span1	is	used	with	the
indexer	to	fill	every	item	(code	file	SpanSample/Program.cs):

unsafe	void	SpanOnTheStack()

{

		Console.WriteLine(nameof(SpanOnTheStack));

	

		long*	lp	=	stackalloc	long[20];

		Span<long>	span1	=	new(lp,	20);

												

		for	(int	i	=	0;	i	<	20;	i++)

		{

				span1[i]	=	i;

		}

	

		Console.WriteLine(string.Join(",	",	span1.ToArray()));

		Console.WriteLine();

}

When	you	run	the	program,	the	following	output	shows	the	span	with	the
initialized	data	on	the	stack:

SpanOnTheStack

0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14,	15,	16,	17,	

18,	19

Spans	Referencing	the	Native	Heap
A	great	feature	of	spans	is	they	can	also	reference	memory	on	the	native	heap.
Memory	on	the	native	heap	usually	is	allocated	from	native	APIs.	In	the
following	code	snippet,	the	AllocHGlobal	method	of	the	Marshal	class	is	used
to	allocate	100	bytes	on	the	native	heap.	This	class	is	defined	in	the
System.Runtime.InteropServices	namespace.	The	Marshal	class	returns	a
pointer	with	the	IntPtr	type.	To	directly	access	the	int*,	the	ToPointer	method
of	IntPtr	is	invoked.	This	is	the	pointer	required	by	the	constructor	of	the	Span
class.	Writing	int	values	to	this	memory,	you	need	to	pay	attention	how	many
bytes	are	needed.	As	an	int	contains	32	bits,	the	number	of	bytes	is	divided	by	4

with	a	bit	shift	of	two	bits	to	get	the	number	of	int	values	that	will	fit	in	the
memory.	After	this,	the	native	memory	is	filled	by	invoking	the	Fill	method	of
the	Span.	With	a	for	loop,	every	item	referenced	from	the	Span	is	written	to	the
console	(code	file	SpanSample/Program.cs):

unsafe	void	SpanOnNativeMemory()

{

		Console.WriteLine(nameof(SpanOnNativeMemory));

		const	int	nbytes	=	100;

		IntPtr	p	=	Marshal.AllocHGlobal(nbytes);

		try

		{														

				int*	p2	=	(int*)p.ToPointer();

				Span<int>	span	=	new(p2,	nbytes>>	2);

				span.Fill(42);

	

				int	max	=	nbytes>>	2;

				for	(int	i	=	0;	i	<	max;	i++)

				{

						Console.Write($"{span[i]}	");

				}

				Console.WriteLine();

		}

		finally

		{

				Marshal.FreeHGlobal(p);

		}

		Console.WriteLine();

}

When	you	run	the	application,	the	values	stored	in	the	native	heap	are	written	to
the	console:

SpanOnNativeMemory

42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	42	

42	42	42	42

NOTE For	using	Span	to	access	native	memory	and	the	stack,	unsafe	code
was	needed	because	of	the	memory	allocation	and	creation	of	the	Span	by
passing	a	pointer.	After	the	initialization,	unsafe	code	is	no	longer	required
using	the	Span.	Allocating	native	memory	(as	done	with	the	AllocHGlobal
method	of	the	Marshal	class),	it's	important	to	release	this	memory	with
FreeHGlobal.

Span	Extension	Methods
For	the	Span	type,	extension	methods	are	defined	to	make	it	easier	to	work	with
this	type.	The	following	code	snippet	demonstrates	the	use	of	the	Overlaps,	the
Reverse,	and	the	IndexOf	methods.	With	the	Overlaps	method,	it	is	checked	if
the	span	that	is	used	to	invoke	this	extension	method	overlaps	the	span	passed
with	the	argument.	The	Reverse	method	reverses	the	content	of	the	span.	The
IndexOf	method	returns	the	index	of	the	span	passed	with	the	argument	(code
file	SpanSample/Program.cs):

void	SpanExtensions()

{

		Console.WriteLine(nameof(SpanExtensions));

		Span<int>	span1	=	(new	int[]	{	1,	5,	11,	71,	22,	19,	21,	33	

}).AsSpan();

		Span<int>	span2	=	span1[3..7];

	

		bool	overlaps	=	span1.Overlaps(span2);

		Console.WriteLine($"span1	overlaps	span2:	{overlaps}");

		span1.Reverse();

		Console.WriteLine($"span1	reversed:	{string.Join(",	",	

span1.ToArray())}");

		Console.WriteLine($"span2	(a	slice)	after	reversing	span1:	"	+

				$"{string.Join(",	",	span2.ToArray())}");

		int	index	=	span1.IndexOf(span2);

		Console.WriteLine($"index	of	span2	in	span1:	{index}");

		Console.WriteLine();

}

Running	the	program	produces	this	output:

SpanExtensions

span1	overlaps	span2:	True

span1	reversed:	33,	21,	19,	22,	71,	11,	5,	1

span2	(a	slice)	after	reversing	span1:	22,	71,	11,	5

index	of	span2	in	span1:	3

Other	extension	methods	defined	for	the	Span	type	are	StartsWith	to	check	if	a
span	starts	with	the	sequence	of	another	span,	SequenceEqual	to	compare	the
sequence	of	two	spans,	SequenceCompareTo	for	ordering	of	sequences,	and
LastIndexOf	for	returning	the	first	matching	index	starting	from	the	end	of	the
span.

PLATFORM	INVOKE

Not	all	the	features	of	Windows	or	Linux	API	calls	are	available	from	.NET.
This	is	true	not	only	for	old	Windows	API	calls	but	also	for	very	new	features.
Maybe	you've	written	some	DLLs	that	export	unmanaged	methods	and	you
would	like	to	use	them	from	C#	as	well.

To	reuse	a	native	library,	you	can	use	platform	invoke	(P/Invoke).	With
P/Invoke,	the	CLR	loads	the	library	that	includes	the	function	that	should	be
called	and	marshals	the	parameters.

To	use	the	unmanaged	function,	first	you	must	determine	the	name	of	the
function	and	the	parameters	as	they	are	exported.	In	the	example,	you	use	the
CreateHardLink	Windows	API	function	to	create	a	hard	link	to	an	existing	file
and	the	Linux	link	API	function	to	do	the	same.	With	these	API	calls,	you	can
have	several	filenames	that	reference	the	same	file	as	long	as	the	filenames	are
on	the	same	hard	disk.	This	API	call	is	not	available	from	.NET,	so	you	must	use
platform	invoke.

For	Windows	APIs,	https://pinvoke.net	has	great	information	on	mapping
Windows	APIs	to	.NET.	This	site	lists	many	Windows	APIs	and	how	they	can	be
represented	with	.NET.	With	Linux,	the	APIs	are	described	with	the	manual
pages	accessible	with	the	man	command.	man	link	shows	the	documentation	on
the	link	command,	and	man	2	link	opens	section	2	of	the	documentation	to
display	the	system	calls.	When	you	use	this	information	from	the	manual	pages,
it's	not	too	hard	to	map	the	APIs	to	.NET	types.

NOTE To	use	Windows	APIs	from	.NET,	Microsoft	has	started	the
win32metadata	project	(https://github.com/microsoft/win32metadata)
that's	in	its	early	stages	at	the	time	of	this	writing.	This	project	makes	use	of
the	C#	source	generators	to	automatically	generate	DllImport	declarations,
and	you	just	need	to	write	the	API	method	you	want	to	invoke	in	a	text	file.
For	using	these	definitions,	you	just	need	to	add	a	text	file	named
NativeMethods.txt	to	the	project,	add	the	APIs	you	want	to	invoke	(for
example,	CreateHardLink),	add	the	NuGet	package
Microsoft.Windows.CsWin32,	and	import	the	namespace
Microsoft.Windows.Sdk.

You	can	read	more	about	source	generators	in	Chapter	12,	“Reflection,
Metadata,	and	Source	Generators.”

Calling	Native	Windows	APIs

https://pinvoke.net
https://github.com/microsoft/win32metadata

To	call	a	native	function,	you	have	to	define	a	C#	external	method	with	the	same
number	of	arguments,	and	the	argument	types	that	are	defined	with	the
unmanaged	method	must	have	mapped	types	with	managed	code.

The	Windows	API	call	CreateHardLink	has	this	definition	in	C++:

BOOL	CreateHardLink(

		LPCTSTR	lpFileName,

		LPCTSTR	lpExistingFileName,

		LPSECURITY_ATTRIBUTES	lpSecurityAttributes);

This	definition	must	be	mapped	to	.NET	data	types.	The	return	type	is	a	BOOL
with	unmanaged	code;	this	simply	maps	to	the	bool	data	type.	LPCTSTR	defines	a
long	pointer	to	a	const	string.	The	Windows	API	uses	the	Hungarian	naming
convention	for	the	data	type.	LP	is	a	long	pointer,	C	is	a	const,	and	STR	is	a	null-
terminated	string.	The	T	marks	the	type	as	a	generic	type,	and	the	type	is
resolved	to	either	LPCSTR	(an	ANSI	string)	or	LPWSTR	(a	wide	Unicode	string),
depending	on	the	compiler's	settings	to	32	or	64	bit.	C	strings	map	to	the	.NET
type	String.	LPSECURITY_ATTRIBUTES	is	a	long	pointer	to	a	struct	of	type
SECURITY_ATTRIBUTES.	You	can	create	a	.NET	representation	of
SECURITY_ATTRIBUTES	with	a	struct:

struct	SECURITY_ATTRIBUTES

{

		uint	nLength;

		unsafe	void	*lpSecurityDescriptor;

		bool	bInheritHandle;

}

However,	because	passing	NULL	to	this	argument	is	allowed,	mapping	this	type
to	the	native	int	type	nint	is	okay.

The	C#	declaration	of	the	CreateHardLink	method	must	be	marked	with	the
extern	modifier	because	there's	no	implementation	of	this	method	within	the	C#
code.	The	native	implementation	is	in	the	DLL	kernel32.dll,	which	is
referenced	with	the	attribute	[DllImport].	The	return	type	of	the	.NET
declaration	CreateHardLink	is	of	type	bool,	and	the	native	method
CreateHardLink	returns	a	BOOL,	so	some	additional	clarification	is	useful.
Because	there	are	different	Boolean	data	types	with	C++	(for	example,	the	native
bool	and	the	Windows-defined	BOOL,	which	have	different	values),	the	attribute
[MarshalAs]	specifies	to	what	native	type	the	.NET	type	bool	should	map	(code
file	PInvokeSampleLib/Windows/WindowsNativeMethods.cs):

[DllImport("kernel32.dll",	SetLastError	=	true,

		EntryPoint	=	"CreateHardLinkW",	CharSet	=	CharSet.Unicode)]

[return:	MarshalAs(UnmanagedType.Bool)]

private	static	extern	bool	CreateHardLink(

		[In,	MarshalAs(UnmanagedType.LPWStr)]	string	newFileName,

		[In,	MarshalAs(UnmanagedType.LPWStr)]	string	existingFileName,

		nint	securityAttributes);

The	following	table	describes	the	settings	that	you	can	specify	with	the	attribute
[DllImport].	The	DllImportAttribute	class	is	defined	in	the
System.Runtime.InteropServices	namespace.

DLLIMPORT
PROPERTY	OR
FIELD

DESCRIPTION

EntryPoint You	can	give	the	C#	declaration	of	the	function	a	different
name	than	the	one	it	has	with	the	unmanaged	library.	The
name	of	the	method	in	the	unmanaged	library	is	defined	in
the	field	EntryPoint.

CallingConvention Depending	on	the	compiler	or	compiler	settings	that	were
used	to	compile	the	unmanaged	function,	you	can	use
different	calling	conventions.	The	calling	convention
defines	how	the	parameters	are	handled	and	where	to	put
them	on	the	stack.	You	can	define	the	calling	convention
by	setting	an	enum	value.	The	Windows	API	usually	uses
the	StdCall	calling	convention	on	the	Windows	operating
system,	and	it	uses	the	Cdecl	calling	convention	on
Windows	CE.	Setting	the	value	to
CallingConvention.Winapi	works	for	the	Windows	API.

CharSet String	parameters	can	be	either	ANSI	or	Unicode.	With
the	CharSet	setting,	you	can	define	how	strings	are
managed.	Possible	values	that	are	defined	with	the
CharSet	enumeration	are	Ansi,	Unicode,	and	Auto.
CharSet.Auto	uses	Unicode	on	the	Windows	NT
platform,	and	ANSI	on	Microsoft's	older	operating
systems.

SetLastError If	the	unmanaged	function	sets	an	error	by	using	the
Windows	API	SetLastError,	you	can	set	the
SetLastError	field	to	true.	This	way,	you	can	read	the
error	number	afterward	by	using

Marshal.GetLastWin32Error.	With	.NET	6,	new	APIs	are
planned.	The	method	GetLastWin32Error	can	be	used
with	Windows	and	with	Linux,	although	because	of	this
naming,	you	probably	wouldn't	expect	this	API	to	be
available	on	Linux.	Because	of	the	platform-independence
of	.NET,	new	API	names	are	planned.

To	use	the	Windows	API	CreateHardLink,	the	external	method	declaration	with
the	DllImport	attribute	is	declared	with	the	private	access	modifier	in	the	class
WindowsNativeMethods.	A	method	with	the	same	name	(CreateHardLink)	but	a
different	implementation	is	declared	in	the	same	class	by	using	an	internal
access	modifier.	This	method	can	be	used	within	the	library	where	the	class	is
declared.	The	.NET	implementation	invokes	the	native	method,	checks	for	the
error	code	that's	retrieved	with	Marshal.GetLastWin32Error,	and	throws	an
exception	in	case	of	an	error.	To	create	an	error	message	from	this	number,	the
Win32Exception	class	from	the	namespace	System.ComponentModel	is	used.
This	class	accepts	an	error	number	with	the	constructor	and	returns	a	localized
error	message.	In	case	of	an	error,	an	exception	of	type	IOException	is	thrown,
which	has	an	inner	exception	of	type	Win32Exception.	The	class
WindowsNativeMethods	has	the	attribute	SupportedOSPlatform	applied	to	give
information	to	the	programmer	using	this	class	that	it's	only	available	on	the
Windows	platform	(code	file
PInvokeSampleLib/Windows/WindowsNativeMethods.cs):

using	System;

using	System.IO;

using	System.Runtime.InteropServices;

using	System.Runtime.Versioning;

	

namespace	PInvokeSample

{

		[SupportedOSPlatform("Windows")]

		internal	static	class	WindowsNativeMethods

		{

				[DllImport("kernel32.dll",	SetLastError	=	true,

						EntryPoint	=	"CreateHardLinkW",	CharSet	=	

CharSet.Unicode)]

				[return:	MarshalAs(UnmanagedType.Bool)]

				private	static	extern	bool	CreateHardLink(

						[In,	MarshalAs(UnmanagedType.LPWStr)]	string	newFileName,

						[In,	MarshalAs(UnmanagedType.LPWStr)]	string	

existingFileName,

						nint	securityAttributes);

	

				internal	static	void	CreateHardLink(string	oldFileName,

																																								string	newFileName)

				{

						if	(!CreateHardLink(newFileName,	oldFileName,	

IntPtr.Zero))

						{

								int	errorCode	=	Marshal.GetLastWin32Error();

								throw	new	IOException($"CreateHardLink	error:	

{errorCode}",	errorCode);

						}

				}

		}

}

Calling	Native	Linux	APIs
To	invoke	the	link	method	running	on	the	Linux	operating	system,	the	method
CreateHardLink	with	the	same	signature	and	return	type	is	defined.	The	Linux
version	of	this	method	is	defined	in	the	class	LinuxNativeMethods.	The
CreateHardLink	method	is	implemented	to	invoke	the	Link	method.	The	Link
method	is	declared	with	the	extern	modifier	and	has	the	DllImport	attribute
applied.	The	native	method	is	implemented	in	the	shared	library	libc	;	the	name
of	this	shared	library	is	passed	to	the	DllImport	constructor.	In	case	of	an	error,
the	link	method	doesn't	return	the	value	0.	In	this	case,	the
Marshal.GetLastWin32Error	method	returns	the	error	code.	The	possible	error
codes	are	defined	with	the	enum	LinkErrors,	and	error	messages	are	defined	in
a	dictionary	(code	file	PInvokeSampleLib/Linux/LinuxNativeMethods.cs):

using	System.Collections.Generic;

using	System.IO;

using	System.Runtime.InteropServices;

using	System.Runtime.Versioning;

using	static	PInvokeSample.LinuxNativeMethods.LinkErrors;

	

namespace	PInvokeSample

{

		[SupportedOSPlatform("Linux")]

		internal	static	class	LinuxNativeMethods

		{

				internal	enum	LinkErrors

				{

						EPERM	=	1,

						ENOENT	=	2,

						EIO	=	5,

						EACCES	=	13,

						EEXIST	=	17,

						EXDEV	=	18,

						ENOSPC	=	28,

						EROFS	=	30,

						EMLINK	=	31

				}

	

				private	static	Dictionary<LinkErrors,	string>	_errorMessages	

=	new()

				{

						{	EPERM,	"On	GNU/Linux	and	GNU/Hurd	systems	and	some	

others,	you	cannot	"	+

								"make	links	to	directories.Many	systems	allow	only	

privileged	users	to	do	so."	},

						{	ENOENT,	"The	file	named	by	oldname	doesn't	exist.	You	

can't	make	a	link	"	+

								"to	a	file	that	doesn't	exist."	},

						{	EIO,	"A	hardware	error	occurred	while	trying	to	read	or	

write	to	the	"	+		

								"filesystem."	},

						//…

				};

	

	

				[DllImport("libc",	

						EntryPoint	=	"Link",	

						CallingConvention	=	CallingConvention.Cdecl,	

						SetLastError	=	true)]

				private	static	extern	int	Link(string	oldpath,	string	

newpath);

	

				internal	static	void	CreateHardLink(string	oldFileName,	

string	newFileName)

				{

						int	result	=	link(newFileName,	oldFileName);

						if	(result	!=	0)

								{

										int	errorCode	=	Marshal.GetLastWin32Error();

										if	(!_errorMessages.TryGetValue((LinkErrors)errorCode,	

												out	string?	errorText))

										{

												errorText	=	"No	error	message	defined";

										}

										throw	new	IOException(errorText,	errorCode);

								}

						}

				}

		}

}

The	only	public	class	offered	by	the	PInvokeSampleLib	library	is	FileUtility.
Here,	the	implementation	of	the	CreateHardLink	method	checks	what	operating
system	the	application	is	running	on	with	the	help	of	the	OperatingSystem	class.
Depending	on	the	result,	the	parameters	oldFileName	and	newFileName	are
forwarded	to	the	corresponding	method.	Compared	to	the	native	method,	the
filename	parameters	are	reversed.	This	is	similar	to	other	.NET	classes	such	as
File.Copy	and	also	similar	to	the	Linux	link	API	(code	file
PInvokeSampleLib/FileUtility.cs):

public	static	class	FileUtility

{

		public	static	void	CreateHardLink(string	oldFileName,

																																				string	newFileName)

		{

				if	(OperatingSystem.IsWindows())

				{

						WindowsNativeMethods.CreateHardLink(oldFileName,	

newFileName);

				}

				else	if	(OperatingSystem.IsLinux())

				{

						LinuxNativeMethods.CreateHardLink(oldFileName,	

newFileName);

				}

				else

				{

						throw	new	PlatformNotSupportedException();

				}

		}

}

Using	the	Library	for	Calling	Native	APIs
You	can	now	use	this	class	to	easily	create	hard	links.	If	the	file	passed	with	the
first	argument	of	the	program	does	not	exist,	you	get	an	exception	with	the
message	The	system	cannot	find	the	file	specified.	If	the	file	exists,	you
get	a	new	filename	that	references	the	original	file.	You	can	easily	verify	this	by
changing	text	in	one	file;	it	shows	up	in	the	other	file	as	well	(code	file
PInvokeSample/Program.cs):

if	(args.Length	!=	2)

{

		Console.WriteLine("usage:	PInvokeSample	existingfilename	

newfilename");

		return;

}

try

{

		FileUtility.CreateHardLink(args[0],	args[1]);

}

catch	(IOException	ex)

{

		Console.WriteLine(ex.Message);

}

To	run	the	application	in	a	Linux	environment,	you	can	use	the	Windows
Subsystem	for	Linux	and	run	the	application	using	the	Windows	terminal.	With
the	Linux	version	of	the	application,	if	you	specify	a	source	file	that	does	not
exist,	the	following	error	message	is	shown:

The	file	named	by	oldname	doesn't	exist.	You	can't	make	a	link	

to	a	file	

that	doesn't	exist.

SUMMARY
Remember	that	to	become	a	truly	proficient	C#	programmer,	you	must	have	a
solid	understanding	of	how	memory	allocation	and	garbage	collection	work.
This	chapter	described	how	the	CLR	manages	and	allocates	memory	on	the	heap
and	the	stack.	It	also	illustrated	how	to	write	classes	that	free	unmanaged
resources	correctly	and	how	to	use	pointers	in	C#.	These	are	both	advanced
topics	that	are	poorly	understood	and	often	implemented	incorrectly	by	novice
programmers.	At	a	minimum,	this	chapter	should	have	helped	you	understand
how	to	release	resources	using	the	IDisposable	interface	and	the	using
declaration.

You've	also	seen	how	to	write	code	to	invoke	native	methods	of	the	Windows
and	Linux	platforms.	Many	.NET	APIs	are	built	with	native	APIs	behind,	and
you	don't	need	to	write	your	own	extern	declared	methods.	However,	there	are
still	many	functions	not	covered	from	.NET,	and	you	can	use	this	technique	to
invoke	these.	You	probably	have	some	other	C++	libraries	that	would	be	too
hard	to	port	to	.NET,	but	now	you	can	simply	invoke	these	methods.

The	first	part	of	the	book	concludes	with	this	chapter.	The	next	chapter	starts	to

dive	into	creating	libraries	and	NuGet	packages.

PART	II
Libraries

CHAPTER	14:	Libraries,	Assemblies,	Packages,	and	NuGet

CHAPTER	15:	Dependency	Injection	and	Configuration

CHAPTER	16:	Diagnostics	and	Metrics

CHAPTER	17:	Parallel	Programming

CHAPTER	18:	Files	and	Streams

CHAPTER	19:	Networking

CHAPTER	20:	Security

CHAPTER	21:	Entity	Framework	Core

CHAPTER	22:	Localization

CHAPTER	23:	Tests

14
Libraries,	Assemblies,	Packages,	and	NuGet

WHAT'S	IN	THIS	CHAPTER?

Differences	between	libraries,	assemblies,	packages

Creating	libraries

Using	.NET	Standard

Creating	NuGet	packages

Supporting	multiple	platforms	with	NuGet	packages

Initializing	libraries

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/Libraries.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

UsingLibs

CreateNuGet

All	the	projects	have	nullable	reference	types	enabled.

THE	HELL	OF	LIBRARIES
Libraries	make	it	possible	for	you	to	reuse	code	in	multiple	applications.	With
Windows,	libraries	have	a	long	history,	and	architecture	guidelines	have	taken
different	directions	with	newer	technologies.	Before	.NET,	dynamic	link	libraries
(DLLs)	could	be	shared	between	different	applications.	These	DLLs	have	been

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

installed	in	a	shared	directory.	It	wasn't	possible	to	have	multiple	versions	of
these	libraries	on	the	same	system,	but	they	should	have	been	upward
compatible.	Of	course,	this	wasn't	always	the	case.	In	addition,	there	were
problems	with	application	installations	that	did	not	pay	attention	to	the
guidelines	and	replaced	a	shared	library	with	an	older	one.	This	was	known	as
DLL	hell.

.NET	tried	to	solve	this	with	assemblies.	Assemblies	are	libraries	that	could	be
shared.	In	addition	to	normal	DLLs,	assemblies	contain	extensible	metadata	with
information	about	the	library	and	a	version	number,	and	it's	possible	to	install
multiple	versions	side	by	side	in	the	global	assembly	cache.	Microsoft	tried	to
fix	versioning	issues,	but	this	added	another	layer	of	complexity.

Let's	assume	you're	using	libraries	A	and	B	from	your	application	X	(see	Figure
14-1).	Application	X	references	version	1.1	from	library	A	and	version	1.0	from
library	B.	The	issue	is	that	library	B	references	library	A	as	well,	but	it
references	a	different	version—version	1.0.	One	process	can	have	only	one
version	of	a	library	loaded.	What	version	of	the	library	A	is	loaded	into	the
process?	In	this	case,	library	B	is	used	before	library	A,	so	version	1.0	wins.	This
is	a	big	issue	as	soon	as	application	X	needs	to	use	library	A	itself.

FIGURE	14-1

To	avoid	this	issue,	you	could	configure	assembly	redirects.	You	can	define	an
assembly	redirect	for	application	X	to	load	version	1.1	from	library	A.	Library	B
then	needs	to	use	version	1.1	from	library	A	as	well.	As	long	as	library	A	is
upward-compatible,	this	shouldn't	be	an	issue.

Of	course,	compatibility	doesn't	always	exist,	and	issues	can	be	more	complex.
Publishers	of	components	can	create	a	publisher	policy	to	define	redirects	with	a
policy	that	is	delivered	with	the	library	itself.	This	redirect	can	be	overridden	by
the	application.	There's	a	lot	of	complexity	with	this,	which	resulted	in	assembly
hell.

NOTE With	the	new	.NET,	there's	no	global	sharing	of	assemblies	as	it
was	with	the	.NET	Framework.	The	Global	Assembly	Cache	(GAC)	is	no
longer	used.

NuGet	packages	add	another	abstraction	layer	to	libraries.	A	NuGet	package	can
contain	multiple	versions	of	one	or	more	assemblies,	along	with	other	stuff,	such
as	automatic	configuration	of	assembly	redirects.

Instead	of	waiting	for	new	.NET	Framework	releases,	you	could	add
functionality	via	NuGet	packages,	which	allowed	for	faster	updates	of	the
packages.	NuGet	packages	are	a	great	delivery	vehicle.	Some	libraries,	such	as
Entity	Framework,	switched	to	NuGet	to	allow	for	faster	updates	than	the	.NET
Framework	offered.

However,	there	are	some	issues	with	NuGet.	Sometimes,	a	failure	occurs	when
you	add	NuGet	packages	to	projects.	NuGet	packages	might	not	be	compatible
with	the	project.	When	adding	packages	is	successful,	sometimes	the	package
makes	some	incorrect	configuration	with	the	project—for	example,	wrong
binding	redirects.	This	results	in	the	feeling	of	NuGet	package	hell.	The
problems	from	DLLs	moved	to	different	abstraction	layers	and	are	indeed
different.	With	newer	NuGet	versions	and	advancements	in	NuGet,	Microsoft
has	tried	to	solve	the	issues	with	NuGet—and	succeeded	in	many	aspects.

Directions	in	the	architecture	of	.NET	Core	also	changed.	With	.NET	Core,
packages	have	been	made	more	granular.	For	example,	with	the	.NET
Framework,	the	Console	class	is	inside	the	mscorlib	assembly,	which	is	an
assembly	needed	by	every	.NET	Framework	application.	Of	course,	not	every
.NET	application	needs	the	Console	class.	With	.NET	Core,	a	separate	package
System.Console	exists	that	contains	the	Console	class	and	a	few	related	classes.
The	goal	was	to	make	it	easier	to	update	and	select	what	packages	are	really
needed.	With	some	beta	versions	of	.NET	Core	1.0,	the	project	files	contained	a
large	list	of	packages,	which	didn't	make	development	easier.	Just	before	the
release	of	.NET	Core	1.0,	Microsoft	introduced	meta-packages	(or	reference-
packages).	A	meta-package	doesn't	include	code;	it	includes	a	list	of	other
packages.	A	target	framework	moniker	such	as	net5.0	defines	a	list	of	packages
and	APIs	that	are	readily	available	for	the	application	without	the	need	to	add
NuGet	packages.

This	chapter	goes	into	the	detail	of	assemblies	and	NuGet	packages,	explains
how	to	share	code	using	.NET	Standard	libraries,	and	also	explains	differences

with	Windows	Runtime	components.

ASSEMBLIES
An	assembly	is	a	library	or	executable	that	includes	additional	metadata.	Using
the	new	.NET,	the	application	containing	the	Main	method	is	created	as	a	library
with	the	file	extension	.dll.	This	DLL	needs	a	hosting	process	to	load	this
library,	which	you	accomplish	by	using	dotnet	run,	or	just	dotnet	from	a
production	environment.	When	you	create	stand-alone	applications	with	.NET,
different	executables	are	created	for	every	platform	to	load	the	library.

Let's	take	a	look	at	a	simple	“Hello,	World!”	console	application	created	in	the
directory	ConsoleApp,	using	this	command:

>	dotnet	new	console	-o	ConsoleApp

After	building	the	application,	the	DLL	can	be	found	in	the	bin/debug/net5.0
directory.	The	net5.0	directory	depends	on	the	target	framework	listed	in	the
csproj	project	file.

NOTE You	usually	start	the	application	using	the	dotnet	bootstrapper
(dotnet	ConsoleApp.dll).	On	a	Windows	system,	you'll	also	find	the	file
ConsoleApp.exe.	This	is	a	Windows-specific	file	that	can	be	used	to	start	the
application	as	well.	It's	just	a	bootstrapper	to	load	the	binary.	On	a	Linux
system,	you'll	find	a	similar	bootstrapper	that's	Linux	specific	without	the
exe	file	extension.

To	read	assemblies,	you	can	install	the	.NET	tool	IL	Disassembler	(ildasm)	using
this:

>	dotnet	tool	install	dotnet-ildasm	-g

After	installing	this	tool,	it	can	show	metadata	and	IL	code	of	assemblies.	For
easier	reading	of	the	result,	the	output	is	written	to	a	text	file	with	the	-o	option.

>	dotnet	ildasm	ConsoleApp.dll	-o	output.txt

In	the	output,	you'll	find	the	section	.assembly	"ConsoleApp"	that	shows
attribute	values	for	the	attributes	AssemblyCompany,	AssemblyConfiguration,
AssemblyFileVersion,	AssemblyInformationalVersion,	AssemblyProduct,
and	AssemblyTitle.

NOTE In	case	you	also	have	the	.NET	Framework	SDK	installed,	you	can
find	an	older	version	of	the	ildasm	tool	with	a	graphical	output.	You	can	still
use	the	old	version	of	this	tool	with	newer	.NET	libraries	because	the
metadata	information	is	still	the	same	between	.NET	Framework	and	.NET
libraries.

You	can	configure	assembly	metadata	that	describes	the	application	by	using
Visual	Studio	with	Project	Properties	in	the	Package	entry	or	by	directly	editing
the	project	file	(code	file	ConsoleApp/ConsoleApp.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

	

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

				<Version>5.0</Version>

				<AssemblyVersion>5.0</AssemblyVersion>

				<FileVersion>5.0</FileVersion>

	

				<Authors>Christian	Nagel</Authors>

				<Company>CN	innovation</Company>

				<Product>Sample	App</Product>

				<Description>Sample	App	for	Professional	C#</Description>

				<Copyright>Copyright	(c)	CN	innovation</Copyright>

				<PackageProjectUrl>

						https://github.com/ProfessionalCSharp

				</PackageProjectUrl>

				<RepositoryUrl>

						

https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

				</RepositoryUrl>

				<RepositoryType>git</RepositoryType>

				<PackageTags>Wrox	Press,	Sample,	Libraries</PackageTags>

	

		</PropertyGroup>

	

</Project>

CREATING	AND	USING	LIBRARIES
To	use	the	same	code	with	multiple	projects,	you	create	libraries.	Using	the	.NET
CLI,	you	can	create	generic	class	libraries,	class	libraries	for	WPF,	Windows

Forms,	and	Razor.	Razor	class	libraries	are	covered	in	Chapter	26,	“Razor	Pages
and	MVC.”	When	you	create	a	class	library	with	dotnet	new	classlib,	by
default,	a	library	is	created	for	.NET	5	and	later	versions,	but	you	can	also
choose	to	select	a	different	target	framework.	To	make	the	correct	choice,	you
have	to	ask,	“With	which	application	type	and	version	of	the	framework	should
the	library	be	shared?”	There's	another	question	you	should	ask:	“Which	APIs	do
I	want	to	use	in	the	library?”	To	answer	both	questions,	it	helps	to	understand
parts	of	the	history	of	.NET.

If	you	created	a	.NET	Framework	class	library,	this	library	could	be	used	only
with	.NET	Framework	applications.	When	Silverlight	(.NET	applications
running	in	a	browser	with	the	help	of	an	add-in)	came	along,	it	was	interesting	to
share	code	between	Silverlight	and	WPF	applications.	Silverlight	(code-named
WPF-E,	WPF	Everywhere)	offered	limited	functionality	compared	to	the	full
.NET	Framework.	Microsoft	defined	the	Portable	Class	Library	to	share	code
with	these	technologies.	Later,	Xamarin	allowed	creating	mobile	applications	for
Android	and	iOS	and	used	this	library	type	as	well.	Depending	on	the	platform
and	version	selection,	different	APIs	are	available.	The	more	platforms	and	the
older	the	version	chosen,	the	fewer	APIs	are	available.	As	more	and	more
platforms	have	been	added,	this	increased	the	complexity	of	the	definitions	and
also	increased	complexity	on	using	portable	libraries	from	portable	libraries.

.NET	Standard	provides	a	replacement	for	portable	libraries.	Instead	of	APIs
defined	in	a	matrix,	.NET	Standard	has	a	simpler	definition	of	the	APIs
available.	With	every	version	of	the	.NET	Standard,	additional	APIs	are	added.
APIs	are	never	removed	from	the	.NET	Standard.

Starting	with	.NET	5.0,	the	.NET	Standard	is	not	further	developed.	From	now
on,	you	can	create	.NET	5.0	libraries,	which	can	be	used	from	.NET	5	upward.
So,	a	.NET	6	and	.NET	7	application	can	use	the	.NET	5	library.	In	case	you
create	only	new	applications,	you	can	skip	the	next	section	on	.NET	Standard.
However,	you	probably	still	have	to	support	or	extend	.NET	Framework,	UWP,
Xamarin,	and	other	application	types	probably	for	many	years	to	come,	in	which
case	the	.NET	Standard	is	still	relevant	and	important.

.NET	Standard
The	.NET	Standard	makes	a	linear	definition	of	APIs	available,	which	is
different	than	the	matrix	definition	with	APIs	that	was	available	for	portable
libraries.	Every	version	of	the	.NET	Standard	adds	APIs,	and	APIs	are	never
removed.

The	higher	the	version	of	the	.NET	Standard,	the	more	APIs	you	can	use.
However,	the	.NET	Standard	doesn't	implement	the	APIs;	it	just	defines	the	APIs
that	need	to	be	implemented	by	a	.NET	platform.	This	can	be	compared	to
interfaces	and	concrete	classes.	An	interface	just	defines	a	contract	for	members
that	need	to	be	implemented	by	a	class.	Similarly,	the	.NET	Standard	specifies
what	APIs	need	to	be	available,	and	a	.NET	platform—supporting	a	specific
version	of	the	standard—needs	to	implement	these	APIs.

You	can	find	which	APIs	are	available	for	each	standard	version,	as	well	as	the
differences	between	the	standards,	at
https://github.com/dotnet/standard/tree/master/docs/versions.

Every	version	of	the	.NET	Standard	adds	APIs	to	the	standard:

.NET	Standard	1.1	added	2,414	APIs	to	.NET	Standard	1.0.

Version	1.2	added	just	46	APIs.

Version	1.3	added	3,314	APIs.

Version	1.4	added	only	18	Cryptography	APIs.

Version	1.5	mainly	enhanced	reflection	support	and	added	242	APIs.

Version	1.6	added	more	Cryptography	APIs	and	enhanced	regular
expressions,	with	a	total	of	146	additional	APIs.

Version	2.0	added	19,507	APIs.

Version	2.1	added	enhancements	requiring	to	update	the	runtime—for
example,	with	support	for	default	interface	methods.

With	.NET	Standard	2.0,	Microsoft	made	a	big	investment	to	make	it	easier	to
move	legacy	applications	to	.NET	Core:	19,507	APIs	have	been	added.	Many	of
these	APIs	were	not	new.	Some	were	already	implemented	with	.NET
Framework	4.6.1.	For	example,	old	APIs	like	DataSet,	DataTable,	and	others
have	been	available	with	the	.NET	Standard	since	version	2.0.	This	was	a	move
to	make	it	easier	to	bring	legacy	applications	to	the	new	.NET.	A	huge
investment	was	needed	for	.NET	Core,	because	.NET	Core	2.0	implements	the
.NET	Standard	2.0.

What	APIs	are	not	in	the	standard?	Platform-specific	APIs	are	not	part	of	.NET
Standard.	For	example,	Windows	Presentation	Foundation	(WPF)	and	Windows
Forms	define	Windows-specific	APIs	that	will	not	make	it	into	the	standard.	You
can,	however,	create	WPF	and	Windows	Forms	applications	and	use	.NET

https://github.com/dotnet/standard/tree/master/docs/versions

Standard	libraries	from	there.	You	cannot	create	.NET	Standard	libraries	that
contain	WPF	or	Windows	Forms	controls.

Let's	discuss	the	platform	support	of	.NET	Standard.	The	Microsoft
documentation	at	https://docs.microsoft.com/en-
us/dotnet/standard/net-standard	lists	the	details	on	what	.NET	Standard
version	supports	which	platform	version.	If	you	need	to	support	.NET
Framework	4.7.2	or	up	(including	a	check	for	the	footnote	on	issues	with	.NET
Framework	4.6.1),	you	can	use	.NET	Standard	2.0	but	not	2.1.	With	.NET
Framework	4.6,	you're	restricted	to	.NET	Standard	1.3.	Using	Windows	10
starting	with	version	10.0.16299,	you	can	use	.NET	Standard	2.0.	With	the	Mono
platform,	version	6.4	supports	.NET	Standard	2.1.	.NET	Standard	2.1	is	also
supported	from	.NET	Core	3.0	and	up.

NOTE To	support	the	most	platforms	possible,	you	need	to	select	a	lower
.NET	Standard	version.	To	have	more	APIs	available,	select	a	higher	.NET
Standard	version.

Creating	a	.NET	Library
To	create	a	.NET	library,	you	can	use	the	.NET	Core	CLI	tools	with	the
following	command:

>	dotnet	new	classlib	-o	SampleLib

By	default,	if	you	have	.NET	5	installed,	it	creates	a	.NET	5	library.	You	can
supply	the	option	--framework	and	add	netstandard2.1	or	netstandard2.0	to
create	a	.NET	Standard	library	with	the	specific	version.	You	can	change	the
version	number	later	on	in	the	project	file.

The	project	file	created	includes	the	TargetFramework	element	and	specifies
net5.0.	To	support	nullable	reference	types,	include	the	Nullable	configuration
(code	file	UsingLibs/SampleLib/SampleLib.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

</Project>

You	can	change	the	version	of	the	target	framework	of	the	library	by	changing

https://docs.microsoft.com/en-us/dotnet/standard/net-standard

the	value	of	the	TargetFramework	element.	Later	in	this	chapter,	this
configuration	is	enhanced	to	support	multiple	frameworks	with	one	library.

Solution	Files
When	you	work	with	multiple	projects	(for	example,	a	console	application	and	a
library),	it's	helpful	to	work	with	solution	files.	With	the	newer	versions	of	the
.NET	Core	CLI	tools,	you	can	use	solutions	from	the	command	line	and	from
Visual	Studio.	For	example,

>	dotnet	new	sln

creates	a	solution	file	in	the	current	directory.	The	solution	is	named	after	the
directory	name,	but	you	can	pass	the	option	--name	to	specify	a	different	name.

Using	the	dotnet	sln	add	command,	you	can	add	existing	projects	to	the
solution	file:

>	dotnet	sln	add	SampleLib/SampleLib.csproj

The	project	files	are	added	to	the	solution	file	as	shown	in	the	following	snippet
(solution	file	UsingLibs\UsingLibs.sln):

Microsoft	Visual	Studio	Solution	File,	Format	Version	12.00

#	Visual	Studio	15

VisualStudioVersion	=	15.0.26124.0

MinimumVisualStudioVersion	=	15.0.26124.0

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}")	=	"SampleLib",		

		"SampleLib\SampleLib.csproj",	"{665E314C-584E-4B43-A14D-

7C34BC4D75CD}"

EndProject

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}")	=	

"ConsoleApp",	

		"ConsoleApp\ConsoleApp.csproj",	"{6709A473-93B4-4568-90F3-

3A5F1D125D45}"

EndProject

Global

#	…

When	you're	using	Visual	Studio,	you	can	select	the	solution	in	the	Solution
Explorer	to	add	new	projects.	From	the	context	menu,	select	Add	and	then	select
Existing	Project	to	add	existing	projects.

Referencing	Projects
You	can	reference	a	library	by	using	the	dotnet	add	reference	command.	The

current	directory	just	needs	to	be	positioned	in	the	directory	of	the	project	where
the	library	should	be	added:

>	dotnet	add	reference	..\SampleLib\SampleLib.csproj

The	reference	is	added	using	a	ProjectReference	element	in	the	csproj	file
(project	file	UsingLibs/ConsoleApp/ConsoleApp.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

	

		<ItemGroup>

				<ProjectReference	Include="..\SampleLib\SampleLib.csproj"	/>

		</ItemGroup>

	

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

</Project>

Using	the	Solution	Explorer	in	Visual	Studio,	you	can	add	projects	to	other
projects	by	selecting	the	Dependencies	node	and	then	selecting	the	Add	Project
Reference	command	from	the	Project	menu.

Referencing	NuGet	Packages
If	the	library	is	already	packaged	within	a	NuGet	package,	the	NuGet	package
can	be	directly	referenced	with	the	command	dotnet	add	package	:

>	dotnet	add	package	Microsoft.EntityFrameworkCore

Instead	of	adding	a	ProjectReference	as	before,	this	adds	a	PackageReference
:

<Project	Sdk="Microsoft.NET.Sdk">

		<ItemGroup>

				<ProjectReference	Include="..\SampleLib\SampleLib.csproj"/>

		</ItemGroup>

		<ItemGroup>

				<PackageReference	Include="Microsoft.EntityFrameworkCore"	

Version="5.0.4"	/>

		</ItemGroup>

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

		</PropertyGroup>

	

</Project>

To	request	a	specific	version	of	the	package,	you	can	specify	the	--version
option	with	the	.NET	CLI	command.	With	Visual	Studio,	you	can	use	the	NuGet
Package	Manager	(see	Figure	14-2)	to	find	packages	and	select	a	specific
version	of	the	package.	With	this	tool,	you	also	can	get	details	on	the	package
with	links	to	the	project	and	licensing	information.

NOTE Not	all	the	packages	you	find	on	www.nuget.org	are	useful	with
your	application.	You	should	check	licensing	information	to	make	sure	the
license	fits	with	your	project	needs.	Also,	you	should	check	the	package
author.	If	it's	an	open	source	package,	how	active	is	the	community	behind
it?

NuGet	Sources
Where	are	the	packages	coming	from?	www.nuget.org	is	a	public	server	where
Microsoft	and	third	parties	upload	.NET	packages.	After	the	packages	have	been
downloaded	from	the	NuGet	server	for	the	first	time,	the	packages	are	stored	in
the	user	profile.	Thus,	it	becomes	a	lot	faster	to	create	another	project	with	the
same	packages.

On	Windows,	the	directory	for	the	packages	in	the	user	profile	is
%userprofile%\.nuget\packages.	Other	temporary	directories	are	used	as	well.
To	get	all	the	information	about	these	directories,	it's	best	to	install	the	NuGet
command-line	utility,	which	you	can	download	from
https://dist.nuget.org/.

To	see	the	folders	for	the	global	packages,	the	HTTP	cache,	and	the	temp
packages,	you	can	use	nuget	locals	:

>	nuget	locals	all	-list

In	some	companies,	it's	permissible	to	use	only	packages	that	have	been
approved	and	are	stored	in	a	local	NuGet	server.	The	default	configuration	for
the	NuGet	server	is	in	the	file	NuGet.Config	in	the	directory	%appdata%/nuget.

A	default	configuration	looks	similar	to	the	following	NuGet.Config	file.
Packages	are	loaded	from	https://api.nuget.org.

http://www.nuget.org
http://www.nuget.org
https://dist.nuget.org/
https://api.nuget.org

FIGURE	14-2

<?xml	version="1.0"	encoding="utf-8"?>

<configuration>

		<packageSources>

				<add	key="nuget.org"	

value="https://api.nuget.org/v3/index.json"	

									protocolVersion="3"/>

		</packageSources>

</configuration>

You	can	change	the	defaults	by	adding	and	removing	package	sources.	Instead	of
changing	the	defaults,	you	can	create	a	NuGet	configuration	file	for	the	project:

>	dotnet	new	nugetconfig	

Microsoft	doesn't	store	packages	from	the	daily	build	on	the	main	NuGet	server.
To	use	daily	builds	of	.NET	Core	NuGet	packages,	you	need	to	configure	other
NuGet	servers.	For	example,	to	use	.NET	6	daily	feeds,	you	can	add	the	.NET	6
feed.	The	following	commands	also	add	a	feed	to	a	local	directory:

>	dotnet	nuget	add	source	-n	dotnet6			

		

https://dnceng.pkgs.visualstudio.com/public/_packaging/dotnet6/nuget/v3/index.json

>	dotnet	nuget	add	source	-n	local	c:\mypackages

The	following	NuGet	file	adds	a	local	directory	in	addition	to	the	public	NuGet
server	and	the	.NET	6	feed:

<?xml	version="1.0"	encoding="utf-8"?>

<configuration>

		<packageSources>

				<clear/>

				<add	key="nuget"	

value="https://api.nuget.org/v3/index.json"/>

				<add	key="local	packages"	value="C:\mypackages"/>

				<add	key="dotnet6"	value=

						

"https://dnceng.pkgs.visualstudio.com/public/_packaging/dotnet6/nuget/v3/

				index.json"	

			/>

		</packageSources>

</configuration>

CREATING	NUGET	PACKAGES
After	you	created	a	library	and	an	application	where	this	library	is	referenced,	it's
time	to	create	NuGet	packages	on	your	own.	NuGet	packages	can	be	created
easily	by	using	the	.NET	Core	CLI	tools	and	Visual	Studio.

NuGet	Packages	with	the	Command	Line
Metadata	information	about	the	NuGet	package	can	be	added	to	the	project	file
csproj	as	shown	earlier	in	the	“Assemblies”	section.	To	create	a	NuGet	package
from	the	command	line,	you	can	use	the	dotnet	pack	command	(started	from
the	project	directory):

>	dotnet	pack	--configuration	Release

Remember	to	set	the	configuration.	By	default,	the	Debug	configuration	is	built.
After	a	successful	packaging,	you	can	find	the	NuGet	package	in	the	directory
bin/Release	or	related	directories,	depending	on	the	selected	configuration	with
the	file	extension	.nupkg.	A	.nupkg	file	is	a	zip	file	that	contains	the	binary	with
additional	metadata.	You	can	rename	this	file	to	a	zip	file	to	see	its	contents.

The	package	file	includes	the	version	number.	The	version	number	is	taken	from
the	Version	value	in	the	project	file.

You	can	copy	the	generated	NuGet	package	to	a	folder	on	your	system	or	to	a
network	share	to	make	it	available	to	your	team.	This	command	copies	the
package	to	a	subfolder	with	the	name	of	the	package:

>	nuget	add	bin\Release\SampleLib.5.0.1.nupkg	-s	c:\MyPackages

To	use	the	folder	c:\MyPackages,	the	NuGet.config	file	can	be	changed	to
include	this	package	source	as	shown	in	the	section	“NuGet	Sources.”	You	also
can	reference	the	folder	directly	by	using	the	dotnet	add	package	command:

>	dotnet	add	package	SampleLib	--source	c:/MyPackages

By	default,	the	latest	released	version	of	the	package	is	referenced	from	the
project	where	you	add	the	package.	With	the	option	--version,	you	can	specify
the	exact	version	to	add.

To	create	prerelease	packages,	you	just	need	to	add	a	postfix	to	the	version
number—for	example,	5.0.1−alpha,	5.0.1−alpha.2,	5.0.1−beta.1,
5.0.1−beta.2,	5.0.1−preview3,	5.0.1−rc1.	Reverse	alphabetical	order	is	used
to	identify	the	newest	version	of	the	prerelease	packages,	so	beta	is	newer	than
alpha,	and	rc	is	newer	than	preview.	The	same	version	number	without	a
postfix	is	considered	a	release	and	thus	a	newer	version.	To	add	a	prerelease
package	version	to	a	project,	you	need	to	add	the	--prerelease	option	with
dotnet	add	package.

Supporting	Multiple	Platforms
.NET	5	includes	a	lot	more	packages	and	APIs	compared	to	what's	available
with	.NET	Standard	2.0.	In	case	you	want	to	offer	new	features	for	.NET	5+
clients	but	still	want	to	support	clients	with	.NET	Standard	2.0	support,	you	can
create	a	NuGet	package	containing	multiple	binaries	with	different	version
support.

To	support	multiple	frameworks,	in	the	project	file,	you	can	change	the
TargetFramework	element	to	TargetFrameworks.	All	the	target	framework
monikers	for	the	target	frameworks	where	binaries	should	be	created	are	listed
within.

NOTE The	list	of	target	framework	monikers	is	shown	at
https://docs.microsoft.com/dotnet/standard/frameworks.

https://docs.microsoft.com/dotnet/standard/frameworks

The	example	adds	the	target	framework	monikers	net5.0	and	netstandard2.0.
With	conditional	settings,	constants	are	defined	with	the	element
DefineConstants.	You	can	use	these	constants	with	preprocessor	directives	to
create	different	code	between	the	different	frameworks.	The	C#	version	is
specified	with	the	LangVersion	element.	Without	this,	the	default	C#	versions
based	on	the	different	frameworks	would	be	used.	With	.NET	5,	it's	C#	9;	with
.NET	Standard	2.0,	it's	C#	7.3.	Changing	the	C#	version	to	9.0	doesn't	mean	you
can	use	all	the	features	with	.NET	Standard	2.0.	For	example,	default	interface
members	are	not	possible	and	can	be	used	only	for	writing	conditional	C#	code
using	the	defined	constant	DOTNET50	(project	file
CreateNuGet/SampleLib/SampleLib.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<TargetFrameworks>net5.0;netstandard2.0</TargetFrameworks>

				<Nullable>enable</Nullable>

				<LangVersion>9.0</LangVersion>

		</PropertyGroup>

	

		<PropertyGroup	

Condition="'$(TargetFramework)'=='netstandard2.0'">

				<DefineConstants>NETSTANDARD_20</DefineConstants>

		</PropertyGroup>

	

		<PropertyGroup	Condition="'$(TargetFramework)'=='net5.0'">

				<DefineConstants>DOTNET50</DefineConstants>

		</PropertyGroup>

	

		<ItemGroup	Condition="'$(TargetFramework)'	==	

'netstandard2.0'">

				<PackageReference	Include="System.Text.Json"	Version="5.0.1"	

/>

		</ItemGroup>

	

</Project>

The	project	file	also	lists	a	conditional	reference	to	the	NuGet	package
System.Text.Json.	This	package	is	already	referenced	from	the	target
framework	moniker	net5.0.	It's	not	part	of	.NET	Standard	2.0.	Because	this
package	also	supports	.NET	Standard	2.0,	it	can	be	added	to	the	project	when
building	the	library	for	.NET	Standard	2.0.	You	can	add	conditional	package
references	using	the	--framework	option	to	specify	the	target	framework

moniker.	This	adds	the	package	reference	shown	in	the	previous	code	snippet.

>	dotnet	add	package	--framework	netstandard2.0	System.Text.Json

With	the	C#	code,	preprocessor	directives	are	used	to	decide	between	.NET
Standard	2.0	and	.NET	5.0	code.	The	Show	method	returns	different	values
depending	on	how	the	code	was	built.	The	JsonSerializer	defined	in	the
System.Text.Json	namespace	can	now	be	used	with	both	.NET	versions.	It's
already	part	of	.NET	5,	and	with	.NET	Standard	2.0,	the	library	has	been	added
(code	file	CreateNuGet/SampleLib/Demo.cs):

using	System.Text.Json;

	

namespace	SampleLib

{

		public	class	Demo

		{

#if	NETSTANDARD20

				private	static	string	s_info	=	".NET	Standard	2.0";

#elif	NET50

				private	static	string	s_info	=	".NET	5.0";

#else

				private	static	string	s_info	=	"Unknown";

#endif

	

				public	static	string	Show()	=>	s_info;

	

				public	string	GetJson(Book	book)	=>

						JsonSerializer.Serialize(book);

		}

}

With	this	setup,	you	build	the	application	with	multiple	target	frameworks,	and	a
DLL	for	every	target	framework	is	created.	You	can	also	build	a	library	just	for
one	of	the	specified	target	frameworks	setting	the	--framework	option.	When
you	create	a	NuGet	package,	one	package	is	created	that	contains	all	the
libraries.

When	creating	the	.NET	console	application,	you	can	build	the	application	for
multiple	target	frameworks	as	well.	Like	the	library	before,	with	the	console
application,	you	configure	multiple	target	frameworks.	The	console	application
will	be	built	for	.NET	5.0	and	.NET	Core	3.1	(project	file
CreateNuGet/ConsoleApp/ConsoleApp.csproj):

<TargetFrameworks>net5.0;	netcoreapp3.1</TargetFrameworks>

An	application	cannot	be	built	using	the	.NET	Standard	2.0	target	framework
moniker.	Remember,	the	.NET	Standard	doesn't	contain	an	implementation	of
the	APIs.	If	you're	using	.NET	Core	3.1,	.NET	Standard	2.1	would	be	okay	as
well.

With	the	sample	application,	the	same	package	is	needed,	but	different
assemblies	from	the	package	need	to	be	selected.	This	is	done	automatically
based	on	the	project,	and	the	package	just	needs	to	be	added	to	the	project.	The
complete	project	file	for	the	console	application	is	shown	here	(project	file
CreateNuGet/DotnetCaller/DotnetCaller.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<LangVersion>9.0</LangVersion>

				<Nullable>enable</Nullable>

				<TargetFrameworks>netcoreapp2.0;net47</TargetFrameworks>

		</PropertyGroup>

		<ItemGroup>

				<PackageReference	Include="SampleLib"	Version="5.0.1"	/>

		</ItemGroup>

</Project>

With	the	console	application,	because	the	language	version	is	set	to	9.0,	top-level
statements	and	target-typed	new	expressions	can	be	used	with	.NET	Core	3.1.
The	implementation	of	the	console	application	does	not	need	to	be	different
between	the	two	used	frameworks:

using	System;

using	SampleLib;

	

Console.WriteLine(Demo.Show());

Book	b	=	new()	{	Title	=	"Professional	C#",	Publisher	=	"Wrox	

Press"};

string	json	=	Demo.GetJson(b);	

Console.WriteLine(json);

Building	the	console	application	creates	multiple	binaries	that	contain	references
to	different	libraries.	Running	the	application	and	setting	the	--framework	to	the
two	options	shows	two	different	results.	This	version:

>	dotnet	run	--framework	dotnetcoreapp3.1

results	in	the	following	output:

.NET	Standard	2.0

{"Title":"Professional	C#","Publisher":"Wrox	Press"}

Running	the	.NET	5.0	version,	as	shown	here:

>	dotnet	run	--framework	net5.0

results	in	this	output:

.NET	5.0

{"Title":"Professional	C#","Publisher":"Wrox	Press"}

NOTE You've	seen	that	NuGet	packages	can	be	installed	and	consumed
from	a	folder.	For	small	scenarios,	this	can	be	enough.	For	packages	that
should	be	publicly	available,	you	can	publish	these	on	the
https://www.nuget.org	server.	If	you	do	not	want	to	maintain	your	own
NuGet	server,	for	packages	that	should	not	be	used	publicly	(or	packages
that	are	not	yet	ready	to	be	used	publicly),	you	can	use	GitHub	Packages	or
Azure	Artifacts	with	Azure	DevOps	services.	To	use	NuGet	packages	with
GitHub	Packages,	read	https://docs.github.com/en/free-pro-
team@latest/packages/guides/configuring-dotnet-cli-for-use-with-

github-packages.	Read	this	Azure	Artifacts	documentation	on	using	Azure
Artifacts:	https://docs.microsoft.com/azure/devops/artifacts/.

NuGet	Packages	with	Visual	Studio
Visual	Studio	2019	allows	you	to	create	packages.	In	the	Solution	Explorer,
when	you	select	the	project,	you	can	open	the	context	menu	and	select	Pack	to
create	a	NuGet	package.	In	the	Project	properties	of	the	Package	settings,	you
can	also	select	to	create	a	NuGet	package	on	every	build.	This	is	probably
overkill	if	you	don't	plan	to	distribute	packages	on	every	build.	However,	with
this	setting,	you	should	configure	the	package	metadata	as	well	as	the	assembly
and	package	version	(see	Figure	14-3).

You	can	use	packages	within	Visual	Studio	by	selecting	Dependencies	in
Solution	Explorer,	opening	the	context	menu,	and	selecting	Manage	NuGet
Packages.	This	opens	the	NuGet	Package	Manager	where	you	can	select	the
package	sources	(including	the	packages	from	the	local	folder	if	you	configured
this	via	clicking	on	the	Settings	icon).	You	can	browse	the	available	packages,
see	the	packages	installed	with	the	project,	and	check	whether	updates	of
packages	are	available.

https://www.nuget.org
https://docs.github.com/en/free-pro-team@latest/packages/guides/configuring-dotnet-cli-for-use-with-github-packages
https://docs.microsoft.com/azure/devops/artifacts/

FIGURE	14-3

MODULE	INITIALIZERS
In	case	you	need	initialization	of	a	library	that	should	be	invoked	before	any
class	of	the	library	is	used,	C#	9	has	a	new	feature:	module	initializers.	With	a
module	initializer,	the	caller	doesn't	need	to	invoke	any	initialization	method
because	it	is	called	automatically	before	any	type	of	the	class	is	used.	A	module
initializer	needs	to	be	a	static	method	without	arguments,	a	void	return	type,
public	or	internal	access	modifiers,	and	the	ModuleInitializer	attribute
applied.	This	attribute	is	defined	in	the	namespace
System.Runtime.CompilerServices	and	available	only	with	.NET	5+	(code	file
UsingLibs/SampleLib/Demo.cs):

public	class	Demo

{

		//…

#if	NET50

		[ModuleInitializer]

		internal	static	void	Initializer()

		{

				Console.WriteLine("Module	Initializer");

		}

#endif

}

Without	using	.NET	5,	you	can	create	a	static	constructor	instead.	However,	a
static	constructor	has	more	runtime	overhead	and	requires	that	the	class	is	used
from	the	caller.	The	static	constructor	will	be	invoked	before	the	first	use	of	the
class,	no	matter	whether	static	or	instance	members	are	invoked.	Another	option
is	to	define	an	Initialize	method,	but	this	needs	to	be	explicitly	invoked	by	the
caller.	Module	initializers	are	not	called	automatically,	no	matter	in	which	class
they	are	specified.

SUMMARY
This	chapter	explained	the	differences	between	DLLs,	assemblies,	and	NuGet
packages.	You've	seen	how	to	create	and	distribute	libraries	with	NuGet
packages.

The	.NET	Standard	defines	an	API	set	that	is	implemented	from	different	.NET
platforms.	You've	seen	how	a	.NET	library	can	be	used	from	.NET	5.0	and	.NET
Core	3.1	and	how	to	create	different	binaries	for	different	platforms	with	the
necessary	code	differences.

The	next	chapter	gets	into	the	details	of	an	important	pattern:	dependency
injection.	In	Chapter	15,	you	will	learn	about	another	way	of	sharing	code	with
different	platforms	by	injecting	platform-specific	features.

15
Dependency	Injection	and	Configuration

WHAT'S	IN	THIS	CHAPTER?

Understanding	dependency	injection

Configuring	the	DI	Container	with	the	host	class

Managing	the	lifetime	of	services

Disposing	services

Using	options	and	configuration	to	initialize	services

Handling	configuration	with	.NET	applications

Working	with	user	secrets

Using	Azure	App	Configuration

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	2_Libs/DependencyInjectionAndConfiguration	folder.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

WithDIContainer

WithHost

ServicesLifetime

DIWithOptions

DIWithConfiguration

ConfigurationSample

AzureAppConfigWebApp

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

All	the	projects	have	nullable	reference	types	enabled.

WHAT	IS	DEPENDENCY	INJECTION?
Faster	development	cycles	demand	unit	tests	and	better	updatability.	Making
some	code	changes	should	not	result	in	errors	where	you	don't	expect	them.
Creating	more	modular	applications	where	dependencies	are	reduced	helps	with
that.

Dependency	injection	(DI)	is	a	pattern	where	an	object	receives	other	objects	it
depends	on—instead	of	creating	it	on	its	own.	This	reduces	dependencies,
because	the	receiving	object	doesn't	need	to	know	about	the	details	of	the	object
it	receives;	all	it	needs	is	a	contract	(usually	a	C#	interface).

Dependency	injection	was	introduced	in	Chapter	4,	“Object-Oriented
Programming	in	C#.”	This	chapter	enhances	dependency	injection	using	the
container	Microsoft.Extensions.DependencyInjection	for	having	the
management	of	dependencies	in	a	central	place	of	the	application.	This	chapter
starts	with	a	small	application	for	creating	a	dependency	injection	container	with
the	ServiceCollection	class,	which	is	later	changed	to	use	the	Host	class	that
itself	creates	a	DI	container	and	shows	various	features	of	this	DI	container.	The
second	part	of	this	chapter	shows	the	configuration	of	a	.NET	application,	which
is	another	feature	of	the	Host	class.

USING	THE	.NET	DI	CONTAINER
With	a	dependency	injection	container,	you	can	have	one	place	in	your
application	where	you	define	which	contracts	map	to	each	specific
implementation.	You	also	can	specify	whether	a	service	should	be	used	as	a
singleton	or	a	new	instance	should	be	created	every	time	it's	used.

With	the	next	few	samples,	a	greeting	service	(defined	with	the	interface	contract
IGreetingService	and	implemented	with	the	class	GreetingService)	is
injected	in	the	class	HomeController.	The	interface	defines	the	Greet	method
(code	file	DI/WithDIContainer/IGreetingService.cs):

public	interface	IGreetingService

{

		string	Greet(string	name);

}

The	contract	is	implemented	in	the	GreetingService	class	(code	file
DepencencyInjectionSamples/WithDIContainer/GreetingService.cs):

public	class	GreetingService	:	IGreetingService

{

		public	string	Greet(string	name)	=>	$"Hello,	{name}";

}

Finally,	the	IGreetingService	interface	is	injected	using	constructor	injection	in
the	class	HomeController	(code	file
DepencencyInjectionSamples/WithDIContainer/HomeController.cs):

public	class	HomeController

{

		private	readonly	IGreetingService	_greetingService;

		public	HomeController(IGreetingService	greetingService)	=>

				_greetingService	=	greetingService;

				

		public	string	Hello(string	name)	=>

				_greetingService.Greet(name).ToUpper();

}

Within	the	Program	class,	the	GetServiceProvider	method	is	defined.	Here,	a
new	ServiceCollection	object	is	instantiated.	ServiceCollection	is	defined	in
the	namespace	Microsoft.Extensions.DependencyInjection	after	you	add	the
NuGet	package	Microsoft.Extensions.DependencyInjection.	The	extension
methods	AddSingleton	and	AddTransient	are	used	to	register	the	types	that
need	to	be	known	by	the	DI	container.	With	the	sample	application,	both	the
GreetingService	and	the	HomeController	are	registered	in	the	container,	which
makes	it	possible	to	retrieve	the	HomeController	from	the	container.

The	class	GreetingService	will	be	instantiated	when	the	IGreetingService
interface	is	requested.	With	the	HomeController,	an	interface	is	not	defined.
Here,	the	HomeController	is	instantiated	when	the	HomeController	is
requested.

For	the	lifetime	of	GreetingService,	the	same	instance	is	always	returned	when
IGreetingService	is	requested.	This	is	different	with	HomeController,	where	a
new	instance	is	always	returned	on	every	request	to	retrieve	a	HomeController.
This	information	for	the	DI	container	is	specified	by	using	the	AddSingleton
and	AddTransient	methods.	Later	in	this	chapter,	you	can	read	more	about	the
lifetime	of	services.	Invoking	the	method	BuildServiceProvider	returns	a
ServiceProvider	object	that	can	then	be	used	to	access	the	services	registered
(code	file	DI/WithDIContainer/Program.cs):

static	ServiceProvider	GetServiceProvider()

{

		ServiceCollection	=	new();

		services.AddSingleton<IGreetingService,	GreetingService>();

		services.AddTransient<HomeController>();

		return	services.BuildServiceProvider();

}

NOTE If	you	add	the	same	interface	contract	multiple	times	to	the
services	collection,	the	last	one	added	wins	for	getting	the	interface	from	the
container.	This	makes	it	easy	to	replace	contracts	with	different
implementations	if	you	need	a	changed	functionality—for	example,	with
services	implemented	by	ASP.NET	Core	or	Entity	Framework	Core.

On	the	other	hand,	with	the	ServiceCollection	class,	you	also	have	access
not	only	to	add	but	also	to	remove	services	and	to	retrieve	a	list	of	all
services	for	a	specific	contract.

Next,	let's	change	the	Main	method	to	invoke	the	RegisterServices	method	for
making	the	registration	within	the	DI	container	and	then	to	invoke	the
GetRequiredService	method	of	the	ServiceProvider	to	get	a	reference	to	a
HomeController	instance	(code	file	DI/WithDIContainer/Program.cs):

using	ServiceProvider	container	=	GetServiceProvider();

var	controller	=	container.GetRequiredService<HomeController>();

string	result	=	controller.Hello("Stephanie");

Console.WriteLine(result);

NOTE With	the	ServiceProvider	class,	different	overloads	of
GetService	and	GetRequiredService	exist.	The	method	that	is	directly
implemented	in	the	ServiceProvider	class	is	GetService	with	a	Type
parameter.	The	generic	method	GetService<T>	is	an	extension	method	that
takes	the	generic	type	parameter	and	passes	it	to	the	GetService	method.

If	the	service	is	not	available	in	the	container,	GetService	returns	null	.	The
extension	method	GetRequiredService	checks	for	a	null	result	and	throws
an	InvalidOperationException	if	the	service	is	not	found.	If	the	service
provider	implements	the	interface	ISupportsRequiredService	,	the
extension	method	GetRequiredService	invokes	the	GetRequiredService	of
the	provider.	The	container	of	.NET	Core	does	not	implement	this	interface,
but	some	third-party	containers	do.

Let's	examine	how	the	different	parts	are	connected	when	starting	the
application.	When	the	application	starts,	on	the	request	of	the
GetRequiredService	method,	the	DI	container	creates	an	instance	of	the
HomeController	class.	The	HomeController	constructor	requires	an	object
implementing	IGreetingService.	This	interface	is	also	registered	with	the
container;	for	IGreetingService,	a	GreetingService	object	needs	to	be
returned.	The	GreetingService	class	has	a	default	constructor;	thus,	the
container	can	create	an	instance	and	pass	this	instance	to	the	constructor	of	the
HomeController.	This	instance	is	used	with	the	controller	variable	and	used	as
before	to	invoke	the	Hello	method.

What	happens	if	not	every	dependency	is	registered	with	the	DI	container?	In
that	case,	the	registration	that	maps	IGreetingService	to	GreetingService	is
removed,	and	the	container	throws	the	InvalidOperationException.	In	case	of
the	sample	application,	this	error	message	shows	up:	Unable	to	resolve
service	for	type	'WithDIContainer.IGreetingService'	while

attempting	to	activate	'WithDIContainer.HomeController'.

USING	THE	HOST	CLASS
A	class	that	offers	out-of-the-box	support	for	a	dependency	injection	container	is
the	Host	class	from	the	NuGet	package	Microsoft.Extensions.Hosting.	This
class	not	only	offers	creating	the	dependency	injection	container	but	also
functionality	for	logging	and	configuration,	which	are	features	that	practically	all
applications	need.

NOTE Configuration	using	the	Host	class	is	covered	in	this	chapter	in	the
section	“Configuration	with	.NET	Applications.”	Logging	is	covered	in
Chapter	16,	“Diagnostics	and	Metrics.”

Let's	change	the	previous	sample	application	to	use	the	Host	class.	With	the
sample	application,	the	HomeController,	GreetingService,	and
IGreetingService	types	didn't	change.	When	you	use	the	Host	class,	a
simplification	is	possible	with	the	top-level	statements	in	the	file	Program.cs.
Instead	of	creating	a	new	ServiceCollection,	this	is	now	a	job	of	the
CreateDefaultBuilder	method	of	the	Host	class.	The	CreateDefaultBuilder
method	configures	defaults	for	dependency	injection,	logging,	and	configuration.
In	the	implementation	of	this	method,	a	new	ServiceCollection	is	created,	and
some	commonly	used	interfaces	are	already	registered.	To	configure	more

services,	the	CreateDefaultBuilder	returns	an	IHostBuilder,	and	with	this,	the
ConfigureServices	method	can	be	invoked	to	register	additional	services.	One
overload	of	the	ConfigureServices	method	defines	a	ServiceCollection
parameter	that	can	be	used	to	configure	services	as	has	been	shown	before	in	the
GetServiceProvider	method	(code	file
DepencencyInjectionSamples/WithHost/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices(services	=>

		{

				services.AddSingleton<IGreetingService,	GreetingService>();

				services.AddTransient<HomeController>();

		}).Build();

	

var	controller	=	

host.Services.GetRequiredService<HomeController>();

string	result	=	controller.Hello("Matthias");

Console.WriteLine(result);

NOTE You	might	think	that	adding	extra	source	code	when	using	the	Host
class	makes	it	not	worthwhile	to	use	this	feature.	However,	the
CreateDefaultBuilder	method	also	registers	some	commonly	used	services
and	configures	defaults	for	logging	and	configuration.	All	of	these	topics	are
discussed	later	in	this	chapter	and	in	Chapter	16.

LIFETIME	OF	SERVICES
Registering	a	service	as	a	singleton	always	returns	the	same	instance;	registering
a	service	transient	returns	a	new	object	every	time	the	service	is	injected.	There
are	more	options	available	and	more	issues	to	think	about.	Let's	start	with
another	example	showing	this	and	implementing	the	IDisposable	interface	with
the	services,	so	you	can	see	how	disposing	of	service	instances	is	handled	by	the
container.

To	easily	differentiate	between	instances,	every	service	instantiated	will	be	given
a	different	number.	The	number	is	created	from	a	shared	service.	This	shared
service	defines	a	simple	interface	INumberService	to	return	a	number	(code	file
DI/ServicesLifetime/INumberService.cs):

public	interface	INumberService

{

		int	GetNumber();

}

The	implementation	of	INumberService	always	returns	a	new	number	in	the
GetNumber	method.	This	service	will	be	registered	as	singleton	to	have	the
number	shared	between	the	other	services	(code	file
DI/ServicesLifetime/NumberService.cs):

public	class	NumberService	:	INumberService

{

		private	int	_number	=	0;

		public	int	GetNumber()	=>	Interlocked.Increment(ref	_number);

}

NOTE The	Interlocked.Increment	class	offers	a	thread-safe	increment.
The	Interlocked	class	is	covered	in	Chapter	16.

The	other	services	that	will	be	looked	at	are	defined	by	the	interface	contracts
IServiceA,	IServiceB,	and	IServiceC	with	the	corresponding	methods	A,	B,	and
C.	The	following	code	snippet	shows	the	contract	for	IServiceA	(code	file
DI/ServicesLifetime/IServiceA.cs):

public	interface	IServiceA

{

		void	A();

}

With	the	implementation	of	ServiceA,	the	constructor	needs	an	injection	of	the
INumberService.	With	this	service,	the	number	is	retrieved	to	assign	it	to	the
private	field	_n.	To	see	the	lifetime	of	the	objects	when	running	the
implementation,	console	output	is	written	in	the	constructor,	the	method	A,	and
the	Dispose	method.	The	ConfigurationA	class	is	specified	to	pass
configuration	data	to	this	service	that	will	be	used	to	show	how	the	service	is
configured	from	the	DI	container	(for	example,	transient	or	singleton)	to	display
this	on	the	console	(code	file	DI/ServicesLifetime/ServiceA.cs):

public	class	ConfigurationA

{

		public	string?	Mode	{	get;	set;	}

}

	

public	sealed	class	ServiceA	:	IServiceA,	IDisposable

{

		private	readonly	int	_n;

		private	readonly	string?	_mode;

		public	ServiceA(INumberService	numberService,	

				IOptions<ConfigurationA>	options)

		{

				_mode	=	options.Value.Mode;

				_n	=	numberService.GetNumber();

				Console.WriteLine($"ctor	{nameof(ServiceA)},	{_n}");

		}

	

		public	void	A()	=>	Console.WriteLine($"{nameof(A)},	{_n},	

mode:	{_mode}");

		public	void	Dispose()	=>	

				Console.WriteLine($"disposing	{nameof(ServiceA)},	{_n}");

}

The	other	service	classes	ServiceB	and	ServiceC	are	implemented	similarly	to
ServiceA.

NOTE The	IDisposable	interface	is	explained	in	detail	in	Chapter	13,
“Managed	and	Unmanaged	Memory.”	The	IOptions	interface	is	explained
later	in	this	chapter	in	the	section	“Initialization	of	Services	Using
Options.”

In	addition	to	the	services,	the	controller	ControllerX	is	implemented.
ControllerX	requires	constructor	injection	of	three	services:	IServiceA,
IServiceB,	and	INumberService.	With	the	method	M,	two	of	the	injected
services	are	invoked.	Also,	constructor	and	Dispose	information	is	written	to	the
console	(code	file	DI/ServicesLifetime/ControllerX.cs):

public	sealed	class	ControllerX	:	IDisposable

{

		private	readonly	IServiceA	_serviceA;

		private	readonly	IServiceB	_serviceB;

		private	readonly	int	_n;

		private	int	_countm	=	0;

		public	ControllerX(IServiceA	serviceA,	IServiceB	serviceB,	

				INumberService	numberService)

		{

				_n	=	numberService.GetNumber();

				Console.WriteLine($"ctor	{nameof(ControllerX)},	{_n}");

				_serviceA	=	serviceA;

				_serviceB	=	serviceB;

		}

	

		public	void	M()

		{

				Console.WriteLine($"invoked	{nameof(M)}	for	the	{++_countm}.	

time");

				_serviceA.A();

				_serviceB.B();

		}

	

		public	void	Dispose()	=>	

				Console.WriteLine($"disposing	{nameof(ControllerX)},	{_n}");

}

Singleton	and	Transient	Services
Let's	start	registering	singleton	and	transient	services.	Here,	the	services
ServiceA,	ServiceB,	NumberService,	and	the	controller	class	ControllerX	are
registered.	NumberService	needs	to	be	registered	as	singleton	to	have	shared
state.	ServiceA	is	registered	as	singleton	as	well.	ServiceB	and	ControllerX	are
registered	as	transient	(code	file	DI/ServicesLifetime/Program.cs):

private	static	void	SingletonAndTransient()

{

		Console.WriteLine(nameof(SingletonAndTransient));

	

		using	var	host	=	Host.CreateDefaultBuilder()

				.ConfigureServices(services	=>

		{

				services.Configure<ConfigurationA>(config	=>	config.Mode	=	

"singleton");

				services.AddSingleton<IServiceA,	ServiceA>();

				services.Configure<ConfigurationB>(config	=>	config.Mode	=	

"transient");

	

				services.AddTransient<IServiceB,	ServiceB>();

				services.AddTransient<ControllerX>();

				services.AddSingleton<INumberService,	NumberService>();

		}).Build();

		//…

}

AddSingleton	and	AddTransient	are	extension	methods	that	make	it	easier	to
register	services	with	the	Microsoft.Extensions.DependencyInjection
framework.	Instead	of	using	these	helpful	methods,	you	can	register	services
with	the	Add	method	(which	is	itself	invoked	by	the	convenient	extension
methods).	The	Add	method	requires	a	ServiceDescriptor	containing	the	service

type,	the	implementation	type,	and	the	kind	of	the	service.	The	kind	of	the
service	is	specified	using	the	ServiceLifetime	enum	type.	ServiceLifetime
defines	the	values	Singleton,	Transient,	and	Scoped	:

services.Add(new	ServiceDescriptor(typeof(ControllerX),	

		typeof(ControllerX),	ServiceLifetime.Transient));

NOTE The	Add	method	of	the	ServiceCollection	class	is	explicitly
implemented	for	the	interface	IServiceCollection	.	With	this,	you	can	see
the	method	only	when	using	the	interface	IServiceCollection	,	not	when
you	have	a	variable	of	the	ServiceCollection	type.	Explicit	interface
implementation	is	covered	in	Chapter	4.

The	GetRequiredService	method	is	invoked	to	get	the	ControllerX	two	times
and	invoke	the	method	M	before	the	Host	instance	is	disposed	of	when	the
variable	goes	out	of	scope	at	the	end	of	the	method	(code	file
DI/ServicesLifetime/Program.cs):

private	static	void	SingletonAndTransient()

{

		//…

		Console.WriteLine($"requesting	{nameof(ControllerX)}");

	

		ControllerX	x	=	host.Services.GetRequiredService<ControllerX>

();

		x.M();

		x.M();

	

		Console.WriteLine($"requesting	{nameof(ControllerX)}");

	

		ControllerX	x2	=	host.Services.GetRequiredService<ControllerX>

();

		x2.M();

	

		Console.WriteLine();

}

In	order	to	run,	the	application	is	using	the	NuGet	package
System.CommandLine.DragonFruit.	This	library	is	based	on
System.CommandLine	and	gives	an	easy	way	to	pass	arguments	to	the	Main
method.	This	Main	method	is	defined	to	receive	a	string	that's	stored	in	the
variable	mode,	and	thus	the	application	can	be	started	by	passing	--mode
singletonandtransient	:

static	void	Main(string	mode)

{

		switch	(mode)

		{

				case	"singletonandtransient":

						SingletonAndTransient();

						break;

				case	"scoped":

						UsingScoped();

						break;

				case	"custom":

						CustomFactories();

						break;

				default:

						Usage();

						break;

				}

		}

}

When	you	run	the	application,	you	can	see	when	the	ControllerX	is	requested
and	when	ServiceA	and	ServiceB	are	instantiated,	and	the	NumberService
returns	a	new	number	every	time	the	GetNumber	method	is	invoked.	When	the
ControllerX	is	requested	the	second	time,	the	ControllerX	is	newly	created	and
so	is	ServiceB	because	these	types	are	registered	as	transient	with	the	container.
With	ServiceA,	the	same	instance	is	used	as	before,	and	no	new	instance	is
created:

SingletonAndTransient

requesting	ControllerX

ctor	ServiceA,	1

ctor	ServiceB,	2

ctor	ControllerX,	3

invoked	M	for	the	1.	time

A,	1,	mode:	singleton

B,	2,	mode:	transient

invoked	M	for	the	2.	time

A,	1,	mode:	singleton

B,	2,	mode:	transient

requesting	ControllerX

ctor	ServiceB,	4

ctor	ControllerX,	5

invoked	M	for	the	1.	time

A,	1,	mode:	singleton

B,	4,	mode:	transient

	

disposing	ControllerX,	5

disposing	ServiceB,	4

disposing	ControllerX,	3

disposing	ServiceB,	2

disposing	ServiceA,	1

Using	Scoped	Services
Services	can	also	be	registered	within	a	scope.	This	is	something	between
transient	and	singleton.	With	singleton,	only	a	single	instance	is	created.
Transient	creates	a	new	instance	every	time	the	service	is	requested	from	the
container.	With	scoped,	the	same	instance	is	always	returned	from	the	same
scope,	but	from	a	different	scope,	a	different	instance	is	returned.	Scopes	are	by
default	defined	with	ASP.NET	Core	web	applications.	Here,	the	scope	is	an
HTTP	web	request.	With	the	scoped	service,	the	same	instance	is	returned	as
long	as	the	request	to	the	container	is	coming	from	the	same	HTTP	request.	With
different	HTTP	requests,	other	instances	are	returned.	This	allows	for	easily
sharing	state	inside	an	HTTP	request.

With	non-ASP.NET	Core	web	applications,	you	need	to	create	the	scope	for
yourself	to	get	the	advantages	of	scoped	services.

Let's	start	registering	services	with	the	local	function	RegisterServices.
ServiceA	is	registered	as	a	scoped	service,	ServiceB	as	singleton,	and	ServiceC
as	transient	(code	file	DI/ServicesLifetime/Program.cs):

private	static	void	UsingScoped()

{

		Console.WriteLine(nameof(UsingScoped));

	

		using	var	host	=	Host.CreateDefaultBuilder()

				.ConfigureServices(services	=>

				{

						services.AddSingleton<INumberService,	NumberService>();

						services.Configure<ConfigurationA>(config	=>	config.Mode	=	

"scoped");

						services.AddScoped<IServiceA,	ServiceA>();

						services.Configure<ConfigurationB>(

								config	=>	config.Mode	=	"singleton");

						services.AddSingleton<IServiceB,	ServiceB>();

						services.Configure<ConfigurationC>(

								config	=>	config.Mode	=	"transient");

						services.AddTransient<IServiceC,	ServiceC>();

				}).Build();

		//…

}

You	can	create	a	scope	that	invokes	the	CreateScope	method	of	the
ServiceProvider.	This	returns	a	scope	object	implementing	the	interface
IServiceScope.	From	there	you	can	access	the	ServiceProvider	that	belongs	to
this	scope	where	you	can	request	the	services	from	the	container.	With	the
following	code	snippet,	ServiceA	and	ServiceC	are	requested	two	times,
whereas	ServiceB	is	requested	just	once.	Then	the	methods	A,	B,	and	C	are
invoked:

private	static	void	UsingScoped()

{

		//…

		//	the	using	statement	is	used	here	to	end	scope1	early									

		using	(IServiceScope	scope1	=	host.Services.CreateScope())

		{

				IServiceA	a1	=	

scope1.ServiceProvider.GetRequiredService<IServiceA>();

				a1.A();

				IServiceA	a2	=	

scope1.ServiceProvider.GetRequiredService<IServiceA>();

				a2.A();

				IServiceB	b1	=	

scope1.ServiceProvider.GetRequiredService<IServiceB>();

				b1.B();

				IServiceC	c1	=	

scope1.ServiceProvider.GetRequiredService<IServiceC>();

				c1.C();

				IServiceC	c2	=	

scope1.ServiceProvider.GetRequiredService<IServiceC>();

				c2.C();

		}

		Console.WriteLine("end	of	scope1");

		//…

}

After	the	first	scope	is	disposed	of,	another	scope	is	created.	With	the	second
scope,	again	ServiceA,	ServiceB,	and	ServiceC	are	requested,	and	methods	are
invoked:

private	static	void	UsingScoped()

{

		//…

		using	(IServiceScope	scope2	=	host.Services.CreateScope())

		{

				IServiceA	a3	=	

scope2.ServiceProvider.GetRequiredService<IServiceA>();

				a3.A();

				IServiceB	b2	=	

scope2.ServiceProvider.GetRequiredService<IServiceB>();

				b2.B();

				IServiceC	c3	=	

scope2.ServiceProvider.GetRequiredService<IServiceC>();

				c3.C();

		}

		Console.WriteLine("end	of	scope2");

		Console.WriteLine();

}

When	you	run	the	application,	you	can	see	the	services	for	the	instances	are
created,	methods	are	invoked,	and	services	are	automatically	disposed	of.	As
ServiceA	is	registered	as	transient,	within	the	same	scope,	the	same	instance	is
used.	ServiceC	is	registered	as	transient,	so	here	an	instance	is	created	with
every	request	to	the	container.	At	the	end	of	the	scope,	the	transient	and	scoped
services	are	automatically	disposed	of,	but	ServiceB	isn't.	ServiceB	is	registered
as	singleton	and	thus	needs	to	survive	to	the	end	of	the	scope:

UsingScoped

ctor	ServiceA,	1

A,	1,	mode:	scoped

A,	1,	mode:	scoped

ctor	ServiceB,	2

B,	2,	mode:	singleton

ctor	ServiceC,	3

C,	3,	mode:	transient

ctor	ServiceC,	4

C,	4,	mode:	transient

disposing	ServiceC,	4

disposing	ServiceC,	3

disposing	ServiceA,	1

end	of	scope1

When	you	start	the	second	scope,	ServiceA	and	ServiceB	are	instantiated	again.
When	you	request	ServiceB,	the	same	object	previously	created	is	returned.	At
the	end	of	the	scope,	ServiceA	and	ServiceC	are	disposed	of	again.	ServiceB	is
disposed	of	after	the	root	provider	is	disposed	of:

ctor	ServiceA,	5

A,	5,	mode:	scoped

B,	2,	mode:	singleton

ctor	ServiceC,	6

C,	6,	mode:	transient

disposing	ServiceC,	6

disposing	ServiceA,	5

end	of	scope2

	

disposing	ServiceB,	2

NOTE You	don't	need	to	invoke	the	Dispose	method	on	services	to	release
them.	With	services	implementing	the	IDisposable	interface,	the	container
invokes	the	Dispose	method.	Transient	and	scoped	services	are	disposed	of
when	the	scope	is	disposed	of.	Singleton	services	are	disposed	of	when	the
root	provider	is	disposed	of.

Service	instances	are	disposed	of	in	the	reverse	order	that	they	were	created.
This	is	important	when	one	service	needs	another	one	injected.	For	example,
service	A	requires	that	service	B	is	injected.	Thus,	service	B	is	created	first,
followed	by	service	A.	For	disposing	of	the	services,	service	A	is	disposed	of
first.	During	the	disposal	of	A,	A	can	still	access	methods	from	service	B.

WARNING Disposing	of	transient	services	at	the	end	of	the	scope	might
be	too	late	for	some	scenarios.	Transient	services	could	be	disposed	of
directly	after	use.	However,	this	can	be	missed,	and	the	registration	of	the
service	might	have	changed.	There's	also	an	issue	that	the	garbage	collector
cannot	release	the	memory	of	transient	services	registered	because
references	are	kept	in	the	service	container	implementation	(so	it	can	be
disposed	of	at	the	end	of	the	scope).	A	good	practice	is	to	register	disposable
services	as	either	scoped	or	singleton.	Also	remember	that	with	non-
ASP.NET	Core	applications,	the	scope	needs	to	be	created	manually.

Using	Custom	Factories
Instead	of	using	the	predefined	methods	to	register	transient,	scoped,	and
singleton	services,	you	can	create	a	custom	factory	or	pass	an	existing	instance
to	the	container.	The	next	code	snippet	shows	how	you	can	do	this.

You	can	pass	a	previously	created	instance	to	the	container	by	using	an	overload
of	the	AddSingleton	method.	Here,	in	the	RegisterServices	method,	a
NumberService	object	is	created	first	and	then	passed	to	the	AddSingleton
method.	Using	the	GetService	method	or	injecting	it	in	the	constructor	is	not
different	from	the	code	you've	seen	before.	You	just	need	to	be	aware	that	the

container	is	not	responsible	for	invoking	the	Dispose	method	in	this	case.	With
objects	creating	and	passing	to	the	container,	it's	your	responsibility	to	dispose	of
these	objects—if	the	objects	need	disposal	at	all.

You	can	also	use	a	factory	method	to	create	the	instance	instead	of	letting	the
service	be	created	from	the	container.	If	the	service	needs	a	custom	initialization
or	defines	constructors	not	supported	by	the	DI	container,	this	is	a	useful	option.
You	can	pass	a	delegate	with	an	IServiceProvider	parameter	and	return	the
service	instance	to	the	AddSingleton,	AddScoped,	and	AddTransient	methods.
With	the	sample	code,	the	local	function	named	CreateServiceBFactory	returns
a	ServiceB	object.	If	the	constructor	of	the	service	implementation	needs	other
services,	these	can	be	retrieved	using	the	passed	IServiceProvider	instance
(code	file	DI/ServicesLifetime/Program.cs):

private	static	void	CustomFactories()

{

		IServiceB	CreateServiceBFactory(IServiceProvider	provider)	=>

				new	ServiceB(provider.GetRequiredService<INumberService>(),	

						provider.GetRequiredService<IOptions<ConfigurationB>>());

	

		Console.WriteLine(nameof(CustomFactories));

	

		using	var	host	=	Host.CreateDefaultBuilder()

				.ConfigureServices(services	=>

				{

						NumberService	=	new();

	

						services.AddSingleton<INumberService>(numberService);		//	

add	existing

						services.Configure<ConfigurationB>(config	=>	config.Mode	=	

"factory");

						//	use	a	factory

						services.AddTransient<IServiceB>(CreateServiceBFactory);

						services.Configure<ConfigurationA>(

								config	=>	config.Mode	=	"singleton");

						services.AddSingleton<IServiceA,	ServiceA>();

				}).Build();

	

		IServiceA	a1	=	host.Services.GetRequiredService<IServiceA>();

		IServiceA	a2	=	host.Services.GetRequiredService<IServiceA>();

		IServiceB	b1	=	host.Services.GetRequiredService<IServiceB>();

		IServiceB	b2	=	host.Services.GetRequiredService<IServiceB>();

		Console.WriteLine();

}

INITIALIZATION	OF	SERVICES	USING	OPTIONS
You've	already	seen	that	a	service	can	be	injected	in	another	service.	This	can
also	be	used	to	initialize	a	service	with	options.	You	cannot	define	a	constructor
with	types	not	registered	with	the	DI	container	because	the	container	does	not
know	how	to	initialize	this.	Services	are	needed.	However,	to	pass	options	for	a
service,	you	can	also	use	a	service	that	is	already	available	with	.NET.

The	sample	code	makes	use	of	the	previously	used	GreetingService	with
modifications	to	pass	options.	The	configuration	values	needed	by	the	service
are	defined	with	the	class	GreetingServiceOptions.	The	sample	code	requires	a
string	parameter	with	the	From	property	(code	file
DI/DIWithOptions/GreetingServiceOptions.cs):

public	class	GreetingServiceOptions

{

		public	string?	From	{	get;	set;	}

}

The	options	for	the	service	can	be	passed	by	specifying	a	constructor	with	an
IOptions<T>	parameter.	The	previously	defined	class	GreetingServiceOptions
is	the	generic	type	used	with	IOptions.	The	value	passed	to	the	constructor	is
used	to	initialize	the	field	_from	(code	file
DI/DIWithOptions/GreetingService.cs):

public	class	GreetingService	:	IGreetingService

{

		public	GreetingService(IOptions<GreetingServiceOptions>	

options)	=>

				_from	=	options.Value.From;

	

		private	readonly	string?	_from;

	

		public	string	Greet(string	name)	=>	$"Hello,	{name}!	Greetings	

from	{_from}";

}

To	make	it	easy	to	register	the	service	with	the	DI	container,	the	extension
method	AddGreetingService	is	defined.	This	method	extends	the
IServiceCollection	interface	and	allows	passing	the	GreetingServiceOptions
with	a	delegate.	In	the	implementation,	the	Configure	method	is	used	to	specify
the	configuration	with	the	IOptions	interface.	The	Configure	method	is	an
extension	method	for	IServiceCollection	defined	in	the
Microsoft.Extensions.Options	NuGet	package	(code	file

DI/DIWithOptions/GreetingServiceExtensions.cs):

public	static	class	GreetingServiceExtensions

{

		public	static	IServiceCollection	AddGreetingService(

				this	IServiceCollection	collection,

				Action<GreetingServiceOptions>	setupAction)

		{

				if	(collection	==	null)	

						throw	new	ArgumentNullException(nameof(collection));

				if	(setupAction	==	null)	

						throw	new	ArgumentNullException(nameof(setupAction));

	

				collection.Configure(setupAction);

				return	collection.AddTransient<IGreetingService,	

GreetingService>();

		}

}

The	HomeController	that's	using	the	GreetingService	with	constructor
injection	doesn't	require	any	changes	compared	to	the	previous	sample	(code	file
DI/DIWithOptions/HomeController.cs):

public	class	HomeController

{

		private	readonly	IGreetingService	_greetingService;

		public	HomeController(IGreetingService	greetingService)

		{

				_greetingService	=	greetingService;

		}

		public	string	Hello(string	name)	=>	

_greetingService.Greet(name);

}

You	can	now	register	the	services	with	the	helper	method	AddGreetingService.
The	configuration	for	the	GreetingService	is	done	here	by	passing	the	required
options.	What's	also	needed	is	a	service	that	implements	the	IOptions	interface.
For	this	interface,	a	service	implementation	is	already	added	from	the
CreateDefaultBuilder	method.	In	case	you	don't	use	the	Host	class,	you	need
to	invoke	the	AddOptions	method	to	register	an	implementation	in	the	DI
container	(code	file	DI/DIWithOptions/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder()

		.ConfigureServices(services	=>

		{

				//	services.AddOptions();	//	already	added	from	host

				services.AddGreetingService(options	=>

				{

						options.From	=	"Christian";

				});

				services.AddSingleton<IGreetingService,	GreetingService>();

				services.AddTransient<HomeController>();

		}).Build();

The	service	can	now	be	used	as	before.	The	HomeController	is	retrieved	from
the	container,	and	constructor	injection	is	used	in	the	HomeController	where	the
IGreetingService	is	used:

var	controller	=	

host.Services.GetRequiredService<HomeController>();

string	result	=	controller.Hello("Katharina");

Console.WriteLine(result);

When	you	run	the	application,	now	the	options	are	used:

Hello,	Katharina!	Greetings	from	Christian

NOTE You	can	use	IOptions	-derived	interfaces	such	as
IOptionsSnapshot	to	update	settings	dynamically	when	the	configuration	is
updated.	How	you	do	this	with	Azure	App	Configuration	is	explained	later	in
this	chapter.

USING	CONFIGURATION	FILES
You	can	also	use	options	as	shown	in	the	previous	section	when	a	service	needs
to	be	configured	from	a	configuration	file.	However,	there's	a	more	direct	way	to
do	this;	you	can	use	the	.NET	configuration	features	in	conjunction	with	an
extension	to	the	options.	With	the	next	sample,	the	services	are	unchanged	and
still	use	IOptions<GreetingServiceOptions>	injected	in	the	constructor.	Now,
the	file	appsettings.json	is	used	to	supply	the	option	values.	The	From	key
defines	a	value	that	maps	to	the	From	property	from	the
GreetingServiceOptions	class	(configuration	file
DI/DIWithConfiguration/appsettings.json):

{

		"GreetingService":	{

				"From":	"Matthias"

		}

}

The	configuration	file	needs	to	be	copied	to	the	directory	of	the	executable.	You
do	this	by	adding	the	CopyToOutputDirectory	element	to	the	project	file
(project	file	DI/DIWithConfiguration/DIWithConfiguration.csproj):

		<ItemGroup>

				<None	Update="appsettings.json">

						

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

				</None>

		</ItemGroup>

A	new	extension	method	that	helps	with	registering	the	options	of	the
GreetingService	class	defines	an	IConfiguration	parameter.	With	the
implementation,	an	overload	of	the	Configure	method	is	used	where	an	object
implementing	the	IConfiguration	can	be	directly	passed	(code	file
DI/DIWithConfiguration/GreetingServiceExtensions.cs):

public	static	class	GreetingServiceExtensions

{

		public	static	IServiceCollection	AddGreetingService(

				this	IServiceCollection	services,	IConfiguration	config)

		{

				if	(services	==	null)	throw	new	

ArgumentNullException(nameof(services));

				if	(config	==	null)	throw	new	

ArgumentNullException(nameof(config));

	

				services.Configure<GreetingServiceOptions>(config);

				return	services.AddTransient<IGreetingService,	

GreetingService>();

		}

}

To	inject	the	IConfiguration	interface	in	a	service,	the	CreateDefaultBuilder
method	configures	this	interface	in	the	DI	container.	To	access	this	interface
already	with	the	configuration	of	the	additional	services,	the	ConfigureServices
method	defines	an	overload	where	the	HttpBuilderContext	is	supplied	in
addition	to	the	IServiceCollection.	Using	the	Configuration	property	of	the
HttpBuilderContext	returns	the	IConfiguration	interface	that	allows
retrieving	configured	values.	In	the	configuration	file,	for	the	service
configuration,	the	section	named	GreetingService	is	defined.	Invoking	the
GetSection	method	returns	an	IConfigurationSection.
IConfigurationSection	derives	from	IConfiguration,	thus	the	returned	value
can	be	passed	to	the	AddGreetingService	extension	method	(code	file

DI/DIWithConfiguration/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder()

		.ConfigureServices((context,	services)	=>

		{

				var	configuration	=	context.Configuration;

				services.AddGreetingService(

						configuration.GetSection("GreetingService"));

				services.AddSingleton<IGreetingService,	GreetingService>();

				services.AddTransient<HomeController>();

		}).Build();

	

var	controller	=	

host.Services.GetRequiredService<HomeController>();

string	result	=	controller.Hello("Katharina");

Console.WriteLine(result);

Running	the	application	shows	the	following:

Hello,	Katharina!	Greetings	from	Matthias

This	sample	application	retrieved	configuration	settings	from
appsettings.json.	This	filename	is	configured	by	default	with	the
CreateDefaultBuilder	method	of	the	Host	class.	This	method	configures	more
configuration	sources,	which,	of	course,	can	also	be	changed	as	shown	in	the
next	section.

CONFIGURATION	WITH	.NET	APPLICATIONS
The	previous	section	shows	how	you	can	supply	configuration	values	to	services
that	are	injected	by	the	DI	container	using	the	IConfiguration	interface	and	the
configuration	file	appsettings.json.	This	section	covers	how	.NET	offers	a
flexible	mechanism	to	get	configuration	values	from	different	sources.

Using	IConfiguration
The	sample	application	uses	configuration	from	appsettings.json,	which
specifies	configuration	values	for	a	key;	a	section	containing	a	key;	a	section
named	ConnectionStrings	;	and	another	section	named	SomeTypedConfig,
which	contains	an	inner	section	(configuration	file
ConfigurationSample/appsettings.json):

{

		"Key1":	"value	for	Key1",

		"Section1":	{

				"Key2":	"value	from	appsettings.json"

		},

		"ConnectionStrings":	{

				"BooksConnection":	"this	is	the	connection	string	to	a	

database"

		},

		"SomeTypedConfig":	{

				"Key3":	"value	for	key	3",

				"Key4":	"value	for	key	4",

				"InnerConfig":	{

						"Key5":	"value	for	key	5"

				}

		}

}

With	the	class	ConfigurationSampleService,	an	object	implementing
IConfiguration	is	injected	in	the	constructor	(code	file
ConfigurationSample/ConfigurationSampleService.cs):

public	class	ConfigurationSampleService

{

		private	readonly	IConfiguration	_configuration;

	

		public	ConfigurationSampleService(IConfiguration	

configuration)

		{

				_configuration	=	configuration;

		}

		//…

}

To	retrieve	configuration	values,	different	options	are	available.	With	the
GetValue	method,	a	key	can	be	passed	with	the	arguments	of	this	method	to
retrieve	the	value.	An	indexer	passing	the	key	can	be	used	as	well.	If	a	section	is
used	with	inner	values,	such	as	the	section	named	Section1,	the	GetSection
method	can	be	used	to	retrieve	the	section,	and	from	there	on,	the	indexer	can	be
used	to	access	the	inner	values.	GetSection	returns	IConfigurationSection,
which	in	turn	derives	from	IConfiguration.	If	the	section	is	named
ConnectionStrings,	the	extension	method	GetConnectionString	can	be	used
to	pass	a	key	within	this	section	to	retrieve	connection	strings.
GetConnectionString	is	just	an	extension	method	that	makes	it	convenient	for
using	connection	strings	(code	file
ConfigurationSample/ConfigurationSampleService.cs):

public	void	ShowConfiguration()

{

		string	value1	=	_configuration.GetValue<string>("Key1");

		Console.WriteLine(value1);

		string	value1b	=	_configuration["Key1"];

		Console.WriteLine(value1b);

		string	value2	=	_configuration.GetSection("Section1")["Key2"];

		Console.WriteLine(value2);

		string	connectionString	=	

				_configuration.GetConnectionString("BooksConnection");

		Console.WriteLine(connectionString);

		Console.WriteLine();

}

Reading	Strongly	Typed	Values
With	.NET	configurations,	classes	can	be	used	where	the	configuration	values
should	be	filled	into	(code	file
ConfigurationSample/StronglyTypedConfig.cs):

public	class	InnerConfig

{

		public	string?	Key5	{	get;	set;	}

}

	

public	class	StronglyTypedConfig

{

		public	string?	Key3	{	get;	set;	}

		public	string?	Key4	{	get;	set;	}

		public	InnerConfig?	InnerConfig	{	get;	set;	}

	

		public	override	string	ToString()	=>

				$"values:	{Key3}	{Key4}	{InnerConfig?.Key5}";

}

To	bind	the	values	from	the	configuration	source,	the	Get	extension	method	can
be	used.	This	method	tries	to	fill	matching	keys	to	properties	of	the	generic	value
type.	Setting	the	BinderOption	value	BindNonPublicProperties	to	true	also
sets	read-only	values	and	not	just	read/write	properties	(code	file
ConfigurationSample/ConfigurationSampleService.cs):

public	void	ShowTypedConfiguration()

{

		Console.WriteLine(nameof(ShowTypedConfiguration));

		var	section	=	_configuration.GetSection("SomeTypedConfig");

		var	typedConfig	=	section.Get<StronglyTypedConfig>(

				binder	=>	binder.BindNonPublicProperties	=	true);

		Console.WriteLine(typedConfig);

		Console.WriteLine();

}

Configuration	Sources
When	you	use	the	CreateDefaultBuilder	method	of	the	Host	class,	you	use
these	configuration	sources:

appsettings.json

appsettings.{environment-name}.json

Environment	variables

Command-line	arguments

User	secrets	in	development-mode

The	order	is	important.	Every	source	coming	later	in	the	list	can	override	settings
from	previous	sources.	The	configuration	sources	are	completely	customizable.
Other	configuration	providers	are	available	in	NuGet	packages—for	example,
providers	reading	configuration	values	from	XML	or	INI	files.

The	following	code	sample	shows	adding	another	JSON	provider	that's
accessing	the	file	customconfigurationfile.json.	You	can	separate	any
configuration	data	you	like,	such	as	all	database	connection	strings	to	other
configuration	files.	The	extension	method	AddJsonFile	references	this	file.	The
method	SetBasePath	that	is	invoked	before	AddJsonFile	defines	the	directory
where	the	file	is	searched.	Setting	the	optional	parameter	to	true	doesn't	throw
an	exception	when	the	file	does	not	exist	(code	file
ConfigurationSamples/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureAppConfiguration(config	=>

		{

				config.SetBasePath(Directory.GetCurrentDirectory());

				config.AddJsonFile("customconfigurationfile.json",	optional:	

true);

		}).ConfigureServices(services	=>

		{

				services.AddTransient<ConfigurationSampleService>();

				services.AddTransient<EnvironmentSampleService>();

		}).Build();

When	you	set	configuration	values	with	environment	variables	and	command-

line	arguments,	a	colon	indicates	separate	sections.	The	following	statement
invokes	the	application	overriding	values	for	Key1	and	Key2	within	the	section
Section1	:

>	dotnet	run	--	Key1="val1"	Section1:Key2="val2"

NOTE If	the	JSON	configuration	file	changes	dynamically	while	the
application	is	running,	and	new	values	should	be	retrieved	from	the
application,	you	just	have	to	set	the	reloadOnChange	argument	of	the
AddJsonFile	method	to	true	.	This	way,	a	file	watcher	is	attached	to	be
notified	on	changes,	and	the	configuration	values	are	updated.	See	Chapter
18,	“Files	and	Streams,”	to	learn	how	to	create	your	own	file	watcher.

Production	and	Development	Settings
To	differentiate	between	settings	for	development,	production,	and	staging
environments,	the	environmental	variable	DOTNET_ENVIRONMENT	is	used.	The
second	configuration	source	that's	in	the	list	to	search	for	configuration	values	is
appsettings.{environment-name}.json.	Configuration	values	that	are
different	with	production,	staging,	and	development	environments	just	need	to
be	configured	with	appsettings.Production.json,
appsettings.Staging.json,	and	appsettings.Development.json.

To	set	the	environmental	variable	easily	when	running	the	application,	you	can
configure	launch	settings	in	the	Properties	folder	of	the	project	and	specify	the
DOTNET_ENVIRONMENT	environment	variable	(configuration	file
ConfigurationSample/Properties/launchsettings.json):

{

		"profiles":	{

				"ConfigurationSample":	{

						"commandName":	"Project",

						"environmentVariables":	{

								"DOTNET_Environment":	"Development"

						}

				}

		}

}

To	check	for	the	environment,	the	interface	IHostEnvironment	can	be	injected
with	a	service.	With	this	interface,	the	EnvironmentName	property	gives	the	name
of	the	environment.	Extension	methods	such	as	IsDevelopment,	IsStaging,	and

IsProduction	can	be	used	to	verify	whether	the	application	is	running	in	a
specific	environment	(code	file
ConfigurationSample/EnvironmentSampleService.cs):

public	class	EnvironmentSampleService

{

		private	readonly	IHostEnvironment	_hostEnvironment;

	

		public	EnvironmentSampleService(IHostEnvironment	

hostEnvironment)

		{

				_hostEnvironment	=	hostEnvironment;

		}

	

		public	void	ShowHostEnvironment()

		{

				Console.WriteLine(_hostEnvironment.EnvironmentName);

				if	(_hostEnvironment.IsDevelopment())

				{

						Console.WriteLine("it's	a	development	environment");

				}

		}

}

NOTE You	can	create	custom	environments	to	differentiate	environments
where	you	use	simulated	local	services	that	are	injected	in	the	DI	container
—for	example,	to	increase	debugging	speed	by	not	accessing	authentication
or	other	services.	For	this,	you	can	create	extension	methods	to	verify	for	the
custom	environment	name.	The	implementation	just	needs	to	check	for	the
value	of	the	EnvironmentName	property.

User	Secrets
Secrets	shouldn't	be	stored	within	configuration	files	that	are	part	of	the	source
code	repository.	Open-source	code	repositories	are	continuously	scanned	for
passwords	and	keys	that	could	be	used.	Private-source	code	repositories	also	are
not	good	places	to	keep	the	secrets.	During	development	time,	user	secrets	can
be	used.	With	user	secrets,	the	configuration	is	stored	in	the	user	profile.	Only
the	user	who	is	allowed	to	access	the	user	profile	can	get	access	to	these
configuration	values.	During	production,	you	need	to	use	a	different
environment	instead.	Here,	depending	on	the	environment,	secrets	can	be	stored
in	environmental	variables	or,	better	yet,	in	a	service	like	the	Azure	Key	Vault.

To	work	with	user	secrets,	you	can	use	the	dotnet	tool	user-secrets.	For
example,	the	following:

>	dotnet	user-secrets	init

adds	a	configuration	specifying	a	UserSecretsId	in	the	project	file,	such	as	this:

<UserSecretsId>7695182a-e84c-44c0-8644-

4a531200ecff</UserSecretsId>	

The	ID	is	not	a	secret	by	itself.	The	ID	can	be	a	simple	string.	By	default,	a
GUID	is	created.	All	applications	where	user	secrets	are	used	store	the	secrets	in
the	user	profile.	To	differentiate	secrets	from	different	applications,	GUIDs	are
used.	If	you	want	to	access	the	same	secret	configuration	from	multiple
applications,	use	the	same	user	secret	ID	with	these	applications.

To	access	user	secrets	from	the	application,	the	NuGet	package
Microsoft.Extensions.Configuration.UserSecrets	needs	to	be	added.	The
Host	class	method	CreateDefaultBuilder	configures	user	secrets	if	the
application	is	running	in	the	Development	environment,	and	a	user	secret	ID	is
specified	in	the	project	file.	If	you	need	user	secrets	in	other	scenarios,	you	can
add	the	provider	in	the	ConfigureAppConfiguration	method	calling
AddUserSecrets.

To	set	a	user	secret	via	the	command	line,	use	the	set	command:

>	dotnet	user-secrets	set	Section1:Key2	"a	secret"

To	show	all	the	application's	secrets,	use	the	list	command:

>	dotnet	user-secrets	list

AZURE	APP	CONFIGURATION
When	publishing	an	ASP.NET	Core	web	application	to	an	Azure	App	Service,
configuration	values	from	the	JSON	configuration	files	can	be	retrieved	and	put
into	the	configuration	of	the	Azure	App	Service.	This	is	a	practical	option;
however,	for	many	scenarios	it's	a	better	option	to	use	Azure	App	Configuration.
A	solution	often	consists	of	multiple	services	that	partially	have	the	same
configurations.	Azure	App	Configuration	allows	one	central	place	for	the
configuration,	and	all	the	applications	within	the	solution	can	use	the
configuration.	It	also	offers	features	such	as	having	different	configuration
values	for	staging	and	production	environments	and	using	switches	to	turn

features	on	or	off	based	on	different	scenarios	as	needed.

To	use	Azure	App	Configuration	from	the	application,	another	configuration
provider	needs	to	be	configured.

With	the	solution,	configuration	during	development	and	in	production	not	only
needs	different	configuration	values	but	also	different	environments.	When	you
use	configuration	for	an	application	running	in	Microsoft	Azure,	you	can	use	an
identity	that	is	defined	with	the	Azure	App	Service	to	access	the	Azure	App
Configuration.	This	option	is	probably	not	available	in	your	development
environment.

In	order	to	deal	with	that,	you	have	different	options.	You	already	know	that
.NET	configuration	is	flexible.	During	development	time,	you	can	use	all	the
configuration	locally	and	have	secrets	stored	in	user	secrets.

At	some	point	in	time,	you	want	to	test	and	debug	using	your	application	as	it's
running	locally	while	accessing	configuration	stored	in	Microsoft	Azure.	It's	best
to	have	different	Azure	subscriptions	to	separate	your	development	and	your
production	environment.	If	you	are	using	Visual	Studio	Professional	or	Visual
Studio	Enterprise,	every	month	you	have	a	free	amount	of	money	you	can	spend
on	Azure	resources.	You	can	use	your	Azure	development	environment	with
your	Visual	Studio	subscription.

Creating	Azure	App	Configuration
Using	the	Azure	Shell	with	the	Bash	environment,	you	can	use	the	following
Azure	CLI	commands	to	create	a	resource	group	and	app	configuration.	Some
keys	and	values	used	with	the	sample	application	are	configured.	Change	the
values	for	the	resource	group	name	(rg)	and	the	location	that	best	fits	your
location	(loc):

rg=rg-procsharp

loc=westeurope

conf=ProCSharpConfig$Random

key1=AppConfigurationSample:Settings:Config1

val1="configuration	value	for	key	1"

devval1="development	value	for	key	1"

stagingval1="staging	value	for	key	1"

prodval1="production	value	for	key	1"

sentinelKey=AppConfigurationSample:Settings:Sentinel

sentinelValue=1

	

az	group	create	--location	$loc	--name	$rg

az	appconfig	create	--location	$loc	--name	$conf	--resource-

group	$rg	

az	appconfig	kv	set	-n	$conf	--key	$key1	--value	"$val1"	--yes

az	appconfig	kv	set	-n	$conf	--key	$key1	--label	Development	--

value	"$devval1"	--yes

az	appconfig	kv	set	-n	$conf	--key	$key1	--label	Staging	--value	

"$stagingval1"	--yes

az	appconfig	kv	set	-n	$conf	--key	$key1	--label	Production	--

value	"$prodval1"	--yes

az	appconfig	kv	set	-n	$conf	--key	$sentinelKey	--value	

$sentinelValue	--yes

NOTE Azure	resources	can	be	created	and	configured	using	the	portal
(https://portal.azure.com),	the	Azure	CLI,	PowerShell,	and	also	an
Azure	SDK.	Check	Chapter	1,	“.NET	Applications	and	Tools”	for	different
ways	to	create	Microsoft	Azure	resources.	You	can	open	the	Azure	shell	from
the	portal	or	by	opening	https://shell.azure.com.	For	the	sample
application,	also	check	the	readme	file	of	the	chapter	samples	for	a	Bash
script	to	create	the	Azure	resources.

Using	Azure	App	Configuration	in	the	Development
Environment
Let's	explore	a	sample	application	using	Azure	App	Configuration.	An	ASP.NET
Core	web	application	can	be	easily	deployed	with	Azure	App	Services.	With	the
sample	application,	you'll	see	the	web	application	running	locally	and	accessing
the	Azure	App	Configuration	and	also	see	it	running	when	it's	deployed	to	an
Azure	App	Service	and	accessing	the	configuration.	An	empty	web	application
can	be	created	with	dotnet	new	web.	To	use	Azure	App	Configuration	from	an
ASP.NET	Core	application,	the	NuGet	package
Microsoft.Azure.AppConfiguration.AspNetCore	is	added.	This	package	has	a
dependency	on
Microsoft.Extensions.Configuration.AzureAppConfiguration,	which
would	be	enough	for	.NET	applications.	The	ASP.NET	Core	package	adds
middleware	functionality	for	dynamic	configuration,	as	shown	in	the	next
section.

NOTE Read	more	information	about	the	foundations	of	ASP.NET	Core
web	applications	in	Chapter	24,	“ASP.NET	Core.”

https://portal.azure.com
https://shell.azure.com

To	access	Azure	App	Configuration,	you	use	a	connection	string	or	an	endpoint.
The	connection	string	includes	a	secret.	Instead	of	using	the	connection	string
containing	the	secret,	you	can	use	the	endpoint	to	your	App	Configuration
resource	and	an	account	that	is	allowed	to	access	the	Azure	resource	when
running	the	application.	If	you	use	the	connection	string	with	the	secret,	in	the
development	environment,	store	the	connection	string	with	user	secrets.	With	the
sample	application,	an	account	is	used	that	allows	using	the	same	code	in	the
production	environment.

The	endpoint	to	the	Azure	App	Configuration	resource	is	shown	using	az
appconfig	show	:

>	az	appconfig	show	--name	$conf	--query	endpoint

This	endpoint	is	added	to	the	appsettings.json	file	with	the	key
AppConfigEndpoint.	Because	a	secret	is	not	included,	it's	okay	to	have	it	in	the
source	code	repo.

To	run	the	web	application	with	a	privileged	user,	add	the	environment	variable
AZURE_USERNAME	and	set	it	to	your	Azure	username.	To	automatically	do	this	on
starting	the	application,	change	the	file	launchsettings.json	in	the	Properties
folder:

{

		"profiles":	{

				"AzureAppConfigWebApp":	{

						"commandName":	"Project",

						"dotnetRunMessages":	"true",

						"launchBrowser":	true,

						"applicationUrl":	

"https://localhost:5001;http://localhost:5000",

						"environmentVariables":	{

								"ASPNETCORE_ENVIRONMENT":	"Development",

								"AZURE_USERNAME":	"add	your	username	here,	e.g.	

name@outlook.com"

						}

				}

		}

}

Next,	add	the	Azure	App	Configuration	provider	to	the	configuration	of	the	Host
class.	With	the	web	application,	you	can	use	ConfigureAppConfiguration	of	the
IWebHostBuilder	instead	of	the	ConfigureAppConfiguration	method	of	the
IHostBuilder	used	before.	The	difference	is	that	with	the	IWebHostBuilder

version,	you	have	access	to	the	WebHostBuilderContext	instead	of	the
HostBuilderContext,	which	gives	you	more	options.	One	overload	of	the
AddAzureAppConfiguration	method	needs	the	connection	string,	including	the
secret.	To	use	the	account	instead,	you	need	the	overload	to	pass	the
AzureAppConfigurationOptions.	With	the	options	variable,	the	Connect
method	can	be	used	to	pass	the	endpoint	that's	retrieved	from	the	configuration
and	an	instance	of	DefaultAzureCredential	(code	file
AzureAppConfigWebApp/Program.cs):

public	static	IHostBuilder	CreateHostBuilder(string[]	args)	=>

		Host.CreateDefaultBuilder(args)

				.ConfigureWebHostDefaults(webBuilder	=>

				{

						webBuilder.ConfigureAppConfiguration((context,	config)	=>

						{

								//	configuration	is	already	needed	from	within	setting	

up	config

								var	settings	=	config.Build();	

								config.AddAzureAppConfiguration(options	=>

								{																												

										DefaultAzureCredential	credential	=	new();

										var	endpoint	=	settings["AppConfigEndpoint"];

	

										options.Connect(new	Uri(endpoint),	credential);

								});

						});

						webBuilder.UseStartup<Startup>();

				});

NOTE The	class	DefaultAzureCredential	has	different	ways	to	log	in	to
Microsoft	Azure.	First,	it	tries	to	use	EnvironmentalCredential.	This
credential	class	makes	use	of	an	environmental	variable	ACCOUNT_USERNAME
that	you	can	configure	with	the	launchsettings.json	file.	If	this	fails,	it
uses	ManagedIdentityCredential.	When	running	the	app	in	Azure,	you	can
configure	your	App	Service	to	run	with	a	managed	identity,	which	is	then
used	to	access	Azure	App	Configuration.	Next,
SharedTokenCacheCredential	is	used.	This	uses	a	local	token	cache.
VisualStdudioCredential	is	next.	You	can	configure	these	credentials	with
Tools	➪	Options	➪	Azure	Service	Authentication.	After	this,
VisualStudioCodeCredential	and	AzureCliCredential	(credentials	used
with	the	Azure	CLI)	follow.	InteractiveBrowserCredential	(interactive	log
in	via	the	browser)	is	the	last	option	that's	tried	for	a	successful	login,	but

only	if	the	parameter	includeInteractiveCredentials	of	the
DefaultAzureCredential	constructor	is	set	to	true.

To	inject	the	configured	values,	the	IndexAppSettings	class	is	defined.	This	will
be	used	to	fill	the	value	for	the	key
AppConfigurationSample:Settings:Config1	(code	file
AzureAppConfigWebApp/IndexAppSettings.cs):

public	class	IndexAppSettings

{

		public	string?	Config1	{	get;	set;	}

}

In	the	code-behind	of	the	Index	Razor	page,	IOptionsSnapshot	is	injected	to
access	the	configuration	value	and	fill	the	property	Config1	(code	file
AzureAppConfigWebApp/Pages/Index.cshtml.cs):

public	class	IndexModel	:	PageModel

{

		private	readonly	ILogger<IndexModel>	_logger;

	

		public	IndexModel(IOptionsSnapshot<IndexAppSettings>	options,	

																				ILogger<IndexModel>	logger)

		{

				_logger	=	logger;

				Config1	=	options.Value.Config1	??	"no	value";

		}

	

		public	string	Config1	{	get;	}

		//…

}

NOTE The	IOptions	interface	is	explained	earlier	in	this	chapter	in	the
section	“Initialization	of	Services	Using	Options.”	IOptionsSnapshot
derives	from	IOptions	and	allows	changing	configuration	values
dynamically	as	is	shown	in	the	next	section.

In	the	Index	Razor	page,	the	configuration	value	is	shown	accessing	the	Config1
property	(code	file	AzureAppConfigWebApp/Pages/Index.cshtml):

<p>configuration	value:	@Model.Config1</p>

Dynamic	Configuration

To	avoid	an	application	restart	when	a	configuration	value	changes,	the
configuration	can	be	set	to	reread	configuration	values	after	a	sentinel	value
changes.	This	sentinel	value	needs	to	be	set	to	a	new	value	as	soon	as	any	other
configuration	for	the	application	gets	a	new	value.

To	configure	a	refresh	for	all	values	when	the	sentinel	value	changes,	you	use	an
overload	of	the	AddAzureAppConfiguration	extension	method	to	pass	an	action
delegate.	With	the	implementation	of	the	lambda	expression,	the	connection
string	for	Azure	App	Configuration	is	now	passed	to	the	Connect	method	of	the
action	delegate.	Now	it's	also	possible	to	invoke	the	ConfigureRefresh	method.
Passing	a	lambda	expression	with	an	AzureAppConfigurationRefreshOptions
parameter,	a	configuration	value	can	be	registered	that	should	be	refreshed	based
on	the	setting	passed	to	the	SetCacheExpiration	method.	By	default,	the
registered	values	are	refreshed	every	30	seconds.	To	reduce	the	invocations	to
the	Azure	App	Configuration,	the	refresh	is	changed	to	refresh	every	five
minutes.	After	the	value	is	retrieved,	and	it	is	changed,	all	the	other
configuration	values	are	retrieved	as	well	because	of	the	refreshAll	parameter
setting	(code	file	AzureAppConfigWebApp/Program.cs):

webBuilder.ConfigureAppConfiguration((context,	config)	=>

{

		//	configuration	is	already	needed	from	within	setting	up	

config

		var	settings	=	config.Build();	

		config.AddAzureAppConfiguration(options	=>

		{

				DefaultAzureCredential	credential	=	new();

				var	endpoint	=	settings["AppConfigEndpoint"];																												

				options.Connect(new	Uri(endpoint),	credential)

						.ConfigureRefresh(refresh	=>

						{

									refresh.Register(

											"AppConfigurationSample:Settings:Sentinel",

													refreshAll:	true)

											.SetCacheExpiration(TimeSpan.FromMinutes(5));

						})

		});

The	ASP.NET	Core	middleware	needs	to	be	configured	to	check	if	the	sentinel
value	was	changed,	and	thus	the	refresh	of	the	configuration	values	can	be	done
automatically	on	every	request.	To	configure	the	middleware,	the	Startup	class
is	configured	by	invoking	the	AddAzureAppConfiguration	method	in	the
ConfigureServices	method	and	by	invoking	the	UseAzureAppConfiguration

method	in	the	Configure	method.

For	a	test,	you	might	lower	the	cache	expiration	time	and	change	both	the	value
for	the	key	AppConfigurationSample:Settings:Config1	as	well	as	the	sentinel
value	while	the	application	is	running.	The	new	value	will	show	up	after	the
defined	timespan.

Production	and	Staging	Settings	with	Azure	App
Configuration
With	the	.NET	configuration,	you've	seen	different	values	based	on	the
environment	name	(see	the	section	“Production	and	Development	Settings”).
With	Azure	App	Configuration,	you	can	do	this	with	a	feature	named	labels	in
this	service.	On	defining	the	configuration	values	for	this	service,	labels	named
Production,	Staging,	and	Development	have	been	used.	These	labels	are	now
used	to	map	the	different	hosting	environments.

Depending	on	the	environment	name,	you	can	use	label	filters	to	filter	the
configuration.	With	the	first	Select	method,	no	label	filter	is	used.	Here	all	the
configuration	values	are	retrieved.	With	the	second	Select	method,
configuration	values	are	overridden	based	on	the	environment.	This	way,	it's
only	necessary	to	add	values	for	a	specific	environment	when	the	values	are
different	(code	file	AzureAppConfigWebApp/Program.cs):

config.AddAzureAppConfiguration(options	=>

{

		DefaultAzureCredential	credential	=	new();

		var	endpoint	=	settings["AppConfigEndpoint"];																												

		options.Connect(new	Uri(endpoint),	credential)

				.Select(KeyFilter.Any,	LabelFilter.Null)

				.Select(KeyFilter.Any,	

context.HostingEnvironment.EnvironmentName)

				.ConfigureRefresh(refresh	=>

				{

						

refresh.Register("AppConfigurationSample:Settings:Sentinel",	

								refreshAll:	true)

								.SetCacheExpiration(TimeSpan.FromMinutes(5));

				}));

Feature	Flags
Feature	flags	is	another	feature	of	Azure	App	Configuration.	With	feature	flags,
you	can	enable	or	disable	different	parts	at	specific	times	or	to	a	subset	of	users.

New	features	(for	example,	preview	features)	of	an	application	can	be	made
available	to	a	group	of	early	adopters	before	the	feature	is	available	for	all	users.
You	can	also	implement	a	new	feature	with	different	user	interface	options	and
make	this	feature	available	to	different	groups	of	users.	You	can	use	telemetry
information	to	find	out	how	the	different	users	find	and	use	the	new	feature.
Analysis	of	the	information	will	tell	you	which	version	was	most	successful.
Azure	App	Configuration	offers	built-in	feature	flags	based	on	a	percentage	of
users,	a	specific	time	window,	and	user	groups.	You	can	also	implement	a
custom	feature	filter	that	implements	the	interface	IFeatureFilter	in	the
namespace	Microsoft.FeatureManagement.

To	create	the	feature	FeatureX	with	the	previously	defined	Azure	App
Configuration,	you	can	use	the	following	Azure	CLI	command:

>	az	appconfig	feature	set	--feature	FeatureX	-n	$conf

The	configuration	of	the	feature	is	shown	in	the	following:

>	az	appconfig	feature	show	--feature	FeatureX	-n	$conf

with	a	result	like	this:

{

		"conditions":	{

				"client_filters":	[

						{

								"name":	"Microsoft.Percentage",

								"parameters":	{

										"Value":	50

								}

						}

]

		},

		"description":	"",

		"key":	"FeatureX",

		"label":	null,

		"lastModified":	"2020-11-08T16:18:22+00:00",

		"locked":	false,

		"state":	"conditional"

}

To	use	feature	flags	with	ASP.NET	Core,	you	need	to	add	the	NuGet	package
Microsoft.FeatureManagement.AspNetCore	to	the	project.	The	sample
application	has	a	percentage	filter	associated.	With	the	percentage	filter,	a
percentage	can	be	configured	for	which	the	filter	should	return	true.	The	DI

container	needs	to	be	configured	to	add	the	implementation	for	feature
management	and	to	define	the	type	of	the	filter	that	should	be	used	(code	file
AzureAppConfigWebApp/Startup.cs):

services.AddFeatureManagement().AddFeatureFilter<PercentageFilter>

();

In	the	code-behind	file	of	the	Razor	page	FeatureSample,	the	IFeatureManager
is	injected	in	the	constructor.	The	IsEnabledAsync	method	passing	FeatureX
returns	true	or	false.	With	the	current	configuration,	50	percent	of	the	requests
return	true,	and	the	feature	can	be	used	(code	file
AzureAppConfigWebApp/FeatureSample.cshtml.cs):

public	class	FeatureSampleModel	:	PageModel

{

		private	readonly	IFeatureManager	_featureManager;

		public	FeatureSampleModel(IFeatureManager	featureManager)

		{

				_featureManager	=	featureManager;

		}

	

		public	string?	FeatureXText	{	get;	private	set;	}

	

		public	async	Task	OnGetAsync()

		{

				bool	featureX	=	await	

_featureManager.IsEnabledAsync("FeatureX");

				string	featureText	=	featureX	?	"is"	:	"is	not";

				FeatureXText	=	$"FeatureX	{featureText}	available";	

		}

}

NOTE With	nonweb	applications,	the	package
Microsoft.FeatureManagement	is	enough	to	use	features	from	.NET
applications.	Microsoft.FeatureManagement.AspNetCore	adds	classes	for
middleware	and	attributes	for	controllers	as	well	as	tag	helpers.	Tag	helpers
are	covered	in	Chapter	26,	“Razor	Pages	and	MVC.”

Using	the	Azure	Key	Vault
To	configure	secrets	in	Microsoft	Azure,	the	Azure	Key	Vault	gives	more
security	features.	In	the	cloud,	Hardware	Security	Modules	(HSM),	physical
environments	to	safeguard	and	manage	keys,	can	be	used.	With	the	Azure	Key

Vault,	there's	also	a	specific	security	role	to	monitor	who	accesses	which	keys.

To	create	an	Azure	Key	Vault,	you	can	use	the	Azure	CLI	with	variables	rg	and
loc	as	specified	earlier:

>	az	keyvault	create	--resource-group	$rg	--location	$loc	

--enable-rbac-authorization	--name	procsharpkeyvault

To	access	the	key	vault,	the	Azure	Key	Vault	provider	can	be	used	with	the	.NET
configuration.	An	alternative	option	is	to	configure	Azure	App	Configuration	to
access	Azure	Key	Vault.	This	way	the	application	can	get	all	the	settings	via
Azure	App	Configuration.	This	simplifies	the	setup.	Behind	the	scenes,	the
Azure	Key	Vault	is	directly	accessed	from	the	application;	thus,	the	identity	used
with	the	application	needs	to	have	access	configured	in	Azure	Key	Vault	to	read
the	secret	values.

Using	the	Fluent	API	of	the	AzureAppConfigurationOptions,
ConfigureKeyVault	is	invoked	to	configure	the	credentials	for	the	Key	Vault.
The	Key	Vault	needs	to	be	connected	with	the	Azure	App	Configuration	using	a
Key	Vault	reference	configuration	(code	file
AzureAppConfigWebAppSample/Program.cs):

webBuilder.ConfigureAppConfiguration((context,	config)	=>

{

		//	configuration	is	already	needed	from	within	setting	up	

config

		var	settings	=	config.Build();	

		config.AddAzureAppConfiguration(options	=>

		{

				DefaultAzureCredential	credential	=	new();

				var	endpoint	=	settings["AppConfigEndpoint"];																												

				options.Connect(new	Uri(endpoint),	credential)

						.ConfigureRefresh(refresh	=>

						{

									refresh.Register(

											"AppConfigurationSample:Settings:Sentinel",

													refreshAll:	true)

											.SetCacheExpiration(TimeSpan.FromMinutes(5));

						})

						.ConfigureKeyVault(kv	=>	

						{

								kv.SetCredential(credential);

						});

		});

With	this	in	place,	configuration	values	can	be	retrieved	from	the	Azure	Key

Vault	as	well.

NOTE Read	Chapter	24	for	information	about	how	to	deploy	web	apps	to
Azure	App	Services	and	how	to	configure	managed	identities.

SUMMARY
This	chapter	covered	various	features	of	the	Host	class.	The	most	important	one
is	probably	the	dependency	injection	container	that's	hosted	by	this	class.	You've
seen	transient,	scoped,	and	singleton	services	and	how	this	DI	container	manages
the	lifetime.

This	book	contains	several	chapters	where	dependency	injection	has	an
important	role.	Chapter	21,	“Entity	Framework	Core,”	shows	how	dependency
injection	is	used	with	EF	Core	and	how	you	can	replace	built-in	functionality.
Read	Chapter	23,	“Tests,”	for	information	on	how	dependency	injection	helps
creating	unit	tests.	Web	applications	(Chapters	24	through	28)	have	the
dependency	injection	built	in	with	the	project	templates.	For	Windows
applications,	read	Chapter	30,	“Patterns	with	XAML	Apps,”	on	how	to	use	the
DI	container	and	the	Host	class.

The	second	part	of	this	chapter	covered	flexible	options	to	read	configuration
values	from	various	sources.	Besides	environmental	variables,	the	command
line,	JSON	files,	and	user	secrets,	you've	also	seen	how	to	read	settings	for	the
application	from	Azure	App	Configuration.	For	the	application	to	read	the
configuration	values	no	changes	are	needed.	Only	the	setup	of	the	Host	class
needs	a	change	if	more	configuration	sources	are	added.

The	next	chapter	continues	with	features	of	the	Host	class	that	make	use	of
logging.	To	see	what	the	application	is	doing,	also	telemetry	and	metrics
information	is	implemented.

16
Diagnostics	and	Metrics

WHAT'S	IN	THIS	CHAPTER?

Using	the	ILogger	Interface

Configuring	Logging	Providers

Using	OpenTelemetry	with	.NET	Logging

Adding	Metric	Counters

Monitoring	Metrics	with	.NET	CLI

Analyzing	telemetry	data	with	Visual	Studio	App	Center

Working	with	Application	Insights

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/LoggingAndMetrics.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

LoggingSample

OpenTelemetrySample

MetricsSample

WindowsAppAnalytics

WebAppWithAppInsights

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

DIAGNOSTICS	OVERVIEW
As	release	cycles	for	applications	become	faster	and	faster,	it's	becoming	more
and	more	important	to	learn	how	the	application	behaves	while	it's	running	in
production.	What	exceptions	are	occurring?	Knowing	what	features	are	used	is
also	of	interest.	Do	users	find	the	new	feature	of	the	app?	How	long	do	they	stay
on	the	page?	To	answer	these	questions,	you	need	real-time	information	on	the
application.

When	you	get	information	about	the	application,	you	need	to	differentiate
logging,	tracing,	collecting	metric	data,	and	analyzing	what	users	are	doing.
With	logging,	error	information	is	recorded	in	centralized	places.	This
information	is	used	by	system	administrators	to	identify	issues	with	applications.

Tracing	helps	to	find	out	which	method	is	called	by	which	method.	This
information	is	useful	for	development	and	should	be	turned	off	when	the
application	runs	in	production.	Distributed	tracing	helps	finding	how	services
interact	with	each	other	to	pinpoint	failures	and	causes	for	performance	issues.
With	.NET,	the	same	technology	can	be	used	for	logging	and	tracing	using
classes	from	the	System.Diagnostics	namespace.	Analytics	gives	information
about	the	users—where	they	reside,	what	operating	system	version	they	use,	and
what	features	they	use	in	the	application.	This	helps	you	find	out	if	there	are
some	issues	with	the	application	based	on	a	location,	hardware,	or	an	operating
system,	and	it	also	helps	you	understand	what	the	users	are	doing.	For	example,
you	might	be	able	to	identify	if	users	are	having	a	hard	time	locating	a	new
feature	of	the	application.

This	chapter	explains	how	to	get	real-time	information	about	your	running
application	to	identify	any	issues	that	it	might	have	during	production	or	to
monitor	resource	usage	to	ensure	that	higher	user	loads	can	be	accommodated.
This	is	where	the	namespace	System.Diagnostics.Tracing	comes	into	play.
This	namespace	offers	classes	for	tracing	using	Event	Tracing	for	Windows
(ETW).

One	way	to	deal	with	errors	in	your	application,	of	course,	is	by	throwing
exceptions.	However,	an	application	might	not	fail	with	an	exception,	but	it	still
doesn't	behave	as	expected.	The	application	might	be	running	well	on	most
systems	but	have	a	problem	on	a	few.	On	the	live	system,	you	can	change	the	log
by	starting	a	trace	collector	to	get	detailed	live	information	about	what's	going
on	in	the	application.	You	can	do	this	using	ETW.

If	there	are	problems	with	applications,	the	system	administrator	needs	to	be
informed.	The	Event	Viewer	is	a	commonly	used	tool	that	not	only	the	system
administrator	should	be	aware	of	but	also	the	software	developer.	With	the	Event
Viewer,	you	can	interactively	monitor	problems	with	applications	and	add
subscriptions	to	inform	you	about	specific	events	that	happen.	ETW	enables	you
to	write	information	about	the	application.

Application	Insights	is	a	Microsoft	Azure	cloud	service	that	enables	you	to
monitor	apps	in	the	cloud.	With	just	a	few	lines	of	code,	you	can	get	detailed
information	about	how	a	web	application	or	service	is	used.

Visual	Studio	App	Center	allows	monitoring	of	Windows	and	Xamarin	apps.
After	you've	registered	the	app,	you	need	just	a	few	lines	of	code	to	receive
useful	information	about	the	app.

OpenTelemetry	(https://opentelemetry.io)	is	a	new	standard	for	observing
and	creating	telemetry	data	in	a	vendor-neutral	way.	This	becomes	important	if
you	create	microservices	with	different	technologies;	with	OpenTelemetry,
logging,	metrics,	and	distributed	tracing	information	coming	from	multiple
services	developed	using	different	technologies	can	be	collected	and	analyzed.

This	chapter	explains	these	facilities	and	demonstrates	how	you	can	use	them	for
your	applications.

The	.NET	CLI	tools	used	in	this	chapter	to	analyze	tracing	and	metrics
information	are	dotnet	trace	and	dotnet	counters.	The	tools	are	defined	with
the	project,	so	you	just	need	to	restore	the	project	local	tools	from	a	command
prompt.	Use	this	command	while	the	current	directory	is	set	to	the	directory	of
the	project:

>	dotnet	tool	restore

Instead	of	installing	the	tools	locally,	you	can	install	them	globally	with	your
user	profile.	To	install	the	tools	globally,	run	these	.NET	CLI	commands:

>	dotnet	tool	install	dotnet-trace	-g

>	dotnet	tool	install	dotnet-counters	-g

To	see	the	.NET	CLI	tools	that	are	installed,	use	this:

>	dotnet	tool	list	-g	

NOTE The	sample	application	built	in	this	chapter	is	using	the
HttpClient	class,	so	you	not	only	add	your	own	logging	and	metrics

https://opentelemetry.io

information	but	also	can	see	what	logging	and	metrics	information	is	offered
from	this	class.	You	can	read	more	information	about	using	the	HttpClient
class	and	the	HTTP	client	factory	in	Chapter	19,	“Networking.”

LOGGING
Over	the	years,	there	have	been	several	different	logging	and	tracing	facilities
with	.NET,	and	there	are	also	many	different	third-party	loggers.	Trying	to
change	an	application	from	one	logging	technology	to	another	one	is	not	an	easy
task	because	the	use	of	the	ILogger	API	is	spread	everywhere	in	the	source	code.
To	make	logging	independent	of	any	logging	technology,	you	can	use	interfaces.

Since	.NET	Core	1.0,	.NET	has	defined	the	generic	ILogger	interface	in	the
namespace	Microsoft.Extensions.Logging.	This	interface	defines	a	Log
method	by	passing	a	log	level	from	the	LogLevel	enumeration,	an	event	ID
(using	the	struct	EventId),	generic	state	information,	an	Exception	type	to	log
exception	information,	and	a	formatter	to	define	how	the	output	should	look	with
a	string:

void	Log<TState>(LogLevel	logLevel,	EventId	eventId,	TState	

state,	

		Exception,	Func<TState,	Exception,	string>	formatter);

Other	than	the	Log	method,	the	ILogger	interface	also	defines	the	IsEnabled
method	to	check	whether	logging	is	currently	enabled	based	on	a	LogLevel	and
the	method	BeginScope	that	returns	a	disposable	scope	for	logging.	That's
practically	all	that's	needed	for	logging.	The	Log	method	has	many	parameters
that	need	to	be	filled.	Extension	methods	for	the	ILogger	interface	exist	with	the
LoggerExtensions	class,	such	as	LogDebug,	LogTrace,	LogInformation,
LogWarning,	LogError,	LogCritical,	and	BeginScope	with	several	overloads,
which	makes	it	easier	to	use	by	passing	fewer	arguments.

The	log	levels	that	are	defined	with	the	LogLevel	enum	include	the	following:

Trace	(level	0):	Sensitive	information	can	be	written.	This	should	not	be
enabled	with	production	systems.

Debug	(level	1):	Information	useful	just	for	debugging.	There's	no	long-term
value	in	keeping	this	information.

Information	(level	2):	General	flow	of	the	application	with	long-time
value.

Warning	(level	3):	Abnormal	or	unexpected	events	happening	in	the
application,	but	the	execution	of	the	application	does	not	stop.

Error	(level	4):	An	error	happened	with	the	current	activity,	but	it's	not	an
application-wide	issue.

Critical	(level	5):	Unrecoverable	issue	in	the	application	or	the	system.

Let's	make	use	of	the	dependency	injection	and	inject	the	ILogger	interface	in
the	class	NetworkService	as	a	generic	parameter.	The	generic	parameter	defines
the	category	of	the	logger.	With	the	generic	parameter,	the	category	is	made	of
the	class	name,	including	the	namespace.	In	addition	to	the	ILogger	interface,
the	HttpClient	is	injected	to	make	calls	across	the	network	and	look	at	logging
information	offered	by	this	class	(code	file
LoggingSample/NetworkService.cs):

class	NetworkService

{

		private	readonly	ILogger	_logger;

		private	readonly	HttpClient	_httpClient;

		public	NetworkService(

				HttpClient,	

				ILogger<NetworkService>	logger)

		{

				_httpClient	=	httpClient;

				_logger	=	logger;

				_logger.LogTrace("ILogger	injected	into	{0}",	

nameof(NetworkService));

		}

		//…

}

NOTE Instead	of	injecting	the	ILogger	interface,	you	can	also	inject
ILoggerFactory	and	create	a	logger	from	the	factory.	This	is	extremely
practical	if	you	have	a	hierarchy	of	service	classes	and	want	to	inject	the
logger	in	a	base	class	but	create	the	category	name	with	the	name	of	the
derived	class.

Later,	in	the	section	“Filtering,”	you	can	read	how	the	category	name	can
be	used	to	filter	the	logs.

The	ILogger	interface	can	simply	be	used	for	invoking	an	extension	method
such	as	LogInformation	or	LogTrace	:

_logger.LogTrace("RunAsync	started");

The	extension	methods	offer	overloads	to	pass	additional	parameters,	exception
information,	and	an	event	ID.	For	using	the	event	ID,	a	list	of	event	IDs	is
defined	with	the	application	(code	file	LoggingSample/LoggingEvents.cs):

class	LoggingEvents

{

		public	static	EventId	Injection	{	get;	}	=	

				new	EventId(2000,	nameof(Injection));

		public	static	EventId	Networking	{	get;	}	=	

				new	EventId(2002,	nameof(Networking));

}

Next,	LogInformation	and	LogError	extension	methods	are	used	to	show	the
start	of	the	NetworkRequestSampleAsync	method,	when	it's	finished,	and	error
information	in	case	an	exception	is	thrown	(code	file
LoggingSample/NetworkService.cs):

class	NetworkService

{

		//…

	

		public	async	Task	NetworkRequestSampleAsync(Uri	requestUri)

		{

				try

				{

						_logger.LogInformation(LoggingEvents.Networking,	

								"NetworkRequestSampleAsync	started	with	uri	{0}",	

								requestUri.AbsoluteUri);

	

						string	result	=	await	

_httpClient.GetStringAsync(requestUri);

						Console.WriteLine($"{result[..50]}");

						_logger.LogInformation(LoggingEvents.Networking,

								"NetworkRequestSampleAsync	completed,	received	{length}	

characters",	

								result.Length);

				}

				catch	(HttpRequestException	ex)

				{

						_logger.LogError(LoggingEvents.Networking,	ex,	

								"Error	in	NetworkRequestSampleAsync,	error	message:	

{message},	"	+	

								"HResult:	{error}",	ex.Message,	ex.HResult);

				}

		}

}

NOTE Passing	the	message	to	the	LogXX	methods,	any	number	of	objects
can	be	supplied	that	are	put	into	the	format	message	string.	This	format
string	uses	positional	arguments	to	pass	in	the	following	objects,	but	neither
positional	numbers	(as	with	the	String.Format	method)	nor	interpolated
strings	are	used.	Without	the	$	prefix	to	the	strings,	you	can	use	string
keywords	with	the	curly	bracket	placeholders.	These	keywords	can	then	be
used	for	fast	queries	within	log	information,	e.g.,	when	using	Azure	Table
Storage	to	store	log	information.

The	Runner	class	injects	the	ILogger	interface	in	addition	to	the	previously
defined	NetworkService	class	and	writes	debug	and	error	messages	(code	file
LoggingSample/NetworkService.cs):

class	Runner

{

		private	readonly	ILogger	_logger;

		private	readonly	NetworkService	_networkService;

		public	Runner(NetworkService	networkService,	ILogger<Runner>	

logger)

		{

				_networkService	=	networkService;

				_logger	=	logger;

		}

	

		public	async	Task	RunAsync()

		{

				_logger.LogDebug("RunAsync	started");

				bool	exit	=	false;

				do

				{

						Console.Write("Please	enter	a	URI	or	enter	to	exit:	");

						string?	url	=	Console.ReadLine();

						if	(string.IsNullOrEmpty(url))

						{

								exit	=	true;

						}

						else

						{

								try

								{

										Uri	uri	=	new(url);

										await	_networkService.NetworkRequestSampleAsync(uri);

								}

								catch	(UriFormatException	ex)

								{

										_logger.LogError(ex,	ex.Message);

								}

						}

				}	while	(!exit);

		}

}

Next,	logging	providers	need	to	be	configured	to	make	the	log	information
available.

Configuring	Providers
The	Host	class	discussed	in	Chapter	15,	“Dependency	Injection	and
Configuration,”	preconfigures	not	only	a	DI	container	and	configuration
providers	but	also	logging.	Using	the	CreateDefaultBuilder	method	of	the
Host	class	configures	these	loggers:

Console:	This	provider	writes	log	information	to	the	console.

Debug:	This	provider	writes	log	information	to	the
System.Diagnotics.Debug	class.	With	Visual	Studio,	this	goes	to	the
Output	window.	On	Linux	systems,	depending	on	the	distribution,	debug
log	messages	go	to	/	var/log/messages	or	/var/log/syslog.

EventSource:	This	provider	logs	with	the	name	Microsoft-Extensions-
Logging.	On	Windows,	Event	Tracing	for	Windows	(ETW)	is	used.

EventLog:	This	provider	is	configured	only	on	Windows	systems.	It	writes
to	the	Windows	EventLog.	This	is	the	only	provider	configured	to	write
warnings	and	more	critical	messages,	and	it	doesn't	use	the	default	logging
configuration.	The	Windows	EventLog	should	not	be	used	to	log	verbose
messaging.

Other	than	the	configured	providers,	CreateDefaultBuilder	uses	the
configuration	from	the	configuration	section	named	Logging.

For	many	applications,	the	default	configuration	using	CreateDefaultBuilder
will	be	fine,	and	you	can	add	more	providers	as	needed.	With	the	sample
application,	the	default	logging	configuration	is	not	used,	so	you	can	better	see
what	and	how	logging	can	be	configured.

Logging	configuration	can	be	customized	with	the	IHostBuilder	extension

method	ConfigureLogging.	With	this	method,	an	overloaded	version	with	two
parameters	is	used.	Here,	the	HostBuilderContext	is	the	first	parameter.	This
context	is	used	as	the	sample	code	is	extended	to	access	application
configuration.	The	second	parameter	is	of	type	ILoggingBuilder.	With	this,	you
can	use	extension	methods	from	different	providers	to	customize	logging.	First,
the	providers	configured	from	the	method	CreateDefaultBuilder	are	removed
by	invoking	the	method	ClearProviders.	Then	logging	providers	for	the
console,	debug,	event	source,	and	event	log	(if	running	on	Windows)	are	added
(code	file	LoggingSample/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureLogging((context,	logging)	=>

		{

				logging.ClearProviders();

	

				bool	isWindows	=	

RuntimeInformation.IsOSPlatform(OSPlatform.Windows);

	

				logging.AddConsole();

				logging.AddDebug();

				logging.AddEventSourceLogger();

	

				if	(isWindows)

				{

						logging.AddEventLog();	//	EventLogLoggerProvider

				}

	

				//…				

		})

		.ConfigureServices(services	=>

		{

				services.AddHttpClient<NetworkService>(client	=>

				{

				}).AddTypedClient<NetworkService>();

				services.AddScoped<Runner>();

		}).Build();

NOTE The	ConfigureServices	method	of	the	Host	class	is	covered	in
detail	in	Chapter	15.

When	you	run	the	application	with	successful	and	unsuccessful	results,	you	can
see	the	following	output	on	the	console:

Please	enter	a	URI	or	enter	to	exit:	

https://csharp.christiannagel.com

info:	LoggingSample.NetworkService[2002]

						NetworkRequestSampleAsync	started	with	uri	

https://csharp.christiannagel.com/

info:	

System.Net.Http.HttpClient.NetworkService.LogicalHandler[100]

						Start	processing	HTTP	request	GET	

https://csharp.christiannagel.com/

info:	

System.Net.Http.HttpClient.NetworkService.ClientHandler[100]

						Sending	HTTP	request	GET	

https://csharp.christiannagel.com/

info:	

System.Net.Http.HttpClient.NetworkService.ClientHandler[101]

						Received	HTTP	response	headers	after	692.1021ms	-	200

info:	

System.Net.Http.HttpClient.NetworkService.LogicalHandler[101]

						End	processing	HTTP	request	after	707.6875ms	-	200

<!DOCTYPE	html>

<html	lang="en">

<head>

<meta	char

LoggingSample.NetworkService[2002]

						NetworkRequestSampleAsync	completed,	received	97126	

character

Please	enter	a	URI	or	enter	to	exit:	info:	

The	log	output	and	other	console	output	may	not	arrive	in	the	correct	order
because	logging	is	written	and	flushed	asynchronously	to	increase	performance
and	reduce	the	logging	overhead.

Passing	an	invalid	hostname	results	in	the	error	information	as	shown,	including
the	call	stack,	because	the	exception	object	is	passed	to	the	LogError	method:

fail:	LoggingSample.Runner[0]

						Invalid	URI:	The	format	of	the	URI	could	not	be	

determined.

						System.UriFormatException:	Invalid	URI:	The	format	of	the	

URI	could	not	be	determined.

									at	System.Uri.CreateThis(String	uri,	Boolean	

dontEscape,	UriKind	uriKind)

									at	System.Uri..ctor(String	uriString)

									at	LoggingSample.Runner.RunAsync()	in	

C:\github\ProfessionalCSharp2021\02_Libs\

LoggingMetricsAndTelemetry\LoggingSample\LoggingSample\Runner.cs:line

	35

Please	enter	a	URI	or	enter	to	exit:

Filtering
You	don't	need	all	log	messages	at	all	times.	While	the	application	is	running	in
the	production	environment,	critical	information	and	errors	are	of	interest.	While
debugging	the	application,	you	might	set	up	the	configuration	to	show	trace
messages	for	specific	trace	sources	to	learn	all	the	things	going	on	in	the
application.	You	can	define	filters	just	for	the	logging	needs	you	currently	have.

Filtering	is	possible	based	on	the	logger	provider	and	the	log	categories.

The	following	code	snippet	defines	a	filter	for	the	EventLogLoggerProvider	and
the	category	name	to	filter	only	errors	with	the	log	level	Warning	and	higher
(code	file	LoggingSample/Program.cs):

bool	isWindows	=	

RuntimeInformation.IsOSPlatform(OSPlatform.Windows);

if	(isWindows)

{

		logging.AddFilter<EventLogLoggerProvider>(level	=>	

				level	>=	LogLevel.Warning);

}

Configure	Logging
You	can	configure	filtering	and	logging	using	the	.NET	configuration.	By
default,	when	you	use	the	CreateDefaultBuilder	method	from	the	Host	class,
configuration	is	retrieved	from	appsettings.json,	appsettings.
{environmentname}.json,	environment	variables,	and	command-line
arguments,	so	you	can	override	the	configuration	from	the	JSON	files	from
command-line	arguments.	Read	Chapter	15	for	more	information	on	the	different
configuration	providers	and	how	to	add	custom	configuration	providers.

To	access	the	configuration	for	the	logging	providers,	the	AddConfiguration
extension	method	is	used	with	the	ILoggingBuilder	parameter.	Configuration
values	are	retrieved	within	the	section	Logging	(code	file
LoggingSample/Program.cs):

logging.AddConfiguration(hostingContext.Configuration.GetSection("Logging"));

When	you	add	the	LogLevel	entry	to	the	Logging	section,	you	can	configure
default	levels	for	logging.	By	default,	as	specified	with	the	Default	key,
Information	messages	and	above	are	logged.	An	exception	is	for	all	log	groups
that	start	with	Microsoft.	Here,	only	the	level	Warning	and	above	is	logged.
Another	exception	is	for	Microsoft.Hosting.Lifetime.	Namely,	Information

and	above	messages	are	logged:

		"Logging":	{

				"LogLevel":	{

						"Default":	"Information",

						"Microsoft":	"Warning",

						"Microsoft.Hosting.Lifetime":	"Information"

				}

		}

You	can	specify	different	configuration	values	for	a	provider.	Here,	for	the
Console	provider	(which	matches	the	simple	console),	the	LogLevel	is
configured	to	other	values	for	the	LoggingSample	logging	category:

{

		"Logging":	{

				"Console":	{

						"LogLevel":	{

								"Default":	"Information",

								"LoggingSample.NetworkService":	"Warning",

								"LoggingSample.Runner":	"Warning"

						}

				},

				"LogLevel":	{

						"Default":	"Warning",

						"Microsoft":	"Information",

						"LoggingSample.NetworkService":	"Warning"

				}

		}

}

Logging	and	Tracing	with	OpenTelemetry
To	log	messages	with	the	OpenTelemetry	standard,	you	need	to	configure	a
different	logging	provider	by	invoking	the	ILoggerBuilder	extension	method
AddOpenTelemetry	(NuGet	package	OpenTelemetry)	and	pass	an	exporter	to	the
options	of	this	method.	The	following	code	snippet	adds	the	Console	Exporter
from	the	NuGet	package	OpenTelemetry.Exporter.Console	to	the	Open
Telemetry	logging	(code	file	OpenTelemetrySample/Program.cs):

.ConfigureLogging((hostingContext,	logging)	=>

{

		logging.ClearProviders();

		logging.AddFilter(level	=>	level>=	LogLevel.Trace);

		logging.AddOpenTelemetry(options	=>	

options.AddConsoleExporter());

		//…

})

With	this	small	change	to	the	logging	configuration,	the	log	output	defined	from
the	methods	using	the	ILogger	interface	is	shown	with	the	OpenTelemetry
format.	The	practical	use	of	OpenTelemetry	comes	when	using	other	exporters
such	as	Jaeger	or	Prometheus	to	send	the	log	information	to	open	source	or
commercial	backends.	To	do	this,	you	just	need	to	configure	other	exporters—
for	example,	to	Jaeger	using	the	NuGet	package
OpenTelemetry.Exporter.Jaeger.

The	log	output	shows	empty	values	for	TraceId	and	SpanId.	These	values	are
important	when	using	distributed	tracing.	When	you	read	about	tracer	and	span
with	OpenTelemetry,	.NET	uses	the	terms	and	classes	ActivitySource	and
Activity.	The	following	code	snippet	creates	an	ActivitySource	with	the
Runner	class	as	a	static	internal	member	that's	used	to	create	activities	(or	spans)
for	the	sample	application.	It's	useful	to	specify	one	ActivitiySource	that's
shared	within	the	types	of	a	library	or	a	subcomponent.	The	ActivitySource
allows	enabling	and	disabling	distributed	tracing	based	on	the	name	passed	to
the	constructor	(code	file	OpenTelemetrySample/Runner.cs):

class	Runner

{

		internal	readonly	static	ActivitySource	ActivitySource	=	

				new("LoggingSample.DistributedTracing");

		//…

}

By	using	this	ActivitySource,	you	can	create	nested	activities.	With	the
following	code	snippet,	an	activity	is	created	within	the	RunAsync	method	with
the	name	Run.	You	don't	need	to	pass	the	activity	to	the	log	methods.	Instead,	the
StartActivity	method	sets	the	static	property	Activity.Current,	which	is
used	by	all	the	following	log	methods	to	show	the	IDs	(and	the	logs	nested
within	inner	methods,	such	as	the	log	invocations	from	the	NetworkService
class).	A	nested	activity	is	started	within	the	do	/	while	loop	(code	file
OpenTelemetrySample/Runner.cs):

public	async	Task	RunAsync()

{

		using	var	activity	=	ActivitySource.StartActivity("Run");

		_logger.LogDebug("RunAsync	started");

		bool	exit	=	false;

		do

		{

				Console.Write("Please	enter	a	URI	or	enter	to	exit:	");

				string?	url	=	Console.ReadLine();

				using	var	urlActivity	=	ActivitySource.StartActivity(

						"Starting	URL	Request");

				if	(string.IsNullOrEmpty(url))

				{

						exit	=	true;

				}

				else

				{

						try

						{

								Uri	uri	=	new(url);

								await	_networkSevice.NetworkRequestSampleAsync(uri);

						}

						catch	(UriFormatException	ex)

						{

								_logger.LogError(ex,	ex.Message);

						}

				}

		}	while	(!exit);

}

If	you	create	a	library,	you	can	use	the	Activity	and	ActivitySource	classes
without	referencing	any	NuGet	package	from	the	OpenTelemetry	libraries.	The
libraries	should	be	independent	of	how	the	application	collects	log	information.

Without	specifying	to	collect	information	from	the	activity	source,	the	method
ActivitySource.StartActivity	returns	null.	With	the	following	code	snippet,
the	OpenTelemetry	SDK	is	used	to	configure	collection	of	distributed	trace
information.	The	tracer	provider	builder	(as	mentioned,	the	tracer	with
OpenTelementry	is	the	ActivitySource)	is	configured	to	collect	distributed
trace	information	from	the	source	name	that's	passed	to	the	AddSource	method.
This	needs	to	be	the	same	name	that	you	passed	to	the	ActivitySource
constructor	.	This	code	requires	the	NuGet	packages	OpenTelemetry	and
OpenTelemetry.Exporter.Console.	To	log	traces	coming	from	ASP.NET	Core,
you	can	add	the	source	with	the	name	Microsoft.AspNetCore.	The	logs	are
written	to	the	console	exporter	(code	file	OpenTelemetrySample/Program.cs):

using	var	tracerProvider	=	Sdk.CreateTracerProviderBuilder()

		.SetResourceBuilder(ResourceBuilder.CreateDefault()

				.AddService("OpenTelemetrySample"))

		.AddSource("LoggingSample.DistributedTracing")

		.AddConsoleExporter()

		.Build();

Remember,	the	console	exporter	is	useful	during	development	and	testing.	Other
exporters	such	as	Jaeger	and	Prometheus	are	useful	in	production	environments.

More	Logging	Providers
On	the	NuGet	server,	many	more	logging	providers	are	available.	You	can	add
Serilog.Extensions.Logging	for	easy	logging	to	files.	The	NuGet	package
Microsoft.Extensions.Logging.AzureAppServices	offers	logging	web
applications	hosted	on	Azure	App	Services	to	use	the	Azure	App	Service
diagnostics	logs	including	log	live	streaming.	With	the	NuGet	package
Microsoft.Extensions.Logging.ApplicationInsights,	ILogger	events	are
forwarded	to	Application	Insights.	Application	Insights	is	covered	later	in	this
chapter	in	the	section	“Application	Insights.”

METRICS
With	metrics,	you	can	measure	actual	counts	of	collected	values	to	analyze
issues	with	the	application.	You	can	do	live	monitoring,	collect	metrics
information	over	time,	and	write	the	information	to	a	file.

The	.NET	runtime	offers	metrics	information	to	show	CPU	usage,	heap	size,
number	of	objects	and	memory	sizes	for	the	different	GC	generations,
assemblies	loaded,	and	more.	Libraries	such	as	EF	Core	and	ASP.NET	Core
hosting	offer	metrics	data	as	well.

To	read	metrics	information,	you	can	either	access	this	information	in-proc	or
out-of-proc.	In-proc,	you	can	use	the	EventListener	class	to	receive	metrics
information	within	the	application.	Out-of-proc,	you	can	use	platform-specific
tools	such	as	Event	Tracing	for	Windows	(ETW)	on	Windows	systems	or	Linux
Trace	Toolkit	Next	Generation	(LLTng)	on	Linux	systems.	There's	also	a
platform-independent	solution	that	doesn't	give	you	events	from	the	operating
system;	it	gives	you	all	the	.NET-offered	events	from	the	.NET	runtime	and	your
application	and	doesn't	require	admin	privileges.

With	.NET,	to	receive	metrics	information	out-of-proc,	you	can	use	the
EventPipe	class	from	the	NuGet	package
Microsoft.Diagnostics.NETCore.Client.	In	this	chapter,	I	use	the	.NET	CLI
with	the	counter	tool,	which	itself	is	making	use	of	the	EventPipe	class.	You
don't	need	to	implement	a	monitoring	tool	on	your	own.

EventSource	Class

So	you	can	see	metric	information,	the	sample	application	offering	logging
information	is	enhanced	with	metrics.	To	offer	metric	information,	you	need	to
create	a	class	that	derives	from	the	EventSource	class,	which	is	defined	in	the
namespace	System.Diagnostics.Tracing.

The	class	MetricsSampleSource	derives	from	the	base	class	EventSource	and	is
annotated	with	the	attribute	EventSource.	This	attribute	gives	a	name	to	allow
this	class	as	an	event	source	for	ETW.	To	allow	instantiation	only	once,	a	public
static	readonly	Log	field	and	a	private	constructor	are	defined	(code	file
MetricsSample/	MetricsSampleSource.cs):

[EventSource(Name	=	"Wrox.ProCSharp.MetricsSample")]

internal	class	MetricsSampleSource	:	EventSource

{

		public	static	readonly	MetricsSampleSource	Log	=	new();

		private	MetricsSampleSource()

				:	base("Wrox.ProCSharp.MetricsSample")	{	}

		//…

}

Metric	Counters
In	the	namespace	System.Diagnostics.Tracing,	four	different	counter	types
are	defined—	EventCounter,	IncrementingEventCounter,	PollingCounter,
and	IncrementingPollingCounter—that	all	derive	from	the	base	class
DiagnosticCounter.	The	two	XXEventCounter	types	are	the	easiest	ones	to	use.
You	don't	need	to	declare	a	variable	for	storing	the	counter;	you	just	need	to
write	or	increment	the	metric	values.	With	the	EventCounter	type,	you	write
metrics	information	to	invoke	the	method	WriteMetric.	The
IncrementingEventCounter	class	defines	the	Increment	method	where	you	can
specify	a	value	that	should	be	used	for	incrementing.	With	the	XXEventCounter
types,	the	values	are	reset	depending	on	the	refresh	rate	used.	For	example,	say
that	the	client	application	does	a	refresh	once	per	second.	Using	the
IncrementingEventCounter	shows	the	values	that	have	been	incremented
within	the	last	second.	With	a	refresh	rate	of	30	seconds,	the	incremented	values
within	the	last	30	seconds	are	shown.

In	cases	where	you	need	more	control,	such	as	to	show	counter	values	since	the
start	of	the	application,	you	can	use	the	XXPollingCounter	types.	Polling
counters	are	also	required	in	case	the	values	to	show	are	retrieved	from	other
sources,	such	as	the	GC	class.	For	example,	with	the	System.Runtime	counts,	to

show	the	memory	size	of	the	objects	in	generation	0,	a	PollingCounter	is	used
that	retrieves	the	value	using	GC.GetGenerationSize(0)	:

_gen0SizeCounter	??=	new	PollingCounter("gen-0-size",	this,	

		()	=>	GC.GetGenerationSize(0))	

		{	

				DisplayName	=	"Gen	0	Size",	

				DisplayUnits	=	"B"

		};

NOTE You	can	see	the	implementation	of	the	.NET	runtime	event	source
at
https://github.com/dotnet/coreclr/blob/master/src/System.Private.CoreLib/src/System/Diagnostics/Eventing/RuntimeEventSource.cs

.

With	the	sample	application,	this	metrics	information	is	offered:

The	number	of	requests	based	on	the	specified	interval.

The	number	of	errors	based	on	the	specified	interval.

The	time	it	takes	to	receive	the	HTTP	request.

In	the	MetricsSampleSource	class,	to	create	only	the	counter	types	when
monitoring	is	going	on,	the	OnEventCommand	method	is	overridden.	This	method
is	invoked	on	enabling,	disabling,	and	updating	of	the	event	source.	In	case
monitoring	is	turned	on,	the	DiagnosticCounter	derived	types	are	instantiated:
two	IncrementingEventCounter	and	one	PollingCounter.	With	the
PollingCounter,	a	variable	is	declared	that	is	accessed	on	polling	the	value.
What's	common	with	all	the	event	types	is	to	specify	the	name	and	the
EventSource	instance	in	the	constructor.	The	properties	DisplayName	and
DisplayUnits	can	be	set	with	every	DiagnosticCounter	-derived	type.	With	the
constructor	of	the	PollingCounter,	a	delegate	that	returns	a	double	needs	to	be
passed	with	the	argument.	Because	several	threads	can	access	the	counters
simultaneously,	this	code	needs	to	be	thread-safe;	that's	why	the	Interlocked
class	from	the	System.Threading	namespace	is	used.	With	the	XXEventCounter
types,	the	DisplayRateTimeScale	specifies	the	rate	at	which	the	value	should	be
retrieved.	If	you	specify	10	seconds,	for	example,	even	if	the	refresh	interval	for
displaying	the	values	is	set	to	1	second,	the	values	are	just	retrieved	after	10
seconds	(code	file	MetricsSample/	MetricsSampleSource.cs):

internal	class	MetricsSampleSource	:	EventSource

{

https://github.com/dotnet/coreclr/blob/master/src/System.Private.CoreLib/src/System/Diagnostics/Eventing/RuntimeEventSource.cs

		//…

		private	IncrementingEventCounter?	_totalRequestsCounter;

		private	IncrementingEventCounter?	_errorCounter;

		private	long	_requestDuration;

		private	PollingCounter?	_requestDurationCounter;

	

		protected	override	void	OnEventCommand(EventCommandEventArgs	

command)

		{

				if	(command.Command	==	EventCommand.Enable)

				{

						_totalRequestsCounter	??=	new	

IncrementingEventCounter("requests",	this)

						{

								DisplayName	=	"Total	requests",

								DisplayUnits	=	"Count",

								DisplayRateTimeScale	=	TimeSpan.FromSeconds(1)

						};

						_errorCounter	??=	new	IncrementingEventCounter("errors",	

this)

						{

								DisplayName	=	"Errors",

								DisplayUnits	=	"Count",

								DisplayRateTimeScale	=	TimeSpan.FromSeconds(1)

						};

						_requestDurationCounter	??=	new	PollingCounter(

								"request-duration",	this,	()	=>	Interlocked.Read(ref	

_requestDuration))

						{

								DisplayName	=	"Request	duration",

								DisplayUnits	=	"ms"

						};

				}

		}

		//…

}

Now	just	the	counters	need	to	be	set.	The	first	counter	is	set	in	the	RequestStart
method.	The	IncrementingEventCounter,	_totalRequestsCounter,	is
incremented	using	the	Increment	method.	To	measure	the	time	a	request	takes,	a
new	Stopwatch	(namespace	System.Diagnostics)	is	created,	started,	and
returned	from	this	method.	All	this	happens	only	if	monitoring	is	enabled	by
checking	the	IsEnabled	method	from	the	base	class:

public	Stopwatch?	RequestStart()

{

		if	(IsEnabled())

		{

				_totalRequestsCounter?.Increment();

															

				return	Stopwatch.StartNew();

		}

		else

		{

				return	default;

		}

}

The	RequestStop	method	defines	a	parameter	to	receive	the	Stopwatch	created
earlier	and	sets	the	ElapsedMilliseconds	with	the	backing	field
_requestDuration.	This	field	is	used	by	the	PollingCounter	to	show	the
elapsed	time.	With	the	nonincrementing	counters,	the	count	is	set	directly.	The
tool	to	analyze	the	counts	can	calculate	an	average	value	based	on	the	values	set:

public	void	RequestStop(Stopwatch?	stopwatch)

{

		if	(stopwatch?.IsRunning	==	true)

		{

				stopwatch.Stop();

				Interlocked.Exchange(ref	_requestDuration,	

stopwatch.ElapsedMilliseconds);

		}

}

NOTE When	you	use	the	EventCounter	for	the	elapsed	time	of	the
request,	if	a	refresh	rate	of	one	second	is	used,	the	count	shows	0	if	the	value
was	not	set	within	the	last	second.	When	you	use	the	PollingCounter	,	you
are	in	more	control	of	the	value	shown.	When	you	set	the	value	on	every
request,	the	value	shown	is	always	the	time	of	the	last	request.

You	can	also	implement	the	Error	method	to	increment	the	_errorCounter	:

public	void	Error()

{

		if	(IsEnabled())

		{

				_errorCounter?.Increment();

		}

}

Using	MetricsSampleSource
Next,	the	NetworkService	class	is	updated	to	invoke	the	members	of	the
MetricsSample	class.	With	the	following	code	snippet,	the	logging	methods
from	before	are	removed	for	clarity,	but	they	are	still	available	with	the
downloadable	source	code.	On	the	start	of	the	request,	the	RequestStart	method
that	returns	a	Stopwatch	is	invoked.	This	stopwatch	is	passed	as	an	argument	to
the	RequestStop	method.	In	the	case	of	an	HttpRequestException,	the	Error
method	is	invoked	to	increment	the	error	count.	To	stop	the	stopwatch	in	every
case,	the	code	is	wrapped	into	a	try	/	finally	block.	Remember,	if	monitoring
is	not	turned	on,	invoking	the	method	RequestStart	does	not	count	metrics,	and
the	Stopwatch	returned	is	null	(code	file	MetricsSample/NetworkService.cs):

public	async	Task	NetworkRequestSampleAsync(Uri	requestUri)

{

		var	stopWatch	=	MetricsSampleSource.Log.RequestStart();

		try

		{

				string	result	=	await	

_httpClient.GetStringAsync(requestUri);

				MetricsSampleSource.Log.RequestStop(stopWatch);

				Console.WriteLine($"{result[..50]}");

		}

		catch	(HttpRequestException	ex)

		{

				MetricsSampleSource.Log.Error();

		}

		finally

		{

				MetricsSampleSource.Log.RequestStop(stopWatch);

		}

}

Monitoring	Metrics	with	.NET	CLI
Now	that	metrics	information	is	in	place,	let's	look	at	the	information	that	can	be
accessed	with	dotnet-counters.

To	see	all	the	counters	available	with	.NET,	use	this	command:

dotnet	counters	list	--runtime-version	5.0

The	.NET	5	version	of	dotnet	counters	by	default	lists	the	counters	available
with	.NET	Core	3.1	(the	LTS	version).	Some	more	metrics	categories	are
available	with	.NET	5,	which	are	shown	by	passing	5.0	to	the	--runtime-

version	option.	The	additional	metrics	categories	are	System.Runtime,
Microsoft.AspNetCore.Hosting,	Microsoft-AspNetCore-Server-Kestrel,
and	System.Net.Http.

To	monitor	the	counters	from	the	application,	first	start	the	application,	and	then
get	the	process	ID	of	the	running	application	with	the	ps	subcommand:

dotnet	counters	ps

This	command	shows	the	running	.NET	applications	that	can	be	monitored.

To	monitor	the	running	application	with	the	counts	offered	by	the	application,
use	the	monitor	subcommand	with	the	-p	option	to	pass	the	process	ID,
followed	by	the	category	names	that	should	be	monitored.	Only	the	category
System.Runtime	is	monitored	by	default;	you	need	to	add	all	other	categories
that	should	be	shown:

dotnet	counters	monitor	-p	2711	Wrox.ProCSharp.MetricsSample

Be	aware	that	the	categories	specified	show	up	only	when	the	counts	are
activated,	so	you	might	not	see	the	Wrox.ProCSharp.MetricsSample	category	on
start	of	monitoring.	To	use	a	different	refresh	interval—for	example,	to	see
updates	after	five	seconds—use	the	option	--refresh-interval	5.	Figure	16-1
shows	the	output	from	dotnet	counters	with	a	running	application.

Instead	of	live	monitoring	an	application,	you	can	create	a	file	to	record	all
counts.	Start	this	command	with	dotnet	counters	collect.	In	addition	to	the
options	you've	seen	with	the	subcommand	monitor,	you	can	select	to	create	a
CSV	or	JON	file	with	the	--format	option,	and	you	can	specify	the	name	of	the
generated	file	with	the	--name	option.

FIGURE	16-1

ANALYTICS	WITH	VISUAL	STUDIO	APP	CENTER
Visual	Studio	App	Center	(https://appcenter.ms)	is	Microsoft's	entry	point	to
build	Windows	and	mobile	apps,	distribute	apps	to	beta	testers,	test	apps,	extend
apps	with	push	notifications,	and	get	user	analytics	for	apps.

You	can	get	reports	of	users	having	issues	with	your	apps—for	example,	you	can
find	out	about	exceptions—and	you	can	also	find	out	the	features	users	are	using
from	your	apps.	For	example,	let's	say	you	have	added	a	new	feature	to	your	app.
Are	users	finding	the	button	to	activate	the	feature?

NOTE Here	are	some	examples	of	features	that	users	had	trouble	finding

https://appcenter.ms

from	Microsoft's	own	products.	The	Xbox	was	the	first	device	to	offer	a	user
interface	with	large	tiles.	The	search	feature	was	available	directly	below	the
tiles.	Although	this	button	was	available	where	it	seemed	obvious	the	user
would	find	it,	users	didn't	see	it.	Microsoft	moved	the	search	functionality
within	a	tile,	and	now	users	are	able	to	find	it.

Another	example	is	the	physical	search	button	that	was	available	on	the
Windows	Phone.	This	button	was	meant	to	be	used	to	search	within	apps.
Users	complained	about	not	having	an	option	to	search	within	email
because	they	didn't	think	to	press	this	physical	button	to	search	for	emails.
Microsoft	changed	the	functionality.	With	a	newer	version,	the	physical
search	button	was	used	only	to	search	content	from	the	Web,	and	the	mail
app	had	its	own	Search	button.

Windows	8	had	a	similar	issue	with	search;	users	didn't	use	the	search
functionality	from	the	charms	bar	to	search	within	apps.	Windows	8.1
changed	the	guideline	to	use	search	from	the	charms	bar,	and	now	the	app
contains	its	own	search	box.	In	Windows	10,	there's	also	an	auto	suggest	box
to	be	used	within	the	app	that	helps	with	searching.

To	enable	app	analytics,	you	first	need	to	register	with	the	Visual	Studio	App
Center.	Don't	be	afraid	of	high	costs;	crash	reporting	and	analytics	are	available
for	free.	Next,	you	need	to	create	an	app	and	copy	the	app	secret	from	the	web
portal.	Then	you	can	create	a	new	blank	app	(WinUI	Desktop)	with	Visual
Studio.	To	enable	analytics,	add	the	NuGet	packages	Microsoft.AppCenter,
Microsoft.AppCenter.Analytics,	and	Microsoft.AppCenter.Crashes	to	the
project.

With	just	a	few	API	calls,	you're	ready	to	find	out	issues	your	users	have.	In	the
constructor	of	the	App	class,	add	AppCenter.Start,	and	add	your	previously
copied	app	secret.	To	enable	Analytics,	you	need	to	pass	the	type	of	the
Analytics	object	as	the	second	argument	to	the	Start	method	(code	file
WindowsAppAnalytics/App.xaml.cs):

public	App()

{

		this.InitializeComponent();

		this.Suspending	+=	OnSuspending;

	

		AppCenter.Start("84df09c4-d560-4c46-a44f-a5524c3abb7f",	

				typeof(Analytics),	typeof(Crashes));

}

NOTE Remember	to	add	your	app	secret	from	your	app	configuration	in
the	Visual	Studio	App	Center	to	the	App	constructor.

Now	when	you	run	the	application,	you	see	user	information,	when	users	start
the	application,	locations,	and	user	devices.

To	get	some	more	information	from	users,	you	need	to	create	calls	to
Analytics.TrackEvent.	All	the	possible	events	from	the	app	are	defined	within
the	class	EventNames	(code	file	WindowsAppAnalytics/EventNames.cs):

public	class	EventNames

{

		public	const	string	ButtonClicked	=	nameof(ButtonClicked);

		public	const	string	PageNavigation	=	nameof(PageNavigation);

		public	const	string	CreateMenu	=	nameof(CreateMenu);

}

The	sample	application	contains	controls	to	enable/disable	analytics,	enter	some
text,	and	click	a	button	as	shown	in	Figure	16-2.	Events	are	collected	when	the
MainWindow	is	activated.	The	TrackEvent	method	requires	a	string	for	the	event
name;	this	is	taken	from	the	EventNames	class.	The	second	argument	of	the
TrackEvent	method	is	optional.	Here	you	can	pass	a	dictionary	of	strings	to
track	additional	information.	In	the	sample	code,	when	the	window	is	opened,
the	PageNavigation	event	contains	information	about	the	type	of	the	page
navigated	to	(code	file	WindowsAppAnalytics/MainWindow.xaml.cs):

public	MainWindow()

{

		this.InitializeComponent();

		Analytics.TrackEvent(EventNames.PageNavigation,	

				new	Dictionary<string,	string>	{	["Page"]	=	

nameof(MainWindow)	});

}	

FIGURE	16-2

With	the	click	of	the	button,	TrackEvent	tracks	the	ButtonClick	event,	with	the
information	the	user	entered	in	the	TextBox	control:

private	void	OnButtonClick(object	sender,	RoutedEventArgs	e)

{

		Analytics.TrackEvent(ButtonClicked,	

				new	Dictionary<string,	string>	{	["State"]	=	textState.Text	

});

}

Users	might	not	agree	to	having	information	collected	as	the	user	wanders
around	the	app.	You	can	create	a	setting	for	the	user	where	the	user	can
enable/disable	this	functionality.	If	you	set
Analytics.SetEnabledAsync(false),	the	Analytics	APIs	no	longer	reports
data:

private	async	void	OnAnalyticsChanged(object	sender,	

RoutedEventArgs	e)

{

		if	(sender	is	CheckBox	checkbox)

		{

				bool	isChecked	=	checkbox?.IsChecked	??	true;

				await	Analytics.SetEnabledAsync(isChecked);

		}

}

Visual	Studio	App	Center	has	some	limits	in	regard	to	analytics,	as	shown	in	this

list:

You	can	have	only	up	to	200	distinct	custom	events	daily.

An	event	can	have	20	properties	(the	rest	are	dropped).

The	event	name	is	limited	to	256	characters.

Property	keys	and	values	are	truncated	after	128	characters.

When	you	run	the	application	and	monitor	the	Visual	Studio	App	Center	portal,
you	can	see	the	events	that	occurred	with	the	number	of	users	(see	Figure	16-3).
When	you	click	in	the	events,	you	can	see	the	event	count	by	user,	the	events	per
session,	the	details	of	the	dictionary	properties	passed,	and	a	log	flow.

Apart	from	this	information,	Visual	Studio	App	Center	Analytics	also	gives	you
information	about	the	following:

Number	of	active	users

Daily	sessions	per	user

Session	duration

Top	devices

OS	versions	used

Languages

FIGURE	16-3

APPLICATION	INSIGHTS
Visual	Studio	App	Center	Analytics	information	is	based	on	Azure	Application
Insights.	With	your	web	or	service	applications,	you	can	directly	use	Application
Insights.

The	sample	web	app	with	this	chapter	consists	of	an	ASP.NET	Core	Razor	web
app	that	accesses	a	SQL	Server	database.	Read	Chapter	26,	“Razor	Pages	and
MVC,”	on	creating	Razor	Pages	and	how	to	deploy	the	web	application	and	the
database	to	Microsoft	Azure.

To	use	diagnostics	and	telemetry	information	with	Application	Insights,	you	add
the	NuGet	package	Microsoft.ApplicationInsights.AspNetCore	to	the
project.	If	you	just	want	to	write	log	information	to	Application	Insights,	the
NuGet	package	Microsoft.Extensions.Logging.ApplicationInsights	can	be
enough.	All	that	you	need	to	do	in	the	code	is	enable	telemetry	information	by
invoking	the	AddApplicationInsightsTelemetry	method	with	the
configuration	of	the	DI	container	(code	file
WebAppWithAppInsights/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddRazorPages();

		services.AddDbContext<BooksContext>(options	=>

		{

				options.UseSqlServer(Configuration.GetConnectionString(

						"BooksConnection"));

		});

		services.AddApplicationInsightsTelemetry();

}

Without	specifying	any	parameters	with	this	method,	the	instrumentation	key
needs	to	be	added	to	the	configuration	within	the	section	ApplicationInsights
and	the	key	name	InstrumentationKey	:

{

		"ApplicationInsights":	{

				"InstrumentationKey":	"add	your	instrumentation	key"

		}

}

The	method	AddApplicationInsightsTelemetry	offers	overloads	where	you

can	pass	the	instrumentation	key,	or	with	options	the	connection	string.	With
some	Azure	regions	you	are	required	to	use	the	connection	string	instead	of	just
using	the	key.	With	the	configuration	you	can	also	specify	to	turn	off	some	of	the
Application	Insights	options	if	you	don't	want	to	collect	all	the	data.	By	default,
adding	Application	Insights	to	the	DI	container	also	adds	a	log	provider	to	write
the	warning	and	error	messages	of	all	containers	to	Application	Insights.

What	data	can	you	see	with	Application	Insights?	Figure	16-4	shows	live	metrics
information:	incoming	requests,	duration,	failure	rates,	CPU	and	memory
utilization,	as	well	as	telemetry	information	for	pages	that	have	been	called.
Figure	16-5	shows	the	application	map.	Here	you	see	the	different	Azure
resources	that	the	application	interacts	with.	With	the	sample	application,	it's	an
Azure	SQL	database.	The	application	map	shows	how	many	times	resources
have	been	invoked,	the	duration,	and	the	error	counts.	In	the	case	of	errors,	you
can	easily	see	common	properties	of	the	errors.	Application	Insights	makes	use
of	artificial	intelligence	to	learn	about	the	normal	behavior	and	timings	of	the
application	to	give	you	information	about	anomalies.	You	can	specify	alerts	to
inform	you	in	different	ways.	To	add	information	that's	not	automatically
detected,	you	can	inject	the	TelemetryClient	in	your	Razor	pages,	controllers,
or	services,	and	report	additional	information	invoking	the	TrackEvent	method.

FIGURE	16-4

FIGURE	16-5

SUMMARY
In	this	chapter,	you	looked	at	logging	and	metrics	facilities	that	can	help	you	find
intermittent	problems	in	your	applications.	You	should	plan	early	and	build	these
features	into	your	applications;	doing	so	will	help	you	avoid	many
troubleshooting	problems	later.

With	logging,	you	can	write	messages	for	debugging	that	help	with	analyzing	the
application,	as	well	as	exceptions	and	warnings	that	also	help	with	running	the
application	in	production.	You	also	have	the	flexibility	to	define	different
logging	configurations	based	on	the	logging	category	as	well	as	the	logging
providers.

You	can	use	metrics	to	analyze	counts	reported	from	the	runtime	as	well	as
different	.NET	libraries,	and	you	can	add	your	own	counts	as	well.

With	Visual	Studio	App	Center	Analytics,	you've	seen	that	many	features	come
out	of	the	box	when	you	use	this	cloud	service.	You	can	easily	get	information
from	your	users	with	just	a	few	lines	of	code.	If	you	add	some	more	lines,	you
can	find	out	if	users	don't	use	some	new	features	of	the	app	because	they	might
have	trouble	finding	them.

Application	Insights	is	a	great	service	for	your	Azure	resources	but	can	also	be
used	from	your	on-premises	environment	to	collect	and	analyze	information
about	the	application	and	quickly	find	issues.

The	next	chapter	goes	into	the	details	of	parallel	programming	with	the	Task	and
Parallel	classes	as	well	as	synchronization	objects	that	help	you	use	multiple
cores	from	the	operating	system.	Issues	that	come	up	when	you	use	multiple
tasks	are	covered	as	well.

17
Parallel	Programming

WHAT'S	IN	THIS	CHAPTER?

Understanding	multithreading

Working	with	the	Parallel	class

Working	with	tasks

Using	the	Cancellation	framework

Publish/subscribe	with	channels

Working	with	timers

Understanding	threading	issues

Using	the	lock	keyword

Synchronizing	with	Monitor

Synchronizing	with	mutexes

Working	with	semaphores

Using	ManualResetEvent,	AutoResetEvent,	and	CountdownEvent

Working	with	Barrier

Managing	readers	and	writers	with	ReaderWriterLockSlim

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/Parallel.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

Parallel

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

Task

Cancellation

ChannelSample

Timer

WinAppTimer

ThreadingIssues

SynchronizationSamples

BarrierSample

ReaderWriterLockSample

LockAcrossAwait

Samples	from	this	chapter	make	use	of	the	System.Threading,
System.Threading.Tasks,	and	System.Linq	namespaces.	All	the	projects
have	nullable	reference	types	enabled.

OVERVIEW
There	are	several	reasons	for	using	multiple	threads.	Suppose	you	are	making	a
network	call	from	an	application	that	might	take	some	time.	You	don't	want	to
stall	the	user	interface	and	force	the	user	to	wait	idly	until	the	response	is
returned	from	the	server.	The	user	could	perform	some	other	actions	in	the
meantime	or	even	cancel	the	request	that	was	sent	to	the	server.	Using	threads
can	help.

For	all	activities	that	require	a	wait—for	example,	because	of	file,	database,	or
network	access—you	can	start	a	new	thread	to	fulfill	other	activities	at	the	same
time.	Even	if	you	have	only	processing-intensive	tasks	to	do,	threading	can	help.
Multiple	threads	of	a	single	process	can	run	on	different	CPUs,	or,	nowadays,	on
different	cores	of	a	multiple-core	CPU,	at	the	same	time.

You	must	be	aware	of	some	issues	when	running	multiple	threads,	however.
Because	they	can	run	during	the	same	time,	you	can	easily	get	into	problems	if
the	threads	access	the	same	data.	To	avoid	that,	you	must	implement
synchronization	mechanisms.

.NET	offers	an	abstraction	mechanism	for	threads:	tasks.	Tasks	allow	building
relations	between	tasks—for	example,	one	task	should	continue	when	the	first
one	is	completed.	You	can	also	build	a	hierarchy	consisting	of	multiple	tasks.

Instead	of	using	tasks,	you	can	implement	parallel	activities	using	the	Parallel
class.	You	need	to	differentiate	data	parallelism	where	working	with	some	data
is	processed	simultaneously	between	different	tasks,	or	task	parallelism	where
different	functions	are	executed	simultaneously.

When	creating	parallel	programs,	you	have	a	lot	of	different	options.	You	should
use	the	simplest	option	that	fits	your	scenario.	This	chapter	starts	with	the
Parallel	class,	which	offers	easy	parallelism.	If	this	is	all	you	need,	just	use	this
class.	If	you	need	more	control,	such	as	when	you	need	to	manage	a	relation
between	tasks	or	to	define	a	method	that	returns	a	task,	the	Task	class	is	the	way
to	go.

This	chapter	also	covers	the	data	flow	library,	which	might	be	the	easiest	one	to
use	if	you	need	actor-based	programming	to	flow	data	through	pipelines.

If	you	need	even	more	control	over	parallelism,	such	as	setting	priorities,	the
Thread	class	might	be	the	one	to	use.

NOTE The	use	of	asynchronous	methods	with	the	async	and	await
keywords	is	covered	in	Chapter	11,	“Tasks	and	Asynchronous
Programming.”

One	variant	of	task	parallelism	is	offered	by	Parallel	LINQ,	which	is
covered	in	Chapter	9,	“Language	Integrated	Query.”

Creating	a	program	that	runs	multiple	tasks	in	parallel	can	lead	to	race
conditions	and	deadlocks.	You	need	to	be	aware	of	synchronization	techniques.

It	is	best	when	you	can	avoid	synchronization	by	not	sharing	data	between
threads.	Of	course,	this	is	not	always	possible.	If	data	sharing	is	necessary,	you
must	use	synchronization	so	that	only	one	task	at	a	time	accesses	and	changes
the	shared	state.	If	you	don't	pay	attention	to	synchronization,	race	conditions
and	deadlocks	can	apply.	A	big	issue	with	race	conditions	and	deadlocks	is	that
errors	occur	inconsistently	and	behave	differently	with	release	and	debug	builds.
With	a	higher	number	of	CPU	cores,	error	numbers	can	increase.	Such	errors
usually	are	hard	to	find.	So,	it's	best	to	pay	attention	to	synchronization	from	the
beginning.	In	the	section	“Threading	Issues,”	you'll	see	samples	for	race

conditions	and	deadlocks.

Using	multiple	tasks	is	easy	if	the	tasks	don't	access	the	same	variables.	You	can
avoid	this	situation	to	a	certain	degree,	but	at	some	point,	you	will	find	some
data	needs	to	be	shared.	When	sharing	data,	you	need	to	apply	synchronization
techniques.	When	threads	access	the	same	data	and	you	don't	apply
synchronization,	you	are	lucky	when	the	problem	pops	up	immediately.
However,	this	is	rarely	the	case.	This	chapter	shows	race	conditions	and
deadlocks	and	how	you	can	avoid	them	by	applying	synchronization
mechanisms.

.NET	offers	several	options	for	synchronization.	You	can	use	synchronization
objects	within	a	process	or	across	processes.	You	can	use	them	to	synchronize
one	task	or	multiple	tasks	to	access	one	or	more	resources.	Synchronization
objects	can	also	be	used	to	inform	tasks	that	something	completed.	All	these
synchronization	objects	are	covered	in	this	chapter.

NOTE The	need	for	synchronization	can	be	partly	avoided	by	using
immutable	data	structures	as	much	as	possible.	With	immutable	data
structures,	the	data	can	be	initialized	but	cannot	be	changed	afterward.
That's	why	synchronization	is	not	needed	with	these	types.

Now	that	we're	grounded	in	the	basics	of	multithreading	and	tasks,	let's	start
with	the	Parallel	class—an	uncomplicated	way	to	add	parallelism	to	your
application.

PARALLEL	CLASS
One	great	abstraction	of	threads	is	the	Parallel	class.	With	this	class,	both	data
and	task	parallelism	are	offered.	This	class	is	in	the	namespace
System.Threading.Tasks.

The	Parallel	class	defines	static	methods	for	a	parallel	for	and	foreach.	With
the	C#	statements	for	and	foreach,	the	loop	is	run	from	one	thread.	The
Parallel	class	uses	multiple	tasks	and,	thus,	multiple	threads	for	this	job.

Whereas	the	Parallel.For	and	Parallel.ForEach	methods	invoke	the	same
code	during	each	iteration,	Parallel.Invoke	enables	you	to	invoke	different
methods	concurrently.	Parallel.Invoke	is	for	task	parallelism,	and
Parallel.ForEach	is	for	data	parallelism.

Looping	with	the	Parallel.For	Method
The	Parallel.For	method	is	like	the	C#	for	loop	statement	for	performing	a
task	a	number	of	times.	With	Parallel.For,	the	iterations	run	in	parallel.	The
order	of	iteration	is	not	defined.

NOTE This	sample	makes	use	of	command-line	arguments.	To	work
through	the	different	features,	pass	different	arguments	as	shown	on	startup
of	the	sample	application	or	check	the	top-level	statements.	From	Visual
Studio,	you	can	pass	command-line	arguments	in	the	Debug	options	of	the
project	properties.	Using	the	dotnet	command	line,	to	pass	the	command-
line	argument	-p,	you	can	start	the	command	dotnet	run	--	-p.

To	get	the	information	about	the	thread	and	the	task,	the	following	Log	method
writes	thread	and	task	identifiers	to	the	console	(code	file
ParallelSamples/ParallelSamples/Program.cs):

public	static	void	Log(string	prefix)	=>

		Console.WriteLine($"{prefix},	task:	{Task.CurrentId},	"	+

				$"thread:	{Thread.CurrentThread.ManagedThreadId}");

Let's	look	at	the	Parallel.For	method.	With	this	method,	the	first	two
parameters	define	the	start	and	end	of	the	loop.	The	following	example	has	the
iterations	from	0	to	9.	The	third	parameter	is	an	Action<int>	delegate.	The
integer	parameter	is	the	iteration	of	the	loop	that	is	passed	to	the	method
referenced	by	the	delegate.	The	return	type	of	Parallel.For	is	the	struct
ParallelLoopResult,	which	provides	information	if	the	loop	is	completed:

public	static	void	ParallelFor()

{

		ParallelLoopResult	result	=

				Parallel.For(0,	10,	i	=>

				{

						Log($"S	{i}");

						Task.Delay(10).Wait();

						Log($"E	{i}");

				});

		Console.WriteLine($"Is	completed:	{result.IsCompleted}");

}

In	the	body	of	Parallel.For,	the	index,	task	identifier,	and	thread	identifier	are
written	to	the	console.	As	shown	in	the	following	output,	the	order	is	not
guaranteed.	You	will	see	different	results	if	you	run	this	program	once	more.

This	run	of	the	program	had	the	order	1-7-2-0-3	and	so	on	with	10	tasks	and	10
threads.	A	task	does	not	necessarily	map	to	one	thread;	a	thread	can	be	reused	by
different	tasks.

S	1	task:	1,	thread:	4

S	7	task:	8,	thread:	10

S	2	task:	2,	thread:	5

S	0	task:	3,	thread:	1

S	3	task:	4,	thread:	6

S	4	task:	5,	thread:	7

S	5	task:	6,	thread:	9

S	6	task:	7,	thread:	8

S	8	task:	9,	thread:	11

E	1	task:	1,	thread:	4

E	6	task:	7,	thread:	8

E	3	task:	4,	thread:	6

E	8	task:	9,	thread:	11

E	0	task:	3,	thread:	1

E	5	task:	6,	thread:	9

E	4	task:	5,	thread:	7

E	2	task:	2,	thread:	5

S	9	task:	10,	thread:	12

E	7	task:	8,	thread:	10

E	9	task:	10,	thread:	12

Is	completed:	True

The	delay	within	the	parallel	body	waits	for	10	milliseconds	to	have	a	better
chance	to	create	new	threads.	If	you	remove	this	line,	you	see	fewer	threads	and
tasks	to	be	used.

What	you	can	also	see	with	the	result	is	that	every	end	log	of	a	loop	uses	the
same	thread	and	task	as	the	start	log.	Using	Task.Delay	with	the	Wait	method
blocks	the	current	thread	until	the	delay	ends.

Change	the	previous	example	to	now	use	the	await	keyword	with	the
Task.Delay	method	(code	file
ParallelSamples/ParallelSamples/Program.cs):

public	static	void	ParallelForWithAsync()

{

		ParallelLoopResult	result	=

				Parallel.For(0,	10,	async	i	=>

				{

						Log($"S	{i}");

						await	Task.Delay(10);

						Log($"E	{i}");

				});

		Console.WriteLine($"is	completed:	{result.IsCompleted}");

}

The	result	is	in	the	following	console	output	snippet.	With	the	output	after	the
Thread.Delay	method,	you	can	see	the	thread	change.	For	example,	loop
iteration	1,	which	had	thread	ID	4	before	the	delay,	has	thread	ID	7	after	the
delay.	You	can	also	see	that	tasks	no	longer	exist—there	are	only	threads—and
here	previous	threads	are	reused.	Another	important	aspect	is	that	the	For
method	of	the	Parallel	class	is	completed	without	waiting	for	the	delay.	The
Parallel	class	waits	for	the	tasks	it	created,	but	it	doesn't	wait	for	other
background	activity.	It	is	also	possible	that	you	won't	see	the	output	from	the
methods	after	the	delay	at	all—if	the	main	thread	(which	is	a	foreground	thread)
is	finished,	all	the	background	threads	are	stopped.

S	3	task:	1,	thread:	6

S	1	task:	6,	thread:	4

S	2	task:	8,	thread:	5

S	0	task:	4,	thread:	1

S	7	task:	5,	thread:	11

S	8	task:	2,	thread:	10

S	4	task:	7,	thread:	8

S	6	task:	9,	thread:	9

S	5	task:	3,	thread:	7

S	9	task:	1,	thread:	6

Is	completed:	True

E	5	task:	,	thread:	11

E	8	task:	,	thread:	7

E	1	task:	,	thread:	7

E	4	task:	,	thread:	8

E	0	task:	,	thread:	6

E	6	task:	,	thread:	5

E	2	task:	,	thread:	10

E	9	task:	,	thread:	4

E	7	task:	,	thread:	11

E	3	task:	,	thread:	9

WARNING As	demonstrated	here,	although	using	async	features	with
.NET	and	C#	is	easy,	it's	still	important	to	know	what's	happening	behind	the
scenes,	and	you	have	to	pay	attention	to	some	issues.

Stopping	Parallel.For	Early

You	can	also	break	Parallel.For	early	without	looping	through	all	the
iterations.	A	method	overload	of	the	For	method	accepts	a	third	parameter	of
type	Action<int,	ParallelLoopState>.	By	defining	a	method	with	these
parameters,	you	can	influence	the	outcome	of	the	loop	by	invoking	the	Break	or
Stop	method	of	the	ParallelLoopState.

Remember,	the	order	of	iterations	is	not	defined	(code	file
ParallelSamples/ParallelSamples/Program.cs):

public	static	void	StopParallelForEarly()

{

		ParallelLoopResult	result	=

				Parallel.For(10,	40,	(int	i,	ParallelLoopState	pls)	=>

				{

						Log($"S	{i}");

						if	(i>	12)

						{

								pls.Break();

								Log($"break	now…	{i}");

						}

						Task.Delay(10).Wait();

						Log($"E	{i}");

				});

		Console.WriteLine($"Is	completed:	{result.IsCompleted}");

		Console.WriteLine($"lowest	break	iteration:	

{result.LowestBreakIteration}");

}

This	run	of	the	application	demonstrates	that	the	iteration	breaks	up	with	a	value
higher	than	12,	but	other	tasks	can	simultaneously	run,	and	tasks	with	other
values	can	run.	All	the	tasks	that	have	been	started	before	the	break	can	continue
to	the	end.	You	can	use	the	LowestBreakIteration	property	to	ignore	results
from	tasks	that	you	do	not	need:

S	10	task:	1,	thread:	1

S	22	task:	5,	thread:	8

S	34	task:	9,	thread:	11

break	now	34	task:	9,	thread:	11

S	13	task:	2,	thread:	4

break	now	13	task:	2,	thread:	4

S	28	task:	7,	thread:	9

break	now	28	task:	7,	thread:	9

S	16	task:	3,	thread:	5

break	now	16	task:	3,	thread:	5

S	19	task:	4,	thread:	6

break	now	19	task:	4,	thread:	6

S	31	task:	8,	thread:	10

break	now	31	task:	8,	thread:	10

S	25	task:	6,	thread:	7

break	now	25	task:	6,	thread:	7

break	now	22	task:	5,	thread:	8

E	28	task:	7,	thread:	9

S	11	task:	10,	thread:	12

E	10	task:	1,	thread:	1

S	12	task:	1,	thread:	1

E	31	task:	8,	thread:	10

E	13	task:	2,	thread:	4

E	34	task:	9,	thread:	11

E	25	task:	6,	thread:	7

E	19	task:	4,	thread:	6

E	16	task:	3,	thread:	5

E	22	task:	5,	thread:	8

E	11	task:	10,	thread:	12

E	12	task:	1,	thread:	1

Is	completed:	False

lowest	break	iteration:	13

Parallel.For	Initialization
Parallel.For	might	use	several	threads	to	do	the	loops.	If	you	need	an
initialization	that	should	be	done	with	every	thread,	you	can	use	the
Parallel.For<TLocal>	method.	The	generic	version	of	the	For	method	accepts
—in	addition	to	the	from	and	to	values—three	delegate	parameters.	The	first
parameter	is	of	type	Func<TLocal>.	Because	the	example	here	uses	a	string	for
TLocal,	the	method	needs	to	be	defined	as	Func<string>,	a	method	returning	a
string.	This	method	is	invoked	only	once	for	each	thread	that	is	used	to	do	the
iterations.

The	second	delegate	parameter	defines	the	delegate	for	the	body.	In	the	example,
the	parameter	is	of	type	Func<int,	ParallelLoopState,	string,	string>.
The	first	parameter	is	the	loop	iteration;	the	second	parameter,
ParallelLoopState,	enables	stopping	the	loop,	as	shown	earlier.	With	the	third
parameter,	the	body	method	receives	the	value	that	is	returned	from	the	init
method.	The	body	method	also	needs	to	return	a	value	of	the	type	that	was
defined	with	the	generic	For	parameter.

The	last	parameter	of	the	For	method	specifies	a	delegate,	Action<TLocal>	;	in
the	example,	a	string	is	received.	This	method,	a	thread	exit	method,	is	called
only	once	for	each	thread	(code	file
ParallelSamples/ParallelSamples/Program.cs):

public	static	void	ParallelForWithInit()

{

		Parallel.For<string>(0,	10,	()	=>

		{

				//	invoked	once	for	each	thread

				Log($"init	thread");

				return	$"t{Thread.CurrentThread.ManagedThreadId}";

		},

		(i,	pls,	str1)	=>

		{

				//	invoked	for	each	member

				Log($"body	i	{i}	str1	{str1}");

				Task.Delay(10).Wait();

				return	$"i	{i}";

		},

		(str1)	=>

		{

				//	final	action	on	each	thread

				Log($"finally	{str1}");

		});

}

When	you	run	the	application	with	the	option	-pfi,	you	can	see	that	the	init
method	is	called	only	once	for	each	thread;	the	body	of	the	loop	receives	the	first
string	from	the	initialization	and	passes	this	string	to	the	next	iteration	of	the
body	with	the	same	thread.	Lastly,	the	final	action	is	invoked	once	for	each
thread	and	receives	the	last	result	from	everybody.

With	this	functionality,	this	method	fits	perfectly	to	accumulate	a	result	of	a	huge
data	collection.

Looping	with	the	Parallel.ForEach	Method
Parallel.ForEach	iterates	through	a	collection	implementing	IEnumerable	in	a
similar	way	to	the	foreach	statement	but	in	an	asynchronous	manner.	Again,	the
order	is	not	guaranteed	(code	file
ParallelSamples/ParallelSamples/Program.cs):

public	static	void	ParallelForEach()

{

		string[]	data	=	{"zero",	"one",	"two",	"three",	"four",	

"five",

		"six",	"seven",	"eight",	"nine",	"ten",	"eleven",	"twelve"};

		ParallelLoopResult	result	=

				Parallel.ForEach<string>(data,	s	=>

				{

						Console.WriteLine(s);

				});

}

If	you	need	to	break	up	the	loop,	you	can	use	an	overload	of	the	ForEach	method
with	a	ParallelLoopState	parameter.	You	can	do	this	in	the	same	way	you	did
earlier	with	the	For	method.	An	overload	of	the	ForEach	method	can	also	be
used	to	access	an	indexer	to	get	the	iteration	number,	as	shown	here:

Parallel.ForEach<string>(data,	(s,	pls,	l)	=>

{

		Console.WriteLine($"{s}	{l}");

});

Invoking	Multiple	Methods	with	the	Parallel.Invoke	Method
If	multiple	tasks	should	run	in	parallel,	you	can	use	the	Parallel.Invoke
method,	which	offers	the	task	parallelism	pattern.	Parallel.Invoke	allows	the
passing	of	an	array	of	Action	delegates,	whereby	you	can	assign	methods	that
should	run.	The	example	code	passes	the	Foo	and	Bar	methods	to	be	invoked	in
parallel	(code	file	ParallelSamples/Program.cs):

public	static	void	ParallelInvoke()

{

		Parallel.Invoke(Foo,	Bar,	Foo,	Bar,	Foo,	Bar);

}

	

public	static	void	Foo()	=>

		Console.WriteLine("foo");

	

public	static	void	Bar()	=>

		Console.WriteLine("bar");

When	you	run	the	application	multiple	times	and	invoke	the	Parallel.Invoke
method,	you'll	see	the	order	of	invocations	is	not	always	the	same.

The	Parallel	class	is	easy	to	use—for	both	task	and	data	parallelism.	If	more
control	is	needed	and	you	don't	want	to	wait	until	the	action	started	with	the
Parallel	class	is	completed,	the	Task	class	comes	in	handy.	Of	course,	it's	also
possible	to	combine	the	Task	and	Parallel	classes.

TASKS
For	more	control	over	the	parallel	actions,	you	can	use	the	Task	class	from	the

namespace	System.Threading.Tasks.	A	task	represents	some	unit	of	work	that
should	be	done.	This	unit	of	work	can	run	in	a	separate	thread,	and	it	is	also
possible	to	start	a	task	in	a	synchronized	manner,	which	results	in	a	wait	for	the
calling	thread.	With	tasks,	you	have	an	abstraction	layer	but	also	a	lot	of	control
over	the	underlying	threads.

Tasks	provide	much	more	flexibility	in	organizing	the	work	you	need	to	do.	For
example,	you	can	define	continuation	work—what	should	be	done	after	a	task	is
complete.	This	can	be	differentiated	based	on	whether	the	task	was	successful.
You	can	also	organize	tasks	in	a	hierarchy.	For	example,	a	parent	task	can	create
new	children	tasks.	Optionally,	this	can	create	a	dependency,	so	canceling	a
parent	task	also	cancels	its	child	tasks.

Starting	Tasks
To	start	a	task,	you	can	use	either	TaskFactory	or	the	constructor	of	the	Task
and	the	Start	method.	The	Task	constructor	gives	you	more	flexibility	in
creating	the	task.

When	starting	a	task,	an	instance	of	the	Task	class	can	be	created,	and	the	code
that	should	run	can	be	assigned	with	an	Action	or	Action<object>	delegate,
with	either	no	parameters	or	one	object	parameter.	In	the	following	example,	a
method	is	defined	with	one	parameter:	TaskMethod.	The	implementation	invokes
the	Log	method	where	the	ID	of	the	task	and	the	ID	of	the	thread	are	written	to
the	console,	as	well	as	information	indicating	whether	the	thread	is	coming	from
a	thread	pool	and	whether	the	thread	is	a	background	thread.	Writing	multiple
messages	to	the	console	is	synchronized	by	using	the	lock	keyword	with	the
s_logLock	synchronization	object	(for	synchronization,	you	can	use	any
reference-type	object).	This	way,	parallel	calls	to	Log	can	be	done,	and	multiple
writes	to	the	console	are	not	interleaving	each	other.	Otherwise,	the	title	could
be	written	by	one	task,	and	the	thread	information	that	follows	by	another	task
(code	file	ParallelSamples/TaskSamples/Program.cs):

public	static	void	TaskMethod(object?	o)

{

		Log(o?.ToString()	??	string.Empty);

}

	

private	static	readonly	object	s_logLock	=	new();

public	static	void	Log(string	title)

{

		lock	(s_logLock)

		{

				Console.WriteLine(title);

				Console.WriteLine($"Task	id:	{Task.CurrentId?.ToString()	??	

"no	task"},	"	+

						$"thread:	{Thread.CurrentThread.ManagedThreadId}");

				Console.WriteLine($"is	pooled	thread:	"	+		

						$"{Thread.CurrentThread.IsThreadPoolThread}");

				Console.WriteLine($"is	background	thread:	"	+		

						$"{Thread.CurrentThread.IsBackground}");

				Console.WriteLine();

		}

}

The	following	sections	describe	different	ways	to	start	a	new	task.

Tasks	Using	the	Thread	Pool
In	this	section,	diverse	ways	are	shown	to	start	a	task	that	uses	a	thread	from	the
thread	pool.	The	thread	pool	offers	a	pool	of	background	threads.	The	thread
pool	manages	threads	on	its	own,	increasing	or	decreasing	the	number	of	threads
within	the	pool	as	needed.	Threads	from	the	pool	are	used	to	fulfill	some	actions
and	returned	to	the	pool	afterward.

The	first	way	to	create	a	task	is	with	an	instantiated	TaskFactory,	where	the
method	TaskMethod	is	passed	to	the	StartNew	method,	and	the	task	is
immediately	started.	The	second	approach	uses	the	static	Factory	property	of
the	Task	class	to	get	access	to	the	TaskFactory	and	to	invoke	the	StartNew
method.	This	is	similar	to	the	first	version	in	that	it	uses	a	factory,	but	there's	less
control	over	factory	creation.	The	third	approach	uses	the	constructor	of	the	Task
class.	When	the	Task	object	is	instantiated,	the	task	does	not	run	immediately.
Instead,	it	is	given	the	status	Created.	The	task	is	then	started	by	calling	the
Start	method	of	the	Task	class.	The	fourth	approach	calls	the	Run	method	of	the
Task	that	immediately	starts	the	task.	The	Run	method	doesn't	have	an
overloaded	variant	to	pass	an	Action<object>	delegate,	but	it's	easy	to	simulate
this	by	assigning	a	lambda	expression	of	type	Action	and	using	the	parameter
within	its	implementation	(code	file
ParallelSamples/TaskSamples/Program.cs):

public	void	TasksUsingThreadPool()

{

		TaskFactory	tf	=	new();

		Task	t1	=	tf.StartNew(TaskMethod,	"using	a	task	factory");

		Task	t2	=	Task.Factory.StartNew(TaskMethod,	"factory	via	a	

task");

		Task	t3	=	new(TaskMethod,	"using	a	task	constructor	and	

Start");

		t3.Start();

		Task	t4	=	Task.Run(()	=>	TaskMethod("using	the	Run	method"));

}

The	output	returned	with	these	variants	is	as	follows.	All	these	versions	create	a
new	task,	and	a	thread	from	the	thread	pool	is	used.	The	output	can	differ	any
time	you	run	it:

using	a	task	factory

Task	id:	1,	thread:	4

is	pooled	thread:	True

is	background	thread:	True

	

factory	via	a	task

Task	id:	2,	thread:	3

is	pooled	thread:	True

is	background	thread:	True

	

using	a	task	constructor	and	Start

Task	id:	3,	thread:	5

is	pooled	thread:	True

is	background	thread:	True

	

using	the	Run	method

Task	id:	4,	thread:	7

is	pooled	thread:	True

is	background	thread:	True

With	both	the	Task	constructor	and	the	StartNew	method	of	the	TaskFactory,
you	can	pass	values	from	the	enumeration	TaskCreationOptions.	Using	this
creation	option,	you	can	change	how	the	task	should	behave	differently,	as	is
shown	in	the	next	sections.

Synchronous	Tasks
A	task	does	not	necessarily	need	to	use	a	thread	from	a	thread	pool—it	can	use
other	threads	as	well.	Tasks	can	also	run	synchronously	with	the	same	thread	as
the	calling	thread.	The	following	code	snippet	uses	the	method
RunSynchronously	of	the	Task	class	(code	file
ParallelSamples/TaskSamples/Program.cs):

private	static	void	RunSynchronousTask()

{

		TaskMethod("just	the	main	thread");

		Task	t1	=	new(TaskMethod,	"run	sync");

		t1.RunSynchronously();

}

Here,	the	TaskMethod	is	first	called	directly	from	the	main	thread	before	it	is
invoked	from	the	newly	created	Task.	As	you	can	see	from	the	following
console	output,	the	main	thread	doesn't	have	a	task	ID.	It	is	not	a	pooled	thread.
Calling	the	method	RunSynchronously	uses	the	same	thread	as	the	calling	thread
but	creates	a	task	if	one	wasn't	created	previously:

just	the	main	thread

Task	id:	no	task,	thread:	1

is	pooled	thread:	False

is	background	thread:	False

	

run	sync

Task	id:	1,	thread:	1

is	pooled	thread:	False

is	background	thread:	False

Tasks	Using	a	Separate	Thread
If	the	code	of	a	task	should	run	for	a	longer	time,	you	should	use
TaskCreationOptions.LongRunning	to	instruct	the	task	scheduler	to	create	a
new	thread	rather	than	use	a	thread	from	the	thread	pool.	This	way,	the	thread
doesn't	need	to	be	managed	by	the	thread	pool.	When	a	thread	is	taken	from	the
thread	pool,	the	task	scheduler	can	decide	to	wait	for	an	already	running	task	to
be	completed	and	use	this	thread	instead	of	creating	a	new	thread	with	the	pool.
With	a	long-running	thread,	the	task	scheduler	knows	immediately	that	it	doesn't
make	sense	to	wait	for	this	one.	The	following	code	snippet	creates	a	long-
running	task	(code	file	ParallelSamples/TaskSamples/Program.cs):

private	static	void	LongRunningTask()

{

		Task	t1	=	new(TaskMethod,	"long	running",	

TaskCreationOptions.LongRunning);

		t1.Start();

}

Indeed,	when	you	use	the	option	TaskCreationOptions.LongRunning,	a	thread
from	the	thread	pool	is	not	used.	Instead,	a	new	thread	is	created:

long	running

Task	id:	1,	thread:	4

is	pooled	thread:	False

is	background	thread:	True

Results	from	Tasks
When	a	task	is	finished,	it	can	write	some	state	information	to	a	shared	object.
Such	a	shared	object	must	be	thread-safe.	Another	option	is	to	use	a	task	that
returns	a	result.	Such	a	task	is	also	known	as	future	because	it	returns	a	result	in
the	future.	With	early	versions	of	the	Task	Parallel	Library	(TPL),	the	class	had
the	name	Future	as	well.	Now	it	is	a	generic	version	of	the	Task	class.	With	this
class,	it	is	possible	to	define	the	type	of	the	result	that	is	returned	with	a	task.

A	method	that	is	invoked	by	a	task	to	return	a	result	can	be	declared	with	any
return	type.	The	following	example	method	TaskWithResult	returns	two	int
values	with	the	help	of	a	tuple.	The	input	of	the	method	can	be	void	or	of	type
object,	as	shown	here	(code	file	ParallelSamples/TaskSamples/Program.cs):

public	static	(int	Result,	int	Remainder)	TaskWithResult(object	

division)

{

		(int	x,	int	y)	=	((int	x,	int	y))division;

		int	result	=	x	/	y;

		int	remainder	=	x	%	y;

		Console.WriteLine("task	creates	a	result…");

		return	(result,	remainder);

}

NOTE Tuples	allow	you	to	combine	multiple	values	into	one.	Tuples	are
explained	in	Chapter	3,	“Classes,	Records,	Structs,	and	Tuples.”

When	you	define	a	task	to	invoke	the	method	TaskWithResult,	you	use	the
generic	class	Task<TResult>.	The	generic	parameter	defines	the	return	type.
With	the	constructor,	the	method	is	passed	to	the	Func	delegate,	and	the	second
parameter	defines	the	input	value.	Because	this	task	needs	two	input	values	in
the	object	parameter,	a	tuple	is	created	as	well.	Next,	the	task	is	started.	The
Result	property	of	the	Task	instance	t1	blocks	and	waits	until	the	task	is
completed.	Upon	task	completion,	the	Result	property	contains	the	result	from
the	task:

public	static	void	TaskWithResultDemo()

{

		Task<(int	Result,	int	Remainder)>	t1	=	new(TaskWithResult,	(8,	

3));

		t1.Start();

		Console.WriteLine(t1.Result);

		t1.Wait();

		Console.WriteLine($"result	from	task:	{t1.Result.Result}	"	+			

				$"{t1.Result.Remainder}");

}

Continuation	Tasks
With	tasks,	you	can	specify	that	after	a	task	is	finished,	another	specific	task
should	start	to	run—for	example,	a	new	task	that	uses	a	result	from	the	previous
one	or	should	do	some	cleanup	if	the	previous	task	failed.

Whereas	the	task	handler	has	either	no	parameter	or	one	object	parameter,	the
continuation	handler	has	a	parameter	of	type	Task.	Here,	you	can	access
information	about	the	originating	task	(code	file
ParallelSamples/TaskSamples/Program.cs):

private	static	void	DoOnFirst()

{

		Console.WriteLine($"doing	some	task	{Task.CurrentId}");

		Task.Delay(3000).Wait();

}

	

private	static	void	DoOnSecond(Task	t)

{

		Console.WriteLine($"task	{t.Id}	finished");

		Console.WriteLine($"this	task	id	{Task.CurrentId}");

		Console.WriteLine("do	some	cleanup");

		Task.Delay(3000).Wait();

}

A	continuation	task	is	defined	by	invoking	the	ContinueWith	method	on	a	task.
You	could	also	use	TaskFactory	for	this.	t1.OnContinueWith(DoOnSecond)
means	that	a	new	task	invoking	the	method	DoOnSecond	should	be	started	as
soon	as	the	task	t1	is	finished.	You	can	start	multiple	tasks	when	one	task	is
finished,	and	a	continuation	task	can	have	another	continuation	task,	as	this	next
example	demonstrates	(code	file	ParallelSamples/TaskSamples/Program.cs):

public	static	void	ContinuationTasks()

{

		Task	t1	=	new(DoOnFirst);

		Task	t2	=	t1.ContinueWith(DoOnSecond);

		Task	t3	=	t1.ContinueWith(DoOnSecond);

		Task	t4	=	t2.ContinueWith(DoOnSecond);

		t1.Start();

}

So	far,	the	continuation	tasks	have	been	started	when	the	previous	task	was
finished,	regardless	of	the	result.	With	values	from	TaskContinuationOptions,
you	can	define	that	a	continuation	task	should	start	only	if	the	originating	task
was	successful	(or	faulted).	Some	of	the	possible	values	are	OnlyOnFaulted,
NotOnFaulted,	OnlyOnCanceled,	NotOnCanceled,	and	OnlyOnRanToCompletion
:

Task	t5	=	t1.ContinueWith(DoOnError,	

TaskContinuationOptions.OnlyOnFaulted);

Task	Hierarchies
With	task	continuations,	one	task	is	started	after	another.	Tasks	can	also	form	a
hierarchy.	When	a	task	starts	a	new	task,	a	parent/child	hierarchy	is	started.

In	the	code	snippet	that	follows,	within	the	task	of	the	parent,	a	new	task	object
is	created,	and	the	task	is	started.	The	code	for	creating	a	child	task	is	the	same
as	that	for	a	parent	task.	The	only	difference	is	that	the	task	is	created	from
within	another	task	(code	file	ParallelSamples/TaskSamples/Program.cs):

public	static	void	ParentAndChild()

{

		Task	parent	=	new(ParentTask);

		parent.Start();

		Task.Delay(2000).Wait();

		Console.WriteLine(parent.Status);

		Task.Delay(4000).Wait();

		Console.WriteLine(parent.Status);

}

	

private	static	void	ParentTask()

{

		Console.WriteLine($"task	id	{Task.CurrentId}");

		Task	child	=	new(ChildTask);

		child.Start();

		Task.Delay(1000).Wait();

		Console.WriteLine("parent	started	child");

}

	

private	static	void	ChildTask()

{

		Console.WriteLine("child");

		Task.Delay(5000).Wait();

		Console.WriteLine("child	finished");

}

If	the	parent	task	is	finished	before	the	child	task,	the	status	of	the	parent	task	is
shown	as	WaitingForChildrenToComplete.	The	parent	task	is	completed	with
the	status	RanToCompletion	as	soon	as	all	children	tasks	are	completed	as	well.
Of	course,	this	is	not	the	case	if	the	parent	creates	a	task	with	the
TaskCreationOption	DetachedFromParent.

Canceling	a	parent	task	also	cancels	the	children.	The	cancellation	framework	is
discussed	later.

Returning	Tasks	from	Methods
A	method	that	returns	a	task	with	results	is	declared	to	return	Task<T>—for
example,	a	method	that	returns	a	task	with	a	collection	of	strings:

public	Task<IEnumerable<string>>	TaskMethodAsync()

{

}

Methods	that	access	the	network	or	data	are	usually	implemented	in	an
asynchronous	way	to	return	a	Task.	The	Task	can	then	be	used	to	retrieve	the
results	(for	example,	by	using	the	async	keyword	as	explained	in	Chapter	11).	If
you	have	a	synchronous	path	or	need	to	implement	an	interface	that	is	defined
that	way	with	synchronous	code,	there's	no	need	to	create	a	task	for	the	sake	of
the	result	value.	The	Task	class	offers	the	ability	to	create	a	result	with	a
completed	task	that	is	finished	with	the	status	RanToCompletion	using	the
method	FromResult	:

return	Task.FromResult<IEnumerable<string>>(

		new	List<string>()	{	"one",	"two"	});

Waiting	for	Tasks
You’ve	probably	already	seen	the	WhenAll	and	WaitAll	methods	of	the	Task
class	and	wondered	what	the	difference	might	be.	Both	methods	wait	for	all
tasks	that	are	passed	to	them	to	complete.	The	WaitAll	method	blocks	the
calling	task	until	all	tasks	that	are	waited	for	are	completed.	The	WhenAll
method	returns	a	task	that	in	turn	allows	you	to	use	the	async	keyword	to	wait
for	the	result,	and	it	does	not	block	the	waiting	task.

Although	the	WhenAll	and	WaitAll	methods	are	finished	when	all	the	tasks	you
are	waiting	for	are	completed,	you	can	wait	for	just	one	task	of	a	list	to	be
completed	with	WhenAny	and	WaitAny.	Like	the	WhenAll	and	WaitAll	methods,

the	WaitAny	method	blocks	the	calling	task,	whereas	WhenAny	returns	a	task	that
can	be	awaited.
A	method	that	already	has	been	used	several	times	with	several	samples	is	the
Task.Delay	method.	You	can	specify	a	number	of	milliseconds	to	wait	before
the	task	that	is	returned	from	this	method	is	completed.

You	can	invoke	the	Task.Yield	method	to	give	up	the	CPU	and	thus	allow	other
tasks	to	run.	If	no	other	task	is	waiting	to	run,	the	task	calling	Task.Yield
continues	immediately.	Otherwise,	it	needs	to	wait	until	the	CPU	is	scheduled
again	for	the	calling	task.

Value	Tasks
In	case	a	method	sometimes	runs	asynchronously,	but	not	always,	the	Task	class
might	be	some	overhead	that's	not	needed.	.NET	now	offers	ValueTask,	which	is
a	struct	compared	to	the	Task	that	is	a	class;	thus,	the	ValueTask	doesn't	have	the
overhead	of	an	object	in	the	heap.	Usually	when	invoking	asynchronous
methods,	such	as	making	calls	to	an	API	server	or	a	database,	the	overhead	of
the	Task	type	can	be	ignored	compared	to	the	time	needed	for	the	work	to	be
done.	However,	there	are	some	cases	where	the	overhead	cannot	be	ignored,
such	as	when	a	method	is	called	thousands	of	times,	and	it	rarely	really	needs	a
call	across	the	network.	This	is	a	scenario	where	the	ValueTask	becomes	handy.

Let's	check	out	an	example.	The	method	GetTheRealData	simulates	a	method
that	usually	takes	a	long	time,	accessing	data	from	the	network	or	a	database.
Here,	sample	data	is	generated	with	the	Enumerable	class.	The	time	and	data	are
both	retrieved,	and	a	result	in	the	form	of	a	tuple	is	returned.	This	method	returns
a	Task	as	we	are	used	to	(code	file
ParallelSamples/ValueTaskSample/Program.cs):

public	static	Task<(IEnumerable<string>	data,	DateTime	

retrievedTime)>	

		GetTheRealData()	=>

				Task.FromResult(

						(Enumerable.Range(0,	10)

								.Select(x	=>	$"item	{x}").AsEnumerable(),	

DateTime.Now));

The	interesting	part	now	follows	in	the	method	GetSomeData.	This	method	is
declared	to	return	a	ValueTask.	With	the	implementation,	first	a	check	is	done	if
cached	data	is	not	older	than	five	seconds.	If	the	cached	data	is	not	older,	the
cached	data	is	directly	returned	and	passed	to	the	ValueTask	constructor.	This

doesn't	really	need	a	background	thread;	the	data	can	be	directly	returned.	If	the
cache	is	older,	the	GetTheRealData	method	is	invoked.	This	method	needs	a	real
task	and	could	occur	with	some	delay	(code	file
ParallelSamples/ValueTaskSample/Program.cs):

private	static	DateTime	_retrieved;

private	static	IEnumerable<string>	_cachedData;

public	static	async	ValueTask<IEnumerable<string>>	

GetSomeDataAsync()

{

		if	(_retrieved>=	DateTime.Now.AddSeconds(-5))

		{

				Console.WriteLine("data	from	the	cache");

				return	await	new	ValueTask<IEnumerable<string>>

(_cachedData);

		}

	

		Console.WriteLine("data	from	the	service");

		(_cachedData,	_retrieved)	=	await	GetTheRealData();

		return	_cachedData;

}

NOTE The	constructor	of	the	ValueTask	accepts	type	TResult	for	the
data	to	be	returned,	or	it	accepts	Task<TResult>	to	supply	a	Task	returned
from	methods	that	do	run	asynchronously.

The	Main	method	includes	a	loop	to	invoke	the	GetSomeDataAsync	method
several	times	with	a	delay	after	every	iteration	(code	file
ParallelSamples/ValueTaskSample/Program.cs):

static	async	Task	Main(string[]	args)

{

		for	(int	i	=	0;	i	<	20;	i++)

		{

				IEnumerable<string>	data	=	await	GetSomeDataAsync();

				await	Task.Delay(1000);

		}

		Console.ReadLine();

}

When	you	run	the	application,	you	can	see	that	the	data	is	returned	from	the
cache,	and	after	the	cache	is	invalidated,	the	service	is	accessed	first	before	the
cache	is	used	again.

data	from	the	service

data	from	the	cache

data	from	the	cache

data	from	the	cache

data	from	the	cache

data	from	the	service

data	from	the	cache

data	from	the	cache

data	from	the	cache

data	from	the	cache

data	from	the	service

data	from	the	cache

…

NOTE You	haven’t	probably	come	across	scenarios	yet	where	you	can't
ignore	the	overhead	from	tasks	compared	to	value	tasks.	However,	having
this	core	feature	in	.NET	is	one	of	the	foundations	of	async	streams,	which	is
covered	in	Chapter	11.

CANCELLATION	FRAMEWORK
.NET	includes	a	cancellation	framework	to	enable	the	canceling	of	long-running
tasks	in	a	standard	manner.	Every	blocking	call	should	support	this	mechanism.
Of	course,	not	every	blocking	call	currently	implements	this	new	technology,	but
more	and	more	are	doing	so.	Among	the	technologies	that	already	offer	this
mechanism	are	tasks,	concurrent	collection	classes,	Parallel	LINQ,	and	several
synchronization	mechanisms.

The	cancellation	framework	is	based	on	cooperative	behavior;	it	is	not	forceful.
A	long-running	task	checks	whether	it	is	canceled	and	returns	control
accordingly.

A	method	that	supports	cancellation	accepts	a	CancellationToken	parameter.
This	class	defines	the	property	IsCancellationRequested,	whereby	a	long
operation	can	check	to	see	whether	it	should	abort.	Other	ways	for	a	long
operation	to	check	for	cancellation	include	using	a	WaitHandle	property	that	is
signaled	when	the	token	is	canceled	or	using	the	Register	method.	The
Register	method	accepts	parameters	of	type	Action	and
ICancelableOperation.	The	method	that	is	referenced	by	the	Action	delegate	is
invoked	when	the	token	is	canceled.	This	is	like	the	ICancelableOperation,
whereby	the	Cancel	method	of	an	object	implementing	this	interface	is	invoked

when	the	cancellation	is	done.

Cancellation	of	Parallel.For
This	section	starts	with	a	simple	example	using	the	Parallel.For	method.	The
Parallel	class	provides	overloads	for	the	For	method,	whereby	you	can	pass	a
parameter	of	type	ParallelOptions.	With	ParallelOptions,	you	can	pass	a
CancellationToken.	The	CancellationToken	is	generated	by	creating	a
CancellationTokenSource.	CancellationTokenSource	implements	the
interface	ICancelableOperation	and	can	therefore	be	registered	with	the
CancellationToken	and	allows	cancellation	with	the	Cancel	method.	The
example	doesn't	call	the	Cancel	method	directly	but	uses	a	constructor	overload
to	cancel	the	token	after	500	milliseconds.

Within	the	implementation	of	the	For	loop,	the	Parallel	class	verifies	the
outcome	of	the	CancellationToken	and	cancels	the	operation.	Upon
cancellation,	the	For	method	throws	an	exception	of	type
OperationCanceledException,	which	is	caught	in	the	example.	With	the
CancellationToken,	it	is	possible	to	register	for	information	when	the
cancellation	is	done.	This	is	accomplished	by	calling	the	Register	method	and
passing	a	delegate	that	is	invoked	on	cancellation	(code	file
ParallelSamples/CancellationSamples/Program.cs):

public	static	void	CancelParallelFor()

{

		CancellationTokenSource	cts	=	new(millisecondsDelay:	500);

		cts.Token.Register(()	=>	Console.WriteLine("***	cancellation	

activated"));

		try

		{

				ParallelLoopResult	result	=

						Parallel.For(0,	100,	new	ParallelOptions

						{

								CancellationToken	=	cts.Token,

						},

						x	=>

						{

								Console.WriteLine($"loop	{x}	started");

								int	sum	=	0;

								for	(int	i	=	0;	i	<	100;	i++)

								{

										Task.Delay(2).Wait();

										sum	+=	i;

								}

								Console.WriteLine($"loop	{x}	finished");

						});

		}

		catch	(OperationCanceledException	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

When	you	run	the	application,	you	get	output	like	the	following.	Iteration	0,	50,
25,	75,	and	1	were	all	started.	This	is	on	a	system	with	a	quad-core	CPU.	With
the	cancellation,	all	other	iterations	were	canceled	before	starting.	The	iterations
that	were	started	are	allowed	to	finish	because	cancellation	is	always	done	in	a
cooperative	way	to	avoid	the	risk	of	resource	leaks	when	iterations	are	canceled
somewhere	in	between:

loop	36	started

loop	12	started

loop	72	started

loop	24	started

loop	48	started

loop	60	started

loop	0	started

loop	84	started

loop	96	started

***	cancellation	activated

loop	12	finished

loop	60	finished

loop	36	finished

loop	72	finished

loop	96	finished

loop	84	finished

loop	24	finished

loop	48	finished

loop	0	finished

The	operation	was	canceled.

Cancellation	of	Tasks
The	same	cancellation	pattern	is	used	with	tasks.	First,	a	new
CancellationTokenSource	is	created.	If	you	need	just	one	cancellation	token,
you	can	use	a	default	token	by	accessing	Task.Factory.CancellationToken.
Then,	like	the	previous	code,	the	task	is	canceled	after	500	milliseconds.	The
task	doing	the	major	work	within	a	loop	receives	the	cancellation	token	via	the
TaskFactory	object.	The	cancellation	token	is	assigned	to	the	TaskFactory	by

setting	it	in	the	constructor.	This	cancellation	token	is	used	by	the	task	to	check
whether	cancellation	is	requested	by	checking	the	IsCancellationRequested
property	of	the	CancellationToken	(code	file
ParallelSamples/CancellationSamples/Program.cs):

public	void	CancelTask()

{

		CancellationTokenSource	cts	=	new(millisecondsDelay:	500);

		cts.Token.Register(()	=>	Console.WriteLine("***	task	

canceled"));

		Task	t1	=	Task.Run(()	=>

		{

				Console.WriteLine("in	task");

				for	(int	i	=	0;	i	<	20;	i++)

				{

						Task.Delay(100).Wait();

						CancellationToken	token	=	cts.Token;

						if	(token.IsCancellationRequested)

						{

								Console.WriteLine("cancelling	was	requested,	"	+

										"cancelling	from	within	the	task");

								token.ThrowIfCancellationRequested();

								break;

						}

						Console.WriteLine("in	loop");

				}

				Console.WriteLine("task	finished	without	cancellation");

		},	cts.Token);

	

		try

		{

				t1.Wait();

		}

		catch	(AggregateException	ex)

		{

				Console.WriteLine($"exception:	{ex.GetType().Name},	

{ex.Message}");

				foreach	(var	innerException	in	ex.InnerExcepstions)

				{

						Console.WriteLine($"inner	exception:	

{ex.InnerException.GetType()},"	+

								$"{ex.InnerException.Message}");

				}

		}

}

When	you	run	the	application,	you	can	see	that	the	task	starts,	runs	for	a	few
loops,	and	gets	the	cancellation	request.	The	task	is	canceled	and	throws	a
TaskCanceledException,	which	is	initiated	from	the	method	call
ThrowIfCancellationRequested.	With	the	caller	waiting	for	the	task,	you	can
see	that	the	exception	AggregateException	is	caught	and	contains	the	inner
exception	TaskCanceledException.	This	is	used	for	a	hierarchy	of	cancellations
—for	example,	if	you	run	a	Parallel.For	within	a	task	that	is	canceled	as	well.
The	final	status	of	the	task	is	Canceled	:

in	task

in	loop

in	loop

in	loop

in	loop

***	task	canceled

cancelling	was	requested,	cancelling	from	within	the	task

exception:	AggregateException,	One	or	more	errors	occurred.	(A	

task	was	canceled.)

inner	exception:	System.Threading.Tasks.TaskCanceledException,	A	

task	was	canceled.

CHANNELS
In	many	applications,	you	have	a	producer/consumer	scenario.	One	task
produces	data,	and	another	task	consumes	and	processes	the	data.	In	Chapter	11,
you	can	read	about	a	device	simulation	where	a	device	streams	sensor	data,	and
this	data	is	consumed	using	async	streams.	Here,	you've	seen	syntax
enhancements	with	C#	as	the	foreach	statement	was	extended	with	await
foreach,	and	the	yield	statement	was	extended	to	support
IAsyncEnumerable<T>	and	IAsyncEnumerator<T>.

With	a	producer/consumer	scenario	based	on	the	data	you	deal	with,	there	are
different	requirements.	Is	it	necessary	to	deal	with	data	in	a	fast	pace?	Is	it	okay
to	ignore	data	if	processing	is	not	fast	enough,	or	is	it	required	to	process	every
item?	Should	data	be	ignored	if	it	is	already	too	old	and	new	values	can	be
retrieved?	What's	the	optimal	size	of	the	buffer?	Should	the	size	of	the	buffer
change	dynamically?

Without	requiring	that	you	do	a	custom	implementation,
System.Threading.Channels	offers	great	flexibility.	A	channel	stores	data
written	from	a	producer	and	allows	reading	data	using	a	consumer.	This	library
offers	unbounded	channels,	which	grow	dynamically	as	needed	until	no	more

memory	is	available,	and	bounded	channels	with	a	fixed	size.

Creating	Bounded	and	Unbounded	Channels
Let's	look	at	a	sample	application	before	going	into	some	of	the	features	offered.
The	sample	data	that's	written	and	read	from	the	channel	is	a	record	(code	file
ParallelSamples/ChannelSample/Program.cs):

public	record	SomeData(string	Text,	int	Number);

An	unbounded	channel	is	created	with	the	class	Channel	invoking	the	static
method	CreateUnbounded.	This	method	returns	a	class	that	derives	from	the
abstract	generic	class	Channel<T>.	Optionally,	you	can	pass	settings	with
UnboundedChannelOptions	to	specify	whether	only	a	single	writer	or	a	single
reader	is	used.	Depending	on	the	settings,	different	implementations	are	used
regarding	thread	safety.	Be	aware	that	if	you	set	both	values	to	true,	you	cannot
read	and	write	concurrently.	The	Channel<T>	class	returned	from	the	creation
method	defines	a	Reader	and	a	Writer	property	that	you	can	use	to	read	from
and	write	to	the	channel	(code	file
ParallelSamples/ChannelSample/Program.cs):

Channel<SomeData>	channel	=	Channel.CreateUnbounded<SomeData>(

		new	UnboundedChannelOptions()	{	SingleReader	=	false,	

SingleWriter	=	true,	});

	

Console.WriteLine("Using	the	unbounded	channel");

	

var	t1	=	ChannelSample.WriteSomeDataAsync(channel.Writer);

var	t2	=	ChannelSample.ReadSomeDataAsync(channel.Reader);

	

await	Task.WhenAll(t1,	t2);

When	you	create	a	bounded	channel,	you	specify	the	number	of	items	the
channel	should	hold	by	specifying	the	capacity	with	the	constructor.	In	addition,
you	specify	options	with	BoundedChannelOptions.	Similarly	to	the	unbounded
channel,	with	the	bounded	channel	you	can	specify	whether	just	one	reader	or
writer	is	used.	Another	option	you	specify	is	the	FullMode	property	with	one
value	of	the	BoundedChannelFullMode	enum	as	discussed	next:

Channel<SomeData>	channel	=	Channel.CreateBounded<SomeData>(

		new	BoundedChannelOptions(capacity:	10)	

		{	

				FullMode	=	BoundedChannelFullMode.Wait,	

				SingleWriter	=	true	

		});

What	happens	if	you	try	to	write	to	the	channel,	but	the	channel	is	already	full?
Of	course,	the	unbounded	channel	cannot	be	full;	it's	resized	until	your
application	runs	out	of	memory.	With	the	bounded	channel,	there	are	different
scenarios.	You	can	write	to	the	channel	with	the	TryWrite	method	and	the
WriteAsync	method.	The	TryWrite	method	returns	true	or	false,	depending	on
whether	it's	successful.	With	the	default	settings,	the	TryWrite	method	fails	to
write	if	the	channel	is	at	its	capacity.	The	WriteAsync	method	just	waits	until
some	data	is	read	and	there's	capacity	available	to	write	the	data.	The	default
setting	with	BoundedChannelFullMode	is	Wait.

Depending	on	the	data	you	are	dealing	with,	you	might	prefer	other	options.	For
example,	if	the	producer	writes	new	values	that	make	the	older	data	not	that
interesting	anymore,	you	can	decide	to	drop	the	oldest	data	that	hasn't	been	read.
You	use	the	DropOldest	enum	value	for	this	setting.	You	can	also	drop	the
newest	data	(DropNewest)	or	drop	the	data	that's	just	written	(DropWrite).	In	all
these	cases,	TryWrite	is	successful	(although	the	just	written	data	can	be
dropped),	and	WriteAsync	succeeds	faster.

Writing	to	the	Channel
With	the	sample	application,	the	method	WriteSomeDataAsync	receives	the
generic	ChannelWriter	with	its	parameter	and	writes	data	to	the	channel	using
the	WriteAsync	method	in	a	for	loop.	The	Complete	method	informs	the
channel	that	no	more	data	is	going	to	be	written.	To	implement	a	more	natural
experience	with	this	sample	code,	a	random	time	up	to	50	milliseconds	is	used	as
a	delay	before	every	write	is	done	in	the	loop	(code	file
ParallelSamples/ChannelSample/ChannelSample.cs):

public	static	Task	WriteSomeDataAsync(ChannelWriter<SomeData>	

writer)	=>

		Task.Run(async	()	=>

		{

				for	(int	i	=	0;	i	<	100;	i++)

				{

						Random	r	=	new();

						SomeData	data	=	new($"text	{i}",	i);

						await	Task.Delay(r.Next(50));

						await	writer.WriteAsync(data);

						Console.WriteLine($"Written	{data.Text}");

				}

				writer.Complete();

				Console.WriteLine("Writing	completed");

		});

With	the	implementation	of	the	method	WriteSomeDataWithTryWriteAsync,	the
TryWrite	method	is	used	to	write	data	to	the	channel.	With	this	method,	it	needs
to	be	checked	whether	the	writing	was	successful.	Remember,	with	a	bounded
channel,	if	the	channel	is	at	its	capacity,	with	BoundedChannelFullMode.Wait,
the	TryWrite	method	fails	to	add	the	item	and	returns	false	:

public	static	Task	

WriteSomeDataWithTryWriteAsync(ChannelWriter<SomeData>	writer)	

=>

		Task.Run(async	()	=>

		{

				for	(int	i	=	0;	i	<	100;	i++)

				{

						Random	r	=	new();

						SomeData	data	=	new($"text	{i}",	i);

						await	Task.Delay(r.Next(50));

						if	(!writer.TryWrite(data))

						{

								Console.WriteLine($"could	not	write	{data.Number},	

channel	full");

						}

						else

						{

								Console.WriteLine($"Written	{data.Text}");

						}

				}

				writer.Complete();

				Console.WriteLine("Writing	completed");

		});

Reading	from	the	Channel
With	the	implementation	of	the	reader,	a	separate	task	is	created	to	read	from	the
channel.	The	ReadAsync	method	waits	until	some	data	can	be	retrieved.	Before
reading	the	data,	a	delay	is	used.	The	delay	on	reading	the	data	is	randomly
larger	than	the	delay	on	writing	to	the	queue,	which	allows	you	to	see	that	the
capacity	is	filled	over	time,	and	items	can	be	dropped	(code	file
ParallelSamples/ChannelSample/ChannelSample.cs):

public	static	Task	ReadSomeDataAsync(ChannelReader<SomeData>	

reader)	=>

		Task.Run(async	()	=>

		{

				try

				{

						Console.WriteLine("Start	reading…");

						Random	r	=	new();

						while	(true)

						{

								await	Task.Delay(r.Next(80));

								var	data	=	await	reader.ReadAsync();

								Console.WriteLine($"read:	{data.Text},	available	items:	

{reader.Count}");

						}

				}

				catch	(ChannelClosedException)

				{

						Console.WriteLine("channel	closed");

				}

		});

Async	Streaming	with	the	Channel
Chapter	13,	“Managed	and	Unmanaged	Memory,”	covers	async	streaming.	You
can	use	this	C#	feature	with	channels	as	well.	The	ChannelReader	method
ReadAllAsync	returns	IAsyncEnumerable<T>,	which	allows	using	the	await
foreach	statement	to	asynchronously	iterate	through	all	the	items	(code	file
ParallelSamples/ChannelSample/ChannelSample.cs):

public	static	Task	

ReadSomeDataUsingAsyncStreams(ChannelReader<SomeData>	reader)	=>				

		Task.Run(async	()	=>

		{

				try

				{

						Console.WriteLine("Start	reading…");

						Random	r	=	new();

						await	foreach	(var	data	in	reader.ReadAllAsync())

						{

								await	Task.Delay(r.Next(80));

								Console.WriteLine($"read:	{data.Text}	available	items:	

{reader.Count}");

						}

				}

				catch	(ChannelClosedException)

				{

						Console.WriteLine("channel	closed");

				}

		});

TIMERS
With	a	timer,	you	can	do	a	repeat	invocation	of	a	method.	Two	timers	will	be
covered	in	this	section:	the	Timer	class	from	the	System.Threading	namespace
and	the	DispatcherTimer	for	XAML-based	apps.

Using	the	Timer	Class
When	you	use	the	System.Threading.Timer	class,	you	can	pass	the	method	to
be	invoked	as	the	first	parameter	in	the	constructor.	This	method	must	fulfill	the
requirements	of	the	TimerCallback	delegate,	which	defines	a	void	return	type
and	an	object	parameter.	With	the	second	parameter	of	the	constructor,	you	can
pass	any	object,	which	is	then	received	with	the	object	argument	in	the	callback
method.	For	example,	you	can	pass	an	Event	object	to	signal	the	caller.	The	third
parameter	specifies	the	time	span	during	which	the	callback	should	be	invoked
the	first	time.	With	the	last	parameter,	you	specify	the	repeating	interval	for	the
callback.	If	the	timer	should	fire	only	once,	set	the	fourth	parameter	to	the	value
–1.

If	the	time	interval	should	be	changed	after	creating	the	Timer	object,	you	can
pass	new	values	with	the	Change	method	(code	file
ParallelSamples/TimersSample/Program.cs):

private	static	void	ThreadingTimer()

{

		void	TimeAction(object?	o)	=>

				Console.WriteLine($"System.Threading.Timer	

{DateTime.Now:T}");		

	

		using	Timer	t1	=	new(

				TimeAction,	

				null,

				dueTime:	TimeSpan.FromSeconds(2),	

				period:	TimeSpan.FromSeconds(3)))

		{

				Task.Delay(15000).Wait();

		}

}

WinUI	Dispatcher	Timer

The	DispatcherTimer	from	the	namespace	Microsoft.UI.Xaml	(for	WinUI
apps)	is	a	timer	for	XAML-based	apps	where	the	event	handler	is	called	within
the	UI	thread;	thus,	it	is	possible	to	directly	access	user	interface	elements.

The	sample	application	to	demonstrate	DispatcherTimer	is	a	Windows	app	that
shows	the	hand	of	a	clock	that	switches	every	second.	The	following	XAML
code	defines	the	commands	that	enable	you	to	start	and	stop	the	clock	(code	file
ParallelSamples/WindowsAppTimer/MainWindow.xaml):

<CommandBar	IsOpen="True">

		<AppBarButton	Icon="Play"	Click="{x:Bind	OnStartTimer}"	

Label="Play"/>

		<AppBarButton	Icon="Stop"	Click="{x:Bind	OnStopTimer}"	

Label="Stop"/>

</CommandBar>

<Page.TopAppBar>

The	hand	of	the	clock	is	defined	using	the	shape	Line.	To	rotate	the	line,	you	use
a	RotateTransform	element	that	is	bound	to	the	TimerAngle	property:

<Canvas	Width="300"	Height="300"	Grid.Row="1">

		<Ellipse	Width="10"	Height="10"	Fill="Red"	Canvas.Left="145"	

Canvas.Top="145"/>

				<Line	Canvas.Left="150"	Canvas.Top="150"	Fill="Green"	

StrokeThickness="3"	

						Stroke="Blue"	X1="0"	Y1="0"	X2="120"	Y2="0">

						<Line.RenderTransform>

								<RotateTransform	CenterX="0"	CenterY="0"	Angle="{x:Bind	

TimerAngle,	Mode=OneWay}"	

										x:Name="rotate"/>

						</Line.RenderTransform>

				</Line>

</Canvas>

NOTE WinUI	applications	and	the	interface	INotifyPropertyChanged
are	introduced	in	Chapter	29,	“Windows	Apps.”	XAML	shapes	are	explained
in	Chapter	31,	“Styling	Windows	Apps.”

The	DispatcherTimer	object	is	created	in	the	MainWindow	class.	In	the
constructor,	the	handler	method	OnTick	is	assigned	to	the	Tick	event,	and	the
Interval	is	specified	to	be	one	second.	The	timer	is	started	in	the	OnTimer
method—the	method	that	gets	called	when	the	user	clicks	the	Play	button	in	the
CommandBar.	When	the	tick	event	is	fired,	in	the	OnTick	method,	the	property
TimerAngle	gets	updated.	This	property	fires	the	PropertyChanged	event	that's

defined	by	the	interface	INotifyPropertyChanged	to	bring	this	update	to	the
user	interface	(code	file
ParallelSamples/WindowsAppTimer/MainPage.xaml.cs):

public	sealed	partial	class	MainWindow	:	Window,	

INotifyPropertyChanged

{

		private	DispatcherTimer	_timer	=	new();

	

		public	event	PropertyChangedEventHandler?	PropertyChanged;

	

		public	MainWindow()

		{

				this.Title	=	"WinUI	Dispatcher	Timer	App";

				this.InitializeComponent();

				_timer.Tick	+=	OnTick;

				_timer.Interval	=	TimeSpan.FromSeconds(1);

		}

	

		private	void	OnStartTimer()	=>	_timer.Start();

	

		private	double	_timerAngle;

		public	double	TimerAngle

		{

				get	=>	_timerAngle;

				set

				{

						if	(!EqualityComparer<double>.Default.Equals(_timerAngle,	

value))

						{

								_timerAngle	=	value;

								PropertyChanged?.Invoke(this,	new	

PropertyChangedEventArgs(nameof(TimerAngle)));

						}

				}

		}

	

		private	void	OnTick(object?	sender,	object	e)	=>	

				TimerAngle	=	(TimerAngle	+	6)	%	360;

	

	

		private	void	OnStopTimer()	=>	_timer.Stop();

}

When	you	run	the	application,	the	clock	hand	is	shown	(see	Figure	17-1).

FIGURE	17-1

THREADING	ISSUES
Programming	with	multiple	threads	is	challenging.	When	starting	multiple
threads	that	access	the	same	data,	you	can	get	intermittent	problems	that	are	hard
to	find.	The	problems	are	the	same	whether	you	use	tasks,	Parallel	LINQ,	or	the
Parallel	class.	To	avoid	getting	into	trouble,	you	must	pay	attention	to
synchronization	issues	and	the	problems	that	can	occur	with	multiple	threads.
This	section	covers	two	in	particular:	race	conditions	and	deadlocks.

A	race	condition	results	in	inconsistent	outcome	of	the	application	where	results
are	invalid,	and	the	issue	only	happens	from	time	to	time.	Deadlocks	happen
when	two	threads	block	each	other,	and	none	of	them	can	continue.

You	can	start	the	sample	application	ThreadingIssues	with	command-line
arguments	to	simulate	either	race	conditions	or	deadlocks.

Race	Conditions
A	race	condition	can	occur	if	two	or	more	threads	access	the	same	objects	and
access	to	the	shared	state	is	not	synchronized.	To	demonstrate	a	race	condition,
the	following	example	defines	the	class	StateObject	with	an	int	field	and	the
method	ChangeState.	In	the	implementation	of	ChangeState,	the	state	variable
is	verified	to	determine	whether	it	contains	5;	if	it	does,	the	value	is	incremented.
Trace.Assert	is	the	next	statement,	which	immediately	verifies	that	state	now
contains	the	value	6.

After	incrementing	by	1	a	variable	that	contains	the	value	5,	you	might	assume
that	the	variable	now	has	the	value	6;	but	this	is	not	necessarily	the	case.	For
example,	if	one	thread	has	just	completed	the	if	(_state	==	5)	statement,	it
might	be	preempted,	with	the	scheduler	running	another	thread.	The	second
thread	now	goes	into	the	if	body	and,	because	the	state	still	has	the	value	5,	the
state	is	incremented	by	1	to	6.	The	first	thread	is	then	scheduled	again,	and	in	the
next	statement,	the	state	is	incremented	to	7.	This	is	when	the	race	condition
occurs,	and	the	assert	message	is	shown	(code	file
SynchronizationSamples/ThreadingIssues/StateObject.cs):

public	class	StateObject

{

		private	int	_state	=	5;

		public	void	ChangeState(int	loop)

		{

				if	(_state	==	5)

				{

						_state++;

						if	(_state	!=	6)

						{

								Console.WriteLine($"Race	condition	occurred	after	{loop}	

loops");

								Trace.Fail("race	condition");

						}

				}

				_state	=	5;

		}

}

You	can	verify	this	by	defining	a	method	for	a	task.	The	method	RaceCondition
of	the	class	SampleTask	gets	a	StateObject	as	a	parameter.	Inside	an	endless
while	loop,	the	ChangeState	method	is	invoked.	The	variable	i	is	used	just	to
show	the	loop	number	in	the	assert	message	(code	file
SynchronizationSamples/ThreadingIssues/TaskWithRaceCondition.cs):

public	class	TaskWithRaceCondition

{

		public	void	RaceCondition(object	o)

		{

				if	(o	is	not	StateObject	state)	

						throw	new	ArgumentException("o	must	be	a	StateObject");

				else

				{

						Console.WriteLine("starting	RaceCondition	-	when	does	the	

issue	occur?");

	

						int	i	=	0;

						while	(true)

						{

								if	(!state.ChangeState(i++))

								{

										i	=	0;

								}

						}

				}

		}

}

In	the	method	RaceConditons,	a	new	StateObject	is	created	that	is	shared
among	all	the	tasks.	Task	objects	are	created	by	invoking	the	RaceCondition
method	with	the	lambda	expression	that	is	passed	to	the	Run	method	of	the	Task.
The	main	thread	then	waits	for	user	input.	However,	there's	a	good	chance	that
the	program	will	halt	before	reading	user	input	because	a	race	condition	will
happen	(code	file	SynchronizationSamples/ThreadingIssues/Program.cs):

public	void	RaceConditions()

{

		StateObject	state	=	new();

		for	(int	i	=	0;	i	<	2;	i++)

		{

				Task.Run(()	=>	new	

TaskWithRaceCondition().RaceCondition(state));

		}

}

When	you	start	the	program,	you	get	race	conditions.	How	long	it	takes	until	the
first	race	condition	happens	depends	on	your	system	and	whether	you	build	the
program	as	a	release	build	or	a	debug	build.	With	a	release	build,	the	problem
happens	more	often	because	the	code	is	optimized.	If	you	have	multiple	CPUs	in
your	system	or	dual-/quad-core	CPUs,	where	multiple	threads	can	run
concurrently,	the	problem	also	occurs	more	often	than	with	a	single-core	CPU.
The	problem	occurs	with	a	single-core	CPU	because	thread	scheduling	is
preemptive,	but	the	problem	doesn't	occur	that	often.

In	one	run	of	the	program	on	my	system,	I	saw	the	first	error	after	18,205	loops;
after	resetting	to	continue	looping,	the	next	error	manifested	after	67,411	loops.
You	always	get	different	results.

You	can	avoid	the	problem	by	locking	the	shared	object.	You	do	this	inside	the
thread	by	locking	the	variable	state,	which	is	shared	among	the	threads,	with	the
lock	statement,	as	shown	in	the	following	example.	Only	one	thread	can	exist
inside	the	lock	block	for	the	state	object.	Because	this	object	is	shared	among	all
threads,	a	thread	must	wait	at	the	lock	if	another	thread	has	the	lock	for	state.	As
soon	as	the	lock	is	accepted,	the	thread	owns	the	lock	and	gives	it	up	at	the	end
of	the	lock	block.	If	every	thread	changing	the	object	referenced	with	the	state
variable	is	using	a	lock,	the	race	condition	no	longer	occurs:

public	class	TaskWithRaceConditions

{

		public	void	RaceCondition(object	o)

		{

				if	(o	is	not	StateObject	state)	

						throw	new	ArgumentException("o	must	be	a	StateObject");

				else

				{

						int	i	=	0;

						while	(true)

						{

								lock	(state)	//	no	race	condition	with	this	lock

								{

										state.ChangeState(i++);

								}

						}

				}

		}

}

NOTE With	the	downloaded	sample	code,	you	need	to	uncomment	the
lock	statements	for	solving	the	issues	with	race	conditions.

Instead	of	performing	the	lock	when	using	the	shared	object,	you	can	make	the
shared	object	thread-safe.	In	the	following	code,	the	ChangeState	method
contains	a	lock	statement.	Because	you	cannot	lock	the	state	variable	itself
(only	reference	types	can	be	used	for	a	lock),	the	variable	_	sync	of	type	object
is	defined	and	used	with	the	lock	statement.	If	a	lock	is	done	using	the	same
synchronization	object	every	time	the	value	state	is	changed,	race	conditions	no
longer	happen:

public	class	StateObject

{

		private	int	_state	=	5;

		private	object	_sync	=	new();

		public	void	ChangeState(int	loop)

		{

				lock	(_sync)

				{

						if	(_state	==	5)

						{

								_state++;

								if	(_state	!=	6)

								{

										Console.WriteLine($"Race	condition	occurred	after	

{loop}	loops");

										Trace.Fail($"race	condition	at	{loop}");

								}

						}

						_state	=	5;

				}

		}

}

Deadlocks
Too	much	locking	can	get	you	in	trouble	as	well.	In	a	deadlock,	at	least	two
threads	halt	and	wait	for	each	other	to	release	a	lock.	As	both	threads	wait	for
each	other,	a	deadlock	occurs,	and	the	threads	wait	endlessly.

To	demonstrate	deadlocks,	the	following	code	instantiates	two	objects	of	type
StateObject	and	passes	them	with	the	constructor	of	the	SampleTask	class.	Two
tasks	are	created:	one	task	running	the	method	Deadlock1,	and	the	other	task

running	the	method	Deadlock2	(code	file
SynchronizationSamples/ThreadingIssues/Program.cs):

StateObject	state1	=	new();

StateObject	state2	=	new();

new	Task(new	SampleTask(state1,	state2).Deadlock1).Start();

new	Task(new	SampleTask(state1,	state2).Deadlock2).Start();

The	methods	Deadlock1	and	Deadlock2	now	change	the	state	of	two	objects:	s1
and	s2.	That's	why	two	locks	are	generated.	Deadlock1	first	does	a	lock	for	s1
and	next	for	s2.	Deadlock2	first	does	a	lock	for	s2	and	then	for	s1.	Occasionally,
the	lock	for	s1	in	Deadlock1	is	resolved.	Next,	a	thread	switch	occurs,	and
Deadlock2	starts	to	run	and	gets	the	lock	for	s2.	The	second	thread	now	waits	for
the	lock	of	s1.	Because	it	needs	to	wait,	the	thread	scheduler	schedules	the	first
thread	again,	which	now	waits	for	s2.	Both	threads	wait	and	don't	release	the
lock	as	long	as	the	lock	block	is	not	ended.	This	is	a	typical	deadlock	(code	file
SynchronizationSamples/ThreadingIssues/TaskWithDeadlock.cs):

public	class	TaskWithDeadlock

{

		public	SampleTask(StateObject	s1,	StateObject	s2)	=	(_s1,	_s2)	

=	(s1,	s2);

		private	readonly	StateObject	_s1;

		private	readonly	StateObject	_s2;

	

		public	void	Deadlock1()

		{

				int	i	=	0;

				while	(true)

				{

						lock	(_s1)

						{

								lock	(_s2)

								{

										_s1.ChangeState(i);

										_s2.ChangeState(i++);

										Console.WriteLine($"still	running,	{i}");

								}

						}

				}

		}

	

		public	void	Deadlock2()

		{

				int	i	=	0;

				while	(true)

				{

						lock	(_s2)

						{

								lock	(_s1)

								{

										_s1.ChangeState(i);

										_s2.ChangeState(i++);

										Console.WriteLine($"still	running,	{i}");

								}

						}

				}

		}

}

As	a	result,	the	program	runs	some	loops	and	soon	becomes	unresponsive.	The
message	“still	running”	is	written	a	few	times	to	the	console.	Again,	how	soon
the	problem	occurs	depends	on	your	system	configuration,	and	the	result	will
vary.

A	deadlock	problem	is	not	always	as	obvious	as	it	is	here.	One	thread	locks	_	s1
and	then	_s2	;	the	other	thread	locks	_s2	and	then	_s1.	In	this	case,	you	just	need
to	change	the	order	so	that	both	threads	perform	the	locks	in	the	same	order.	In	a
bigger	application,	the	locks	might	be	hidden	deeply	inside	a	method,	thread	1
locks	_s1	and	_s2,	thread	2	locks	_s2	and	_s3,	and	thread	3	locks	_s3	and	_s1.

You	can	prevent	deadlocks	by	reducing	the	number	of	lock	objects	(for	example,
one	lock	object	to	synchronize	access	to	state	_s1	and	_s2),	by	designing	a	good
lock	order	in	the	initial	architecture	of	the	application,	and	by	defining	timeouts
for	the	locks,	as	demonstrated	in	the	next	section.

INTERLOCKED
Instead	of	using	the	lock	keyword	for	simple	scenarios,	there's	a	faster	option.
The	Interlocked	class	is	used	to	make	simple	statements	for	variables	atomic.	i
++	is	not	thread-safe.	It	consists	of	getting	a	value	from	the	memory,
incrementing	the	value	by	1,	and	storing	the	value	back	in	memory.	These
operations	can	be	interrupted	by	the	thread	scheduler.	The	Interlocked	class
provides	methods	for	incrementing,	decrementing,	exchanging,	and	reading
values	in	a	thread-safe	manner.

Using	the	Interlocked	class	is	much	faster	than	other	synchronization
techniques.	However,	you	can	use	it	only	for	simple	synchronization	issues.

For	example,	instead	of	performing	incrementing	inside	a	lock	statement	as
shown	here:

public	int	State

{

		get

		{

				lock	(this)

				{

						return	++_state;

				}

		}

}

you	can	use	Interlocked.Increment,	which	is	faster:

public	int	State

{

		get	=>	Interlocked.Increment(ref	_state);

}

MONITOR
The	C#	compiler	resolves	the	lock	statement	to	use	the	Monitor	class.	The
following	lock	statement

lock	(obj)

{

		//	synchronized	region	for	obj

}

is	resolved	to	invoke	the	Enter	method,	which	waits	until	the	thread	gets	the
lock	of	the	object.	Only	one	thread	at	a	time	may	be	the	owner	of	the	object	lock.
As	soon	as	the	lock	is	resolved,	the	thread	can	enter	the	synchronized	section.
The	Exit	method	of	the	Monitor	class	releases	the	lock.	The	compiler	puts	the
Exit	method	into	a	finally	handler	of	a	try	block	so	that	the	lock	is	also
released	if	an	exception	is	thrown:

Monitor.Enter(obj);

try

{

		//	synchronized	region	for	obj

}

finally

{

		Monitor.Exit(obj);

}

NOTE Chapter	10,	“Errors	and	Exceptions,”	covers	the	try	/	finally
block.

The	Monitor	class	has	a	big	advantage	over	the	lock	statement	of	C#:	you	can
add	a	timeout	value	for	waiting	to	get	the	lock.	Therefore,	instead	of	endlessly
waiting	to	get	the	lock,	you	can	use	the	TryEnter	method	shown	in	the	following
example,	passing	a	timeout	value	that	defines	the	maximum	amount	of	time	to
wait	for	the	lock.	If	the	lock	for	obj	is	acquired,	TryEnter	sets	the	Boolean	ref
parameter	to	true	and	performs	synchronized	access	to	the	state	guarded	by	the
object	obj.	If	obj	is	locked	for	more	than	500	milliseconds	by	another	thread,
TryEnter	sets	the	variable	_lockTaken	to	false,	and	the	thread	does	not	wait
any	longer	but	is	used	to	do	something	else.	Maybe	later,	the	thread	can	try	to
acquire	the	lock	again.

bool	_lockTaken	=	false;

Monitor.TryEnter(_obj,	500,	ref	_lockTaken);

if	(_lockTaken)

{

		try

		{

				//	acquired	the	lock

				//	synchronized	region	for	obj

		}

		finally

		{

				Monitor.Exit(obj);

		}

}

else

{

		//	didn't	get	the	lock,	do	something	else

}

SPINLOCK
If	the	overhead	on	object-based	lock	objects	(Monitor)	would	be	too	high
because	of	garbage	collection,	you	can	use	the	SpinLock	struct.	SpinLock	is
designed	with	the	idea	that	thread	context	switches	are	expensive	operations,	and
for	short	locks	it's	faster	to	use	CPU	cycles	(spin)	for	the	wait.	With	this

architecture,	SpinLock	is	useful	if	you	have	many	locks	(for	example,	for	every
node	in	a	list)	and	hold	times	are	always	extremely	short.	You	should	avoid
holding	more	than	one	SpinLock,	and	don't	call	anything	that	might	block.

Other	than	the	architectural	differences,	SpinLock	is	similar	in	usage	to	the
Monitor	class.	You	acquire	the	lock	with	Enter	or	TryEnter	and	release	the	lock
with	Exit.	SpinLock	also	offers	two	properties	to	provide	information	about
whether	it	is	currently	locked:	IsHeld	and	IsHeldByCurrentThread.

NOTE Be	careful	when	passing	SpinLock	instances	around.	Because
SpinLock	is	defined	as	a	struct,	assigning	one	variable	to	another	creates	a
copy.	Always	pass	SpinLock	instances	by	reference.

WAITHANDLE
WaitHandle	is	an	abstract	base	class	that	you	can	use	to	wait	for	a	signal	to	be
set.	You	can	wait	for	different	things	because	WaitHandle	is	a	base	class	and
some	classes	are	derived	from	it.

With	WaitHandle,	you	can	wait	for	one	signal	to	occur	(WaitOne),	multiple
objects	that	all	must	be	signaled	(WaitAll),	or	one	of	multiple	objects	(WaitAny).
WaitAll	and	WaitAny	are	static	members	of	the	WaitHandle	class	and	accept	an
array	of	WaitHandle	parameters.

WaitHandle	has	a	SafeWaitHandle	property	with	which	you	can	assign	a	native
handle	to	an	operating	system	resource	and	wait	for	that	handle.	For	example,
you	can	assign	a	SafeFileHandle	to	wait	for	a	file	I/O	operation	to	complete.

The	classes	Mutex,	EventWaitHandle,	and	Semaphore	are	derived	from	the	base
class	WaitHandle,	so	you	can	use	any	of	these	with	waits.

MUTEX
Mutex	(mutual	exclusion)	is	one	of	the	classes	that	offers	synchronization	across
multiple	processes.	It	is	similar	to	the	Monitor	class	in	that	there	is	just	one
owner.	That	is,	only	one	thread	can	get	a	lock	on	the	mutex	and	access	the
synchronized	code	regions	that	are	secured	by	the	mutex.

With	the	constructor	of	the	Mutex	class,	you	can	define	whether	the	mutex
should	initially	be	owned	by	the	calling	thread,	define	a	name	for	the	mutex,	and

determine	whether	the	mutex	already	exists.	In	the	following	example,	the	third
parameter	is	defined	as	an	out	parameter	to	receive	a	Boolean	value	if	the	mutex
was	newly	created.	If	the	value	returned	is	false,	the	mutex	was	already
defined.	The	mutex	might	be	defined	in	a	different	process	because	a	mutex	with
a	name	is	known	to	the	operating	system	and	is	shared	among	different
processes.	If	no	name	is	assigned	to	the	mutex,	the	mutex	is	unnamed	and	not
shared	among	different	processes.

using	Mutex	mutex	=	new(false,	"ProCSharpMutex",	out	bool	

createdNew);

To	open	an	existing	mutex,	you	can	also	use	the	method	Mutex.OpenExisting,
which	doesn't	require	the	same	.NET	privileges	as	creating	the	mutex	with	the
constructor.

Because	the	Mutex	class	derives	from	the	base	class	WaitHandle,	you	can	do	a
WaitOne	to	acquire	the	mutex	lock	and	be	the	owner	of	the	mutex	during	that
time.	The	mutex	is	released	by	invoking	the	ReleaseMutex	method:

if	(mutex.WaitOne())

{

		try

		{

		//	synchronized	region

		}

		finally

		{

				mutex.ReleaseMutex();

		}

}

else

{

		//	some	problem	happened	while	waiting

}

Because	a	named	mutex	is	known	system-wide,	you	can	use	it	to	keep	an
application	from	being	started	twice.	In	the	following	console	application,	the
constructor	of	the	Mutex	object	is	invoked.	Then	it	is	verified	whether	the	mutex
with	the	name	SingletonAppMutex	exists	already.	If	it	does,	the	application	exits
(code	file	SynchronizationSamples/SingletonUsingMutex/Program.cs):

Mutex	mutex	=	new(false,	"SingletonAppMutex",	out	bool	

mutexCreated);

if	(!mutexCreated)

{

		Console.WriteLine("You	can	only	start	one	instance	of	the	

application.");			

		await	Task.Delay(3000);							

		Console.WriteLine("Exiting.");

		return;

}

Console.WriteLine("Application	running");

Console.WriteLine("Press	return	to	exit");

Console.ReadLine();

SEMAPHORE
A	semaphore	is	similar	to	a	mutex,	but	unlike	the	mutex,	the	semaphore	can	be
used	by	multiple	threads	at	once.	A	semaphore	is	a	counting	mutex,	meaning	that
with	a	semaphore,	you	can	define	the	number	of	threads	that	are	allowed	to
access	the	resource	guarded	by	the	semaphore	simultaneously.	This	is	useful	if
you	need	to	limit	the	number	of	threads	that	can	access	the	available	resources.
For	example,	if	a	system	has	three	physical	I/O	ports	available,	three	threads	can
access	them	simultaneously,	but	a	fourth	thread	needs	to	wait	until	the	resource
is	released	by	one	of	the	other	threads.

.NET	provides	two	classes	with	semaphore	functionality:	Semaphore	and
SemaphoreSlim.	Semaphore	can	be	named,	can	use	system-wide	resources,	and
allows	synchronization	between	different	processes.	SemaphoreSlim	is	a
lightweight	version	that	is	optimized	for	shorter	wait	times.

In	the	following	example	application,	six	tasks	are	created	along	with	one
semaphore	with	a	count	of	three.	In	the	constructor	of	the	Semaphore	class,	you
can	define	the	count	for	the	number	of	locks	that	can	be	acquired	with	the
semaphore	(the	second	parameter)	and	the	number	of	locks	that	are	free	initially
(the	first	parameter).	If	the	first	parameter	has	a	lower	value	than	the	second
parameter,	the	difference	between	the	values	defines	the	already	allocated
semaphore	count.	As	with	the	mutex,	you	can	also	assign	a	name	to	the
semaphore	to	share	it	among	different	processes.	Here	a	SemaphoreSlim	object	is
created	that	can	be	used	only	within	the	process.	After	the	SemaphoreSlim	object
is	created,	six	tasks	are	started,	and	they	all	wait	for	the	same	semaphore	(code
file	SynchronizationSamples/SemaphoreSample/Program.cs):

int	taskCount	=	6;

int	semaphoreCount	=	3;

using	SemaphoreSlim	semaphore	=	new(semaphoreCount,	

semaphoreCount);

Task[]	tasks	=	new	Task[taskCount];

for	(int	i	=	0;	i	<	taskCount;	i++)

{

		tasks[i]	=	Task.Run(()	=>	TaskMain(semaphore));

}

Task.WaitAll(tasks);

Console.WriteLine("All	tasks	finished");

		//…

In	the	task's	main	method,	TaskMain,	the	task	does	a	Wait	to	lock	the	semaphore.
Remember	that	the	semaphore	has	a	count	of	three,	so	three	tasks	can	acquire	the
lock.	Task	4	must	wait,	and	here	the	timeout	of	600	milliseconds	is	defined	as
the	maximum	wait	time.	If	the	lock	cannot	be	acquired	after	the	wait	time	has
elapsed,	the	task	writes	a	message	to	the	console	and	repeats	the	wait	in	a	loop.
As	soon	as	the	lock	is	acquired,	the	thread	writes	a	message	to	the	console,
sleeps	for	some	time,	and	releases	the	lock.	Again,	with	the	release	of	the	lock	it
is	important	that	the	resource	be	released	in	all	cases.	That's	why	the	Release
method	of	the	SemaphoreSlim	class	is	invoked	in	a	finally	handler	(code	file
SynchronizationSamples/SemaphoreSample/Program.cs):

//	…

void	TaskMain(SemaphoreSlim	semaphore)

{

		bool	isCompleted	=	false;

		while	(!isCompleted)

		{

				if	(semaphore.Wait(600))

				{

						try

						{

								Console.WriteLine($"Task	{Task.CurrentId}	locks	the	

semaphore");

								Task.Delay(2000).Wait();

						}

						finally

						{

								Console.WriteLine($"Task	{Task.CurrentId}	releases	the	

semaphore");

								semaphore.Release();

								isCompleted	=	true;

						}

				}

				else

				{

						Console.WriteLine($"Timeout	for	task	{Task.CurrentId};	

wait	again");

				}

		}

}

When	you	run	the	application,	you	can	indeed	see	that	with	three	threads	the
lock	is	made	immediately.	The	tasks	with	IDs	4,	5,	and	6	must	wait.	The	wait
continues	in	the	loop	until	one	of	the	other	threads	releases	the	semaphore:

Task	3	locks	the	semaphore

Task	1	locks	the	semaphore

Task	2	locks	the	semaphore

Timeout	for	task	4;	wait	again

Timeout	for	task	5;	wait	again

Timeout	for	task	6;	wait	again

Timeout	for	task	4;	wait	again

Timeout	for	task	6;	wait	again

Timeout	for	task	4;	wait	again

Timeout	for	task	5;	wait	again

Timeout	for	task	6;	wait	again

Task	3	releases	the	semaphore

Task	1	releases	the	semaphore

Task	2	releases	the	semaphore

Task	4	locks	the	semaphore

Task	5	locks	the	semaphore

Task	6	locks	the	semaphore

Task	5	releases	the	semaphore

Task	6	releases	the	semaphore

Task	4	releases	the	semaphore

All	tasks	finished

EVENTS
Like	mutex	and	semaphore	objects,	events	are	also	system-wide	synchronization
resources.	For	using	system	events	from	managed	code,	.NET	offers	the	classes
ManualResetEvent,	AutoResetEvent,	ManualResetEventSlim,	and
CountdownEvent	in	the	namespace	System.Threading.

NOTE The	event	keyword	from	C#	that	is	covered	in	Chapter	7,
“Delegates,	Lambdas,	and	Events,”	has	nothing	to	do	with	the	event	classes
from	the	namespace	System.Threading;	the	event	keyword	is	based	on
delegates.	However,	both	event	classes	are	.NET	wrappers	to	the	system-
wide	native	event	resource	for	synchronization.

You	can	use	events	to	inform	other	tasks	that	some	data	is	present,	that
something	is	completed,	and	so	on.	An	event	can	be	signaled	or	not	signaled.	A
task	can	wait	for	the	event	to	be	in	a	signaled	state	with	the	help	of	the
WaitHandle	class,	discussed	earlier.

A	ManualResetEventSlim	is	signaled	by	invoking	the	Set	method,	and	it's
returned	to	a	nonsignaled	state	with	the	Reset	method.	If	multiple	threads	are
waiting	for	an	event	to	be	signaled	and	the	Set	method	is	invoked,	then	all
threads	waiting	are	released.	In	addition,	if	a	thread	invokes	the	WaitOne	method
but	the	event	is	already	signaled,	the	waiting	thread	can	continue	immediately.

An	AutoResetEvent	is	also	signaled	by	invoking	the	Set	method,	and	you	can
set	it	back	to	a	nonsignaled	state	with	the	Reset	method.	However,	if	a	thread	is
waiting	for	an	auto-reset	event	to	be	signaled,	the	event	is	automatically	changed
into	a	nonsignaled	state	when	the	wait	state	of	the	first	thread	is	finished.	This
way,	if	multiple	threads	are	waiting	for	the	event	to	be	set,	only	one	thread	is
released	from	its	wait	state.	It	is	not	the	thread	that	has	been	waiting	the	longest
for	the	event	to	be	signaled,	but	the	thread	waiting	with	the	highest	priority.

To	demonstrate	events	with	the	ManualResetEventSlim	class,	the	following
class	Calculator	defines	the	method	Calculation,	which	is	the	entry	point	for	a
task.	With	this	method,	the	task	receives	input	data	for	calculation	and	writes	the
result	to	the	Result	property.	As	soon	as	the	result	is	completed	(after	a	random
amount	of	time),	the	event	is	signaled	by	invoking	the	Set	method	of	the
ManualResetEventSlim	(code	file
SynchronizationSamples/EventSample/Calculator.cs):

public	class	Calculator

{

		private	ManualResetEventSlim	_mEvent;

		public	int	Result	{	get;	private	set;	}

	

		public	Calculator(ManualResetEventSlim	ev)	=>	_mEvent	=	ev;

	

		public	void	Calculation(int	x,	int	y)

		{

				Console.WriteLine($"Task	{Task.CurrentId}	starts	

calculation");

				Task.Delay(new	Random().Next(3000)).Wait();

				Result	=	x	+	y;

				//	signal	the	event-completed!

				Console.WriteLine($"Task	{Task.CurrentId}	is	ready");

				_mEvent.Set();

		}

}

The	top-level	statements	of	the	program	defines	arrays	of	four
ManualResetEventSlim	objects	and	four	Calculator	objects.	Every	Calculator
is	initialized	in	the	constructor	with	a	ManualResetEventSlim	object,	so	every
task	gets	its	own	event	object	to	signal	when	it	is	completed.	Now,	the	Task	class
is	used	to	enable	different	tasks	to	run	the	calculation	(code	file
SynchronizationSamples/EventSample/Program.cs):

const	int	taskCount	=	4;

ManualResetEventSlim[]	mEvents	=	new	

ManualResetEventSlim[taskCount];co

WaitHandle[]	waitHandles	=	new	WaitHandle[taskCount];

Calculator[]	calcs	=	new	Calculator[taskCount];

	

for	(int	i	=	0;	i	<	taskCount;	i++)

{

		int	i1	=	i;

		mEvents[i]	=	new(false);

		waitHandles[i]	=	mEvents[i].WaitHandle;

		calcs[i]	=	new(mEvents[i]);

		Task.Run(()	=>	calcs[i1].Calculation(i1	+	1,	i1	+	3));

}

//…

The	WaitHandle	class	is	now	used	to	wait	for	any	one	of	the	events	in	the	array.
WaitAny	waits	until	any	one	of	the	events	is	signaled.	In	contrast	to
ManualResetEvent,	ManualResetEventSlim	does	not	derive	from	WaitHandle.
That's	why	a	separate	collection	of	WaitHandle	objects	is	kept,	which	is	filled
from	the	WaitHandle	property	of	the	ManualResetEventSlim	class.	WaitAny
returns	an	index	value	that	provides	information	about	the	event	that	was
signaled.	The	returned	value	matches	the	index	of	the	WaitHandle	array	that	is
passed	to	WaitAny.	Using	this	index,	information	from	the	signaled	event	can	be
read:

for	(int	i	=	0;	i	<	taskCount;	i++)

{

		int	index	=	WaitHandle.WaitAny(waitHandles);

		if	(index	==	WaitHandle.WaitTimeout)

		{

				Console.WriteLine("Timeout!!");

		}

		else

		{

				mEvents[index].Reset();

				Console.WriteLine($"finished	task	for	{index},	result:				

						{calcs[index].Result}");

		}

}

When	you	start	the	application,	you	can	see	the	tasks	doing	the	calculation	and
setting	the	event	to	inform	the	main	thread	that	it	can	read	the	result.	At	random
times,	depending	on	whether	the	build	is	a	debug	or	release	build	and	on	your
hardware,	you	might	see	different	orders	and	a	different	number	of	tasks
performing	calls:

Task	4	starts	calculation

Task	1	starts	calculation

Task	3	starts	calculation

Task	2	starts	calculation

Task	3	is	ready

finished	task	for	3,	result:	10

Task	4	is	ready

finished	task	for	1,	result:	6

Task	1	is	ready

Task	2	is	ready

finished	task	for	0,	result:	4

finished	task	for	2,	result:	8

In	a	scenario	like	this,	to	fork	some	work	into	multiple	tasks	and	later	join	the
result,	the	new	CountdownEvent	class	can	be	useful.	Instead	of	creating	a
separate	event	object	for	every	task,	you	need	to	create	only	one.
CountdownEvent	defines	an	initial	number	for	all	the	tasks	that	set	the	event,	and
after	the	count	is	reached,	the	CountdownEvent	is	signaled.

The	Calculator	class	is	modified	to	use	the	CountdownEvent	instead	of	the
ManualResetEvent.	Rather	than	set	the	signal	with	the	Set	method,
CountdownEvent	defines	the	Signal	method	(code	file
SynchronizationSamples/EventSampleWithCountdownEvent/Calculator.cs):

public	class	Calculator

{

		private	CountdownEvent	_cEvent;

		public	int	Result	{	get;	private	set;	}

	

		public	Calculator(CountdownEvent	ev)	=>	_cEvent	=	ev;

	

		public	void	Calculation(int	x,	int	y)

		{

				Console.WriteLine($"Task	{Task.CurrentId}	starts	

calculation");

				Task.Delay(new	Random().Next(3000)).Wait();

				Result	=	x	+	y;

				//	signal	the	event-completed!

				Console.WriteLine($"Task	{Task.CurrentId}	is	ready");

				_cEvent.Signal();

		}

}

You	can	now	simplify	the	top-level	statements	so	that	it's	only	necessary	to	wait
for	the	single	event.	If	you	don't	deal	with	the	results	separately	as	it	was	done
before,	this	new	edition	might	be	all	that's	needed:

const	int	taskCount	=	4;

CountdownEvent	cEvent	=	new(taskCount);

Calculator[]	calcs	=	new	Calculator[taskCount];

for	(int	i	=	0;	i	<	taskCount;	i++)

{

		calcs[i]	=	new(cEvent);

		int	i1	=	i;

		Task.Run(()	=>	calcs[i1].Calculation,	Tuple.Create(i1	+	1,	i1	

+	3));

}

cEvent.Wait();

	

Console.WriteLine("all	finished");

for	(int	i	=	0;	i	<	taskCount;	i++)

{

		Console.WriteLine($"task	for	{i},	result:	{calcs[i].Result}");

}

BARRIER
For	synchronization,	the	Barrier	class	is	great	for	scenarios	in	which	work	is
forked	into	multiple	tasks	and	the	work	must	be	joined	afterward.	Barrier	is
used	for	participants	that	need	to	be	synchronized.	While	the	job	is	active,	you
can	dynamically	add	participants—for	example,	child	tasks	that	are	created	from
a	parent	task.	Participants	can	wait	until	the	work	is	done	by	all	the	other
participants	before	continuing.

The	BarrierSample	is	somewhat	complex,	but	it's	worthwhile	to	demonstrate
the	features	of	the	Barrier	type.	The	sample	creates	multiple	collections	of	two
million	random	strings.	Multiple	tasks	are	used	to	iterate	through	the	collection
and	count	the	number	of	strings,	starting	with	a,	b,	c,	and	so	on.	The	work	is	not

only	distributed	between	different	tasks,	but	also	within	a	task.	After	all	tasks	are
iterated	through	the	first	collection	of	strings,	the	result	is	summarized,	and	the
tasks	continue	later	with	the	next	collection.

The	method	FillData	creates	a	collection	and	fills	it	with	random	strings	(code
file	BarrierSample/Program.cs):

public	static	IEnumerable<string>	FillData(int	size)

{

		Random	r	=	new();

		return	Enumerable.Range(0,	size).Select(x	=>	GetString(r));

}

	

private	static	string	GetString(Random	r)

{

		StringBuilder	sb	=	new(6);

		for	(int	i	=	0;	i	<	6;	i++)

		{

				sb.Append((char)(r.Next(26)	+	97));

		}

		return	sb.ToString();

}

A	helper	method	to	show	information	about	a	Barrier	is	defined	with	the
method	LogBarrierInformation	:

private	static	void	LogBarrierInformation(string	info,	Barrier	

barrier)

{

		Console.WriteLine($"Task	{Task.CurrentId}:	{info}.	"	+

				$"{barrier.ParticipantCount}	current	and	"	+

				$"{barrier.ParticipantsRemaining}	remaining	participants,	"	

+

				$"phase	{barrier.CurrentPhaseNumber}");

}

The	CalculationInTask	method	defines	the	job	performed	by	a	task.	With	the
parameters,	the	third	parameter	references	the	Barrier	instance.	The	data	that	is
used	for	the	calculation	is	an	array	of	IList<string>.	The	last	parameter,	a
jagged	int	array,	will	be	used	to	write	the	results	as	the	task	progresses.

The	task	makes	the	processing	in	a	loop.	With	every	loop,	an	array	element	of
IList<string>[]	is	processed.	After	every	loop	is	completed,	the	Task	signals
that	it's	ready	by	invoking	the	SignalAndWait	method,	and	it	waits	until	all	the
other	tasks	are	ready	with	this	processing	as	well.	This	loop	continues	until	the
task	is	fully	finished.	Then	the	task	removes	itself	from	the	barrier	by	invoking

the	method	RemoveParticipant	(code	file
SynchronizationSamples/BarrierSample/Program.cs):

private	static	void	CalculationInTask(int	jobNumber,	int	

partitionSize,

		Barrier,	IList<string>[]	coll,	int	loops,	int[][]	results)

{

		LogBarrierInformation("CalculationInTask	started",	barrier);

	

		for	(int	i	=	0;	i	<	loops;	i++)

		{

				List<string>	data	=	new(coll[i]);

				int	start	=	jobNumber	*	partitionSize;

				int	end	=	start	+	partitionSize;

				Console.WriteLine($"Task	{Task.CurrentId}	in	loop	{i}:	

partition	"	+

						$"from	{start}	to	{end}");

	

				for	(int	j	=	start;	j	<	end;	j++)

				{

						char	c	=	data[j][0];

						results[i][c	-	97]++;

				}

				Console.WriteLine($"Calculation	completed	from	task	

{Task.CurrentId}	"	+

						$"in	loop	{i}.	{results[i][0]}	times	a,	{results[i][25]}	

times	z");

	

				LogBarrierInformation("sending	signal	and	wait	for	all",	

barrier);

				barrier.SignalAndWait();

				LogBarrierInformation("waiting	completed",	barrier);

		}

		barrier.RemoveParticipant();

		LogBarrierInformation("finished	task,	removed	participant",	

barrier);

}

With	the	Main	method,	a	Barrier	instance	is	created.	In	the	constructor,	you	can
specify	the	number	of	participants.	In	the	example,	this	number	is	3
(numberTasks	+	1)	because	there	are	two	created	tasks,	and	the	Main	method	is
a	participant	as	well.	When	you	use	Task.Run,	two	tasks	are	created	to	fork	the
iteration	through	the	collection	into	two	parts.	After	starting	the	tasks,	using
SignalAndWait,	the	main	method	signals	its	completion	and	waits	until	all
remaining	participants	either	signal	their	completion	or	remove	themselves	as

participants	from	the	barrier.	As	soon	as	all	participants	are	ready	with	one
iteration,	the	results	from	the	tasks	are	zipped	together	with	the	Zip	extension
method.	Then	the	next	iteration	is	done	to	wait	for	the	next	results	from	the	tasks
(code	file	SynchronizationSamples/BarrierSample/Program.cs):

static	void	Main()

{

		const	int	numberTasks	=	2;

		const	int	partitionSize	=	1_000_000;

		const	int	loops	=	5;

		Dictionary<int,	int[][]>	taskResults	=	new	Dictionary<int,	

int[][]>();

		List<string>	data	=	new	List<string>[loops];

		for	(int	i	=	0;	i	<	loops;	i++)

		{

				data[i]	=	new	List(FillData(partitionSize	*	numberTasks);

		}

	

		using	Barrier	barrier	=	new(numberTasks	+	1);

		LogBarrierInformation("initial	participants	in	barrier",	

barrier);

		for	(int	i	=	0;	i	<	numberTasks;	i++)

		{

				barrier.AddParticipant();

				int	jobNumber	=	i;

				taskResults.Add(i,	new	int[loops][]);

				for	(int	loop	=	0;	loop	<	loops;	loop++)

				{

						taskResult[i,	loop]	=	new	int[26];

				}

				Console.WriteLine("Main	-	starting	task	job	{jobNumber}");

				Task.Run(()	=>	CalculationInTask(jobNumber,	partitionSize,

						barrier,	data,	loops,	taskResults[jobNumber]));

		}

	

		for	(int	loop	=	0;	loop	<	5;	loop++)

		{

				LogBarrierInformation("main	task,	start	signaling	and	wait",	

barrier);

				barrier.SignalAndWait();

				LogBarrierInformation("main	task	waiting	completed",	

barrier);

				int[][]	resultCollection1	=	taskResults[0];

				int[][]	resultCollection2	=	taskResults[1];

				var	resultCollection	=	resultCollection1[loop].Zip(

						resultCollection2[loop],	(c1,	c2)	=>	c1	+	c2);

				char	ch	=	'a';

				int	sum	=	0;

				foreach	(var	x	in	resultCollection)

				{

						Console.WriteLine($"{ch++},	count:	{x}");

						sum	+=	x;

				}

				LogBarrierInformation($"main	task	finished	loop	{loop},	sum:	

{sum}",

						barrier);

		}

	

		Console.WriteLine("finished	all	iterations");

		Console.ReadLine();

}

NOTE Jagged	arrays	are	explained	in	Chapter	6,	“Arrays.”	The	Zip
extension	method	is	explained	in	Chapter	9.

When	you	run	the	application,	you	can	see	output	like	the	following.	In	the
output,	you	can	see	that	every	call	to	AddParticipant	increases	the	participant
count	as	well	as	the	remaining	participant	count.	As	soon	as	one	participant
invokes	SignalAndWait,	the	remaining	participant	count	is	decremented.	When
the	remaining	participant	count	reaches	0,	the	wait	of	all	participants	ends,	and
the	next	phase	begins:

Task	:	initial	participants	in	barrier.	1	current	and	1	

remaining	participants,	phase	0

Main	-	starting	task	job	0

Main	-	starting	task	job	1

Task	:	main	task,	start	signaling	and	wait.	3	current	and	3	

remaining	participants,	phase	0

Task	1:	CalculationInTask	started.	3	current	and	2	remaining	

participants,	phase	0

Task	2:	CalculationInTask	started.	3	current	and	2	remaining	

participants,	phase	0

Task	2	in	loop	0:	partition	from	1000000	to	2000000

Task	1	in	loop	0:	partition	from	0	to	1000000

Calculation	completed	from	task	2	in	loop	0.	38361	times	a,	

38581	times	z

Task	2:	sending	signal	and	wait	for	all.	3	current	and	2	

remaining	participants,	phase	0

Calculation	completed	from	task	1	in	loop	0.	38657	times	a,	

38643	times	z

Task	1:	sending	signal	and	wait	for	all.	3	current	and	1	

remaining	participants,	phase	0

Task	1:	waiting	completed.	3	current	and	3	remaining	

participants,	phase	1

Task	:	main	task	waiting	completed.	3	current	and	3	remaining	

participants,	phase	1

READERWRITERLOCKSLIM
For	a	locking	mechanism	to	allow	multiple	readers	but	only	one	writer	for	a
resource,	you	can	use	the	class	ReaderWriterLockSlim.	This	class	offers	a
locking	functionality	in	which	multiple	readers	can	access	the	resource	if	no
writer	locked	it,	and	only	a	single	writer	can	lock	the	resource.

The	ReaderWriterLockSlim	class	has	blocking	and	nonblocking	methods	to
acquire	a	read	lock,	such	as	EnterReadLock	(blocking)	and	TryEnterReadLock
(nonblocking),	and	to	acquire	a	write	lock	with	EnterWriteLock	(blocking)	and
TryEnterWriteLock	(nonblocking).	If	a	task	reads	first	and	writes	afterward,	it
can	acquire	an	upgradable	read	lock	with	EnterUpgradableReadLock	or
TryEnterUpgradableReadLock.	With	this	lock,	the	write	lock	can	be	acquired
without	releasing	the	read	lock.

Several	properties	of	this	class	offer	information	about	the	held	locks,	such	as
CurrentReadCount,	WaitingReadCount,	WaitingUpgradableReadCount,	and
WaitingWriteCount.

The	following	example	creates	a	collection	containing	six	items	and	a
ReaderWriterLockSlim	object.	The	method	ReaderMethod	acquires	a	read	lock
to	read	all	items	of	the	list	and	write	them	to	the	console.	The	method
WriterMethod	tries	to	acquire	a	write	lock	to	change	all	values	of	the	collection
(code	file
SynchronizationSamples/ReaderWriterLockSample/ReaderWriter.cs):

sealed	class	ReaderWriter	:	IDisposable

{

		private	List<int>	_items	=	new()	{	0,	1,	2,	3,	4,	5	};

		private	ReaderWriterLockSlim	_rwl	=	new();

	

		public	void	ReaderMethod(object?	reader)

		{

				try

				{

						_rwl.EnterReadLock();

	

						for	(int	i	=	0;	i	<	_items.Count;	i++)

						{

								Console.WriteLine($"reader	{reader},	loop:	{i},	item:	

{_items[i]}");

								Task.Delay(40).Wait();

						}

				}

				finally

				{

						_rwl.ExitReadLock();

				}

		}

	

		public	void	WriterMethod(object?	writer)

		{

				try

				{

						while	(!_rwl.TryEnterWriteLock(50))

						{

								Console.WriteLine($"Writer	{writer}	waiting	for	the	

write	lock");

								Console.WriteLine($"current	reader	count:	

{_rwl.CurrentReadCount}");

						}

						Console.WriteLine($"Writer	{writer}	acquired	the	lock");

						for	(int	i	=	0;	i	<	_items.Count;	i++)

						{

								_items[i]++;

								Task.Delay(50).Wait();

						}

						Console.WriteLine($"Writer	{writer}	finished");

				}

				finally

				{

						_rwl.ExitWriteLock();

				}

		}

	

		private	void	Dispose(bool	disposing)

		{

				if	(!disposedValue)

				{

						if	(disposing)

						{

								_rwl.Dispose();

						}

						disposedValue	=	true;

				}

		}

	

		void	IDisposable.Dispose()

		{

				Dispose(disposing:	true);

				GC.SuppressFinalize(this);

		}

}

With	the	top-level	statements,	six	long-running	tasks	are	created:	two	concurrent
writers	and	four	concurrent	readers.	To	give	the	first	writer	a	good	chance	to	start
before	the	readers,	a	short	delay	is	used	before	starting	the	other	tasks	(code	file
SynchronizationSamples/ReaderWriterLockSample/Program.cs):

using	ReaderWriter	rw	=	new();

TaskFactory	taskFactory	=	new(TaskCreationOptions.LongRunning,		

		TaskContinuationOptions.None);

Task[]	tasks	=	new	Task[6];

tasks[0]	=	taskFactory.StartNew(rw.WriterMethod,	1);

await	Task.Delay(5);

tasks[1]	=	taskFactory.StartNew(rw.ReaderMethod,	1);

tasks[2]	=	taskFactory.StartNew(rw.ReaderMethod,	2);

tasks[3]	=	taskFactory.StartNew(rw.WriterMethod,	2);

tasks[4]	=	taskFactory.StartNew(rw.ReaderMethod,	3);

tasks[5]	=	taskFactory.StartNew(rw.ReaderMethod,	4);

	

Task.WaitAll(tasks);		

When	you	run	the	application,	the	following	shows	that	the	first	writer	gets	the
lock	first.	The	second	writer	and	all	readers	need	to	wait.	Next,	the	second	writer
gets	the	lock,	and	after	this	is	finished,	the	readers	can	start	working.	Running
the	application	multiple	times	can	show	different	results,	but	there's	always	only
one	writer	or	multiple	readers	running	at	any	given	time:

Writer	1	acquired	the	lock

Starting	writer	2

Starting	reader	2

Starting	reader	3

Starting	reader	1

Starting	reader	4

Writer	2	waiting	for	the	write	lock,	current	readers:	0

Writer	2	waiting	for	the	write	lock,	current	readers:	0

Writer	2	waiting	for	the	write	lock,	current	readers:	0

Writer	2	waiting	for	the	write	lock,	current	readers:	0

Writer	2	waiting	for	the	write	lock,	current	readers:	0

Writer	1	finished

Writer	2	acquired	the	lock

Writer	2	finished

reader	3,	loop:	0,	item:	2

reader	1,	loop:	0,	item:	2

reader	2,	loop:	0,	item:	2

…

NOTE A	group	of	collections	that	do	not	need	locking	are	immutable
collections	defined	in	the	namespace	System.Collections.Immutable	.
These	collection	types	are	covered	in	Chapter	8,	“Collections.”	Other
thread-safe	collections	are	collections	from	the	namespace
System.Collections.Concurrent	.	The	BlockingCollection	offers	Add
and	TryAdd	methods	to	add	items.	The	Add	method	blocks,	while	the	TryAdd
method	returns	true	or	false	depending	on	whether	it	was	possible	to	add
the	item.	To	retrieve	items	from	the	collection,	the	Take	method	blocks	while
TryTake	returns	true	or	false	to	indicate	whether	it	was	successful	taking
an	item	from	the	collection.	The	BlockingCollection	class	can	be	used	for
a	producer/consumer	scenario.	A	more	modern	approach	for	a
producer/consumer	scenario	is	offered	from	channels,	as	shown	in	the
section	“Channels.”

LOCKS	WITH	AWAIT
In	case	you	try	to	use	the	lock	keyword	while	having	the	async	keyword	in	the
lock	block,	you	get	this	compilation	error:	cannot	await	in	the	body	of	a
lock	statement.	The	reason	is	that	after	the	async	completes,	the	method	might
run	in	a	different	thread	than	before	the	async	keyword.	The	lock	keyword
needs	to	release	the	lock	in	the	same	thread	as	the	lock	is	acquired.

Such	a	code	block	results	in	compilation	errors:

static	async	Task	IncorrectLockAsync()

{

		lock	(s_syncLock)

		{

				Console.WriteLine($"{nameof(IncorrectLockAsync)}	started");

				await	Task.Delay(500);		//	compiler	error:	cannot	await	in	

the	body	

						//	of	a	lock	statement

				Console.WriteLine($"{nameof(IncorrectLockAsync)}	ending");

		}

}

How	can	this	be	solved?	You	cannot	use	a	Monitor	for	this,	as	the	Monitor	needs
to	release	the	lock	from	the	same	thread	where	it	entered	the	lock.	The	lock
keyword	is	based	on	Monitor.

While	the	Mutex	object	can	be	used	for	synchronization	across	different
processes,	it	has	the	same	issues:	it	grants	a	lock	for	a	thread.	Releasing	the	lock
from	a	different	thread	is	not	possible.	Instead,	you	can	use	the	Semaphore—	or
the	SemaphoreSlim	class.	Semaphores	can	release	the	semaphore	from	a
different	thread.

The	following	code	snippet	waits	to	acquire	a	semaphore	using	WaitAsync	on	a
SemaphoreSlim	object.	The	SemaphoreSlim	object	is	initialized	with	a	count	of
1;	thus,	the	wait	on	the	semaphore	is	granted	only	once.	In	the	finally	code
block,	the	semaphore	is	released	by	invoking	the	Release	method	(code	file
SynchronizationSamples/LockAcrossAwait/Program.cs):

private	static	SemaphoreSlim	s_asyncLock	=	new(1);

static	async	Task	LockWithSemaphore(string	title)

{

		Console.WriteLine($"{title}	waiting	for	lock");

		await	s_asyncLock.WaitAsync();

		try

		{

				Console.WriteLine($"{title}	{nameof(LockWithSemaphore)}	

started");

				await	Task.Delay(500);

				Console.WriteLine($"{title}	{nameof(LockWithSemaphore)}	

ending");

		}

		finally

		{

				s_asyncLock.Release();

		}

}

Let's	try	to	invoke	this	method	from	multiple	tasks	concurrently.	The	method
RunUseSemaphoreAsync	starts	six	tasks	to	invoke	the	LockWithSemaphore
method	concurrently.

static	async	Task	RunUseSemaphoreAsync()

{

		Console.WriteLine(nameof(RunUseSemaphoreAsync));

		string[]	messages	=	{	"one",	"two",	"three",	"four",	"five",	

"six"	};

		Task[]	tasks	=	new	Task[messages.Length];

	

		for	(int	i	=	0;	i	<	messages.Length;	i++)

		{

				string	message	=	messages[i];

	

				tasks[i]	=	Task.Run(async	()	=>

				{

						await	LockWithSemaphore(message);

				});

		}

	

		await	Task.WhenAll(tasks);

		Console.WriteLine();

}

When	you	run	the	program,	you	can	see	that	multiple	tasks	are	started
concurrently,	but	after	the	semaphore	is	locked,	all	other	tasks	need	to	wait	until
the	semaphore	is	released	again:

RunLockWithAwaitAsync

two	waiting	for	lock

two	LockWithSemaphore	started

three	waiting	for	lock

five	waiting	for	lock

four	waiting	for	lock

six	waiting	for	lock

one	waiting	for	lock

two	LockWithSemaphore	ending

three	LockWithSemaphore	started

three	LockWithSemaphore	ending

five	LockWithSemaphore	started

five	LockWithSemaphore	ending

four	LockWithSemaphore	started

four	LockWithSemaphore	ending

six	LockWithSemaphore	started

six	LockWithSemaphore	ending

one	LockWithSemaphore	started

one	LockWithSemaphore	ending

To	make	the	use	of	the	lock	easier,	you	can	create	a	class	that	implements	the
IDisposable	interface	to	manage	the	resource.	With	this	class,	you	can	use	the
using	statement	in	the	same	way	as	the	lock	statement	is	used	to	lock	and
release	the	semaphore.

The	following	code	snippet	implements	the	AsyncSemaphore	class	that	allocates

a	SemaphoreSlim	in	the	constructor,	and	on	invoking	the	WaitAsync	method	on
the	AsyncSemaphore,	the	inner	class	SemaphoreReleaser	is	returned,	which
implements	the	interface	IDisposable.	On	calling	the	Dispose	method,	the
semaphore	is	released	(code	file
SynchronizationSamples/LockAcrossAwait/AsyncSemaphore.cs):

public	sealed	class	AsyncSemaphore	

{

		private	class	SemaphoreReleaser	:	IDisposable

		{

				private	SemaphoreSlim	_semaphore;

	

				public	SemaphoreReleaser(SemaphoreSlim	semaphore)	=>

						_semaphore	=	semaphore;

	

				public	void	Dispose()	=>	_semaphore.Release();

		}

	

		private	SemaphoreSlim	_semaphore;

		public	AsyncSemaphore()	=>

				_semaphore	=	new	SemaphoreSlim(1);

	

		public	async	Task<IDisposable>	WaitAsync()

		{

				await	_semaphore.WaitAsync();

				return	new	SemaphoreReleaser(_semaphore)	as	IDisposable;

		}

}

Changing	the	implementation	from	the	LockWithSemaphore	method	shown
previously,	now	a	using	statement	can	be	used	where	the	semaphore	is	locked.
Remember,	the	using	statement	creates	a	catch	/	finally	block,	and	in	the
finally	block,	the	Dispose	method	gets	invoked	(code	file
SynchronizationSamples/LockAcrossAwait/Program.cs):

private	static	AsyncSemaphore	s_asyncSemaphore	=	new	

AsyncSemaphore();

static	async	Task	UseAsyncSemaphore(string	title)

{

		using	(await	s_asyncSemaphore.WaitAsync())

		{

				Console.WriteLine($"{title}	{nameof(LockWithSemaphore)}	

started");

				await	Task.Delay(500);

				Console.WriteLine($"{title}	{nameof(LockWithSemaphore)}	

ending");

		}

}

Using	the	UseAsyncSemaphore	method	similarly	to	the	LockWithSemaphore
method	results	in	the	same	behavior.	However,	with	a	class	written	once,	locking
across	await	becomes	simpler.

SUMMARY
This	chapter	explored	how	to	code	applications	that	use	multiple	tasks	by	using
the	System.Threading.Tasks	namespace.	Using	multithreading	in	your
applications	takes	careful	planning.	Too	many	threads	can	cause	resource	issues,
but	not	enough	threads	can	cause	your	application	to	be	sluggish	and	perform
poorly.	With	tasks,	you	get	an	abstraction	to	threads.	This	abstraction	helps	you
avoid	creating	too	many	threads	because	threads	are	reused	from	a	pool.

You've	seen	various	ways	to	create	multiple	tasks,	such	as	the	Parallel	class,
which	offers	both	task	and	data	parallelism	with	Parallel.Invoke,
Parallel.ForEach,	and	Parallel.For.	With	the	Task	class,	you've	seen	how	to
gain	more	control	over	parallel	programming.	Tasks	can	run	synchronously	in
the	calling	thread,	using	a	thread	from	a	thread	pool,	and	a	separate	new	thread
can	be	created.	Tasks	also	offer	a	hierarchical	model	that	enables	the	creation	of
child	tasks,	also	providing	a	way	to	cancel	a	complete	hierarchy.

The	cancellation	framework	offers	a	standard	mechanism	that	can	be
consistently	used	with	different	classes	to	cancel	a	task	early.

You've	seen	several	synchronization	objects	that	are	available	with	.NET,	and
each	has	advantages	and	disadvantages.	An	easy	synchronization	can	be	done
using	the	lock	keyword.	Behind	the	scenes,	it's	the	Monitor	type	that	allows
setting	timeouts,	which	is	not	possible	with	the	lock	keyword.	For
synchronization	between	processes,	the	Mutex	object	offers	similar	functionality.
With	the	Semaphore	object	you've	seen	a	synchronization	object	with	a	count—
some	tasks	are	allowed	to	run	concurrently.	To	inform	others	of	information	that
is	ready,	various	kinds	of	event	objects	have	been	discussed,	such	as	the
AutoResetEvent,	ManualResetEvent,	and	CountdownEvent.	A	straightforward
way	to	have	multiple	readers	and	one	writer	is	offered	by	the
ReaderWriterLock.	The	Barrier	type	allows	for	more	complex	scenarios	where
multiple	tasks	can	run	concurrently	until	a	synchronization	point	is	reached.	As
soon	as	all	tasks	reach	this	point,	all	can	continue	concurrently	to	meet	at	the
next	synchronization	point.

With	System.Threading.Channels,	you've	seen	a	new	flexible	option	for
publish/subscribe	communication	using	bounded	and	unbounded	channels.

Here	are	some	final	guidelines	regarding	threading:

Try	to	keep	synchronization	requirements	to	a	minimum.	Synchronization
is	complex	and	blocks	threads.	You	can	avoid	it	if	you	try	to	avoid	sharing
state.	Of	course,	this	is	not	always	possible.

Static	members	of	a	class	should	be	thread-safe.	Usually,	this	is	the	case
with	classes	offered	with	.NET.

Instance	state	does	not	need	to	be	thread-safe.	For	best	performance,
synchronization	is	best	used	outside	the	class	where	it	is	needed,	and	not
with	every	member	of	the	class.	Instance	members	of	.NET	classes	usually
are	not	thread-safe.	In	the	Microsoft	API	documentation,	you	can	find	this
information	documented	for	every	class	of	.NET	in	the	“Thread	Safety”
section.

The	next	chapter	gives	information	on	another	core	.NET	topic:	files	and
streams.

18
Files	and	Streams

WHAT'S	IN	THIS	CHAPTER?

Exploring	the	directory	structure

Moving,	copying,	and	deleting	files	and	folders

Reading	and	writing	text	in	files

Using	streams	to	read	and	write	files

Using	readers	and	writers	to	read	and	write	files

Compressing	files

Monitoring	file	changes

Working	with	JSON	serialization

Using	Windows	Runtime	streams

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/FilesAndStreams.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

FilesAndFolders

StreamSamples

ReaderWriterSamples

CompressFileSample

FileMonitor

JsonSample

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

WindowsAppEditor

The	major	namespaces	used	in	this	chapter	are	System.IO,
System.IO.Compression,	System.Text,	and	System.Text.Json.	With	the
Windows	app	sample,	Winodws.Storage	and	Windows.Storage.Streams	are
important	namespaces.	All	projects	have	nullable	reference	types	enabled.

OVERVIEW
When	you're	reading	and	writing	to	files	and	directories,	you	can	use	simple
APIs,	or	you	can	use	advanced	ones	that	offer	more	features.	Just	use	the
simplest	ones	that	fit	your	purpose.	You	also	have	to	differentiate	between	.NET
classes	and	the	functionality	offered	from	the	Windows	Runtime.	From
Universal	Windows	Platform	(UWP)	Windows	apps,	you	don't	have	access	to
the	file	system	in	any	directory;	you	have	access	only	to	specific	directories.
Alternatively,	you	can	let	the	user	pick	files.	This	chapter	covers	all	these
options.	You'll	read	and	write	files	by	using	a	simple	API	and	get	into	more
features	by	using	streams.	You'll	use	both	.NET	types	and	types	from	the
Windows	Runtime,	and	you'll	mix	both	of	these	technologies	to	take	advantage
of	.NET	features	with	the	Windows	Runtime.

As	you	use	streams,	you	also	learn	about	compressing	data	and	sharing	data
between	different	tasks	using	memory	mapped	files	and	pipes.

MANAGING	THE	FILE	SYSTEM
Let's	start	with	simple	APIs	from	the	System.IO	namespace.	The	most	important
classes	used	to	browse	around	the	file	system	and	perform	operations	such	as
moving,	copying,	and	deleting	files	are:

FileSystemInfo—This	base	class	represents	any	file	system	object	such	as
FileInfo	and	DirectoryInfo.

FileInfo	and	File—These	classes	represent	a	file	on	the	file	system.

DirectoryInfo	and	Directory—These	classes	represent	a	folder	on	the	file
system.

Path—This	class	contains	static	members	that	you	can	use	to	manipulate
pathnames.

DriveInfo—This	class	has	properties	and	methods	that	provide	information
about	a	selected	drive.

NOTE Directories	or	folders?	These	terms	are	often	used	interchangeably.
Directory	is	a	classic	term	for	a	file	system	object.	A	directory	contains	files
and	other	directories.	A	folder	has	its	origin	with	Apple's	Lisa	and	is	a	GUI
object.	Often	it	is	associated	with	an	icon	to	map	to	a	directory.

Notice	in	the	previous	list	that	two	classes	work	with	folders	and	two	other
classes	work	with	files.	Which	one	of	these	classes	you	use	depends	largely	on
how	many	operations	you	need	in	order	to	access	that	folder	or	file:

Directory	and	File	contain	only	static	methods	and	are	never	instantiated.
You	use	these	classes	by	supplying	the	path	to	the	appropriate	file	system
object	whenever	you	call	a	member	method.	If	you	want	to	do	only	one
operation	on	a	folder	or	file,	using	these	classes	is	more	efficient	because	it
saves	the	overhead	of	creating	a	.NET	object.

DirectoryInfo	and	FileInfo	implement	roughly	the	same	public	methods
as	Directory	and	File,	as	well	as	some	public	properties	and	constructors,
but	they	are	stateful,	and	the	members	of	these	classes	are	not	static.	You
need	to	instantiate	these	classes	before	each	instance	is	associated	with	a
particular	folder	or	file.	This	means	that	these	classes	are	more	efficient	if
you	are	performing	multiple	operations	using	the	same	object.	That's
because	they	read	the	authentication	and	other	information	for	the
appropriate	file	system	object	on	construction,	and	then	they	do	not	need	to
read	that	information	again,	no	matter	how	many	methods	you	call	against
each	object	(class	instance).	By	comparison,	the	corresponding	stateless
classes	need	to	check	the	details	of	the	file	or	folder	again	with	every
method	you	call.

The	next	sample	is	a	console	application	that	accepts	command-line	arguments
so	you	can	easily	start	it	with	all	the	different	features	in	action.	Just	check	the
downloaded	source	code	for	the	arguments,	or	start	the	application	without
passing	arguments	to	see	the	options	you	have.

Checking	Drive	Information
Before	working	with	files	and	folders,	let's	check	the	drives	of	the	system.	You
use	the	DriveInfo	class,	which	can	perform	a	scan	of	a	system	to	provide	a	list
of	available	drives	and	then	dig	in	deeper	to	provide	a	lot	of	details	about	any	of

the	drives.

The	following	code	snippet	invokes	the	static	method	DriveInfo.GetDrives.
This	method	returns	an	array	of	DriveInfo	objects.	With	this	array,	every	drive
that	is	ready	is	accessed	to	write	information	about	the	drive	name,	type,	and
format,	and	it	also	shows	size	information	(code	file
FilesAndFolders/Program.cs):

void	ShowDrives()

{

		DriveInfo[]	drives	=	DriveInfo.GetDrives();

		foreach	(DriveInfo	drive	in	drives)

		{

				if	(drive.IsReady)

				{

						Console.WriteLine($"Drive	name:	{drive.Name}");

						Console.WriteLine($"Format:	{drive.DriveFormat}");

						Console.WriteLine($"Type:	{drive.DriveType}");

						Console.WriteLine($"Root	directory:	

{drive.RootDirectory}");

						Console.WriteLine($"Volume	label:	{drive.VolumeLabel}");

						Console.WriteLine($"Free	space:	{drive.TotalFreeSpace}");

						Console.WriteLine($"Available	space:	

{drive.AvailableFreeSpace}");

						Console.WriteLine($"Total	size:	{drive.TotalSize}");

						Console.WriteLine();

				}

		}

}

When	I	run	this	program	on	my	Windows	system,	which	has	only	a	solid-state
disk	(SSD),	I	see	this	information:

Drive	name:	C:\

Format:	NTFS

Type:	Fixed

Root	directory:	C:\

Volume	label:	Lokal	Disk

Free	space:	483677138944

Available	space:	483677138944

Total	size:	1022985498624

When	I	run	the	same	application	on	the	same	system	with	Windows	Subsystem
for	Linux	(WSL-2)	and	the	Ubuntu	operating	system,	I	see	Fixed	and	Ram	types.
Fixed	types	use	the	ext3	and	v9fs	formats;	with	the	Ram	types,	you	can	see	the
cgroupfs,	cgroup2fs,	devpts,	proc,	sysfs,	temp,	tmpfs,	and	binfmt_misc

formats.	On	Unix-based	systems,	a	lot	more	functionality	is	available	via	file
APIs,	including	information	about	processes	and	resource	restrictions	with
control	groups	(cgroups).

Working	with	the	Path	Class
For	accessing	files	and	directories,	the	names	of	the	files	and	directories	need	to
be	defined—including	parent	folders.	When	you	combine	multiple	folders	and
files	using	string	concatenation	operators,	you	can	easily	miss	a	separator
character	or	use	one	too	many	characters.	The	Path	class	can	help	with	this
because	this	class	adds	missing	separator	characters,	and	it	also	deals	with
different	platform	requirements	on	Windows-	and	Unix-based	systems.

The	Path	class	exposes	some	static	methods	that	make	operations	on	pathnames
easier.	For	example,	suppose	that	you	want	to	display	the	full	pathname	for	a
file,	ReadMe.txt,	in	the	folder	D:\Projects.	You	could	find	the	path	to	the	file
using	the	following	code:

Console.WriteLine(Path.Combine(@"D:\Projects",	"ReadMe.txt"));

Path.Combine	is	the	method	of	this	class	that	you	are	likely	to	use	most	often,
but	Path	also	implements	other	methods	that	supply	information	about	the	path
or	the	required	format	for	it.

With	the	public	fields	VolumeSeparatorChar,	DirectorySeparatorChar,
AltDirectorySeparatorChar,	and	PathSeparator,	you	can	get	the	platform-
specific	character	that	is	used	to	separate	drives,	folders,	and	files,	and	the
separator	of	multiple	paths.	With	Windows,	these	characters	are	:,	\,	and	/	;	with
Linux,	the	special	character	for	volumes	and	directories	is	/.

The	Path	class	also	helps	with	accessing	the	user-specific	temp	folder
(GetTempPath)	and	creating	temporary	(GetTempFileName)	and	random
filenames	(GetRandomFileName).	Make	sure	that	the	method	GetTempFileName
includes	the	folder,	whereas	GetRandomFileName	just	returns	the	filename
without	any	folder.

The	Environment	class	contains	the	SpecialFolder	enumeration	that	defines	a
list	of	special	folders—for	example,	Personal,	MyDocuments,	Recent,	MyMusic,
MyVideos,	ApplicationData,	LocalApplicationData,	MyPictures,	and	more.
Instead	of	using	a	hard-coded	path,	the	following	code	iterates	through	all	the
enum	values	and	shows	the	path	to	one	special	folder.	You	should	use	this	API
instead	to	be	independent	if	a	system	is	differently	configured.	However,	be

aware	that	depending	on	the	operating	system	that	is	used,	several	of	the	special
folders	are	not	filled.	The	following	code	snippet	iterates	through	all	the	defined
special	folders	and	shows	the	path	(code	file	FilesAndFolders/Program.cs):

void	ShowSpecialFolders()

{

		foreach	(var	specialFolder	in	

Enum.GetNames(typeof(Environment.SpecialFolder)))

		{

				Environment.SpecialFolder	folder	=	

						Enum.Parse<Environment.SpecialFolder>(specialFolder);

	

				string	path	=	Environment.GetFolderPath(folder);

				Console.WriteLine($"{specialFolder}:	{path}");

		}

}

This	shows	part	of	the	output	running	the	application	in	the	WSL-2	subsystem
with	Ubuntu:

MyDocuments:	/home/christian

Personal:	/home/christian

LocalApplicationData:	/home/christian/.local/share

CommonApplicationData:	/usr/share

UserProfile:	/home/christian

Creating	Files	and	Folders
Now	let's	look	at	using	the	File,	FileInfo,	Directory,	and	DirectoryInfo
classes.	First,	you	use	the	WriteAllText	method	of	the	File	class	to	create	a	file
and	write	the	string	Hello,	World!.	Everything	is	done	with	a	single	API
invocation	(code	file	FilesAndFolders/Program.cs):

void	CreateFile(string	file)

{

		try

		{

				string	path	=	Path.Combine(Environment.GetFolderPath(

						Environment.SpecialFolder.Personal),	file);

				File.WriteAllText(path,	"Hello,	World!");

				Console.WriteLine($"created	file	{path}");

		}

		catch	(ArgumentException)

		{

				Console.WriteLine("Invalid	characters	in	the	filename?");

		}

		catch	(IOException	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

	

To	copy	a	file,	you	can	use	either	the	Copy	method	of	the	File	class	or	the
CopyTo	method	of	the	FileInfo	class:

FileInfo	file	=	new(fileName1);

file.CopyTo(fileName2);

File.Copy(fileName1,	fileName2);

With	the	FileInfo	instance	method,	you	need	to	write	two	code	lines,	whereas
when	you	use	the	static	File	method,	you	need	just	one	code	line.	If	you	need	to
perform	additional	actions	on	the	file,	the	FileInfo	class	is	faster.	If	you	just
need	to	do	this	one	action	on	the	file,	you	can	reduce	the	code	you	need	to	write
with	the	static	method.

You	can	instantiate	a	FileInfo	or	DirectoryInfo	class	by	passing	to	the
constructor	a	string	containing	the	path	to	the	corresponding	file	system	object.
You	have	just	seen	the	process	for	a	file.	For	a	folder,	the	code	looks	similar:

DirectoryInfo	myFolder	=	new(directory);

If	the	path	represents	an	object	that	does	not	exist,	an	exception	is	not	thrown	at
construction;	instead,	it's	thrown	the	first	time	you	call	a	method	that	actually
requires	the	corresponding	file	system	object	to	be	there.	You	can	find	out
whether	the	object	exists	and	is	of	the	appropriate	type	by	checking	the	Exists
property,	which	is	implemented	by	both	of	these	classes:

FileInfo	test	=	new(fileName);

Console.WriteLine(test.Exists);

Note	that	for	this	property	to	return	true,	the	corresponding	file	system	object
must	be	of	the	appropriate	type.	In	other	words,	if	you	instantiate	a	FileInfo
object	by	supplying	the	path	of	a	folder	or	you	instantiate	a	DirectoryInfo
object	by	giving	it	the	path	of	a	file,	Exists	has	the	value	false.	Most	of	the
properties	and	methods	of	these	objects	return	a	value	if	possible—they	won't
necessarily	throw	an	exception	just	because	the	wrong	type	of	object	has	been
called,	unless	they	are	asked	to	do	something	that	is	impossible.	For	example,
the	preceding	code	snippet	might	first	display	false	(because	C:\Windows	is	a
directory),	but	it	still	displays	the	time	the	folder	was	created	because	a	directory

has	that	information.	However,	if	you	tried	to	open	the	directory	as	if	it	were	a
file,	using	the	FileInfo.Open	method,	you'd	get	an	exception.

You	move	and	delete	files	or	directories	using	the	MoveTo	and	Delete	methods
of	the	FileInfo	and	DirectoryInfo	classes.	The	equivalent	methods	on	the
File	and	Directory	classes	are	Move	and	Delete.	The	FileInfo	and	File
classes	also	implement	the	methods	CopyTo	and	Copy,	respectively.	However,	no
methods	exist	to	copy	complete	folders—you	need	to	do	that	by	copying	each
file	and	folder	in	the	folder's	hierarchy.

Using	all	of	these	methods	is	quite	intuitive.	You	can	find	detailed	descriptions
in	the	Microsoft	documentation.

Accessing	and	Modifying	File	Properties
Let's	get	some	information	about	files.	You	can	use	both	the	File	and	FileInfo
classes	to	access	file	information.	The	File	class	defines	static	methods,	whereas
the	FileInfo	class	offers	instance	methods.	The	following	code	snippet	shows
how	to	use	FileInfo	to	retrieve	multiple	pieces	of	information.	If	you	instead
used	the	File	class,	the	access	would	be	slower	because	every	access	would
mean	a	check	to	determine	whether	the	user	is	allowed	to	get	this	information.
With	the	FileInfo	class,	the	check	happens	only	when	calling	the	constructor.

The	sample	code	creates	a	new	FileInfo	object	and	writes	the	result	of	the
properties	Name,	DirectoryName,	IsReadOnly,	Extension,	Length,
CreationTime,	LastAccessTime,	and	Attributes	to	the	console	(code	file
FilesAndFolders/Program.cs):

void	FileInformation(string	file)

{

		FileInfo	fileInfo	=	new(file);

		if	(!fileInfo.Exists)

		{

				Console.WriteLine("File	not	found.");

		}

		Console.WriteLine($"Name:	{fileInfo.Name}");

		Console.WriteLine($"Directory:	{fileInfo.DirectoryName}");

		Console.WriteLine($"Read	only:	{fileInfo.IsReadOnly}");

		Console.WriteLine($"Extension:	{fileInfo.Extension}");

		Console.WriteLine($"Length:	{fileInfo.Length}");

		Console.WriteLine($"Creation	time:	

{fileInfo.CreationTime:F}");

		Console.WriteLine($"Access	time:	

{fileInfo.LastAccessTime:F}");

		Console.WriteLine($"File	attributes:	{fileInfo.Attributes}");

}

The	following	statement	passes	the	filename	./Program.cs	in	command-line
arguments:

>	dotnet	run	--	fileinfo	--file	./Program.cs

This	results	in	the	following	output	(on	my	machine):

Name:	Program.cs

Directory:	C:\FilesAndStreams\\FilesAndFolders

Read	only:	False

Extension:	.cs

Length:	6773

Creation	time:	Friday,	April	2,	2021	8:53:38	PM

Access	time:	Tuesday,	April	6,	2021	9:47:07	PM

File	attributes:	Archive

A	few	of	the	properties	of	the	FileInfo	class	cannot	be	set;	they	only	define	get
accessors.	It's	not	possible	to	set	the	filename,	the	file	extension,	and	the	length
of	the	file.	The	creation	time	and	last	access	time	can	be	set.	The	method
ChangeFileProperties	writes	the	creation	time	of	a	file	to	the	console	and	later
changes	the	creation	time	to	a	date	in	the	year	2035.

void	ChangeFileProperties(string	file)

{

		FileInfo	=	new(file);

		if	(!fileInfo.Exists)

		{

				Console.WriteLine($"File	{file}	does	not	exist");

				return;

		}

	

		Console.WriteLine($"creation	time:	

{fileInfo.CreationTime:F}");

		fileInfo.CreationTime	=	new	DateTime(2035,	12,	24,	15,	0,	0);

		Console.WriteLine($"creation	time:	

{fileInfo.CreationTime:F}");

}

Running	the	program	shows	the	initial	creation	time	of	the	file	as	well	as	the
creation	time	after	it	has	been	changed.	Creating	files	in	the	future	(at	least
specifying	the	creation	time)	is	possible	with	this	technique.

creation	time:	Sunday,	December	20,	2015	9:41:49	AM

creation	time:	Wednesday,	December	24,	2025	3:00:00	PM

To	see	the	creation	time	of	files	with	the	command	line	on	Windows,	use	dir
/T:C	on	Windows.

NOTE There	are	some	issues	with	the	creation	time	on	Linux,	which	are
explained	in	the	comment	of	the	method	SetCreationTime	in	the	.NET
source	code:

“Unix	provides	APIs	to	update	the	last	access	time	(atime)	and	last
modification	time	(mtime).	There	is	no	API	to	update	the	CreationTime.
Some	platforms	(for	example,	Linux)	don't	store	a	creation	time.	On	those
platforms,	the	creation	time	is	synthesized	as	the	oldest	of	last	status	change
time	(ctime)	and	last	modification	time	(mtime).	We	update	the
LastWriteTime	(mtime).	This	triggers	a	metadata	change	for
FileSystemWatcher	NotifyFilters.CreationTime.	Updating	the	mtime,
causes	the	ctime	to	be	set	‘now.'	So,	on	platforms	that	don't	store	a
CreationTime,	GetCreationTime	returns	the	value	that	was	previously	set
(when	the	value	wasn't	in	the	future).”

NOTE Being	able	to	manually	modify	these	properties	might	seem	strange
at	first,	but	it	can	be	quite	useful.	For	example,	if	you	have	a	program	that
effectively	modifies	a	file	by	simply	reading	it	in,	deleting	it,	and	creating	a
new	file	with	the	new	contents,	you	would	probably	want	to	modify	the
creation	date	to	match	the	original	creation	date	of	the	old	file.

Using	File	to	Read	and	Write
With	File.ReadAllText	and	File.WriteAllText,	you	can	read	and	write	a	file
using	a	single	string.	Instead	of	using	one	string,	you	can	also	use	file	operations
that	use	a	string	for	every	line	in	a	file	as	shown	here.	The	method	ReadAllLines
returns	a	string	array.	ReadLines	returns	IEnumerable<string>,	which	allows
you	to	iterate	through	all	the	lines	where	you	can	start	looping	through	the	file
before	the	complete	file	was	read	(code	file	FilesAndFolders/Program.cs):

void	ReadLineByLine(string	file)

{

		IEnumerable<string>	lines	=	File.ReadLines(file);

		int	i	=	1;

		foreach	(var	line	in	lines)

		{

				Console.WriteLine($"{i++}.	{line}");

		}

}

For	writing	a	string	collection,	you	can	use	the	method	File.WriteAllLines.
This	method	accepts	a	filename	and	an	IEnumerable<string>	type	as	parameter.
To	append	strings	to	an	existing	file,	you	use	File.AppendAllLines	:

void	WriteAFile()

{

		string	fileName	=	Path.Combine(Environment.GetFolderPath(

				Environment.SpecialFolder.Personal),	"movies.txt");

		string[]	movies	=

		{

				"Snow	White	And	The	Seven	Dwarfs",

				"Gone	With	The	Wind",

				"Casablanca",

				"The	Bridge	On	The	River	Kwai",

				"Some	Like	It	Hot"

		};

	

		File.WriteAllLines(fileName,	movies);

	

		string[]	moreMovies	=

		{

				"Psycho",

				"Easy	Rider",

				"Pulp	Fiction",

				"Star	Wars",

				"The	Matrix"

		};

		File.AppendAllLines(fileName,	moreMovies);

}

ITERATING	FILES
To	work	with	multiple	files,	you	can	use	the	Directory	class.	Directory	defines
the	method	GetFiles	that	returns	a	string	array	of	all	files	in	the	directory.	The
method	GetDirectories	returns	a	string	array	of	all	directories.

All	of	these	methods	define	overloads	that	allow	passing	a	search	pattern	and	a
value	of	the	SearchOption	enumeration.	SearchOption	enables	you	to	walk
through	all	subdirectories	or	to	stay	in	the	top-level	directory	by	using	the	value
AllDirectories	or	TopDirectoryOnly.	With	this	method	you	can	pass	simple
expressions	containing	*	for	any	number	of	characters	and	?	for	single

characters.

When	you	walk	through	a	huge	directory	(or	subdirectories),	the	methods
GetFiles	and	GetDirectories	need	to	have	the	complete	result	before	the	result
is	returned.	An	alternative	is	to	use	the	methods	EnumerateFiles	and
EnumerateDirectories.	These	methods	offer	the	same	parameters	for	the	search
pattern	and	options,	but	they	immediately	start	returning	a	result	with
IEnumerable<string>.

Let’s	have	a	look	at	another	example.	Within	a	directory	and	all	its
subdirectories,	all	files	that	end	with	Copy	are	deleted	in	case	another	file	exists
with	the	same	name	and	size.	On	Windows,	you	can	simulate	this	easily	by
selecting	all	files	in	a	folder	by	pressing	Ctrl+A	on	the	keyboard,	pressing
Ctrl+C	on	the	keyboard	for	copy,	and	pressing	Ctrl+V	on	the	keyboard	while	the
mouse	is	still	in	the	same	folder	to	paste.	The	new	files	have	the	Copy	postfix
applied.

The	method	DeleteDuplicateFiles	iterates	all	files	in	the	directory	that	is
passed	with	the	first	argument,	walking	through	all	subdirectories	using	the
option	SearchOption.AllDirectories.	Within	the	foreach	statement,	the
current	file	in	the	iteration	is	compared	to	the	file	in	the	previous	iteration.	In
cases	where	the	filename	is	nearly	the	same	and	only	-	Copy	is	added,	and	if	the
size	of	the	files	is	the	same	as	well,	the	copied	file	is	deleted	by	invoking
FileInfo.Delete	(code	file	FilesAndFolders/Program.cs):

void	DeleteDuplicateFiles(string	directory,	bool	checkOnly	=	

true)

{

		IEnumerable<string>	fileNames	=	

Directory.EnumerateFiles(directory,	"*",	

				SearchOption.AllDirectories);

		string	previousFileName	=	string.Empty;

		foreach	(string	fileName	in	fileNames)

		{

				string	previousName	=	

Path.GetFileNameWithoutExtension(previousFileName);

				int	ix	=	previousFileName.LastIndexOf("	-	Copy");

				if	(!string.IsNullOrEmpty(previousFileName)	&&

						previousName.EndsWith("	-	Copy")	&&

						fileName.StartsWith(previousFileName[..ix]))

				{

						FileInfo	copiedFile	=	new(previousFileName);

						FileInfo	originalFile	=	new(fileName);

						if	(copiedFile.Length	==	originalFile.Length)

						{

								Console.WriteLine($"delete	{copiedFile.FullName}");

								if	(!checkOnly)

								{

										copiedFile.Delete();

								}

						}

				}

				previousFileName	=	fileName;

		}

}

WORKING	WITH	STREAMS
Now	let's	look	at	some	powerful	options	that	are	available	when	you	work	with
files:	streams.	The	idea	of	a	stream	has	been	around	for	a	long	time.	A	stream	is
an	object	used	to	transfer	data.	The	data	can	be	transferred	in	one	of	two
directions:

If	the	data	is	being	transferred	from	some	outside	source	into	your	program,
it	is	called	reading	from	the	stream.

If	the	data	is	being	transferred	from	your	program	to	some	outside	source,	it
is	called	writing	to	the	stream.

Often,	the	outside	source	will	be	a	file,	but	that	is	not	always	the	case.	Other
possibilities	include	the	following:

Reading	data	from	or	writing	data	to	the	network	using	some	network
protocol,	where	the	intention	is	for	this	data	to	be	picked	up	by	or	sent	from
another	computer

Reading	from	or	writing	to	pipes,	which	allow	one	program	to
communicate	with	another	on	the	local	system

Reading	from	or	writing	to	an	area	of	memory

Some	streams	allow	only	writing,	other	streams	allow	only	reading,	and	yet
others	allow	random	access.	Random	access	enables	you	to	position	a	cursor	at
any	given	point	within	a	stream—for	example,	to	start	reading	from	the	start	of
the	stream	to	later	move	to	the	end	of	the	stream	and	continue	with	a	position	in
the	middle	of	the	stream.

Of	these	examples,	Microsoft	has	supplied	a	.NET	class	for	writing	to	or	reading
from	memory:	the	System.IO.MemoryStream	object.	The

System.Net.Sockets.NetworkStream	object	handles	network	data.	The	Stream
class	does	not	make	any	assumptions	of	the	nature	of	the	data	source.	It	can	be
file	streams,	memory	streams,	network	streams,	or	any	data	source	you	can	think
of.

Some	streams	can	also	be	chained.	For	example,	the	DeflateStream	can	be	used
to	compress	data.	This	stream	can	in	turn	write	to	the	FileStream,
MemoryStream,	or	NetworkStream.	The	CryptoStream	enables	you	to	encrypt
data.	It's	also	possible	to	chain	the	DeflateStream	to	the	CryptoStream	and
write	in	turn	to	the	FileStream.

NOTE Chapter	20,	“Security,”	explains	how	you	can	use	the
CryptoStream.

When	you	use	streams,	the	outside	source	might	even	be	a	variable	within	your
code.	This	might	sound	paradoxical,	but	the	technique	of	using	streams	to
transmit	data	between	variables	can	be	a	useful	trick	for	converting	data	between
data	types.	The	C	language	used	something	similar—the	sprintf	function—to
convert	between	integer	data	types	and	strings	or	to	format	strings.

The	advantage	of	having	a	separate	object	for	the	transfer	of	data,	rather	than
using	the	FileInfo	or	DirectoryInfo	classes	to	do	this,	is	that	separating	the
concept	of	transferring	data	from	the	particular	data	source	makes	it	easier	to
swap	data	sources.	Stream	objects	contain	a	lot	of	generic	code	that	concerns	the
movement	of	data	between	outside	sources	and	variables	in	your	code.	By
keeping	this	code	separate	from	any	concept	of	a	particular	data	source,	you
make	it	easier	for	this	code	to	be	reused	in	different	circumstances.

Although	it's	not	that	easy	to	directly	read	from	and	write	to	streams,	you	can	use
readers	and	writers.	This	is	another	separation	of	concerns.	Readers	and	writers
can	read	from	and	write	to	streams.	For	example,	the	StringReader	and
StringWriter	classes	are	part	of	the	same	inheritance	tree	as	two	classes	that
you	use	later	to	read	and	write	text	files.	The	classes	will	almost	certainly	share	a
substantial	amount	of	code	behind	the	scenes.	Figure	18-1	illustrates	the
hierarchy	of	some	stream-related	classes	in	the	System.IO	namespace.

As	far	as	reading	and	writing	files	goes,	the	classes	that	concern	us	most	are	the
following:

FileStream—This	class	is	intended	for	reading	and	writing	binary	data	in	a
file.

StreamReader	and	StreamWriter—These	classes	are	designed	specifically
for	reading	from	and	writing	to	streams	offering	APIs	for	text	formats.

BinaryReader	and	BinaryWriter—These	classes	are	designed	for	reading
from	and	writing	to	streams	offering	APIs	for	binary	data.

The	difference	between	using	these	classes	and	directly	using	the	underlying
stream	objects	is	that	a	basic	stream	works	in	bytes.	For	example,	suppose	that	as
part	of	the	process	of	saving	some	document	you	want	to	write	the	contents	of	a
variable	of	type	long	to	a	binary	file.	Each	long	occupies	8	bytes,	and	if	you	use
an	ordinary	binary	stream,	you	would	have	to	explicitly	write	each	of	those	8
bytes	of	memory.

In	C#	code,	you	would	have	to	perform	some	bitwise	operations	to	extract	each
of	those	8	bytes	from	the	long	value.	Using	a	BinaryWriter	instance,	you	can
encapsulate	the	entire	operation	in	an	overload	of	the	BinaryWriter.Write
method,	which	takes	a	long	as	a	parameter	and	places	those	8	bytes	into	the
stream	(and	if	the	stream	is	directed	to	a	file,	into	the	file).	A	corresponding
BinaryReader.Read	method	extracts	8	bytes	from	the	stream	and	recovers	the
value	of	the	long.

FIGURE	18-1

Working	with	File	Streams

Let's	get	into	programming	streams	reading	and	writing	files.	A	FileStream
instance	is	used	to	read	data	from	or	write	data	to	a	file.	To	construct	a
FileStream,	you	need	four	pieces	of	information:

The	file	you	want	to	access.

The	mode,	which	indicates	how	you	want	to	open	the	file.	For	example,	are
you	intending	to	create	a	new	file	or	open	an	existing	file?	If	you	are
opening	an	existing	file,	should	any	write	operations	be	interpreted	as
overwriting	the	contents	of	the	file	or	appending	to	the	file?

The	access,	which	indicates	how	you	want	to	access	the	file.	For	example,
do	you	want	to	read	from	or	write	to	the	file	or	do	both?

The	share	access,	which	specifies	whether	you	want	exclusive	access	to	the
file.	Alternatively,	are	you	willing	to	have	other	streams	access	the	file
simultaneously?	If	so,	should	other	streams	have	access	to	read	the	file,	to
write	to	it,	or	to	do	both?

The	first	piece	of	information	is	usually	represented	by	a	string	that	contains	the
full	pathname	of	the	file,	and	this	chapter	considers	only	those	constructors	that
require	a	string	here.	Besides	those,	however,	some	additional	constructors	take	a
native	Windows	handle	to	a	file	instead.	The	remaining	three	pieces	of
information	are	represented	by	three	.NET	enums	called	FileMode,	FileAccess,
and	FileShare.	The	values	of	these	enumerations	are	listed	in	the	following
table	and	are	self-explanatory:

ENUMERATION VALUES
FileMode Append,	Create,	CreateNew,	Open,	OpenOrCreate,	or

Truncate

FileAccess Read,	ReadWrite,	or	Write
FileShare Delete,	Inheritable,	None,	Read,	ReadWrite,	or	Write

Note	that	in	the	case	of	FileMode,	exceptions	can	be	thrown	if	you	request	a
mode	that	is	inconsistent	with	the	existing	status	of	the	file.	Append,	Open,	and
Truncate	throw	an	exception	if	the	file	does	not	already	exist,	and	CreateNew
throws	an	exception	if	it	does.	Create	and	OpenOrCreate	cope	with	either
scenario,	but	Create	deletes	any	existing	file	to	replace	it	with	a	new,	initially
empty,	one.	The	FileAccess	and	FileShare	enumerations	are	bitwise	flags,	so
values	can	be	combined	with	the	C#	bitwise	OR	operator,	|.

Creating	a	FileStream

There	is	a	large	number	of	constructors	for	the	FileStream.	The	following
sample	uses	one	with	four	parameters	(code	file	StreamSamples/Program.cs):

The	filename

The	FileMode	enumeration	with	the	Open	value	to	open	an	existing	file

The	FileAccess	enumeration	with	the	Read	value	to	read	the	file

The	FileShare	enumeration	with	a	Read	value	to	allow	other	programs	to
read	but	not	change	the	file	at	the	same	time

void	ReadFileUsingFileStream(string	fileName)

{

		const	int	bufferSize	=	4096;

		using	FileStream	stream	=	new(fileName,	FileMode.Open,	

FileAccess.Read,	FileShare				.Read);

		ShowStreamInformation(stream);

		//…

}

Instead	of	using	the	constructor	of	the	FileStream	class	to	create	a	FileStream
object,	you	can	create	a	FileStream	directly	using	the	File	class	with	the
OpenRead	method.	The	OpenRead	method	opens	a	file	(similar	to
FileMode.Open),	returns	a	stream	that	can	be	read	(FileAccess.Read),	and	also
allows	other	processes	read	access	(FileShare.Read):

using	FileStream	stream	=	File.OpenRead(fileName);

Getting	Stream	Information
The	Stream	class	defines	the	properties	CanRead,	CanWrite,	CanSeek,	and
CanTimeout	that	you	can	read	to	get	information	about	what	can	be	done	with	a
stream.	For	reading	and	writing	streams,	the	timeout	values	ReadTimeout	and
WriteTimeout	specify	timeouts	in	milliseconds.	Setting	these	values	can	be
important	in	networking	scenarios	to	make	sure	the	user	does	not	have	to	wait
too	long	when	reading	or	writing	and	the	stream	fails.	The	Position	property
returns	the	current	position	of	the	cursor	in	the	stream.	Every	time	some	data	is
read	from	the	stream,	the	position	moves	to	the	next	byte	that	will	be	read.	The
sample	code	writes	information	about	the	stream	to	the	console	(code	file
StreamSamples/Program.cs):

void	ShowStreamInformation(Stream	stream)

{

		Console.WriteLine($"stream	can	read:	{stream.CanRead},	"	+

				$"can	write:	{stream.CanWrite},	can	seek:	{stream.CanSeek},	

"	+

				$"can	timeout:	{stream.CanTimeout}");

		Console.WriteLine($"length:	{stream.Length},	position:	

{stream.Position}");

		if	(stream.CanTimeout)

		{

				Console.WriteLine($"read	timeout:	{stream.ReadTimeout}	"	+

						$"write	timeout:	{stream.WriteTimeout}	");

		}

}

When	you	run	the	program	with	the	file	stream	that	has	been	opened,	you	get	the
following	output.	The	position	is	currently	0	as	read	has	not	yet	happened:

stream	can	read:	True,	can	write:	False,	can	seek:	True,	can	

timeout:	False

length:	1113,	position:	0

Analyzing	Text	File	Encodings
With	text	files,	the	next	step	is	to	read	the	first	bytes	of	the	stream—the
preamble.	The	preamble	gives	information	about	how	the	file	is	encoded	(the
text	format	used).	This	is	also	known	as	byte	order	mark	(BOM).

You	can	read	a	stream	by	using	ReadByte,	which	reads	just	a	byte	from	the
stream,	or	the	Read	method,	which	fills	a	byte	array.	With	the	GetEncoding
sample	method,	an	array	of	5	bytes	is	created,	and	the	byte	array	is	filled	from
the	Read	method.	The	second	and	third	parameters	specify	the	offset	within	the
byte	array	and	the	count	of	the	number	of	bytes	that	are	available	to	fill.	The
Read	method	returns	the	number	of	bytes	read;	the	stream	might	be	smaller	than
the	buffer.	In	case	no	more	characters	are	available	to	read,	the	Read	method
returns	0.

The	sample	code	analyzes	the	first	characters	of	the	stream	to	return	the	detected
encoding	and	positions	the	stream	after	the	encoding	characters	(code	file
StreamSamples/Program.cs):

Encoding	GetEncoding(Stream	stream)

{

		if	(!stream.CanSeek)	throw	new	ArgumentException(

				"require	a	stream	that	can	seek");

	

		Encoding	=	Encoding.ASCII;

		byte[]	bom	=	new	byte[5];

		int	nRead	=	stream.Read(bom,	offset:	0,	count:	5);

		if	(bom[0]	==	0xff	&&	bom[1]	==	0xfe	&&	bom[2]	==	0	&&	bom[3]	

==	0)

		{

				Console.WriteLine("UTF-32");

				stream.Seek(4,	SeekOrigin.Begin);

				return	Encoding.UTF32;

		}

		else	if	(bom[0]	==	0xff	&&	bom[1]	==	0xfe)

		{

				Console.WriteLine("UTF-16,	little	endian");

				stream.Seek(2,	SeekOrigin.Begin);

				return	Encoding.Unicode;

		}

		else	if	(bom[0]	==	0xfe	&&	bom[1]	==	0xff)

		{

				Console.WriteLine("UTF-16,	big	endian");

				stream.Seek(2,	SeekOrigin.Begin);

				return	Encoding.BigEndianUnicode;

		}

		else	if	(bom[0]	==	0xef	&&	bom[1]	==	0xbb	&&	bom[2]	==	0xbf)

		{

				Console.WriteLine("UTF-8");

				stream.Seek(3,	SeekOrigin.Begin);

				return	Encoding.UTF8;

		}

		stream.Seek(0,	SeekOrigin.Begin);

		return	encoding;

}

The	start	of	a	file	can	begin	with	the	characters	FF	and	FE.	The	order	of	these
bytes	gives	information	about	how	the	document	is	stored.	Two-byte	Unicode
can	be	stored	in	little-	or	big-endian.	(Endianness	describes	the	order	of	bytes	in
memory.)	With	FF	followed	by	FE,	it's	little-endian,	and	when	FE	is	followed	by
FF,	it's	big-endian.	This	endianness	goes	back	to	mainframes	by	IBM	that	used
big-endian	for	byte	ordering,	and	PDP11	systems	from	Digital	Equipment	that
used	little-endian.	Communicating	across	the	network	with	computers	that	have
different	endianness	requires	changing	the	order	of	bytes	on	one	side.	Nowadays,
the	Intel	CPU	architecture	uses	little-endian,	and	the	ARM	architecture	allows
switching	between	little-	and	big-endian.

What's	the	other	difference	between	these	encodings?	With	ASCII,	7	bits	are
enough	for	every	character.	Originally	based	on	the	English	alphabet,	ASCII
offers	lowercase,	uppercase,	and	control	characters.	Extended	ASCII	makes	use

of	the	eighth	bit	to	allow	switching	to	language-specific	characters.	Switching	is
not	easy	as	it	requires	paying	attention	to	the	code	map	and	also	does	not	provide
enough	characters	for	some	Asian	languages.	UTF-16	(Unicode	Text	Format)
solves	this	by	having	16	bits	for	every	character.	Because	UTF-16	is	still	not
enough	for	historical	glyphs,	UTF-32	uses	32	bits	for	every	character.	Although
Windows	NT	3.1	switched	to	UTF-16	for	the	default	text	encoding	(from	a
Microsoft	extension	of	ASCII	before),	nowadays	the	most-used	text	format	is
UTF-8.	With	the	Web,	UTF-8	turned	out	to	be	the	most-used	text	format	since
2007	(this	superseded	ASCII,	which	had	been	the	most	common	character
encoding	before).	UTF-8	uses	a	variable	length	for	character	definitions.	One
character	is	defined	by	using	between	1	and	6	bytes.	UTF-8	is	detected	by	this
character	sequence	at	the	beginning	of	a	file:	0xEF,	0xBB,	0xBF.

Reading	Streams
After	opening	the	file	and	creating	the	stream,	the	file	is	read	using	the	Read
method.	This	is	repeated	until	the	method	returns	0.	A	string	is	created	using	the
Encoder	created	from	the	GetEncoding	method	defined	earlier.	Do	not	forget	to
close	the	stream	using	the	Dispose	method.	If	possible,	use	the	using
declaration—as	is	done	with	the	following	code	sample—to	dispose	of	the
stream	automatically	(code	file	StreamSamples/Program.cs):

void	ReadUsingFileStream(string	fileName)

{

		const	int	BUFFERSIZE	=	4096;

		using	FileStream	stream	=	new(fileName,	FileMode.Open,	

FileAccess.Read,	FileShare.Read);

	

		ShowStreamInformation(stream);

		Encoding	encoding	=	GetEncoding(stream);

	

		var	buffer	=	new	byte[BUFFERSIZE].AsSpan();

	

		bool	completed	=	false;

		do

		{

				int	nread	=	stream.Read(buffer);

				if	(nread	==	0)	completed	=	true;

				if	(nread	<	buffer.Length)

				{

						buffer[nread..].Clear();

				}

	

				string	s	=	encoding.GetString(buffer[..nread]);

				Console.WriteLine($"read	{nread}	bytes");

				Console.WriteLine(s);

		}	while	(!completed);

}

Writing	Streams
How	streams	can	be	written	is	demonstrated	by	writing	a	simple	string	to	a	text
file.	To	create	a	stream	that	can	be	written	to,	the	File.OpenWrite	method	can
be	used.	This	time,	a	temporary	filename	is	created	with	the	help	of	members	of
the	Path	class.	GetTempPath	returns	the	path	of	the	user's	temp	folder,
GetRandomFileName	returns	a	random	filename,	and	finally	the	random	filename
extension	is	changed	using	ChangeExtension	(code	file
StreamSamples/Program.cs):

void	WriteTextFile()

{

		string	tempFileName	=	Path.Combine(Path.GetTempPath(),	

Path.GetRandomFileName());

		string	tempTextFileName	=	Path.ChangeExtension(tempFileName,	

"txt");

		using	FileStream	stream	=	File.OpenWrite(tempTextFileName);

		//…

When	you're	writing	a	UTF-8	file,	the	preamble	needs	to	be	written	to	the	file.
This	can	be	done	by	sending	the	3	bytes	of	the	UTF-8	preamble	to	the	stream
with	the	WriteByte	method:

stream.WriteByte(0xef);

stream.WriteByte(0xbb);

stream.WriteByte(0xbf);

There's	an	alternative	for	doing	this.	You	don't	need	to	remember	the	bytes	to
specify	the	encoding.	The	Encoding	class	already	has	this	information.	The
GetPreamble	method	returns	a	byte	array	with	the	preamble	for	the	file.	This
byte	array	is	written	using	the	Write	method	of	the	Stream	class:

var	preamble	=	Encoding.UTF8.GetPreamble().AsSpan();

stream.Write(preamble);

Now	the	content	of	the	file	can	be	written.	As	the	Write	method	requires	byte
arrays	to	write,	strings	need	to	be	converted.	For	converting	a	string	to	a	byte
array	with	UTF-8,	Encoding.UTF8.GetBytes	does	the	job	before	the	byte	array
is	written:

string	hello	=	"Hello,	World!";

var	buffer	=	Encoding.UTF8.GetBytes(hello).AsSpan();

stream.Write(buffer);

Console.WriteLine($"file	{stream.Name}	written");

You	can	open	the	temporary	file	using	an	editor,	and	it	will	use	the	correct
encoding.

Copying	Streams
Now	let's	combine	reading	and	writing	from	streams	by	copying	the	file	content.
With	the	next	code	snippet,	the	readable	stream	is	opened	with	File.OpenRead,
and	the	writeable	stream	is	opened	with	File.OpenWrite.	A	buffer	is	read	using
the	Stream.Read	method	and	written	with	Stream.Write.	The	Stream	methods
have	Read	and	Write	overloads	that	can	use	the	Span<byte>,	which	allows
creating	slices	to	reference	the	same	memory	underneath;	thus,	it	is	not
necessary	(contrary	to	the	byte	array	overload)	to	pass	the	start	position	and	size
with	the	arguments	for	Read	and	Write	(code	file	StreamSamples/Program.cs):

void	CopyUsingStreams(string	inputFile,	string	outputFile)

{

		const	int	BUFFERSIZE	=	4096;

		using	var	inputStream	=	File.OpenRead(inputFile);

		using	var	outputStream	=	File.OpenWrite(outputFile);

		var	buffer	=	new	byte[BUFFERSIZE].AsSpan();

		bool	completed	=	false;

		do

		{

				int	nRead	=	inputStream.Read(buffer);

				if	(nRead	==	0)	completed	=	true;

				outputStream.Write(buffer[..nRead]);

		}	while	(!completed);

}

NOTE The	Span	type	is	shown	in	detail	in	Chapter	13,	“Managed	and
Unmanaged	Memory.”

To	copy	a	stream,	it's	not	necessary	to	write	the	code	to	read	and	write	a	stream.
Instead,	you	can	use	the	CopyTo	method	of	the	Stream	class,	as	shown	here	(code
file	StreamSamples/Program.cs):

void	CopyUsingStreams2(string	inputFile,	string	outputFile)

{

		using	var	inputStream	=	File.OpenRead(inputFile);

		using	var	outputStream	=	File.OpenWrite(outputFile);

		inputStream.CopyTo(outputStream);

}

Using	Random	Access	to	Streams
Random	access	to	streams	provides	an	advantage	in	that—even	with	large	files
—you	can	access	a	specific	position	within	the	file	in	a	fast	way.

To	see	random	access	in	action,	the	following	code	snippet	creates	a	large	file.
This	code	snippet	creates	the	file	sampledata.data	with	records	that	are	all	the
same	length	and	contain	a	number,	a	20-character	string,	and	a	random	date.	The
number	of	records	that	is	passed	to	the	method	is	created	with	the	help	of	the
Enumerable.Range	method	(defined	with	the	System.Linq	namespace).	The
Select	method	creates	a	tuple	that	contains	Number,	Text,	and	Date	fields.	Out
of	these	records,	a	string	with	#	pre-	and	postfix	is	created,	with	a	fixed	length
for	every	value	and	a	;	separator	between	each	value.	The	WriteAsync	method
writes	the	record	to	the	stream.	The	File	and	Stream	APIs	offer	asynchronous
APIs	beside	the	synchronous	ones.	This	sample	makes	use	of	the	asynchronous
APIs	that	allow	the	calling	(code	file	StreamSamples/Program.cs):

string	SampleDataFilePath	=	

Path.Combine(Environment.GetFolderPath(

		Environment.SpecialFolder.ApplicationData),	

"samplefile.data");

	

public	static	async	Task	CreateSampleFileAsync(int	count)

{

		FileStream	stream	=	File.Create(SampleDataFilePath);

		using	StreamWriter	writer	=	new(stream);

		Random	r	=	new();

		var	records	=	Enumerable.Range(1,	count).Select(x	=>	

		(

				Number:	x,

				Text:	$"Sample	text	{r.Next(200)}",

				Date:	new	DateTime(Math.Abs((long)((r.NextDouble()	*	2	-	1)	

*

						DateTime.MaxValue.Ticks)))

));

		Console.WriteLine("Start	writing	records…");

		foreach	(var	rec	in	records)

		{

				string	date	=	rec.Date.ToString("d",	

CultureInfo.InvariantCulture);

				string	s	=

						$"#{rec.Number,8};{rec.Text,-20};{date}#

{Environment.NewLine}";

				await	writer.WriteAsync(s);

		}

		Console.WriteLine($"Created	the	file	{SampleDataFilePath}");

}

NOTE The	File	and	Stream	APIs	not	only	offer	synchronous	APIs	but	also
APIs	implementing	the	task-based	async	pattern	(which	is	explained	in
Chapter	11,	“Tasks	and	Asynchronous	Programming”).	This	allows	the
calling	thread	to	work	on	some	other	functionality	instead	of	waiting	for	the
I/O.

NOTE Chapter	13	explains	that	every	object	implementing	IDisposable
should	be	disposed	of.	In	the	previous	code	snippet,	it	looks	like	FileStream
is	not	disposed	of.	However,	that's	not	the	case.	The	StreamWriter	takes
control	over	the	used	resource	and	disposes	of	the	stream	when	the
StreamWriter	is	disposed	of.	To	keep	the	stream	opened	for	a	longer	period
than	the	StreamWriter	is	alive,	you	can	configure	this	with	the	constructor
of	the	StreamWriter.	In	that	case,	you	need	to	dispose	of	the	stream
explicitly.

Now,	let's	position	a	cursor	randomly	within	the	stream	to	read	different	records.
The	user	is	asked	to	enter	a	record	number	that	should	be	accessed.	The	byte	in
the	stream	that	should	be	accessed	is	based	on	the	record	number	and	the	record
size.	The	Seek	method	of	the	Stream	class	now	enables	you	to	position	the
cursor	within	the	stream.	The	second	argument	specifies	whether	the	position	is
based	on	the	beginning	of	the	stream,	the	end	of	the	stream,	or	the	current
position	(code	file	StreamSamples/Program.cs):

async	Task	RandomAccessSampleAsync()

{

		const	int	RECORDSIZE	=	44;

		try

		{

				using	FileStream	stream	=	File.OpenRead(SampleDataFilePath);

				var	buffer	=	new	byte[RECORDSIZE].AsMemory();

	

				do

				{

						try

						{

								Console.Write("record	number	(or	'bye'	to	end):	");

								string	line	=	Console.ReadLine()	??	throw	new	

InvalidOperationException();

								if	(string.Equals(line,	"bye",	

StringComparison.CurrentCultureIgnoreCase))	break;

	

								if	(int.TryParse(line,	out	int	record))

								{

										stream.Seek((record	-	1)	*	RECORDSIZE,	

SeekOrigin.Begin);

										int	read	=	await	stream.ReadAsync(buffer);

										string	s	=	

Encoding.UTF8.GetString(buffer.Span[0..read});

										Console.WriteLine($"record:	{s}");

								}

						}

						catch	(Exception	ex)

						{

								Console.WriteLine(ex.Message);

						}

				}	while	(true);

				Console.WriteLine("finished");

		}

		catch	(FileNotFoundException)

		{

				Console.WriteLine("Create	the	sample	file	using	the	option	-

sample	first");

		}

}

NOTE Contrary	to	the	synchronous	Read	method	of	the	Stream	class
where	a	Span<byte>	parameter	is	offered	with	an	overload,	the	ReadAsync
method	gives	a	Memory<byte>	overload.	Span<T>	is	a	ref	struct	type	and	thus
can	only	be	stored	on	the	stack.	This	is	unsuitable	for	asynchronous
methods,	which	is	why	the	Memory<byte>	type	is	offered	with	the
asynchronous	overloads.

You	can	now	try	to	create	a	file	with	1.5	million	records	or	more.	A	file	this	size
is	slow	when	you	open	it	using	Notepad,	but	it	is	extremely	fast	when	you	use
random	access.	Depending	on	your	system,	the	CPU,	and	the	disk	type,	you
might	use	higher	or	lower	values	for	the	tests.

NOTE If	the	records	that	should	be	accessed	don’t	have	a	fixed	size,	it	still
can	be	useful	to	use	random	access	for	large	files.	One	way	to	deal	with	this
is	to	write	the	position	of	the	records	to	the	beginning	of	the	file.	Another
option	is	to	read	a	larger	block	where	the	record	could	be	and	find	the
record	identifier	and	the	record	delimiters	within	the	memory	block.

Using	Buffered	Streams
For	performance	reasons,	when	you	read	from	or	write	to	a	file,	the	output	is
buffered.	This	means	that	if	your	program	asks	for	the	next	bytes	of	a	file	stream
and	the	stream	passes	the	request	on	to	the	operating	system	(OS),	then	the	OS
will	not	connect	to	the	file	system	and	then	locate	and	read	the	file	off	the	disk
just	to	get	the	additional	bytes.	Instead,	the	OS	retrieves	a	large	block	of	the	file
at	one	time	and	stores	this	block	in	an	area	of	memory	known	as	a	buffer.
Subsequent	requests	for	data	from	the	stream	are	satisfied	from	the	buffer	until
the	buffer	runs	out,	at	which	point	the	OS	grabs	another	block	of	data	from	the
file.

Writing	to	files	works	in	the	same	way.	For	files,	this	is	done	automatically	by
the	OS,	but	you	might	have	to	write	a	stream	class	to	read	from	some	other
device	that	is	not	buffered.	If	so,	you	can	create	a	BufferedStream,	which
implements	a	buffer	itself,	and	pass	the	stream	that	should	be	buffered	to	the
constructor.	Note,	however,	that	BufferedStream	is	not	designed	for	the
situation	in	which	an	application	frequently	alternates	between	reading	and
writing	data.

USING	READERS	AND	WRITERS
Reading	and	writing	text	files	using	the	FileStream	class	requires	working	with
byte	buffers	and	dealing	with	the	encoding	as	described	in	the	previous	section.
There's	an	easier	way	to	do	this:	using	readers	and	writers.	You	can	use	the
StreamReader	and	StreamWriter	classes	to	read	and	write	to	the	FileStream,
and	you	have	an	easier	job	not	dealing	with	byte	arrays	and	encodings.

That's	because	these	classes	work	at	a	slightly	higher	level	and	are	specifically
geared	to	reading	and	writing	text.	The	methods	that	they	implement	can
automatically	detect	convenient	points	to	stop	reading	text,	based	on	the	contents
of	the	stream.	In	particular:

These	classes	implement	methods	to	read	or	write	one	line	of	text	at	a	time:
StreamReader.ReadLine	and	StreamWriter.WriteLine.	In	the	case	of
reading,	this	means	that	the	stream	automatically	determines	where	the	next
carriage	return	is	and	stops	reading	at	that	point.	In	the	case	of	writing,	it
means	that	the	stream	automatically	appends	the	carriage	return–line	feed
combination	to	the	text	that	it	writes	out.	The	NewLine	property	of	the
TextWriter	base	class	allows	to	customize	the	newline	character.

By	using	the	StreamReader	and	StreamWriter	classes,	you	don't	need	to
worry	about	the	encoding	used	in	the	file.

The	StreamReader	Class
Let's	convert	the	previous	example	to	use	the	StreamReader	to	read	a	file.	It
looks	a	lot	easier	now.	The	constructor	of	the	StreamReader	receives	the
FileStream.	You	can	check	for	the	end	of	the	file	by	using	the	EndOfStream
property,	and	you	read	lines	using	the	ReadLine	method	(code	file
ReaderWriterSamples/Program.cs):

void	ReadFileUsingReader(string	fileName)

{

		FileStream	stream	=	new(fileName,	FileMode.Open,	

FileAccess.Read,	FileShare.Read);

		using	StreamReader	reader	=	new(stream);

	

		while	(!reader.EndOfStream)

		{

				string?	line	=	reader.ReadLine();

				Console.WriteLine(line);

		}

}

It's	no	longer	necessary	to	deal	with	byte	arrays	and	the	encoding.	However,	be
aware	that	the	StreamReader	by	default	uses	the	UTF-8	encoding.	You	can	let
the	StreamReader	use	the	encoding	as	it	is	defined	by	the	preamble	in	the	file	by
specifying	a	different	constructor:

StreamReader	reader	=	new(stream,	

detectEncodingFromByteOrderMarks:	true);

You	can	also	explicitly	specify	the	encoding:

StreamReader	reader	=	new(stream,	Encoding.Unicode);

Other	constructors	enable	you	to	set	the	buffer	size	to	be	used;	the	default	is

1,024	bytes.	Also,	you	can	specify	that	the	underlying	stream	should	not	be
closed	on	closing	the	reader.	By	default,	when	the	reader	is	closed	(using	the
Dispose	or	Close	method),	the	underlying	stream	is	closed	as	well.

Instead	of	explicitly	instantiating	a	new	StreamReader,	you	can	create	a
StreamReader	by	using	the	OpenText	method	of	the	File	class	(or	by	using	the
constructor	of	the	StreamReader):

var	reader	=	File.OpenText(fileName);

With	the	code	snippet	to	read	the	file,	the	file	was	read	line	by	line	using	the
ReadLine	method.	The	StreamReader	also	allows	reading	the	complete	file	from
the	position	of	the	cursor	in	the	stream	using	ReadToEnd	:

string	content	=	reader.ReadToEnd();

The	StreamReader	also	allows	the	content	to	read	to	a	char	array.	This	is	similar
to	the	Read	method	of	the	Stream	class;	it	doesn't	read	to	a	byte	array	but	instead
to	a	char	array.	Remember,	the	char	type	uses	two	bytes.	This	is	perfect	for	16-
bit	Unicode,	but	is	not	as	useful	with	UTF-8,	where	a	single	character	can	be
between	one	and	six	bytes	long:

int	nChars	=	100;

char[]	charArray	=	new	char[nChars];

int	nCharsRead	=	reader.Read(charArray,	0,	nChars);

The	StreamWriter	Class
The	StreamWriter	works	in	the	same	way	as	the	StreamReader,	except	that	you
use	StreamWriter	only	to	write	to	a	file	(or	to	another	stream).	The	following
code	snippet	shows	creating	a	StreamWriter	that	passes	a	FileStream.	Then	a
passed	string	array	is	written	to	the	stream	(code	file
ReaderWriterSamples/Program.cs):

void	WriteFileUsingWriter(string	fileName,	string[]	lines)

{

		var	outputStream	=	File.OpenWrite(fileName);

		using	StreamWriter	writer	=	new(outputStream,	Encoding.UTF8);

		foreach	(var	line	in	lines)

		{

				writer.WriteLine(line);

		}

}

The	StreamWriter	is	using	the	UTF-8	format	by	default	to	write	the	text

content.	But	be	aware	that	the	preamble	is	written	only	if	you	pass	the	encoding
to	the	constructor.	Similarly	to	the	constructor	of	the	StreamReader,	the
StreamWriter	allows	specifying	the	buffer	size	and	whether	the	underlying
stream	should	not	be	closed	on	closing	of	the	writer.

NOTE When	opening	existing	files	with	File.OpenWrite	or	passing	a
filename	to	the	constructor	of	the	StreamWriter,	you	need	to	be	aware	of
different	behaviors:	File.OpenWrite	sets	the	current	position	of	the	stream
to	the	start	of	the	file,	whereas	using	the	StreamWriter	constructor	sets	the
current	position	to	the	end	of	the	file.

The	Write	method	of	the	StreamWriter	defines	19	overloads	that	allow	passing
strings	and	several	.NET	data	types.	When	using	the	methods	passing	the	.NET
data	types,	remember	that	all	these	are	changed	to	strings	with	the	specified
encoding.	To	write	the	data	types	in	binary	format,	you	can	use	the
BinaryWriter	that's	shown	next.

Reading	and	Writing	Binary	Files
To	read	and	write	binary	files,	one	option	is	to	directly	use	the	stream	types;	in
this	case,	it's	good	to	use	byte	arrays	for	reading	and	writing.	Another	option	is
to	use	readers	and	writers	defined	for	this	scenario:	BinaryReader	and
BinaryWriter.	You	use	them	similarly	to	the	way	you	use	StreamReader	and
StreamWriter	except	BinaryReader	and	BinaryWriter	don't	use	any	encoding.
Files	are	written	in	binary	format	rather	than	text	format.

Unlike	the	Stream	type,	BinaryWriter	defines	20	overloads	for	the	Write
method.	The	overloads	accept	different	types,	as	shown	in	the	following	code
snippet	that	writes	a	double,	an	int,	a	long,	and	a	string	(code	file
ReaderWriterSamples/Program.cs):

public	static	void	WriteFileUsingBinaryWriter(string	binFile)

{

		var	outputStream	=	File.Create(binFile);

		using	var	writer	=	new	BinaryWriter(outputStream);

		double	d	=	47.47;

		int	i	=	42;

		long	l	=	987654321;

		string	s	=	"sample";

		writer.Write(d);

		writer.Write(i);

		writer.Write(l);

		writer.Write(s);

}

To	read	the	file	again,	you	can	use	a	BinaryReader.	This	class	defines	methods
to	read	all	the	different	types,	such	as	ReadDouble,	ReadInt32,	ReadInt64,	and
ReadString,	which	are	shown	here:

public	static	void	ReadFileUsingBinaryReader(string	binFile)

{

		var	inputStream	=	File.Open(binFile,	FileMode.Open);

		using	BinaryReader	reader	=	new(inputStream))

		double	d	=	reader.ReadDouble();

		int	i	=	reader.ReadInt32();

		long	l	=	reader.ReadInt64();

		string	s	=	reader.ReadString();

		Console.WriteLine($"d:	{d},	i:	{i},	l:	{l},	s:	{s}");

}

The	order	for	reading	the	file	must	match	exactly	the	order	in	which	it	has	been
written.	When	creating	your	own	binary	format,	you	need	to	know	what	and	how
it	is	stored	and	read	accordingly.	The	older	Microsoft	Word	document	format
was	using	a	binary	file	format,	whereas	the	newer	docx	file	extension	is	a	ZIP
file	containing	XML	files.	How	ZIP	files	can	be	read	and	written	is	explained	in
the	next	section.

COMPRESSING	FILES
.NET	includes	types	to	compress	and	decompress	streams	using	different
algorithms.	You	can	use	DeflateStream,	GZipStream,	and	BrotliStream	to
compress	and	decompress	streams;	the	ZipArchive	class	enables	you	to	create
and	read	ZIP	files.

Both	DeflateStream	and	GZipStream	use	the	same	algorithm	for	compression
(in	fact,	GZipStream	uses	DeflateStream	behind	the	scenes),	but	GZipStream
adds	a	cyclic	redundancy	check	to	detect	data	corruption.	Brotli	is	a	relatively
new	open-source	compression	algorithm	from	Google.	The	speed	of	Brotli	is
similar	to	deflate,	but	it	offers	a	better	compression.	Contrary	to	most	other
compression	algorithms,	it	uses	a	dictionary	for	often-used	words	for	better
compression.	Nowadays,	this	algorithm	is	supported	by	most	modern	browsers.

Using	a	ZIP	file	has	the	advantage	that	you	can	compress	files	to	an	archive
(with	ZipArchive),	and	you	can	open	this	archive	directly	with	Windows

Explorer;	it's	been	built	into	Windows	since	1998.	You	can't	open	a	gzip	archive
with	Windows	Explorer;	you	need	third-party	tools	for	gzip.

NOTE The	algorithm	used	by	DeflateStream	and	GZipStream	is	the
deflate	algorithm.	This	algorithm	is	defined	by	RFC	1951
(https://tools.ietf.org/html/rfc1951).	This	algorithm	is	widely
thought	not	to	be	covered	by	patents,	which	is	why	it	is	in	widespread	use.

Brotli	is	available	on	GitHub	at	https://github.com/google/brotli	and
defined	by	RFC	7932	(https://tools.ietf.org/html/rfc7932).	Brotli
works	great	for	compressing	text	files.	You	can	try	to	compress	a	large	text
file	with	the	deflate	and	Brotli	algorithms,	and	you	will	see	an	impressive
difference.

Using	the	Deflate	Stream
As	explained	earlier,	a	feature	from	streams	is	that	you	can	chain	them.	To
compress	a	stream,	all	you	need	to	do	is	create	DeflateStream	and	pass	another
stream	(in	this	example,	the	outputStream	to	write	a	file)	to	the	constructor,
with	the	argument	CompressionMode.Compress	for	compression.	Writing	to	the
DeflateStream	either	by	using	the	Write	method	or	by	using	other	features,
such	as	the	CopyTo	method	as	shown	in	the	following	code	snippet,	is	all	that's
needed	for	file	compression	(code	file	CompressFileSample/Program.cs):

void	CompressFile(string	fileName,	string	compressedFileName)

{

		using	FileStream	inputStream	=	File.OpenRead(fileName);

		FileStream	outputStream	=	File.OpenWrite(compressedFileName);

		using	DeflateStream	compressStream	=	new(outputStream,	

CompressionMode.Compress);

		inputStream.CopyTo(compressStream);

}

To	decompress	the	deflate-compressed	file	again,	the	following	code	snippet
opens	the	file	using	a	FileStream	and	creates	the	DeflateStream	object	with
CompressionMode.Decompress	passing	the	file	stream	for	decompression.	The
Stream.CopyTo	method	copies	the	decompressed	stream	to	a	MemoryStream.
This	code	snippet	then	makes	use	of	a	StreamReader	to	read	the	data	from	the
MemoryStream	and	write	the	output	to	the	console.	The	StreamReader	is
configured	to	leave	the	assigned	MemoryStream	open	(using	the	leaveOpen
argument),	so	the	MemoryStream	could	also	be	used	after	closing	the	reader:

https://tools.ietf.org/html/rfc1951
https://github.com/google/brotli
https://tools.ietf.org/html/rfc7932

void	DecompressFile(string	fileName)

{

		FileStream	inputStream	=	File.OpenRead(fileName);

		using	MemoryStream	outputStream	=	new();

		using	DeflateStream	compressStream	=	new(inputStream,	

CompressionMode.Decompress);

		compressStream.CopyTo(outputStream);

		outputStream.Seek(0,	SeekOrigin.Begin);

		using	StreamReader	reader	=	new(outputStream,	Encoding.UTF8,

				detectEncodingFromByteOrderMarks:	true,	bufferSize:	4096,

				leaveOpen:	true);

		string	result	=	reader.ReadToEnd();

		Console.WriteLine(result);

		//	because	of	leaveOpen	set,	you	can	use	the	outputStream	

after	

		//	the	StreamReader	is	closed,	and	the	StreamReader	is	closed	

on	its	own

}

Using	Brotli
Using	BrotliStream,	compression	with	Brotli	is	like	using	deflate.	You	just
need	to	instantiate	the	BrotliStream	class	(code	file
CompressFileSample/Program.cs):

void	CompressFileWithBrotli(string	fileName,	string	

compressedFileName)

{

		using	FileStream	inputStream	=	File.OpenRead(fileName);

		FileStream	outputStream	=	File.OpenWrite(compressedFileName);

		using	BrotliStream	compressStream	=	new(outputStream,	

CompressionMode.Compress);

		inputStream.CopyTo(compressStream);

}

Decompression	works	like	this	using	BrotliStream	:

void	DecompressFileWithBrotli(string	fileName)

{

		FileStream	inputStream	=	File.OpenRead(fileName);

		using	MemoryStream	outputStream	=	new();

		using	BrotliStream	compressStream	=	new(inputStream,	

CompressionMode.Decompress);

		compressStream.CopyTo(outputStream);

		outputStream.Seek(0,	SeekOrigin.Begin);

		using	StreamReader	reader	=	new(outputStream,	Encoding.UTF8,	

				detectEncodingFromByteOrderMarks:	true,	bufferSize:	4096,	

				leaveOpen:	true);

		string	result	=	reader.ReadToEnd();

		Console.WriteLine(result);

}

Zipping	Files
Today,	the	ZIP	file	format	is	the	standard	for	many	different	file	types.	Word
documents	(docx)	as	well	as	NuGet	packages	are	all	stored	as	ZIP	files.	With
.NET,	it's	easy	to	create	a	ZIP	archive.

For	creating	a	ZIP	archive,	you	can	create	an	object	of	ZipArchive.	A
ZipArchive	contains	multiple	ZipArchiveEntry	objects.	The	ZipArchive	class
is	not	a	stream,	but	it	uses	a	stream	to	read	or	write	to	(this	is	similar	to	the
reader	and	writer	classes	discussed	earlier).	The	following	code	snippet	creates	a
ZipArchive	that	writes	the	compressed	content	to	the	file	stream	opened	with
File.OpenWrite.	What's	added	to	the	ZIP	archive	is	defined	by	the	directory
passed.	Directory.EnumerateFiles	enumerates	all	the	files	in	the	directory	and
creates	a	ZipArchiveEntry	object	for	every	file.	Invoking	the	Open	method
creates	a	Stream	object.	With	the	CopyTo	method	of	the	Stream	that	is	read,	the
file	is	compressed	and	written	to	the	ZipArchiveEntry	(code	file
CompressFileSample/Program.cs):

void	CreateZipFile(string	sourceDirectory,	string	zipFile)

{

		FileStream	zipStream	=	File.Create(zipFile);

		using	ZipArchive	archive	=	new(zipStream,	

ZipArchiveMode.Create);

	

		IEnumerable<string>	files	=	Directory.EnumerateFiles(

				sourceDirectory,	"*",	SearchOption.TopDirectoryOnly);

		foreach	(var	file	in	files)

		{

				ZipArchiveEntry	entry	=	

archive.CreateEntry(Path.GetFileName(file));

				using	FileStream	inputStream	=	File.OpenRead(file);

				using	Stream	outputStream	=	entry.Open();

				inputStream.CopyTo(outputStream);

		}

}

Instead	of	using	streams	with	extracting	entries	from	a	ZIP	archive,	you	can	also
use	the	ExtractToFile	method.

WATCHING	FILE	CHANGES
With	FileSystemWatcher,	you	can	monitor	file	changes.	Events	are	fired	on
creating,	renaming,	deleting,	and	changing	files.	This	can	be	used	in	scenarios
where	you	need	to	react	to	file	changes—for	example,	with	a	server	when	a	file
is	uploaded,	or	if	a	file	is	cached	in	memory	and	the	cache	needs	to	be
invalidated	when	the	file	changes.

As	FileSystemWatcher	is	easy	to	use,	let's	look	at	another	sample.	The	sample
code	starts	watching	files	with	the	method	WatchFiles.	Using	the	constructor	of
the	FileSystemWatcher,	you	can	supply	the	directory	that	should	be	watched.
You	can	also	provide	a	filter	to	access	only	specific	files	that	match	with	the
filter	expression.	When	you	set	the	property	IncludeSubdirectories,	you	can
define	whether	only	the	files	in	the	specified	directory	should	be	watched	or
whether	files	in	subdirectories	should	also	be	watched.	With	the	Created,
Changed,	Deleted,	and	Renamed	events,	event	handlers	are	supplied.	All	of	these
events	are	of	type	FileSystemEventHandler	with	the	exception	of	the	Renamed
event	that	is	of	type	RenamedEventHandler.	RenamedEventHandler	derives	from
FileSystemEventHandler	and	offers	additional	information	about	the	event
(code	file	FileMonitor/Program.cs):

FileSystemWatcher?	_watcher;

	

if	(args	==	null	||	args.Length	!=	1)

{

				Console.WriteLine("Enter	the	directory	to	watch	markdown	

files:	"	+

						"FileMonitor	[directory]");

				return;

}

	

WatchFiles(args[0],	"*.md");

Console.WriteLine("Press	enter	to	stop	watching");

Console.ReadLine();

UnWatchFiles();

	

void	WatchFiles(string	path,	string	filter)

{

		_watcher	=	new(path,	filter)

		{

				IncludeSubdirectories	=	true

		};

		_watcher.Created	+=	OnFileChanged;

		_watcher.Changed	+=	OnFileChanged;

		_watcher.Deleted	+=	OnFileChanged;

		_watcher.Renamed	+=	OnFileRenamed;

		_watcher.EnableRaisingEvents	=	true;

		Console.WriteLine("watching	file	changes…");

}

The	information	that	is	received	with	a	file	change	is	of	type
FileSystemEventArgs.	It	contains	the	name	of	the	file	that	changed	as	well	as
the	kind	of	change	that	is	an	enumeration	of	type	WatcherChangeTypes:

void	OnFileChanged(object	sender,	FileSystemEventArgs	e)	=>

		Console.WriteLine($"file	{e.Name}	{e.ChangeType}");

On	renaming	the	file,	additional	information	is	received	with	the
RenamedEventArgs	parameter.	This	type	derives	from	FileSystemEventArgs	and
defines	additional	information	about	the	original	name	of	the	file:

void	OnFileRenamed(object	sender,	RenamedEventArgs	e)	=>

		Console.WriteLine($"file	{e.OldName}	{e.ChangeType}	to	

{e.Name}");

When	you	start	the	application	by	specifying	a	folder	to	watch	and	*	.md	as	the
filter,	the	following	is	the	output	after	creating	the	file	sample1.md,	adding
content,	renaming	it	to	sample2.md,	and	finally	deleting	it:

watching	file	changes…

Press	enter	to	stop	watching

file	sample1.md	Created

file	sample1.md	Changed

file	sample1.md	Renamed	to	sample2.md

JSON	SERIALIZATION
There	are	many	ways	to	serialize	and	deserialize	.NET	objects.	Binary	(also
known	as	runtime	serialization),	XML,	and	JSON	serialization	are	built	into	the
.NET	base	class	library	(BCL).

Binary	serialization	that	serializes	all	fields	has	versioning	issues.	If	names	of
private	fields	change	(which	can	be	in	a	base	class),	deserialization	of	content
that	was	written	with	an	older	version	might	not	work	with	new	versions	of	the
library.	Microsoft	recommends	not	using	binary	serialization	with	the	built-in
functionality.

WARNING Other	than	the	versioning	issues,	the	BinaryFormatter	(used
for	binary	serialization)	is	dangerous	to	use	and	not	recommended	for	data
processing.	The	Deserialize	method	is	never	safe	with	untrusted	input.	This
also	applies	for	the	SoapFormatter,	NetDataContractSerializer,
LosFormatter,	and	ObjectStateFormatter.	For	more	details,	see
https://docs.microsoft.com/en-

us/dotnet/standard/serialization/binaryformatter-security-guide.

To	serialize	objects	into	XML,	classes	from	the	namespace
System.Xml.Serialization	can	be	used.	With	the	XmlSerializer,	you	can
serialize	.NET	objects	into	XML	and	use	attributes	to	influence	the	outcome	of
the	XML	result.	LINQ	to	XML	(System.Xml.Linq)	offers	an	easy	way	to	create
XML	elements.	Windows	Communication	Foundation	(WCF)	and	SOAP	was
based	on	XML.	Microsoft	Office	files	are	ZIP	files	containing	XML.	.NET
project	files	and	XAML	files	that	create	user	interfaces	with	WinUI	are	based	on
XML.	.NET	classes	working	with	XML	haven't	been	updated	in	the	last	years
and	don't	support	new	features	such	as	C#	nominal	records.

Nowadays,	JSON	serialization	is	more	important.	Most	representational	state
transfer	(REST)	services	use	JSON	to	transfer	data	between	the	client	and	the
server.	Read	Chapter	25,	“Services,”	for	information	on	how	to	implement
services	using	REST.

NOTE While	JSON	is	more	important	with	new	formats,	XML	still	has
many	uses.	For	example,	Office	files	are	compressed	ZIP	files	containing
XML.	.NET	project	files	use	XML.	Creating	user	interfaces	with	WinUI	is
based	on	XAML,	which	is	based	on	XML.

Nowadays,	JSON	serialization	is	used	more	often.	Not	long	ago,	many	of	the
Microsoft	project	templates	used	the	Newtonsoft.Json	library	for	JSON
serialization.	Now,	with	System.Text.Json,	a	new	library	was	created	by	the
.NET	team.	This	library	is	faster	and	needs	fewer	object	allocations	because	it	is
based	on	new	techniques	with	the	Span	type.	James	Newton-King	who
developed	Newtonsoft.Json	is	now	working	for	Microsoft.

The	sample	application	for	JSON	serialization	is	a	console	application	using
different	options	from	the	namespaces	System.Text.Json	and
System.Text.Json.Serialization.

https://docs.microsoft.com/en-us/dotnet/standard/serialization/binaryformatter-security-guide

NOTE Other	serialization	options	are	shown	in	Chapter	25	and	Chapter
28,	“SignalR.”	In	Chapter	25,	gRPC	Remote	Procedure	Calls	(gRPC)
services	make	use	of	serialization	with	Protocol	Buffers	(Protobuf).	SignalR
uses	JSON	by	default,	but	you	can	easily	configure	to	serialize	with	the
binary	format	MessagePack.

JSON	Serialization
To	serialize	.NET	objects	in	the	JSON	format,	the	records	Card,	Category,	and
Item	are	specified	and	contain	Title,	Text,	and	Price	properties.	A	menu	card
(type	Card)	can	contain	a	list	of	Category	objects,	and	a	Category	contains	a	list
of	Item	objects	(code	file	JsonSample/Program.cs):

public	record	Item(string	Title,	string	Text,	decimal	Price);

public	record	Category(string	Title)

{

				public	IList<Item>	Items	{	get;	init;	}	=	new	List<Item>();

}

public	record	Card(string	Title)

{

				public	IList<Category>	Categories	{	get;	init;	}	=	new	

List<Category>();

}

In	the	Program.cs	file,	a	Card	is	created	that	contains	two	categories	and	three
items,	and	it	is	then	serialized	by	invoking	the	SerializeJson	method:

Category	appetizers	=	new("Appetizers");

appetizers.Items.Add(new	Item("Dungeness	Crab	Cocktail",	

"Classic	cocktail	sauce",	27M));

appetizers.Items.Add(new	Item("Almond	Crusted	Scallops",	

		"Almonds,	Parmesan,	chive	beurre	blanc",	19M));

	

Category	dinner	=	new("Dinner");

dinner.Items.Add(new	Item("Grilled	King	Salmon",	"Lemon	chive	

beurre	blanc",	49M));

	

Card	=	new("The	Restaurant");

card.Categories.Add(appetizers);

card.Categories.Add(dinner);

	

string	json	=	SerializeJson(card);

DeserializeJson(json);

With	the	JsonSerializer	class,	you	can	invoke	the	Serialize	method	to	create
a	JSON	representation	of	the	passed	object.	Optionally,	you	can	configure	the
serialization	passing	configuration	with	the	JsonSerializerOptions	:

string	SerializeJson(Card	card)

{

		Console.WriteLine(nameof(SerializeJson));

		JsonSerializerOptions	options	=	new()

		{

				WriteIndented	=	true,

				PropertyNamingPolicy	=	JsonNamingPolicy.CamelCase,

				DictionaryKeyPolicy	=	JsonNamingPolicy.CamelCase,

				AllowTrailingCommas	=	true,

				//	ReferenceHandler	=	ReferenceHandler.Preserve

		};

		string	json	=	JsonSerializer.Serialize(card,	options);

		Console.WriteLine(json);

		Console.WriteLine();

		return	json;

}

When	you	run	the	application,	because	the	PropertyNamingPolicy	was
configured	with	JsonNamingPolicy.CamelCase,	contrary	to	the	property	names,
the	keys	are	shown	with	camelCase:

{

		"title":	"The	Restaurant",

		"categories":	[

				{

						"title":	"Appetizers",

						"items":	[

								{

										"title":	"Dungeon	Crab	Cocktail",

										"text":	"Classic	cocktail	sauce",

										"price":	27

								},

								{

										"title":	"Almond	Crusted	Scallops",

										"text":	"Almonds,	Parmesan,	chive	beurre	blanc",

										"price":	19

								}

]

				},

				{

						"title":	"Dinner",

						"items":	[

								{

										"title":	"Grilled	King	Salmon",

										"text":	"Lemon	chive	buerre	blanc",

										"price":	49

								}

]

				}

]

}

Other	than	supplying	options,	to	influence	JSON	serialization,	you	can	apply
attributes	to	the	model	to	be	serialized.	With	the	JsonIgnoreAttribute,	you	can
specify	that	this	member	should	not	be	serialized.	With	this	attribute	you	can
also	specify	a	condition—for	example,	to	only	ignore	it	when	the	value	is	null
(JsonIgnoreCondition.WhenWritingDefault).	The
JsonNumberHandlingAttribute	allows	you	to	specify	that	numbers	should	be
serialized	as	JSON	numbers	(without	quotes),	or	with	quotes.	With	the
JsonConverterAttribute,	you	can	specify	to	use	a	custom	converter	class	with
types	or	properties.

If	you	need	to	serialize	an	object	graph	with	cyclic	references,	where	objects
reference	other	objects	that	already	have	been	serialized,	the	JsonSerializer
couldn't	handle	this	scenario	before	.NET	5.	Since	.NET	5,	you	can	configure	the
ReferenceHandler	setting	to	ReferenceHandler.Preserve.	This	setting	creates
identifiers	for	every	JSON	object	serialized;	thus,	the	serializer	knows	what
objects	already	have	been	serialized,	and	it	can	reference	these	objects	by	its	ID.
Use	this	setting	only	in	scenarios	where	it	is	required	based	on	your	object	tree.
Many	JSON	serializers	can't	work	with	this	result.	The	following	snippet	shows
the	result	with	this	setting:

{

		"$id":	"1",

		"title":	"The	Restaurant",

		"categories":	{

				"$id":	"2",

				"$values":	[

						{

								"$id":	"3",

								"title":	"Appetizers",

								"items":	{

										"$id":	"4",

										"$values":	[

												{

														"$id":	"5",

														"title":	"Dungeon	Crab	Cocktail",

														"text":	"Classic	cocktail	sauce",

														"price":	27

												},

//…

JSON	Deserialization
With	the	implementation	of	the	method	DeserializeJson,
JsonSerializer.Deserialize	is	invoked	to	get	the	object	tree	out	of	the	JSON
string	(code	file	JsonSample/Program.cs):

void	DeserializeJson(string	json)

{

				Console.WriteLine(nameof(DeserializeJson));

				JsonSerializerOptions	options	=	new()

				{

								PropertyNameCaseInsensitive	=	true

				};

				Card?	card	=	JsonSerializer.Deserialize<Card>(json,	

options);

				if	(card	is	null)

				{

								Console.WriteLine("no	card	deserialized");

								return;

				}

				Console.WriteLine($"{card.Title}");

				foreach	(var	category	in	card.Categories)

				{

								Console.WriteLine($"\t{category.Title}");

								foreach	(var	item	in	category.Items)

								{

												Console.WriteLine($"\t\t{item.Title}");

								}

				}

				Console.WriteLine();

}

Using	JsonDocument
With	the	JsonDocument	class,	you	can	access	the	document	object	model	(DOM)
of	a	JSON	document.	The	static	method	JsonDocument.Parse	returns	a
JsonDocument	object.	With	this	object	you	can	access	the	JSON	elements	and
arrays.	The	root	element	is	accessed	with	the	JsonDocument	instance
document.RootElement.	The	returned	type	is	a	JsonElement.	This	type	offers

many	methods	that	return	specific	.NET	types—if	the	data	can	be	converted,	for
example,	GetBoolean,	GetByte,	GetDateTime,	GetGuid,	GetInt32.	Using
GetProperty	returns	another	JsonElement.	The	previously	created	JSON
document	contains	the	name	"categories"	that	contains	an	array	of	items.	With
this	JSON,	using	GetProperty("categories")	allows	to	enumerate	the	array
with	the	EnumerateArray	method.	For	every	array	element,	a	JsonElement	is
returned.	To	access	the	different	names	and	values	of	an	element,	you	can	use
EnumerateObject	(code	file	JsonSample/Program.cs):

void	UseDom(string	json)

{

		Console.WriteLine(nameof(UseDom));

	

		using	JsonDocument	document	=	JsonDocument.Parse(json);

		JsonElement	titleElement	=	

document.RootElement.GetProperty("title");

		Console.WriteLine(titleElement);

		foreach	(JsonElement	category	in	document.RootElement

				.GetProperty("categories").EnumerateArray())

		{

				foreach	(JsonElement	item	in	

category.GetProperty("items").EnumerateArray())

				{

						foreach	(JsonProperty	property	in	item.EnumerateObject())

						{

								Console.WriteLine($"{property.Name}	{property.Value}");

						}

						Console.WriteLine($"{item.GetProperty("title")}");

				}

		}

}

JSON	Reader
A	fast	way	to	read	through	a	JSON	document	and	access	all	its	tokens	is	by
using	the	Utf8JsonReader.	By	invoking	the	Read	method,	you	can	access	token
by	token.	With	the	next	code	snippet,	the	Read	method	is	used	in	a	while	loop.
This	method	returns	true	as	long	as	it's	not	the	end	of	the	stream.	Using	the
reader	in	the	current	iteration,	you	can	access	the	values	with	methods	such	as
GetString,	GetInt32,	GetDateTime,	and	also	JSON	comments	with
GetComment.	To	see	what	kind	of	token	was	just	read,	you	use	the	TokenType
property.	With	the	JSON	previously	generated,	if	the	token	type	is	a	property
name	(JsonTokenType.PropertyName),	and	the	name	of	the	property	is	"title",

which	is	retrieved	with	the	GetString	method,	the	next	token	that's	available	on
the	next	Read	iteration	is	a	JsonTokenType.String.	GetString	on	this	token
returns	the	value	of	the	title	(code	file	JsonSample/Program.cs):

void	UseReader(string	json)

{

		bool	isNextPrice	=	false;

		bool	isNextTitle	=	false;

		string?	title	=	default;

		byte[]	data	=	Encoding.UTF8.GetBytes(json);

		Utf8JsonReader	reader	=	new(data);

		while	(reader.Read())

		{

				if	(reader.TokenType	==	JsonTokenType.PropertyName	&&	

reader.GetString()	==	"title")

				{

						isNextTitle	=	true;

				}

				if	(reader.TokenType	==	JsonTokenType.String	&&	isNextTitle)

				{

						title	=	reader.GetString();

						isNextTitle	=	false;

				}

				if	(reader.TokenType	==	JsonTokenType.PropertyName	&&	

reader.GetString()	==	"price")

				{

						isNextPrice	=	true;

				}

				if	(reader.TokenType	==	JsonTokenType.Number	&&	isNextPrice	

&&	

						reader.TryGetDecimal(out	decimal	price))

				{

						Console.WriteLine($"{title},	price:	{price:C}");

						isNextPrice	=	false;

				}

		}

		Console.WriteLine();

}

JSON	Writer
Similar	to	using	the	Utf8JsonReader	to	read	tokens,	you	can	use	the	Utf8Writer
to	write	tokens.	The	following	code	snippet	creates	a	JSON	document	containing
an	array	of	Book	objects	that	contain	Title	and	Subtitle	properties	(code	file
JsonSample/Program.cs):

void	UseWriter()

{

		using	MemoryStream	stream	=	new();

	

		JsonWriterOptions	options	=	new()

		{

				Indented	=	true

		};

		using	(Utf8JsonWriter	writer	=	new(stream,	options))

		{

				writer.WriteStartArray();

						writer.WriteStartObject();

								writer.WriteStartObject("Book");

										writer.WriteString("Title",	"Professional	C#	and	

.NET");

										writer.WriteString("Subtitle",	"2021	Edition");

								writer.WriteEndObject();

						writer.WriteEndObject();

						writer.WriteStartObject();

								writer.WriteStartObject("Book");

										writer.WriteString("Title",	"Professional	C#	7	and	

.NET	Core	2");

										writer.WriteString("Subtitle",	"2018	Edition");

								writer.WriteEndObject();

						writer.WriteEndObject();

				writer.WriteEndArray();

		}

		string	json	=	Encoding.UTF8.GetString(stream.ToArray());

		Console.WriteLine(json);

		Console.WriteLine();

}

This	is	the	generated	JSON	from	the	previous	code	snippet:

[

		{

				"Book":	{

						"Title":	"Professional	C#	and	.NET",

						"Subtitle":	"2021	Edition"

				}

		},

		{

				"Book":	{

						"Title":	"Professional	C#	7	and	.NET	Core	2",

						"Subtitle":	"2018	Edition"

				}

		}

]

USING	FILES	AND	STREAMS	WITH	THE
WINDOWS	RUNTIME
With	the	Windows	Runtime,	you	implement	streams	with	native	types.	Although
they	are	implemented	with	native	code,	they	look	like	.NET	types.	However,
there's	a	difference	you	need	to	be	aware	of:	for	streams,	the	Windows	Runtime
implements	its	own	types	in	the	namespace	Windows.Storage.Streams.	Here
you	can	find	classes	such	as	FileInputStream,	FileOutputStream,	and
RandomAccessStreams.	All	these	classes	are	based	on	interfaces—for	example,
IInputStream,	IOutputStream,	and	IRandomAccessStream.	You'll	also	find	the
concept	of	readers	and	writers.	Windows	Runtime	readers	and	writers	are	the
types	DataReader	and	DataWriter.

Let's	look	at	what's	different	from	the	.NET	streams	you've	seen	so	far	and	how
.NET	streams	and	types	can	map	to	these	native	types.

NOTE Because	the	WinUI	framework	is	in	an	early	stage,	make	sure	to
read	the	readme	file	associated	with	the	downloadable	sample	code	for
information	on	how	to	build	and	start	WinUI	applications	and	for	specifics
with	the	samples.

Windows	App	Editor
Let's	create	an	editor	starting	with	the	WinUI	Blank	App	Visual	Studio	template.

To	add	commands	for	opening	and	saving	a	file	AppBarButton,	elements	are
added	to	the	window	(code	file	WinUIAppEditor/MainWindow.xaml):

<CommandBar	IsOpen="True"	Grid.Row="1">

		<AppBarButton	Icon="OpenFile"	Label="Open"	Click="{x:Bind	

OnOpen}"/>

		<AppBarButton	Icon="Save"	Label="Save"	Click="{x:Bind	

OnSave}"/>

</CommandBar>

The	TextBox	added	to	the	Grid	will	receive	the	contents	of	the	file:

<Grid	Background="{ThemeResource	

ApplicationPageBackgroundThemeBrush}">

		<TextBox	x:Name="text1"	HorizontalTextAlignment="Left"	

AcceptsReturn="True"	/>

</Grid>

The	OnOpen	event	handler	first	starts	the	dialog	where	the	user	can	select	a	file.
Remember,	you	used	the	OpenFileDialog	earlier.	With	Windows	apps,	you	can
use	pickers.	To	open	files,	FileOpenPicker	is	the	preferred	type.	You	can
configure	this	picker	to	define	the	proposed	start	location	for	the	user.	You	set
the	SuggestedStartLocation	to	PickerLocationId.DocumentsLibrary	to	open
the	user's	documents	folder.	PickerLocationId	is	an	enumeration	that	defines
various	special	folders.

Next,	the	FileTypeFilter	collection	specifies	the	file	types	that	should	be	listed
for	the	user.	Finally,	the	method	PickSingleFileAsync	returns	the	file	selected
from	the	user.	To	allow	users	to	select	multiple	files,	you	can	use	the	method
PickMultipleFilesAsync	instead.	This	method	returns	a	StorageFile.
StorageFile	is	defined	in	the	namespace	Windows.Storage.	This	class	is	the
equivalent	of	the	FileInfo	class	for	opening,	creating,	copying,	moving,	and
deleting	files	(code	file	WindowsAppEditor/MainWindow.xaml.cs):

public	async	void	OnOpen()

{

		try

		{

				FileOpenPicker	picker	=	new()

				{

						ViewMode	=	PickerViewMode.Thumbnail,

						SuggestedStartLocation	=	PickerLocationId.DocumentsLibrary

				};

				picker.FileTypeFilter.Add(".txt");

				picker.FileTypeFilter.Add(".md");

	

				StorageFile	file	=	await	picker.PickSingleFileAsync();

				//…

Now,	open	the	file	using	OpenReadAsync.	This	method	returns	a	stream	that
implements	the	interface	IRandomAccessStreamWithContentType,	which
derives	from	the	interfaces	IRandomAccessStream,	IInputStream,
IOuputStream,	IContentProvider,	and	IDisposable.	IRandomAccessStream
allows	random	access	to	a	stream	with	the	Seek	method,	and	it	gives	information
about	the	size	of	a	stream.	IInputStream	defines	the	method	ReadAsync	to	read
from	a	stream.	IOutputStream	is	the	opposite;	it	defines	the	methods
WriteAsync	and	FlushAsync.	IContentTypeProvider	defines	the	property
ContentType	that	gives	information	about	the	content	of	the	file.	Remember	the

encodings	of	the	text	files?	Now	it	would	be	possible	to	read	the	content	of	the
stream	invoking	the	method	ReadAsync.	However,	the	Windows	Runtime	also
knows	the	reader's	and	writer's	concepts	that	have	already	been	discussed.	A
DataReader	accepts	an	IInputStream	with	the	constructor.	The	DataReader	type
defines	methods	to	read	primitive	data	types	such	as	ReadInt16,	ReadInt32,	and
ReadDateTime.	You	can	read	a	byte	array	with	ReadBytes,	and	a	string	with
ReadString.	The	ReadString	method	requires	the	number	of	characters	to	read.
The	string	is	assigned	to	the	Text	property	of	the	TextBox	control	to	display	the
content:

//…

		if	(file	!=	null)

		{

				IRandomAccessStreamWithContentType	stream	=	await	

file.OpenReadAsync();

				using	DataReader	reader	=	new(stream);

				await	reader.LoadAsync((uint)stream.Size);

				text1.Text	=	reader.ReadString((uint)stream.Size);

		}

}

catch	(Exception	ex)

{

		MessageDialog	dlg	=	new(ex.Message,	"Error");

		await	dlg.ShowAsync();

}

NOTE Like	the	readers	and	the	writers	of	the	.NET	base	class	library,	the
DataReader	and	DataWriter	manage	the	stream	that	is	passed	with	the
constructor.	On	disposing	of	the	reader	or	writer,	the	stream	gets	disposed	of
as	well.	With	.NET	classes,	to	keep	the	underlying	stream	open	for	a	longer
time,	you	can	set	the	leaveOpen	argument	in	the	constructor.	With	the
Windows	Runtime	types,	you	can	detach	the	stream	from	the	readers	and
writers	by	invoking	the	method	DetachStream	.

On	saving	the	document,	the	OnSave	method	is	invoked.	First,	FileSavePicker
is	used	to	allow	the	user	to	select	the	document—similarly	to	FileOpenPicker.
Next,	the	file	is	opened	using	OpenTransactedWriteAsync.	The	NTFS	file
system	supports	transactions;	these	are	not	covered	directly	from	the	base	class
libraries	but	are	available	with	the	Windows	Runtime.
OpenTransactedWriteAsync	returns	a	StorageStreamTransaction	object	that
implements	the	interface	IStorageStreamTransaction.	This	object	itself	is	not	a

stream	(although	the	name	might	lead	you	to	believe	this),	but	it	contains	a
stream	that	you	can	reference	with	the	Stream	property.	This	property	returns	an
IRandomAccessStream	stream.	As	you	can	create	a	DataReader,	you	can	create	a
DataWriter	to	write	primitive	data	types,	including	strings	as	in	this	example.
The	StoreAsync	method	finally	writes	the	content	from	the	buffer	to	the	stream.
The	transaction	needs	to	be	committed	by	invoking	the	CommitAsync	method
before	disposing	of	the	writer:

public	async	void	OnSave()

{

		try

		{

				FileSavePicker	picker	=	new()

				{

						SuggestedStartLocation	=	

PickerLocationId.DocumentsLibrary,

						SuggestedFileName	=	"New	Document"

				};

				picker.FileTypeChoices.Add("Plain	Text",	new	List<string>()	

{	".txt"	});

				StorageFile	file	=	await	picker.PickSaveFileAsync();

				if	(file	!=	null)

				{

						using	StorageStreamTransaction	tx	=	await	

file.OpenTransactedWriteAsync();

						IRandomAccessStream	stream	=	tx.Stream;

						stream.Seek(0);

						using	DataWriter	writer	=	new(stream);

						writer.WriteString(text1.Text);

						tx.Stream.Size	=	await	writer.StoreAsync();

						await	tx.CommitAsync();

				}

		}

		catch	(Exception	ex)

		{

				MessageDialog	dlg	=	new(ex.Message,	"Error");

				await	dlg.ShowAsync();

		}

}

The	DataWriter	doesn't	add	the	preamble	defining	the	kind	of	Unicode	file	to
the	stream.	You	need	to	do	that	explicitly,	as	explained	earlier	in	this	chapter.
The	DataWriter	just	deals	with	the	encoding	of	the	file	by	setting	the
UnicodeEncoding	and	ByteOrder	properties.	The	default	setting	is
UnicodeEncoding.Utf8	and	ByteOrder.BigEndian.	Instead	of	working	with	the

DataWriter,	you	can	also	take	advantage	of	the	features	of	StreamReader	and
StreamWriter	as	well	as	the	.NET	Stream	class,	as	shown	in	the	next	section.

Mapping	Windows	Runtime	Types	to	.	NET	Types
Let's	start	with	reading	the	file.	To	convert	a	Windows	Runtime	stream	to	a	.NET
stream	for	reading,	you	can	use	the	extension	method	AsStreamForRead.	This
method	is	defined	in	the	namespace	System.IO	(that	must	be	opened)	in	the
assembly	System.Runtime.WindowsRuntime.	This	method	creates	a	new	Stream
object	that	manages	the	IInputStream.	Now,	you	can	use	it	as	a	normal	.NET
stream,	as	shown	previously—for	example,	passing	it	to	a	StreamReader	and
using	this	reader	to	access	the	file	(code	file
WindowsAppEditor/MainWindow.xaml.cs):

public	async	void	OnOpenDotnet()

{

		try

		{

				FileOpenPicker	picker	=	new()

				{

						ViewMode	=	PickerViewMode.Thumbnail,

						SuggestedStartLocation	=	PickerLocationId.DocumentsLibrary

				};

				picker.FileTypeFilter.Add(".txt");

				picker.FileTypeFilter.Add(".md");

	

				StorageFile	file	=	await	picker.PickSingleFileAsync();

				if	(file	!=	null)

				{

						IRandomAccessStreamWithContentType	wrtStream	=

								await	file.OpenReadAsync();

						Stream	stream	=	wrtStream.AsStreamForRead();

						using	StreamReader	reader	=	new(stream);

						text1.Text	=	await	reader.ReadToEndAsync();

				}

		}

		catch	(Exception	ex)

		{

				MessageDialog	dlg	=	new(ex.Message,	"Error");

				await	dlg.ShowAsync();

		}

}

All	the	Windows	Runtime	stream	types	can	easily	be	converted	to	.NET	streams
and	the	other	way	around.	The	following	table	lists	the	methods	needed:

CONVERT	FROM CONVERT	TO METHOD
IRandomAccessStream Stream AsStream

IInputStream Stream AsStreamForRead

IOutputStream Stream AsStreamForWrite

Stream IInputStream AsInputStream

Stream IOutputStream AsOutputStream

Stream IRandomAccessStream AsRandomAccessStream

Now	save	the	change	to	the	file	as	well.	The	stream	for	writing	is	converted	with
the	extension	method	AsStreamForWrite.	Now,	this	stream	can	be	written	using
the	StreamWriter	class.	The	code	snippet	also	writes	the	preamble	for	the	UTF-
8	encoding	to	the	file:

public	async	void	OnSaveDotnet()

{

		try

		{

				FileSavePicker	picker	=	new()

				{

						SuggestedStartLocation	=	

PickerLocationId.DocumentsLibrary,

						SuggestedFileName	=	"New	Document"

				};

				picker.FileTypeChoices.Add("Plain	Text",	new	List<string>()	

{	".txt"	});

				StorageFile	file	=	await	picker.PickSaveFileAsync();

				if	(file	!=	null)

				{

						StorageStreamTransaction	tx	=	await	

file.OpenTransactedWriteAsync();

						using	var	writer	=	new	

StreamWriter(tx.Stream.AsStreamForWrite());

						byte[]	preamble	=	Encoding.UTF8.GetPreamble();

						await	stream.WriteAsync(preamble,	0,	preamble.Length);

						await	writer.WriteAsync(text1.Text);

						await	writer.FlushAsync();

						tx.Stream.Size	=	(ulong)stream.Length;

						await	tx.CommitAsync();

				}

		}

		catch	(Exception	ex)

		{

				MessageDialog	dlg	=	new(ex.Message,	"Error");

				await	dlg.ShowAsync();

		}

}

SUMMARY
In	this	chapter,	you	examined	how	to	use	the	.NET	classes	with	static	and
instance	methods	to	access	the	file	system	from	your	C#	code.	For	the	file
system,	you	used	APIs	to	copy,	move,	create,	and	delete	files	and	folders;	and
you	used	streams	to	read	and	write	binary	and	text	files.

You	saw	how	to	compress	files	using	the	deflate	and	the	Brotli	algorithm,	and
you	created	ZIP	files.	You	used	FileSystemWatcher	to	get	information	when
files	change.

In	using	the	new	System.Text.Json	namespace	and	the	new	performant	JSON
serializer,	you've	seen	easy	ways	to	serialize	and	deserialize	.NET	objects	into
and	from	JSON.	You've	also	seen	other	options	to	deal	with	JSON	files,	such	as
accessing	the	DOM	with	the	JsonDocument	and	directly	accessing	the	tokens
from	JSON	with	the	Utf8JsonReader	and	Utf8JsonWriter.

Finally,	you've	seen	how	to	map	.NET	streams	to	Windows	Runtime	streams	to
take	advantage	of	.NET	features	within	Windows	apps.

The	next	chapter	continues	working	with	streams,	sending	streams	across	the
network,	and	making	use	of	System.IO.Pipelines	for	efficient	communication
across	the	network.

19
Networking

WHAT'S	IN	THIS	CHAPTER?

Manipulating	IP	addresses	and	performing	DNS	lookups

Using	socket	programming

Creating	TCP	and	UDP	clients	and	servers

Using	HttpClient

Working	with	the	HttpClient	factory

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/Networking.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

Utilities

Dns

SocketServer

SocketClient

TcpServer

TcpClientSample

UdpReceiver

UdpSender

HttpServerSample

HttpClientSample

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

Samples	from	this	chapter	use	the	System.Net,	System.Net.Sockets,
System.Net.Http,	and	System.IO.Pipelines	namespaces.	Important
NuGet	packages	used	are	Microsoft.Extensions.Http	and
Microsoft.Extensions.Hosting.	All	the	samples	have	nullable	reference
types	enabled.

OVERVIEW
This	chapter	takes	a	practical	approach	to	networking	by	mixing	examples	with	a
discussion	of	relevant	theory	and	networking	concepts	as	appropriate.	This
chapter	is	not	a	guide	to	computer	networking	but	an	introduction	to	using	.NET
for	network	communication.

This	chapter	shows	you	how	to	create	both	clients	and	servers	using	network
protocols.	It	starts	with	utility	classes	such	as	IPAddress,	IPHostEntry,	and	Dns
before	digging	into	programming	with	sockets.	Here,	sockets	are	used	to	show
the	functionality	of	communication	via	UDP	and	TCP.

After	you	learn	the	foundation	of	network	programming,	we	move	to	higher-
level	APIs	by	using	the	UdpClient	and	TcpClient	classes.	These	classes	provide
an	abstraction	layer	to	the	Socket	class	in	which	you	don't	have	full	control	over
sockets,	but	using	TCP	and	UDP	communication	is	easier.

After	this,	we	move	to	another	abstraction	layer:	the	HTTP	protocol,	which	is	the
most	used	protocol	in	the	Internet.	The	HttpClient	class	offers	a	modern
asynchronous	approach	for	creating	HTTP	requests.	You'll	use	the
HttpClientFactory	class	to	manage	HttpClient	objects.

The	two	namespaces	of	most	interest	for	networking	are	System.Net	and
System.Net.Sockets.	The	System.Net	namespace	is	generally	concerned	with
higher-level	operations,	such	as	downloading	and	uploading	files	and	making
web	requests	using	HTTP	and	other	protocols,	whereas	System.Net.Sockets
contains	classes	to	perform	lower-level	operations.	You	will	find	these	classes
useful	when	you	want	to	work	directly	with	sockets	or	protocols,	such	as	with
TCP/IP.	The	methods	in	these	classes	closely	mimic	the	Windows	socket
(Winsock)	API	functions	derived	from	the	Berkeley	sockets	interface.	You	will
also	find	that	some	of	the	objects	in	the	chapter	are	found	in	the	System.IO
namespace.

WORKING	WITH	UTILITY	CLASSES
On	the	Internet,	you	identify	servers	as	well	as	clients	by	IP	address	or	host	name
(also	referred	to	as	a	Domain	Name	System	[DNS]	name).	Generally	speaking,
the	host	name	is	the	human-friendly	name	that	you	type	in	a	web	browser
window,	such	as	www.wrox.com	or	www.cninnovation.com.	An	IP	address	is	the
identifier	that	computers	use	to	recognize	each	other.	IP	addresses	are	the
identifiers	used	to	ensure	that	web	requests	and	responses	reach	the	appropriate
machines.	It	is	even	possible	for	a	computer	to	have	more	than	one	IP	address.

An	IP	address	can	be	a	32-bit	or	128-bit	value,	depending	on	whether	Internet
Protocol	version	4	(IPv4)	or	Internet	Protocol	version	6	(IPv6)	is	used.	An
example	of	a	32-bit	IP	address	is	192.168.1.100.	Because	there	are	now	so
many	computers	and	other	devices	vying	for	a	spot	on	the	Internet,	IPv6	was
developed.	IPv6	can	potentially	provide	a	maximum	number	of	about	3	×	1038
unique	addresses.	.NET	enables	your	applications	to	work	with	both	IPv4	and
IPv6.

For	host	names	to	work,	you	must	first	send	a	network	request	to	translate	the
host	name	into	an	IP	address—a	task	that's	carried	out	by	one	or	more	DNS
servers.	A	DNS	server	stores	a	table	that	maps	host	names	to	IP	addresses	for	all
the	computers	it	knows	about.	For	host	names	the	DNS	server	doesn't	know,	it
stores	IP	addresses	of	other	DNS	servers	for	lookups.	Your	local	computer
should	always	know	about	at	least	one	DNS	server.	Network	administrators
configure	this	information	when	a	computer	is	set	up.

Before	sending	out	a	request,	your	computer	first	asks	the	DNS	server	to	give	it
the	IP	address	corresponding	to	the	host	name	you	have	typed	in.	When	it	is
armed	with	the	correct	IP	address,	the	computer	can	address	the	request	and	send
it	over	the	network.	All	this	work	normally	happens	behind	the	scenes	while	the
user	is	browsing	the	Web.

.NET	supplies	a	number	of	classes	that	are	able	to	assist	with	the	process	of
looking	up	IP	addresses	and	finding	information	about	host	computers.

URIs
Uri	and	UriBuilder	are	two	classes	in	the	System	namespace.	The	Uri	class
represents	a	URI,	and	the	UriBuilder	class	makes	it	easy	to	create	a	URI	using
the	different	parts	of	a	URI.

http://www.wrox.com
http://www.cninnovation.com

NOTE Both	uniform	resource	locators	(URLs)	and	uniform	resource
identifiers	(URIs)	are	used	with	web	technologies.	A	URL	references	a	web
address.	This	is	defined	with	RFC	1738
(https://tools.ietf.org/html/rfc1738).	A	URI	is	a	superset	of	a	URL
and	can	identify	anything,	as	defined	by	the	Resource	Description
Framework	(RDF);	see	https://www.w3.org/RDF/.

The	following	code	snippet	demonstrates	features	of	the	Uri	class.	The
constructor	allows	passing	relative	and	absolute	URLs.	This	class	defines	several
read-only	properties	to	access	parts	of	a	URL,	such	as	the	scheme,	host	name,
port	number,	query	strings,	and	segments	of	a	URL	(code	file
Utilities/Program.cs):

void	UriSample(string	uri)

{

		Uri	page	=	new(uri);

		Console.WriteLine($"scheme:	{page.Scheme}");	

		Console.WriteLine($"host:	{page.Host},	type:	

{page.HostNameType},	"	+

				$"idn	host:	{page.IdnHost}");

		Console.WriteLine($"port:	{page.Port}");

		Console.WriteLine($"path:	{page.AbsolutePath}");

		Console.WriteLine($"query:	{page.Query}");

	

		foreach	(var	segment	in	page.Segments)

		{

				Console.WriteLine($"segment:	{segment}");

		}

}

When	you	run	the	application	with	the	command	donet	run	--	uri	--uri	and
pass	the	URL	and	string	that	contains	a	path	and	a	query	string
https://www.amazon.com/Professional-NET-Core-Christian-

Nagel/dp/1119449278/ref=sr_1_1?dchild=1&keywords=Professional+C%23,
you	get	the	following	output:

scheme:	https

host:	www.amazon.com,	type:	Dns,	idn	host:	www.amazon.com

port:	443

path:	/Professional-NET-Core-Christian-

Nagel/dp/1119449278/ref=sr_1_1

query:	?dchild=1&keywords=Professional+C%23

segment:	/

https://tools.ietf.org/html/rfc1938
https://www.w3.org/RDF/
https://www.amazon.com/Professional-NET-Core-Christian-Nagel/dp/1119449278/ref=sr_1_1?dchild=1&keywords=Professional+C%23

segment:	Professional-NET-Core-Christian-Nagel/

segment:	dp/

segment:	1119449278/

segment:	ref=sr_1_1

Unlike	the	Uri	class,	the	UriBuilder	defines	read-write	properties,	as	shown	in
the	following	code	snippet.	You	can	create	a	UriBuilder	instance,	assign	these
properties,	and	get	a	URL	returned	from	the	Uri	property:

void	BuildUri()

{

		UriBuilder	builder	=	new();

		builder.Scheme	=	"https";

		builder.Host	=	"www.cninnovation.com";

		builder.Port	=	80;

		builder.Path	=	"training/MVC";

		Uri	uri	=	builder.Uri;

		Console.WriteLine(uri);

}

Instead	of	using	properties	with	the	UriBuilder,	this	class	also	offers	several
overloads	of	the	constructor	where	the	parts	of	a	URL	can	be	passed	as	well.

IPAddress
IPAddress	represents	an	IP	address.	The	address	itself	is	available	as	a	byte
array	using	the	GetAddressBytes	property	and	may	be	converted	to	a	dotted
decimal	format	with	the	ToString	method.	IPAddress	also	implements	static
Parse	and	TryParse	methods	that	effectively	perform	the	reverse	conversion	of
ToString—converting	from	a	dotted	decimal	string	to	an	IPAddress.	The	code
sample	also	accesses	the	AddressFamily	property	and	converts	an	IPv4	address
to	IPv6,	and	vice	versa	(code	file	Utilities/Program.cs):

void	IPAddressSample(string	ipAddressString)

{

		if	(!IPAddress.TryParse(ipAddressString,	out	IPAddress?	

address))

		{

				Console.WriteLine($"cannot	parse	{ipAddressString}");

				return;

		}

		byte[]	bytes	=	address.GetAddressBytes();

		for	(int	i	=	0;	i	<	bytes.Length;	i++)

		{

				Console.WriteLine($"byte	{i}:	{bytes[i]:X}");

		}

		Console.WriteLine($"family:	{address.AddressFamily},	"	+

				$"map	to	ipv6:	{address.MapToIPv6()},	map	to	ipv4:	

{address.MapToIPv4()}");

		//	…

Passing	the	address	65.52.128.33	to	the	method	results	in	this	output:

byte	0:	41

byte	1:	34

byte	2:	80

byte	3:	21

family:	InterNetwork,	map	to	ipv6:	::ffff:65.52.128.33,	map	to	

ipv4:	65.52.128.3

3

The	IPAddress	class	also	defines	static	properties	to	create	special	addresses
such	as	loopback,	broadcast,	and	anycast:

void	IPAddressSample(string	ipAddressString)

{

		//…

		Console.WriteLine($"IPv4	loopback	address:	

{IPAddress.Loopback}");

		Console.WriteLine($"IPv6	loopback	address:	

{IPAddress.IPv6Loopback}");

		Console.WriteLine($"IPv4	broadcast	address:	

{IPAddress.Broadcast}");

		Console.WriteLine($"IPv4	any	address:	{IPAddress.Any}");

		Console.WriteLine($"IPv6	any	address:	{IPAddress.IPv6Any}");

}

With	a	loopback	address,	the	network	hardware	is	bypassed.	This	is	the	IP
address	that	represents	the	host	name	localhost.

The	broadcast	address	is	an	address	that	addresses	every	node	in	a	local
network.	Such	an	address	is	not	available	with	IPv6	because	this	concept	is	not
used	with	the	newer	version	of	the	Internet	Protocol.	After	the	initial	definition
of	IPv4,	multicasting	was	added	for	IPv6.	With	multicasting,	a	group	of	nodes	is
addressed	instead	of	all	nodes.	With	IPv6,	multicasting	completely	replaces
broadcasting.	Both	broadcast	and	multicast	are	shown	in	code	samples	later	in
this	chapter	in	the	“Using	UDP”	section.

With	an	anycast,	one-to-many	routing	is	used	as	well,	but	the	data	stream	is
transmitted	only	to	the	node	closest	in	the	network.	This	is	useful	for	load
balancing.	With	IPv4,	the	Border	Gateway	rotocol	(BGP)	routing	protocol	is
used	to	find	the	shortest	path	in	the	network;	with	IPv6,	this	feature	is	inherent.

When	you	run	the	application,	you	can	see	the	following	addresses	for	IPv4	and
IPv6:

IPv4	loopback	address:	127.0.0.1

IPv6	loopback	address:	::1

IPv4	broadcast	address:	255.255.255.255

IPv4	any	address:	0.0.0.0

IPv6	any	address:	::

IPHostEntry
The	IPHostEntry	class	encapsulates	information	related	to	a	particular	host
computer.	This	class	makes	the	host	name	available	via	the	HostName	property
(which	returns	a	string),	and	the	AddressList	property	returns	an	array	of
IPAddress	objects.	You	are	going	to	use	the	IPHostEntry	class	in	the	next
example.

DNS
The	Dns	class	can	communicate	with	your	default	DNS	server	to	retrieve	IP
addresses.	The	sample	application	is	implemented	as	a	console	application	that
loops	to	ask	the	user	for	host	names	(you	can	add	an	IP	address	instead)	to	get	an
IPHostEntry	via	Dns.GetHostEntryAsync.	From	the	IPHostEntry,	the	address
list	is	accessed	using	the	AddressList	property.	All	the	addresses	of	the	host,	as
well	as	the	AddressFamily,	are	written	to	the	console	(code	file
DnsLookup/Program.cs):

do

{

		Console.Write("Hostname:\t");

		string?	hostname	=	Console.ReadLine();

		if	(hostname	is	null	||	

				hostname.Equals("exit",	

StringComparison.CurrentCultureIgnoreCase))

		{

				Console.WriteLine("bye!");

				return;

		}

	

		await	OnLookupAsync(hostname);

		Console.WriteLine();

}	while	(true);

	

async	Task	OnLookupAsync(string	hostname)

{

		try

		{

				IPHostEntry	ipHost	=	await	Dns.GetHostEntryAsync(hostname);

				Console.WriteLine($"Hostname:	{ipHost.HostName}");

				foreach	(IPAddress	address	in	ipHost.AddressList)

				{

						Console.WriteLine($"Address	Family:	

{address.AddressFamily}");

						Console.WriteLine($"Address:	{address}");

				}

		}

		catch	(SocketException	ex)

		{

				Console.WriteLine(ex.Message);

		}

}

Run	the	application	and	enter	a	few	host	names	to	see	output	similar	to	what's
shown	in	the	following	example.	With	the	host	name	www.wiley.com,	you	can
see	that	this	host	name	defines	multiple	IP	addresses.	portal.azure.com	returns
with	different	host	names	and	IP	addresses	depending	on	your	region.

Hostname:	www.cninnovation.com

Hostname:	www.cninnovation.com

Address	Family:	InterNetwork,	address:	65.52.128.33

	

Hostname:	www.wiley.com

Hostname:	1x6jqndp2gdqp.cloudfront.net

Address	Family:	InterNetwork,	address:	13.32.2.108

Address	Family:	InterNetwork,	address:	194.232.104.139

Address	Family:	InterNetwork,	address:	13.32.2.25

Address	Family:	InterNetwork,	address:	13.32.2.54

Address	Family:	InterNetwork,	address:	13.32.2.51

	

Hostname:	portal.azure.com

Hostname:	portal-prod-germanywestcentral-

02.germanywestcentral.cloudapp.azure.com

Address	Family:	InterNetwork,	address:	51.116.144.197

	

Hostname:	exit

bye!

NOTE The	Dns	class	is	somewhat	limited.	For	example,	you	can't	define
using	a	server	that's	different	than	the	default	DNS	server.	Also,	the	Aliases
property	of	the	IPHostEntry	is	not	populated	from	the	method

http://www.wiley.com
http://portal.azure.com

GetHostEntryAsync.	It's	populated	from	the	obsolete	method	Resolve,	and
this	doesn't	populate	this	property	fully.	For	full	use	of	DNS	lookups,	it's
better	to	use	a	third-party	library.

Now	it's	time	to	move	to	a	low-level	API	using	the	Socket	class.

Configuring	Sockets
No	matter	what	networking	API	you	use,	they	are	all	based	on	sockets.	To
configure	sockets,	you	can	use	the	ServicePoint.	With	the
ServicePointManager	class,	you	can	get	ServicePoint	instances	by	invoking
the	static	method	FindServicePoint	and	passing	a	URI.	Using	this,	you	can
specifically	configure	sockets	for	this	address.

To	configure	all	sockets,	no	matter	which	connection	is	used,	you	can	use	static
methods	of	the	ServicePointManager	class,	such	as	by	invoking	the	method
SetTcpKeepAlive.	This	method	sets	the	keep-alive	flag	with	the	socket	to	stay
informed	when	the	connection	is	lost	and	to	keep	the	connection	open	in	case	of
inactivity.	With	TCP	keep-alive,	probe	packets	are	sent	where	an	acknowledge
(ACK)	message	is	expected.	The	sample	code	enables	the	keep-alive	flag	with	a
message	sent	every	second	(keepAliveInterval)	and	a	timeout	of	60	seconds
(keepAliveTime).	A	default	setting	is	two	hours	for	the	timeout	and	one	second
for	the	interval:

ServicePointManager.SetTcpKeepAlive(

		enabled:	true,	keepAliveTime:	600000,	keepAliveInterval:	

1000);

Other	settings	you	can	specify	with	the	ServicePointManager	include	the
following:

DefaultConnectionLimit	specifies	the	maximum	number	of	concurrent
connections	allowed	by	the	application.	With	non–ASP.NET	Core
applications,	the	default	value	is	2,	so	often	there's	the	need	to	increase	this
limit.

EnableDnsRoundRobin	enables	DNS	round-robin.	By	default,	if	the	DNS
name	is	accessible	using	multiple	IP	addresses	(as	you've	seen	in	the	section
DNS),	always	the	first	IP	address	is	used.	If	you	set	this	to	true,	one	after
another	IP	address	is	used	with	DNS	lookups.

The	Nagle	algorithm	is	used	to	reduce	the	sending	of	many	small	packages.

Packages	are	sent	only	when	the	buffer	is	full.	If	the	buffer	is	not	full,	the
package	is	sent	only	when	the	receiver	of	the	packages	already
acknowledged	all	packages	that	have	been	sent	so	far.	If	you	need	a	faster
response—for	example,	when	the	user	enters	some	data	that	should	be	sent
immediately—you	can	turn	off	this	algorithm	by	setting
UseNagleAlgorithm	to	false.

If	you	define	a	custom	implementation	to	check	for	certificates,	you	can
define	a	handler	method	of	the	delegate	type
RemoteCertificateValidationCallback	and	set	it	with	the
ServerCertificateValidationCallback	property.

USING	SOCKETS
The	HTTP	protocol	is	based	on	TCP	(there's	an	exception:	the	upcoming
HTTP/3	protocol	is	based	on	the	QUIC	protocol,	which	is	an	enhancement	of
UDP),	and	thus	the	HttpXX	classes	offer	an	abstraction	layer	over	the	TcpXX
classes.	The	TcpXX	classes,	however,	give	you	more	control.	You	can	even	get
more	control	than	offered	by	the	TcpXX	or	UdpXX	classes	with	the	Socket	class.
With	sockets,	you	can	use	different	protocols,	not	only	protocols	based	on	TCP
or	UDP—for	example,	Internet	Control	Message	Protocol	(ICMP),	Internet
Datagram	Protocol	(IDP),	and	PARC	Universal	Packet	Protocol	(PUP).	You	can
also	create	a	protocol.	What	might	be	even	more	important	is	that	you	can	have
more	control	over	TCP-	or	UDP-based	protocols.

TCP	Echo	Sample	Using	Sockets
Let's	start	with	a	server	that	listens	to	incoming	requests	and	returns	the	received
data	to	the	client.	This	application	is	based	on	the	TCP	Echo	protocol	as	defined
by	RFC	862	(https://tools.ietf.org/html/rfc862).

This	sample	application	makes	use	of	the	Host	class	defined	in	the	package
Microsoft.Extensions.Hosting	to	use	the	preconfigured	dependency	injection
container,	logging,	and	configuration	options.	You	can	supply	the	application
configuration	values	in	the	configuration	file	appsettings.json	and	override
the	configuration	values	passing	parameters	from	the	command	line.	This
sample	also	makes	use	of	logging	as	supported	by	the	Host	class.	Networking
classes	generate	some	logging	output,	as	you	can	see	with	the	samples	from	this
chapter.	You	can	configure	the	logging	level	in	the	application	configuration	file
as	well.

https://tools.ietf.org/html/rfc862

NOTE Read	Chapter	15,	“Dependency	Injection	and	Configuration,”	for
information	on	the	Host	class	and	using	.NET	configuration,	and	Chapter
16,	“Diagnostics	and	Metrics,”	for	more	information	on	logging.

With	the	application	configuration	file	appsettings.json,	logging	levels	and
the	port	number	and	timeout	for	the	socket	server	are	configured	(configuration
file	SocketServer/appsettings.json):

{

		"Logging":	{

				"Console":	{

						"LogLevel":	{

								"Default":	"Trace",

								"EchoServer":	"Trace"

						}

				},

				"LogLevel":	{

						"Default":	"Trace",

						"Microsoft":	"Information",

						"EchoServer":	"Warning"

				}

		},

		"Echoserver":	{

				"Port":	"8200",

				"Timeout":	"5000"

		}

}

With	the	top-level	statements,	the	dependency	injection	(DI)	container	is
configured.	The	EchoService	class	is	defined	with	the	container.	This	class
contains	the	major	code	for	the	application,	the	use	of	the	Socket	class.	The
configuration	for	this	is	retrieved	from	the	EchoServer	section,	which	is	then
accessed	with	the	constructor	of	the	EchoService	class	and	passed	via	the	DI
container.	After	the	Host	class	is	configured,	the	socket	listener	is	started	by
invoking	the	StartListenerAsync	method	of	the	EchoService	class.	In
addition,	the	CancelKeyPress	event	of	the	Console	class	is	assigned	to	react	to
the	cancellation	of	the	user	to	send	a	cancel	via	the	CancellationToken	(code
file	SocketServer/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	settings	=	context.Configuration;

				services.Configure<EchoServiceOptions>

(settings.GetSection("Echoserver"));

				services.AddTransient<EchoServer>();

		})

		.Build();

	

var	logger	=	host.Services.GetRequiredService<ILoggerFactory>()

		.CreateLogger("EchoServer");

	

CancellationTokenSource	cancellationTokenSource	=	new();

	

Console.CancelKeyPress	+=	(sender,	e)	=>

{

				logger.LogInformation("cancellation	initiated	by	the	user");

				cancellationTokenSource.Cancel();

};

	

var	service	=	host.Services.GetRequiredService<EchoServer>();

await	service.StartListenerAsync(cancellationTokenSource.Token);

	

Console.ReadLine();

NOTE Cancellation	tokens	are	explained	in	Chapter	11,	“Tasks	and
Asynchronous	Programming.”

From	the	values	configured	with	the	application	settings,	the	port	and	timeout
values	are	assigned	to	fields	of	the	EchoServer	class	(code	file
SocketServer/EchoServer.cs):

record	EchoServiceOptions

{

		public	int	Port	{	get;	init;	}

		public	int	Timeout	{	get;	init;	}

}

	

class	EchoServer

{

		private	readonly	int	_port;

		private	readonly	ILogger	_logger;

		private	readonly	int	_timeout;

		public	EchoServer(IOptions<EchoServiceOptions>	options,	

ILogger<EchoServer>	logger)

		{

				_port	=	options.Value.Port;

				_timeout	=	options.Value.Timeout;

				_logger	=	logger;

		}

		//…

}

Creating	a	Listener
In	the	StartListenerAsync	method,	a	new	Socket	object	is	created.	With	the
constructor	of	the	Socket	class,	you	can	specify	the	communication	type.	The
AddressFamily	is	a	large	enumeration	that	offers	many	different	networks.
Examples	are	DECnet,	which	was	released	in	1975	by	Digital	Equipment	and
used	as	main	network	communication	between	PDP-11	systems;	Banyan
VINES,	which	was	used	to	connect	client	machines;	and,	of	course,
InterNetwork	for	IPv4	and	InterNetworkV6	for	IPv6.	As	mentioned	previously,
you	can	use	sockets	for	a	large	number	of	networking	protocols.	The	second
parameter,	SocketType,	specifies	the	kind	of	socket.	Examples	are	Stream	for
TCP,	Dgram	for	UDP,	or	Raw	for	raw	sockets.	The	third	parameter	is	an
enumeration	for	the	ProtocolType.	Examples	are	IP,	Ucmp,	Udp,	IPv6,	and	Raw.
The	settings	you	choose	need	to	match.	For	example,	if	you	use	TCP	with	IPv4,
the	address	family	must	be	InterNetwork,	the	socket	type	Stream,	and	the
protocol	type	Tcp.	To	create	a	UDP	communication	with	IPv4,	the	address
family	needs	to	be	set	to	InterNetwork,	the	socket	type	Dgram,	and	the	protocol
type	Udp.

The	listener	socket	returned	from	the	constructor	is	bound	to	an	IP	address	and
port	number.	With	the	sample	code,	the	listener	is	bound	to	all	local	IPv4
addresses,	and	the	port	number	is	specified	with	the	argument.	Calling	the
Listen	method	starts	the	listening	mode	of	the	socket.	The	socket	can	now
accept	incoming	connection	requests.	Specifying	the	parameter	with	the	Listen
method	defines	the	size	of	the	backlog	queue—how	many	clients	can	connect
concurrently	before	their	connection	is	dealt	with	(code	file
SocketServer/EchoServer.cs):

public	async	Task	StartListenerAsync(CancellationToken	

cancellationToken	=	default)

{

		try

		{

				using	Socket	listener	=	new(AddressFamily.InterNetwork,	

																																SocketType.Stream,	

																																ProtocolType.Tcp);

				listener.ReceiveTimeout	=	_timeout;

				listener.SendTimeout	=	_timeout;

	

				listener.Bind(new	IPEndPoint(IPAddress.Any,	_port));

				listener.Listen(backlog:	15);

	

				_logger.LogTrace("EchoListener	started	on	port	{0}",	_port);

				//…

}

Waiting	for	the	client	to	connect	happens	in	the	AcceptAsync	method	of	the
Socket	class.	This	method	continues	after	the	await	as	soon	as	a	client	connects.
After	a	client	connects,	this	method	is	invoked	again	to	fulfill	requests	of	other
clients;	this	is	why	this	method	is	called	within	a	while	loop.	For	the	listening,	a
separate	task,	which	can	be	canceled	from	the	calling	thread,	is	started.	The	task
to	read	and	write	using	the	socket	happens	within	the	method
ProcessClientJobAsync.	This	method	receives	the	Socket	instance	that	is
bound	to	the	client	to	read	and	write	(code	file	SocketServer/EchoServer.cs):

public	async	Task	StartListenerAsync(CancellationToken	=	

default)

{

				//…

				while	(true)

				{

						if	(cancellationToken.IsCancellationRequested)

						{

								cancellationToken.ThrowIfCancellationRequested();

								break;

						}

						var	socket	=	await	listener.AcceptAsync();

						if	(!socket.Connected)

						{

								_logger.LogWarning("Client	not	connected	after	accept");

								break;

						}

	

						_logger.LogInformation("client	connected,	local	{0},	

remote	{1}",	

						socket.LocalEndPoint,	socket.RemoteEndPoint);

	

						Task	_	=	ProcessClientJobAsync(socket);

				}

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

		catch	(Exception	ex)

		{

				_logger.LogError(ex,	ex.Message);

				throw;

		}

}

Communication	with	Pipelines
To	communicate	with	the	client,	you	can	use	receive	and	send	methods	of	the
Socket	class	using	a	memory	buffer	dealing	with	bytes.	Another	API	that	can	be
used	with	sockets	is	a	NetworkStream.	This	class	derives	from	the	Stream	base
class,	which	allows	reading	and	writing	from	the	network	and	is	mentioned	in
Chapter	18,	“Files	and	Streams.”	You	can	also	use	readers	and	writers,	which	are
also	covered	in	Chapter	18.	With	all	these	options,	you	need	to	manage	the	size
of	the	memory	buffer,	which	can	be	quite	complex	if	done	efficiently,	especially
if	the	size	of	the	data	sent	and	received	changes	dynamically.	You	need	to	adapt
the	buffer	sizes	and	repeat	reading	and	combining	the	data	if	you	receive	more
data	than	can	fit	into	the	buffer.

The	NuGet	package	System.IO.Pipelines	makes	this	job	a	lot	easier.	You	don't
need	to	allocate	the	buffer	yourself;	that's	done	using	PipeReader	and
PipeWriter	from	the	namespace	System.IO.Pipelines.	With	the	following
implementation	of	the	method	ProcessClientJobAsync,	the	PipeReader	and
PipeWriter	objects	are	created	to	pass	the	NetworkStream	to	the	Create
method.	There's	no	need	to	create	a	memory	buffer	before	invoking	the
ReadAsync	method	of	the	PipeReader.	The	ReadAsync	method	returns	a
ReadResult.	This	struct	contains	a	reference	to	the	allocated	buffer	(the	Buffer
property).	This	buffer	is	of	type	ReadOnlySequence<byte>.	The	buffer	used	by
pipelines	can	be	a	list	of	multiple	memory	segments.	ReadOnlySequence<T>
contains	an	iterator	that	allows	the	program	to	walk	through	the	segments.	With
the	following	code	snippet,	the	segments	are	iterated	with	the	foreach	statement
after	the	check	that	the	sequence	is	not	just	a	single	segment	(IsSingleSegment
property).	If	you	just	enter	data	from	the	keyboard	to	send	it	to	the	server,
usually	you'll	see	just	one	segment.	When	passing	the	content	of	files,	you	can
likely	see	multiple	segments.	With	a	single	segment,	the	content	can	be	accessed
with	the	FirstSpan	property	of	type	ReadOnlySpan<byte>.	With	the	echo
service,	the	content	read	is	encoded	and	returned	to	the	caller	with	the
WriteAsync	method	of	the	PipeWriter.	Before	continuing	the	read	on	the
PipeReader,	you	need	to	advance	the	position	of	the	reader	by	invoking	the

AdvanceTo	method.	This	method	needs	a	SequencePosition	that's	returned	from
the	GetPosition	method	of	the	ReadOnlySequence<T>	(code	file
SocketServer/EchoServer.cs):

private	async	Task	ProcessClientJobAsync(Socket	socket,	

		CancellationToken	cancellationToken	=	default)

{

		try

		{

				using	NetworkStream	stream	=	new(socket,	ownsSocket:	true);

	

				PipeReader	reader	=	PipeReader.Create(stream);

				PipeWriter	writer	=	PipeWriter.Create(stream);

	

				bool	completed	=	false;

				do

				{

						ReadResult	result	=	await	

reader.ReadAsync(cancellationToken);

	

						if	(result.Buffer.Length	==	0)

						{

								completed	=	true;

								_logger.LogInformation("received	empty	buffer,	client	

closed");

						}

						ReadOnlySequence<byte>	buffer	=	result.Buffer;

						if	(buffer.IsSingleSegment)

						{

								string	data	=	Encoding.UTF8.GetString(buffer.FirstSpan);

								_logger.LogTrace("received	data	{0}	from	the	client	

{1}",	

										data,	socket.RemoteEndPoint);

	

								//	send	the	data	back

								await	writer.WriteAsync(buffer.First,	

cancellationToken);

						}

						else

						{

								int	segmentNumber	=	0;

								foreach	(var	item	in	buffer)

								{

										segmentNumber++;

										string	data	=	Encoding.UTF8.GetString(item.Span);

										_logger.LogTrace("received	data	{0}	from	the	client	

{1}	in	the	{2}.	segment",	

												data,	socket.RemoteEndPoint,	segmentNumber);

	

										//	send	the	data	back

										await	writer.WriteAsync(item,	cancellationToken);

								}

						}

						SequencePosition	nextPosition	=	

result.Buffer.GetPosition(result.Buffer.Length);

						reader.AdvanceTo(nextPosition);

	

				}	while	(!completed);

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

		catch	(IOException	ex)	when	((ex.InnerException	is	

SocketException	socketException)	

				&&	(socketException.ErrorCode	is	10054))

		{

				logger.LogInformation("client	{0}	closed	the	connection",	

socket.RemoteEndPoint);

		}

		catch	(Exception	ex)

		{

				_logger.LogError(ex,	"ex.Message	with	client	{0}",	

socket.RemoteEndPoint);

				throw;

		}

		_logger.LogTrace("Closed	stream	and	client	socket	{0}",	

socket.RemoteEndPoint);

}

NOTE Check	Chapter	13,	“Managed	and	Unmanaged	Memory,”	for
details	on	the	Span<T>	type.

Implementing	a	Receiver
The	receiver	application	SocketClient	is	implemented	as	a	console	application
as	well.	Similar	to	the	server,	the	startup	code	with	top-level	commands	is	done
with	the	Host	class	to	read	configuration	values.	With	the	client,	properties	of	the
class	EchoClientOptions	are	filled	from	the	configuration	file	or	command-line
arguments	(code	file	SocketClient/EchoClient.cs):

reccord	EchoClientOptions

{

		public	string?	Hostname	{	get;	init;	}

		public	int	ServerPort	{	get;	init;	}

}

	

class	EchoClient

{

		private	readonly	string	_hostname;

		private	readonly	int	_serverPort;

		private	readonly	ILogger	_logger;

		public	EchoClient(IOptions<EchoClientOptions>	options,	

ILogger<EchoClient>	logger)

		{

				_hostname	=	options.Value.Hostname	??	"localhost";

				_serverPort	=	options.Value.ServerPort;

				_logger	=	logger;

		}

		//…

}

The	SendAndReceiveAsync	method	uses	DNS	name	resolution	to	get	the
IPHostEntry	from	the	hostname.	This	IPHostEntry	is	used	to	get	an	IPv4
address	of	the	host.	After	the	Socket	instance	is	created	(in	the	same	way	it	was
created	for	the	server	code),	the	address	is	used	with	the	ConnectAsync	method
to	make	a	connection	to	the	server.	With	TCP,	before	sending	data,	a	connection
needs	to	be	opened.	Next,	standard	input	and	standard	output	from	the	Console
class	are	redirected	to	the	NetworkStream	that's	associated	with	the	socket.	All
the	data	you	enter	with	the	console	is	sent	to	the	echo	server	(code	file
SocketClient/EchoClient.cs):

public	async	Task	SendAndReceiveAsync(CancellationToken	

cancellationToken)

{

		try

		{

				var	addresses	=	await	Dns.GetHostAddressesAsync(_hostname);

				IPAddress	ipAddress	=	addresses.Where(

						address	=>	address.AddressFamily	==	

AddressFamily.InterNetwork).First();

				if	(ipAddress	is	null)

				{

						_logger.LogWarning("no	IPv4	address");

						return;

				}

	

				Socket	clientSocket	=	new(AddressFamily.InterNetwork,	

SocketType.Stream,	

						ProtocolType.Tcp);

				await	clientSocket.ConnectAsync(ipAddress,	_serverPort,	

cancellationToken);

	

				_logger.LogInformation("client	connected	to	echo	service");

				using	NetworkStream	stream	=	new(clientSocket,	ownsSocket:	

true);

	

				Console.WriteLine("enter	text	that	is	streamed	to	the	server	

and	returned");

	

				//	send	the	input	to	the	network	stream

				Stream	consoleInput	=	Console.OpenStandardInput();

				Task	sender	=	consoleInput.CopyToAsync(stream,	

cancellationToken);

	

				//	receive	the	output	from	the	network	stream

				Stream	consoleOutput	=	Console.OpenStandardOutput();

				Task	receiver	=	stream.CopyToAsync(consoleOutput,	

cancellationToken);

	

				await	Task.WhenAll(sender,	receiver);

				_logger.LogInformation("sender	and	receiver	completed");

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

		catch	(OperationCanceledException	ex)

		{

				_logger.LogInformation(ex.Message);

		}

}

}

NOTE If	you	change	the	filtering	of	the	address	list	to	get	an	IPv6	address
instead	of	an	IPv4	address,	you	also	need	to	change	the	Socket	invocation
to	create	a	socket	for	the	IPv6	address	family.

When	you	run	both	the	client	and	server,	you	can	see	communication	across
TCP.

USING	TCP	CLASSES
The	HTTP/1.1	and	2.0	protocols	are	based	on	the	Transmission	Control	Protocol
(TCP).	With	TCP,	the	client	first	needs	to	open	a	connection	to	the	server	before
sending	commands.	This	is	the	same	behavior	as	you've	seen	with	the	previous
sample	opening	a	TCP	connection	with	the	Socket	type.	With	the	Socket	class,
you	had	to	specify	the	address	family,	socket	type,	and	protocol.	This	is
abstracted	by	using	TCP	classes,	as	described	in	this	section.

The	TCP	classes	offer	simple	methods	for	connecting	and	sending	data	between
two	endpoints.	An	endpoint	is	the	combination	of	an	IP	address	and	a	port
number.	Existing	protocols	have	well-defined	port	numbers—for	example,
HTTP	uses	port	80,	whereas	SMTP	uses	port	25.	The	Internet	Assigned
Numbers	Authority,	IANA	(www.iana.org),	assigns	port	numbers	to	these	well-
known	services.	Unless	you	are	implementing	a	well-known	service,	you	should
select	a	port	number	higher	than	1,024.

TCP	traffic	makes	up	the	majority	of	traffic	on	the	Internet	today.	It	is	often	the
protocol	of	choice	because	it	offers	guaranteed	delivery,	error	correction,	and
buffering.	The	TcpClient	class	encapsulates	a	TCP	connection	and	provides
properties	to	regulate	the	connection,	including	buffering,	buffer	size,	and
timeouts.	Reading	and	writing	are	accomplished	by	requesting	a	NetworkStream
object	via	the	GetStream	method.

Creating	a	TCP	Listener
The	sample	application	is	based	on	the	Quote	of	the	Day	(QOTD)	spec	defined
with	RFC	865	(https://tools.ietf.org/html/rfc865).	The	QOTD	service
can	be	implemented	with	the	TCP	or	UDP	protocol.	With	TCP,	as	soon	as	the
client	connects,	the	server	returns	a	random	quote	that	should	not	be	longer	than
512	bytes.	After	the	quote	is	sent,	the	server	should	close	the	connection.

Like	the	sample	application	for	the	Socket	class,	the	Host	class	is	used	for
configuration	and	logging	functionality.

The	QuoteServer	class	contains	the	code	to	read	quotes	from	a	file	and	returns	a
random	quote	as	soon	as	a	client	connects.	In	the	constructor,	the	port	number
and	the	filename	containing	the	quotes	are	set.	In	the	InitializeAsync	method,
the	quotes	file	is	read	to	fill	the	array	referenced	from	the	field	_quotes	(code
file	TcpServer/QuotesServer.cs):

public	class	QuotesServerOptions

http://www.iana.org
https://tools.ietf.org/html/rfc865

{

		public	string?	QuotesFile	{	get;	set;	}

		public	int	Port	{	get;	set;	}

}

	

public	class	QuotesServer

{

		private	readonly	int	_port;

		private	readonly	ILogger	_logger;

		private	readonly	string	_quotesPath;

		private	string[]?	_quotes;

		private	Random	_random	=	new();

	

		public	QuotesServer(IOptions<QuotesServerOptions>	options,	

ILogger<QuotesServer>	logger)

		{

				_port	=	options.Value.Port;

				_quotesPath	=	options.Value.QuotesFile	??	"quotes.txt";

				_logger	=	logger;

		}

	

		public	async	Task	InitializeAsync(CancellationToken	

cancellationToken	=	default)

				=>	_quotes	=	await	File.ReadAllLinesAsync(_quotesPath,	

cancellationToken);

	

		//…

}

When	you	use	the	TcpListener	class	to	create	a	listener	for	the	TCP	protocol,
you	don't	need	to	specify	the	address	family,	the	socket	type,	and	the	protocol
type;	this	configuration	is	clearly	defined	from	the	protocol	supported	with	this
class.	You	just	need	to	specify	the	IP	address	and	port	number.	After	invoking
the	Start	method,	the	socket	is	ready	to	receive	connections.	With	an	overload
of	the	Start	method,	you	can	pass	the	size	of	the	backlog	queue,	similarly	to
passing	the	Listen	method	with	the	socket	sample.	If	you	need	full	control	of
the	socket	that's	used	by	the	TcpListener	class,	you	can	access	the	Server
property	and	access	all	the	Socket	members.	Invoking	the
AcceptTcpClientAsync	method	returns	a	TcpClient	object	as	soon	as	a	client
application	opens	a	connection.	The	TcpClient	class	defines	the	Client
property	to	access	the	underlying	Socket	type.	You	send	the	quote	and	close	the
connection	as	specified	by	the	RFC	with	the	invocation	of	the	SendQuoteAsync
method	(code	file	TcpServer/QuotesServer.cs):

public	async	Task	RunServerAsync(CancellationToken	

cancellationToken	=	default)

{

		TcpListener	listener	=	new(IPAddress.Any,	_port);

		_logger.LogInformation("Quotes	listener	started	on	port	{0}",	

_port);

		listener.Start();

	

		while	(true)

		{

				cancellationToken.ThrowIfCancellationRequested();

				using	TcpClient	client	=	await	

listener.AcceptTcpClientAsync();

				_logger.LogInformation("Client	connected	with	address	and	

port:	{0}",		

						client.Client.RemoteEndPoint);

				var	_	=	SendQuoteAsync(client,	cancellationToken);

		}

}

In	the	SendQuoteAsync	method,	properties	of	the	TcpClient	class	are	used	to
change	the	settings	of	the	underlying	socket.	The	LingerState	defines	socket
linger	behavior	to	keep	the	socket	open	for	the	number	of	seconds	set	with	the
second	argument	of	the	constructor	after	the	socket	is	closed	to	allow	it	to	finish
processing.	Setting	the	NoDelay	property	to	true	turns	off	the	Nagle	algorithm.
Remember,	with	the	Nagle	algorithm,	messages	are	not	sent	if	the	buffer	is	not
full	and	the	receiver	didn't	acknowledge	outstanding	packages.	With	the	QOTD
service,	changing	the	default	behavior	doesn't	have	an	effect	in	this	case	because
the	connection	is	closed	after	sending	just	one	message.	Invoking	the	GetStream
method	of	the	TcpClient	returns	a	NetworkStream	that	allows	sending	and
receiving	data.	The	GetStream	method	creates	a	NetworkStream	that	has	the
ownsSocket	flag	set	to	true.	Disposing	of	the	stream	(which	is	done	from	the
using	declaration)	also	closes	the	socket.	The	WriteAsync	method	sends	the
quote	to	the	client	(code	file	TcpServer/QuotesServer.cs):

private	async	Task	SendQuoteAsync(TcpClient	client,	

		CancellationToken	cancellationToken	=	default)

{

		try

		{

				client.LingerState	=	new	LingerOption(true,	10);

				client.NoDelay	=	true;

	

				using	var	stream	=	client.GetStream();	//	returns	a	stream	

that	owns	the	socket

				var	quote	=	GetRandomQuote();

				var	buffer	=	Encoding.UTF8.GetBytes(quote).AsMemory();

				await	stream.WriteAsync(buffer,	cancellationToken);

		}

		catch	(IOException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

}

	

private	string	GetRandomQuote()

{

		if	(_quotes	is	null)	throw	new	InvalidOperationException(

				$"Invoke	InitializeAsync	before	calling	

{nameof(GetRandomQuote)}");

		return	_quotes[_random.Next(_quotes.Length)];

}

Creating	a	TCP	Client
The	client	application	is	implemented	with	the	console	application
TcpClientSample.	To	create	a	TCP	connection	to	the	server,	a	new	instance	of
the	TcpClient	class	is	created.	With	the	ConnectAsync	method,	the	name	and
port	of	the	server	need	to	be	specified.	After	a	successful	connection,	the	content
from	the	server	is	read	using	the	ReadAsync	method	of	the	NetworkStream	(code
file	TcpClientSample/QuotesClient.cs):

public	async	Task	SendAndReceiveAsync(CancellationToken	

cancellationToken	=	default)

{

		try

		{

				Memory<byte>	buffer	=	new	byte[4096].AsMemory();

				string?	line;

				bool	repeat	=	true;

				while	(repeat)

				{

						Console.WriteLine(@"Press	enter	to	read	a	quote,	""bye""	

to	exit");

						line	=	Console.ReadLine();

						if	(line?.Equals("bye",	

StringComparison.CurrentCultureIgnoreCase)	==	true)

						{

								repeat	=	false;

						}

						else

						{

								TcpClient	client	=	new();			

								await	client.ConnectAsync(_hostname,	_serverPort,	

cancellationToken);

								using	var	stream	=	client.GetStream();											

								int	bytesRead	=	await	stream.ReadAsync(buffer,	

cancellationToken);

								string	quote	=	

Encoding.UTF8.GetString(buffer.Span[..bytesRead]);

								buffer.Span[..bytesRead].Clear();

								Console.WriteLine(quote);

								Console.WriteLine();

						}

				};

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

	

		Console.WriteLine("so	long,	and	thanks	for	all	the	fish");

}

When	you	run	the	server	and	the	client,	you	can	see	quotes	returned	on	the
server:

Press	enter	to	read	a	quote,	"bye"	to	exit

	

"Nuclear-powered	vacuum	cleaners	will	probably	be	a	reality	

within	ten	years.",	

Alex	Lewyt,	Lewyt	vacuum	company,	1955

	

Press	enter	to	read	a	quote,	"bye"	to	exit

	

"Television	won't	be	able	to	hold	on	to	any	market	it	captures	

after	the	first	six	months.	

People	will	soon	get	tired	of	staring	at	a	plywood	box	every	

night.",	Darryl	Zanuck,	

20th	Century	Fox,	1946

	

Press	enter	to	read	a	quote,	"bye"	to	exit

On	the	server,	you	can	see	log	output	in	the	console,	including	the	ports	used	by
the	client:

info:	QuotesServer[0]

						Quotes	listener	started	on	port	1700

info:	QuotesServer[0]

						Client	connected	with	address	and	port:	127.0.0.1:52788

info:	QuotesServer[0]

						Client	connected	with	address	and	port:	127.0.0.1:52789

NOTE Typical	implementations	of	the	QOTD	client	just	open	a
connection,	receive	and	print	the	quote,	and	end.	With	the	implementation	of
the	sample	application,	you	can	get	quote	after	quote.	Because	the	server
closes	the	connection	after	every	quote	sent,	a	new	socket	is	created	with
every	request.

As	you'll	read	later	in	this	chapter,	with	the	HttpClient	factory,	a	better
practice	would	be	to	use	the	same	socket	for	multiple	requests.	The
underlying	socket	of	the	operating	system	stays	open	for	20	seconds	before
it's	released.	You	can	monitor	the	state	of	the	sockets	with	the	command
netstat	-a.

Creating	a	QOTD	server	that	does	not	close	the	connection	to	keep
communicating	with	the	same	socket	would	make	the	implementation
incompatible	with	existing	clients	and	servers.

USING	UDP
The	next	protocol	covered	is	the	User	Datagram	Protocol	(UDP).	UDP	is	a
simple	protocol	with	little	overhead.	Before	sending	and	receiving	data	with
TCP,	a	connection	needs	to	be	made.	This	is	not	necessary	with	UDP;	you	just
start	sending	or	receiving.	Of	course,	that	means	that	UDP	has	less	overhead
than	TCP,	but	it	is	also	more	unreliable.	When	you	send	data	with	UDP,	you
don't	get	information	when	this	data	is	received.	UDP	is	often	used	for	situations
in	which	the	speed	and	performance	requirements	outweigh	the	reliability
requirements—for	example,	video	streaming.	UDP	also	offers	broadcasting
messages	to	a	group	of	nodes.	In	contrast,	TCP	offers	features	to	confirm	the
delivery	of	data.	TCP	provides	error	correction	and	retransmission	in	the	case	of
lost	or	corrupted	packets.	Last,	but	not	least,	TCP	buffers	incoming	and	outgoing
data	and	guarantees	that	a	sequence	of	packets	scrambled	in	transmission	is
reassembled	before	delivery	to	the	application.	Even	with	the	extra	overhead,
TCP	is	the	most	widely	used	protocol	across	the	Internet	because	of	its	high

reliability.

To	demonstrate	UDP,	you	create	two	console	application	projects	that	show
various	features	of	UDP:	directly	sending	data	to	a	host,	broadcasting	data	to	all
hosts	on	the	local	network,	and	multicasting	data	to	a	group	of	nodes	that	belong
to	the	same	group.

Building	a	UDP	Receiver
Start	with	the	receiving	application.	The	downloadable	sample	application	uses
command-line	arguments	where	you	can	configure	the	port	number	and	optional
group	address	with	appsettings.json	or	override	it	with	command-line
arguments.	With	the	receiver,	you	can	configure	the	port,	an	optional	group
address,	and	a	Boolean	flag	if	broadcast	should	be	used	(code	file
UdpReceiver/Receiver.cs):

public	record	ReceiverOptions

{

		public	int	Port	{	get;	init;	}

		public	bool	UseBroadcast	{	get;	init;	}	=	false;

		public	string?	GroupAddress	{	get;	init;	}

}

	

public	class	Receiver

{

		private	readonly	ILogger	_logger;

		private	readonly	int	_port;

		private	readonly	string?	_groupAddress;

		private	readonly	bool	_useBroadcast;

		public	Receiver(IOptions<ReceiverOptions>	options,	

ILogger<Receiver>	logger)

		{

				_port	=	options.Value.Port;

				_groupAddress	=	options.Value.GroupAddress;

				_useBroadcast	=	options.Value.UseBroadcast;

				_logger	=	logger;

		}

		//…

}

The	RunAsync	method	creates	a	UdpClient	object	with	the	port	number	that's
received	with	the	ReceiverOptions	record.	The	ReceiveAsync	method	waits
until	some	data	arrives.	This	data	can	be	found	with	the	UdpReceiveResult	with
the	Buffer	property.	After	the	data	is	encoded	to	a	string,	it's	written	to	the
console	to	continue	the	loop	and	wait	for	the	next	data	to	receive	(code	file

UdpReceiver/Receiver.cs):

public	async	Task	RunAsync()

{

		using	UdpClient	client	=	new(_port);

		client.EnableBroadcast	=	_useBroadcast;

	

		if	(_groupAddress	!=	null)

		{

				client.JoinMulticastGroup(IPAddress.Parse(_groupAddress));

						_logger.LogInformation("joining	the	multicast	group	{0}",	

				IPAddress.Parse(_groupAddress));

		}

	

		bool	completed	=	false;

		do

		{

				_logger.LogInformation("Waiting	to	receive	data");

				UdpReceiveResult	result	=	await	client.ReceiveAsync();

				byte[]	datagram	=	result.Buffer;

				string	dataReceived	=	Encoding.UTF8.GetString(datagram);

				_logger.LogInformation("Received	{0}	from	{1}",	

dataReceived,	result.RemoteEndPoint);

				if	(dataReceived.Equals("bye",	

StringComparison.CurrentCultureIgnoreCase))

				{

						completed	=	true;

				}

		}	while	(!completed);

		_logger.LogInformation("Receiver	closing");

	

		if	(_groupAddress	!=	null)

		{

				client.DropMulticastGroup(IPAddress.Parse(_groupAddress));

		}

}

When	you	start	the	application,	it	waits	for	a	sender	to	send	data.	The	receiver
ends	the	loop	if	it	receives	the	string	“bye.”	For	the	time	being,	ignore	the
multicast	group	because	multicasting	is	discussed	after	you	create	the	sender.

Creating	a	UDP	Sender
The	UDP	sender	application	also	enables	you	to	configure	it	by	passing
command-line	options.	It	has	more	options	than	the	receiving	application.
Besides	the	port	number	with	the	Port	element,	the	UseBroadcast	option	can	be

set	to	broadcast	the	message	to	all	nodes	in	the	local	subnet,	and	a	Group-
Address	setting	can	be	used	to	send	messages	to	all	nodes	that	registered	to	a
multicast	group.	The	IPv6	setting	allows	using	the	IPv6	protocol	instead	of	IPv4.

To	send	data,	you	need	an	IPEndPoint.	Depending	on	the	program	arguments,
you	create	this	in	different	ways.	With	a	broadcast,	IPv4	defines	the	address
255.255.255.255	that	is	returned	from	IPAddress.Broadcast.	There's	no	IPv6
address	for	broadcast	because	IPv6	doesn't	support	broadcasts.	IPv6	replaces
broadcasts	with	multicasts.	Multicasts	have	been	added	to	IPv4	as	well.

When	you're	passing	a	host	name,	the	host	name	is	resolved	using	DNS	lookup
using	the	Dns	class.	The	method	GetHostEntryAsync	returns	an	IPHostEntry
where	the	IPAddress	can	be	retrieved	from	the	AddressList	property.
Depending	on	whether	IPv4	or	IPv6	is	used,	a	different	IPAddress	is	taken	from
this	list.	Depending	on	your	network	environment,	only	one	of	these	address
types	might	work.	If	a	group	address	is	passed	to	the	method,	the	address	is
parsed	using	IPAddress.Parse	(code	file	UdpSender/Sender.cs):

private	async	Task<IPEndPoint?>	GetReceiverIPEndPointAsync()

{

		IPEndPoint?	endpoint	=	null;

		try

		{

				if	(_useBroadcast)

				{

						endpoint	=	new	IPEndPoint(IPAddress.Broadcast,	_port);

				}

				else	if	(_hostName	!=	null)

				{

						IPHostEntry	hostEntry	=	await	

Dns.GetHostEntryAsync(_hostName);

						IPAddress?	address	=	null;

						if	(_useIpv6)

						{

								address	=	hostEntry.AddressList.Where(

										a	=>	a.AddressFamily	==	

AddressFamily.InterNetworkV6).FirstOrDefault();

						}

						else

						{

								address	=	hostEntry.AddressList.Where(

										a	=>	a.AddressFamily	==	

AddressFamily.InterNetwork).FirstOrDefault();

						}

	

						if	(address	==	null)

						{

								Func<string>	ipversion	=	()	=>	_useIpv6	?	"IPv6"	:	

"IPv4";

								_logger.LogWarning($"no	{ipversion()}	address	for	

{_hostName}");

								return	null;

						}

						endpoint	=	new	IPEndPoint(address,	_port);

				}

				else	if	(_groupAddress	!=	null)

				{

						endpoint	=	new	IPEndPoint(IPAddress.Parse(_groupAddress),	

_port);

				}

				else

				{

						throw	new	InvalidOperationException($"{nameof(_hostName)},	

"	+	

								$"{nameof(_useBroadcast)},	or	{nameof(_groupAddress)}	

must	be	set");

				}

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

		return	endpoint;

}

Now,	regarding	the	UDP	protocol,	the	most	important	part	of	the	sender	follows.
After	creating	a	UdpClient	instance	and	converting	a	string	to	a	byte	array,	data
is	sent	using	the	SendAsync	method.	Note	that	neither	the	receiver	needs	to
listen,	nor	the	sender	needs	to	connect.	UDP	is	really	simple.	However,	in	a	case
in	which	the	sender	sends	the	data	to	nowhere—nobody	receives	the	data—you
also	don't	get	any	error	messages	(code	file	UdpSender/Sender.cs):

public	async	Task	RunAsync()

{

		IPEndPoint?	endpoint	=	await	GetReceiverIPEndPointAsync();

		if	(endpoint	is	null)	return;

	

		try

		{

				string	localhost	=	Dns.GetHostName();

				using	UdpClient	client	=	new();	

				client.EnableBroadcast	=	_useBroadcast;

				if	(_groupAddress	!=	null)

				{

						client.JoinMulticastGroup(IPAddress.Parse(_groupAddress));

				}

	

				bool	completed	=	false;

				do

				{

						Console.WriteLine(@$"{Environment.NewLine}Enter	a	message	

or	""bye""	to	exit");

						string?	input	=	Console.ReadLine();

						if	(input	is	null)	continue;

						Console.WriteLine();

						completed	=	input.Equals("bye",	

StringComparison.CurrentCultureIgnoreCase);

	

						byte[]	datagram	=	Encoding.UTF8.GetBytes(input);

						int	sent	=	await	client.SendAsync(datagram,	

datagram.Length,	endpoint);

						_logger.LogInformation("Sent	datagram	using	local	EP	{0}	

to	{1}"	

								client.Client.LocalEndPoint,	endpoint);

				}	while	(!completed);

	

				if	(_groupAddress	!=	null)

				{

						client.DropMulticastGroup(IPAddress.Parse(_groupAddress));

				}

		}

		catch	(SocketException	ex)

		{

				_logger.LogError(ex,	ex.Message);

		}

}

Now	you	can	start	the	receiver	and	the	sender.	With	the	sender,	you	can	see
output	similar	to	the	one	shown.	The	sender	also	successfully	sends	data	when
the	receiver	is	not	running:

Enter	a	message	or	"bye"	to	exit

message	1

info:	Sender[0]

						Sent	datagram	using	local	EP	0.0.0.0:54446	to	

127.0.0.1:8600

	

Enter	a	message	or	"bye"	to	exit

message	2

	

Enter	a	message	or	"bye"	to	exit

info:	Sender[0]

						Sent	datagram	using	local	EP	0.0.0.0:54446	to	

127.0.0.1:8600

The	receiver	shows	the	data	received	and	the	port	and	address	where	this
message	is	coming	from:

info:	Receiver[0]

						Waiting	to	receive	data

info:	Receiver[0]

						Received	message	1	from	127.0.0.1:54446

info:	Receiver[0]

						Waiting	to	receive	data

info:	Receiver[0]

						Received	message	2	from	127.0.0.1:54446

Without	changing	the	configuration	file,	you	can	pass	a	different	port	number
starting	with	the	receiver:

>	dotnet	run	--	UdpReceiver:Port=5400

and	with	the	sender:

>	dotnet	run	--	UdpSender:ReceiverPort=5400

You	can	enter	data	in	the	sender	that	will	arrive	in	the	receiver.	If	you	stop	the
receiver,	you	can	go	on	sending	without	detecting	any	error.	You	can	also	try	to
use	a	host	name	instead	of	localhost	and	run	the	receiver	on	a	different	system.

With	the	sender,	you	can	set	the	UdpSender:UseBroadcast=true	option	to	send
a	broadcast	to	all	nodes	listening	to	the	specified	port	on	the	same	network:

>	dotnet	run	--	UdpSender:ReceiverPort=5400	

UdpSender:UseBroadcast=true

With	the	output	of	the	sender,	you	can	see	the	message	is	sent	to	the	IPv4
broadcast	address:

info:	Sender[0]

						Sent	datagram	using	local	EP	0.0.0.0:50695	to	

255.255.255.255:5400

Be	aware	that	broadcasts	don't	cross	most	routers,	and	of	course,	you	can't	use
broadcasts	on	the	Internet.	This	situation	is	different	with	multicasts,	which	are
discussed	next.

Using	Multicasts
Broadcasts	don't	cross	routers,	but	multicasts	can.	Multicasts	have	been	invented
to	send	messages	to	a	group	of	systems—all	nodes	that	belong	to	the	same
group.	With	IPv4,	specific	IP	addresses	are	reserved	for	multicast	use.	The
addresses	start	with	224.0.0.0	and	go	to	239.255.255.253.	Many	of	these
addresses	are	reserved	for	specific	protocols—for	example,	for	routers—but
239.0.0.0/8	can	be	used	privately	within	an	organization.	This	is	similar	to	IPv6,
which	has	well-known	IPv6	multicast	addresses	for	different	routing	protocols.
Addresses	f::/16	are	local	within	an	organization;	addresses	ffxe::/16	have	global
scope	and	can	be	routed	over	public	Internet.

For	a	sender	or	receiver	to	use	multicasts,	it	must	join	a	multicast	group	by
invoking	the	JoinMulticastGroup	method	of	the	UdpClient	:

client.JoinMulticastGroup(IPAddress.Parse(groupAddress));

To	leave	the	group	again,	you	can	invoke	the	method	DropMulticastGroup	:

client.DropMulticastGroup(IPAddress.Parse(groupAddress));

When	you	start	both	the	receiver	and	sender	with	the	GroupAddress	set,	you	can
send	messages	to	the	group	with	the	same	IP	address	and	port	number:

>	dotnet	run	--	UdpSender:ReceiverPort=5400	

UdpSender:GroupAddress=230.0.0.1

>	dotnet	run	--	UdpReceiver:Port=5400	

UdpReceiver:GroupAddress=230.0.0.1

	

As	with	broadcasting,	you	can	start	multiple	receivers	and	multiple	senders.
Depending	on	the	quality	of	the	network	and	the	network	load,	the	receivers	will
receive	nearly	all	messages	from	each	sender.

USING	WEB	SERVERS
Using	Internet	Information	Services	(IIS)	on	Windows	and	Apache	or	NGINX
on	Linux	are	great	options	for	using	a	web	server.	A	lightweight	option	with
.NET	is	the	Kestrel	server.	This	server	was	created	by	the	ASP.NET	Core	team
and	is	available	on	Windows	and	Linux.	When	you	use	IIS	and	Apache	or
NGINX	with	ASP.NET	Core,	Kestrel	is	always	used	behind	the	scenes.	From
IIS,	a	request	is	forwarded	to	the	Kestrel	server.

To	create	an	application	hosting	the	Kestrel	server,	you	can	create	an	empty	web

application	with	the	.NET	CLI:	dotnet	new	web.

Contrary	to	a	simple	console	application,	this	project	type	has	the	SDK
Microsoft.NET.Sdk.Web	referenced.	With	this	setting,	not	only	are	more	build
tools	needed	for	web	development	available,	but	a	reference	to
Microsoft.AspNetCore.App	is	included	implicitly	(configuration	file
HttpServerSample/HttpServerSample.csproj):

<Project	Sdk="Microsoft.NET.Sdk.Web">

	

		<PropertyGroup>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

</Project>

The	generated	Program.cs	file	contains	the	Main	method	with	the	Host	class	to
configure	the	dependency	injection	container,	logging,	and	configuration.	In
addition	to	what	you've	used	with	the	simple	console	applications,	the	extension
method	ConfigureWebHostDefaults,	which	is	defined	in	the
Microsoft.AspNetCore	package,	is	used.	Here	the	type	to	be	used	that	contains
startup	methods	is	defined	with	the	generic	parameter	of	the	method
UseStartup.	Typically,	this	class	has	the	name	Startup	(code	file
HttpServerSample/Program.cs):

public	class	Program

{

		public	static	void	Main(string[]	args)

		{

				CreateHostBuilder(args).Build().Run();

		}

	

		public	static	IHostBuilder	CreateHostBuilder(string[]	args)	=>

				Host.CreateDefaultBuilder(args)

						.ConfigureWebHostDefaults(webBuilder	=>

						{

								webBuilder.UseStartup<Startup>();

						});

}

With	a	simple	console	application,	you	configured	your	services	with	the
dependency	injection	container	in	the	ConfigureServices	extension	method.
With	web	applications,	you	configure	the	services	in	the	ConfigureServices
method	of	the	Startup	class.	In	addition,	you	configure	middleware	in	the

Startup	class	with	the	method	Configure.

Configuring	Kestrel
The	IWebHostBuilder	interface	parameter	of	the	ConfigureWebHostDefaults
method	allows	configuring	the	hosting	server	and	the	HTTP	and	HTTP/2
options.	The	ConfigureKestrel	extension	method	allows	setting
KestrelServerOptions—for	example,	limits	on	the	HTTP	protocol.
KestrelServerLimits	allows	you	to	specify	timeout	values,	maximum	sizes	for
the	headers	and	the	body	size,	maximum	number	of	concurrent	connections,
maximum	number	of	connections	upgraded	to	WebSockets,	as	well	as	HTTP/2
and	HTTP/3	limits.	An	advantage	of	HTTP/2	is	to	have	multiple	concurrent
streams	using	the	same	connection.	You	can	limit	the	maximum	number	of
concurrent	streams	with	the	Http2Limits	type	with	the
MaxStreamsPerConnection	setting.	The	default	setting	is	100.

In	the	following	code	snippet,	the	Kestrel	server	is	configured	to	use	ports	5020
and	5021,	is	set	to	return	the	HTTP	Server	header	with	every	response,	allows
compression	of	HTTP	headers,	and	specifies	some	limits	(code	file
HttpServerSample/Program.cs):

public	static	IHostBuilder	CreateHostBuilder(string[]	args)	=>

		Host.CreateDefaultBuilder(args)

				.ConfigureWebHostDefaults(webBuilder	=>

				{

						webBuilder.UseStartup<Startup>()

								.ConfigureKestrel(kestrelOptions	=>

								{

										kestrelOptions.AddServerHeader	=	true;

										kestrelOptions.AllowResponseHeaderCompression	=	true;

										kestrelOptions.Limits.Http2.MaxStreamsPerConnection	=	

10;

										kestrelOptions.Limits.MaxConcurrentConnections	=	20;

								})

								.UseUrls("http://localhost:5020",	

"https://localhost:5021");																							

						});

NOTE With	.NET	5,	Kestrel	by	default	is	configured	to	support	HTTP/1.1
and	HTTP/2.	To	define	a	specific	version,	invoke	one	of	the	ListenXXX
methods,	such	as	ListenLocalhost	,	in	the	ConfigureKestrel	method.	With
the	Protocols	property,	you	can	specify	one	of	the	HttpProtocols	enum
values.

NOTE One	feature	the	Kestrel	server	does	not	support	is	Windows
authentication.	The	Kestrel	server	supports	authentication	via	OAuth	2.0
and	OpenID	Connect.	If	you	need	Windows	authentication	in	your
environment,	you	can	use	IIS	and	the	Http.sys	web	server.	With	the
IWebBuilder	,	you	can	invoke	UseHttpSys	,	which	changes	the
configuration	to	use	Http.sys.	This	is	only	available	on	Windows.

Startup
In	the	Startup	class,	the	dependency	injection	container	and	middleware	are
configured.	In	the	ConfigureServices	method,	the	custom	service	classes
GenerateHtml	and	Formula1	are	registered.	The	GenerateHtml	class	is	used	to
return	HTML	code.	When	an	HTTP	request	is	received,	the	application	returns	a
response	including	HTTP	header	information.	The	Formula1	class	is	used	with	a
web	API	to	return	Formula	1	champions	in	JSON	format	to	the	client	(code	file
HttpServerSample/Startup.cs):

public	class	Startup

{

		public	void	ConfigureServices(IServiceCollection	services)

		{

				services.AddScoped<GenerateHtml>();

				services.AddSingleton<Formula1>();

		}

		//…

}

The	Configure	method	of	the	Startup	class	configures	the	middleware.
Endpoints	for	the	server	are	configured	within	the	UseEndpoints	method.	The
MapGet	method	maps	HTTP	GET	requests.	The	first	invocation	of	MapGet	maps
the	link	/api/racers	and	returns	JSON	information	with	the	WriteAsJsonAsync
method.	The	Formula1	class	method	that's	injected	with	the	Configure	method
defines	the	GetChampions	method	and	returns	a	list	of	Formula	1	champions.
The	second	invocation	of	MapGet	maps	the	root	path	to	invoke	the
GetHtmlContent	method	of	the	injected	GenerateHtml	class.	This	method
receives	the	HttpRequest	as	a	parameter	to	return	HTML	information	showing
the	request	(code	file	HttpServerSample/Startup.cs):

public	class	Startup

{

		public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env,	

				GenerateHtml	generateHtml,	Formula1	formula1)

		{

				if	(env.IsDevelopment())

				{

						app.UseDeveloperExceptionPage();

				}

	

				app.UseRouting();

	

				app.UseEndpoints(endpoints	=>

				{

						endpoints.MapGet("/api/racers",	async	context	=>

						{

								await	

context.Response.WriteAsJsonAsync(formula1.GetChampions());

						});

						endpoints.MapGet("/",	async	context	=>

						{

								string	content	=	

generateHtml.GetHtmlContent(context.Request);

								context.Response.ContentType	=	"text/html";

								await	

context.Response.WriteAsync(Encoding.UTF8.GetString(content));

						});

				});

		}

		//…

}

NOTE ASP.NET	Core,	including	details	on	middleware,	is	covered	in
Chapter	24,	“ASP.NET	Core.”

NOTE The	WriteAsJsonAsync	method	is	implemented	in	the
Microsoft.AspNetCore.Http.Extensions	NuGet	package	and	allows
creating	simple	REST	APIs.	This	makes	use	of	the	JSON	serializer	covered
in	Chapter	18.	Read	Chapter	25,	“Services,”	for	more	information	about
REST	APIs.

HTTP	Headers
The	sample	code	returns	an	HTML	file	that	is	retrieved	using	the

GetHtmlContent	method.	This	method	makes	use	of	the	htmlFormat	format
string	with	two	placeholders	in	the	heading	and	the	body.	The	GetHtmlContent
method	fills	in	the	placeholders	using	the	string.Format	method.	To	fill	the
HTML	body,	two	helper	methods	are	used	that	retrieve	the	header	information
from	the	request	and	all	the	property	values	of	the	Request	object—
GetHeaderInfo	and	GetRequestInfo	(code	file
HttpServerSample/GenerateHtml.cs):

private	static	string	s_htmlFormat	=

		"<!DOCTYPE	html><html><head><title>{0}</title></head>"	+

				"<body>{1}</body></html>";

	

public	string	GetHtmlContent(HttpRequest	request)

{

		string	title	=	"Sample	Listener	using	Kestrel";

	

		string	content	=	$"<h1>Hello	from	the	server</h1>"	+

				$"<h2>Header	Info</h2>"	+

				$"{string.Join('	',	GetHeaderInfo(request.Headers))}"	+

				$"<h2>Request	Object	Information</h2>"	+

				$"{string.Join('	',	GetRequestInfo(request))}";

	

		return	string.Format(s_htmlFormat,	title,	content);

}

The	GetHeaderInfo	method	retrieves	the	keys	and	values	from	the
IHeaderDictionary	to	return	a	div	element	that	contains	every	key	and	value
(code	file	HttpServerSample/GenerateHtml.cs):

private	IEnumerable<string>	GetHeaderInfo(IHeaderDictionary	

headers)

{

		List<(string	Key,	string	Value)>	values	=	new();

		var	keys	=	headers.Keys;

		foreach	(var	key	in	keys)

		{

				if	(headers.TryGetValue(key,	out	var	value))

				{

						values.Add((key,	value));

				}

		}

		return	values.Select(v	=>	$"<div>{v.Key}:	{v.Value}</div>");

}

The	GetRequestInfo	method	makes	use	of	reflection	to	get	all	the	properties	of

the	Request	type	and	returns	the	property	names	as	well	as	their	values	(code
file	HttpServerSample/GenerateHtml.cs):

private	IEnumerable<string>	GetRequestInfo(HttpRequest	request)

{

		var	properties	=	request.GetType().GetProperties();

		List<(string	Key,	string	Value)>	values	=	new();

		foreach	(var	property	in	properties)

		{

				try

				{

						string?	value	=	property.GetValue(request)?.ToString();

						if	(value	!=	null)

						{

								values.Add((property.Name,	value));

						}

				}

				catch	(TargetInvocationException	ex)

				{

						_logger.LogInformation("{0}:	{1}",	property.Name,	

ex.Message);

						if	(ex.InnerException	!=	null)

						{

								_logger.LogInformation("\t{0}",	

ex.InnerException.Message);

						}

				}

		}

		return	values.Select(v	=>	$"<div>{v.Key}:	{v.Value}</div>");

}

NOTE The	GetHeaderInfo	and	GetRequestInfo	methods	make	use	of
expression-bodied	member	functions,	LINQ,	and	reflection.	Expression-
bodied	member	functions	are	explained	in	Chapter	3,	“Classes,	Records,
Structs,	and	Tuples.”	Chapter	9,	“Language	Integrated	Query,”	explains
LINQ.	Chapter	12,	“Reflection,	Metadata,	and	Source	Generators,”
includes	reflection	as	an	important	topic.

Running	the	server	and	using	a	browser	such	as	Microsoft	Edge	to	access	the
server	using	a	URL	such	as	https://localhost:5021/	results	in	output	as
shown	in	Figure	19-1.	Figure	19-2	shows	the	output	from	/api/racers	with	the
Formula	1	champions.

https://localhost:5021/

FIGURE	19-1

FIGURE	19-2

THE	HTTPCLIENT	CLASS
Let's	get	to	the	client	side	so	we	can	use	the	HttpClient	class	to	make	HTTP
requests.	This	class	is	defined	in	the	System.Net.Http	namespace.	The	classes
in	the	System.Net.Http	namespace	help	make	it	easy	to	consume	web	services.

The	HttpClient	class	derives	from	the	HttpMessageInvoker	class.	This	base
class	implements	the	SendAsync	method.	The	SendAsync	method	is	the
workhorse	of	the	HttpClient	class.	As	you’ll	see	later	in	this	section,	there	are
several	derivatives	of	this	method	to	use.	As	the	name	implies,	the	SendAsync
method	call	is	asynchronous.

The	sample	application	makes	use	of	the	HttpClient	factory	from	the	NuGet
package	Microsoft.Extensions.Http.	With	the	container	configuration,	the
generic	method	AddHttpClient	is	invoked.	The	generic	parameter	is	of	type
HttpClientSamples	where	the	HttpClient	object	is	injected.	The	HttpClient
can	be	configured	with	the	delegate	parameter	of	the	AddHttpClient	method.
Here,	the	BaseAddress	property	is	specified	(code	file
HttpClientSample/Program.cs):

IHostBuilder	GetHostBuilder()	=>

		Host.CreateDefaultBuilder()

		.ConfigureServices((context,	services)	=>

		{

				var	httpClientSettings	=	

context.Configuration.GetSection("HttpClient");

				services.Configure<HttpClientSamplesOptions>

(httpClientSettings);

				services.AddHttpClient<HttpClientSamples>(httpClient	=>

				{

						httpClient.BaseAddress	=	new	

Uri(httpClientSettings["Url"]);

				});

				//…

		});

The	configuration	file	that's	read	with	the	setup	of	the	DI	container	has	the	URL
to	the	server	created	previously	configured.	When	you	run	the	client	application,
make	sure	to	have	this	server	running	as	well.	You	can	also	change	the	link	in
the	configuration	file	to	any	other	available	server	to	see	what's	returned	from
there	(configuration	file	HttpClientSample/appsettings.json):

{

		"HttpClient":	{

				"Url":	"https://localhost:5021",

				"InvalidUrl":	"https://localhost1:5021"

		},

		"RateLimit":	{

				"LimitCalls":	5

		}

}

With	the	constructor	of	the	HttpClientSamples	class,	the	HttpClient	is	injected
along	with	the	HttpClientSamplesOptions	configuration	that's	coming	from	the
configuration	file	via	the	configuration	in	the	dependency	injection	container
(code	file	HttpClientSample/HttpClientSamples.cs):

public	record	HttpClientSamplesOptions

{

				public	string?	Url	{	get;	init;	}

				public	string?	InvalidUrl	{	get;	init;	}

}

	

public	class	HttpClientSamples

{

		private	readonly	ILogger	_logger;

		private	readonly	HttpClient	_httpClient;

		private	readonly	string	_url;

		private	readonly	string	_invalidUrl;

	

		public	HttpClientSamples(

				IOptions<HttpClientSamplesOptions>	options,	

				HttpClient	httpClient,	

				ILogger<HttpClientSamples>	logger)

		{

				_url	=	options.Value.Url	??	"https://localhost:5020";

				_invalidUrl	=	options.Value.InvalidUrl	??	

"https://localhost1:5020";

				_httpClient	=	httpClient;

				_logger	=	logger;

		}

		//…

}

WARNING The	HttpClient	class	implements	the	IDisposable	interface.
As	a	general	guideline,	objects	implementing	IDisposable	should	be
disposed	of	after	their	use.	This	is	also	true	for	the	HttpClient	class.
However,	the	Dispose	method	of	the	HttpClient	does	not	immediately

release	the	associated	socket;	it	is	released	after	a	timeout.	This	timeout	can
take	20	seconds.	With	this	timeout,	using	many	HttpClient	object	instances
can	lead	to	the	program	running	out	of	sockets.	The	solution:	the
HttpClient	class	is	built	for	reuse.	You	can	use	this	class	with	many
requests	and	not	create	a	new	instance	every	time.	Using	the	HttpClient
factory	takes	away	the	need	to	create	and	dispose	of	HttpClient	instances.

Making	an	Asynchronous	Get	Request
Invoking	the	GetAsync	makes	an	HTTP	GET	request	to	the	server.	Because	the
BaseAddress	is	already	specified	with	the	configuration	of	the	HttpClient	class
that's	injected	with	the	HttpClientSamples	class,	only	the	relative	address	needs
to	be	passed	to	the	GetAsync	method.

The	call	to	GetAsync	returns	an	HttpResponseMessage	object.	The
HttpResponseMessage	class	represents	a	response	including	headers,	status,	and
content.	Checking	the	IsSuccessfulStatusCode	property	of	the	response	tells
you	whether	the	request	was	successful.	With	a	successful	call,	the	content
returned	is	retrieved	as	a	string	using	the	ReadAsStringAsync	method	(code	file
HttpClientSample/HttpClientSamples.cs):

public	async	Task	SimpleGetRequestAsync()

{

		HttpResponseMessage	response	=	await	

_httpClient.GetAsync("/");

		if	(response.IsSuccessStatusCode)

		{

				Console.WriteLine($"Response	Status	Code:	

{(int)response.StatusCode}	"	+

						$"{response.ReasonPhrase}");

				string	responseBodyAsText	=	await	

(response.Content?.ReadAsStringAsync()	

						??	Task.FromResult(string.Empty));

				Console.WriteLine($"Received	payload	of	

{responseBodyAsText.Length}	characters");

				Console.WriteLine();

				Console.WriteLine(responseBodyAsText[0..50]);

		}

}

Executing	this	code	with	the	command-line	argument	simple	should	produce	the
following	output,	including	the	log	output	from	the	source
System.Net.Http.HttpClient	:

info:	

System.Net.Http.HttpClient.HttpClientSamples.LogicalHandler[100]

						Start	processing	HTTP	request	GET	https://localhost:5021/

info:	

System.Net.Http.HttpClient.HttpClientSamples.ClientHandler[100]

						Sending	HTTP	request	GET	https://localhost:5021/

info:	

System.Net.Http.HttpClient.HttpClientSamples.ClientHandler[101]

						Received	HTTP	response	headers	after	312.8412ms	-	200

info:	

System.Net.Http.HttpClient.HttpClientSamples.LogicalHandler[101]

						End	processing	HTTP	request	after	328.6248ms	-	200

Response	Status	Code:	200	OK

Received	payload	of	1008	characters

	

<!DOCTYPE	html><html><head><title>Sample	Listener

NOTE When	checking	for	success,	do	not	check	the	StatusCode	property
and	compare	it	with	200	or	HttpStatusCode.OK	.	200	is	not	the	only	success
status	code;	all	2xx	status	codes	indicate	success.	Instead,	the
IsSuccessStatusCode	property	returns	a	Boolean	value	if	the	call	was
successful	or	not.	You	can	also	throw	an	exception	if	a	failure	occurs,	as
shown	in	the	next	section.

Throwing	Exceptions	from	Errors
Invoking	the	GetAsync	method	of	the	HttpClient	class	by	default	doesn't
generate	an	exception	if	the	method	fails.	This	could	be	easily	changed	by
invoking	the	EnsureSuccessStatusCode	method	with	the
HttpResponseMessage.	This	method	checks	whether	IsSuccessStatusCode	is
false	and	throws	an	exception	otherwise	(code	file
HttpClientSample/HttpClientSamples.cs):

public	async	Task	ThrowExceptionAsync()

{

		try

		{

				HttpResponseMessage	response	=	await	

_httpClient.GetAsync(_invalidUrl);

				response.EnsureSuccessStatusCode();

	

				Console.WriteLine($"Response	Status	Code:	

{(int)response.StatusCode}	"	+

						$"{response.ReasonPhrase}");

				string	responseBodyAsText	=	await	

(response.Content?.ReadAsStringAsync()	

						??	Task.FromResult(string.Empty));

				Console.WriteLine($"Received	payload	of	

{responseBodyAsText.Length}	characters");

				Console.WriteLine();

				Console.WriteLine(responseBodyAsText[..50]);

		}

		catch	<?b	Start?>(HttpRequestException	ex)<?b	End?>

		{

				_logger.LogError(ex,	ex.Message);

		}

}

Creating	an	HttpRequestMessage
The	GetAsync	method	makes	an	HTTP	GET	request	to	the	server.	You	can	create
POST	requests	with	the	PostAsync	method	and	PUT	requests	with	the	PutAsync
method.	Chapter	25	shows	details	for	how	to	invoke	REST	services	using	the
HttpClient.	All	these	methods	are	extension	methods	that	invoke	the	SendAsync
method	and	pass	an	HttpRequestMessage	as	shown	in	the	following	code
snippet.	When	you	use	the	HttpRequestMessage,	you	have	more	options—for
example,	using	other	HTTP	methods	such	as	HEAD	and	TRACE	(method
UseHttpRequestMessageAsync	in	the	code	file
HttpClientSample/HttpClientSamples.cs):

HttpRequestMessage	request	=	new(HttpMethod.Get,	"/");

HttpResponseMessage	response	=	await	

_httpClient.SendAsync(request);

NOTE The	HttpRequestMessage	specifies	a	version	property	that	you	can
use	to	make	requests	with	HTTP/2.0,	passing	new	Version("	2.0	")	.	With
the	HttpClient	class,	you	can	set	the	property	DefaultRequestVersion	,
which	you	can	also	configure	with	the	HttpClient	factory.	By	setting	the
DefaultVersionPolicy	,	you	can	specify	to	use	exactly	the	specified	version
(RequestVersionExact)	or	communicate	with	the	server	on	versions
available	(RequestVersionOrHigher	or	RequestVersionOrLower).

HTTP/1.0	was	specified	in	1996	and	was	followed	by	1.1	just	a	few	years
later.	With	1.0,	the	connection	was	always	closed	after	the	server	returned
the	data;	with	1.1,	a	keep-alive	header	was	added	where	the	client	was	able
to	put	their	wish	to	keep	the	connection	alive	as	the	client	might	make	more

requests	to	receive	not	only	the	HTML	code	but	also	CSS	and	JavaScript
files	and	images.	After	HTTP/1.1	was	defined	in	1999,	it	took	16	years	until
HTTP/2	was	done	in	the	year	2015.

What	are	the	advantages	of	version	2?	HTTP/2	allows	multiple	concurrent
requests	on	the	same	connection,	header	information	is	compressed,	the
client	can	define	which	of	the	resources	is	more	important,	and	the	server
can	send	resources	to	the	client	via	server	push.	HTTP/2	is	supported	in	all
modern	browsers—with	the	exception	of	server	push.	Because	server	push	is
not	used	often,	and	when	it	is	used,	usually	more	data	than	needed	is	pushed
to	the	client,	the	current	plan	is	to	remove	this	feature	from	Chromium-based
browsers.

HTTP/3	is	currently	a	working	draft	(https://quicwg.org/base-
drafts/draft-ietf-quic-http.html),	but	a	lot	of	work	is	in	progress	to
support	this	protocol	with	Windows,	.NET,	and	the	Kestrel	server.	HTTP/3	is
based	on	the	QUIC	transport	protocol	instead	of	TCP.	The	original	meaning
of	QUIC	was	QUICK	UDP	Internet	Connections	(see
https://www.afasterweb.com/2019/04/30/some-quic-benefits-of-

http/3/).	QUIC	solves	some	issues	with	TCP,	which	helps	with	faster
connections	and	multiplexing.	Read	the	paper	at	the	previous	link	for	more
information.	See	https://github.com/dotnet/aspnetcore/issues/15271
for	the	status	of	the	HTTP/3	support	of	ASP.NET	Core.

Passing	Headers
The	HttpRequestMessage	class	has	a	property	Headers	where	you	can	specify
HTTP	headers	to	be	sent	to	the	server.	This	can	also	be	done	directly	with	the
HttpClient	class.

An	example	of	where	an	HTTP	header	might	be	needed	is	to	specify	accepted
return	formats	where	the	server	can	decide	to	return	specific	formatted	data.
ASP.NET	Core	5.0	Web	APIs	return	JSON	data	by	default.	You	can	add	XML
serializers	as	described	in	Chapter	25.	Then,	you	need	to	ask	the	server	to	return
XML.	This	can	be	done	by	setting	an	Accept	header	to	"application/xml".

A	generic	way	to	set	HTTP	headers	(besides	the	Headers	property	of	the
HttpRequestMessage)	is	the	DefaultRequestHeaders	property	of	the
HttpClient	class:

_httpClient.DefaultRequestHeaders.Add("Accept",	

https://quicwg.org/base-drafts/draft-ietf-quic-http.html
https://www.afasterweb.com/2019/04/30/some-quic-benefits-of-http/3/
https://github.com/dotnet/aspnetcore/issues/15271

"application/xml,	*/*");

Instead	of	setting	this	property	before	making	the	request	to	the	server,	you	can
also	configure	the	headers	with	the	HttpClient	configuration	in	the	DI
container.

To	pass	multiple	Accept	values,	you	can	use	an	overload	of	the	Add	method	to
pass	multiple	accepted	formats:

_httpClient.DefaultRequestHeaders.Add("Accept",	new[]	{	

"application/xml",	"*/*"	});

Because	the	HTTP	Accept	header	is	commonly	used,	the	HttpClient	class	also
defines	an	Accept	property	to	pass	all	the	Accept	headers	(method
AddHttpHeadersAsync	in	the	code	file
HttpClientSample/HttpClientSamples.cs):

_httpClient.DefaultRequestHeaders.Accept.Add(

		new	MediaTypeWithQualityHeaderValue("application/xml"));

_httpClient.DefaultRequestHeaders.Accept.Add(

		new	MediaTypeWithQualityHeaderValue("*/*"));

The	downloadable	code	sample	defines	the	ShowHeaders	method	to	display	all
the	headers	that	are	sent	to	the	server	and	received	from	the	server	on	the
console	(code	file	HttpClientSample/Utilities.cs):

static	class	Utilities

{

		public	static	void	ShowHeaders(string	title,	HttpHeaders	

headers)

		{

				Console.WriteLine(title);

				foreach	(var	header	in	headers)

				{

						string	value	=	string.Join("	",	header.Value);

						Console.WriteLine($"Header:	{header.Key}	Value:	{value}");

				}

				Console.WriteLine();

		}

}

This	method	is	invoked	with	the	AddHttpHeadersAsync	method	(code	file
HttpClientSample/HttpClientSamples.cs):

public	async	Task	AddHttpHeadersAsync()

{

		try

		{

				_httpClient.DefaultRequestHeaders.Accept.Add(

						new	MediaTypeWithQualityHeaderValue("application/xml"));

				_httpClient.DefaultRequestHeaders.Accept.Add(

						new	MediaTypeWithQualityHeaderValue("*/*"));

				Utilities.ShowHeaders("Request	Headers:",	

_httpClient.DefaultRequestHeaders);

	

				HttpResponseMessage	response	=	await	

_httpClient.GetAsync("/");

				response.EnsureSuccessStatusCode();

	

				Utilities.ShowHeaders("Response	Headers:",	

response.Headers);

				Console.WriteLine();

		}

		catch	(HttpRequestException	ex)

		{

				Console.WriteLine($"{ex.Message}");

		}

}

When	you	run	the	application	with	the	headers	argument,	you	can	see	the
headers	sent	and	received.	Remember	with	the	Kestrel	server	created	previously,
it	was	turned	on	to	return	the	Server	header:

Request	Headers:

Header:	Accept	Value:	application/xml

Response	Headers:

Header:	Date	Value:	Mon,	01	Feb	2021	19:23:30	GMT

Header:	Server	Value:	Kestrel

Header:	Transfer-Encoding	Value:	chunked

Accessing	the	Content
The	previous	code	snippets	have	shown	you	how	to	access	the	Content	property
to	retrieve	a	string.	The	Content	property	in	the	response	returns	an
HttpContent	object.	To	get	the	data	from	the	HttpContent	object,	you	need	to
use	one	of	the	methods	supplied.	In	the	example,	the	ReadAsStringAsync
method	was	used.	It	returns	a	string	representation	of	the	content.	As	the	name
implies,	this	is	an	async	call.	Instead	of	using	the	async	keyword,	the	Result
property	could	be	used	as	well.	Calling	the	Result	property	blocks	the	call	until
it's	finished	and	then	continues	with	execution.

Other	methods	to	get	the	data	from	the	HttpContent	object	are

ReadAsByteArrayAsync,	which	returns	a	byte	array	of	the	data,	and
ReadAsStreamAsync,	which	returns	a	stream.	You	can	also	load	the	content	into	a
memory	buffer	using	LoadIntoBufferAsync.

NOTE Streams	are	explained	in	Chapter	18.	Check	Chapter	25	on
receiving	streams	with	the	HttpClient	class.	For	receiving	large	content,
streams	should	be	preferred	to	strings.	Large	strings	are	stored	in	the	large
object	heap,	which	can	lead	to	memory	issues.

Customizing	Requests	with	HttpMessageHandler
The	HttpClient	class	can	take	an	HttpMessageHandler	as	a	parameter	to	its
constructor.	This	makes	it	possible	for	you	to	customize	the	request.	You	can
pass	an	instance	of	a	class	derived	from	DelegatingHandler.	There	are
numerous	ways	to	influence	the	request—for	example,	for	monitoring,	making
calls	to	other	services,	and	so	on.	Chapter	27,	“Blazor,”	covers	an	ASP.NET
technology	where	you	can	run	.NET	code	in	a	WebAssembly	(WASM)	in	the
browser.	With	Blazor	WASM	you	can	use	the	HttpClient	class	to	make	calls	to
services	directly	within	the	browser.	However,	the	browser	restricts	what	you
can	do,	and	you	can't	make	network	requests	without	the	browser.	Using	Blazor
WASM	you	can	still	use	the	HttpClient	class.	This	is	done	using
HttpMessageHandler,	which	in	turn	uses	the	Fetch	API	of	the	browser	to	make
requests.

With	the	next	code	snippet,	a	LimitCallsHandler	is	defined	to	be	used	with	the
HttpClient	factory.	The	method	AddHttpClient	returns	an
IHttpClientBuilder.	With	this	you	can	use	a	fluent	API	to	configure	this
factory.	The	generic	parameter	passed	to	the	extension	method
AddHttpMessageHandler	defines	the	type	of	the	class	that	should	be	used	with
the	HttpMessageHandler.	In	turn,	the	method	SetHandlerLifetime	is	used	to
specify	the	lifetime	of	this	handler	(code	file	HttpClientSample/Program.cs):

services.Configure<LimitCallsHandlerOptions>(

		context.Configuration.GetSection("RateLimit"));

services.AddTransient<LimitCallsHandler>();

services.AddHttpClient<HttpClientSampleWithMessageHandler>

(httpClient	=>

{

		httpClient.BaseAddress	=	new	Uri(httpClientSettings["Url"]);

}).AddHttpMessageHandler<LimitCallsHandler>()

		.SetHandlerLifetime(Timeout.InfiniteTimeSpan);

	

private	HttpClient	_httpClientWithMessageHandler;

public	HttpClient	HttpClientWithMessageHandler	=>	

		_httpClientWithMessageHandler	??	

(_httpClientWithMessageHandler	=	

				new	HttpClient(new	SampleMessageHandler("error")));

The	purpose	of	this	handler	type,	LimitCallsHandler,	is	to	restrict	the	number
of	calls	that	can	be	done	with	the	configured	HttpClient.	The	number	of	calls
allowed	is	specified	with	the	LimitCalls	property	that's	retrieved	from	the
configuration	file.	The	overridden	method	SendAsync	is	invoked	by	the
HttpClient.	With	the	implementation,	the	SendAsync	method	of	the	base	class	is
invoked,	but	only	as	long	as	the	limit	is	not	reached.	On	reaching	the	limit,	the
HTTP	status	code	TooManyRequests	(429)	is	returned.	This	way,	this	error	is	not
returned	from	the	server	but	from	the	client	handler	(code	file
HttpClientSample/LimitCallsHandler.cs):

public	record	LimitCallsHandlerOptions

{

		public	int	LimitCalls	{	get;	init;	}

}

	

public	class	LimitCallsHandler	:	DelegatingHandler

{	

		private	readonly	ILogger	_logger;

		private	readonly	int	_limitCount;

		private	int	_numberCalls	=	0;

		public	LimitCallsHandler(IOptions<RateLimitHandlerOptions>	

options,	

				ILogger<LimitCallsHandler>	logger)

		{

				_limitCount	=	options.Value.LimitCalls;

				_logger	=	logger;

		}

	

		protected	override	Task<HttpResponseMessage>	

SendAsync(HttpRequestMessage	request,	

				CancellationToken	cancellationToken)

		{

				if	(_numberCalls>=	_limitCount)

				{

						_logger.LogInformation("limit	reached,	returning	too	many	

requests");

						return	Task.FromResult(new	

HttpResponseMessage(HttpStatusCode.TooManyRequests));

				}

				Interlocked.Increment(ref	_numberCalls);

				_logger.LogTrace("SendAsync	from	within	LimitCallsHandler");

				return	base.SendAsync(request,	cancellationToken);

		}

}

With	the	sample	application,	in	the	class
HttpClientSampleWithMessageHandler,	the	HttpClient	using	the
LimitCallsHandler	is	injected.	Invoking	the	method	UseMessageHandlerAsync
multiple	times,	you	can	see	the	handler’s	limit	in	action,	and	the	429	error	will
be	shown	(code	file	HttpClientSample/Program.cs):

var	service	=	

host.Services.GetRequiredService<HttpClientSampleWithMessageHandler>

();

for	(int	i	=	0;	i	<	10;	i++)

{

		await	service.UseMessageHandlerAsync();

}

HTTPCLIENT	FACTORY
With	the	HttpClientSample	application,	you've	already	seen	the	HttpClient
factory	in	action—configured	with	the	DI	container.	The	factory	keeps	a	cache
of	HttpMessageHandler	handler	objects	discussed	in	the	previous	section.	The
handler	objects	have	a	connection	to	the	native	operating	system	(OS)	socket
object.	As	more	sockets	are	needed	for	communication,	the	factory	creates	new
ones.	If	they	are	not	used	for	some	time,	the	factory	disposes	of	the	objects.	The
default	lifetime	of	the	handler	objects	is	two	minutes.	If	they	are	not	used	for	two
minutes,	they	are	disposed	of.	You	can	change	the	lifetime	of	these	objects	by
invoking	the	SetHandlerLifetime	method,	as	shown	in	the	next	section.

Typed	Clients
Using	the	generic	version	of	the	AddHttpClient	method	adds	a	typed	client.	A
typed	client	is	a	class	that	has	an	HttpClient	as	a	constructor	parameter,	and	it's
usually	the	preferred	option	on	using	the	factory.	The	used	overload	of	this
method	has	an	Action<HttpClient>	parameter	that	allows	you	to	configure	the
HttpClient—for	example,	on	specifying	the	BaseAddress	property	as	shown
here	(code	file	HttpClientSample/Program.cs):

IHostBuilder	GetHostBuilder()	=>

		Host.CreateDefaultBuilder()

				.ConfigureServices((context,	services)	=>

				{

						var	httpClientSettings	=	

context.Configuration.GetSection("HttpClient");

						services.Configure<HttpClientSamplesOptions>

(httpClientSettings);

						services.AddHttpClient<HttpClientSamples>(httpClient	=>

						{

								httpClient.BaseAddress	=	new	

Uri(httpClientSettings["Url"]);

						});

						services.Configure<LimitCallsHandlerOptions>(

								context.Configuration.GetSection("RateLimit"));

						services.AddTransient<LimitCallsHandler>();

						services.AddHttpClient<HttpClientSampleWithMessageHandler>

(httpClient	=>

						{

								httpClient.BaseAddress	=	new	

Uri(httpClientSettings["Url"]);

						}).AddHttpMessageHandler<LimitCallsHandler>()

								.SetHandlerLifetime(Timeout.InfiniteTimeSpan);

				});

Instead	of	using	the	generic	parameter	with	the	AddHttpClient	method	to
register	a	typed	client,	you	can	also	invoke	the	method	AddTypedClient	and
supply	the	type	with	the	generic	parameter.	This	way	you	can	add	multiple	types
to	use	the	same	HttpClient	configuration.

Named	Clients
Using	a	typed	client	is	one	way	to	use	the	HttpClient	factory.	You	can	also
define	a	name	for	the	configured	HTTP	client	and	access	HTTP	clients	from	the
pool	using	this	name.

To	specify	a	named	client,	several	overloads	exist	with	the	AddHttpClient
method.	In	the	following	sample	code,	a	named	client	is	specified	with	the	name
racersClient.	This	time	for	the	configuration	of	the	HttpClient	object,	the
method	ConfigureHttpClient	is	used	instead	of	passing	a	delegate	as	an
argument	of	the	AddHttpClient	method.	With	named	clients,	you	also	have	the
option	to	supply	the	configuration	with	the	argument.	Because	the	type	where
the	named	client	should	be	used	is	not	registered	in	the	DI	container	on
configuring	the	HTTP	client,	you	need	to	register	this	type	as	well.	In	the	sample
application,	the	type	using	named	clients	is	NamedClientSample	(code	file

HttpClientSample/Program.cs):

services.AddHttpClient("racersClient")

		.ConfigureHttpClient(httpClient	=>

		{

				httpClient.BaseAddress	=	new	Uri(httpClientSettings["Url"]);

		});

services.AddTransient<NamedClientSample>();

To	get	a	named	client	instance,	you	can	inject	the	IHttpClientFactory	with	the
constructor	of	the	class	where	this	instance	is	needed.	By	invoking	the	method
CreateClient	to	pass	the	name,	an	object	from	the	pool	is	returned.	Then	you
can	use	this	preconfigured	client	in	the	same	way	as	before	(code	file
HttpClientSample/NamedClientSample.cs):

class	NamedClientSample

{

		private	readonly	ILogger	_logger;

		private	readonly	HttpClient	_httpClient;

		private	readonly	string	_url;

	

		public	NamedClientSample(

				IOptions<HttpClientSamplesOptions>	options,

				IHttpClientFactory	httpClientFactory,

				ILogger<HttpClientSamples>	logger)

		{

				_logger	=	logger;

				_url	=	options.Value.InvalidUrl	??	"localhost:5052";

				_httpClient	=	

httpClientFactory.CreateClient("racersClient");

		}

		//…

}

	

Resilient	HTTP	Requests
When	accessing	servers	over	the	network,	many	parts	can	fail.	Passing	invalid
data	to	the	server	that	cannot	be	processed	by	the	server	is	an	error	that	cannot	be
recovered	by	redoing	the	request.	However,	there	are	many	errors	that	might	be
only	transient.	The	DNS	server	might	not	be	accessible	to	resolve	the	server
name.	The	wireless	network	itself	might	be	temporarily	unavailable	while	you're
switching	networks.	A	router	can	have	issues	that	might	be	resolved	in	a
moment.	Some	API	services	are	restricted	in	the	number	of	calls	you	are	allowed
to	make	in	a	second.

With	many	of	the	transient	errors,	it	can	be	worthwhile	to	retry	the	call	after	a
delay,	and	the	issue	might	resolve	silently	for	the	user.	You	don't	have	to	create
loops	to	repeat	the	invocation	with	maximum	retry	counts	and	different	delays
because	there	are	different	options	that	don't	change	the	logic	of	the	main
functionality	where	you	invoke	the	service.	With	the	HttpClient	factory,	you
just	need	to	add	another	NuGet	package:	Microsoft.Extensions.Http.Polly.
Microsoft.Extensions.Http.Polly	has	a	dependency	on	the	Polly	library.
Polly	is	a	.NET	resiliency	and	transient-fault-handling	library
(https://github.com/App-vNext/Polly)	that	offers	retry,	circuit	breakers,
timeout,	and	fallback	functionality	that	can	be	used	in	many	scenarios.	To	use	it
with	HttpClient	s,	you	can	configure	a	retry	policy	based	on	an	HTTP	status
code,	as	shown	in	the	following	code	snippet.	Here,	the	method	GetRetryPolicy
returns	a	policy	that	retries	the	invocation	for	a	maximum	of	five	attempts	after
2,	4,	8,	16,	and	32	seconds	(code	file	HttpClientSample/Program.cs):

IAsyncPolicy<HttpResponseMessage>	GetRetryPolicy()

		=>	HttpPolicyExtensions

				.HandleTransientHttpError()

				.OrResult(message	=>	message.StatusCode	==	

HttpStatusCode.TooManyRequests)

				.WaitAndRetryAsync(5,	retryAttempt	

						=>	TimeSpan.FromSeconds(Math.Pow(2,	retryAttempt)));

This	method	returning	the	IasyncPolicy	can	be	invoked	as	the	argument	of	the
method	AddPolicyHandler.	This	method	configures	the	policy	of	the	typed
client	specified	with	the	AddHttpClient	method	(code	file
HttpClientSample/Program.cs):

services.AddHttpClient<FaultHandlingSample>(httpClient	=>

{

		httpClient.BaseAddress	=	new	

Uri(httpClientSettings["InvalidUrl"]);

}).AddPolicyHandler(GetRetryPolicy())

With	the	method	AddTransientHttpErrorPolicy,	a	method	is	defined	that	is
configured	to	handle	predefined	transient	errors.	You	just	need	to	specify
different	time	intervals	with	this	method	to	handle	network	failures,	HTTP	5xx
status	codes,	and	HTTP	408	status	codes	(code	file
HttpClientSample/Program.cs):

services.AddHttpClient<FaultHandlingSample>(httpClient	=>

{

		httpClient.BaseAddress	=	new	

https://github.com/App-vNext/Polly

Uri(httpClientSettings["InvalidUrl"]);

}).AddTransientHttpErrorPolicy(

		policy	=>	policy.WaitAndRetryAsync(

				new[]	{	TimeSpan.FromSeconds(1),	TimeSpan.FromSeconds(3),	

TimeSpan.FromSeconds(5)	}));

With	this	in	place,	the	code	with	the	injected	HttpClient	object	does	not	need
any	change	to	deal	with	these	transient	errors.	Your	exception	handler	is	invoked
only	after	the	retries.	Of	course,	enabling	logging	shows	the	retries.	As	the	error
still	persists	after	the	retries,	the	exception	is	thrown	after	the	last	retry:

info:	

System.Net.Http.HttpClient.FaultHandlingSample.LogicalHandler[100]

						Start	processing	HTTP	request	GET	https://localhost1:5021/

info:	

System.Net.Http.HttpClient.FaultHandlingSample.ClientHandler[100]

						Sending	HTTP	request	GET	https://localhost1:5021/

info:	

System.Net.Http.HttpClient.FaultHandlingSample.ClientHandler[100]

						Sending	HTTP	request	GET	https://localhost1:5021/

info:	

System.Net.Http.HttpClient.FaultHandlingSample.ClientHandler[100]

						Sending	HTTP	request	GET	https://localhost1:5021/

info:	

System.Net.Http.HttpClient.FaultHandlingSample.ClientHandler[100]

						Sending	HTTP	request	GET	https://localhost1:5021/

fail:	HttpClientSamples[0]

						No	such	host	is	known.	(localhost1:5021)

SUMMARY
This	chapter	described	the	.NET	classes	available	in	the	System.Net	namespace
for	communication	across	networks.	You	have	seen	some	of	the	.NET	base
classes	that	deal	with	opening	client	connections	on	the	network	and	the	Internet,
as	well	as	how	to	send	requests	to	and	receive	responses	from	servers.

As	a	rule	of	thumb,	when	programming	with	classes	in	the	System.Net
namespace,	you	should	always	try	to	use	the	most	specific	class	possible.	For
instance,	using	the	TcpClient	class	instead	of	the	Socket	class	isolates	your
code	from	many	of	the	lower-level	socket	details.	Moving	one	step	higher,	the

HttpClient	class	is	an	easy	way	to	use	the	HTTP	protocol.	Using	the
HttpClient	factory,	you	don't	need	to	instantiate	and	dispose	of	HttpClient
objects.	You've	also	seen	how	to	use	Polly	to	deal	with	transient	errors	that	can
be	configured	in	a	central	place	of	the	application.

This	book	covers	much	more	networking	than	the	core	networking	features
you've	seen	in	this	chapter.	Chapter	25	covers	creating	REST	APIs	with
ASP.NET	Core	and	Azure	Functions,	as	well	as	gRPC	for	binary	communication
based	on	HTTP/2.	In	Chapter	28,	“SignalR,”	you	can	read	about	real-time
communication	with	SignalR	to	return	information	from	the	server	to	the	client,
which	is	based	on	WebSockets,	as	well	as	asynchronous	streaming	of	data.
WebSockets	is	a	communication	protocol	which	allows	returning	real-time
information	to	the	client.

In	the	next	chapter,	you’ll	learn	about	security.	You	can	see	the	CryptoStream	in
action	for	encrypting	streams,	no	matter	whether	they	are	used	with	files	or
networking.	You'll	also	see	features	on	authentication	that	are	often	an	important
part	of	using	networking	APIs.

20
Security

WHAT'S	IN	THIS	CHAPTER?

Working	with	authentication	and	authorization

Creating	and	verifying	signatures

Implementing	secure	data	exchange

Using	signing	and	hashing

Handling	web	security

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	folder	2_Libs/Security.	The	code	for	this	chapter	is	divided	into	the
following	major	examples:

IdentitySample

WebAppWithADSample

X509CertificateSample

SigningDemo

SecureTransfer

ASPNETCoreMVCSecurity

Samples	from	this	chapter	mainly	use	the	namespace
System.Security.Cryptography.	All	the	sample	projects	have	nullable
reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

ELEMENTS	OF	SECURITY
Security	has	several	key	elements	that	you	need	to	consider	for	making	your
applications	secure.	The	primary	one,	of	course,	is	the	user	of	the	application.	Is
the	person	authorized	to	access	the	application	or	someone	posing	as	that
person?	How	can	this	user	be	trusted?	As	you	see	in	this	chapter,	ensuring	the
security	of	an	application	regarding	the	user	is	a	two-part	process.	First,	users
need	to	be	authenticated,	and	then	they	need	to	be	authorized	to	verify	that	they
are	allowed	to	use	the	requested	resources.

What	about	data	that	is	stored	or	sent	across	the	network?	Is	it	possible	for
someone	to	access	this	data,	for	example,	by	using	a	network	sniffer?	Encryption
of	data	is	important	in	this	regard.	If	you	use	HTTPS	(which	nearly	all	websites
use	today),	keys	are	used	to	encrypt	the	data.	You	just	need	to	install	a	certificate
containing	public	and	private	keys	on	the	server.	If	you	use	Microsoft	Azure,
encryption	is	done	for	the	data	in	transit	(sending	it	across),	as	well	as	for	the
data	at	rest	(when	data	is	stored).	With	many	services,	you	can	supply	your	own
encryption	key;	otherwise,	an	encryption	key	is	created	from	Azure.

This	chapter	explores	the	features	available	in	.NET	to	help	you	manage	security
and	demonstrates	how	.NET	protects	you	from	malicious	code,	how	to
administer	security	policies,	and	how	to	access	the	security	subsystem
programmatically.

You	can	also	read	about	the	issues	you	need	to	be	aware	of	when	making	web
applications	secure.

VERIFYING	USER	INFORMATION
Two	fundamental	pillars	of	security	are	authentication	and	authorization.
Authentication	is	the	process	of	identifying	the	user,	and	authorization	occurs
afterward	to	verify	that	the	identified	user	is	allowed	to	access	a	specific
resource.	This	section	shows	how	to	get	information	about	users	and	get	a	token
that	in	turn	can	be	used	to	authenticate	the	user	calling	a	REST	service.

The	sample	application	makes	use	of	an	Azure	Active	Directory.	With	an	Azure
subscription,	you	also	have	an	Azure	Active	Directory.	With	an	Azure
subscription,	you	can	use	your	default	Azure	Active	Directory	to	run	the	first
sample	application.	You	can	also	create	a	new	Azure	Active	Directory	or	modify
the	sample	application	slightly	to	access	your	on-premises	directory	services.

Working	with	the	Microsoft	Identity	Platform
You	can	identify	the	user	running	the	application	by	using	an	identity.	The
landscape	of	identities	has	become	complex	in	recent	years.	Some	years	ago,	we
just	had	to	deal	with	Windows	users,	users	coming	from	the	on-premises	Active
Directory,	or	local	users	on	the	Windows	system.	Today,	this	is	a	lot	more
complex;	we	have	to	deal	with	users	from	the	Azure	Active	Directory	(which
also	includes	Office	365	users),	identities	from	users	on	mobile	devices,	and
users	with	accounts	verified	by	Microsoft,	Facebook,	Google,	Twitter,	and	other
providers.

To	make	programming	easier,	Microsoft	created	the	Microsoft	identity	platform.
With	this	platform,	we	have	users	in	Office	365	and	Microsoft	Azure	who	use
Microsoft	Azure	Active	Directory	(AD).	With	Azure	AD	business-to-business
(B2B),	different	organizations	can	share	resources	with	other	organizations	using
Azure	AD.	Azure	AD	business-to-consumer	(B2C)	is	an	extension	of	Azure	AD
in	which	users	can	register	themselves	to	create	a	new	account	in	the	AD	and
keep	their	passwords	managed	from	other	providers	using	a	Microsoft,	Gmail,
Facebook,	or	Twitter	account—or	any	other	account	that	uses	OAuth	or	OpenID
Connect.

Important	parts	of	the	Microsoft	identity	platform	are	users,	resources,	and
policies.	Users	want	to	access	a	resource—for	example,	your	web	application—
or	use	an	application	that's	accessing	your	API.	How	the	user	should	be	allowed
to	access	the	resources	is	specified	by	a	policy.	Because	users	access	resources
from	different	networks	using	different	devices,	policies	have	become	very
complex.	Microsoft	identity	supports	complex	and	dynamic	policies.	These	can
be	different,	for	example,	if	the	user	is	on	a	trusted	corporate	network	using	a
company	laptop	or	the	same	user	is	accessing	the	same	resource	from	a	different
network	on	a	different	device.

To	authenticate	the	user,	you	can	use	the	OpenID	Connect	authentication
protocol.	OpenID	Connect	extends	the	OAuth	2.0	authorization	protocol.	After
getting	an	ID	token	from	an	authentication	server,	this	token	can	be	used	to
request	an	access	token.	With	the	access	token,	the	user	can	access	a	resource
that's	secured	by	an	authorization	server.

Using	Microsoft.Identity.Client
Let's	create	a	simple	console	application	that	authenticates	the	user	against	the
Azure	AD	and	displays	information	about	the	user.	The	application	references

the	NuGet	packages	Microsoft.Extensions.Hosting	and
Microsoft.Identity.Client.	Before	creating	the	application,	you	need	to
register	it	with	Azure	AD.	When	configuring	the	app	registration,	you	need	to
define	the	name,	the	account	types,	and	the	redirect	URI.	With	a	client
application,	you	can	configure	the	link	http://localhost,	and	you	need	to
specify	the	same	link	with	the	client	configuration.	With	the	application
configuration,	you	can	also	configure	API	permissions	that	the	application	is
using	(if	the	user	grants	the	permissions).	By	default,	the	API	permission
User.Read	is	specified;	this	allows	the	application	to	sign	in	on	behalf	of	the
user	and	read	the	user's	profile.	Openid	permissions	with	the	names	email,
offline_access,	openid,	and	profile	are	granted	as	well.

You	can	add	additional	permissions—for	example,	to	use	Microsoft	Graph	and
to	use	your	own	APIs.	(You	can	read	about	creating	and	using	API	permissions
for	your	services	in	Chapter	25,	“Services.”)	From	the	app	registration,	you	need
to	copy	the	application	(client)	ID	and	the	directory	(tenant)	ID.	When	using	the
Azure	CLI,	you	can	find	the	app	ID	by	passing	the	name	of	the	app	with	the	--
display-name	argument	and	querying	for	the	appId	element	in	the	array	of
applications	returned,	as	shown	here:

>	az	app	list	--display-name	ProCSharpIdentityApp	--query	

[].appId

The	tenant	ID	is	shown	using	az	account,	like	so:

>	az	account	show	--query	tenantId

You	can	use	the	command	line,	with	the	current	directory	of	your	project,	to
configure	the	user	secrets	TenantId	and	ClientId.	With	this	setting,	the
configuration	is	read	from	the	application	while	it's	running	in	your	development
environment:

>	dotnet	user-secrets	init

>	dotnet	user-secrets	set	TenantId	<enter-your-tenant-id>

>	dotnet	user-secrets	set	ClientId	<enter-your-client-id>

NOTE Configuration,	user	secrets,	and	dependency	injection	are	covered
in	Chapter	15,	“Dependency	Injection	and	Configuration.”

With	the	following	sample	application,	the	Runner	class	is	configured	with	the
dependency	injection	container.	To	have	the	user	secrets	automatically
configured	with	the	DI	container,	you	set	the	environmental	variable

http://localhost

DOTNET_ENVIRONMENT	to	Development.	Because	the	dependency	injection
container	is	configured	using	the	CreateDefaultBuilder	method,	the
IConfiguration	and	ILogger	interfaces	can	be	injected	with	the	constructor	of
the	Runner	class.	The	client	ID	and	tenant	ID	are	retrieved	from	the
configuration.	The	Init	method	of	the	Runner	class	uses	the
PublicClientApplicationBuilder	to	create	the	PublicClientApplication,
which	can	be	used	to	log	in	and	retrieve	the	ID	and	access	tokens.	The	client	ID
is	passed	to	the	Create	method,	and	the	tenant	ID	is	passed	to	the
WithAuthority	method.

To	use	Azure	Active	Directory,	the	cloud	instance	is	specified	with
AzureCloudInstance.AzurePublic.	For	the	U.S.	government,	Azure	China,	and
the	sovereign	versions	of	Germany,	different	enum	values	need	to	be	specified.
The	WithRedirectUri	method	needs	to	be	configured	with	the	link	that's
specified	as	a	redirect	URI	with	the	app	registration.

To	help	you	identify	issues	and	understand	the	communication	going	on,	the
Microsoft	Identity	platform	offers	rich	logging	information	that	you	can	enable
using	the	WithLogging	method	(code	file	IdentitySample/Runner.cs):

using	Microsoft.Extensions.Configuration;

using	Microsoft.Extensions.Logging;

using	System;

using	System.Linq;

using	System.Threading.Tasks;

using	Id	=	Microsoft.Identity.Client;

	

//…

	

class	Runner

{

		private	readonly	string	_clientId;

		private	readonly	string	_tenantId;

		private	Id.IPublicClientApplication?	_clientApp;

		private	readonly	ILogger	_logger;

	

		public	Runner(IConfiguration	configuration,	ILogger<Runner>	

logger)

		{

				_clientId	=	configuration["ClientId"]	

						??	throw	new	InvalidOperationException("Configure	a	

ClientId");

				_tenantId	=	configuration["TenantId"]	

						??	throw	new	InvalidOperationException("Configure	a	

TenantId");

				_logger	=	logger;

		}

	

		public	void	Init()

		{

				void	LogCallback(Id.LogLevel	level,	string	message,	bool	

containsPii)

						=>	_logger.Log(level.ToLogLevel(),	message);						

	

				_clientApp	=	Id.PublicClientApplicationBuilder

						.Create(_clientId)

						.WithLogging(LogCallback,	logLevel:	Id.LogLevel.Verbose)

						.WithAuthority(Id.AzureCloudInstance.AzurePublic,	

_tenantId)

						.WithRedirectUri("http://localhost")

						.Build();

		}

		//…

}

To	see	logging	information	from	Microsoft	Identity,	you	can	specify	a	callback
method	with	the	WithLogging	method.	This	method	is	invoked	with	every	log
output.	Microsoft	Identity	has	its	own	logging	implementation	and	LogLevel
enum	definition	that	are	very	different	from	Microsoft	.NET	logging.	If	you
check	the	numbers	used	with	the	Microsoft.Extensions.Logging.LogLevel
enum	and	the	Microsoft.Identity.Client.LogLevel	enum,	they	are	ordered	in
the	reverse	direction.	To	not	get	into	conflict	with	the	two	definitions	when	using
both	types,	the	alias	ID	in	the	sample	application	is	defined	to	reference
Microsoft.Identity.Client.	With	the	extension	method	ToLogLevel,	which	is
shown	in	the	following	code	snippet,	the	log	level	from
Microsoft.Identity.Client	is	converted	to	the	log	level	from
Microsoft.Extensions.Logging.	As	different	values	are	used	with	these	enum
types,	a	simple	switch	expression	is	used	to	do	the	conversion.	This	extension
method	is	invoked	from	the	previously	shown	LogCallback	method	(code	file
IdentitySample/Runner.cs):

internal	static	class	IdentityLogLevelExtensions

{

		public	static	LogLevel	ToLogLevel(this	Id.LogLevel	logLevel)

				=>	logLevel	switch

				{

						Id.LogLevel.Error	=>	LogLevel.Error,

						Id.LogLevel.Warning	=>	LogLevel.Warning,

						Id.LogLevel.Info	=>	LogLevel.Information,

						Id.LogLevel.Verbose	=>	LogLevel.Trace,

						_	=>	throw	new	InvalidOperationException("unexpected	log	

level")

				};

}

With	the	LogAsync	method	that's	shown	next,	first,	a	check	is	done	by	invoking
the	GetAccountsAsync	method	to	see	whether	accounts	are	already	cached.	If
they	are,	a	silent	authentication	can	be	done	without	a	need	to	ask	the	user	for
their	login	information	by	using	the	AquireTokenSilent	method.	If	silent
authentication	does	not	return	a	token,	login	happens	through	an	interactive	login
that	invokes	the	AquireTokenInteractive	method.	The	scopes	required	by	the
application	(and	also	configured	with	the	app	registration)	are	specified	in	a
string	array	and	passed	to	the	AquireTokenXX	methods	(code	file
IdentitySample/Runner.cs):

public	async	Task	LoginAsync()

{

		if	(_clientApp	is	null)	throw	new	InvalidOperationException(

				"Invoke	Init	before	calling	this	method");

	

		try

		{

				string[]	scopes	=	{	"user.read"	};

				var	accounts	=	await	_clientApp.GetAccountsAsync();

				var	firstAccount	=	accounts.FirstOrDefault();

				if	(firstAccount	is	not	null)

				{

						Id.AuthenticationResult	result	=	

								await	_clientApp.AcquireTokenSilent(scopes,	

firstAccount)

										.ExecuteAsync();

						ShowAuthenticationResult(result);

				}

				else

				{

						Id.AuthenticationResult	result	=	await	

_clientApp.AcquireTokenInteractive(scopes)

								.ExecuteAsync();

						ShowAuthenticationResult(result);

				}

		}

		catch	(Exception	ex)

		{

				_logger.LogError(ex,	ex.Message);

				throw;

		}

}

Besides	offering	AquireTokenSilent	and	AquireTokenInteractive,	the
PublicClientApplication	also	offers	logins	with	other	mechanisms.	A	login
via	username/password	is	done	with	AquireTokenByUsernamePassword.	You	can
also	use	this	class	for	Windows	authentication	and	use
AquireTokenByIntegratedWindowsAuthentication.	Another	option	is	to	log	in
by	using	a	device	code:	AquireTokenWithDeviceCode.	This	method	can	be	used
to	log	in	on	a	device	without	a	browser.	When	you	invoke	this	method,	a	device
code	is	returned.	The	user	enters	this	code	on	a	device	with	a	browser.	After	the
user	successfully	enters	the	code,	access	to	the	device	is	granted.

An	ID	token	and	access	token	are	retrieved	with	just	one	call.	The
ShowAuthenticationResult	method	uses	AuthenticationResult	and	shows
token	and	account	information	(code	file	IdentitySample/Runner.cs):

private	void	ShowAuthenticationResult(Id.AuthenticationResult	

result)

{

		Console.WriteLine($"Id	token:	{result.IdToken[..20]}");

		Console.WriteLine($"Access	token:	

{result.AccessToken[..20]}");

		Console.WriteLine($"Username:	{result.Account.Username}");

		Console.WriteLine($"Environment:	

{result.Account.Environment}");

		Console.WriteLine($"Account	Id:	

{result.Account.HomeAccountId}");

		foreach	(var	scope	in	result.Scopes)

		{

				Console.WriteLine($"scope:	{scope}");

		}

}

Using	Authentication	and	Authorization	with	a	Web	App
Now	that	you've	seen	how	to	authenticate	a	user	in	a	console	application,	let's
get	into	the	.NET	support	for	web	applications.

NOTE This	section	makes	use	of	ASP.NET	Core	and	ASP.NET	Core	Razor
Pages,	which	are	covered	in	Chapter	24,	“ASP.NET	Core,”	and	Chapter	26,
“Razor	Pages	and	MVC.”

When	you	create	an	ASP.NET	Core	application,	you	can	create	the	code	needed
for	authentication	with	a	template.	If	you	use	dotnet	new	with	the	--auth	option
to	specify	SingleOrg,	code	is	created	to	log	in	with	Microsoft	Azure	Active
Directory:

>	dotnet	new	webapp	--auth	SingleOrg	-o	WebAppWithADSample

With	this	template,	the	AddAuthentication	method	is	used	to	configure	the	DI
container.	AddAuthentication	returns	the	authentication	builder	that	is	then
used	to	invoke	the	method	AddMicrosoftIdentityWeb	to	configure	the
Microsoft	Identity	platform	for	a	web	application.

Configuration	values	are	retrieved	from	the	section	AzureAd	with	the
configuration	settings.	After	this,	the	AddAuthorization	method	configures	the
authorization.	You'll	change	the	implementation	of	this	method	later	to	define
requirements	for	the	user	by	accessing	specific	pages.	With	the	MVC	builder
that	follows	the	AddMvcOptions	method—	AddMicrosoftIdentityUI—user
interfaces	for	logging	in	are	used	from	the	Microsoft	Identity	platform	(code	file
WebAppWithADSample/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		

services.AddAuthentication(OpenIdConnectDefaults.AuthenticationScheme)

				

.AddMicrosoftIdentityWebApp(Configuration.GetSection("AzureAd"));

	

		services.AddAuthorization(options	=>

		{

				options.FallbackPolicy	=	options.DefaultPolicy;

		});

		services.AddRazorPages()

				.AddMvcOptions(options	=>	{})

				.AddMicrosoftIdentityUI();

}

The	configuration	specified	with	the	AzureAd	section	is	added	to	the
appsettings.json	configuration	file.	You	can	add	the	domain,	tenant	ID,	and
client	ID	to	this	file.	This	time,	because	it's	a	web	application,	you	need	to
register	it	with	the	redirect	URI	https://localhost:5001/signin-oidc	when
using	the	default	port	running	this	application	locally	with	the	Kestrel	server.	To
run	the	application	on	a	different	URL,	you	then	need	to	adapt	this	URI

https://localhost:5001/signin-oidc

accordingly	(config	file	WebAppWithADSample/appsettings.json):

{

		"AzureAd":	{

				"Instance":	"https://login.microsoftonline.com/",

				"Domain":	"qualified.domain.name",

				"TenantId":	"22222222-2222-2222-2222-222222222222",

				"ClientId":	"11111111-1111-1111-11111111111111111",

				"CallbackPath":	"/signin-oidc"

		}

}

With	the	configuration	of	the	middleware,	UseAuthentication	and
UseAuthorization	are	invoked	to	support	authentication	and	authorization	(code
file	WebAppWithADSample/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

		}

		else

		{

				app.UseExceptionHandler("/Error");

				app.UseHsts();

		}

	

		app.UseHttpsRedirection();

		app.UseStaticFiles();

	

		app.UseRouting();

	

		app.UseAuthentication();

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapRazorPages();

				endpoints.MapControllers();

		});

}

With	the	default	policy	configured,	authentication	is	required.	Without	this
policy,	you	can	apply	the	Authorize	attribute	to	classes	and	methods—for
example,	the	class	of	a	Razor	page,	an	MVC	controller,	or	an	MVC	action

method.	To	override	the	authorization	requirement,	you	can	apply	the
AllowAnonymous	attribute.	In	the	following	code	snippet,	the	Authorize	attribute
is	applied	to	the	code-behind	file	of	the	Razor	page	UserInfo.	Because	the	user
is	authorized,	user	information	can	be	accessed.	With	the	OnGet	method	that	is
invoked	with	an	HTTP	GET	request	to	this	page,	user	information	is	accessed;
the	name	of	the	user	and	the	claims	delivered	as	part	of	the	token	are	assigned	to
the	properties	UserName	and	ClaimsInformation.	The	property
ClaimsInformation	contains	a	generic	List	containing	tuples	(code	file
WebAppWithADSample/Pages/UserInfo.cshtml.cs):

[Authorize]

public	class	UserInfoModel	:	PageModel

{

		public	void	OnGet()

		{

				UserName	=	User.Identity?.Name;

							

				foreach	(var	claim	in	User.Claims)

				{

						ClaimsInformation.Add((claim.Type,	

								claim.Subject?.Name	??	string.Empty,	claim.Value));

				}

		}

	

		public	string?	UserName	{	get;	private	set;	}

	

		public	List<(string	Type,	string	Subject,	string	Value)>	

ClaimsInformation	{	get;	}	=	

				new	List<(string,	string,	string)>();

}

When	you	use	Razor	syntax,	values	from	the	properties	UserName	and
ClaimsInformation	are	shown	in	the	user	interface	(code	file
WebAppWithADSample/Pages/UserInfo.cshtml.cs):

@page

@model	WebAppWithADSample.Pages.UserInfoModel

@{

}

	

<h2>User:	@Model.UserName</h2>

	

<table>

		@foreach	(var	claimsInfo	in	Model.ClaimsInformation)

		{

		<tr>

				<td>@claimsInfo.Type</td>

				<td>@claimsInfo.Subject</td>

				<td>@claimsInfo.Value</td>

		</tr>

		}

</table>

With	the	AddAuthorization	method	invoked	in	the	Startup	class,	you	can
create	policies	that	define	specific	requirements,	such	as	a	user	belonging	to	a
specific	role	defined	in	the	Azure	AD	(RequireRole	method),	or	that	specific
claims	need	to	be	available	in	a	token	(RequireClaim	method)	(code	file
WebAppWithADSample/Startup.cs):

services.AddAuthorization(options	=>

{

		options.AddPolicy("Developers",	policy	=>

		{

				policy.RequireRole("DevGroup");

		});

		options.AddPolicy("Employees",	policy	=>

		{

				policy.RequireClaim("EmployeeNumber");

		});

		options.FallbackPolicy	=	options.DefaultPolicy;

});

After	you	set	the	Policy	with	the	Authorize	attribute,	the	requirements	of	the
policy	are	now	checked:

[Authorize(Policy="Developers")]

If	the	policy	is	not	successful,	the	user	receives	an	access	denied	message.

Now	that	you	know	more	about	user	identities,	tokens,	and	claims,	let's	step	into
another	security-relevant	topic:	encryption	of	data.

ENCRYPTING	DATA
Confidential	data	should	be	secured	so	that	it	cannot	be	read	by	unprivileged
users.	This	is	valid	for	both	data	that	is	sent	across	the	network	and	stored	data.
You	can	encrypt	such	data	with	symmetric	or	asymmetric	encryption	keys.

With	a	symmetric	key,	you	can	use	the	same	key	for	encryption	and	decryption.
With	asymmetric	encryption,	different	keys	are	used	for	encryption	and

decryption:	a	public	key	and	a	private	key.	Something	encrypted	using	a	public
key	can	be	decrypted	with	the	corresponding	private	key.	This	also	works	the
other	way	around:	something	encrypted	using	a	private	key	can	be	decrypted	by
using	the	corresponding	public	key	but	not	the	private	key.	It's	practically
impossible	to	calculate	a	private	or	public	key	from	the	other	key.

Public	and	private	keys	are	always	created	as	a	pair.	The	public	key	can	be	made
available	to	everybody,	and	even	put	on	a	website,	but	the	private	key	must	be
safely	locked	away.	Following	are	some	examples	that	demonstrate	how	public
and	private	keys	are	used	for	encryption.

If	Alice	sends	a	message	to	Bob	(see	Figure	20-1)	and	she	wants	to	ensure	that
no	one	other	than	Bob	can	read	the	message,	she	uses	Bob's	public	key.	The
message	is	encrypted	using	Bob's	public	key.	Bob	opens	the	message	and	can
decrypt	it	using	his	secretly	stored	private	key.	This	key	exchange	guarantees
that	only	Bob	can	read	Alice's	message.

FIGURE	20-1

There	is	one	problem,	however:	Bob	can't	be	sure	that	the	mail	comes	from
Alice.	Eve	can	use	Bob's	public	key	to	encrypt	messages	sent	to	Bob	and	pretend
to	be	Alice.

We	can	extend	this	principle	using	public/private	keys.	Let's	start	again	with
Alice	sending	a	message	to	Bob.	Before	Alice	encrypts	the	message	using	Bob's
public	key,	she	adds	her	signature	and	a	hash	of	the	message	and	encrypts	this
information	using	her	own	private	key.	Then	she	encrypts	the	complete	mail
using	Bob's	public	key.	Therefore,	it	is	guaranteed	that	no	one	other	than	Bob
can	read	the	message.	When	Bob	decrypts	it,	he	detects	an	encrypted	signature.
The	signature	can	be	decrypted	using	Alice's	public	key.	For	Bob,	it	is	not	a
problem	to	access	Alice's	public	key	because	the	key	is	public.	After	decrypting
the	signature,	Bob	can	be	sure	that	it	was	Alice	who	sent	the	message.

The	encryption	and	decryption	algorithms	using	symmetric	keys	are	a	lot	faster
than	those	using	asymmetric	keys.	The	problem	with	symmetric	keys	is	that	the
keys	must	be	exchanged	in	a	safe	manner.	With	network	communication,	one
way	to	do	this	is	by	using	asymmetric	keys	first	for	the	key	exchange	and	then
symmetric	keys	for	the	encryption	of	the	data	that	is	sent	across	the	wire.

In	the	following	table,	you'll	find	algorithms	implemented	by	the	.NET	classes
grouped	into	different	categories	with	some	information	on	the	use	and	issues
with	different	algorithms.	The	purpose	of	hash	algorithms	is	to	create	a	fixed-
length	hash	value	from	binary	strings	of	arbitrary	length.	These	algorithms	are
used	with	digital	signatures	and	for	data	integrity.	If	the	same	binary	string	is
hashed	again,	the	same	hash	result	is	returned.	Also,	if	the	binary	string	has	been
modified	even	a	little,	it	is	extremely	unlikely	that	the	hash	result	will	be	the
same.	Symmetric	key	algorithms	use	the	same	key	for	encryption	and	decryption
of	data.	Asymmetric	algorithms	use	a	key	pair:	one	key	for	encryption	and
another	for	decryption.

CATEGORY ALGORITHM DESCRIPTION
Hash MD5 The	Message	Digest	Algorithm	5	(MD5)	was

developed	at	RSA	Laboratories.	The	algorithm
should	be	used	only	with	legacy	applications;	it
can	be	broken	on	regular	computers	in	less	than
a	second.

HMAC Hash-based	Message	Authentication	Code
(HMAC)	uses	a	hash	function	with	a	secret
cryptography	key	and	allows	verifying	data
integrity	and	authenticity	of	a	message.

RIPEMD RIPE	Message	Digest	(RIPEMD)	was
developed	by	the	EU	project	RACE	Integrity

Primitives	Evaluation	(RIPE).	The	original
RIPEMD-128	is	now	considered	insecure.
RIPEMD-160	is	the	most	commonly	used
algorithm	of	the	RIPEMD	family	with	160-bit
hash	results.	Specifications	for	RIPEMD-256
and	RIPEMD-512	are	available	as	well.	These
provide	the	same	security	but	longer	hash	sizes.
Bitcoin	makes	use	of	RIPEMD-160.

SHA The	Secure	Hash	Algorithm	(SHA)	algorithms
were	designed	by	the	National	Security	Agency
(NSA).	SHA-1	uses	a	160-bit	hash	and	is
stronger	than	MD5	(128-bit)	against	brute-force
attacks,	but	because	of	security	issues,	SHA1
has	not	been	supported	with	HTTPS	in
browsers	since	2017.	Microsoft	discontinued
SHA-1	code	signing	for	Windows	Update	in
2020.	Git	uses	SHA-1	for	data	integrity	against
disk	and	DRAM	corruption.
The	other	SHA	algorithms	contain	the	hash	size
in	the	name.	SHA512	is	the	strongest	of	these
algorithms,	with	a	hash	size	of	512	bits;	it	is
also	the	slowest.

Symmetric DES Data	Encryption	Standard	(DES)	is	now
considered	insecure	because	it	uses	only	56	bits
for	the	key	size	and	can	be	broken	in	less	than
24	hours.

Triple-DES Triple-DES	is	the	successor	to	DES	and	has	a
key	length	of	168	bits,	but	the	effective	security
it	provides	is	only	112-bit.	It	uses	three
iterations	of	DES.

Rijndael
AES

Today,	Advanced	Encryption	Standard	(AES)	is
the	most-used	symmetric	algorithm.	It	has	a
key	size	of	128,	192,	or	256	bits.	Rijndael	is	the
predecessor	of	AES.	AES	is	an	encryption
standard	adopted	by	the	U.S.	government.

Asymmetric RSA The	Rivest,	Shamir,	Adleman	(RSA)	algorithm
was	the	first	one	used	for	signing	as	well	as

encryption.	This	algorithm	is	widely	used	in	e-
commerce	protocols.

DSA Digital	Signature	Algorithm	(DSA)	is	a	U.S.
federal	government	standard	for	digital
signatures	as	defined	in	Federal	Information
Processing	Standards	Publication	(FIPS)	PUB
186.	A	draft	version	available	at	the	time	of	this
writing	indicates	that	DSA	will	no	longer	be
approved	for	new	digital	signatures.	The	DSA
algorithm	is	based	on	modular	exponentiation
and	the	discrete	logarithm	problem.

ECDSA Elliptic	Curve	DSA	(ECDSA)	uses	elliptic
curves	instead	of	logarithms.	These	algorithms
are	more	secure,	with	shorter	key	sizes.	For
example,	having	a	key	size	of	1024	for	DSA	is
similar	in	security	to	160	bits	for	ECDSA.	As	a
result,	ECDSA	is	much	faster.

ECDH Elliptic	Curve	Diffie-Hellman	(ECDH)	is	based
on	elliptic	curves	similar	to	ECDSA.	This
algorithm	allows	you	to	exchange	private	keys
in	a	secure	way	over	an	insecure	channel.

With	that	many	algorithms,	you'll	have	a	lot	more	classes	available	with	.NET
with	which	to	implement	these	algorithms.	.NET	contains	classes	for	encryption
in	the	namespace	System.Security.Cryptography.	.NET	implementations
access	OS	system	libraries.	Keeping	cryptography	libraries	safe	is	a	high	priority
for	all	OS	vendors.	When	the	OS	is	updated,	as	the	.NET	classes	invoke	the
libraries	from	the	OS,	.NET	applications	use	the	updated	implementations.
However,	this	dependency	also	means	that	.NET	applications	can	use	only	those
features	the	OS	supports.	To	get	the	details,	you	can	read
https://docs.microsoft.com/dotnet/standard/security/cross-platform-

cryptography.

To	better	navigate	within	the	huge	lists	of	classes,	let's	get	into	the	object
inheritance	used	by	the	.NET	crypto	classes.	The	most	important	abstract	base
classes,	according	to	the	algorithm	categories	in	the	preceding	table,	are
HashAlgorithm,	SymmetricAlgorithm,	and	AsymmetricAlgorithm.

Another	list	of	abstract	base	classes,	called	algorithm	classes,	is	derived	from

https://docs.microsoft.com/dotnet/standard/security/cross-platform-cryptography

these	base	classes.	For	example,	the	classes	Aes,	RSA,	and	ECDiffieHellman	are
base	classes	representing	specific	algorithms.	AES	is	a	symmetric	algorithm;
thus,	the	Aes	class	derives	from	the	base	class	SymmetricAlgorithm.	RSA	and
Elliptic	Curve	Diffie-Hellman	(ECDH)	are	asymmetric	algorithms;	thus,	the	RSA
and	ECDiffieHellman	classes	derive	from	the	base	class	AsymmetricAlgorithm.
All	of	these	classes	are	abstract	as	well.	Then	you	find	another	layer	of	classes
with	concrete	algorithm	implementations.	ECDiffieHellmanCng	and
ECDiffieHellmanOpenSsl	derive	from	ECDiffieHelman.	Classes	with	the	Cng
prefix	or	postfix	make	use	of	the	Cryptography	Next	Generation	(CNG)
Windows	API.	Classes	with	the	OpenSsl	postfix	are	based	on	the	OpenSSL
library	available	on	Linux	platforms.

To	create	applications	that	are	platform-independent,	you	can	use	the	Create
method	of	an	abstract	base	class.	The	implementation	returned	depends	on	the
platform	where	the	program	runs.	To	take	advantage	of	the	platform-specific
features,	you	need	to	use	the	platform-specific	classes.	The	sample	applications
in	this	chapter	are	platform-independent.

The	following	sections	include	some	examples	that	demonstrate	how	you	can
use	these	algorithms	programmatically.

Getting	an	X.509	Certificate
To	create	a	public/private	key	pair,	you	have	different	options.	You	can	use	the
Create	method	of	the	CngKey	class.	This	class	is	available	only	on	Windows.	If
you	use	this	class	in	a	platform-independent	application,	the	compiler	gives	you
a	warning.	On	Linux	(including	WSL-2),	you	can	use	the	ssh-keygen	and
openssl	utilities.	In	production	environments,	you	might	use	certification
services	to	create	certificates	with	public	and	private	keys.	With	Microsoft
Azure,	you	can	manage	(and	also	create)	your	certificates	with	the	Azure	Key
Vault.	This	Azure	service	was	previously	covered	in	Chapter	15.	This	chapter
looks	at	it	with	regard	to	certificates.	To	create	a	new	Azure	Key	Vault	instance
and	certificates	with	the	Azure	CLI	in	your	subscription,	check	the	readme	file
that's	part	of	the	code	samples.	The	download	files	contain	scripts	that	you	can
start	in	the	Bash	shell.

This	sample	application	uses	the	NuGet	packages
Azure.Security.KeyVault.Certificates	to	retrieve	certificates:

Azure.Security.KeyVault.Secrets	to	retrieve	the	private	key	of
certificates

Azure.Identity	for	authentication	with	Microsoft	Azure	with	the	same
namespaces	referenced

The	commonly	used	package	Microsoft.Extensions.Hosting

The	.NET	library	namespace	used	for	the	certificate	class	X509Certificate2	is
System.Security.Cryptography.X509Certificates.	X.509	is	a	standard	that
defines	the	format	for	public	key	certificates.	X.509	certificates	are	used	with
electronic	signatures	and	TLS/SSL,	which	is	the	basis	for	HTTPS.

The	sample	application	defines	the	class	KeyVaultService,	as	shown	in	the
following	code	snippet,	which	performs	the	communication	with	the	Azure	Key
Vault	using	the	Azure	Key	Vault	API.	The	Azure	Key	Vault	API	uses	.NET
event	sourcing	for	logging	(which	is	covered	in	Chapter	16,	“Diagnostics	and
Metrics”)	to	offer	metrics	information.	To	see	this	information	with	ILogger
providers,	the	event	log	provider	is	registered,	invoking	the	method
AzureEventSourceListener,	and	the	values	for	the	log	levels	are	changed.	The
link	to	the	Azure	Key	Vault	is	retrieved	via	the	VaultUri	settings	that	you	can
specify	with	the	appsettings.json	file	or	the	user	secrets,	or	it	is	passed	using
command-line	parameters	when	starting	the	application	(code	file
X509CertificateSample/KeyVaultService.cs):

static	class	EventLevelExtensions

{

		public	static	LogLevel	ToLogLevel(this	EventLevel	eventLevel)

				=>	eventLevel	switch

				{

						EventLevel.Critical	=>	LogLevel.Critical,

						EventLevel.Error	=>	LogLevel.Error,

						EventLevel.Warning	=>	LogLevel.Warning,

						EventLevel.Informational	=>	LogLevel.Information,

						EventLevel.Verbose	=>	LogLevel.Trace,

						EventLevel.LogAlways	=>	LogLevel.Critical,

						_	=>	throw	new	InvalidOperationException("Update	for	a	new	

event	level")

				};

}

	

class	KeyVaultService	:	IDisposable

{

		private	readonly	string	_vaultUri;

		private	readonly	ILogger	_logger;

		private	readonly	DefaultAzureCredential	_credential	=	new();

		private	readonly	AzureEventSourceListener	

_azureEventSourceListener;

		public	KeyVaultService(IConfiguration	configuration,	

ILogger<KeyVaultService>	logger)

		{

				_vaultUri	=	configuration["VaultUri"];

				_logger	=	logger;

				_azureEventSourceListener	=	new	

AzureEventSourceListener((eventArgs,	message)	

						=>	_logger.Log(eventArgs.Level.ToLogLevel(),	message),	

EventLevel.Verbose);

		}

	

		public	void	Dispose()

				=>	_azureEventSourceListener.Dispose();

		//…

}

For	authentication	with	the	Azure	Key	Vault,	the	source	code	makes	use	of	the
DefaultAzureCredential	class.	This	class	tries	to	use	different	accounts	to
connect	with	Microsoft	Azure.	One	class	used	from	DefaultAzureCredential	is
VisualStudioCredential,	which	uses	the	account	specified	with	the
AZURE_USERNAME	environmental	variable.	As	shown	in	the	following	code
snippet,	set	this	variable	to	the	account	that	has	access	to	reading	certificates	and
secrets	within	the	key	vault	to	run	the	application	in	your	local	environment.

{

		"profiles":	{

				"X509CertificateSample":	{

						"commandName":	"Project",

						"commandLineArgs":	"KeyVaultUri={enter	your	Azure	Key	

Vault	URI",

						"environmentVariables":	{

								"DOTNET_ENVIRONMENT":	"Development",

								"AZURE_USERNAME":	"{enter	your	azure	username}"

						}

				}

		}

}

With	the	following	code	snippet,	the	certificate	is	retrieved	using	the
CertificateClient	class	from	the	namespace
Azure.Security.KeyVault.Certificates.	With	the	method
GetCertificateAsync	passing	the	name	of	the	certificate,	the	certificate—
excluding	the	private	key—is	retrieved.	The	Value	property	of	the	Response
contains	the	KeyVaultCertificateWithPolicy	object.	The	public	key	is
returned	from	the	Cer	property.	To	return	an	X509Certificate2	object	that

includes	both	the	public	key	and	the	private	key,	the	private	key	is	retrieved	by
invoking	the	GetSecretAsync	method	and	passing	the	name	and	version	of	the
secret.	The	name	and	version	are	taken	from	the	URI	parts	of	the	SecretId
property	of	the	KeyVaultCertificateWithPolicy	(code	file
X509CertificateSample/KeyVaultService.cs):

public	async	Task<X509Certificate2>	GetCertificateAsync(string	

name)

{

		CertificateClientOptions	options	=	new();

		options.Diagnostics.IsLoggingEnabled	=	true;

		options.Diagnostics.IsDistributedTracingEnabled	=	true;

		options.Diagnostics.IsLoggingContentEnabled	=	true;

	

		CertificateClient	certClient	=	new(new	Uri(_vaultUri),	

_credential,	options);

		Response<KeyVaultCertificateWithPolicy>	response	=	

				await	certClient.GetCertificateAsync(name);

		byte[]	publicKeyBytes	=	response.Value.Cer;

		Uri	secretId	=	response.Value.SecretId;

		string	secretName	=	secretId.Segments[2].Trim('/');

		string	version	=	secretId.Segments[3].TrimEnd('/');

								

		SecretClient	secretClient	=	new(new	Uri(_vaultUri),	

_credential);

		Response<KeyVaultSecret>	responseSecret	=	

				await	secretClient.GetSecretAsync(secretName,	version);

		KeyVaultSecret	secret	=	responseSecret.Value;

		byte[]	privateKeyBytes	=	

Convert.FromBase64String(secret.Value);

		X509Certificate2	cert	=	new(privateKeyBytes);

		return	cert;

}

Let's	get	into	the	top-level	statements	of	the	application.	After	the	DI	container	is
configured,	the	KeyVaultService	is	retrieved.	Using	this	service,	the	certificate
with	the	name	AliceCert	is	retrieved,	and	some	values	such	as	the	subject	of	the
certificate,	the	key	exchange	algorithm,	and	valid	dates	are	shown	on	the	console
(code	file	X509CertificateSample/Program.cs):

using	var	host	=	Host

		.CreateDefaultBuilder(args)

		.ConfigureServices(services	=>

		{

				services.AddSingleton<KeyVaultService>();

		}).Build();

	

var	service	=	host.Services.GetRequiredService<KeyVaultService>

();

using	var	certificate	=	await	

service.GetCertificateAsync("AliceCert");

	

ShowCertificate(certificate);

	

void	ShowCertificate(X509Certificate2	certificate)

{

		Console.WriteLine($"Subject:	{certificate.Subject}");

		Console.WriteLine($"Not	before:	{certificate.NotBefore:D}");

		Console.WriteLine($"Not	after:	{certificate.NotAfter:D}");

		Console.WriteLine($"Has	private	key:	

{certificate.HasPrivateKey}");

		Console.WriteLine($"Key	algorithm:	

{certificate.PublicKey.Key.KeyExchangeAlgorithm}");

		Console.WriteLine($"Key	size:	

{certificate.PublicKey.Key.KeySize}");

}

When	you	run	the	application,	you	can	see	the	logging	communication	with	the
Azure	Key	Vault,	as	well	as	information	about	the	retrieved	certificate.

.NET	6	will	add	methods	to	use	the	keys	from	the	X509Certificate2	class	with
EC	Diffie-Hellman	types.	The	samples	in	the	following	sections	create
public/private	pairs	programmatically,	but	when	.NET	6	is	available,	check	the
downloadable	readme	file	of	the	chapter	for	links	to	samples	with	.NET	6.

Creating	and	Verifying	a	Signature
Now	that	you've	seen	how	to	create	a	public/private	key	pair	using	a	certificate,
let's	get	into	verifying	a	signature	with	ECDSA	algorithms.

With	the	following	sample,	Alice	creates	a	signature	that	is	encrypted	with	her
private	key.	This	signature	can	be	verified	with	her	public	key.	If	the	verification
succeeds,	it's	guaranteed	that	the	signature	is	from	Alice	because	only	she	has
the	private	key.	See	the	following	code	snippet	with	AliceRunner	to	create	the
signature	and	BobRunner	to	verify	the	signature	(code	file
SigningDemo/Program.cs):

using	Microsoft.Extensions.DependencyInjection;

using	Microsoft.Extensions.Hosting;

	

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices(services	=>

		{

				services.AddTransient<AliceRunner>();

				services.AddTransient<BobRunner>();

		})

		.Build();

	

var	alice	=	host.Services.GetRequiredService<AliceRunner>();

var	bob	=	host.Services.GetRequiredService<BobRunner>();

var	keyAlice	=	alice.GetPublicKey();

var	aliceData	=	alice.GetDocumentAndSignature();

bob.VerifySignature(aliceData.Data,	aliceData.Sign,	keyAlice);

Let's	look	at	the	main	functionality	in	the	AliceRunner	class.	In	the	constructor,
which	uses	ECDsa.Create,	an	instance	of	the	class	implementing	the	ECDSA
algorithms	is	returned.	The	method	ExportSubjectPublicKeyInfo	used	in	the
method	GetPublicKey	returns	the	public	key	that	can	be	used	by	other	parties.	In
the	method	GetDocumentsAndSignature,	Alice	creates	a	string	and	a	signature.
The	signature	is	created	by	invoking	the	method	SignData.	This	method	uses	the
private	key	for	signing.	The	second	argument	of	this	method	defines	the	name	of
the	algorithm	that	should	be	used	for	signing.	Here,	SHA512	is	used.	Both	the
document	as	well	as	the	signature	are	returned	from	the	method
GetDocumentsAndSignature	(code	file	SigningDemo/AliceRunner.cs):

class	AliceRunner	:	IDisposable

{

		private	readonly	ILogger	_logger;

		private	ECDsa	_signAlgorithm;

		public	AliceRunner(ILogger<AliceRunner>	logger)

		{

				_logger	=	logger;

				_signAlgorithm	=	ECDsa.Create();

				_logger.LogInformation($"Using	this	ECDsa	class:	

{_signAlgorithm.GetType().Name}");

		}

	

		public	void	Dispose()	=>	_signAlgorithm.Dispose();

	

		public	byte[]	GetPublicKey()	=>	

_signAlgorithm.ExportSubjectPublicKeyInfo();

	

		public	(byte[]	Data,	byte[]	Sign)	GetDocumentAndSignature()

		{

				byte[]	aliceData	=	Encoding.UTF8.GetBytes("I'm	Alice");

				byte[]	aliceDataSignature	=	

						_signAlgorithm.SignData(aliceData,	

HashAlgorithmName.SHA512);

				return	(aliceData,	aliceDataSignature);

		}

}

NOTE You	can	pass	arguments	to	the	ECDsa.Create	methods	to	specify
the	algorithm	used	for	the	creation	of	the	curve.	The	ECCurve	struct	defines
NamedCurves	that	you	can	pass	(for	example,	brainpoolP320r1	,	nistP521
),	but	you	can	also	specify	your	own	configuration	values	to	ECCurve	to
create	an	elliptic	curve.

Bob	now	needs	to	verify	the	signature.	To	do	this,	an	instance	of	the	ECDS
algorithm	class	is	created	with	the	same	parameters	as	used	by	Alice.	The
VerifyData	method	of	the	ECDsa	class	takes	the	data,	the	signature,	and	the	hash
algorithm.	The	algorithm	needs	to	be	the	same	as	was	used	by	Alice	to	create	the
signature.	The	public	key	from	Alice	needs	to	be	imported	with	the
ImportSubjectPublicKeyInfo	method.	VerifyData	now	uses	this	public	key	to
determine	whether	the	signature	is	from	Alice.	If	this	succeeds,	it's	guaranteed
that	the	data	has	not	been	tampered	with,	and	the	signature	was	created	using	the
private	key	that	belongs	to	the	public	key	received	(code	file
SigningDemo/BobRunner.cs):

class	BobRunner	:	IDisposable

{

		private	readonly	ILogger	_logger;

		private	ECDsa	_signAlgorithm;

		public	BobRunner(ILogger<AliceRunner>	logger)

		{

				_logger	=	logger;

				_signAlgorithm	=	ECDsa.Create();

		}

	

		public	void	Dispose()	=>	_signAlgorithm.Dispose();

	

		public	byte[]	GetPublicKey()	=>	

_signAlgorithm.ExportSubjectPublicKeyInfo();

	

		public	void	VerifySignature(byte[]	data,	byte[]	signature,	

byte[]	pubKey)

		{

				_signAlgorithm.ImportSubjectPublicKeyInfo(pubKey.AsSpan(),	

out	int	bytesRead);

				bool	success	=	_signAlgorithm.VerifyData(data,	signature,	

HashAlgorithmName.SHA512);

	

				_logger.LogInformation($"Signature	is	ok:	{success}");

		}

}

When	you	run	the	application,	you	see	a	success	result.	While	debugging,	you
can	modify	values	from	the	data	array	to	see	that	if	you	tamper	with	the	data,
VerifyData	does	not	return	success.

Implementing	Secure	Data	Exchange
The	next	example	helps	explain	public/private	key	principles,	exchanging	a
secret	between	two	parties,	and	communication	with	symmetric	keys.	A	secret
can	be	exchanged	between	two	parties	using	the	EC	Diffie-Hellman	algorithm.
This	algorithm	allows	exchanging	a	secret	just	by	using	public	and	private	keys
and	exchanging	the	public	key	between	two	parties.

The	following	top-level	statements	show	the	main	flow	of	the	application.	By
using	the	AliceRunner	and	BobRunner	classes,	the	public	keys	from	Alice	and
Bob	are	retrieved.	Alice	then	creates	a	secret	message	and	uses	the	public	key
from	Bob	for	the	encryption.	Bob	reads	the	encrypted	message	using	the	public
key	from	Alice	(code	file	SecureTransfer/Program.cs):

using	var	host	=	Host

		.CreateDefaultBuilder(args)

		.ConfigureServices(services	=>

		{

				services.AddTransient<AliceRunner>();

				services.AddTransient<BobRunner>();

		})

		.Build();

	

var	alice	=	host.Services.GetRequiredService<AliceRunner>();

var	bob	=	host.Services.GetRequiredService<BobRunner>();

var	keyAlice	=	alice.GetPublicKey();

var	keyBob	=	bob.GetPublicKey();

var	message	=	await	alice.GetSecretMessageAsync(keyBob);

await	bob.ReadMessageAsync(message.Iv,	message.EncryptedData,	

keyAlice);

In	the	constructor	of	the	AliceRunner	class,	the	static	Create	method	of	the
ECDiffieHellman	algorithm	class	is	used	to	create	an	instance.	Either
ECDiffieHellmanOpenSsl	or	ECDiffieHellmanCng	instances	are	created,

depending	on	the	platform	where	the	application	runs.	Using	the	returned
instance,	the	public	key	is	retrieved	from	the	PublicKey	property.	Instead	of
using	byte	arrays	as	with	the	ECDsa	class,	here	an	instance	of	the
ECDiffieHellmanPublicKey	is	returned.	ECDiffieHellmanPublicKey	is	an
abstract	base	class,	and	concrete	classes,	which	are	determined	by	the	platform,
are	returned	here	as	well	(code	file	SecureTransfer/AliceRunner.cs):

class	AliceRunner	:	IDisposable

{

		private	readonly	ILogger	_logger;

		private	ECDiffieHellman	_algorithm;

		public	AliceRunner(ILogger<AliceRunner>	logger)

		{

				_logger	=	logger;

				_algorithm	=	ECDiffieHellman.Create();

				_logger.LogInformation(

						$"Using	this	ECDiffieHellman	class:	

{_algorithm.GetType().Name}");

		}

	

		public	void	Dispose()	=>	_algorithm.Dispose();

	

		public	ECDiffieHellmanPublicKey	GetPublicKey()	=>	

_algorithm.PublicKey;

		//…

}

Alice's	ECDiffieHellman	instance	contains	the	public	and	private	keys	from
Alice.	To	encrypt	the	message	that	is	sent	to	Bob,	the	public	key	from	Bob	is
used	to	create	a	symmetric	key.	The	method	DeriveKeyMaterial	makes	use	of
Bob's	public	key	to	create	the	symmetric	key.	The	returned	symmetric	key	is
used	with	the	AES	symmetric	algorithm	to	encrypt	the	data.	The	Aes	class
requires	the	key	and	an	initialization	vector	(IV).	The	IV	is	generated
dynamically	from	the	method	GenerateIV.	The	symmetric	key	is	exchanged
with	the	help	of	the	EC	Diffie-Hellman	algorithm,	but	the	IV	must	also	be
exchanged.	From	a	security	standpoint,	it	is	okay	to	transfer	the	IV	unencrypted
across	the	network,	but	the	key	exchange	must	be	secured.	The	IV	is	part	of	the
tuple	that	is	returned	from	the	GetSecretMessageAsync,	along	with	the
encrypted	message.	When	you	use	the	Aes	object,	an	encryptor	is	created	by
invoking	the	GetEncryptor	method.	This	encryptor	is	then	used	with	a
CryptoStream.	The	CryptoStream	is	configured	to	write	into	a	MemoryStream.
After	the	CryptoStream	is	flushed,	the	MemoryStream	can	be	used	to	convert	the
data	written	to	a	byte	array	(code	file	SecureTransfer/AliceRunner.cs):

public	async	Task<(byte[]	Iv,	byte[]	EncryptedData)>	

GetSecretMessageAsync(

		ECDiffieHellmanPublicKey	otherPublicKey)

{

		string	message	=	"secret	message	from	Alice";

		_logger.LogInformation($"Alice	sends	message	{message}");

	

		byte[]	plainData	=	Encoding.UTF8.GetBytes(message);

	

		byte[]	symmKey	=	_algorithm.DeriveKeyMaterial(otherPublicKey);

		_logger.LogInformation($"Alice	creates	this	symmetric	key	with	

"	+

				$"Bobs	public	key	information:	

{Convert.ToBase64String(symmKey)}");

	

		using	Aes	aes	=	Aes.Create();

		_logger.LogInformation($"Using	this	Aes	class:	

{aes.GetType().Name}");

		aes.Key	=	symmKey;

		aes.GenerateIV();

		using	ICryptoTransform	encryptor	=	aes.CreateEncryptor();

		using	MemoryStream	ms	=	new();

		using	(CryptoStream	cs	=	new(ms,	encryptor,	

CryptoStreamMode.Write))

		{

				await	cs.WriteAsync(plainData.AsMemory());

		}	//	need	to	close	the	CryptoStream	before	using	the	

MemoryStream

		byte[]	encryptedData	=	ms.ToArray();

		_logger.LogInformation($"Alice:	message	is	encrypted:	"	+	

				$"{Convert.ToBase64String(encryptedData)}");

		var	returnData	=	(aes.IV,	encrye	ptedData);

		aes.Clear();

		return	returnData;

}

NOTE Read	more	about	streams	in	Chapter	18,	“Files	and	Streams.”

The	constructor	and	the	GetPublicKey	method	look	similar	to	the	AliceRunner
class;	that's	why	they’re	not	repeated	with	Bob.	The	ReadMessageAsync	method
shown	in	the	following	code	snippet	uses	the	public	and	private	keys	from	Bob
that	have	been	created	when	creating	the	ECFiffieHellman	instance,	and	the
public	key	from	Alice	is	used	to	create	the	symmetric	key	for	the	communication
—again	invoking	DeriveKeyMaterial.	Now	the	same	symmetric	key	value	as

the	one	that	was	created	from	Alice	is	created—this	is	a	property	of	the	EC
Diffie-Helman	algorithm—without	exchanging	this	key.	This	key	is	assigned	to
the	Key	property	of	the	Aes	instance.	Here,	the	same	IV	that	was	created	from
Alice	must	be	assigned	to	the	IV	property.	Next,	a	decryptor	is	created	invoking
the	method	CreateDecryptor	to	decrypt	the	message.	This	decryptor	is	used
with	the	CryptoStream	class.	The	code	is	similar	to	the	one	from	Alice,	but	now
the	message	is	decrypted	(code	file	SecureTransfer/BobRunner.cs):

public	async	Task	ReadMessageAsync(byte[]	iv,	byte[]	

encryptedData,	

		ECDiffieHellmanPublicKey	otherPublicKey)

{

		_logger.LogInformation("Bob	receives	encrypted	data");

		byte[]	symmKey	=	_algorithm.DeriveKeyMaterial(otherPublicKey);

		_logger.LogInformation($"Bob	creates	this	symmetric	key	with	"	

+

				$"Alice	public	key	information:	

{Convert.ToBase64String(symmKey)}");

	

		Aes	aes	=	Aes.Create();

		aes.Key	=	symmKey;

		aes.IV	=	iv;

		using	ICryptoTransform	decryptor	=	aes.CreateDecryptor();

		using	MemoryStream	ms	=	new();

		using	(CryptoStream	cs	=	new(ms,	decryptor,	

CryptoStreamMode.Write))

		{

				await	cs.WriteAsync(encryptedData.AsMemory());

		}	//	close	the	cryptostream	before	using	the	memorystream	

		byte[]	rawData	=	ms.ToArray();

		_logger.LogInformation($"Bob	decrypts	message	to:	

{Encoding.UTF8.GetString(rawData)}");

		aes.Clear();

}

Running	the	application	returns	output	like	the	following.	The	message	from
Alice	is	encrypted	and	then	decrypted	by	Bob	with	the	securely	exchanged
symmetric	key.

info:	AliceRunner[0]

						Using	this	ECDiffieHellman	class:	ECDiffieHellmanCng

info:	AliceRunner[0]

						Alice	sends	message	secret	message	from	Alice

info:	AliceRunner[0]

						Alice	creates	this	symmetric	key	with	Bobs	public	key	

information:	

JAj1V/xZaaFQriVGsKWzBwWk0WpGSltC8O8ja6vqxX4=

info:	AliceRunner[0]

						Using	this	Aes	class:	AesImplementation

info:	AliceRunner[0]

						Alice:	message	is	encrypted:	

ItD+jtDRlSyEIyNnT1BHMNXoRQG3xZzpClakd6Zy/js=

info:	BobRunner[0]

						Bob	receives	encrypted	data

info:	BobRunn]

						Bob	creates	this	symmetric	key	with	Alice	public	key	

information:	

JAj1V/xZaaFQriVGsKWzBwWk0WpGSltC8O8ja6vqxX4=

info:	BobRunner[0]

						Bob	decrypts	message	to:	secret	message	from	Alice

ENSURING	WEB	SECURITY
Web	applications	have	some	specific	security	issues	you	need	to	be	aware	of
with	applications	that	allow	user	input.	User	input	cannot	be	trusted.	Verifying
input	data	on	the	client	using	JavaScript	or	built-in	HTML5	features	is	only	for
the	convenience	of	the	user.	Errors	can	be	shown	without	making	an	extra
network	request	to	the	server.	However,	the	client	cannot	be	trusted.	HTTP
requests	can	be	intercepted,	and	the	user	(a	hacker)	can	make	different	requests
that	bypass	the	HTML5	and	JavaScript	validation.

This	section	looks	at	common	issues	with	web	applications	and	what	you	need	to
be	aware	of	to	avoid	issues.	The	sample	application	created	is	based	on	the
ASP.NET	Core	MVC	template;	you	can	use	dotnet	new	mvc	or	Visual	Studio	to
create	the	foundation	of	this	application.

Encoding
Never	trust	user	input.	Writing	user	information	to	a	database	and	using	this
information	to	display	on	a	website	can	be	the	cause	of	a	typical	hack.	For
example,	a	community	website	was	showing	the	latest	five	new	users	on	the
home	page.	One	of	the	new	users	managed	to	add	a	script	to	the	username,	and
the	script	did	a	redirect	to	a	malicious	website.	Because	the	user	information	was
shown	for	every	user	coming	to	this	site,	every	user	was	redirected.

The	next	example	looks	at	how	easy	it	is	to	simulate	and	avoid	such	a	behavior.
In	the	following	code	snippet,	the	/echo	URL	is	mapped	to	an	answer	that
returns	the	input	from	the	user	assigned	to	the	x	parameter	that	sends	the

response	using	context.Response.WriteAsync	(code	file
ASPNETCoreMVCSecurity/Startup.cs):

endpoints.Map("/echo",	async	context	=>

{

		string	data	=	context.Request.Query["x"];

		await	context.Response.WriteAsync(data);

});

Now	it	passes	this	request:

http://localhost:5001/echo?x=I'm	a	nice	user

The	string	I'm	a	nice	user	is	returned	to	the	browser.	This	is	not	that	bad,	but
users	may	try	to	hack	the	system.	For	example,	users	can	input	HTML	code	such
as	this:

http://localhost:5001/echo?x=<h1>Is	this	wanted?</h1>

The	result	shows	the	input	string	is	formatted	with	the	HTML	H1	tag.	Users	can
do	more	bad	things	by	entering	JavaScript	code:

localhost:5001/echo?x=<script>alert("this	is	bad");</script>

In	most	browsers,	a	pop-up	window	where	the	user	entered	text	shows	up.

If	you	try	to	avoid	this	issue	by	checking	for	<script>	elements	with	the	input
and	don't	return	anything	in	that	case,	you'll	likely	fail.	Instead	of	using	the
<script>	element,	users	can	also	use	Unicode	numbers	for	the	angle	brackets
with	the	same	result.	Instead,	encode	the	user	input	so	that	it	can't	be	interpreted
by	the	browser.

You	can	use	the	HTMLEncoder	class	from	the	namespace
System.Text.Encodings.Web	to	encode	user	input:

endpoints.Map("/echoenc",	async	context	=>

{

		string	data	=	context.Request.Query["x"];

		await	

context.Response.WriteAsync(HtmlEncoder.Default.Encode(data));

});

When	you	use	the	HtmlEncoder	class,	the	user	can	enter	<h1>	elements	with	the
input	http://localhost:5001/echoenc?x=<h1>this	gets	converted</h1>.
As	a	result,	<h1>this	gets	converted</h1>	is	shown	in	the	browser.	The	<
character	is	encoded	to	<	and	thus	displayed	as	text.	The	complete	encoded
string	is	as	follows:

<h1>this	gets	converted</h1>

Similarly,	the	script	element	is	converted	and	doesn't	run	as	a	script	in	the
browser.

NOTE You	can	use	the	HtmlEncoder	class	to	allow	specific	inputs	to	go
through.	For	example,	you	might	allow	the	user	to	add		elements.	You
can	create	an	encoder	with	accepted	inputs	using	the	HtmlEncoder.Create
method.	Today,	a	preferred	method	is	to	allow	the	user	to	include	some
formatting	by	using	Markdown	and	converting	Markdown	to	HTML.	You	can
read	my	blog	article	about	Markdown	at
https://csharp.christiannagel.com/2016/07/03/markdown/.

The	sample	code	has	so	far	made	use	of	ASP.NET	Core	functionality.	When	you
directly	return	a	string	from	an	ASP.NET	Core	MVC	controller	or	inside	a	view,
encoding	happens	by	default.	You	need	to	make	an	extra	investment	not	to
encode	the	result	here.

Just	returning	a	string	with	an	ASP.NET	Core	controller	results	in	an	encoded
string	(code	file	ASPNETCoreMVCSecurity/Controllers/HomeController.cs):

public	string	Echo(string	x)	=>	x;

To	send	an	unencoded	string,	the	Content	method	of	the	Controller	base	class
can	be	used,	and	you	specify	that	the	content	is	returned	as	text/html	:

public	IActionResult	EchoUnencoded(string	x)	=>	Content(x,	

"text/html");

Let's	go	a	step	further	by	using	Razor	code	in	a	view.	Here,	the	EchoWithView
method	passes	the	input	data	from	the	user	using	ViewBag.SampleData	to	a	view
(code	file	ASPNETCoreMVCSecurity/Controllers/HomeController.cs):

public	IActionResult	EchoWithView(string	x)

{

		ViewBag.SampleData	=	x;

		return	View();

}

In	the	view,	encoding	happens	by	default	when	you	pass	the	input	data	using	the
Razor	expression	@data.	data	is	a	local	variable	where	the	passed	ViewBag
information	is	assigned.	For	not	making	use	of	encoding,	you	can	use	the	Html
helper	class	with	the	method	Raw	(code	file

https://csharp.christiannagel.com/2016/07/03/markdown/

ASPNETCoreMVCSecurity/Views/Home/EchoWithView.cshtml):

@{	

	string	data	=	ViewBag.SampleData;

}

<div>

		this	is	encoded

</div>

<div>@data</div>

	

<div>

		This	is	not	encoded

</div>

<div>

		@Html.Raw(@data)

</div>

NOTE When	explicitly	sending	unencoded	data	to	the	client,	you	need	to
make	sure	the	input	can	be	trusted—for	example,	using	HTML	converted
from	Markdown	instead	of	directly	returning	user	input.

NOTE You	can	use	the	UrlEncoder	class	when	using	user	input	for	URL
strings	similarly	to	how	you	use	the	HtmlEncoder	class	when	using	user
input	as	HTML	content.

Preventing	SQL	Injection
Another	common	problem	with	web	applications	is	SQL	injection.	As	with
HTML	encoding,	the	issue	can	easily	be	avoided	by	using	built-in	functionality.

The	following	code	snippet	creates	an	SQL	string	that	directly	assigns	the	input
parameter	in	the	SqlSample	controller	method.	With	this,	the	user	can	enter
;SELECT	*	FROM	Users,	and	the	following	information	is	shown	to	the	user:

public	IActionResult	SqlSample(string	id)	

{	

		string	connectionString	=	GetConnectionString();

		SqlConnection	sqlConnection	=	new(connectionString);	

		SqlCommand	command	=	sqlConnection.CreateCommand();	

		//	don't	do	this	-	string	concatenation	for	SQL	commands!

		command.CommandText	=	"SELECT	*	FROM	Customers	WHERE	City	=	"	

+	id;			

		sqlConnection.Open();	

		using	(SqlDataReader	reader	=	

				

command.ExecuteReader(System.Data.CommandBehavior.CloseConnection))

	

		{	

				StringBuilder	sb	=	new();	

				while	(reader.Read())	

				{	

						for	(int	i	=	0;	i	<	reader.FieldCount;	i++)	

						{	

								sb.Append(reader[i]);	

						}	

						sb.AppendLine();	

				}	

				ViewBag.Data	=	sb.ToString();	

		}	

		return	View();	

}

You	should	never	use	string	concatenation	with	SQL	statements.	Instead,	you
can	easily	avoid	this	problem	by	using	parameters	or	implicitly	using	Entity
Framework	Core	parameters.

NOTE Entity	Framework	Core	is	covered	in	Chapter	21,	“Entity
Framework	Core.”

Protecting	Against	Cross-Site	Request	Forgery
Cross-site	request	forgery	(XSRF)	is	an	attack	in	which	a	malicious	website	tries
to	simulate	a	user	and	enter	data	without	the	user	knowing.

Let's	get	into	an	example	where	the	user	enters	book	information	in	a	form.	Book
is	a	simple	model	class	containing	Title	and	Publisher	properties.	Within	the
HomeController,	the	EditBook	method	returns	a	view	(code	file
ASPNETCoreMVCSecurity/Controllers/HomeController.cs):

public	IActionResult	EditBook()	=>	View();

The	view	defines	simple	input	data	where	the	user	can	enter	title	and	publisher
information	and	pass	this	information	to	the	server	with	an	HTTP	POST	request
(code	file	ASPNETCoreMVCSecurity/Views/EditBook.cshtml):

@{

				ViewData["Title"]	=	"EditBook";

}

<h2>Edit	Book</h2>

	

<form	asp-controller="Home"	asp-action="EditBook"	method="post">

		<label	for="title">Title:</label>

		<input	type="text"	id="title"	name="title"/>

		

		<label	for="publisher">Publisher:</label>

		<input	type="text"	id="publisher"	name="publisher"/>

		

		<input	type="submit"	value="Submit"/>

</form>

With	the	HTTP	POST	request,	the	following	EditBook	method	is	invoked	to
display	a	view	with	the	entered	user	data	(code	file
ASPNETCoreMVCSecurity/Controllers/HomeController.cs):

[HttpPost]

public	IActionResult	EditBook(Book	book)	=>	

View("EditBookResult",	book);

When	you	run	the	application	while	opening	the	URL
http://localhost:5001/Home/EditBook,	book	information	can	be	entered,	the
submit	button	can	be	clicked,	the	information	is	received	from	the	controller,	and
the	book	information	is	shown	in	the	view	result.

Meanwhile,	a	malicious	website	just	needs	to	use	the	same	link	to	post	the	data
in	its	own	form.	Check	the	following	code	snippet	with	the	form	element	that
references	the	same	URL	as	before.	This	form	is	hosted	from	a	different	website,
https://localhost:5002/dothis.html.	Here	it's	only	a	different	port,	but	it
could	be	a	different	domain	name	as	well.	The	user	doesn't	need	to	enter
anything	with	the	form	(the	input	elements	are	hidden	and	thus	not	shown	to	the
user).	The	user	just	needs	to	click	the	submit	button	without	knowing	something
different	happens	behind	the	scenes	(code	file
HackingSite/wwwroot/dothis.html):

<h1>Click	this	for	a	win!</h1>

	

<!--	form	has	a	redirect	to	the	website	being	hacked	-->

<form	action="http://localhost:24897/Home/EditBook"	

method="post">

		<input	type="hidden"	value="bad	book	title"	name="title"/>

		<input	type="hidden"	value="bad	publisher"	name="publisher"/>

		<input	type="submit"	value="Click	Now!"/>

http://localhost:5001/Home/EditBook
https://localhost:5002/dothis.html
http://HackingSite/wwwroot/dothis.html

</form>

When	you	click	this	link,	the	malicious	data	is	transmitted	to	the	website	on
behalf	of	the	user.	If	the	user	is	authenticated	with	the	book	website	and	didn't
sign	out,	the	data	is	submitted	on	behalf	of	the	user,	and	probably	some	ordering
happened	with	a	different	delivery	address.

To	avoid	this	behavior,	ASP.NET	Core	offers	antiforgery	tokens.	Such	a	token
needs	to	be	created	from	the	form	that	should	be	used	from	the	user	to	enter
valid	data	and	is	validated	on	receiving	the	data.

The	Edit	Book	form	is	now	changed	to	include	this	token	with	the	HTML	helper
method	AntiForgeryToken	(code	file
ASPNETCoreMVCSecurity/Views/EditBookSecure.cshtml):

<form	asp-controller="Home"	asp-action="EditBookSecure"	

method="post">

		@Html.AntiForgeryToken()

	

		<label	for="title">Title:</label>

		<input	type="text"	id="title"	name="title"/>

		

		<label	for="publisher">Publisher:</label>

		<input	type="text"	id="publisher"	name="publisher	"/>

		

		<input	type="submit"	value="Submit	"/>

</form>

When	you	run	the	application,	you	can	see	a	hidden	form	field	with	the
automatically	generated	token.	When	the	data	is	retrieved,	the	token	is	validated
using	the	ValidateAntiForgeryToken	attribute	(code	file
ASPNETCoreMVCSecurity/Controllers/HomeController.cs):

[HttpPost]

[ValidateAntiForgeryToken]

public	IActionResult	EditBookSecure(Book	book)	=>	

View("EditBookResult",	book);

When	you	run	the	malicious	website	now,	a	response	is	returned	without
accepting	invalid	data.

NOTE The	Open	Web	Application	Security	Project	(OWASP)	foundation
continuously	analyzes	security	risks	with	web	applications	and	publishes	the
OWASP	top	ten	(https://owasp.org/www-project-top-ten/).	You	can	use
OWASP	Zed	Attack	Proxy	(ZAP)	(https://www.zapproxy.org)	within

https://owasp.org/www-project-top-ten/
https://www.zapproxy.org

GitHub	actions	(OWASP	ZAP	Full	Scan)	to	analyze	your	web	application
and	server	to	automatically	scan	it	for	issues.	For	a	scan	of	the	source	code
analysis	tools	for	security,	you	can	check	the	list	of	tools	available	at
https://owasp.org/www-community/Source:Code_Analysis_Tools.

SUMMARY
This	chapter	covered	several	aspects	of	security	with	.NET	applications.
Nowadays,	we	have	a	wide	range	of	how	users	can	be	identified,	and	the
Microsoft	platform	offers	easy-to-use	options.	With	web	applications,	you've
seen	the	built-in	functionality	of	ASP.NET	Core	to	authenticate	and	authorize
users	with	the	Azure	Active	Directory.

A	brief	overview	of	cryptography	demonstrated	how	the	signing	and	encrypting
of	data	enables	the	exchange	of	keys	in	a	secure	way.	.NET	offers	both
symmetric	and	asymmetric	cryptography	algorithms	as	well	as	hashing	and
signing.	You've	also	seen	how	to	create	an	X.509	certificate	using	the	Azure	Key
Vault.

In	many	cases,	you	can	work	with	security	from	higher	abstraction	levels.	For
example,	when	using	HTTPS	to	access	a	web	server,	keys	for	encryption	are
exchanged	behind	the	scenes.	The	File	class	offers	an	Encrypt	method	to	easily
encrypt	files.	Still,	it's	important	to	know	what	happens	behind	this	functionality.

Regarding	web	applications,	you've	seen	common	issues	with	trusting	user	input
that	result	in	various	attacks,	including	cross-site	request	forgery.	You've	seen
how	various	issues	can	be	avoided	using	encoding	and	antiforgery	request	tokens
to	avoid	XSRF.

For	more	features	on	security,	read	Chapter	25	to	authenticate	users	and	client
applications	accessing	REST	services,	and	see	Chapter	26	to	authenticate	and
authorize	users	from	a	local	database.

The	next	chapter,	“Entity	Framework	Core,”	reads	and	writes	data	from	the
database,	and	this	should	be	secured.

https://owasp.org/www-community/Source:Code_Analysis_Tools

21
Entity	Framework	Core

WHAT'S	IN	THIS	CHAPTER?

Introducing	Entity	Framework	Core

Working	with	conventions,	annotations,	and	the	Fluent	API

Using	queries,	compiled	queries,	and	global	query	filters

Defining	relationships	with	conventions,	annotations,	and	the	Fluent
API

Using	table	per	hierarchy,	table	splitting,	and	owned	entities

Tracking	objects

Updating	objects	and	object	trees

Handling	conflicts	with	updates

Using	transactions

Using	migrations	with	the	.NET	CLI	tools

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/EFCore.	The	code	for	this	chapter	is	divided	into	the
following	major	examples:

Intro

Models

ScaffoldSample

MigrationsSample

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

Queries

Relations

LoadingRelatedData

Tracking

ConflictHandling-LastWins

ConflictHandling-FirstWins

Cosmos

Samples	from	this	chapter	mainly	use	the
Micrsooft.EntityFrameworkCore,
Microsoft.EntityFrameworkCore.SqlServer,	and
Micrsoft.Extensions.Hosting	NuGet	packages.	All	the	sample	projects
have	nullable	reference	types	enabled.

INTRODUCING	EF	CORE
When	you	use	ADO.NET	directly,	you	can	use	a	data	reader	such	as
SqlDataReader	or	SqliteDataReader	to	manually	fill	your	objects	with	data
from	the	database.	With	Entity	Framework	Core	(EF	Core),	you	don't	need	to
write	SQL	statements	because	you	get	the	mapping	from	relational	data	stores	to
classes	and	class	hierarchies	out	of	the	box.	With	EF	Core,	you	create	a	context
that	maps	database	tables	to	your	model	types,	create	new	instances	of	your
custom	class,	and	update	existing	instances	to	add	new	records	and	update
records	in	the	database.	EF	Core	offers	an	abstraction	layer	that	makes	a	lot	of
the	work	of	accessing	a	database	easier.

Database	Providers
With	EF	Core,	you	can	use	any	database	where	an	EF	Core	provider	is	available.
Check	the	list	of	available	providers	in	the	Microsoft	documentation	at
https://docs.microsoft.com/ef/core/providers/.

In	this	chapter,	I	mostly	use	Microsoft	SQL	Server.	Microsoft	SQL	Server
LocalDB	is	installed	when	you	install	Visual	Studio.	If	you	are	using	a	Linux
environment,	you	can	install	a	Linux	version	of	SQL	Server.	The	easiest	way	to
use	a	Linux	version	of	Microsoft	SQL	Server	is	to	run	a	Docker	image.	Check

https://docs.microsoft.com/ef/core/providers/

https://hub.docker.com/_/microsoft-mssql-server	for	information	on	how
to	pull	and	configure	this	Docker	image	to	have	SQL	Server	running	inside	a
Linux	container.	If	you're	running	a	Windows	environment,	you	can	use	this
Docker	image	as	well	if	you	have	Docker	for	Windows	installed.	After	starting
this	Docker	image,	you	need	to	use	a	connection	string	to	access	the	running
server.

You	can	also	use	an	Azure	SQL	Database	with	the	code	samples.	Just	be	sure	to
use	a	small	database	(which	is	enough	for	the	samples),	don't	select	the	Core-
based	pricing	model,	and	use	database	transaction	units	(DTUs)	instead.	This	is	a
lot	cheaper	with	small	databases.

Creating	an	Azure	SQL	Database
To	create	an	SQL	database	on	Microsoft	Azure,	you	can	use	the	Azure	CLI.	You
can	use	the	Azure	CLI	directly	from	the	Azure	portal
(https://portal.azure.com),	click	the	Cloud	Shell	button,	and	select	the	Bash
shell.	You	can	also	install	the	Azure	CLI	to	your	local	system.	Check
https://docs.microsoft.com/cli/azure/install-azure-cli	for	download
and	installation	instructions.

To	create	the	database,	a	Bash	script	is	available	with	the	code	download.	You
can	also	use	the	Azure	CLI	with	these	instructions	as	shown	in	the	following
script	snippet:

1.	 First,	variables	are	defined.	With	these	variables,	select	the	Azure	region
that	best	fits	your	location.

2.	 You	create	a	resource	group	with	the	az	group	create	command.	The
database	server	and	the	database	will	be	added	to	this	resource	group.

3.	 Using	az	sql	server	create	creates	a	new	database	server.	You	need	to
enable	the	firewall	to	allow	access	to	this	server	with	az	sql	server
firewall-rule	create.	Using	the	IP	address	0.0.0.0	allows	access	from
Azure	services.	With	the	variable	clientip,	you	need	to	add	the	IP	address
you	use	to	access	Azure	services.	You	need	to	set	this	when	setting	the
variable	clientip.

4.	 Finally,	using	az	sql	db	create,	you	create	the	Azure	SQL	database.
Setting	the	option	--service-objective	to	Basic	creates	a	database	with	a
maximum	of	5	GB	and	a	cheap	option	based	on	data	transfer	units.	The
connection	string	to	this	database	needs	to	be	configured	with	the	sample
applications,	if	you	use	this	Azure	service.

https://hub.docker.com/_/microsoft-mssql-server
https://portal.azure.com
https://docs.microsoft.com/cli/azure/install-azure-cli

With	the	source	code	download,	a	Bash	script	is	available	that	you	can	run	from
the	Azure	shell.	Just	make	sure	to	enter	your	client's	IP	address,	change	the
location	to	your	nearest	Azure	region,	and	change	the	password.	The	commands
use	the	\	line	continuation	character,	which	works	with	the	Azure	shell	and	the
Windows	Subsystem	for	Linux.	Using	the	Windows	command	prompt,	you	can
use	^	as	the	line	continuation	character.	The	following	code	uses	the	\	character
(script	file	createazuresql.sh):

#!	/bin/bash

	

#	Prepare	variables

rg=rg-procsharp

loc=westeurope

servername=procsharpserver$RANDOM

databasename=procsharp

clientip=enter	your	client-ip	address

	

az	group	create	--location	$loc	--name	$rg

az	sql	server	create	--name	$servername	--resource-group	$rg	--

location	$loc	\

--admin-user	myadminuser	--admin-password	myadminpassword

az	sql	server	firewall-rule	create	-g	$rg	-s	$servername	-n	

azurerule	\

--start-ip-address	0.0.0.0	--end-ip-address	0.0.0.0

az	sql	server	firewall-rule	create	-g	$rg	-s	$servername	-n	

clientiprule	\

--start-ip-address	$clientip	--end-ip-address	$clientp

az	sql	db	create	-g	$rg	-s	$servername	-n	$databasename	--

service-objective	Basic

To	finally	delete	all	the	resources	you	created	here,	you	can	delete	the	resource
group	and	all	the	resources	associated	with	it:

>	az	group	delete	--name	$rg

EF	Core	also	supports	NOSQL	databases—just	not	relational	ones.	This	is	an
important	distinction	to	the	previous	Entity	Framework	that	was	available	with
the	.NET	Framework.	In	this	chapter,	you	will	use	Azure	Cosmos	DB	in	the	last
section	and	see	what's	similar	and	what's	different	with	relational	databases.

Creating	a	Model
The	sample	application	Intro	for	accessing	the	Books	database	is	a	.NET
console	app.	Version	5	of	EF	Core	supports	using	records,	but	there	are	some
limits	in	particular	with	updates.	For	you	to	see	in	what	scenarios	you	can	use

records	and	when	to	use	classes	(at	least	with	.NET	5),	the	sample	application
can	be	built	with	records	or	classes.	If	you	define	the	constant	USERECORDS	in	the
project	configuration	file,	the	compilation	uses	a	record	;	otherwise,	it	uses	a
class.

The	sample	application	defines	a	simple	Book	type	with	three	properties.	The
BookId	property	maps	to	the	primary	key	of	the	table,	the	Title	property	to	the
Title	column,	and	the	Publisher	property	to	the	Publisher	column.	With	two
properties,	the	StringLength	attribute	is	applied	to	create	an	SQL	Server	column
type	nvarchar(n).	The	application	is	using	nullable	reference	types.	With	EF
Core,	this	is	used	with	conventions.	The	Publisher	property	is	of	type	string?,
which	maps	it	to	the	database	as	not	required	and	therefore	allows	null.	The
Title	property	is	not	nullable,	and	thus	this	is	a	required	column.	Creating	a
record	type	requires	fewer	code	lines	when	using	the	positional	records.	The
members	of	the	primary	constructor	create	init-only	setters.	To	apply	attributes
to	these	properties,	the	property	keyword	needs	to	be	used	for	applying	the
StringLength	attribute.	To	assign	an	attribute	to	a	field	with	an	auto	property,
the	field	keyword	is	required.	The	class	specifies	a	constructor	with	three
parameters,	and	the	last	of	these	is	optional.	The	Book	class	implements	auto
properties	for	all	its	members.	With	the	class	version,	the	property	values	can	be
changed	after	creating	the	object	(code	file	Intro/Book.cs):

using	System.ComponentModel.DataAnnotations;

	

#if	USERECORDS

	

public	record	Book(

		[property:	StringLength(50)]	string	Title,

		[property:	StringLength(30)]	string?	Publisher	=	default,

		int	BookId	=	0);

	

#else

	

public	class	Book

{

		public	Book(string	title,	string?	publisher	=	default,	int	

bookId	=	default)

		{

				Title	=	title;

				Publisher	=	publisher;

				BookId	=	bookId;

		}

		[StringLength(50)]

		public	string	Title	{	get;	set;	}

		[StringLength(30)]

		public	string?	Publisher	{	get;	set;	}

		public	int	BookId	{	get;	set;	}

}

	

#endif

Creating	a	Context
The	association	of	the	Books	table	with	the	database	is	created	by	the
BooksContext	class.	This	class	derives	from	the	base	class	DbContext,	as	shown
in	the	following	code	snippet.	The	BooksContext	class	defines	the	Books
property	that	is	of	type	DbSet<Book>.	This	type	allows	creating	queries	and
adding	Book	instances	for	storing	book	data	in	the	database.	The	constructor
specifies	arguments	of	type	DbContextOptions.	This	constructor	is	used	when
configuring	the	context	with	the	dependency	injection	(DI)	container.	You
specify	the	connection	string	to	the	database	in	the	container	configuration,	as
shown	later	in	this	chapter	in	the	section	“Configuring	the	Context	with	the	DI
Provider”	(code	file	Intro/BooksContext.cs):

public	class	BooksContext	:	DbContext

{

		public	BooksContext(DbContextOptions<BooksContext>	options)

				:	base(options)	{	}

	

		public	DbSet<Book>	Books	=>	Set<Book>();

}

NOTE When	creating	a	DbContext	constructor	to	be	used	for	dependency
injection,	you	can	also	specify	parameters	that	are	registered	with	the	DI
container	in	addition	to	specifying	the	DbContextOptions	parameter.

NOTE In	many	samples	(including	samples	from	previous	editions	of	this
book),	read-write	properties	are	used	with	properties	of	type	DbSet	.	With
read-write	properties,	the	property	is	assigned	from	the	base	class
DbContext	.	Now	because	we	have	nullable	enabled,	the	compiler	gives	a
warning	because	the	property	is	not	initialized	from	the	constructor	of	this
class.	The	best	fix	for	nullable	reference	types	is	to	initialize	this	property	by
invoking	the	generic	Set	method	of	the	base	class	and	use	a	read-only
property.

If	you're	not	using	dependency	injection,	you	can	create	a	DbContext	-derived
class	with	a	parameterless	constructor	(or	just	use	the	default	constructor)
instead	of	the	constructor	with	DbOptions	and	override	the	OnConfiguring
method	to	specify	the	database	connection	string:

public	class	BooksContext:	DbContext

{

		public	BooksContext()	{	}

	

		private	const	string	ConnectionString	=

				@"server=(localdb)\MSSQLLocalDb;database=ProCSharpBooks;"	+					

				@"trusted_connection=true";

	

		public	DbSet<Book>	Books	=>	Set<Book>();

	

		protected	override	void	OnConfiguring(DbContextOptionsBuilder	

optionsBuilder)

		{

				optionsBuilder.UseSqlServer(ConnectionString);

		}

}

The	sample	applications	from	this	book	all	use	the	DI	container.	You've	already
seen	advantages	of	the	DI	container	in	previous	chapters	and	will	see	it	in	action
in	the	following	chapters	as	well.

Conventions,	Annotations,	and	Fluent	API
EF	Core	is	using	three	concepts	to	define	the	model:	conventions,	annotations,
and	the	Fluent	API.	With	conventions,	some	things	happen	automatically,	but	be
aware	that	conventions	are	based	on	the	EF	Core	provider.	With	SQL	Server,	for
example,	if	the	property	is	of	type	int	or	Guid	and	has	a	name	Id	or
{ClassName}Id,	the	property	maps	to	a	primary	key.	The	.NET	string	type
maps	to	the	nvarchar(max)	database	type.	Nullability	definitions	also	define	the
mapping	as	mentioned	in	the	previous	section.

Conventions	can	be	overridden	using	annotations—specifying	attributes.	The
previous	example	used	the	StringLength	attribute	to	map	the	Title	property	to
a	column	type	of	nvarchar(50).	You	can	use	the	Table	and	Column	attributes	to
define	the	mapping	from	a	type	name	to	a	corresponding	table	and	a	property
name	to	a	column.

There's	also	a	convention	for	mapping	.NET	Types	to	table	names.	With	EF

Core,	the	property	names	of	DbSet	typed	properties	are	used	as	default	table
names.	Creating	contexts	is	shown	in	the	next	section.	Conventions	do	not	exist
for	every	annotation.	To	specify	not	nullable	(required)	columns,	you	can	use	the
Required	attribute.	Before	.NET	5,	a	convention	with	non-nullable	reference
types	was	not	available.	Annotations	are	more	powerful	than	conventions
because	you	can	do	more	with	them.
Instead	of	using	annotations,	you	can	also	use	a	Fluent	API,	which	means	you
handle	configuration	via	code	rather	than	attributes.	With	a	Fluent	API,	you	can
use	the	return	value	of	a	method	to	invoke	the	next	method.	The	Fluent	API	for
EF	Core	is	more	powerful	than	the	annotations	are.	The	Fluent	API	is	shown
later	in	this	chapter	in	the	section	“Creating	a	Model.”

Configuring	the	Context	with	the	DI	Provider
The	Host	class	first	shown	in	Chapter	15,	“Dependency	Injection	and
Configuration,”	is	used	to	create	and	configure	the	DI	container,	as	shown	with
the	following	code	snippet	(code	file	Intro/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	connectionString	=	

context.Configuration.GetConnectionString						

("BooksConnection");

				services.AddDbContext<BooksContext>(options	=>

				{

						options.UseSqlServer(connectionString);

				});

				services.AddScoped<Runner>();

		})

		.Build();

The	connection	string	is	retrieved	via	configuration	settings.	The	connection
string	used	here	references	a	localdb	database.	If	you	use	other	databases,	you
need	to	specify	the	corresponding	connection	string	(configuration	file
Intro/appsettings.json):

{

		"ConnectionStrings":	{

				"BooksConnection":	

						"server=

(localdb)\\mssqllocaldb;database=ProCSharpBooks;trusted_connection=true"

		}

}

With	the	Runner	class,	the	DbContext	is	injected	in	the	constructor	(code	file
Intro/Runner.cs):

public	class	Runner

{

		private	readonly	BooksContext	_booksContext;

		public	Runner(BooksContext	booksContext)

		{

				_booksContext	=	booksContext;

		}

		//…

}

After	the	Host	class	is	configured,	a	new	scope	from	the	DI	container	is	created
to	get	a	Runner	instance	returned	with	this	scope.	The	Runner	class	is	then	used
to	invoke	various	methods	using	BooksContext	to	show	different	scenarios
(code	file	Intro/Program.cs):

using	var	scope	=	host.Services.CreateScope();

var	runner	=	scope.ServiceProvider.GetRequiredService<Runner>();

	

await	runner.CreateTheDatabaseAsync();

await	runner.AddBookAsync("Professional	C#	and	.NET",	"Wrox	

Press");

await	runner.AddBooksAsync();

await	runner.ReadBooksAsync();

await	runner.QueryBooksAsync();

await	runner.DeleteBooksAsync();

await	runner.DeleteDatabaseAsync();

Creating	the	Database
The	model	and	the	context	classes	are	defined.	Now	it's	also	possible	to	create
the	database	programmatically.	When	you	use	the	Database	property	of	the
DbContext,	a	DatabaseFacade	is	returned.	You	can	use	this	to	create	and	delete
databases	and	to	send	SQL	statements	directly	to	the	database.	Invoking	the
method	EnsureCreatedAsync	makes	sure	that	the	database	is	created.	If	the
database	already	exists,	this	method	returns	false.	If	the	database	does	not	exist,
the	database	is	created	according	to	the	definition	of	the	context	and	the	model,
and	true	is	returned	(code	file	Intro/Program.cs):

public	async	Task	CreateTheDatabaseAsync()

{

		bool	created	=	await	

_booksContext.Database.EnsureCreatedAsync();

		string	creationInfo	=	created	?	"created"	:	"exists";

		Console.WriteLine($"database	{creationInfo}");

}

When	you	run	the	program,	if	you	already	created	the	database	earlier,	the	string
database	exists	is	written	to	the	console.	If	you	didn't	create	the	database
earlier,	the	database	is	created,	followed	by	the	string	database	created.

If	you	use	Azure	SQL	Database,	you	need	to	create	the	database	before	starting
the	application.	Invoking	the	method	EnsureCreatedAsync	here	creates	the
schema	with	the	Azure	SQL	Database.

NOTE Creating	the	database	with	Database.EnsureCreatedAsync
doesn't	give	any	support	when	the	database	schema	changes.	Another	option
is	to	create	the	database	with	migrations.	Using	migrations,	you	can
upgrade	or	downgrade	the	database	schema	to	any	specific	version.	This
can	be	done	programmatically	or	by	created	SQL	scripts.	This	feature	is
covered	later	in	this	chapter.

Deleting	the	Database
Deleting	the	database	is	programmatically	similar	to	creating	it.	You	just	need	to
invoke	the	method	EnsureDeletedAsync	of	the	DatabaseFacade	:

public	async	Task	DeleteDatabaseAsync()

{

		Console.Write("Delete	the	database?	(y|n)	");

		string?	input	=	Console.ReadLine();

		if	(input?.ToLower()	==	"y")

		{

				bool	deleted	=	await	

_booksContext.Database.EnsureDeletedAsync();

				string	deletionInfo	=	deleted	?	"deleted"	:	"not	deleted";

				Console.WriteLine($"database	{deletionInfo}");

		}

}

Just	make	sure	you	don't	delete	a	database	that	should	not	be	deleted.	Pay
attention	to	the	connection	string	you	use.

Writing	to	the	Database
After	the	database	and	the	Books	table	are	created,	you	can	fill	the	table	with
data.	The	AddBookAsync	method	is	created	to	add	a	Book	object	to	the	database.
AddBookAsync	just	adds	the	Book	object	to	the	context	with	the	state	added;	it
doesn't	write	it	to	the	database.	The	object	is	written	on	invoking	the	method
SaveChangesAsync.	After	writing	the	object,	the	BookId	from	the	book	variable
is	retrieved.	This	variable	is	changed	from	EF	Core	because	in	the	database,	this
is	an	auto-increment	key.	This	also	works	when	using	records	because	the
created	init-only	set	properties	are	behind-the-scenes	properties	with	the	get/set
accessor,	and	the	set	accessor	is	annotated	to	be	used	only	with	the	initialization
(code	file	Intro/Program.cs):

public	async	Task	AddBookAsync(string	title,	string	publisher)

{

		Book	book	=	new(title,	publisher);

		await	_booksContext.Books.AddAsync(book);

		int	records	=	await	_booksContext.SaveChangesAsync();

		Console.WriteLine($"{records}	record	added	with	

{book.BookId}");

	

		Console.WriteLine();

}

For	adding	a	list	of	books,	you	can	use	the	AddRange	method,	as	shown	here:

public	async	Task	AddBooksAsync()

{

		Book	b1	=	new("Professional	C#	7	and	.NET	Core	2",	"Wrox	

Press");

		Book	b2	=	new("Professional	C#	6	and	.NET	Core	1.0",	"Wrox	

Press");

		Book	b3	=	new("Professional	C#	5	and	.NET	4.5.1",	"Wrox	

Press");

		Book	b4	=	new("Essential	Algorithms",	"Wiley");

		await	_booksContext.Books.AddRangeAsync(b1,	b2,	b3,	b4);

		int	records	=	await	_booksContext.SaveChangesAsync();

		Console.WriteLine($"{records}	records	added");

	

		Console.WriteLine();

}

NOTE To	look	at	the	database	and	see	the	schema	and	data,	with	Visual
Studio,	you	can	use	SQL	Server	Object	Explorer.	For	a	multiplatform
solution	on	Windows,	macOS,	and	Linux,	you	can	use	Azure	Data	Studio.

Check	the	readme	file	with	the	code	downloads	for	a	link	to	installation
instructions.

Reading	from	the	Database
To	read	the	data	from	C#	code,	you	need	to	invoke	BooksContext	and	access	the
Books	property.	With	the	ToListAsync	method,	a	list	is	returned	from	a	task	so
that	it	doesn't	block	the	calling	thread	(code	file	Intro/Program.cs):

public	async	Task	ReadBooksAsync(CancellationToken	token	=	

default)

{

		string	query	=	_booksContext.Books.ToQueryString();

		Console.WriteLine(query);

		List<Book>	books	=	await	

_booksContext.Books.ToListAsync(token);

		foreach	(var	b	in	books)

		{

				Console.WriteLine($"{b.Title}	{b.Publisher}");

		}

	

		Console.WriteLine();

}

An	easy	way	to	see	the	generated	query	from	the	provider	is	to	invoke	the
ToQueryString	method:

SELECT	[b].[BookId],	[b].[Publisher],	[b].[Title]

FROM	[Books]	AS	[b]

Entity	Framework	offers	a	LINQ	provider.	With	that,	you	can	create	LINQ
queries	to	access	the	database.	With	the	sample	application,	the	method	syntax	is
used	as	shown	here:

public	async	Task	QueryBooksAsync(CancellationToken	token	=	

default)

{

		await	_booksContext.Books

				.Where(b	=>	b.Publisher	==	"Wrox	Press")

				.ForEachAsync(b	=>

				{

						Console.WriteLine($"{b.Title}	{b.Publisher}");

				},	token);

	

		Console.WriteLine();

}

This	is	the	SQL	query	sent	to	the	database:

SELECT	[b].[BookId],	[b].[Publisher],	[b].[Title]

FROM	[Books]	AS	[b]

WHERE	[b].[Publisher]	=	N'Wrox	Press'

NOTE LINQ	is	discussed	in	detail	in	Chapter	9,	“Language	Integrated
Query.”

Updating	with	Classes
So	far,	the	syntax	using	EF	Core	has	been	the	same	with	classes	and	records.
This	changes	now	with	updates.	When	using	the	Book	class,	you	can	change
properties	of	these	objects	as	needed	and	invoke	SaveChangesAsync.	In	the
following	code	sample,	the	Title	property	is	changed.	The	SaveChangesAsync
method	verifies	that	the	object	has	been	modified,	it	is	set	to	be	in	the	modified
state,	and	finally	it	is	updated	to	the	database	with	an	SQL	UPDATE	statement.
With	the	following	code	snippet,	the	object	with	key	value	1	is	retrieved	from
the	database	before	being	updated	(code	file	Intro/Runner.cs):

public	async	Task	UpdateBoookAsync()

{

		Book?	book	=	await	_booksContext.Books.FindAsync(1);

		if	(book	!=	null)

		{

				book.Title	=	"Professional	C#	and	.NET	-	2021	Edition";

				int	records	=	await	_booksContext.SaveChangesAsync();

				Console.WriteLine($"{records}	record	updated");

		}

		Console.WriteLine();

}

Updating	with	Records
Updating	C#	records	is	different	than	with	classes	when	using	EF	Core	5.	With
records,	you	use	the	with	expression	to	clone	an	existing	record	and	change
values.	If	you	add	this	object	to	the	context	with	the	Update	method	(which	sets
the	state	to	modified)	and	an	object	with	the	same	ID	is	already	tracked	from	the
context,	an	exception	of	type	InvalidOperationException	is	thrown.	You	can
solve	this	by	detaching	the	existing	object	from	the	context	by	setting	the	State

property	of	EntityEntry	to	EntityState.Detached.	This	way,	the	newly
created	object	can	be	attached	and	set	to	the	modified	state	with	the	Update
method	(code	file	Intro/Runner.cs):

public	async	Task	UpdateBookAsync()

{

		Book?	book	=	await	_booksContext.Books.FindAsync(1);

	

		if	(book	!=	null)

		{

				//	detach	the	existing	object	from	the	context	which	allows	

to	

				//	attach	it	with	the	Update	method

				_booksContext.Entry(book).State	=	EntityState.Detached;

				Book	bookUpdate	=	book	with	{	Title	=	"Professional	C#	and	

.NET	-	2021	Edition"	};

				_booksContext.Update(bookUpdate);

				int	records	=	await	_booksContext.SaveChangesAsync();

				Console.WriteLine($"{records}	record	updated");

		}

		Console.WriteLine();

}

NOTE Later	in	this	chapter	in	the	section	“Saving	Data,”	you	can	learn
more	about	attaching	and	detaching	objects	from	the	context,	why	this	is
important	for	updates,	and	how	you	can	query	objects	without	attaching
them	to	the	context.

The	update	behavior	of	EF	Core	might	change	after	.NET	5.	The	with
expression	of	records	could	be	influenced	by	using	a	proxy	to	have	a	similar
experience	between	updating	records	and	updating	classes.	Check	the	source
code	in	the	GitHub	repository	for	the	book	for	updates	and	more
information.

Deleting	Records
Finally,	you	need	to	clean	up	the	database	and	delete	all	records.	You	do	this	by
retrieving	all	records	and	invoking	the	Remove	or	RemoveRange	method	to	set	the
state	of	the	objects	in	the	context	to	deleted.	Invoking	the	SaveChangesAsync
method	now	deletes	the	records	from	the	database	and	invokes	SQL	Delete
statements	for	every	object	(code	file	Intro/Runner.cs):

public	async	Task	DeleteBooksAsync()

{

		List<Book>	books	=	await	_booksContext.Books.ToListAsync();

		_booksContext.Books.RemoveRange(books);

		int	records	=	await	_booksContext.SaveChangesAsync();

		Console.WriteLine($"{records}	records	deleted");

	

		Console.WriteLine();

}

NOTE An	object-relational	mapping	tool	such	as	EF	Core	is	not	useful
with	all	scenarios.	Deleting	all	objects	was	not	done	efficiently	with	the
sample	code.	Instead	of	sending	a	DELETE	statement	to	the	database	for
every	record	to	delete,	you	can	delete	all	records	using	a	single	SQL
statement.	EF	Core	is	not	that	bad	in	such	scenarios	because	rather	than
sending	one	statement	after	another	to	the	database,	multiple	statements	are
combined	into	a	batch	statement.	However,	it's	even	better	to	just	send	one
SQL	statement	in	that	case.	This	can	be	done	using
context.Database.ExecuteSqlInterpolated	and
context.Database.ExecuteSqlRaw.

Now	that	you've	seen	how	to	add,	query,	update,	and	delete	records,	this	chapter
steps	into	features	behind	the	scenes	and	gets	into	advanced	scenarios	using
Entity	Framework.

Logging	and	Metrics
You've	already	seen	the	ToQueryString	method	that	returns	a	query	string	that's
created	from	a	provider	so	you	can	take	a	look	at	what	SQL	queries	are	sent	to
the	database.	There's	more	information	available	from	EF	Core.	With	a
DbContextOptionsBuilder,	you	can	invoke	the	LogTo	method	and	supply	a
delegate	with	a	method	receiving	a	string	parameter	to	define	where	log
messages	should	be	written	to.	You	can	supply	the	address	of	the
Console.WriteLine	method	to	have	logs	written	to	the	console.	You	can	access
the	DbContextOptionsBuilder	from	the	AddDbContext	method,	where	you
configure	the	DI	container,	or	on	overriding	the	DbContext	method
OnConfiguring	(if	you	don't	use	DI).

With	DI	configured,	EF	Core	uses	logging	based	on	the	ILogger	and
ILoggerFactory	interfaces,	as	discussed	in	Chapter	16,	“Diagnostics	and
Metrics.”	Besides	the	connection	string	to	the	database,	you	can	configure	the
logging	provider	Console	with	the	source	Microsoft.EntityFramework	and	the

log	level	in	the	configuration	file	appsettings.json.

{

		"Logging":	{

				"Console":	{

						"LogLevel":	{

								"Microsoft.EntityFramework":	"Debug"

						}

				}

		},

		"ConnectionStrings":	{

				"BooksConnection":	

						"server=

(localdb)\\mssqllocaldb;database=ProCSharpBooks;trusted_connection=true"

		}

}

Debug	gives	a	detailed	logging	output,	including	objects	created	and	disposed
of.	To	see	the	SQL	statements	sent	to	the	database,	you	just	need	to	turn	on	the
Information	level.	For	more	information	on	logging,	read	Chapter	16.

When	you	create	a	complex	LINQ	statement,	it's	often	not	that	easy	to	find	the
generated	SQL	query	in	the	log.	To	easily	find	out	what	query	you've	created
that	matches	the	generated	SQL,	you	can	invoke	the	TagWith	method	as	an
extension	method	of	IQueryable.	The	string	you	specify	with	the	TagWith
method	is	shown	as	comments	in	the	output	log,	which	is	associated	with	the
SQL	statement	that's	executed.

EF	Core	5.0	has	been	updated	not	only	to	log	information	but	also	to	allow	you
to	see	performance	counts.	To	see	the	counts,	first	you	need	to	get	the	process	ID
of	the	application.	You	can	do	this	using	dotnet	counters	ps.	With	this	process
ID,	use	dotnet	counters,	specify	the	counters	category
Microsoft.EntityFrameworkCore,	and	pass	the	process	ID	to	the	-p	option:

>	dotnet	counters	monitor	Microsoft.EntityFrameworkCore	-p	23480

EF	Core	shows	the	number	of	active	DbContext	s,	failure	counts	for	execution
strategies	and	concurrency	failures,	queries	done,	queries	with	cache	hits,	and
the	number	of	SaveChangesAsync.

CREATING	A	MODEL
The	first	examples	in	this	chapter	mapped	a	single	table.	Now,	let's	get	into	a

more	complex	example	with	a	relationship	between	tables.	In	this	section,	you
create	a	model	with	relations	and	use	more	features	with	model	definitions,	such
as	using	Fluent	APIs,	using	self-contained	type	configuration,	mapping	database
columns	to	fields,	and	using	shadow	properties.

Creating	a	Relation
Let's	start	creating	a	model.	The	sample	project	defines	a	one-to-many	relation
using	the	MenuCard	and	MenuItem	types.	The	MenuCard	contains	a	list	of
MenuItem	objects.	This	relation	is	simply	defined	by	the	MenuItems	property	of
type	ICollection<MenuItem>	(code	file	Models/MenuCard.cs):

public	class	MenuCard

{

		public	MenuCard(string	title,	int	menuCardId	=	default)	

				=>	(Title,	MenuCardId)	=	(title,	menuCardId);

	

		public	int	MenuCardId	{	get;	set;	}

		public	string	Title	{	get;	set;	}

		public	ICollection<MenuItem>	MenuItems	{	get;	}	=	new	

List<MenuItem>();

		public	override	string	ToString()	=>	Title;

}

The	relation	can	also	be	accessed	in	the	other	direction;	a	MenuItem	can	access
the	MenuCard	using	the	MenuCard	property.	To	create	a	required	relationship
between	MenuItem	and	MenuCard	(a	MenuItem	must	be	associated	with	a
MenuCard),	the	property	is	declared	to	be	not	nullable.	However,	EF	Core	does
not	support	supplying	this	relation	with	the	constructor.	To	solve	this	dilemma,
the	field	associated	with	the	MenuCard	property	is	declared	to	be	nullable.	With
the	constructor,	this	field	is	not	initialized.	In	case	the	get	accessor	of	the
MenuCard	property	is	accessed,	if	the	field	is	still	null,	an
InvalidOperationException	is	thrown.	In	retrieving	a	MenuItem	from	the
database,	EF	Core	needs	to	fill	this	relation.	When	creating	a	MenuItem
programmatically,	the	MenuCard	property	can	be	initialized	using	a	property
initializer	(code	file	Models/MenuItem.cs):

public	class	MenuItem

{

		public	MenuItem(string	text,	int	menuItemId	=	default)	=>	

				(Text,	MenuItemId)	=	(text,	menuItemId);

	

		public	int	MenuItemId	{	get;	set;	}

		public	string	Text	{	get;	set;	}

		public	decimal?	Price	{	get;	set;	}

		private	MenuCard?	_menuCard;

		public	MenuCard	MenuCard

		{

				get	=>	_menuCard	??	throw	new	InvalidOperationException(

						$"{nameof(MenuCard)}	not	initialized");

				init	=>	_menuCard	=	value;

		}

		public	override	string	ToString()	=>	Text;

}

The	mapping	to	the	database	is	done	by	the	MenusContext	class.	This	class	is
defined	similarly	to	the	previous	context	type;	it	just	contains	two	properties	to
map	the	two	object	types:	the	properties	MenuItems	and	MenuCards	(code	file
MenusSamples/MenusContext.cs):

public	class	MenusContext:	DbContext

{

		private	const	string	ConnectionString	=	@"server=

(localdb)\MSSQLLocalDb;"	+

				"Database=MenuCards;Trusted_Connection=True";

	

		public	DbSet<MenuItem>	MenuItems	{	get;	set;	}

		public	DbSet<MenuCard>	MenuCards	{	get;	set;	}

	

		protected	override	void	OnConfiguring(DbContextOptionsBuilder	

optionsBuilder)

		{

				base.OnConfiguring(optionsBuilder);

				optionsBuilder.UseSqlServer(ConnectionString);

		}

}

There	are	some	parts	in	the	creation	code	that	would	be	useful	to	change.	For
example,	the	size	of	the	Text	and	Title	columns	could	be	reduced	in	size	from
NVARCHAR(MAX).	In	addition,	SQL	Server	defines	a	Money	type	that	could	be	used
for	the	Price	column,	and	the	schema	name	could	be	changed	from	dbo.	Entity
Framework	gives	you	two	options	to	make	these	changes	from	code:	data
annotations	and	the	Fluent	API,	which	are	both	discussed	next.

Using	the	Fluent	API	for	Mapping	Definitions
In	the	previous	sample	code,	conventions	and	annotations	are	used	to	specify	the
mapping	of	the	model	types	to	the	database	tables.	You	have	more	options	with

the	Fluent	API	by	overriding	the	OnModelCreating	method	of	the	DbContext	-
derived	class.	In	the	following	code	sample,	the	schema	for	the	database
definition	is	changed	from	the	default	dbo	to	mc	to	invoke	the	HasDefaultSchema
method	of	the	ModelBuilder	class.	You	use	the	ModelBuilder	API	to	specify	the
schema	for	the	MenuItem	class	using	the	generic	method	Entity.	The	ToTable
method	maps	the	MenuItem	class	to	the	table	MenuItems.

protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

{

		modelBuilder.HasDefaultSchema("mc");

		modelBuilder.Entity<MenuItem>().ToTable("MenuItems").HasKey(m	

=>	m.MenuItemId);

		modelBuilder.Entity<MenuItem>().Property(m	=>	

m.MenuItemId).ValueGeneratedOnAdd();

		modelBuilder.Entity<MenuItem>().Property(m	=>	

m.Text).HasMaxLength(50);

		modelBuilder.Entity<MenuItem>().Property(m	=>	

m.Price).HasColumnType("Money");

	

		modelBuilder.Entity<MenuItem>().HasOne(m	=>	m.MenuCard)

				.WithMany(c	=>	c.MenuItems)

				.HasForeignKey("MenuCardId");

	

		//…

}

NOTE The	Fluent	API	gives	you	more	options	to	configure	the
annotations,	and	annotations	give	you	more	options	than	conventions.	You
can	use	all	these	options	in	combination.	Annotations	override	conventions,
and	the	Fluent	API	overrides	annotations.

In	scenarios	where	you	can	choose	between	the	options,	what	should	you
select?	Often,	it's	a	matter	of	taste.	Some	developers	prefer	annotations	as
long	as	this	option	is	possible	with	the	things	you	need	to	configure;	others
always	use	the	Fluent	API.	But	there	are	other	good	reasons	as	well	to
choose	one	option	over	the	other.	For	example,	you	can	use	entity	types	in	a
shared	library,	use	the	same	classes	to	access	the	database,	pass	the	data
across	an	API,	and	use	the	same	types	with	the	client	application.	When	you
create	microservices	with	a	clearly	defined	use,	this	can	be	a	good	option	to
reduce	the	amount	of	code	you	need	to	write.	Here,	you	can	use	the	same
annotations	to	map	properties	to	the	database	and	to	validate	user	inputs	on
the	client	and	with	the	API—for	example,	the	string	length	with	the

StringLength	attribute.	In	such	a	case,	it's	a	good	practice	to	avoid
annotations	that	are	specific	for	the	database	provider.	You	don't	want	to
create	a	dependency	on	an	EF	Core	library	with	a	client	application	where
you	might	not	have	access	to	this	library	or	this	version	of	the	library.	If	you
use	a	different	application	architecture	with	dedicated	data	transfer	objects
(DTO)	to	be	sent	across	the	network,	and	different	types	on	the	client	(for
example	if	you	need	a	different	technology	for	the	client	application	such	as
Angular),	selecting	a	mapping	variant	is	just	a	matter	of	taste.

Using	Self-Contained	Type	Configuration
If	you	need	to	specify	several	different	entity	types,	the	implementation	of	the
OnModelCreating	method	can	grow	large.	To	create	easier-to-understand
mappings,	you	can	also	create	configuration	classes	for	every	data	class.	An
entity	type	configuration	class	implements	the	generic	interface
IEntityTypeConfiguration.

With	the	sample	application,	a	strongly	typed	list	of	column	names	that	is	used
with	the	configuration	of	the	mappings	is	defined	with	the	class	ColumnNames,	as
shown	in	the	following	code	snippet.	Instead	of	using	strings	when	using	these
column	names,	IntelliSense	can	automatically	complete	the	code	you	write,	and
the	compiler	warns	of	misspellings	(code	file	Models/ColumnNames.cs):

internal	class	ColumnNames

{

		public	const	string	LastUpdated	=	nameof(LastUpdated);

		public	const	string	IsDeleted	=	nameof(IsDeleted);

		public	const	string	MenuCardId	=	nameof(MenuCardId);

		public	const	string	RestaurantId	=	nameof(RestaurantId);

}

To	avoid	writing	the	class	name	when	specifying	the	constants,	you	use	using
static	ColumnNames	to	import	the	names	of	the	class	members.

The	class	MenuCardConfiguration	implements	the	Configure	method	of	the
IEntityTypeConfiguration	interface	and	specifies	the	mapping	of	this	class	to
the	MenuCards	table,	constraints	with	the	Title	property,	and	a	relation	with	the
MenuItem	class.	One	MenuCard	references	a	list	of	MenuItem	objects	specified	by
the	MenuItems	property	as	specified	with	the	HasMany	method.	To	go	back	to	the
MenuCard	from	the	MenuItem,	you	use	the	WithOne	method.	The	MenuCard
property	of	the	MenuItem	class	references	one	MenuCard	(code	file

Models/MenuCardConfiguration.cs):

using	Microsoft.EntityFrameworkCore;

using	Microsoft.EntityFrameworkCore.Metadata.Builders;

using	System;

using	static	ColumnNames;

	

internal	class	MenuCardConfiguration	:	

IEntityTypeConfiguration<MenuCard>

{

		public	void	Configure(EntityTypeBuilder<MenuCard>	builder)

		{

				builder.ToTable("MenuCards")

						.HasKey(c	=>	c.MenuCardId);

	

				builder.Property(c	=>	c.MenuCardId)

						.ValueGeneratedOnAdd();

				builder.Property(c	=>	c.Title)

						.HasMaxLength(50);

				builder.HasMany(c	=>	c.MenuItems)

						.WithOne(m	=>	m.MenuCard);

	

				//…

		}

}

The	MenuItem	class	is	also	configured	with	a	specific	configuration	class.	The
Price	property	of	type	decimal	maps	to	the	SQL	Server	database	type	Money.
When	using	annotations,	you	could	use	the	DbType	attribute	to	specify	a	database
type.	Another	interesting	aspect	of	the	implementation	is	the	use	of	the
HasForeignKey	method	to	map	the	relation	to	the	MenuCard	with	the	foreign	key
MenuCardId.	Because	the	class	MenuCard	does	not	have	a	MenuCardId	property,	a
lambda	expression	cannot	be	used	to	access	this	property;	a	string	is	required.
The	string	that	is	used	is	strongly	defined	with	the	ColumnNames	class.	With	this
in	place,	a	shadow	property	is	created.	Shadow	properties	are	discussed	later	in
the	section	“Working	with	Shadow	Properties”	(code	file
Models/MenuItemConfiguration.cs):

internal	class	MenuItemConfiguration	:	

IEntityTypeConfiguration<MenuItem>

{

		public	void	Configure(EntityTypeBuilder<Menu>	builder)

		{

				builder.ToTable("MenuItems")

						.HasKey(m	=>	m.MenuItemId);

				builder.Property(m	=>	m.MenuItemId)

						.ValueGeneratedOnAdd();

				builder.Property(m	=>	m.Text)

						.HasMaxLength(50);

				builder.Property(m	=>	m.Price)

						.HasColumnType("Money");

	

				builder.HasOne(m	=>	m.MenuCard)

						.WithMany(c	=>	c.MenuItems)

						.HasForeignKey(MenuCardId);

	

				//…

		}

}

To	activate	the	configuration	classes	with	the	OnModelCreating	method	of	the
DbContext	-derived	class,	you	invoke	the	ApplyConfiguration	method	(code
file	Models/MenusContext.cs):

protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

{

		modelBuilder.HasDefaultSchema("mc")

				.ApplyConfiguration(new	MenuCardConfiguration())

				.ApplyConfiguration(new	MenuConfiguration());								

	

		//…

}

Mapping	to	Fields
EF	Core	allows	mapping	table	columns	not	only	to	properties	but	also	to	private
fields.	This	makes	it	possible	to	create	read-only	properties	and	use	private	fields
that	are	not	accessible	outside	of	the	class.

Let's	take	a	look	at	the	Restaurant	class	in	the	following	code	snippet.	This
class	contains	a	private	field	_id	that	is	accessible	only	within	the	class.	Name	is
a	read-only	property	that	accesses	the	field	_name	(code	file
Models/Restaurant.cs):

public	class	Restaurant

{

		public	Restaurant(string	name,	int	id	=	default)	=>	(_name,	

_id)	=	(name,	id);

	

		private	int	_id	=	default;

		private	string	_name;

		public	string	Name	=>	_name;

	

		public	override	string	ToString()	=>	$"{Name},	{_id}";

}

The	property	Name	can	now	be	configured	to	map	to	the	corresponding	field	with
the	HasField	method.	The	_bookId	doesn't	have	a	corresponding	property;	thus,
it	is	configured	with	an	overload	of	the	Property	method	where	the	name	is
assigned	as	a	string.	The	method	HasColumnName	maps	the	field	to	the	Id	column
in	the	database	(code	file	BooksSample/BooksContext.cs):

internal	class	RestaurantConfiguration	:	

IEntityTypeConfiguration<Restaurant>

{

		public	void	Configure(EntityTypeBuilder<Restaurant>	builder)

		{

				builder.Property<int>("_id")

						.HasColumnName("Id")

						.IsRequired()

						.UsePropertyAccessMode(PropertyAccessMode.Field);

	

				builder.Property(r	=>	r.Name)

						.HasField("_name")

						

.UsePropertyAccessMode(PropertyAccessMode.FieldDuringConstruction)

						.HasMaxLength(30);

	

				builder.HasKey("_id");

		}

}

Working	with	Shadow	Properties
Not	only	does	EF	Core	allow	mapping	database	columns	to	private	fields,	but	it
also	lets	you	define	a	mapping	that	doesn't	show	up	in	the	model	at	all.	You	can
use	shadow	properties	that	can	be	retrieved	with	the	entity	in	the	context	but	are
not	available	with	the	model.

The	following	code	snippet	defines	the	shadow	properties	IsDeleted,
LastUpdated,	RestaurantId,	and	MenuCardId	with	the	MenuConfiguration.	All
these	properties	are	not	specified	with	the	model	type	and	are	available	only
when	using	the	EF	Core	context.	The	MenuCardId	shadow	property	is	created
automatically	because	it's	specified	as	a	foreign	key	with	the	HasForeignKey

method	(code	file	Models/MenuConfiguration.cs):

internal	class	MenuConfiguration	:	

IEntityTypeConfiguration<Menu>

{

		public	void	Configure(EntityTypeBuilder<Menu>	builder)

		{

				//…

	

				builder.HasOne(m	=>	m.MenuCard)

						.WithMany(c	=>	c.MenuItems)

						.HasForeignKey(MenuCardId);

	

				//	shadow	properties

				builder.Property<bool>(IsDeleted);

				builder.Property<DateTime>(LastUpdated);

				builder.Property<Guid>(RestaurantId);

				//	builder.Property<int>(MenuCardId);	//	created	because	of	

HasForeignKey

		}

}

You	use	the	shadow	property	LastUpdated	to	write	the	actual	time	when	the
entity	was	updated	last.	You	use	the	IsDeleted	property	to	define	a	state	in
which	the	entity	is	deleted	instead	of	truly	deleting	it.	Sometimes,	it	can	be
useful	not	to	delete	the	data	on	the	request	of	the	user;	instead,	you	just	mark	it
as	deleted.	This	allows	you	to	make	an	undo	to	recover	the	entity.

NOTE Because	of	the	General	Data	Protection	Regulation	(GDPR),
https://en.wikipedia.org/wiki/General_Data_Protection_Regulation,
which	is	an	EU	law,	you	need	to	be	careful	to	mark	data	as	deleted	but	not
delete	it	if	the	data	is	related	to	personal	data.

To	update	the	shadow	property	LastUpdated	automatically,	the	method
SaveChangesAsync	is	overridden.	If	you're	using	the	synchronous	SaveChanges
method	to	write	changes	to	the	database,	you	need	to	override	this	method	as
well.	With	the	implementation,	the	actual	state	of	the	entities	is	checked.	If	the
state	is	Added,	Modified,	or	Deleted,	the	shadow	property	is	updated	with	the
current	time.	To	manage	the	shadow	property	IsDeleted,	deleted	entities	are
changed	to	the	Modified	state,	and	the	IsDeleted	shadow	property	is	set	to
true.	Shadow	properties	don't	have	a	property	in	the	model	that	allows	for
accessing	them;	instead,	you	can	use	the	CurrentValues	indexer	of	the

https://en.wikipedia.org/wiki/General_Data_Protection_Regulation

EntityEntry	(code	file	Models/MenusContext.cs):

public	override	Task<int>	SaveChangesAsync(CancellationToken	

cancellationToken	=	default)

{

		ChangeTracker.DetectChanges();

	

		foreach	(var	item	in	ChangeTracker.Entries<MenuItem>()

				.Where(e	=>	e.State	==	EntityState.Added

				||	e.State	==	EntityState.Modified

				||	e.State	==	EntityState.Deleted))

		{

				item.CurrentValues[LastUpdated]	=	DateTime.Now;

	

				if	(item.State	==	EntityState.Deleted)

				{

						item.State	=	EntityState.Modified;

						item.CurrentValues[IsDeleted]	=	true;

				}

		}

		return	base.SaveChangesAsync(cancellationToken);

}

NOTE The	change	tracker	that	is	used	with	the	sample	code	is	shown	in
detail	later	in	the	section	“Tracking	Objects.”

NOTE When	you	have	an	IsDeleted	property,	it	would	be	a	good	idea	not
to	return	entities	where	IsDeleted	is	set	to	true	when	using	normal	queries.
You	can	do	this	with	the	EF	Core	feature	global	query	filters,	which	is
discussed	later	in	this	chapter.

To	show	deleted	entities,	the	DeleteMenuItemAsync	method	is	defined	to	delete
the	entity	with	the	ID	that	is	passed	to	this	method.	Here,	the	Remove	method	is
invoked	by	passing	the	entity	object,	and	SaveChangesAsync	is	invoked	(code
file	Models/Runner.cs):

public	async	Task	DeleteMenuItemAsync(int	id)

{

		MenuItem?	menuItem	=	await	

_menusContext.MenuItems.FindAsync(id);

		if	(menuItem	is	null)	return;

	

		_menusContext.Remove(menuItem);

		int	records	=	await	_menusContext.SaveChangesAsync();

		Console.WriteLine($"{records}	deleted");

}

Behind	the	scenes,	the	IsDeleted	shadow	property	is	set	because	of	the	change
to	the	SaveChangesAsync	method.	To	verify	this,	you	can	access	the	shadow
property	using	the	method	EF.Property	by	passing	the	IsDeleted	string.	All	the
Book	entities	with	this	flag	are	shown	in	the	QueryDeletedMenusAsync	method:

public	async	Task	QueryDeletedMenuItemsAsync()

{

		IEnumerable<MenuItem>	deletedMenuItems	=

				await	_menusContext.MenuItems

						.Where(b	=>	EF.Property<bool>(b,	IsDeleted))

						.ToListAsync();

	

		foreach	(var	menuItem	in	deletedMenuItems)

		{

				Console.WriteLine($"deleted:	{menuItem}");

		}

}

NOTE EF	is	a	static	class	in	the	namespace
Microsoft.EntityFrameworkCore	that	offers	static	methods	that	are	useful
when	EF	types	are	not	available.	In	this	section,	you've	seen	the	Property
method	that	can	be	used	to	access	shadow	state.	Later	in	this	chapter,	the	EF
class	is	used	with	compiled	queries	and	EF.Functions.

SCAFFOLDING	A	MODEL	FROM	THE
DATABASE
Instead	of	creating	the	database	from	the	model	as	you've	seen	with	invoking	the
method	EnsureCreatedAsync,	you	can	create	the	model	from	the	database.	To
do	this,	create	a	console	application	and	add	the	NuGet	package
Microsoft.EntityFrameworkCore.Design	to	the	packages	referenced,	and	add
the	dotnet-ef	tool	to	the	project	(unless	you	already	have	it	registered	with	the
global	tools).	To	access	Microsoft	SQL	Server,	the	package
Microsoft.EntityFrameworkCore.SqlServer	is	needed	as	well	(project	file
ScaffoldSample/ScaffoldSample.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

	

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

		</PropertyGroup>

	

		<ItemGroup>

				<PackageReference	

Include="Microsoft.EntityFrameworkCore.Design"	Version="5.0.5">

						<PrivateAssets>all</PrivateAssets>

						<IncludeAssets>

								runtime;	build;	native;	contentfiles;	analyzers;	

buildtransitive

						</IncludeAssets>

				</PackageReference>

				<PackageReference	

Include="Microsoft.EntityFrameworkCore.SqlServer"	

Version="5.0.5"/>

		</ItemGroup>

	

</Project>

After	the	tools	are	installed,	you	can	start	the	dotnet	ef	command	and	specify
the	connecting	string	to	the	database	and	the	name	of	the	EF	Core	provider:

>	dotnet	ef	dbcontext	scaffold

"server=(localdb)\MSSQLLocalDb;database=MenuCards;

trusted_connection=true"	

"Microsoft.EntityFrameworkCore.SqlServer"

The	dbcontext	command	enables	you	to	list	DbContext	objects	from	the	project,
as	well	as	create	DBContext	objects.	The	command	scaffold	creates	DbContext
-derived	classes	as	well	as	model	classes.	dotnet	ef	dbcontext	scaffold
needs	two	required	arguments:	the	connection	string	to	the	database	and	the
provider	that	should	be	used.	With	the	statement	shown	earlier,	the	database
ProCSharpMenus	was	accessed	on	SQL	Server	(localdb)\MSSQLLocalDb.	The
provider	used	was	Microsoft.EntityFrameworkCore.SqlServer.	This	NuGet
package	needs	to	be	added	to	the	project.

After	running	this	command,	you	can	see	the	DbContext	-derived	classes	as	well
as	the	model	types	generated.	By	default,	the	configuration	of	the	model	is	done
using	the	Fluent	API.	However,	you	can	change	it	to	use	the	data	annotations
supplying	the	--data-annotations	option.	The	EF	Core	5.0	design	package	has
a	dependency	on	the	Humanizer	library	(https://humanizr.net)	and	supports
pluralization	with	scaffolding.	For	example,	if	you	have	a	table	named	People,

https://humanizr.net

the	generated	class	has	the	name	Person.	You	can	disable	pluralization	with	the
option	--no-pluralize.	You	can	also	influence	the	generated	context	class
name,	the	tables	to	map,	and	the	output	directory.	Just	check	the	different
available	options	using	the	option	--help.

MIGRATIONS
So	far,	the	database	has	been	created	with	the	EnsureCreatedAsync	method,
which	is	great	for	small	applications.	However,	if	you	want	to	change	the
database	schema	after	the	database	has	been	initially	created,	when	using
EnsureCreatedAsync	you	need	to	delete	and	re-create	the	database.	There's
another	option:	you	can	create	the	database	with	EF	Core	migrations.	With	EF
Core	migrations	you	can	update	the	database	schema	programmatically.	To
support	continuous	integration	(CI)	and	continuous	delivery	(CD),	EF	Core
supports	the	concept	of	infrastructure	as	code
(https://docs.microsoft.com/azure/devops/learn/what-is-
infrastructure-as-code)	with	migrations,	which	gives	you	a	great	option	for
always	supporting	repeated	deployments.	You	just	need	to	think	about	who	has
the	right	to	update	the	database	schema.	Usually,	it's	not	the	application	that's
running	in	production,	and	it's	even	bad	from	a	security	standpoint	if	the	running
application	is	allowed	to	change	the	schema.	Instead,	a	different	application
should	be	in	control	to	do	this.	You	can	also	create	SQL	scripts	for	updating	the
database	schema.

Implementing	IDesignTimeDbContextFactory
With	the	sample	application,	the	Book	and	BooksContext	classes	from	before	are
used	in	a	library	with	the	name	BooksLib.	A	console	application	that	has	a
dependency	on	this	library	will	do	the	migration.	The	console	application	also
has	a	dependency	on	the	NuGet	package
Microsoft.EntityFrameworkCore.Design.

Now	the	.NET	CLI	tools	need	to	create	the	DbContext	-derived	class.	You	have
three	different	options	that	you	can	implement	to	support	the	migration	tools:

Implement	a	default	constructor	with	the	DbContext	-derived	class	and
override	the	OnConfiguring	method

Use	DI	with	a	web-based	project	with	a	Program	class	and	a
CreateWebHostBuilder	method

https://docs.microsoft.com/azure/devops/learn/what-is-infrastructure-as-code

Create	a	factory	class	that	returns	an	instance	of	the	context

Here,	the	DI	container	has	been	used	with	console	applications,	so	I've
implemented	the	third	option.	The	factory	class	needs	to	implement	the	generic
interface	IDesignTimeDbContextFactory	and	return	a	context	from	the	method
CreateDbContext.

In	the	following	code	sample,	the	BooksContextFactory	class	implements	the
interface	IDesignTimeDbContextFactory.	The	CreateDbContext	method
receives	command-line	arguments	passed	to	the	dotnet	CLI	for	creating	the
migration.	The	connection	string	received	via	the	parameters	is	passed	to	the
DbContextOptionsBuilder	to	create	options	that	in	turn	are	passed	as	arguments
to	the	constructor	of	the	BooksContext	(code	file
MigrationsApp/BooksContextFactory.cs):

using	BooksLib;

using	Microsoft.EntityFrameworkCore;

using	Microsoft.EntityFrameworkCore.Design;

using	System;

	

public	class	BooksContextFactory	:	

IDesignTimeDbContextFactory<BooksContext>

{

		public	BooksContext	CreateDbContext(string[]	args)

		{

				if	(args.Length	<	1)

				{

						Console.WriteLine($"please	supply	a	connection	string");

						Environment.Exit(-1);

						return	null!;

				}

				else

				{

						string	connectionString	=	args[0];

						DbContextOptionsBuilder<BooksContext>	optionsBuilder	=	

new();

						optionsBuilder.UseSqlServer(connectionString);

						return	new	BooksContext(optionsBuilder.Options);

				}

		}

}

NOTE If	you	used	the	CreateDbContext	method	before	.NET	5,
command-line	arguments	were	not	passed	to	this	method.	In	that	case,	you
needed	to	supply	the	connection	string	differently.	With	.NET	5,	this	has	been

fixed,	and	you	can	supply	any	options	you	need.

Creating	Migrations
With	all	this	in	place,	you	can	create	an	initial	migration.	The	following
command—when	started	with	the	current	directory	set	to	the	library—creates	an
initial	migration	named	InitBooks.	The	startup	project	referenced	with	the
option	--startup-project	contains	the	factory	code	with	the	connection	string
to	the	server:

>	dotnet	ef	migrations	add	InitBooks	--startup-project	

../MigrationApp/MigrationApp.csproj	--	server=

(localdb)\mssqllocaldb;database=ProCSharpBooks;trusted_connection=true

If	your	project	contains	multiple	EF	Core	contexts,	you	need	to	supply	the
additional	option	--context	and	supply	the	name	of	the	DB	context	class.

Running	this	command	creates	a	Migrations	folder	with	a	snapshot	to	create	the
complete	database	schema	based	on	the	model	(code	file
BooksLib/Migration/BooksContextModelSnapshot.cs):

[DbContext(typeof(BooksContext))]

partial	class	BooksContextModelSnapshot	:	ModelSnapshot

{

		protected	override	void	BuildModel(ModelBuilder	modelBuilder)

		{

#pragma	warning	disable	612,	618

				modelBuilder

						.HasAnnotation("Relational:MaxIdentifierLength",	128)

						.HasAnnotation("ProductVersion",	"5.0.3")

						.HasAnnotation("SqlServer:ValueGenerationStrategy",	

								SqlServerValueGenerationStrategy.IdentityColumn);

	

				modelBuilder.Entity("BooksLib.Book",	b	=>

				{

						b.Property<int>("BookId")

								.ValueGeneratedOnAdd()

								.HasColumnType("int")

								.HasAnnotation("SqlServer:ValueGenerationStrategy",	

										SqlServerValueGenerationStrategy.IdentityColumn);

	

						b.Property<string>("Publisher")

								.HasMaxLength(30)

								.HasColumnType("nvarchar(30)");

	

						b.Property<string>("Title")

								.IsRequired()

								.HasMaxLength(50)

								.HasColumnType("nvarchar(50)");

	

						b.HasKey("BookId");

	

						b.ToTable("Books");

				});

#pragma	warning	restore	612,	618

		}

}

For	every	migration,	a	migration	class	deriving	from	the	base	class	Migration	is
created.	This	base	class	defines	the	Up	and	Down	methods	that	allow	applying	the
migration	to	this	migration	version	or	to	step	a	level	back	(code	file
BooksLib/<version>_InitBooks.cs):

public	partial	class	InitBooks	:	Migration

{

		protected	override	void	Up(MigrationBuilder	migrationBuilder)

		{

				migrationBuilder.CreateTable(

						name:	"Books",

						columns:	table	=>	new

						{

								BookId	=	table.Column<int>(type:	"int",	nullable:	false)

										.Annotation("SqlServer:Identity",	"1,	1"),

								Title	=	table.Column<string>(type:	"nvarchar(50)",	

maxLength:	50,	

											nullable:	false),

								Publisher	=	table.Column<string>(type:	"nvarchar(30)",	

maxLength:	30,	

											nullable:	true)

						},

						constraints:	table	=>

						{

								table.PrimaryKey("PK_Books",	x	=>	x.BookId);

						});

		}

	

		protected	override	void	Down(MigrationBuilder	

migrationBuilder)

		{

				migrationBuilder.DropTable(

						name:	"Books");

		}

}

After	making	a	change	to	a	model,	such	as	adding	an	optional	Isbn	property	to
the	Book	class	(code	file	BooksLib/Book.cs),	as	shown	here:

public	class	Book

{

		public	Book(string	title,	string?	publisher	=	default,	int	

bookId	=	default)

		{

				Title	=	title;

				Publisher	=	publisher;

				BookId	=	bookId;

		}

		[StringLength(50)]

		public	string	Title	{	get;	set;	}

		[StringLength(30)]

		public	string?	Publisher	{	get;	set;	}

		public	int	BookId	{	get;	set;	}

		[StringLength(20)]

		public	string?	Isbn	{	get;	set;	}

}

you	need	a	new	migration:

>	dotnet	ef	migrations	add	AddIsbn	--startup-project	

../MigrationApp/MigrationApp.csproj	--	server=

(localdb)\mssqllocaldb;database=ProCSharpBooks;trusted_connection=true

With	the	new	migration,	that	snapshot	class	is	updated	to	show	the	current	state,
and	a	new	Migration	type	is	used	to	add	and	remove	the	Isbn	column	with	the
Up	and	Down	methods	(code	file	BooksLib/<version>_AddIsbn.cs):

public	partial	class	AddIsbn	:	Migration

{

		protected	override	void	Up(MigrationBuilder	migrationBuilder)

		{

				migrationBuilder.AddColumn<string>(

						name:	"Isbn",

						table:	"Books",

						type:	"nvarchar(20)",

						maxLength:	20,

						nullable:	true);

		}

	

		protected	override	void	Down(MigrationBuilder	

migrationBuilder)

		{

				migrationBuilder.DropColumn(

						name:	"Isbn",

						table:	"Books");

		}

}

NOTE Migrations	are	fully	customizable.	You	can	adapt	the	code	to	your
own	needs.	With	migrations,	you	might	lose	data.	For	example,	with	a
migration,	you	might	reduce	the	string	length	of	a	property.	Because	you
forgot	to	limit	a	property	with	a	previous	version,	the	SQL	datatype	can	be
nvarchar(max).	If	you	limit	this	to	nvarchar(50),	some	data	might	be	lost.
When	creating	such	a	migration,	you	get	a	warning	on	the	possible	data
loss.	Whether	you	really	lose	data	depends	on	whether	the	data	stored	in	the
database.	You	might	know	that	the	data	length	of	the	string	is	never	larger
than	50	characters,	but	is	this	also	the	case	for	the	production	database?
You	can	customize	the	migration	to	check	for	the	length	of	the	data	before
the	migration	takes	place	and	inform	an	administrator	to	take	some	actions
before	starting	the	migration.	In	any	case,	you	should	do	a	database	backup
before	doing	a	migration	if	it's	not	just	for	testing	purposes.

NOTE With	every	change	you're	doing,	you	can	create	another	migration.
The	new	migration	defines	only	the	changes	needed	to	get	from	the	previous
version	to	the	new	version.	If	a	customer's	database	needs	to	be	updated
from	any	earlier	version,	the	necessary	migrations	are	invoked	when
migrating	the	database.

During	the	development	process,	you	might	end	up	with	many	migrations
that	are	not	needed	in	production.	You	just	need	to	keep	the	migrations	for
all	the	versions	that	might	be	running	on	the	customer	sites.	To	remove	the
migrations	from	development	time,	you	can	invoke	dotnet	ef	migrations
remove	to	remove	the	latest	migration	code.	Then	add	new	larger	migrations
that	contain	all	the	changes	since	the	previous	migration.

Applying	Migrations	Programmatically
After	you've	configured	the	migrations,	you	can	start	the	migration	process	of
the	database	directly	from	the	application.	To	do	this,	the	console	application	is
configured	to	use	the	dependency	injection	container	to	retrieve	the	DB	context
and	then	to	invoke	the	MigrateAsync	method	of	the	Database	property	(code	file

MigrationsApp/Program.cs):

using	BooksLib;

using	Microsoft.EntityFrameworkCore;

using	Microsoft.Extensions.Configuration;

using	Microsoft.Extensions.DependencyInjection;

using	Microsoft.Extensions.Hosting;

	

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	connectionString	=	

context.Configuration.GetConnectionString("BooksConnection");

				services.AddDbContext<BooksContext>();

		})

		.Build();

	

using	var	scope	=	host.Services.CreateScope();

var	context	=	

scope.ServiceProvider.GetRequiredService<BooksContext>();

await	context.Database.MigrateAsync();

If	the	database	does	not	exist	yet,	the	Migrate	method	creates	the	database—
with	the	schemas	defined	by	the	model—as	well	as	a	__EFMigrationsHistory
table	that	lists	all	the	migrations	that	have	been	applied	to	the	database.	You
cannot	use	the	EnsureCreated	method	to	create	the	database	as	was	used	earlier
because	this	method	does	not	apply	the	migration	information	to	the	database.

With	an	existing	database,	the	database	gets	updated	to	the	current	version	of	the
migration.	Programmatically,	you	can	get	all	the	migrations	available	in	the
application	with	the	GetMigrations	method.	To	see	all	applied	migrations,	you
can	use	the	GetAppliedMigrations	method.	For	all	migrations	that	are	missing
in	the	database,	use	the	GetPendingMigrations	method.

Other	Ways	to	Apply	Migrations
Instead	of	applying	migrations	programmatically,	you	can	apply	migrations
using	the	command	line:

>	dotnet	ef	database	update	--startup-project	

../MigrationsConsoleApp

This	command	applies	the	latest	migration	to	the	database.	You	can	also	supply
the	name	of	the	migration	to	this	command	to	put	the	database	into	a	specific
version	of	the	migration.

If	you	have	a	database	administrator	who	needs	to	keep	full	control	over	the
database	and	doesn't	allow	programmatic	changes	or	changes	from	a	tool	such	as
the	.NET	Core	CLI	command	line,	you	can	create	an	SQL	script	and	hand	this
over	(or	use	it	by	yourself).

The	following	command	line	creates	the	SQL	script	migrationsscript.sql
from	the	initial	database	creation	up	to	the	latest	migration.	You	can	also	supply
specific	from/to	values	for	the	range	of	the	migrations	that	should	be	applied	in
the	script:

>	dotnet	ef	migrations	script	--output	migrationsscript.sql	

--startup-project	..\MigrationsConsoleApp

WORKING	WITH	QUERIES
Now	that	I've	defined	the	model	and	discussed	migrations	and	scaffolding,	let's
examine	queries	in	more	detail.	This	section	covers	the	following:

Basic	queriesAsynchronous	streams

Raw	SQL	queries

Compiled	queries	for	better	performance

Global	query	filters

EF.Functions

Basic	Queries
You've	already	seen	that	accessing	a	context	property	of	DbSet	returns	a	list	of
all	entities	of	the	specified	table.	Let's	look	at	some	more	queries	and	the
outcome	with	SQL	sent	to	the	server.

Accessing	the	Books	property	retrieves	all	the	Book	records	from	the	database
(code	file	BooksSample/QuerySamples.cs):

private	async	Task	QueryAllBooksAsync()

{

		Console.WriteLine(nameof(QueryAllBooksAsync));

		using	(var	context	=	new	BooksContext())

		{

				List<Book>	books	=	await	context.Books.ToListAsync();

				foreach	(var	b	in	books)

				{

						Console.WriteLine(b);

				}

		}

		Console.WriteLine();

}

You	can	query	for	an	object	with	a	specific	key	with	the	FindAsync	method.	If
the	record	is	not	found,	this	method	returns	null	(code	file
Queries/Runner.cs):

public	async	Task	FindByKeyAsync(int	id)

{

		Console.WriteLine(nameof(FindByKeyAsync));

		MenuItem?	menuItem	=	await	

_menusContext.MenuItems.FindAsync(id);

		Console.WriteLine(menuItem);

		Console.WriteLine();

}

This	results	in	a	SELECT	SQL	statement	with	TOP(1)	and	a	WHERE	clause:

SELECT	TOP(1)	[m].[MenuItemId],	[m].[IsDeleted],	[m].

[LastUpdated],	[m].[MenuCardId],	

														[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[MenuItemId]	=	@__p_0

Instead	of	using	a	FindAsync	method,	you	can	also	use	the	SingleAsync	or
SingleOrDefaultAsync	method.	The	difference	between	SingleAsync	and
SingleOrDefaultAsync	is	that	SingleAsync	throws	an	exception	when	no
records	are	found,	whereas	SingleOrDefaultAsync	returns	null	when	no	records
are	found.	These	methods	also	throw	an	exception	if	more	than	one	record	is
found.

The	following	code	snippet	uses	the	method	SingleOrDefaultAsync	to	ask	for
menu	item	text	that	should	be	available	only	once	(code	file
Queries/Runner.cs):

MenuItem?	menuItem	=	await	_menusContext.MenuItems

		.TagWith("SingleOrDefault")

		.SingleOrDefaultAsync(m	=>	m.Text	==	text);

The	generated	SQL	statement	asks	for	the	TOP(2)	records,	which	allows
throwing	an	exception	if	two	records	are	found:

SELECT	TOP(2)	[m].[MenuItemId],	[m].[IsDeleted],	[m].

[LastUpdated],	[m].[MenuCardId],	

		[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	=	@__title_0

The	FirstOrDefaultAsync	method	doesn't	throw	an	exception	if	multiple
records	fulfill	the	condition.	In	any	case,	only	the	first	result	is	taken,	or	null	is
returned	if	no	records	are	found	(code	file	Queries/Runner.cs):

MenuItem?	menuItem	=	await	_menusContext.MenuItems

		.TagWith("FirstOrDefault")

		.FirstOrDefaultAsync(m	=>	m.Text	==	title);

With	FirstOrDefaultAsync,	you	use	a	SELECT	TOP(1)	:

SELECT	TOP(1)	[m].[MenuItemId],	[m].[IsDeleted],	[m].

[LastUpdated],	[m].[MenuCardId],	

		[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	=	@__title_0

The	Where	method	returns	all	objects	fulfilling	the	condition.	It	allows	for	simple
filtering	based	on	a	condition.	You	can	also	use	the	Contains	or	StartsWith
method	within	the	Where	expression	(code	file	Queries/Runner.cs):

var	menuItems	=	await	_menusContext.MenuItems

		.Where(m	=>	m.Text.Contains("menu"))

		.TagWith("Where")

		.ToListAsync();

The	resulting	SQL	statement	makes	use	of	a	simple	WHERE	in	the	SQL	clause
using	a	LIKE	for	the	Contains	method:

SELECT	[m].[MenuItemId],	[m].[IsDeleted],	[m].[LastUpdated],	

[m].[MenuCardId],	

		[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	LIKE	N'%menu%'

Using	the	Skip	and	Take	methods,	you	can	implement	paging	functionality	to
skip	some	records	and	to	take	only	a	specific	number	of	records.	By	invoking
this	multiple	times,	you	can	retrieve	page	by	page	(code	file
Queries/Runner.cs):

var	menuItems	=	await	_menusContext.MenuItems

		.OrderBy(m	=>	m.MenuItemId)

		.Skip(skip)

		.Take(take)

		.TagWith("SkipAndTake")

		.ToListAsync();

The	following	SQL	code	shows	how	this	translates	to	the	ORDER	BY	and	OFFSET	/
FETCH	clause:

SELECT	[m].[MenuItemId],	[m].[IsDeleted],	[m].[LastUpdated],	

[m].[MenuCardId],	

		[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

ORDER	BY	[m].[MenuItemId]

OFFSET	@__p_0	ROWS	FETCH	NEXT	@__p_1	ROWS	ONLY

NOTE In	Chapter	9,	you	can	read	about	many	more	LINQ	methods	and
LINQ	clauses,	which	you	can	also	use	with	EF	Core.	Just	bear	in	mind	that
the	implementation	is	different	between	LINQ	to	objects	and	LINQ	to	EF
Core.	With	LINQ	to	EF	Core,	expression	trees	are	used	that	allow	creating
an	SQL	query	with	the	complete	LINQ	expression	at	runtime.	With	LINQ	to
objects,	most	of	the	LINQ	queries	are	defined	in	the	Enumerable	class.	LINQ
with	expression	trees	is	implemented	in	the	Queryable	class,	and	many
enhancements	for	EF	Core,	such	as	the	Async	variants,	are	implemented	in
the	EntityFrameworkQueryableExtensions	class.	For	more	information
about	the	expression	tree,	read	Chapter	9.

Asynchronous	Streams
EF	Core	also	supports	asynchronous	streams.	The	DbSet	method
AsAsyncEnumerable	returns	IAsyncEnumerable,	which	allows	using	await
foreach	to	iterate	through	the	result	(code	file	Queries/Runner.cs):

public	async	Task	GetAllMenusUsingAsyncStream()

{

		IAsyncEnumerable<MenuItem>	menuItems	=	

_menusContext.MenuItems.AsAsyncEnumerable();

		await	foreach	(var	menuItem	in	menuItems)

		{

				Console.WriteLine(menuItem);

		}

}

While	this	just	sends	one	SQL	statement	to	the	database	server,	not	all	objects
are	immediately	materialized	and	tracked	from	the	context.	The	caller	using
IAsyncEnumerable	defines	how	the	objects	are	materialized	using	await

foreach.	Depending	on	the	result	size	and	the	size	of	the	objects,	this	can	return
faster	results	and	requires	memory	just	as	the	objects	are	materialized.

Raw	SQL	Queries
EF	Core	also	enables	you	to	define	raw	SQL	queries,	which	in	turn	return	entity
objects	and	track	these	objects.	You	just	need	to	invoke	the
FromSqlInterpolated	method	of	the	DbSet	object,	as	shown	in	the	following
code	snippet	(code	file	Queries/Runner.cs):

var	menuItems	=	await	_menusContext.MenuItems

		.FromSqlInterpolated(

				$"SELECT	*	FROM	MenuItems	WHERE	LIKE	'{term}%'")

		.TagWith("RawSQL")

		.ToListAsync();

The	SQL	query	assigned	to	the	RawSql	method	needs	to	return	entity	types	that
are	part	of	the	model,	and	data	for	all	the	properties	of	the	model	need	to	be
returned.

The	SQL	string	assigned	to	the	FromSqlInterpolated	method	might	look	like
SQL	injection	can	happen	as	the	string	is	defined.	However,	because	of	the
argument	type	FormattableString,	the	expressions	assigned	within	the	string
are	used	to	create	parameters	for	the	SQL	statement.	Read	Chapter	2,	“Core	C#,”
for	more	information	on	FormattableString.

The	method	FromSqlInterpolated	throws	an	exception	if	you	pass	a	normal
string.	To	pass	a	normal	string,	you	can	use	FromSqlRaw.	This	method	supports
named	parameters	with	the	SQL	statement.	You	can	pass	parameters	of	type
SqlParameter	to	a	params	array.	Don't	use	string	concatenation	to	create	the
SQL	statement.

Compiled	Queries
For	queries	that	need	to	be	done	multiple	times	or	when	you	need	to	start	them
faster	as	they	are	needed,	you	can	prepare	the	compilation	process	for	a	query
using	a	compiled	query	with	the	method	EF.CompileQuery.	This	method	offers
different	generic	overloads	where	you	can	pass	a	different	number	of	arguments.
The	first	generic	parameter	of	this	method	specifies	a	class	deriving	from
DbContext.	The	query	is	compiled	independent	of	the	context,	and	you	can	pass
different	DbContext	instances	with	every	invocation	of	the	precompiled	query.
With	the	other	generic	parameters,	you	can	define	the	parameters	and	the	return
type	you	need	with	the	query.

With	the	following	code	snippet,	an	extension	method	extends	the	MenusContext
class	and	creates	a	compiled	query	passing	a	string	parameter	and	returning	a	list
of	MenuItem	objects.	The	compilation	is	taking	place	with	the	first	invocation.

The	first	parameter	that's	needed	when	creating	a	compiled	query	is	a	class
deriving	from	DbContext	;	with	the	following	sample	code	it's	the
MenusContext.	The	extension	method	MenusByText	extends	the	MenusContext	;
thus,	this	parameter	is	used	as	the	first	argument	for	the	compiled	query	(code
file	Queries/CompiledQueryExtensions.cs):

using	Microsoft.EntityFrameworkCore;

using	System;

using	System.Collections.Generic;

using	System.Linq;

	

static	class	CompiledQueryExtensions

{

		private	static	Func<MenusContext,	string,	

IEnumerable<MenuItem>>?	s_menuItemsByText;

	

		private	static	Func<MenusContext,	string,	

IEnumerable<MenuItem>>	

				CompileMenusByTextQuery()	

						=>	EF.CompileQuery((MenusContext	context,	string	text)

								=>	context.MenuItems.Where(m	=>	m.Text	==	text));

	

		public	static	IEnumerable<MenuItem>	MenuItemsByText(this	

MenusContext	menusContext,	

				string	text)

		{

				if	(s_menuItemsByText	is	null)

				{

							s_menuItemsByText	=	CompileMenusByTextQuery();

				}

				return	s_menuItemsByText(menusContext,	text);

		}

		//…

}

The	extension	method	is	used	with	the	following	code	snippet	to	invoke
MenusByText	using	a	_menusContext	(code	file	Queries/Runner.cs):

var	menuItems	=	_menusContext.MenusByText("menu	26");

foreach	(var	menuItem	in	menuItems)

{

		Console.WriteLine(menuItem);

}

Compiled	queries	support	returning	an	asynchronous	stream	by	using	the
EF.CompileAsyncQuery	method.	This	method	returns	IAsyncEnuerable<T>
(code	file	Queries/CompiledQueryExtensions.cs):

static	class	CompiledQueryExtensions

{

		//…

		private	static	Func<MenusContext,	string,	

IAsyncEnumerable<MenuItem>>?	

				s_menusByTextAsync;

		private	static	Func<MenusContext,	string,	

IAsyncEnumerable<Menu>>	

				CompileMenuItemsByTextAsyncQuery()	

						=>	EF.CompileAsyncQuery((MenusContext	context,	string	

text)

								=>	context.MenuItems.Where(m	=>	m.Text	==	text));

	

		public	static	IAsyncEnumerable<Menu>	MenuItemsByTextAsync(

				this	MenusContext	menusContext,	string	text)

		{

				if	(s_menuItemsByTextAsync	is	null)

				{

						s_menuItemsByTextAsync	=	

CompileMenuItemsByTextAsyncQuery();

				}

				return	s_menuItemsByTextAsync(menusContext,	text);

		}

}

This	can	be	used	with	an	await	foreach	(code	file	Queries/Runner.cs):

await	foreach	(var	menuItem	in	

_menusContext.MenuItemsByTextAsync("menu	26"))

{

		Console.WriteLine(menuItem);

}

Global	Query	Filters
Earlier	in	this	chapter,	you	saw	shadow	state	used	with	the	IsDeleted	column.
Instead	of	specifying	the	WHERE	clause	with	every	query	to	filter	out	the
records	that	have	the	IsDeleted	property	set	to	true,	you	can	define	a	global
query	filter	when	creating	the	model.	This	is	what	the	next	code	snippet	does—
globally	checking	for	IsDeleted.	Because	IsDeleted	is	not	mapped	to	the

model	and	is	just	via	shadow	state,	the	value	can	be	retrieved	using	EF.Property
(code	file	Queries/BooksContext.cs):

protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

{

		base.OnModelCreating(modelBuilder);

	

		modelBuilder.Entity<Book>().HasQueryFilter(

				b	=>	!EF.Property<bool>(b,	IsDeleted));

		//…

}

With	this	query	filter	defined,	the	WHERE	check	for	IsDeleted	is	added	to	every
query	used	with	this	context.

NOTE Global	query	filters	are	also	of	practical	use	with	multitenancy
requirements.	You	can	filter	all	queries	for	a	context	for	a	specific	tenant	ID.
You	just	need	to	pass	the	tenant	ID	when	constructing	the	context.	With
dependency	injection,	you	need	to	specify	a	service	that	is	injected	with	the
constructor	where	the	tenant	ID	can	be	retrieved	in	the	query	filter.

NOTE Usually,	the	global	query	filter	should	be	applied.	With	queries
where	you	don't	want	the	global	query	filter	active,	apply	the	method
IgnoreQueryFilters	with	the	query.

EF.Functions
EF	Core	allows	custom	extension	methods	that	can	be	implemented	by
providers.	For	this,	the	EF	class	defines	the	Functions	property	of	type
DbFunctions	that	can	be	extended	using	extension	methods.	The	SQL	Server
provider	offers	methods	for	date	calculations	(for	example	DateDiffDay,
DateDiffHour,	DateDiffMicrosecond,	DateDiffMillisecond,	DateFromParts,
and	others).

The	Like	method	is	part	of	EF	Core	for	relational	database	providers.	The
following	code	snippet	enhances	the	query	of	the	Where	method	by	using
EF.Functions.Like	and	supplying	an	expression	that	contains	the	parameter
textSegment.	The	parameter	textSegment	is	embedded	within	two	%	characters
(code	file	Queries/Runner.cs):

public	async	Task	UseEFCunctions(string	textSegment)

{

		Console.WriteLine(nameof(UseEFCunctions));

		string	likeExpression	=	$"%{textSegment}%";

	

		var	menuItems	=	await	_menusContext.MenuItems

				.Where(m	=>	EF.Functions.Like(m.Text,	likeExpression))

				.ToListAsync();

		foreach	(var	menuItem	in	menuItems)

		{

				Console.WriteLine(menuItem);

		}

		Console.WriteLine();

}

When	you	run	the	application,	the	method	Where	that	contains
EF.Functions.Like	is	translated	to	the	SQL	clause	WHERE	with	LIKE	:

SELECT	[m].[MenuItemId],	[m].[IsDeleted],	[m].[LastUpdated],	

[m].[MenuCardId],	

		[m].[Price],	[m].[RestaurantId],	[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	LIKE	@__likeExpression_1

LOADING	RELATED	DATA
If	a	relation	is	configured	to	be	required	in	the	database,	this	does	not	necessarily
mean	it's	required	in	the	object	model,	and	to	fill	related	data,	you	need	to	be
aware	of	this	when	loading	relations.	The	available	options	are	as	follows:

Eager	loading

Explicit	loading

Lazy	loading

The	sample	application	implements	the	data	classes	Book,	Chapter,	Person,	and
Address.	A	Book	contains	a	Chapters	property	that	contains	a	list	of	Chapter	s
and	an	Author	property	of	type	Person.	The	Author	class	contains	an	Address
property	that	references	an	Address	object.	With	this	sample,	each	of	these
classes	uses	separate	tables.	In	a	later	sample	in	this	chapter,	in	the	section
“Owned	Entities,”	you	see	how	to	make	objects	that	share	a	table.

Eager	Loading	Related	Data

You	can	load	related	data	immediately	when	a	query	is	executed	by	invoking	the
Include	method	and	specifying	the	relation.	The	following	code	snippet	defines
a	query	to	retrieve	books	and	uses	the	Include	method	to	include	the	related
author.	The	Person	class	used	with	the	Author	property	contains	another
reference	to	the	Address.	Here,	the	ThenInclude	method	is	used	to	include	the
address	as	well.	The	list	of	chapters	is	included	using	the	Include	method
accessing	the	Chapters	property	of	the	Book	type	(code	file
LoadedRelatedData/Runner.cs):

public	async	Task	EagerLoadingAsync()

{

		var	books	=	await	_booksContext.Books

				.Where(b	=>	b.Publisher	==	"pub1")

				.Include(b	=>	b.Author)

				.ThenInclude(a	=>	a!.Address)

				.Include(b	=>	b.Chapters)

				.ToListAsync();

		foreach	(var	book	in	books)

		{

				Console.WriteLine($"{book.Title}	{book.Author?.FirstName}	"	

+

						$"{book.Author?.Address?.Country}");

		}

}

Using	this	query	containing	Include	and	ThenInclude	generates	a	single	SQL
statement	joining	the	different	tables:

SELECT	[b].[BookId],	[b].[AuthorId],	[b].[Publisher],	[b].

[Title],	[p].[PersonId],	

		[p].[AddressId],	[p].[FirstName],	[p].[LastName],	[a].

[AddressId],	[a].[City],	

		[a].[Country],	[c].[ChapterId],	[c].[BookId],	[c].[Title]

FROM	[Books]	AS	[b]

INNER	JOIN	[People]	AS	[p]	ON	[b].[AuthorId]	=	[p].[PersonId]

INNER	JOIN	[Addresses]	AS	[a]	ON	[p].[AddressId]	=	[a].

[AddressId]

LEFT	JOIN	[Chapters]	AS	[c]	ON	[b].[BookId]	=	[c].[BookId]

WHERE	[b].[Publisher]	=	N'One'

ORDER	BY	[b].[BookId],	[p].[PersonId],	[a].[AddressId],	[c].

[ChapterId]

NOTE With	EF	Core	5,	instead	of	combining	several	joins,	you	can	enable
split	queries	to	create	multiple	queries.	You	can	configure	split	queries	either
with	the	SQL	Server	options	in	the	DI	configuration	to	invoke	the

UseQuerySplittingBehavior	method	or	by	using	the	AsSplitQuery
extension	method	with	a	query.	With	split	queries,	joins	are	still	done	with
one-to-one	relations,	but	with	one-to-many	relations	instead	of	a	join,
multiple	SELECT	methods	are	sent	to	the	server,	which	can	improve	the
performance	based	on	the	complexity	of	the	query.

Eager	Loading	with	Filtered	Include
EF	Core	5	allows	filtering	with	the	Include	method	to	not	load	all	related	data.
To	use	filtering	with	Include,	specify	a	Where	method	within	the	lambda
implementation	to	reference	a	collection,	as	is	done	with	the	include	of	chapters,
as	shown	in	the	following	code	snippet	(code	file
LoadedRelatedData/Runner.cs):

var	books	=	await	_booksContext.Books

		.Where(b	=>	b.Publisher	==	"pub2")

		.Include(b	=>	b.Author)

		.ThenInclude(a	=>	a!.Address)

		.Include(b	=>	b.Chapters!.Where(c	=>	c.ChapterId	>	5))	

		.ToListAsync();

When	you	run	this	code,	the	query	is	converted	to	an	SQL	query	with	a	SELECT
within	the	JOIN	:

SELECT	[b].[BookId],	[b].[AuthorId],	[b].[Publisher],	[b].

[Title],	[p].[PersonId],	

		[p].[AddressId],	[p].[FirstName],	[p].[LastName],	[a].

[AddressId],	[a].[City],	

		[a].[Country],	[t].[ChapterId],	[t].[BookId],	[t].[Title]

FROM	[Books]	AS	[b]

INNER	JOIN	[People]	AS	[p]	ON	[b].[AuthorId]	=	[p].[PersonId]

INNER	JOIN	[Addresses]	AS	[a]	ON	[p].[AddressId]	=	[a].

[AddressId]

LEFT	JOIN	(

		SELECT	[c].[ChapterId],	[c].[BookId],	[c].[Title]

		FROM	[Chapters]	AS	[c]

		WHERE	[c].[ChapterId]>	5

)	AS	[t]	ON	[b].[BookId]	=	[t].[BookId]

WHERE	[b].[Publisher]	=	N'One'

ORDER	BY	[b].[BookId],	[p].[PersonId],	[a].[AddressId],	[t].

[ChapterId]

Explicit	Loading	Related	Data

Instead	of	defining	one	query	where	all	the	needed	related	data	is	loaded,	you
can	create	a	query	to	load	just	the	Book	objects	from	the	Books	table	and	leave	all
the	relations	empty.	When	needed,	you	make	queries	using	explicit	loading	of
related	data.

Take	a	look	at	the	following	code	snippet.	The	query	requests	all	books	with	a
specific	publisher.	If	you	try	to	access	the	Chapters	and	Author	properties	of	the
resulting	book	after	starting	the	query,	the	values	for	these	properties	are	null	(if
the	related	entities	are	not	already	loaded	into	the	context).	Relations	are	not
loaded	implicitly.	EF	Core	supports	explicit	loading	by	using	Entry	methods	of
the	context	that	return	EntityEntry	objects	by	passing	an	entity.	The
EntityEntry	class	defines	Collection	and	Reference	methods	that	allow
explicit	loading	of	relations.	With	a	one-to-many	relationship,	you	can	use	the
Collection	method	to	specify	the	collection,	whereas	a	one-to-one	relation
needs	the	Reference	method	to	specify	the	relation.	Explicit	loading	then
happens	with	the	LoadAsync	method	(code	file
LoadingRelatedData/Runner.cs):

public	async	Task	ExplicitLoadingAsync()

{

		var	books	=	await	_booksContext.Books

				.Where(b	=>	b.Publisher	==	"pub1")

				.ToListAsync();

	

		foreach	(var	book	in	books)

		{

				Console.WriteLine(book.Title);

				var	bookEntry	=	_booksContext.Entry(book);

				await	bookEntry.Reference(b	=>	b.Author).LoadAsync();

				Console.WriteLine($"{book.Author?.FirstName}	

{book.Author?.LastName}");

	

				await	_booksContext.Entry(book.Author).Reference(a	=>	

a!.Address).LoadAsync();

				Console.WriteLine($"{book.Author!.Address!.Country}");

	

				await	bookEntry.Collection(b	=>	b.Chapters).LoadAsync();

	

				foreach	(var	chapter	in	book.Chapters)

				{

						Console.WriteLine(chapter.Title);

				}

		}

}

The	NavigationEntry	class	that	implements	the	LoadAsync	method	also
implements	an	IsLoaded	property	where	you	can	check	whether	the	relation	is
already	loaded.	You	do	not	need	to	check	for	a	loaded	relation	before	invoking
the	LoadAsync	method;	this	method	already	uses	the	IsLoaded	property	to	check
that	the	request	to	the	SQL	server	is	not	done	a	second	time.

When	you	run	the	application	with	the	query	for	the	books,	the	following	SELECT
statement	is	executed	on	SQL	Server.	This	query	only	accesses	the	Books	table:

SELECT	[b].[BookId],	[b].[AuthorId],	[b].[Publisher],	[b].

[Title]

FROM	[Books]	AS	[b]

WHERE	[b].[Publisher]	=	N'pub1'

With	the	following	LoadAsync	method	to	retrieve	the	author	for	the	book,	the
SELECT	statement	retrieves	the	chapters	based	on	the	PersonId	:

SELECT	[p].[PersonId],	[p].[AddressId],	[p].[FirstName],	[p].

[LastName]

FROM	[People]	AS	[p]

WHERE	[p].[PersonId]	=	@__p_0

After	the	Person	object	is	materialized,	the	values	from	the	Addresses	table	are
retrieved	using	the	AddressId	:

SELECT	[a].[AddressId],	[a].[City],	[a].[Country]

FROM	[Addresses]	AS	[a]

WHERE	[a].[AddressId]	=	@__p_0

With	a	fourth	query,	chapter	information	is	retrieved	from	the	Chapters	table
using	the	BookId	:

SELECT	[c].[ChapterId],	[c].[BookId],	[c].[Title]

FROM	[Chapters]	AS	[c]

WHERE	[c].[BookId]	=	@__p_0

Sending	all	these	queries	to	the	database	repeats	for	every	book.	Because	some
books	are	written	by	the	same	author,	a	query	to	the	author	and	address	is	not
necessary	for	every	book.

NOTE With	explicit	loading,	you	need	to	consider	the	number	of	requests
that	you	make	to	the	database	server.	If	you	know	in	advance	what	data	you
need,	consider	using	eager	loading	instead.	With	explicit	loading,	the
DbContext	is	required.	If	you	send	an	object	tree	from	an	API	server	to	the
client,	the	client	usually	doesn't	have	the	DbContext	accessible	and	can't

load	related	data	without	making	requests	to	the	API	server.	Programming
services	is	covered	in	Chapter	25,	“Services.”

Lazy	Loading
Instead	of	using	explicit	loading	to	load	related	data,	you	have	an	easy
programming	option	to	access	properties	of	data	objects,	and	the	relations	are
loaded	like	magic.	This	is	easier	to	program	than	the	explicit	loading	variant,	but
it	still	does	the	same	number	of	queries.	There	are	also	some	additional
requirements:	you	need	to	reference	the	NuGet	package
Microsoft.EntityFrameworkCore.Proxies,	and	you	need	to	configure	proxies
with	the	DI	container.	Invoke	the	method	UseLazyLoadingProxies	with	the
options	argument.	Change	the	parameter	to	turn	it	on	or	off	(code	file
LoadingRelatedData/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	connectionString	=	

context.Configuration.GetConnectionString("BooksConnection");

				services.AddDbContext<BooksContext>(options	=>

				{

						options.UseLazyLoadingProxies(true);

						options.UseSqlServer(connectionString);

				});

				services.AddScoped<Runner>();

		})

		.Build();

With	lazy	loading,	there	are	some	requirements	for	the	entity	types.	The	entity
types	cannot	be	sealed,	and	all	the	properties	used	for	relations	need	to	be
declared	virtual.	The	proxy	creates	a	class	that	derives	from	your	entity	classes
and	overrides	the	virtual	methods.	With	the	implementation	of	the	overridden
methods,	the	same	functionality	you've	seen	with	explicit	loading	is	used;	you
just	don't	have	to	do	this	yourself	(code	file	LoadingRelatedData/Book.cs):

public	class	Book

{

		public	Book(string	title,	string?	publisher	=	default,	int	

bookId	=	default)

		{

				Title	=	title;

				Publisher	=	publisher;

				BookId	=	bookId;

		}

		[StringLength(50)]

		public	string	Title	{	get;	set;	}

		[StringLength(30)]

		public	string?	Publisher	{	get;	set;	}

		public	int	BookId	{	get;	set;	}

	

		//	set	accessor	required	for	lazy	loading

		public	virtual	ICollection<Chapter>	Chapters	{	get;	protected	

set;	}	

				=	new	HashSet<Chapter>();

	

		public	int	AuthorId	{	get;	set;	}

		[ForeignKey(nameof(AuthorId))]

		public	virtual	Person?	Author	{	get;	set;	}

}

Making	the	queries	is	now	a	lot	easier.	In	the	following	sample	code,	only	a
query	to	the	Books	table	is	done—without	eager	or	explicit	loading	definitions—
and	then	the	properties	Chapters	and	Author	are	used.	When	the	properties	are
accessed	for	the	first	time,	more	queries	to	the	database	server	are	made	to	fill
these	properties	(code	file	LoadingRelatedData/Runner.cs):

public	async	Task	LazyLoadingAsync()

{

		Console.WriteLine(nameof(LazyLoadingAsync));

		var	books	=	await	_booksContext.Books

				.Where(b	=>	b.Publisher	==	"pub1")

				.ToListAsync();

	

		foreach	(var	book	in	books)

		{

				Console.WriteLine(book.Title);

				Console.WriteLine($"{book.Author?.FirstName}	

{book.Author?.LastName}");

	

				Console.WriteLine($"{book.Author!.Address!.Country}");

				foreach	(var	chapter	in	book.Chapters)

				{

						Console.WriteLine(chapter.Title);

				}

		}

		Console.WriteLine();

}

NOTE While	lazy	loading	seems	to	be	the	simplest	option,	queries	are
handled	by	accessing	simple	properties,	which	can	take	time.	Also,	the
DbContext	needs	to	be	available.	Without	this,	the	properties	stay	empty.

WORKING	WITH	RELATIONSHIPS
With	the	samples	so	far,	you've	seen	one-to-one	and	one-to-many	relations.	With
EF	Core	5.0	you	can	also	specify	many-to-many	relations.	This	section	also
covers	table	splitting,	owned	entities,	and	table	per	hierarchy.

Many-to-Many	Relations
A	new	feature	of	EF	Core	5.0	is	the	support	of	many-to-many	relations.	In	the
following	code	snippet,	the	Book	class	defines	the	Authors	property	of	type
ICollection<Person>.	A	book	can	be	written	by	many	authors	(code	file
Relationships/Book.cs):

public	class	Book

{

		public	Book(string	title,	string?	publisher	=	default,	int	

bookId	=	default)

		{

				Title	=	title;

				Publisher	=	publisher;

				BookId	=	bookId;

		}

		[StringLength(50)]

		public	string	Title	{	get;	set;	}

		[StringLength(30)]

		public	string?	Publisher	{	get;	set;	}

		public	int	BookId	{	get;	set;	}

		public	DateTime?	ReleaseDate	{	get;	set;	}

	

		public	ICollection<Person>	Authors	=	new	HashSet<Person>();

}

On	the	other	side	of	the	relation,	with	the	Person	class,	the	WrittenBooks
property	defines	a	collection	of	Book	objects	(code	file
Relationships/Person.cs):

public	class	Person

{

		public	Person(string	firstName,	string	lastName,	int	personId	

=	0)

		{

				FirstName	=	firstName;

				LastName	=	lastName;

				PersonId	=	personId;

		}

	

		public	int	PersonId	{	get;	private	set;	}

	

		public	string	FirstName	{	get;	set;	}

		public	string	LastName	{	get;	set;	}

	

		public	ICollection<Book>	WrittenBooks	=	new	HashSet<Book>();

	

		//…

}

If	you	write	the	WrittenBooks	and	Authors	properties	with	a	get	and	set
accessor	(the	set	accessor	doesn't	need	to	be	public),	the	relation	is	defined	by
conventions.	Without	the	set	accessor,	Fluent	API	is	needed	to	specify	the
relation.	To	seed	the	relation	with	data,	the	Fluent	API	is	needed	in	any	case.	In
the	database,	a	many-to-many	relation	requires	a	joining	or	bridging	table	that
contains	the	keys	from	both	of	the	related	tables.	Before	version	5,	EF	Core
didn't	support	many-to-many	relations	directly,	and	you	had	to	define	two	one-
to-many	relations	using	another	class	to	map	to	the	joining	table.	Now,	a
mapping	type	is	automatically	created	in	between.	This	mapping	type	uses	a
property-bag	entity	type,	which	uses	the	Dictionary<string,	object>	type
definition	to	map	the	keys.

With	the	following	code	snippet,	the	mapping	between	the	WrittenBooks
property	in	the	Person	class	and	the	Authors	property	in	the	Book	class	is
defined	using	HasMany	and	WithMany.	To	fill	the	automatically	used	property-bag
entity	type	with	data,	you	use	the	UsingEntity	method.	UsingEntity	can	be
used	to	rename	the	column	and	table	names	and	to	specify	a	custom	class	instead
of	using	a	property	bag.	With	the	code	sample,	data	returned	from	the
GetBooksAuthors	is	used	to	fill	the	table	with	initial	data	(code	file
Relationships/BooksContext.cs):

public	class	BooksContext	:	DbContext

{

		public	BooksContext(DbContextOptions<BooksContext>	options)

				:	base(options)	{	}

	

		protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

		{

				modelBuilder.HasDefaultSchema("books");

	

				modelBuilder.ApplyConfiguration<Person>(new	

PersonConfiguration());

	

				InitData	data	=	new();

				modelBuilder.Entity<Book>()

						.HasMany(b	=>	b.Authors)

						.WithMany(a	=>	a.WrittenBooks)

						.UsingEntity(ba	=>	ba.HasData(data.GetBooksAuthors()));

	

				modelBuilder.Entity<Person>().HasData(data.GetAuthors());

				modelBuilder.Entity<Book>().HasData(data.GetBooks());

		}

	

		public	DbSet<Book>	Books	=>	Set<Book>();

		public	DbSet<Person>	People	=>	Set<Person>();

}

The	GetBooksAuthors	method	returns	an	object	array	to	fill	the	property	bag
using	anonymous	types.	The	property	names	for	the	anonymous	type	are
generated	using	the	relation	property	name	from	one	side	of	the	relation	and	the
key	name	property	from	the	other	side	of	the	relation.	Person.WrittenBooks
combined	with	Book.BookId	results	in	the	anonymous	type	property	name
WrittenBooksBookId.	Similarly,	Book.Authors	combined	with
Person.PersonId	results	in	AuthorsPersonId	(code	file
Relationships/InitData.cs):

public	object[]	GetBooksAuthors()

		=>	new	object[]	

		{

				new	{	WrittenBooksBookId	=	1,	AuthorsPersonId	=	1	},

				new	{	WrittenBooksBookId	=	1,	AuthorsPersonId	=	2	},

				new	{	WrittenBooksBookId	=	2,	AuthorsPersonId	=	1	},

				//…

		};

With	this	mapping	in	place	and	with	data	filled	in	the	database	(the	sample
application	makes	use	of	migrations	to	create	and	fill	the	database),	you	can
access	the	Authors	property	of	the	Book	class	to	access	information	from	the
book	authors.	With	the	following	code	snippet,	eager	loading	is	used	to	fill	the
authors.	Of	course,	you	can	also	use	explicit	or	lazy	loading	as	discussed	earlier

(code	file	Relationships/BooksContext.cs):

public	async	Task	GetBooksForAuthorAsync()

{

		var	books	=	await	_booksContext.Books

				.Where(b	=>	b.Title.StartsWith("Professional	C#"))

				.Include(b	=>	b.Authors)

				.ToListAsync();

		foreach	(var	b	in	books)

		{

				Console.WriteLine(b.Title);

				foreach	(var	a	in	b.Authors)

				{

						Console.Write($"{a.FirstName}	{a.LastName}");

				}

				Console.WriteLine();

		}

}

Table	Splitting
Sometimes	the	number	of	database	columns	grows	over	time	and	you	don't	need
to	access	all	the	columns	every	time.	It's	a	good	idea	not	to	have	all	the
properties	within	one	entity	class.	With	table	splitting,	you	can	split	a	table	into
multiple	entity	types.	Using	table	splitting,	each	class	that	belongs	to	the	same
table	needs	a	one-to-one	relationship	and	defines	its	own	primary	key.	However,
because	they	share	the	same	table,	the	primary	key	is	shared,	too.

Let's	get	into	an	example	with	the	MenuItem	class	that	represents	information
about	a	lunch	menu,	and	MenuDetails	contains	information	for	the	kitchen.	The
MenuItem	class	defines	some	properties	for	the	menu,	including	the	Details
property.	The	Details	property	maps	the	relation	to	the	MenuDetails	class	(code
file	Relationships/Menus.cs):

public	class	MenuItem

{

		public	MenuItem(string	title,	int	menuItemId	=	0)

		{

				Title	=	title;

				MenuItemId	=	menuItemId;

		}

		public	int	MenuItemId	{	get;	set;	}

		public	string	Title	{	get;	set;	}

		public	string?	Subtitle	{	get;	set;	}

		public	decimal	Price	{	get;	set;	}

		public	MenuDetails?	Details	{	get;	set;	}

}

The	MenuDetails	class	looks	like	it	would	map	to	its	own	table—with	a	primary
key—and	map	to	the	MenuItem	class	with	the	MenuItem	property	(code	file
Relationships/Menus.cs):

public	class	MenuDetails

{

		public	int	MenuDetailsId	{	get;	set;	}

		public	string?	KitchenInfo	{	get;	set;	}

		public	int	MenusSold	{	get;	set;	}

		public	MenuItem?	MenuItem	{	get;	set;	}

}

Within	the	context,	MenuItems	and	MenuDetails	are	two	DbSet	properties.	In	the
OnModelCreating	method,	the	MenuItem	class	is	configured	to	a	one-to-one
relationship	with	MenuDetails	using	HasOne	and	WithOne.	These	APIs	already
have	been	discussed.	Now	you	should	put	your	attention	to	the	invocation	of	the
ToTable	methods.	Both	MenuItem	and	MenuDetails	map	to	the	same	table
MenuItems.	This	makes	the	difference	for	table	splitting	(code	file
Relationships/MenusContext.cs):

public	class	MenusContext	:	DbContext

{

		public	MenusContext(DbContextOptions<MenusContext>	options)	

				:	base(options)	{	}

	

		protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

		{

				modelBuilder.HasDefaultSchema("ms");

	

				modelBuilder.Entity<MenuItem>()

						.HasOne<MenuDetails>(m	=>	m.Details!)

						.WithOne(d	=>	d.Menu!)

						.HasForeignKey<MenuDetails>(d	=>	d.MenuDetailsId);

				modelBuilder.Entity<MenuItem>().ToTable("MenuItems");

				modelBuilder.Entity<MenuDetails>().ToTable("MenuItems");

		}

	

		public	DbSet<MenuItem>	MenuItems	=>	Set<Menu>();

		public	DbSet<MenuDetails>	MenuDetails	=>	Set<MenuDetails>();

}

NOTE EF	Core	5	partially	supports	nullable	reference	types.	When	entity
types	are	annotated,	a	convention	is	used	to	map	to	nullable	columns.	Many
of	the	EF	Core	APIs	are	annotated,	but	not	all	are	(at	the	time	I'm	writing
this).	When	you	use	expressions	with	relations,	nullable	references	result	in	a
compiler	warning.	The	EF	Core	team	gives	a	guideline	with	two	different
contrary	options	for	ways	to	deal	with	this.	The	first	is	to	make	the	relation
property	(MenuDetails	with	the	MenuItem	class)	not	nullable,	even	if	it	could
be	null.	If	the	entity	type	is	used	from	EF	Core	only,	this	shouldn't	be	an
issue.	However,	if	the	entity	type	is	passed	around	and	will	be	created	in
other	ways,	this	can	lead	to	issues—for	example,	NullReferenceException
if	the	relation	was	not	filled.	The	second	option	is	to	declare	the	reference	as
nullable	(as	was	done	with	the	sample	code)	and	use	the	null	forgiving
operator	!	within	the	arguments	of	the	HasOne	and	WithOne	methods	to	get
rid	of	the	compiler	warning.	With	the	sample	code,	the	second	option	is	used.
With	future	EF	Core	versions,	some	enhancements	are	planned,	including
annotations	for	all	the	EF	Core	APIs.

When	you	verify	how	the	table	was	generated	in	the	database,	you	can	see	with
the	following	SQL	statement	that	the	MenuItems	table	includes	the	columns	for
both	the	MenuItem	and	MenuDetails	classes,	and	only	the	primary	key	from	the
MenuItem	class:

CREATE	TABLE	[dbo].[MenuItems](

		[MenuItemId]	[int]	IDENTITY(1,1)	NOT	NULL,

		[Price]	[decimal](18,	2)	NOT	NULL,

		[Subtitle]	[nvarchar](max)	NULL,

		[Title]	[nvarchar](max)	NULL,

		[KitchenInfo]	[nvarchar](max)	NULL,

		[MenusSold]	[int]	NOT	NULL,

CONSTRAINT	[PK_MenuItems]	PRIMARY	KEY	CLUSTERED	

(

		[MenuItemId]	ASC

)WITH	(PAD_INDEX	=	OFF,	STATISTICS_NORECOMPUTE	=	OFF,	

IGNORE_DUP_KEY	=	OFF,	

		ALLOW_ROW_LOCKS	=	ON,	ALLOW_PAGE_LOCKS	=	ON)	ON	[PRIMARY]

)	ON	[PRIMARY]	TEXTIMAGE_ON	[PRIMARY]

GO

Owned	Entities
A	different	way	to	split	a	table	into	multiple	entity	types	is	with	the	feature

known	as	owned	entities.	The	owned	entities	don't	need	a	primary	key;	they
simply	can	be	types	owned	within	a	normal	entity.	Entity	types	from	owned
entities	can	map	to	a	single	table—using	the	table	splitting	feature—or	to
different	tables.	When	different	tables	are	used,	they	share	the	same	primary	key.

Let's	get	into	an	example	that	shows	both	scenarios:	using	owned	entities	where
part	of	the	data	is	mapped	to	the	same	table	and	part	is	mapped	to	another	table.

The	following	code	snippet	shows	the	main	entity	type,	Person.	This	is	the
owner	of	owned	entities	with	the	primary	key	PersonId.	This	type	contains	two
addresses:	a	PrivateAddress	and	a	BusinessAddress	(code	file
Relations/Books/Person.cs):

public	class	Person

{

		public	int	PersonId	{	get;	set;	}

		public	string	Name	{	get;	set;	}

		public	Address	PrivateAddress	{	get;	set;	}

		public	Address?	BusinessAddress	{	get;	set;	}

}

The	Address	is	an	owned	entity—a	type	without	its	own	primary	key.	This	type
has	two	string	properties	and	a	relation	named	Location	of	type	Location.
Location	is	another	owned	entity	(code	file	Relations/Books/Address.cs):

public	class	Address

{

		public	string?	LineOne	{	get;	set;	}

		public	string?	LineTwo	{	get;	set;	}

		public	Location?	Location	{	get;	set;	}

}

Location	contains	Country	and	City	properties,	and	as	an	owned	entity,	it	also
doesn't	define	a	key	(code	file	Relations/Books/Location.cs):

public	class	Location

{

		public	string?	Country	{	get;	set;	}

		public	string?	City	{	get;	set;	}

}

The	most	interesting	part	now	comes	with	the	context,	where	owned	entities	are
defined	in	the	PersonConfiguration	class,	as	shown	with	the	following	code
sample.	When	you	customize	the	model	for	the	Person	class,	the	first	invocation
of	OwnsOne	specifies	that	the	Person	entity	owns	the	entity	referenced	from	the
BusinessAddress	property,	which	is	an	Address	type.	By	default,	column	names

based	on	the	property	name	and	type	of	the	property	are	combined	with	an
underscore	separator.	To	change	this	default	behavior,	column	names	are
configured	with	the	HasColumnName	method.	The	properties	of	the	Location
class	are	owned	by	the	People	table	as	well	because	another	OwnsOne	method	is
invoked	with	the	builder	of	the	BusinessAddress.	With	the	PrivateAddress
property	of	the	Person,	before	invoking	OwnsOne,	the	table	PrivateAddresses	is
mapped.	Instead	of	having	the	private	address	values	stored	with	the	People
table,	here	another	table	is	used	(code	file
Relationships/Books/PersonConfiguration.cs):

internal	class	PersonConfiguration	:	

IEntityTypeConfiguration<Person>

{

		public	void	Configure(EntityTypeBuilder<Person>	builder)

		{

				builder.OwnsOne(p	=>	p.BusinessAddress,	builder	=>

				{

						builder.Property(a	=>	

a!.LineOne).HasColumnName("AddressLineOne");

						builder.Property(a	=>	

a!.LineTwo).HasColumnName("AddressLineTwo");

						builder.OwnsOne(a	=>	a!.Location,	locationBuilder	=>

						{

								locationBuilder.Property(l	=>	

l!.City).HasColumnName("BusinessCity");

								locationBuilder.Property(l	=>	

l!.Country).HasColumnName("BusinessCountry");

						});

				});

	

				builder.OwnsOne(p	=>	p.PrivateAddress)

						.ToTable("PrivateAddresses")

						.OwnsOne(a	=>	a!.Location,	builder	=>

						{

								builder.Property(a	=>	a!.City).HasColumnName("City");

								builder.Property(a	=>	

a!.Country).HasColumnName("Country");

						});

		}

}

	

When	creating	the	database,	the	People	table	contains	columns	from	the	owned
entity	types:

CREATE	TABLE	[dbo].[People](

		[PersonId]	[int]	IDENTITY(1,1)	NOT	NULL,

		[Name]	[nvarchar](max)	NULL,

		[CompanyAddress_LineOne]	[nvarchar](max)	NULL,

		[CompanyAddress_LineTwo]	[nvarchar](max)	NULL,

		[BusinessCity]	[nvarchar](max)	NULL,

		[BusinessCountry]	[nvarchar](max)	NULL,

CONSTRAINT	[PK_People]	PRIMARY	KEY	CLUSTERED	

(

		[PersonId]	ASC

)WITH	(PAD_INDEX	=	OFF,	STATISTICS_NORECOMPUTE	=	OFF,	

IGNORE_DUP_KEY	=	OFF,	

		ALLOW_ROW_LOCKS	=	ON,	ALLOW_PAGE_LOCKS	=	ON)	ON	[PRIMARY]

)	ON	[PRIMARY]	TEXTIMAGE_ON	[PRIMARY]

GO

The	second	table	(PrivateAddresses)	is	created	because	of	the	ToTable
mapping	on	the	PrivateAddress	property.	The	key	for	this	table	is	the	same	as
for	the	People	table	(PersonId):

CREATE	TABLE	[dbo].[Addr](

		[PersonId]	[int]	NOT	NULL,

		[LineOne]	[nvarchar](max)	NULL,

		[LineTwo]	[nvarchar](max)	NULL,

		[Location_City]	[nvarchar](max)	NULL,

		[Location_Country]	[nvarchar](max)	NULL,

CONSTRAINT	[PK_Addr]	PRIMARY	KEY	CLUSTERED	

(

		[PersonId]	ASC

)WITH	(PAD_INDEX	=	OFF,	STATISTICS_NORECOMPUTE	=	OFF,	

IGNORE_DUP_KEY	=	OFF,	

		ALLOW_ROW_LOCKS	=	ON,	ALLOW_PAGE_LOCKS	=	ON)	ON	[PRIMARY]

)	ON	[PRIMARY]	TEXTIMAGE_ON	[PRIMARY]

GO

Table	per	Hierarchy
EF	Core	also	supports	the	relationship	type	of	table	per	hierarchy	(TPH).	With
this	relationship,	multiple	model	classes	that	form	a	hierarchy	are	used	to	map	to
a	single	table.	This	relationship	can	be	specified	by	using	conventions	and	by
using	the	Fluent	API.

Let's	start	using	conventions	and	the	types	Payment,	CashPayment,	and
CreditcardPayment	that	form	a	hierarchy.	Payment	is	a	base	class;	CashPayment
and	CreditcardPayment	derive	from	it.

With	the	implementation,	the	Payment	class	defines	the	primary	key	with	the
PaymentId	property,	a	required	Name,	and	an	Amount	property.	The	Amount
property	maps	to	a	database	column	type	Money	(code	file
Relations/Bank/Payments.cs):

public	abstract	class	Payment

{

		public	Payment(string	name,	decimal	amount,	int	paymentId	=	0)

		{

				Name	=	name;

				Amount	=	amount;

				PaymentId	=	paymentId;

		}

		public	int	PaymentId	{	get;	set;	}

		[StringLength(20)]

		public	string	Name	{	get;	set;	}

		[Column(TypeName	=	"Money")]

		public	decimal	Amount	{	get;	set;	}

}

The	class	CreditcardPayment	derives	from	Payment	and	adds	a
CreditcardNumber	property	(code	file	Relations/Bank/Payments.cs):

public	class	CreditcardPayment	:	Payment

{

		public	CreditcardPayment(string	name,	decimal	amount,	int	

paymentId	=	0)

				:	base(name,	amount,	paymentId)	{	}

		public	string?	CreditcardNumber	{	get;	set;	}

}

Finally,	the	CashPayment	class	derives	from	Payment	but	doesn't	declare	any
additional	members	(code	file	Relations/Bank/Payments.cs):

public	class	CashPayment	:	Payment

{

		public	CashPayment(string	name,	decimal	amount,	int	paymentId	

=	0)

				:	base(name,	amount,	paymentId)	{		}

}

The	EF	Core	context	class,	the	BankContext,	defines	a	DbSet	property	for	the
class	to	map	to	the	Payments	table.	Here,	the	Fluent	API	is	used	to	define	the
TPH	mapping.	The	HasDiscriminator	method	specifies	the	name	of	the	column
to	be	used	to	differentiate	the	derived	types	that	are	returned.	The	method
HasValue	defines	for	the	CashPayment	class	to	have	the	value	cash	inside	the

Type	column,	and	the	mapping	to	the	CreditcardPayment	class	is	done	with	a
value	creditcard	(code	file	Relations/Bank/BankContext.cs):

public	class	BankContext	:	DbContext

{

				public	BankContext(DbContextOptions<BankContext>	options)

								:	base(options)	{}

	

				public	DbSet<Payment>	Payments	=>	Set<Payment>();

	

				protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

				{

								modelBuilder.HasDefaultSchema("bank");

	

								modelBuilder.Entity<Payment>()

												.HasDiscriminator<string>("Type")

												.HasValue<CashPayment>("cash")

												.HasValue<CreditcardPayment>("creditcard");

	

								modelBuilder.Entity<Payment>()

												.Property(p	=>	p.Amount)

												.HasColumnType("Money");

				}

}

NOTE The	sample	application	for	TPH	mapping	uses	the	Fluent	API.
With	conventions,	the	base	class	can't	be	abstract,	and	you	need	to	define
DBSet	properties	for	every	class	of	the	hierarchy.	By	convention,	the
discriminator	column	is	named	Discriminator.

The	sample	data	created	defines	two	CashPayment	and	one	CreditcardPayment
payments	(code	file	Relations/Bank/BankRunner.cs):

public	async	Task	AddSampleDataAsync()

{

		_bankContext.Payments.Add(new	CashPayment("Donald",	0.5M));

		_bankContext.Payments.Add(new	CashPayment("Scrooge",	20000M));

		_bankContext.Payments.Add(new	CreditcardPayment("Gus	Goose",	

300M)	

		{

				CreditcardNumber	=	"987654321"

		});

		await	_bankContext.SaveChangesAsync();

}

When	you	run	the	application	to	create	the	database,	just	a	single	table—
Payments—gets	created.	This	table	defines	a	Type	column	that	maps	a	record
from	the	table	to	the	corresponding	model	type.

To	query	only	specific	types	from	the	hierarchy,	you	can	use	the	OfType
extension	method.	In	the	following	code	snippet,	you	can	see	a	query	to	return
only	payments	of	type	CreditcardPayment	(code	file
TPHWithConventions/Program.cs):

public	async	Task	QuerySampleAsync()

{

		var	creditcardPayments	=	await	_bankContext.Payments

				.OfType<CreditcardPayment>()

				.ToListAsync();

		foreach	(var	payment	in	creditcardPayments)

		{

				Console.WriteLine($"{payment.Name},	{payment.Amount}");

		}

}

When	you	use	the	OfType	method,	EF	Core	creates	a	query	with	a	WHERE	clause
to	distinguish	records	only	with	a	value	of	CreditcardPayment	:

SELECT	[p].[PaymentId],	[p].[Amount],	[p].[Discriminator],	[p].

[Name],	

		[p].[CreditcardNumber]

FROM	[Payments]	AS	[p]

WHERE	[p].[Discriminator]	=	N'CreditcardPayment'

SAVING	DATA
After	creating	the	database	with	models	and	relations,	you	can	write	to	it.	The
section	“Introducing	EF	Core”	showed	you	how	to	add,	update,	and	delete
records,	but	now	let's	examine	various	aspects	of	this	in	more	detail.

With	the	sample	application,	this	time	the	IDbContextFactory	is	used	to	create
DbContext	s.	This	allows	having	a	shorter	lifetime	of	the	context	and	requires
that	you	dispose	of	the	context	explicitly.	This	allows	you	to	better	simulate
having	multiple	context	objects	as	you	have	with	web	applications	and	services,
where	different	context	instances	are	used	with	every	HTTP	request.	The
AddDbContextFactory	used	in	the	following	code	snippet	is	new	with	EF	Core
5.0	(code	file	Tracking/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

{

		var	connectionString	=	

context.Configuration.GetConnectionString("MenusConnection");

		services.AddDbContextFactory<MenusContext>(options	=>

		{

				options.UseSqlServer(connectionString);

		});

	

		services.AddScoped<Runner>();

}).Build();

With	the	Runner	class,	the	IDbContextFactory	is	injected.	The	variable
_menusContextFactory	can	then	be	used	to	create	new	DbContext	s	(code	file
Tracking/Runner.cs):

private	readonly	IDbContextFactory<MenusContext>	

_menusContextFactory;

		public	Runner(IDbContextFactory<MenusContext>	

menusContextFactory)	

		=>	_menusContextFactory	=	menusContextFactory;

Adding	Objects	with	Relations
The	following	code	snippet	writes	a	relationship:	a	MenuCard	containing
MenuItem	objects.	Here,	the	MenuCard	and	MenuItem	objects	are	instantiated.	The
bidirectional	associations	are	assigned.	With	the	MenuItem,	the	MenuCard
property	is	assigned	to	the	MenuCard,	and	with	the	MenuCard,	the	MenuItems
property	is	filled	with	MenuItem	objects.	The	MenuCard	instance	is	added	to	the
context	to	invoke	the	Add	method	of	the	MenuCards	property.	When	you	add	an
object	to	the	context,	by	default,	all	objects	are	added	to	the	tree	with	the	state
added.	Not	only	is	the	MenuCard	saved,	but	the	MenuItem	objects	are	saved	as
well.	Invoking	SaveChangesAsync	on	the	context	now	creates	four	records	(code
file	Tracking/Runner.cs):

public	async	Task	AddRecordsAsync()

{

		Console.WriteLine(nameof(AddRecordsAsync));

		using	var	context	=	_menusContextFactory.CreateDbContext();

		MenuCard	soupCard	=	new("Soups");

	

		MenuItem[]	soups	=	new[]

		{

				new	MenuItem("Consommé	Célestine	(with	shredded	pancake)")

				{

						Price	=	4.8m,

						MenuCard	=	soupCard

				},

				new	MenuItem("Baked	Potato	Soup")

				{

						Price	=	4.8m,

						MenuCard	=	soupCard

				},

				new	MenuItem("Cheddar	Broccoli	Soup")

				{

						Price	=	4.8m,

						MenuCard	=	soupCard

				}

		};

	

		foreach	(var	soup	in	soups)

		{

				soupCard.MenuItems.Add(soup);

		}

	

		context.MenuCards.Add(soupCard);

	

		ShowState(context);

		int	records	=	await	context.SaveChangesAsync();

		Console.WriteLine($"{records}	added");

		Console.WriteLine();

}

The	method	ShowState	that	is	invoked	after	adding	the	four	objects	to	the
context	shows	the	state	of	all	objects	that	are	associated	with	the	context.	The
DbContext	class	has	a	ChangeTracker	associated	that	can	be	accessed	using	the
ChangeTracker	property.	The	Entries	method	of	the	ChangeTracker	returns	all
the	objects	the	change	tracker	knows	about.	With	the	foreach	loop,	every	object,
including	its	state,	is	written	to	the	console	(code	file	Tracking/Runner.cs):

private	void	ShowState(MenusContext	context)

{

		foreach	(EntityEntry	entry	in	context.ChangeTracker.Entries())

		{

				Console.WriteLine($"type:	{entry.Entity.GetType().Name},	"	+

						$"state:	{entry.State},	{entry.Entity}");

		}

		Console.WriteLine();

}

Run	the	application	to	see	the	Added	state	with	these	four	objects:

type:	MenuCard,	state:	Added,	Soups

type:	MenuItem,	state:	Added,	Consommé	Célestine	(with	shredded	

pancake)

type:	MenuItem,	state:	Added,	Baked	Potato	Soup

type:	MenuItem,	state:	Added,	Cheddar	Broccoli	Soup

Because	of	this	state,	the	SaveChangesAsync	method	creates	SQL	Insert
statements	to	write	every	object	to	the	database.

Tracking	Objects
You've	seen	that	the	context	knows	about	added	objects.	However,	the	context
also	needs	to	know	about	changes.	To	know	about	changes,	every	object
retrieved	needs	its	state	in	the	context.	For	seeing	this	in	action,	let's	create	two
different	queries	that	return	the	same	object.	The	following	code	snippet	defines
two	different	queries	where	each	query	returns	the	same	object	with	the	menus
as	they	are	stored	in	the	database.	Only	one	object	gets	materialized;	with	the
second	query	result,	it	is	detected	that	the	record	returned	has	the	same	primary
key	value	as	an	object	already	referenced	from	the	context.	Verifying	whether
the	references	of	the	variables	m1	and	m2	are	the	same	results	in	returning	the
same	object	(code	file	Tracking/Runner.cs):

public	async	Task	ObjectTrackingAsync()

{

		using	var	context	=	_menusContextFactory.CreateDbContext();

		Console.WriteLine(nameof(ObjectTrackingAsync));

		var	m1	=	await	(from	m	in	context.MenuItems

																		where	m.Text.StartsWith("Con")

																		select	m).FirstOrDefaultAsync();

		var	m2	=	await	(from	m	in	context.MenuItems

																		where	m.Text.Contains("(")

																		select	m).FirstOrDefaultAsync();

		if	(object.ReferenceEquals(m1,	m2))

		{

				Console.WriteLine("the	same	object");

		}

		else

		{

				Console.WriteLine("not	the	same");

		}

		ShowState(context);

								

		Console.WriteLine();

}

The	first	LINQ	query	results	in	an	SQL	SELECT	statement	with	a	LIKE
comparison	to	compare	for	the	string	to	start	with	the	value	Con	:

SELECT	TOP(1)	[m].[MenuItemId],	[m].[MenuCardId],	[m].[Price],	

[m].[RestaurantId],	

		[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	LIKE	N'Con%'

With	the	second	LINQ	query,	the	database	needs	to	be	consulted	as	well.	Here,	a
LIKE	comparison	is	done	to	compare	for	a	(in	the	middle	of	the	text:

SELECT	TOP(1)	[m].[MenuItemId],	[m].[MenuCardId],	[m].[Price],	

[m].[RestaurantId],	

		[m].[Text]

FROM	[mc].[MenuItems]	AS	[m]

WHERE	[m].[Text]	LIKE	N'%(%'

When	you	run	the	application,	the	same	object	is	written	to	the	console,	and	only
one	object	is	kept	with	the	ChangeTracker.	The	state	is	Unchanged	:

the	same	object

type:	MenuItem,	state:	Unchanged,	Consommé	Célestine	(with	

shredded	pancake)

To	not	track	the	objects	running	queries	from	the	database,	you	can	invoke	the
AsNoTracking	method	with	the	DbSet	:

var	m1	=	await	(from	m	in	context.MenuItems.AsNoTracking()

										where	m.Text.StartsWith("Con")

										select	m).FirstOrDefaultAsync();

With	such	a	configuration,	two	queries	are	made	to	the	database,	two	objects	are
materialized,	and	the	state	information	is	empty.

Instead	of	configuring	the	tracking	behavior	with	the	query,	you	can	also
configure	the	default	tracking	behavior	setting	the	QueryTrackingBehavior
property	of	the	change	tracker	or	configure	it	with	UseTrackingBehavior	with
the	options	in	the	DI	configuration.

NOTE Using	the	NoTracking	configuration	is	useful	when	the	context	is
used	only	to	read	records,	but	changes	are	not	made.	This	reduces	the
overhead	of	the	context	as	state	information	is	not	kept.

Updating	Objects
As	objects	are	tracked,	they	can	be	updated	easily,	as	shown	in	the	following
code	snippet.	First,	a	MenuItem	object	is	retrieved.	With	this	tracked	object,	the
price	is	modified	before	the	change	is	written	to	the	database.	In	between	all
changes,	state	information	is	written	to	the	console	(code	file
Tracking/Runner.cs):

public	async	Task	UpdateRecordsAsync()

{

		using	var	context	=	_menusContextFactory.CreateDbContext();

		MenuItem	menuItem	=	await	context.MenuItems

				.Skip(1)

				.FirstOrDefaultAsync();

	

		ShowState(context);

		menuItem.Price	+=	0.2m;

		ShowState(context);

		int	records	=	await	context.SaveChangesAsync();

		Console.WriteLine($"{records}	updated");

		ShowState(context);

}

When	you	run	the	application,	you	can	see	that	the	state	of	the	object	is
Unchanged	after	the	record	is	loaded,	Modified	after	the	property	value	is
changed,	and	Unchanged	after	saving	is	completed:

type:	MenuItem,	state:	Unchanged,	Baked	Potato	Soup

type:	MenuItem,	state:	Modified,	Baked	Potato	Soup

1	updated

type:	MenuItem,	state:	Unchanged,	Baked	Potato	Soup

When	you	access	the	entries	from	the	change	tracker,	by	default	changes	are
automatically	detected.	You	configure	this	by	setting	the
AutoDetectChangesEnabled	property	of	the	ChangeTracker.	To	check	manually
to	see	whether	changes	have	been	made,	you	invoke	the	method	DetectChanges.
With	the	invocation	of	SaveChangesAsync,	the	state	is	changed	back	to
Unchanged.	You	can	do	this	manually	by	invoking	the	method
AcceptAllChanges.

Updating	Untracked	Objects
DbContext	s	are	usually	very	short-lived.	Using	EF	Core	with	ASP.NET	Core,
with	one	HTTP	request	one	object	context	is	created	to	retrieve	objects.	When

you	receive	an	update	from	the	client,	the	object	must	again	be	created	on	the
server.	This	object	is	not	associated	with	the	object	context.	To	update	it	in	the
database,	the	object	needs	to	be	associated	with	the	DB	context,	and	the	state
needs	to	be	changed	to	create	an	INSERT,	UPDATE,	or	DELETE	statement.

Such	a	scenario	is	simulated	with	the	next	code	snippet.	The	local	function
GetMenuItemAsync	returns	a	MenuItem	object	that	is	disconnected	from	the
context;	the	context	is	disposed	of	at	the	end	of	the	local	function.
GetMenuItemAsync	is	invoked	by	the	method	UpdateRecordUntrackedAsync.
This	method	changes	the	MenuItem	object	that	is	not	associated	with	any	context.
After	the	change,	the	MenuItem	object	is	passed	to	the	local	function
UpdateMenuAsync	to	save	it	in	the	database	within	a	new	context.	To	mark	this
method	as	changed,	the	Update	method	attaches	the	object	to	the	context	and
sets	the	state	to	Modified.	Instead	of	using	the	Update	method,	you	can	use	the
Attach	method	and	set	the	state	via	the	State	property	of	an	EntityEntry
object,	as	shown	with	the	commented	code	(code	file	Tracking/Runner.cs):

public	async	Task	UpdateRecordUntrackedAsync()

{

		Task<MenuItem>	GetMenuItemAsync()

		{

				using	var	context	=	_menusContextFactory.CreateDbContext();

				return	context.MenuItems

						.Skip(2)

						.FirstOrDefaultAsync();

		}

	

		async	Task	UpdateMenuAsync(MenuItem	menuItem)

		{

				using	var	context	=	_menusContextFactory.CreateDbContext();

				ShowState(context);

				//	EntityEntry<MenuItem>	entry	=	

context.MenuItems.Attach(m);

				//	entry.State	=	EntityState.Modified;

				context.MenuItems.Update(menuItem);

				ShowState(context);

				await	context.SaveChangesAsync();

		}

	

		var	menuItem	=	await	GetMenuItemsAsync();

		menuItem.Price	+=	0.7m;

	

		await	UpdateMenuItemAsync(menuItem);

}

When	you	run	the	application	with	the	UpdateRecordTrackedAsync	method,	you
can	see	that	the	state	is	Modified.	The	object	was	detached	at	first,	but	because
the	state	was	explicitly	updated,	you	can	see	the	Modified	state:

type:	MenuItem,	state:	Modified,	Cheddar	Broccoli	Soup

CONFLICT	HANDLING
What	if	multiple	users	change	the	same	record	and	then	save	the	state?	Who	will
win	with	the	changes?

If	multiple	users	accessing	the	same	database	work	on	different	records,	there's
no	conflict.	All	users	can	save	their	data	without	interfering	with	data	edited	by
other	users.	If	multiple	users	work	on	the	same	record,	though,	you	need	to	give
some	thought	to	conflict	resolution.	You	have	different	ways	to	deal	with	this.
The	easiest	one	is	that	the	last	one	wins.	The	user	saving	the	data	last	overwrites
changes	from	the	user	that	previously	made	changes.

EF	Core	also	offers	a	way	for	letting	the	first	one	win.	With	this	option,	when
saving	a	record,	a	verification	is	needed	to	see	if	the	data	that	was	originally	read
is	still	in	the	database.	If	this	is	the	case,	saving	data	can	continue	because	no
changes	occurred	between	reading	and	writing.	However,	if	the	data	changed,	a
conflict	resolution	needs	to	be	done.

Let's	get	into	these	different	options.

The	Last	One	Wins
The	default	scenario	is	that	the	last	one	saving	changes	wins.	To	see	multiple
accesses	to	the	database,	the	Intro	sample	with	the	BooksContext	is	extended
with	the	new	sample	project	ConflictHandling-LastWins.

For	an	easy	simulation	of	two	users,	two	DI	scopes	are	created	with	two	different
Runner	instances.	The	Runner	object	injects	the	BooksContext	in	the	constructor.
Because	every	Runner	object	is	running	in	a	different	DI	scope,	two	different
BooksContext	objects	are	created	for	every	runner.	The	first	user	invokes
PrepareUpdateAsync	where	a	Book	record	is	retrieved	from	the	database.	The
same	record	is	retrieved	from	the	second	user	and	invokes	PrepareUpdateAsync
as	well.	After	this,	both	users	invoke	the	UpdateAsync	method	where	an	updated
Book	object	is	written	to	the	database.	The	winner	is	announced	on	reading	the
Book	from	the	database	after	all	the	records	have	been	written	(code	file
ConflictHandling-LastWins/Program.cs):

using	var	user1Scope	=	host.Services.CreateScope();

using	var	user2Scope	=	host.Services.CreateScope();

var	user1Runner	=	

user1Scope.ServiceProvider.GetRequiredService<Runner>();

var	user2Runner	=	

user2Scope.ServiceProvider.GetRequiredService<Runner>();

int	bookId	=	await	user1Runner.PrepareUpdateAsync("user1");

await	user2Runner.PrepareUpdateAsync("user2");

await	user1Runner.UpdateAsync();

await	user2Runner.UpdateAsync();

	

using	var	checkScope	=	host.Services.CreateScope();

var	runner	=	

checkScope.ServiceProvider.GetRequiredService<Runner>();

string	updatedTitle	=	await	runner.GetUpdatedTitleAsyc(bookId);

Console.Write("this	is	the	winner:	");

Console.WriteLine(updatedTitle);

The	PrepareUpdateAsync	method	behaves	differently	for	the	first	and	second
users.	With	the	first	user,	an	id	argument	is	not	supplied	to	the	method,	so	the
last	record	is	retrieved	from	the	database	and	set	to	the	selected	book,	and	the	id
is	returned.	The	second	user	uses	this	id	to	retrieve	the	same	record	from	the
database	and	writes	it	to	its	own	instance	of	the	_selectedBook	field	(code	file
ConflictHandling-LastWins/Runner.cs):

public	async	Task<int>	PrepareUpdateAsync(string	user,	int	id	=	

0)

{

		_user	=	user;

		if	(id	is	0)

		{

				_selectedBook	=	await	_booksContext.Books.OrderBy(b	=>	

b.BookId).LastAsync();

				return	_selectedBook.BookId;

		}

		_selectedBook	=	await	_booksContext.Books.FindAsync(id);

		return	id;

}

The	UpdateAsync	method	makes	a	change	to	the	selected	book	and	uses	the
BooksContext	to	save	the	changes.	Remember,	this	method	is	invoked	two	times
for	each	of	the	two	simulated	users	(code	file	ConflictHandling-
LastWins/Runner.cs):

public	async	Task	UpdateAsync()

{

		if	(_selectedBook	is	null)	throw	new	

InvalidOperationException(

				"_selectedBook	not	set.	Invoke	PrepareUpdateAsync	before	

UpdateAsync");

		_selectedBook.Title	=	$"Book	updated	from	{_user}";

		int	records	=	await	_booksContext.SaveChangesAsync();

		if	(records	==	1)

		{

				Console.WriteLine($"Book	{_selectedBook.BookId}	updated	from	

{_user}");

		}

}

After	the	two	users	have	been	active,	the	book	is	retrieved	again	from	the
database	by	using	the	FindAsync	method.	This	resolves	which	update	was	finally
successful	(code	file	ConflictHandling-LastWins/Runner.cs):

public	async	Task<string>	GetUpdatedTitleAsyc(int	id)

{

		var	book	=	await	_booksContext.Books.FindAsync(id);

		return	$"{book.Title}	with	id	{book.BookId}";

}

private	static	void	CheckUpdate(int	id)

{

		using	(var	context	=	new	BooksContext())

		{

				Book	book	=	context.Books.Find(id);

				Console.WriteLine($"updated:	{book.Title}");

		}

}

What	happens	when	you	run	the	application?	You	see	the	first	update	is
successful,	and	so	is	the	second	update.	When	updating	a	record,	it	is	not
verified	whether	any	changes	happened	after	reading	the	record,	which	is	the
case	with	this	sample	application.	The	second	update	just	overwrites	the	data
from	the	first	update,	as	you	can	see	with	the	application	output:

database	created

Book	100	updated	from	user1

Book	100	updated	from	user2

this	is	the	winner:	Book	updated	from	user2	with	id	100

The	First	One	Wins
In	the	previous	sample,	you	saw	the	default	behavior	when	updating	records.
The	last	one	wins.	If	you	need	a	different	behavior,	such	as	the	first	user's

changes	being	saved	to	the	record,	you	need	to	make	some	changes.	The	sample
project	ConflictHandling-FirstWins	uses	the	Book	and	BooksContext	objects
like	before,	but	it	deals	with	the	first-one-wins	scenario.

For	conflict	resolution,	you	need	to	specify	the	properties	that	should	be	verified
if	any	change	happened	between	reading	and	updating	with	a	concurrency	token.
Based	on	the	property	you	specify,	the	SQL	UPDATE	statement	is	modified	to
verify	not	only	for	the	primary	key	but	also	all	properties	that	are	marked	with
the	concurrency	token.	Adding	many	concurrency	tokens	to	the	entity	type
creates	a	huge	WHERE	clause	with	the	UPDATE	statement,	which	is	not	very
efficient.	Instead,	you	can	add	a	property	that	is	updated	from	SQL	Server	with
every	creation	or	updating	of	a	record.	You	can	define	a	property	of	type	byte[]
and	mark	it	with	the	attribute	Timestamp.	This	property	is	checked	for	changes,
and	the	update	fails	if	the	record	changed	between	reading	the	record	to	the
context	and	trying	to	save	it.	If	you	don't	want	to	have	this	property	as	a	member
of	the	class,	you	can	use	a	shadow	property.

In	the	following	code	snippet,	the	shadow	property	Timestamp	of	type	byte[]	is
specified.	The	SQL	Server	data	type	where	this	is	mapped	to	is	of	type
timestamp.	With	SQL	Server,	this	is	all	that's	needed	for	an	automatic	update.
The	IsRowVersion	specifies	for	EF	Core	that	the	original	value	that's	retrieved
from	the	database	is	verified	with	the	current	value	from	the	database.	If	this	is
no	longer	the	same	when	updating,	some	other	activity	did	an	update	of	this
record,	and	the	new	update	will	fail	(code	file	ConflictHandling-
FirstWins/BooksContext.cs):

protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

{

		var	sampleBooks	=	GetSampleBooks();

		modelBuilder.Entity<Book>().HasData(sampleBooks);

	

		//	shadow	property

		modelBuilder.Entity<Book>().Property<byte[]>("Timestamp")

				.HasColumnType("timestamp")

				.IsRowVersion();	

}

The	IsRowVersion	method	is	a	combination	of	ValueGeneratedOnAddOrUpdate
and	IsConcurrencyToken.	The	properties	marked	with	IsConcurrencyToken	are
verified	for	original	and	current	values,	and	ValueGeneratedOnAddOrUpdate	is
the	information	to	EF	Core	that	the	value	gets	updated	from	the	database	with
add	or	update	statements.

The	process	of	the	conflict-handling	check	is	like	what	was	done	before.	Both
user	1	and	user	2	invoke	the	PrepareUpdateAsync	method,	change	the	book	title,
and	call	the	UpdateAsync	method	to	make	the	change	in	the	database.

The	invocations	from	the	top-level	statements	and	the	PrepareUpdate	method
are	not	repeated	here;	it's	the	same	implementation	as	with	the	previous	conflict
handling	sample.	The	UpdateAsync	method	is	different.	This	method	now	needs
to	check	for	the	exception	of	type	DbUpdateConcurrencyException	because
such	exceptions	can	happen	when	an	update	is	made	by	another	user.	By
invoking	the	SaveChangesAsync	method	now,	with	all	the	UPDATE	statements
created,	you	create	WHERE	clauses	to	check	for	all	concurrency	tokens.	As	the
concurrency	token	is	set	on	the	timestamp,	if	any	user	changed	any	other
column,	the	UPDATE	fails.	Within	the	handler	of	the
UIpdateConcurrencyException,	information	about	the	failing	records	is	shown
(code	file	ConflictHandling-FirstWins/Runner.cs):

public	async	Task	UpdateAsync()

{

		if	(_selectedBook	is	null	||	_user	is	null)	

				throw	new	InvalidOperationException(

						"_selectedBook	not	set.	Invoke	PrepareUpdateAsync	before	

UpdateAsync");

	

		try

		{

				_selectedBook.Title	=	$"Book	updated	from	{_user}";

				int	records	=	await	_booksContext.SaveChangesAsync();

				if	(records	==	1)

				{

						Console.WriteLine($"Book	{_selectedBook.BookId}	updated	

from	{_user}");

				}

		}

		catch	(DbUpdateConcurrencyException	ex)

		{

				Console.WriteLine($"{_user}:	update	failed	with	

{_selectedBook.Title}");

				Console.WriteLine($"error:	{ex.Message}");

				foreach	(var	entry	in	ex.Entries)

				{

						if	(entry.Entity	is	Book	b)

						{

								PropertyEntry	pe	=	entry.Property("TimeStamp");

								Console.WriteLine($"{b.Title}	

{BitConverter.ToString((byte[])pe.CurrentValue)}");

								ShowChanges(_selectedBook.BookId,	

_booksContext.Entry(_selectedBook));

						}

				}

		}

}

With	objects	that	are	associated	with	the	context,	you	can	access	the	original
values	and	the	current	values	with	a	PropertyEntry	object.	The	original	values
that	were	retrieved	when	reading	the	object	from	the	database	can	be	accessed
with	the	OriginalValue	property,	and	the	current	values	can	be	accessed	with
the	CurrentValue	property.	The	PropertyEntry	object	can	be	accessed	with	the
Property	method	of	an	EntityEntry	as	shown	in	the	ShowChanges	and
ShowChange	methods	(code	file	ConflictHandling-FirstWins/Runner.cs):

private	void	ShowChanges(int	id,	EntityEntry	entity)

{

		static	void	ShowChange(PropertyEntry	propertyEntry,	int	id)	=>

				Console.WriteLine($"id:	{id},	current:	

{propertyEntry.CurrentValue},	"	+

						$"original:	{propertyEntry.OriginalValue},	"	+

						$"modified:	{propertyEntry.IsModified}");

	

		ShowChange(entity.Property("Title"),	id);

		ShowChange(entity.Property("Publisher"),	id);

}

When	you	run	the	application,	you	can	see	output	such	as	the	following.	The
timestamp	values	and	book	IDs	differ	with	every	run.	The	first	user	updates	the
book	with	the	original	title	sample	book	to	the	new	title	user	1	wins.	The
IsModified	property	returns	true	for	the	Title	property	but	false	for	the
Publisher	property	because	only	the	title	changes.	The	original	timestamp	ends
with	1.1.209;	after	the	update	to	the	database,	the	timestamp	changes	to
1.17.114.	In	the	meantime,	user	2	opens	the	same	record;	this	book	still	has	a
timestamp	of	1.1.209.	User	2	updates	this	book,	but	here	the	update	fails	because
the	timestamp	of	this	book	does	not	match	the	timestamp	from	the	database.
Here,	an	exception	of	type	DbUpdateConcurrencyException	is	thrown.	In	the
exception	handler,	the	reason	for	the	exception	is	written	to	the	console,	as	you
can	see	in	the	program	output:

Book	100	updated	from	user1

user2:	update	failed	with	Book	updated	from	user2

error:	Database	operation	expected	to	affect	1	row(s)	but	

actually	affected	0	row(s).	

Data	may	have	been	modified	or	deleted	since	entities	were	

loaded.	

See	http://go.microsoft.com/fwlink/?LinkId=527962	for	

information	on	understanding	

and	handling	optimistic	concurrency	exceptions.

Book	updated	from	user2	00-00-00-00-00-00-08-35

id:	100,	current:	Book	updated	from	user2,	original:	title	100,	

modified:	True

id:	100,	current:	sample,	original:	sample,	modified:	False

this	is	the	winner:	Book	updated	from	user1	with	id	100

When	using	concurrency	tokens	and	handling	the	DbConcurrencyException,
you	can	deal	with	concurrency	conflicts	as	needed.	You	can,	for	example,
automatically	resolve	concurrency	issues.	If	different	properties	are	changed,
you	can	retrieve	the	changed	record	and	merge	the	changes.	If	the	property
changed	is	a	number	where	you	do	some	calculations—for	example,	a	point
system—you	can	increment	or	decrement	the	values	from	both	updates	and	just
throw	an	exception	if	a	limit	is	reached.	You	can	also	ask	the	user	to	resolve	the
concurrency	issue	by	giving	the	user	the	information	that's	currently	in	the
database	and	ask	what	changes	they	would	like	to	make.	Just	don't	ask	too	much
from	the	user.	It's	likely	that	the	only	thing	the	user	wants	is	to	get	rid	of	this
rarely	shown	dialog,	which	means	they	might	click	OK	or	Cancel	without
reading	the	content.	For	rare	conflicts,	you	can	also	write	logs	and	inform	the
system	administrator	that	an	issue	needs	to	be	resolved.

USING	TRANSACTIONS
With	every	access	of	the	database,	a	transaction	is	involved,	too.	You	can	use
transactions	implicitly	or	create	them	explicitly	with	configurations	as	needed.
The	sample	project	used	with	this	section	demonstrates	transactions	in	multiple
ways.	Here,	the	Menu,	MenuCard,	and	MenuContext	classes	are	used,	as	shown
earlier	with	the	Tracking	project.

Using	Implicit	Transactions
An	invocation	of	the	SaveChangesAsync	method	automatically	resolves	to	one
transaction.	If	one	part	of	the	changes	that	need	to	be	made	fails—for	example,
because	of	a	database	constraint—all	the	changes	already	made	are	rolled	back.
This	is	demonstrated	with	the	following	code	snippet.	Here,	the	first	MenuItem
(m1)	is	created	with	valid	data.	A	reference	to	an	existing	MenuCard	is	done	by
supplying	the	MenuCardId.	After	the	update	succeeds,	the	MenuCard	property	of

the	MenuItem	m1	is	filled	automatically.	However,	the	second	MenuItem	created,
mInvalid,	references	an	invalid	menu	card	by	supplying	a	MenuCardId	that	does
not	exist	in	the	database.	Because	of	the	defined	foreign	key	relation	between
MenuCard	and	MenuItem,	adding	this	object	will	fail	(code	file
Transactions/Runtime.cs):

public	async	Task	AddTwoRecordsWithOneTxAsync()

{

		Console.WriteLine(nameof(AddTwoRecordsWithOneTxAsync));

		try

		{

				using	var	context	=	_menusContextFactory.CreateDbContext();

				var	card	=	context.MenuCards.OrderBy(mc	=>	

mc.MenuCardId).First();

				MenuItem	m1	=	new("added")

				{

						MenuCardId	=	card.MenuCardId,

						Price	=	99.99m

				};

	

				var	notExistingCard	=	Guid.NewGuid();

				MenuItem	mInvalid	=	new("invalid")

				{

						MenuCardId	=	notExistingCard,

						Price	=	999.99m

				};

				context.MenuItems.AddRange(m1,	mInvalid);

				int	records	=	await	context.SaveChangesAsync();

				Console.WriteLine($"{records}	records	added");

		}

		catch	(DbUpdateException	ex)

		{

				Console.WriteLine($"{ex.Message}");

				Console.WriteLine($"{ex.InnerException?.Message}");

		}

		Console.WriteLine();

}

After	running	the	application	to	invoke	the	method
AddTwoRecordsWithOneTxAsync,	you	can	verify	the	content	of	the	database	to
see	that	not	a	single	record	was	added.	The	exception	message	and	the	message
of	the	inner	exception	give	the	details:

An	exception	occurred	in	the	database	while	saving	changes	for	

context	type	'MenusContext'.

Microsoft.EntityFrameworkCore.DbUpdateException:	An	error	

occurred	while	updating	

the	entries.	See	the	inner	exception	for	details.

--->	Microsoft.Data.SqlClient.SqlException	(0x80131904):	The	

INSERT	statement	

conflicted	with	the	FOREIGN	KEY	constraint	

"FK_MenuItems_MenuCards_MenuCardId".	

The	conflict	occurred	in	database	"ProCSharpTransactions",	table	

"mc.MenuCards",	

column	'MenuCardId'.

						The	statement	has	been	terminated.

If	writing	the	first	record	to	the	database	should	be	successful	even	if	the	second
record	write	fails,	you	must	invoke	the	SaveChangesAsync	method	multiple
times.

Creating	Explicit	Transactions
Instead	of	using	implicitly	created	transactions,	you	can	also	create	them
explicitly.	This	gives	you	the	advantage	of	having	the	option	to	roll	back	in	case
some	of	your	business	logic	fails,	and	you	can	combine	multiple	invocations	of
SaveChangesAsync	within	one	transaction.	To	start	a	transaction	that	is
associated	with	the	DbContext	-derived	class,	you	need	to	invoke	the
BeginTransactionAsync	method	of	the	DatabaseFacade	class	that	is	returned
from	the	Database	property.	The	transaction	returned	implements	the	interface
IDbContextTransaction.	The	SQL	statements	made	with	the	associated
DbContext	are	enlisted	with	the	transaction.	To	commit	or	roll	back,	you	must
explicitly	invoke	the	methods	Commit	or	Rollback.	In	the	sample	code,	Commit	is
done	when	the	end	of	the	DbContext	scope	is	reached;	Rollback	is	done	in	cases
where	an	exception	occurs	(code	file	Transactions/Runner.cs):

public	async	Task	TwoSaveChangesWithOneTxAsync()

{

		Console.WriteLine(nameof(TwoSaveChangesWithOneTxAsync));

		using	var	context	=	_menusContextFactory.CreateDbContext();

		using	var	tx	=	await	context.Database.BeginTransactionAsync();

		try

		{

				var	card	=	context.MenuCards.First();

				MenuItem	m1	=	new("added	with	explicit	tx")

				{

						MenuCardId	=	card.MenuCardId,

						Price	=	99.99m

				};

				context.MenuItems.Add(m1);

				int	records	=	await	context.SaveChangesAsync();

				Console.WriteLine($"{records}	records	added");

	

				var	notExistingCard	=	Guid.NewGuid();

				MenuItem	mInvalid	=	new("invalid")

				{

						MenuCardId	=	notExistingCard,

						Price	=	999.99m

				};

				context.MenuItems.Add(mInvalid);

				records	=	await	context.SaveChangesAsync();

	

				Console.WriteLine($"{records}	records	added");

				tx.Commit();

		}

		catch	(DbUpdateException	ex)

		{

				Console.WriteLine($"{ex.Message}");

				Console.WriteLine($"{ex.InnerException?.Message}");

				Console.WriteLine("rolling	back…");

				tx?.Rollback();

		}

		Console.WriteLine();

}

When	you	run	the	application,	you	can	see	that	no	records	have	been	added,
although	the	SaveChangesAsync	method	was	invoked	multiple	times.	The	first
return	of	SaveChangesAsync	lists	one	record	as	being	added,	but	this	record	is
removed	because	of	the	Rollback	later.	Depending	on	the	setting	of	the	isolation
level,	the	updated	record	can	be	seen	only	within	the	transaction	before	the
rollback	was	done	but	not	outside	the	transaction.

Using	Ambient	Transactions
An	easy	option	to	deal	with	transactions	is	to	use	ambient	transactions	from	the
System.Transactions	namespace.	An	ambient	transaction	is	a	transaction	set	to
the	Transaction.Current	property.	Every	resource	that	supports	ambient
transactions	joins	the	transaction	by	enlisting	to	it.	ADO.NET	and	EF	Core	with
SQL	Server	supports	ambient	transactions	and	automatically	enlists	to	this
transaction.	Every	resource	that	enlisted	to	this	transaction	can	fail	it.	If	every
resource	sets	the	“happy	bit,”	which	means	the	transactional	outcome	for	this
resource	is	successful	and	the	transaction-scope	is	successful	as	well,	the
transaction	gets	completed.	If	any	resource	that	has	enlisted	did	not	grant
success,	when	the	scope	is	complete,	the	transaction	rolls	back.

You	can	create	an	ambient	transaction	by	creating	a	new	TransactionScope.
Depending	on	the	parameters	used,	this	sets	the	Transaction.Current	property
to	a	transaction.	With	the	TransactionScopeOption	enum	type,	you	can	specify
Required,	RequiresNew,	and	Suppress	:

Required	specifies	a	transaction	is	required.	If	one	transaction	is	already
set,	this	transaction	is	used.	If	no	transaction	is	available,	a	new	transaction
is	created.

RequiresNew	always	creates	a	new	transaction	that	is	independent	of	a
transaction	that's	already	active.

With	the	Suppress	option,	you	specify	that	this	scope	should	not	have	a
transaction.

In	the	following	code	snippet,	with	TransactionScopeOption.Required,	a	new
transaction	will	exist	while	the	variable	scope	is	active.	With	the	second
argument,	TransactionScopeAsyncFlowOption.Enabled,	you	specify	that	the
transaction	flows	across	different	threads,	which	is	required	in	an	asynchronous
method.	Otherwise,	you	need	to	run	in	the	same	thread	when	starting	and
completing	the	transaction,	which	is	not	the	case	when	async	methods	are	used
without	a	synchronization	context.	When	the	root	transaction	scope	is	disposed
of	(with	the	sample	code,	the	scope	variable	represents	the	root	scope	because
this	was	the	first	ambient	transaction	created),	the	outcome	of	the	transaction	is
resolved.	The	scope	variable	is	disposed	of	at	the	end	of	the	method
AmbientTransactionsAsync.	The	scope	itself	must	set	the	“happy	bit,”	which	is
done	by	invoking	the	Complete	method	of	the	TransactionScope.	This	method
is	invoked	at	the	end	of	the	try	code	block.	If	any	exception	is	thrown,	the
exception	is	aborted,	no	matter	whether	the	database	transactions	would	be
successful.	You	can	try	this	by	using	successful	database	operations	and	not
invoking	the	Complete	method.	To	see	the	outcome	of	the	transaction,	the
TransactionCompleted	event	is	fired.	Within	this	handler,	the	status	of	the
transaction	is	written	to	the	console	(code	file	Transactions/Runner.cs):

public	async	Task	AmbientTransactionsAsync()

{

		Console.WriteLine(nameof(AmbientTransactionsAsync));

	

		using	var	scope	=	new	

TransactionScope(TransactionScopeOption.Required,	

				TransactionScopeAsyncFlowOption.Enabled);

	

		if	(Transaction.Current	is	null)	throw	new	

InvalidOperationException(

				"no	ambient	transaction	available");

		Transaction.Current.TransactionCompleted	+=	(sender,	e)	=>

		{

				var	ti	=	e.Transaction?.TransactionInformation;

				Console.WriteLine($"transaction	completed	with	status:	"	+

						$"{ti?.Status},	identifier:	{ti?.LocalIdentifier}");

		};

	

		using	var	context	=	_menusContextFactory.CreateDbContext();

		try

		{

				var	card	=	context.MenuCards.First();

				MenuItem	m1	=	new("added	with	explicit	tx")

				{

						MenuCardId	=	card.MenuCardId,

						Price	=	99.99m

				};

				context.MenuItems.Add(m1);

				int	records	=	await	context.SaveChangesAsync();

				Console.WriteLine($"{records}	records	added");

	

				var	notExistingCard	=	Guid.NewGuid();

				MenuItem	mInvalid	=	new("invalid")

				{

						MenuCardId	=	notExistingCard,

						Price	=	999.99m

				};

				context.MenuItems.Add(mInvalid);

				records	=	await	context.SaveChangesAsync();

	

				Console.WriteLine($"{records}	records	added");

				scope.Complete();

		}

		catch	(DbUpdateException	ex)

		{

				Console.WriteLine($"{ex.Message}");

				Console.WriteLine($"{ex.InnerException?.Message}");

		}

		Console.WriteLine();

}

USING	AZURE	COSMOS	DB
Azure	Cosmos	DB	(https://azure.microsoft.com/services/cosmos-db/)	is
a	NoSQL	database	offering	from	Microsoft	that	allows	storing	various	types	of

https://azure.microsoft.com/services/cosmos-db/

data.	You	can	use	Azure	Cosmos	DB	for	key-value,	column-family,	documents,
and	graph	data.	You	can	also	use	different	APIs	to	access	your	data:	SQL,
Cassandra,	MongoDB,	and	Gremlin.	However,	the	API	depends	also	on	the	data
you	store.	For	example,	Gremlin	is	only	used	for	graph	data.	EF	Core	supports
only	document-based	storage	with	SQL.

No	matter	what	APIs	or	kind	of	data	you	use,	Azure	Cosmos	DB	offers	tunable
throughput	guarantees	with	a	multimaster	distribution	model	to	write	data
concurrently—for	example,	in	the	United	States	and	Asia.	For	small	production
workloads,	a	free	tier	is	available.

To	use	the	sample	application,	you	need	to	create	an	SQL	version	of	Azure
Cosmos	DB.	You	can	use	the	free	offering	in	Microsoft	Azure	or	install	a	local
emulator	(https://docs.microsoft.com/azure/cosmos-db/local-emulator).

Although	you	can	use	EF	Core	to	access	your	NoSQL	database	and	don't	need	to
learn	a	new	API,	there	are	some	important	differences.	For	example,	you	don't
have	tables	with	relations	among	them.	Instead,	you	can	group	your	documents
within	containers.	In	a	container,	you	can	store	a	lot	of	different	document	types
because	a	container	is	not	restricted	to	a	particular	schema	for	specific	object
types.

When	creating	a	database,	Azure	allocates	compute	and	storage	resources,	which
are	called	physical	partitions.	Within	a	physical	partition,	logical	partitions	are
used.	A	logical	partition	is	limited	to	20	GB.	The	number	of	logical	partitions
you	can	have	is	unlimited.	If	your	storage	needs	exceed	20	GB,	the	data	needs	to
be	spread	across	multiple	logical	partitions.	A	transaction	cannot	span	logical
partitions.	When	working	with	documents,	it's	best	to	have	one	query	within	one
partition.	This	increases	performance	and	reduces	cost.	If	your	query	spreads
across	multiple	partitions,	more	RUs	are	needed.	With	a	partition	key,	you	can
specify	how	to	spread	the	data	between	logical	partitions.	See
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview	for
details.

Next,	let's	adapt	a	previous	sample	to	store	menu	cards	and	menus	to	be	used
with	Azure	Cosmos	DB.

The	NuGet	package	needed	to	use	the	Azure	Cosmos	DB	provider	for	EF	Core
is	Microsoft.EntityFrameworkCore.Cosmos.	To	run	the	sample	application
locally,	you	need	to	supply	the	connection	string	to	the	Azure	Cosmos	DB
database	with	the	user	secrets,	as	shown	here:

{

https://docs.microsoft.com/azure/cosmos-db/local-emulator
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview

		"ConnectionStrings":	{

				"MenusConnection":	

						"AccountEndpoint=…	add	the	connection	string	to	your	Azure	

Cosmos	account"

		}

}

To	activate	user	secrets,	you	also	need	to	enable	the	development	environment
by	setting	the	DOTNET_ENVIRONMENT	environment	variable	to	Development.	The
CreateDefaultBuilder	method	of	the	Host	class	configures	user	secrets	when
this	environment	variable	is	set	(configuration	file
Cosmos/Properties/launchSettings.json):

{

		"profiles":	{

				"Cosmos":	{

						"commandName":	"Project",

						"environmentVariables":	{

								"DOTNET_ENVIRONMENT":	"Development"

						}

				}

		}

}

NOTE Read	Chapter	15,	“Dependency	Injection	and	Configuration,”	for
detailed	information	on	configuration	as	well	as	how	to	configure	secrets
with	Microsoft	Azure	App	Configuration.

Now	the	DI	container	needs	can	be	configured.	The	connection	string	to	the
Azure	Cosmos	DB	account	is	retrieved	from	the	.NET	configuration.	Also,	a
restaurant	identifier	is	retrieved	from	configuration.	This	restaurant	identifier
will	be	used	as	a	partition	key.	Imagine	multiple	restaurants	storing	their	menu
cards	within	one	database.	The	restaurant	identifier	is	a	good	option	for	a
partition	key	(code	file	Cosmos/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	connectionString	=	

context.Configuration.GetConnectionString("MenusConnection");

				var	restaurantSettings	=	

context.Configuration.GetSection("RestaurantConfiguration");

	

				services.Configure<RestaurantConfiguration>

(restaurantSettings);

				services.AddDbContext<MenusContext>(options	=>

				{

						options.UseCosmos(connectionString,	"ProCSharpMenus1");

				});

				services.AddScoped<Runner>();

		})

		.Build();

The	MenuCard	class	looks	similar	to	the	MenuCard	class	specified	earlier.	Here,
the	RestaurantId	is	defined	as	well.	The	partition	key	needs	to	be	a	string	(code
file	Cosmos/MenuCard.cs):

public	class	MenuCard

{

		public	MenuCard(string	title,	string	restaurantId,	Guid	

menuCardId	=	default)	

				=>	(Title,	RestaurantId,	MenuCardId)	=	(title,	restaurantId,	

menuCardId);

	

		public	Guid	MenuCardId	{	get;	set;	}

		public	string	Title	{	get;	set;	}

		public	ICollection<MenuItem>	MenuItems	{	get;	internal	set;	}	

=	new	HashSet<MenuItem>();

		public	string	RestaurantId	{	get;	set;	}

		public	bool	IsActive	{	get;	set;	}	=	true;

		public	override	string	ToString()	=>	Title;

}

The	MenuItem	class	that	is	used	here	can	also	be	used	with	a	relational	database
(code	file	Cosmos/MenuItem.cs):

public	class	MenuItem

{

		public	MenuItem(string	text,	Guid	menuItemId	=	default)	=>	

		(Text,	MenuItemId)	=	(text,	menuItemId);

	

		public	Guid	MenuItemId	{	get;	set;	}

		public	string	Text	{	get;	set;	}

		public	decimal?	Price	{	get;	set;	}

		public	override	string	ToString()	=>	Text;

}

For	storing	documents,	you	now	need	to	think	about	how	the	menu	cards	and	the
menus	should	be	stored	with	the	Azure	Cosmos	DB.	Earlier	in	this	chapter,	you
read	about	owned	entities.	You	can	use	the	OwnsOne	method	to	add	the	properties
of	the	Location	and	Address	types	to	the	columns	of	the	People	table.	With

document-based	storage,	this	is	even	more	important.	You	can	also	store	a	list	of
objects	within	one	object;	a	hierarchy	of	JSON	data	is	what	is	stored	inside	a
document.	As	menu	cards	are	usually	the	unit	to	read	the	menus	and	also	change
the	menus,	MenuItem	objects	can	be	combined	with	the	MenuCard	using
OwnsMany.

The	configuration	of	the	MenusContext	now	has	some	specific	Azure	Cosmos
DB	configuration	with	the	model.	When	you	use	the	OwnsMany	method,	you
include	the	MenuItem	objects.	A	default	container	name	is	defined	with	the
HasDefaultContainer	method.	Remember,	with	the	relational	database,	the
database	schema	name	was	specified.	A	partition	key	is	defined	with	the	method
HasPartitionKey	(code	file	Cosmos/MenusContext.cs):

internal	class	MenusContext	:	DbContext

{

		public	MenusContext(DbContextOptions<MenusContext>	options)

				:	base(options)	{}

	

		public	DbSet<MenuCard>	MenuCards	=>	Set<MenuCard>();

	

		protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

		{

				modelBuilder.HasDefaultContainer("menucards");

	

				modelBuilder.Entity<MenuCard>().OwnsMany(c	=>	c.MenuItems);

				modelBuilder.Entity<MenuCard>().HasKey(c	=>	c.MenuCardId);

	

				modelBuilder.Entity<MenuCard>().HasPartitionKey(c	=>	

c.RestaurantId);

		}

}

With	all	this	in	place,	the	database	can	be	created,	and	objects	can	be	added,
modified,	and	deleted	as	you	are	used	to.	The	database	is	created	with
EnsureCreatedAsync.	With	the	method	AddMenuCardAsync,	a	card	containing
multiple	menu	items	is	created,	added	to	the	context,	and	saved	(code	file
Cosmos/Runner.cs):

public	async	Task	CreateDatabaseAsync()

{

		await	_menusContext.Database.EnsureCreatedAsync();

}

	

public	async	Task	AddMenuCardAsync()

{

		Console.WriteLine(nameof(AddMenuCardAsync));

		MenuCard	soupCard	=	new("Soups",	_restaurantId);

	

		MenuItem[]	soups	=	new	MenuItem[]

		{

				new("Consommé	Célestine	(with	shredded	pancake)")

				{

						Price	=	4.8m

				},

				new("Baked	Potato	Soup")

				{

						Price	=	4.8m

				},

				new("Cheddar	Broccoli	Soup")

				{

						Price	=	4.8m

				}

		};

	

		foreach	(var	soup	in	soups)

		{

				soupCard.MenuItems.Add(soup);

		}

	

		_menusContext.MenuCards.Add(soupCard);

	

		int	records	=	await	_menusContext.SaveChangesAsync();

		Console.WriteLine($"{records}	added");

		Console.WriteLine();

}

Looking	into	the	storage	explorer	of	the	Azure	Cosmos	DB,	you	can	see
additional	data	that's	added	by	the	provider	and	the	database.	A	Discriminator
is	added	that	contains	the	name	of	the	class	used.	Remember,	a	container	can
have	different	types	stored.	The	discriminator	is	used	with	queries.	If	a
discriminator	is	not	supplied	with	the	object	model,	a	shadow	property	is	created
automatically.	With	Cosmos	DB,	an	identifier,	which	consists	of	the	type	and	the
key	value,	is	created	as	well.	Timestamp	and	entity	tag	(ETag)	can	be	used	for
conflict	handling;	these	can	be	accessed	via	shadow	properties.	Because	of	the
OwnsMany	model	definition,	the	menu	items	are	stored	within	the	menu	card:

{

		"MenuCardId":	"bbe03556-4211-4694-ab73-6ba4af524d40",

		"Discriminator":	"MenuCard",

		"IsActive":	true,

		"RestaurantId":	"FDCD4390-48AD-42F1-AC6A-596F56731795",

		"Title":	"Soups",

		"id":	"MenuCard|bbe03556-4211-4694-ab73-6ba4af524d40",

		"MenuItems":	[

				{

						"MenuItemId":	"bc6dabc3-6825-41a1-b45e-6c55a3ab0ada",

						"Price":	4.8,

						"Text":	"Consommé	Célestine	(with	shredded	pancake)"

				},

				{

						"MenuItemId":	"b46b5cca-1b40-4fdf-9fca-84bbf8461f7e",

						"Price":	4.8,

						"Text":	"Baked	Potato	Soup"

				},

				{

						"MenuItemId":	"6083da30-c405-4bb8-8f57-8f5c32b496da",

						"Price":	4.8,

						"Text":	"Cheddar	Broccoli	Soup"

				}

],

		"_rid":	"S+t-ALEbVnkBAAAAAAAAAA==",

		"_self":	"dbs/S+t-AA==/colls/S+t-ALEbVnk=/docs/S+t-

ALEbVnkBAAAAAAAAAA==/",

		"_etag":	"\"af009326-0000-0d00-0000-6039f6180000\"",

		"_attachments":	"attachments/",

		"_ts":	1614411288

}

The	method	ShowCardsAsync	creates	a	query	to	retrieve	the	active	documents
with	a	title	named	Soups	and	includes	the	partition	key	with	the	query	(code	file
Cosmos/Runner.cs):

public	async	Task	ShowCardsAsync()

{

		var	cards	=	await	_menusContext.MenuCards

				.Where(c	=>	c.IsActive)

				.Where(c	=>	c.Title	==	"Soups")

				.WithPartitionKey(_restaurantId)

				.ToListAsync();

		foreach	(var	card	in	cards)

		{

				Console.WriteLine(card.Title);

				foreach	(var	menuItem	in	card.MenuItems)

				{

						Console.WriteLine(menuItem.Text);

				}

		}

}

The	generated	query	adds	the	discriminator:

SELECT	c

		FROM	root	c

		WHERE	(((c["Discriminator"]	=	"MenuCard")	AND	c["IsActive"])	

AND	(c["Title"]	=	"Soups"))

As	you've	seen,	there	are	similarities	and	important	differences	when	using	a
NoSQL	database	and	a	relational	database	with	EF	Core.	A	couple	of	other
differences	you	need	to	be	aware	of	are	that	you	can't	create	complex	queries	to
access	Azure	Cosmos	DB,	and	aggregate	operators	are	not	supported	from	this
EF	Core	provider.	Making	counts	is	an	expensive	operation.	To	allow	paging
across	the	data	with	a	NoSQL	database,	many	applications	just	offer	prev/next
buttons,	but	don't	give	details	on	how	many	pages	are	available	(at	least	not	with
exact	values).

SUMMARY
This	chapter	introduced	you	to	the	rich	features	of	the	EF	Core.	You've	learned
how	the	DbContext	keeps	knowledge	about	entities	retrieved	and	updated	and
how	changes	can	be	written	to	the	database.	You've	also	seen	how	migrations
can	be	used	to	create	and	change	the	database	schema	from	C#	code.	In	terms	of
defining	the	schema,	you've	seen	how	the	database	mapping	can	be	done	using
data	annotations,	and	you've	also	seen	the	Fluent	API	that	offers	more	features
compared	to	the	annotations	and	conventions.

You've	seen	possibilities	for	reacting	to	conflicts	when	multiple	users	work	on
the	same	record,	as	well	as	using	transactions	implicitly	or	explicitly	for	more
transactional	control.

This	chapter	also	covered	great	features	of	EF	Core,	such	as	compiled	queries,
global	query	filters,	table	splitting,	owned	entities,	many-to-many	relations,	and
how	to	use	a	NoSQL	database	with	EF	Core.

The	next	chapter	gets	into	globalization	and	localization	features	of	.NET,	using
culture-specific	date,	time,	and	number	formats,	as	well	as	resources	to	define
text	for	different	languages.

22
Localization

WHAT'S	IN	THIS	CHAPTER?

Formatting	numbers	and	dates

Using	resources	for	localized	content

Localizing	ASP.NET	Core	Web	Applications

Localizing	WinUI	apps

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/Localization.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

NumberAndDateFormatting

SortingDemo

CreateResource

WinUICultureDemo

ResourcesDemo

ASPNETCoreLocalization

WinUILocalization

Samples	from	this	chapter	mainly	use	the	namespaces
System.Globalization	and	System.Resources.	All	the	sample	projects
have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

GLOBAL	MARKETS
NASA's	Mars	Climate	Orbiter	was	lost	on	September	23,	1999,	at	a	cost	of	$125
million,	because	one	engineering	team	used	metric	units,	whereas	another	used
inches	for	the	same	key	spacecraft	operation.	When	writing	applications	for
international	distribution,	different	cultures	and	regions	must	be	kept	in	mind.

Different	cultures	have	diverging	calendars	and	use	different	number	and	date
formats,	and	sorting	strings	may	lead	to	unexpected	results	because	the	order	of
A	to	Z	is	defined	differently	based	on	the	culture.	To	make	usable	applications
for	global	markets,	you	must	globalize	and	localize	them.

This	chapter	covers	the	globalization	and	localization	of	.NET	applications.
Globalization	relates	to	internationalizing	applications:	preparing	applications
for	international	markets.	With	globalization,	the	application	supports	number
and	date	formats	that	vary	according	to	culture,	calendars,	and	so	on.
Localization	is	about	translating	applications	for	specific	cultures.	For
translations	of	strings,	you	can	use	resources	such	as	.NET	resources	or	WPF
resource	dictionaries.

.NET	supports	globalization	and	localization.	To	globalize	an	application,	you
can	use	classes	from	the	namespace	System.Globalization	;	to	localize	an
application,	you	can	use	resources	supported	by	the	namespace
System.Resources.

NAMESPACE	SYSTEM.GLOBALIZATION
The	System.Globalization	namespace	holds	all	the	culture	and	region	classes
necessary	to	support	different	date	formats,	different	number	formats,	and	even
different	calendars	that	are	represented	in	classes	such	as	GregorianCalendar,
HebrewCalendar,	JapaneseCalendar,	and	so	on.	By	using	these	classes,	you	can
display	different	representations	according	to	the	user's	locale.

This	section	looks	at	the	following	issues	and	considerations	when	using	the
System.Globalization	namespace:

Unicode	issues

Cultures	and	regions

An	example	showing	all	cultures	and	their	characteristics

Sorting

Unicode	Issues
A	Unicode	character	has	16	bits,	so	there	is	room	for	65,536	characters.	Is	this
enough	for	all	languages	currently	used	in	information	technology?	In	the	case
of	the	Chinese	language,	for	example,	more	than	80,000	characters	are	needed.
Fortunately,	Unicode	has	been	designed	to	deal	with	this	issue.	With	Unicode,
you	must	differentiate	between	base	characters	and	combining	characters.	You
can	add	multiple	combining	characters	to	a	base	character	to	build	a	single
display	character	or	a	text	element.

Take,	for	example,	the	Icelandic	character	Ogonek.	Ogonek	can	be	created	by
using	the	base	character	0x006F	(Latin	small	letter	o)	and	the	combining
characters	0x0328	(combining	Ogonek)	and	0x0304	(combining	Macron),	as
shown	in	Figure	22-1.	Combining	characters	are	defined	within	ranges	from
0x0300	to	0x0345.	For	American	and	European	markets,	predefined	characters
exist	to	facilitate	dealing	with	special	characters.	The	character	Ogonek	is	also
defined	by	the	predefined	character	0x01ED.

FIGURE	22-1

For	Asian	markets,	where	more	than	80,000	characters	are	necessary	for	Chinese
alone,	such	predefined	characters	do	not	exist.	In	Asian	languages,	you	always
have	to	deal	with	combining	characters.	The	problem	is	getting	the	right	number
of	display	characters	or	text	elements	and	getting	to	the	base	characters	instead
of	the	combined	characters.	The	namespace	System.Globalization	offers	the
class	StringInfo,	which	you	can	use	to	deal	with	this	issue.

The	following	table	lists	the	static	methods	of	the	class	StringInfo	that	help	in
dealing	with	combined	characters:

METHOD DESCRIPTION
GetNextTextElement Returns	the	first	text	element	(base	character	and

all	combining	characters)	of	a	specified	string
GetTextElementEnumerator Returns	a	TextElementEnumerator	object	that

allows	iterating	all	text	elements	of	a	string

ParseCombiningCharacters Returns	an	integer	array	referencing	all	base
characters	of	a	string

NOTE A	single	display	character	can	contain	multiple	Unicode
characters.	To	address	this	issue,	when	you	write	applications	that	support
international	markets,	don't	use	the	data	type	char;	use	string	instead.	A
string	can	hold	a	text	element	that	contains	both	base	characters	and
combining	characters,	whereas	a	char	cannot.

Cultures	and	Regions
The	world	is	divided	into	multiple	cultures	and	regions,	and	applications	must	be
aware	of	these	cultural	and	regional	differences.	A	culture	is	a	set	of	preferences
based	on	a	user's	language	and	cultural	habits.	RFC	4646
(http://www.ietf.org/rfc/rfc4646.txt)	defines	culture	names	that	are	used
worldwide,	depending	on	a	language	and	a	country	or	region.	Some	examples
are	en-AU,	en-CA,	en-GB,	and	en-US	for	the	English	language	in	Australia,
Canada,	the	United	Kingdom,	and	the	United	States,	respectively.

Possibly	the	most	important	class	in	the	System.Globalization	namespace	is
CultureInfo.	CultureInfo	represents	a	culture	and	defines	calendars,
formatting	of	numbers	and	dates,	and	sorting	strings	used	with	the	culture.

The	class	RegionInfo	represents	regional	settings	(such	as	the	currency)	and
indicates	whether	the	region	uses	the	metric	system.	Some	regions	can	use
multiple	languages.	One	example	is	the	region	of	Spain,	which	has	Basque	(eu-
ES),	Catalan	(ca-ES),	Spanish	(es-ES),	and	Galician	(gl-ES)	cultures.	Just	as	one
region	can	have	multiple	languages,	one	language	can	be	spoken	in	different
regions;	for	example,	Spanish	is	spoken	in	Mexico,	Spain,	Guatemala,
Argentina,	and	Peru,	to	name	only	a	few	countries.

Later	in	this	chapter	a	sample	application	demonstrates	these	characteristics	of
cultures	and	regions.

Specific,	Neutral,	and	Invariant	Cultures
When	using	cultures	with	.NET,	you	must	differentiate	between	three	types:
specific,	neutral,	and	invariant	cultures.	A	specific	culture	is	associated	with	a
real,	existing	culture	defined	with	RFC	4646,	as	described	in	the	preceding
section.	A	specific	culture	can	be	mapped	to	a	neutral	culture.	For	example,	de	is

http://www.ietf.org/rfc/rfc4646.txt

the	neutral	culture	of	the	specific	cultures	de-AT,	de-DE,	de-CH,	and	others.	de
is	shorthand	for	the	German	language	(Deutsch);	AT,	DE,	and	CH	are	shorthand
for	the	countries	Austria,	Germany,	and	Switzerland,	respectively.

When	translating	applications,	it	is	typically	not	necessary	to	do	translations	for
every	region;	not	much	difference	exists	between	the	German	language	in	the
countries	Austria	and	Germany.	Instead	of	using	specific	cultures,	you	can	use	a
neutral	culture	to	localize	applications.

The	invariant	culture	is	independent	of	a	real	culture.	When	storing	formatted
numbers	or	dates	in	files	or	sending	them	across	a	network	to	a	server,	using	a
culture	that	is	independent	of	any	user	settings	is	the	best	option.

Figure	22-2	shows	how	the	culture	types	relate	to	each	other.

FIGURE	22-2

Current	Culture	and	Current	UI	Culture
When	you	set	cultures,	you	need	to	differentiate	between	a	culture	for	the	user
interface	and	a	culture	for	the	number	and	date	formats.	Cultures	are	associated
with	a	thread,	and	with	these	two	culture	types,	you	can	apply	two	culture
settings	to	a	thread.	The	CultureInfo	class	has	the	static	properties

CurrentCulture	and	CurrentUICulture.	The	property	CurrentCulture	is	for
setting	the	culture	that	is	used	with	formatting	and	sort	options,	whereas	the
property	CurrentUICulture	is	used	for	the	language	of	the	user	interface.

On	Windows,	the	configured	culture	is	used	as	the	default	culture	of	the	running
thread.	On	Linux,	culture	information	comes	from	the	ICU	library
(http://site.icu-project.org/),	which	is	installed	on	Linux	distributions.	Be
aware	that	not	all	Linux	distributions	have	this	library	available.	For	example,	an
advantage	of	Alpine	Linux	is	that	it's	very	small,	and	the	ICU	is	not	installed	by
default.	To	deal	with	such	issues,	.NET	implements	the	Global	Invariant	Mode.
With	this	mode	(which	is	enabled	on	Alpine	Linux),	all	the	cultures	behave	like
the	invariant	culture.	You	can	enable	the	invariant	mode	with	a	configuration	in
the	project	file:

<ItemGroup>

		<RuntimeHostConfigurationOption	

Include="System.Globalization.Invariant"	Value="true"/>

</ItemGroup>

or	by	setting	the	environment	variable
DOTNET_SYSTEM_GLOBALIZATION_INVARIANT	to	true.

In	many	cases,	you	won't	need	to	change	the	current	culture;	you	can	just	use	the
culture	configured	from	the	user.	In	cases	where	you	need	to	change	the	culture,
you	can	easily	do	this	programmatically	by	changing	both	cultures	to,	say,	the
Spanish	culture,	as	shown	in	this	code	snippet	(using	the	namespace
System.Globalization):

CultureInfo	ci	=	new("es-ES");

CultureInfo.CurrentCulture	=	ci;

CultureInfo.CurrentUICulture	=	ci;

Now	that	you	know	how	to	set	the	culture,	the	following	sections	discuss
number	and	date	formatting,	which	are	influenced	by	the	CurrentCulture
setting.

Number	Formatting
The	number	structures	Int16,	Int32,	Int64,	and	so	on,	in	the	System	namespace
have	an	overloaded	ToString	method.	You	can	use	this	method	to	create	a
different	representation	of	the	number,	depending	on	the	locale.	For	the	Int32
structure,	ToString	is	overloaded	to	pass	a	format	string	and	an	object
implementing	IFormatProvider.

http://site.icu-project.org/

The	string	specifies	the	format	of	the	representation.	The	format	can	be	a
standard	numeric	formatting	string	or	a	picture	numeric	formatting	string.	For
standard	numeric	formatting,	strings	are	predefined	where	C	specifies	the
currency	notation,	D	creates	a	decimal	output,	E	creates	scientific	output,	F
creates	fixed-point	output,	G	creates	general	output,	N	creates	number	output,	and
X	creates	hexadecimal	output.	With	a	picture	numeric	formatting	string,	it	is
possible	to	specify	the	number	of	digits,	section	and	group	separators,	percent
notation,	and	so	on.	The	picture	numeric	format	string	###,###	means	two	three-
digit	blocks	separated	by	a	group	separator.

The	IFormatProvider	interface	is	implemented	by	the	NumberFormatInfo,
DateTimeFormatInfo,	and	CultureInfo	classes.	This	interface	defines	a	single
method,	GetFormat,	that	returns	a	format	object.

You	can	use	NumberFormatInfo	to	define	custom	formats	for	numbers.	With	the
default	constructor	of	NumberFormatInfo,	a	culture-independent	or	invariant
object	is	created.	In	using	the	properties	of	NumberFormatInfo,	it	is	possible	to
change	all	the	formatting	options,	such	as	a	positive	sign,	a	percent	symbol,	a
number	group	separator,	a	currency	symbol,	and	a	lot	more.	A	read-only,	culture-
independent	NumberFormatInfo	object	is	returned	from	the	static	property
InvariantInfo.	A	NumberFormatInfo	object	in	which	the	format	values	are
based	on	the	CultureInfo	of	the	current	thread	is	returned	from	the	static
property	CurrentInfo.

To	create	the	next	example,	you	can	start	with	a	console	application	project.	In
this	code,	the	first	example	shows	a	number	displayed	in	the	format	of	the
current	culture	(here:	U.S.	English,	the	setting	of	the	operating	system).	The
second	example	uses	the	ToString	method	with	the	IFormatProvider	argument.
CultureInfo	implements	IFormatProvider,	so	create	a	CultureInfo	object
using	the	French	culture.	The	third	example	changes	the	current	culture.	The
culture	is	changed	to	German	by	using	the	property	CurrentCulture	of	the
CultureInfo	instance	(code	file	NumberAndDateFormatting\Program.cs):

void	NumberFormatDemo()

{

		int	val	=	1234567890;

	

		//	culture	of	the	current	thread

		string	output	=	val.ToString("N");

		Console.WriteLine($"Current	thread	culture:	

{CultureInfo.CurrentCulture}:	{output}");

	

		//	use	IFormatProvider

		output	=	val.ToString("N",	new	CultureInfo("fr-FR"));

		Console.WriteLine($"IFormatProvider	with	fr-FR	culture	

{output}");

	

		//	change	the	culture	of	the	thread

		CultureInfo.CurrentCulture	=	new("de-DE");

		output	=	val.ToString("N");

		Console.WriteLine($"Changed	culture	of	the	thread	to	de-DE:	

{output}");

}

	

You	can	compare	the	following	different	output	for	U.S.	English,	French,	and
German,	respectively,	shown	here:

Current	thread	culture:	en-US:	1,234,567,890.00

IFormatProvider	with	fr-FR	culture	1	234	567	890,000

Changed	culture	of	the	thread	to	de-DE:	1.234.567.890,000

Date	Formatting
The	same	support	for	numbers	is	available	for	dates.	With	the	string	argument	of
the	ToString	method,	you	can	specify	a	predefined	format	character	or	a	custom
format	string	for	converting	the	date	to	a	string.	The	class	DateTimeFormatInfo
specifies	the	possible	values.	With	DateTimeFormatInfo,	the	case	of	the	format
strings	has	a	different	meaning.	D	defines	a	long	date	format;	d	defines	a	short
date	format.	Other	examples	of	possible	formats	are	ddd	for	the	abbreviated	day
of	the	week,	dddd	for	the	full	day	of	the	week,	yyyy	for	the	year,	T	for	a	long
time,	and	t	for	a	short	time.	With	the	IFormatProvider	argument,	you	can
specify	the	culture.	Using	an	overloaded	method	without	the	IFormatProvider
argument	implies	that	the	current	culture	is	used	(code	file
NumberAndDateFormatting/Program.cs):

void	DateFormatDemo()

{

		DateTime	d	=	new(2024,	09,	17);

	

		//	current	culture

		string	output	=	d.ToString("D");

		Console.WriteLine($"Current	thread	culture:	

{CultureInfo.CurrentCulture}:	{output}");

	

		//	use	IFormatProvider

		output	=	d.ToString("D",	new	CultureInfo("fr-FR"));

		Console.WriteLine($"IFormatProvider	with	fr-FR	culture:	

{output}");

	

		CultureInfo.CurrentCulture	=	new("es-ES");

		output	=	d.ToString("D");

		Console.WriteLine($"Changed	culture	of	the	thread	

{CultureInfo.CurrentCulture}:"+					$"{output}");

}

The	output	of	this	example	program	shows	ToLongDateString	with	the	current
culture	of	the	thread,	a	French	version	where	a	CultureInfo	instance	is	passed
to	the	ToString	method,	and	a	Spanish	version	where	the	CurrentCulture
property	of	the	thread	is	changed	to	es-ES:

Current	thread	culture:	de-DE:	Dienstag,	17.	September	2024

IFormatProvider	with	fr-FR	culture:	mardi	17	septembre	2024

Changed	culture	of	the	thread	es-ES:	martes,	17	de	septiembre	de	

2024

Cultures	in	Action
To	see	all	cultures	in	action,	you	can	use	a	sample	WinUI	app	that	lists	all
cultures	and	demonstrates	different	characteristics	of	culture	properties.	On	the
left	side	of	the	UI,	a	tree	view	is	used	to	display	all	the	cultures.	On	the	right	side
is	a	user	control	that	displays	relevant	information	about	the	selected	culture	and
region.

During	initialization	of	the	application,	all	available	cultures	are	added	to	the
TreeView	control	that	is	placed	on	the	left	side	of	the	application.	This
initialization	happens	in	a	view	model	in	the	method	SetupCultures,	which	is
called	in	the	constructor	of	the	CulturesViewModel	class	(code	file
WinUICultureDemo/CulturesViewModel.cs):

public	CulturesViewModel()	=>	SetupCultures();

For	the	data	that	is	shown	in	the	user	interface,	the	custom	class	CultureData	is
created.	This	class	can	be	bound	to	a	TreeView	control	because	it	has	a	property
SubCultures	that	contains	a	list	of	CultureData.	Therefore,	the	TreeView
control	enables	walking	through	this	tree.	Other	than	the	subcultures,
CultureData	contains	the	CultureInfo	type	and	sample	values	for	a	number,	a
date,	and	a	time.	The	number	returns	a	string	in	the	number	format	for	the
specific	culture,	and	the	date	and	time	return	strings	in	the	specific	culture
formats	as	well.	CultureData	contains	a	RegionInfo	class	to	display	regions.
With	some	neutral	cultures	(for	example,	English),	creating	a	RegionInfo	throws

an	exception	because	there	are	regions	only	with	specific	cultures.	However,
with	other	neutral	cultures	(for	example,	German),	creating	a	RegionInfo
succeeds	and	is	mapped	to	a	default	region.	The	exception	thrown	here	is
handled	(code	file	WinUICultureDemo/CultureData.cs):

public	record	CultureData(CultureInfo	CultureInfo)

{

		public	IList<CultureData>	SubCultures	{	get;	}	=	new	

List<CultureData>();

		double	numberSample	=	9876543.21;

		public	string	NumberSample	=>	numberSample.ToString("N",	

CultureInfo);

		public	string	DateSample	=>	DateTime.Today.ToString("D",	

CultureInfo);

		public	string	TimeSample	=>	DateTime.Now.ToString("T",	

CultureInfo);

	

		private	RegionInfo?	_regionInfo;

		public	RegionInfo?	RegionInfo

		{

				get

				{

						try

						{

								return	_regionInfo	??=	new	RegionInfo(CultureInfo.Name);

						}

						catch	(ArgumentException)

						{

								//	with	some	neutral	cultures	regions	are	not	available

								return	null;

						}

						return	ri;

				}

		}

}

In	the	method	SetupCultures,	you	get	all	cultures	from	the	static	method
CultureInfo.GetCultures.	Passing	CultureTypes.AllCultures	to	this	method
returns	an	unsorted	array	of	all	available	cultures.	The	result	is	sorted	by	the
name	of	the	culture.	With	the	result	of	the	sorted	cultures,	a	collection	of
CultureData	objects	is	created,	and	the	CultureInfo	and	SubCultures
properties	are	assigned.	With	the	result	of	this,	a	dictionary	is	created	to	enable
fast	access	to	the	culture	name.

For	the	data	that	should	be	shown	in	the	UI,	a	list	of	CultureData	objects	is

created	that	contains	all	the	root	cultures	for	the	tree	view	after	the	foreach
statement	is	completed.	Root	cultures	can	be	verified	to	determine	whether	they
have	the	invariant	culture	as	their	parent.	The	invariant	culture	has	the	locale
identifier	(LCID)	0x7f.	Every	culture	has	a	unique	identifier	that	can	be	used	for
a	fast	verification.	In	the	code	snippet,	root	cultures	are	added	to	the
rootCultures	collection	within	the	block	of	the	if	statement.	If	a	culture	has	the
invariant	culture	as	its	parent,	it	is	a	root	culture.

If	the	culture	does	not	have	a	parent	culture,	it	is	added	to	the	root	nodes	of	the
tree.	To	find	parent	cultures,	all	cultures	are	remembered	inside	a	dictionary.
(See	Chapter	8,	“Collections,”	for	more	information	about	dictionaries.)	If	the
culture	iterated	is	not	a	root	culture,	it	is	added	to	the	SubCultures	collection	of
the	parent	culture.	The	parent	culture	can	be	quickly	found	by	using	the
dictionary.	In	the	last	step,	the	root	cultures	are	made	available	to	the	UI	by
assigning	them	to	the	RootCultures	property	(code	file
WinUICultureDemo/CulturesViewModel.cs):

private	void	SetupCultures()

{

		var	cultureDataDict	=	

CultureInfo.GetCultures(CultureTypes.AllCultures)

				.OrderBy(c	=>	c.Name)

				.Select(c	=>	new	CultureData(c))

				.ToDictionary(c	=>	c.CultureInfo.Name);

	

		List<CultureData>	rootCultures	=	new();

		foreach	(var	cd	in	cultureDataDict.Values)

		{

				if	(cd.CultureInfo.Parent.LCID	==	0x7f)		//	check	for	

invariant	culture

				{

						rootCultures.Add(cd);

				}

				else	//	add	to	parent	culture

				{

						if	

(cultureDataDict.TryGetValue(cd.CultureInfo.Parent.Name,	

								out	CultureData?	parentCultureData))

						{

								parentCultureData.SubCultures.Add(cd);

								continue;

						}

	

						//	with	the	latest	culture	updates,	some	cultures	don't	

have	the	

						//	direct	parent	name	in	the	list,	take	the	next	parent

						string	parent	=	cd.CultureInfo.Parent.Name;

						int	index	=	parent.IndexOf("-");

						if	(index	<	0)

						{

								//	just	add	this	culture	to	the	root	cultures

								rootCultures.Add(cd);

								continue;

						}

						string	grandParent	=	parent[..index];

						if	(cultureDataDict.TryGetValue(grandParent,	

								out	CultureData?	grandParentCultureData))

						{

								grandParentCultureData.SubCultures.Add(cd);

						}

						else	//	parent	also	not	found	to	the	root	cultures,	add	it	

directly

						{

								rootCultures.Add(cd);

						}

				}

		}

	

		foreach	(var	rootCulture	in	rootCultures.OrderBy(cd	=>	

cd.CultureInfo.EnglishName))

		{

				RootCultures.Add(rootCulture);

		}

}

	

public	IList<CultureData>	RootCultures	{	get;	}	=	new	

List<CultureData>();

Now	let's	get	into	the	XAML	code	for	the	display.	A	TreeView	is	used	to	display
all	the	cultures.	For	the	display	of	items	inside	the	TreeView,	an	item	template	is
used.	This	template	uses	a	TextBlock	that	is	bound	to	the	EnglishName	property
of	the	CultureInfo	class	(code	file	WinUICultureDemo/MainWindow.xaml):

<TreeView	x:Name="treeView1"	

		Style="{StaticResource	TreeViewStyle1}"

		ItemInvoked="{x:Bind	OnSelectionChanged,	Mode=OneTime}"

		SelectionMode="Single">

</TreeView>

In	the	code-behind	file,	the	TreeView	is	initialized	by	accessing	the	CultureData
objects	from	the	view	model.	Using	the	CultureData	objects,	TreeNode	objects

are	created	for	the	TreeView.	The	TreeNode	class	defines	a	Data	property	where
the	CultureData	object	is	assigned.	The	Add	method	of	the	TreeNode	allows
adding	child	objects.	Child	objects	are	added	by	recursively	invoking	the	local
function	AddSubNodes	(code	file	WinUICultureDemo/MainWindow.xaml.cs):

private	void	OnActivated(object	sender,	WindowActivatedEventArgs	

args)

{

		void	AddSubNodes(TreeViewNode	parent)

		{

				if	(parent.Content	is	CultureData	cd	&&	cd.SubCultures	is	

not	null)

				{

						foreach	(var	culture	in	cd.SubCultures)

						{

								TreeViewNode	node	=	new()

								{

										Content	=	culture

								};

								parent.Children.Add(node);

	

								foreach	(var	subCulture	in	culture.SubCultures)

								{

										AddSubNodes(node);

								}

						}

				}

		}

	

		var	rootNodes	=	ViewModel.RootCultures.Select(cd	=>	new	

TreeViewNode

		{

				Content	=	cd

		});

	

		foreach	(var	node	in	rootNodes)

		{

				treeView1.RootNodes.Add(node);

				AddSubNodes(node);

		}

}

When	the	user	selects	a	node	inside	the	tree,	the	handler	of	the
SelectedItemChanged	event	of	the	TreeView	is	called.	In	the	following	code
snippet,	the	handler	is	implemented	in	the	method	OnSelectionChanged.	With
the	implementation,	the	SelectedCulture	property	of	the	associated	ViewModel

is	set	to	the	selected	CultureData	object	(code	file
WinUICultureDemo/MainWindow.xaml.cs):

private	void	OnSelectionChanged(TreeView	sender,	

TreeViewItemInvokedEventArgs	args)

{

		if	(args.InvokedItem	is	TreeViewNode	node	&&	node.Content	is	

CultureData	cd)

		{

				ViewModel.SelectedCulture	=	cd;

		}

}

To	display	the	values	of	the	selected	item,	you	use	several	TextBlock	controls.
These	bind	to	the	CultureInfo	property	of	the	CultureData	class	and	in	turn	to
properties	of	the	CultureInfo	type	that	is	returned	from	CultureInfo,	such	as
Name,	IsNeutralCulture,	EnglishName,	NativeName,	and	so	on.	To	convert	a
Boolean	value,	as	returned	from	the	IsNeutralCulture	property,	to	a
Visibility	enumeration	value,	and	to	display	calendar	names,	you	use
converters	(XAML	file	WinUICultureDemo/CultureDetailUC.xaml):

<TextBlock	Grid.Row="0"	Grid.Column="0"	Text="Culture	Name:"/>

<TextBlock	Grid.Row="0"	Grid.Column="1"	

		Text="{x:Bind	CultureData.CultureInfo.Name,	Mode=OneWay}"

		Width="100"/>

<TextBlock	Grid.Row="0"	Grid.Column="2"	Text="Neutral	Culture"

		Visibility="{x:Bind	CultureData.CultureInfo.IsNeutralCulture,	

Mode=OneWay}"/>

	

<TextBlock	Grid.Row="1"	Grid.Column="0"	Text="English	Name:"/>

<TextBlock	Grid.Row="1"	Grid.Column="1"	Grid.ColumnSpan="2"

		Text="{x:Bind	CultureData.CultureInfo.EnglishName,	

Mode=OneWay}"/>

	

<TextBlock	Grid.Row="2"	Grid.Column="0"	Text="Native	Name:"/>

<TextBlock	Grid.Row="2"	Grid.Column="1"	Grid.ColumnSpan="2"

		Text="{x:Bind	CultureData.CultureInfo.NativeName}"/>

	

<TextBlock	Grid.Row="3"	Grid.Column="0"	Text="Default	

Calendar:"/>

<TextBlock	Grid.Row="3"	Grid.Column="1"	Grid.ColumnSpan="2"

		Text="{x:Bind	CultureData.CultureInfo.Calendar,	Mode=OneWay

		Converter={StaticResource	calendarConverter}}"/>

	

<TextBlock	Grid.Row="4"	Grid.Column="0"	Text="Optional	

Calendars:"/>

<ListBox	Grid.Row="4"	Grid.Column="1"	Grid.ColumnSpan="2"

		ItemsSource="{x:Bind	

CultureData.CultureInfo.OptionalCalendars}">

		<ListBox.ItemTemplate>

				<DataTemplate>

						<TextBlock	Text="{Binding

								Converter={StaticResource	calendarConverter}}"/>

				</DataTemplate>

		</ListBox.ItemTemplate>

</ListBox>

To	display	the	calendar	text,	you	use	an	object	that	implements
IValueConverter.	Here	is	the	implementation	of	the	Convert	method	in	the
class	CalendarTypeToCalendarInformationConverter.	The	implementation
uses	the	class	name	and	calendar	type	name	to	return	a	useful	value	for	the
calendar	(code	file
WinUICultureDemo/Converters/CalendarTypeToCalendarInformationConverter.cs

public	object?	Convert(object?	value,	Type	targetType,	object?	

parameter,	

		string?	language)

{

		if	(value	is	Calendar	cal)

		{

				StringBuilder	calText	=	new(50);

				calText.Append(cal.ToString());

				calText.Remove(0,	21);

				calText.Replace("Calendar",	"");

				if	(cal	is	GregorianCalendar	gregCal)

				{

						calText.Append($"	{gregCal.CalendarType}");

				}

				return	calText.ToString();

		}

		else

		{

				return	null;

		}

}

The	CultureData	class	contains	properties	to	display	sample	information	for
number,	date,	and	time	formats.	These	properties	are	bound	with	the	following
TextBlock	elements	(XAML	file	WinUICultureDemo/CultureDetailUC.xaml):

<TextBlock	Grid.Row="0"	Grid.Column="0"	Text="Number"/>

<TextBlock	Grid.Row="0"	Grid.Column="1"	

		Text="{x:Bind	CultureData.NumberSample,	Mode=OneWay}"/>

<TextBlock	Grid.Row="1"	Grid.Column="0"	Text="Full	Date"/>

<TextBlock	Grid.Row="1"	Grid.Column="1"	

		Text="{x:Bind	CultureData.DateSample,	Mode=OneWay}"/>

<TextBlock	Grid.Row="2"	Grid.Column="0"	Text="Time"/>

<TextBlock	Grid.Row="2"	Grid.Column="1"	

		Text="{x:Bind	CultureData.TimeSample,	Mode=OneWay}"/>

The	information	about	the	region	is	shown	with	the	last	part	of	the	XAML	code.
The	complete	area	is	hidden	if	the	RegionInfo	is	not	available.	The	TextBlock
elements	bind	the	DisplayName,	CurrencySymbol,	ISOCurrencySymbol,	and
IsMetric	properties	of	the	RegionInfo	type:

<Grid	Grid.Row="6"	Grid.Column="0"	Grid.ColumnSpan="3"	

		Visibility="{x:Bind	CultureData.RegionInfo,	Mode=OneWay,

		Converter={StaticResource	NullConverter}}">

		<!--	…	-->

		<TextBlock	Grid.Row="0"	Grid.Column="0"	Text="Region	

Information"	

				Style="{StaticResource	SubheaderTextBlockStyle"/>

		<TextBlock	Grid.Row="0"	Grid.Column="1"	Grid.ColumnSpan="2"

				Text="{x:Bind	CultureData.RegionInfo.DisplayName,	

Mode=OneWay}"/>

	

		<TextBlock	Grid.Row="1"	Grid.Column="0"	Text="Currency"/>

		<TextBlock	Grid.Row="1"	Grid.Column="1"

				Text="{x:Bind	CultureData.RegionInfo.CurrencySymbol,	

Mode=OneWay}"/>

	

		<TextBlock	Grid.Row="1"	Grid.Column="2"

				Text="{x:Bind	CultureData.RegionInfo.ISOCurrencySymbol,	

Mode=OneWay}"/>

	

		<TextBlock	Grid.Row="2"	Grid.Column="1"	Text="Is	Metric"

				Visibility="{x:Bind	CultureData.RegionInfo.IsMetric,	

Mode=OneWay}"/>

</Grid>

When	you	start	the	application,	you	can	see	all	available	cultures	in	the	tree
view,	and	selecting	a	culture	lists	its	characteristics,	as	shown	in	Figure	22-3.

Sorting
Sorting	strings	varies	according	to	the	culture.	With	the	Finnish	language,	some
vowels	with	an	accent	are	sorted	after	Z,	whereas	in	many	other	countries
accented	vowels	come	right	after	nonaccented	vowels.	With	Asian	languages,

sort	order	rules	are	based	on	phonetics,	radical	orders,	and	number	of	pen
strokes.	With	an	application,	you	might	need	to	sort	for	a	user	or	independent	of
a	user	to	have	sorted	results	on	a	server.

By	default,	sorting	with	.NET	is	culture-specific,	but	you	can	specify	to	do	a
culture-invariant	sort.

FIGURE	22-3

Let's	get	into	a	sample	application	to	sort	strings	based	on	a	specific	culture	and
with	an	invariant	culture.

The	method	DisplayNames	shown	here	is	used	to	display	all	elements	of	an	array
or	a	collection	on	the	console	(code	file	SortingDemo/Program.cs):

void	DisplayNames(string	title,	IEnumerable<string>	names)

{

		Console.WriteLine(title);

		Console.WriteLine(string.Join("-",	names));

		Console.WriteLine();

}

In	the	Main	method,	after	creating	the	array	with	countries	from	the	European
Union	with	native	country	names,	the	CultureInfo.CurrentCulture	property	is
set	to	the	Finnish	culture	so	that	the	following	Array.Sort	uses	the	Finnish	sort
order.	Calling	the	method	DisplayNames	displays	all	the	countries	on	the
console:

string[]	countries	=	{	"Österreich",	"België",	"България",	

"Hrvatska",	"Česko",	

		"Danmark",	"Eesti",	"Suomi",	"France",	"Deutschland",	

"Ελλáδα",	

		"Magyarország",	"Ireland",	"Italia",	"Latvija",	"Lietuva",	

"Lëtzebuerg",	

		"Malta",	"Nederland",	"Polska",	"Portugal",	"România",	

"Slovensko",	

		"Slovenija",	"España",	"Sverige"	};

	

CultureInfo.CurrentCulture	=	new	CultureInfo("fi-FI");

	

Array.Sort(countries);

DisplayNames("Sorted	using	the	Finnish	culture",	countries);

After	the	first	display	of	the	countries	in	the	Finnish	sort	order,	the	array	is	sorted
once	again.	If	you	want	a	sort	that	is	independent	of	the	users’	culture,	which
would	be	useful	when	the	sorted	array	is	sent	to	a	server	or	stored	somewhere,
you	can	use	the	invariant	culture.

You	can	do	this	by	passing	a	second	argument	to	Array.Sort.	The	Sort	method
expects	an	object	implementing	IComparer	with	the	second	argument.	The
Comparer	class	from	the	System.Collections	namespace	implements
IComparer.	Comparer.DefaultInvariant	returns	a	Comparer	object	that	uses	the
invariant	culture	for	comparing	the	array	values	for	a	culture-independent	sort:

//	sort	using	the	invariant	culture

	

Array.Sort(countries,	Comparer.DefaultInvariant);

DisplayNames("Sorted	using	the	invariant	culture",	countries);

The	program	output	shows	different	sort	results	with	the	Finnish	and	culture-
independent	cultures—Österreich	is	positioned	after	Sverige	with	the	Finnish
culture	and	after	Nederland	with	the	invariant	culture:

Sorted	using	the	Finnish	culture

België-Česko-Danmark-Deutschland-Eesti-España-France-Hrvatska-

Ireland-Italia-Latvija-

Lëtzebuerg-Lietuva-Magyarország-Malta-Nederland-Polska-Portugal-

România-Slovenija-

Slovensko-Suomi-Sverige-Österreich-Ελλáδα-България

	

Sorted	using	the	invariant	culture

België-Česko-Danmark-Deutschland-Eesti-España-France-Hrvatska-

Ireland-Italia-Latvija-

Lëtzebuerg-Lietuva-Magyarország-Malta-Nederland-Österreich-

Polska-Portugal-România-

Slovenija-Slovensko-Suomi-Sverige-Ελλáδα-България

NOTE If	sorting	a	collection	should	be	independent	of	a	culture,	the
collection	must	be	sorted	with	the	invariant	culture.	This	can	be	particularly
useful	when	sending	the	sort	result	to	a	server	or	storing	it	inside	a	file.	To
display	a	sorted	collection	to	the	user,	it's	best	to	sort	it	with	the	user's
culture.

In	addition	to	a	locale-dependent	formatting	and	measurement	system,	text	and
colors	may	differ	depending	on	the	culture.	This	is	where	resources	come	into
play.

RESOURCES
You	can	put	resources	such	as	pictures	or	string	tables	into	resource	files	or
assemblies.	Such	resources	can	be	very	helpful	when	localizing	applications,	and
.NET	has	built-in	support	to	search	for	localized	resources.	A	satellite	assembly
is	an	assembly	that	just	contains	localized	resources.	With	an	application,	you
can	add	multiple	satellite	assemblies	for	all	the	different	languages	supported	by
the	application.

Resource	files	can	be	simple	text-based	files	(which	only	support	strings	for	the
resources),	binary	files,	or	XML	files.	XML	resource	files	usually	have	the
.resx	file	extension.	With	WinUI	and	UWP	applications,	the	.resw	file
extension	is	used	with	the	same	XML	syntax.

Before	you	see	how	to	use	resources	to	localize	applications,	the	following
sections	explain	how	you	can	create	and	read	resources	without	looking	at
language	aspects.

Resource	Readers	and	Writers
ResourceWriter	(from	the	System.Resources	namespace)	enables	you	to	create
binary	resource	files.	The	constructor	of	the	writer	requires	a	Stream	that	is
created	using	the	File	class.	You	add	resources	by	using	the	AddResource
method	(code	file	CreateResource/Program.cs):

private	const	string	ResourceFile	=	"Demo.resources";

public	static	void	CreateResource()

{

		FileStream	stream	=	File.OpenWrite(ResourceFile);

		using	var	writer	=	new	ResourceWriter(stream);

		writer.AddResource("Title",	"Professional	C#");

		writer.AddResource("Author",	"Christian	Nagel");

		writer.AddResource("Publisher",	"Wrox	Press");

}

To	read	the	resources	of	a	binary	resource	file,	you	can	use	ResourceReader.
The	GetEnumerator	method	of	the	reader	returns	an	IDictionaryEnumerator
that	is	used	within	the	following	foreach	statement	to	access	the	key	and	value
of	the	resource:

public	static	void	ReadResource()

{

		FileStream	stream	=	File.OpenRead(ResourceFile);

		using	(var	reader	=	new	ResourceReader(stream))

		{

				foreach	(DictionaryEntry	resource	in	reader)

				{

						Console.WriteLine($"{resource.Key}	{resource.Value}");

				}

		}

}

Running	the	application	returns	the	keys	and	values	that	have	been	written	to	the
binary	resource	file.	To	create	XML-based	.resx	files,	you	can	use	the
ResXResourceWriter	class	in	the	System.Resources	namespace.	At	the	time	of
this	writing,	this	class	is	defined	in	the	System.Windows.Forms	assembly.	The
.resw	files	with	UWP	applications	are	based	on	System.Windows.Forms	as	well.
The	tool	to	convert	resource	files	(resgen)	is	part	of	the	.NET	Framework	SDK
on	the	Windows	platform.	To	solve	some	of	the	issues	here,	msbuild	has	built-in
support	to	work	with	resource	files	on	all	platforms.

Using	Resource	Files	with	ResourceManager

With	the	default	SDK	definitions	for	project	files,	resource	files	are	embedded	in
the	assembly.	You	can	customize	this—for	example,	you	can	remove	resources
from	the	assembly	by	adding	an	EmbeddedResource	element	with	the	Remove
attribute	to	an	ItemGroup	in	the	project	file	as	shown:

<ItemGroup>

		<EmbeddedResource	Remove="Resources\Messages.de.resx"/>

</ItemGroup>

The	sample	application	uses	embedded	resources.	To	see	how	resource	files	can
be	loaded	with	the	ResourceManager	class,	create	a	console	application	and
name	it	ResourcesDemo.

Create	a	Resources	folder	and	add	a	Messages.resx	file	to	this	folder.	The
Messages.resx	file	is	filled	with	a	key	and	value	for	U.S.	English	content—for
example,	the	key	GoodMorning	and	the	value	Good	Morning!.	This	will	be	the
default	language.	You	can	add	other	language	resource	files	with	the	naming
convention	to	add	the	culture	to	the	resource	file,	for	example,
Messages.de.resx	for	German	languages.	Translations	that	are	different	for
regional	languages—for	example,	languages	for	Switzerland—can	be	added	to
Messages.de-CH.resx.	“Good	Morning”	translates	to	German	“Guten	Morgen”
and	to	Swiss-German	“Guata	Morga.”

The	XML	content	of	the	file	contains	data	elements	with	name	attributes	and
value	child	elements	(XML	file	ResourcesDemo/Resources/Messages.resx):

<data	name="GoodMorning"	xml:space="preserve">

		<value>Good	Morning!</value>

</data>

When	you	add	XML	resource	files	to	the	project	using	a	.NET	SDK,	by	default,
resource	files	are	built	using	Embedded	Resource.	This	adds	the	resource	to	the
assembly.	With	localized	versions	of	these	files,	after	the	build,	you'll	find
subdirectories	for	the	different	languages—for	example,	de	and	de-CH.	These
subdirectories	contain	satellite	assemblies.	Satellite	assemblies	are	assemblies
that	contain	only	binary	resources	and	do	not	contain	code.	Depending	on	the
culture	setting	for	the	user,	resources	from	the	satellite	assemblies	are	retrieved.

To	access	the	embedded	resource,	use	the	ResourceManager	class	from	the
System.Resources	namespace.	When	you're	instantiating	the	ResourceManager,
one	overload	of	the	constructor	needs	the	name	of	the	resource	and	the	assembly.
The	namespace	of	the	application	is	ResourcesDemo	;	the	resource	file	is	in	the
folder	Resources,	which	defines	the	subnamespace	Resources,	and	it	has	the

name	Messages.resx.	This	defines	the	name
ResourcesDemo.Resources.Messages.	You	can	retrieve	the	assembly	of	the
resource	using	the	GetTypeInfo	method	of	the	Program	type,	which	defines	an
Assembly	property.	When	using	resources	from	the	current	assembly,	you	also
can	use	Assembly.GetExecutingAssembly	to	retrieve	the	current	assembly.
Using	the	resources	instance,	the	GetString	method	returns	the	value	of	the	key
passed	from	the	resource	file.	Passing	a	culture	such	as	de-CH	for	the	second
argument	looks	for	resources	in	the	de-CH	satellite	assembly.	If	it's	not	found
there,	the	neutral	language	for	de	is	taken,	the	de	resource	file.	If	it's	not	found
there,	the	default	resource	file	without	culture	naming	succeeds	to	return	the
value	(code	file	ResourcesDemo/Program.cs):

ResourceManager	resources	=	

new("ResourcesDemo.Resources.Messages",

		typeof(Program).GetTypeInfo().Assembly);

string	goodMorning	=	resources.GetString("GoodMorning",	new	

CultureInfo("de-CH));

Console.WriteLine(goodMorning);

Another	overload	of	the	ResourceManager	constructor	just	requires	the	type	of
the	class.	This	ResourceManager	looks	for	a	resource	file	named	Program.resx	:

ResourceManager	programResources	=	new(typeof(Program));

Console.WriteLine(programResources.GetString("Resource1"));

LOCALIZATION	WITH	ASP.NET	CORE
For	localization	of	ASP.NET	Core	web	applications,	you	can	use	the
CultureInfo	class	and	resources	like	those	already	discussed	in	this	chapter,	but
there	are	some	additional	issues	that	you	need	to	resolve.	Setting	the	culture	for
the	complete	application	doesn't	fulfill	usual	needs	because	users	are	coming
from	different	cultures.	So,	it's	necessary	to	set	the	culture	with	every	request	to
the	server.

NOTE For	using	localization	with	ASP.NET	Core,	you	need	to	know	about
both	cultures	and	resources	that	are	discussed	in	this	chapter	as	well	as
creating	ASP.NET	Core	applications.	In	case	you	haven't	created	ASP.NET
Core	web	applications	with	.NET	before,	you	should	read	Chapter	24,
“ASP.NET	Core,”	before	continuing	with	this	part	of	the	chapter.

How	do	you	know	about	the	culture	of	the	user?	There	are	different	options.	The
browser	sends	preferred	languages	within	the	HTTP	header	with	every	request.
This	information	from	the	browser	can	come	from	browser	settings	or	when	the
browser	itself	checks	the	installed	languages.	Another	option	is	to	define	URL
parameters	or	use	different	domain	names	for	different	languages.	You	can	use
different	domain	names	in	some	scenarios,	such	as	www.cninnovation.com	for
an	English	version	of	the	site	and	www.cninnovation.de	for	a	German	version.
But	what	about	www.cninnovation.ch?	This	should	be	offered	both	in	German
and	French	and	probably	Italian.	URL	parameters	such	as
www.cninnovation.com/culture=de	could	help	here.	Using
www.cninnovation.com/de	works	like	the	URL	parameter	by	defining	a	specific
route.	https://docs.microsoft.com	uses	language	routes	such	as
https://docs.microsoft.com/de-AT.	Another	option	is	to	allow	the	user	to
select	the	language	and	define	a	cookie	to	remember	this	option.

All	these	scenarios	are	supported	out	of	the	box	by	ASP.NET	Core.

Registering	Localization	Services
To	start	seeing	this	in	action,	create	a	new	ASP.NET	Core	Web	App	with	Razor
Pages.	With	the	.NET	CLI,	the	command	is	dotnet	new	webapp.	The	additional
namespaces	used	with	the	ASP.NET	Core	sample	are
Microsoft.AspNetCore.Localization,	Microsoft.Extensions.Localization,
and	System.ComponentModel.

Within	the	Startup	class,	you	need	to	invoke	the	AddLocalization	extension
method	to	register	services	for	localization	(code	file
ASPNETCoreLocalization/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddLocalization(options	=>	options.ResourcesPath	=					

				"Resources");

		//…

		services.AddRazorPages();

}

The	AddLocalization	method	registers	services	for	the	interfaces
IStringLocalizerFactory	and	IStringLocalizer.	With	the	registration	code,
the	type	ResourceManagerStringLocalizerFactory	is	registered	as	a	singleton,
and	StringLocalizer	is	registered	with	transient	lifetime.	The	class
ResourceManagerStringLocalizerFactory	is	a	factory	for

http://www.cninnovation.com
http://www.cninnovation.de
http://www.cninnovation.ch
http://www.cninnovation.com/culture=de
http://www.cninnovation.com/de
https://docs.microsoft.com
https://docs.microsoft.com/de-AT

ResourceManagerStringLocalizer.	This	class	in	turn	makes	use	of	the
ResourceManager	class	shown	earlier	for	retrieving	strings	from	resource	files.

Configuring	the	Middleware
After	localization	is	configured	with	the	dependency	injection	container,	you	can
configure	localization	with	the	middleware.	Middleware	functionality	is	invoked
with	every	HTTP	request	and	is	configured	in	the	Configure	method	of	the
Startup	class.	The	UseRequestLocalization	method	defines	an	overload	where
you	can	pass	RequestLocalizationOptions.	Setting	the
RequestLocalizationOptions	properties	enables	you	to	customize	what
cultures	should	be	supported	and	to	set	the	default	culture.	Here,	the
DefaultRequestCulture	is	set	to	en-US.	The	class	RequestCulture	is	just	a
small	wrapper	around	the	culture	for	formatting—which	is	accessible	via	the
Culture	property—and	the	culture	for	using	the	resources	(UICulture	property).
The	sample	code	accepts	en-US,	en,	de-AT,	and	de	cultures	for
SupportedCultures	and	SupportedUICultures	(code	file
ASPNETCoreLocalization/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		//…

	

		CultureInfo[]	supportedCultures	=	{	new("en-US"),	new("en"),	

new("de-AT"),					new("de")	};

	

		RequestLocalizationOptions	localizationOptions	=	new()

		{

				DefaultRequestCulture	=	new	RequestCulture(new	

CultureInfo("en-US")),

				SupportedCultures	=	supportedCultures,

				SupportedUICultures	=	supportedCultures

		};

	

		app.UseRequestLocalization(localizationOptions);

	

		app.UseHttpsRedirection();

		app.UseStaticFiles();

	

		app.UseRouting();

	

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapRazorPages();

		});

}

With	the	RequestLocalizationOptions	settings,	you	can	configure
RequestCultureProviders	invoking	the	method
AddInitialRequestCultureProvider	and	supplying	classes	that	derive	from	the
base	class	RequestCultureProvider.	By	default,	three	providers	are	configured
that	probably	fulfill	your	needs:	QueryStringRequestCultureProvider,
CookieRequestCultureProvider,	and
AcceptLanguageHeaderRequestCultureProvider.

ASP	.	NET	Core	Culture	Providers
Let's	look	at	these	culture	providers	in	more	detail.	The
QueryStringRequestCultureProvider	uses	the	query	string	to	retrieve	the
culture.	By	default,	the	query	parameters	culture	and	ui-culture	are	used	with
this	provider,	as	shown	with	this	URL:	https://localhost:5001/?
culture=de&ui-culture=en-US.

You	can	also	change	the	query	parameters	by	setting	the	QueryStringKey	and
UIQueryStringKey	properties	of	the	QueryStringRequestCultureProvider.

The	CookieRequestCultureProvider	defines	the	cookie	named
ASPNET_CULTURE	(which	can	be	set	using	the	CookieName	property).	The	values
from	this	cookie	are	retrieved	to	set	the	culture.	To	create	a	cookie	and	send	it	to
the	client,	you	can	use	the	static	method	MakeCookieValue	to	create	a	cookie
from	a	RequestCulture	and	send	it	to	the	client.	The
CookieRequestCultureProvider	uses	the	static	method	ParseCookieValue	to
get	a	RequestCulture.

With	the	third	option	for	culture	settings,	you	can	use	the	HTTP	header
information	that	is	sent	by	the	browser.	The	HTTP	header	that	is	sent	looks	like
this:

Accept-Language:	en-us,	de-at;q=0.8,	it;q=0.7

The	AcceptLanguageHeaderRequestCultureProvider	uses	this	information	to
set	the	culture.	You	use	up	to	three	language	values	in	the	order	defined	by	the
quality	value	to	find	a	first	match	with	the	supported	cultures.

https://localhost:5001/?culture=de&ui-culture=en-US

Using	a	Culture	with	ASP.NET	Core
In	a	new	Razor	page	(you	can	create	this	with	dotnet	new	page	or	using	Visual
Studio),	the	request	culture	is	accessed	and	used	for	date	formatting.	The	request
culture	is	automatically	set	with	the	current	thread,	but	to	get	more	information
about	it	with	ASP.NET	Core,	you	can	access	the	request	culture	using	the
IRequestCultureFeature	contract.	The	RequestCultureFeature	that
implements	the	interface	IRequestCultureFeature	uses	the	first	culture
provider	that	matches	the	culture	setting.	If	a	URL	defines	a	query	string	that
matches	the	culture	parameter,	the	QueryStringRequestCultureProvider	is
used	to	return	the	requested	culture.	If	the	URL	does	not	match,	but	a	cookie
with	the	name	ASPNET_CULTURE	is	received,	the
CookieRequestCultureProvider	is	used;	otherwise,	the
AcceptLanguageHeaderRequestCultureProvider	is	used.	With	the	following
code	snippet,	the	culture	information	is	used	to	assign	the	RequestCulture
property.	Then,	today's	date	is	written	to	the	Today	property	(code	file
ASPNETCoreLocalization/Pages/RequestCulture.cshtml.cs):

public	class	RequestCultureModel	:	PageModel

{

		public	void	OnGet()

		{

				var	features	=	HttpContext.Features.ToList();

				var	feature	=	

HttpContext.Features.Get<IRequestCultureFeature>();

				RequestCulture	requestCulture	=	feature.RequestCulture;

				RequestCulture	=	requestCulture.UICulture.ToString();

				Today	=	DateTime.Today.ToLongDateString();

		}

		public	string?	RequestCulture	{	get;	private	set;	}

		public	string?	Today	{	get;	private	set;	}

}

With	the	HTML	and	Razor	code	of	the	page,	the	RequestCulture	and	Today
properties	are	accessed	and	shown	to	the	user	(code	file
ASPNETCoreLocalization/Pages/RequestCulture.cshtml):

@page

@model	ASPNETCoreLocalization.Pages.RequestCultureModel

	

<h1>Show	Request	Culture</h1>

<div>@Model.RequestCulture</div>

<div>@Model.Today</div>

When	you	run	the	application,	you	can	pass	the	culture	and	see	the	results,	as
shown	in	Figure	22-4.	When	you	pass	cultures	that	aren't	supported	with	the
URL	request,	you	can	see	an	output	of	the	default	culture.

Using	Resources	with	ASP.NET	Core
Let's	add	resource	files	to	the	ASP.NET	Core	application.	The	sample	project
adds	the	Resources	folder	and	the	file	Startup.resx	within	it.	In	addition,
Pages	and	Models	subfolders	are	created.	Within	the	Pages	subfolder,	you	find
resource	files	for	pages,	such	as	UseResourceModel.resx,	with	localized
versions	with	the	file	extensions	resx.de	and	resx.de-AT.	In	the	Models
subfolder,	you	find	the	resource	files	Book.resx	and	Book.resx.de.	The	name	of
the	folder	where	the	resources	are	found	has	been	defined	with	the
ResourcePath	property	of	the	LocalizationOptions	class	when	invoking	the
AddLocalization	method	in	the	Startup	class	to	configure	the	DI	container,	as
shown	earlier.

FIGURE	22-4

With	the	code-behind	of	the	Razor	page	UseResource,	IStringLocalizer	is
injected	with	two	different	generic	parameters.	The	parameter
UseResourceModel	is	used	for	resources	only	required	with	the	page	and
retrieved	from	the	corresponding	resource	files;	the	parameter	Startup	is	used
for	shared	resources.	You	can	use	any	common	class	for	shared	resources.	When
you	use	IStringLocalizer,	the	indexer	and	the	GetString	method	(both	used
with	the	sample	code)	can	be	used	to	access	language-specific	resource	values
(code	file	ASPNETCoreLocalization/Pages/UseResource.cshtml.cs):

public	class	UseResourceModel	:	PageModel

{

		private	readonly	IStringLocalizer	_localizer;

		private	readonly	IStringLocalizer	_sharedLocalizer;

		public	UseResourceModel(IStringLocalizer<UseResourceModel>	

localizer,	

				IStringLocalizer<Startup>	sharedLocalizer)

		{

				_localizer	=	localizer;

				_sharedLocalizer	=	sharedLocalizer;

		}

	

		public	void	OnGet()

		{

				var	feature	=	

HttpContext.Features.Get<IRequestCultureFeature>();

				RequestCulture	requestCulture	=	feature.RequestCulture;

				Message1	=	_localizer["Message1"];

				Message2	=	_localizer.GetString("Message2",	

						feature.RequestCulture.Culture,	

feature.RequestCulture.UICulture);

				Message3	=	_sharedLocalizer.GetString("SharedText");

		}

	

		public	string?	Message1	{	get;	private	set;	}

		public	string?	Message2	{	get;	private	set;	}

		public	string?	Message3	{	get;	private	set;	}

}

The	resource	for	the	key	Message1	is	a	simple	string;	the	resource	for	Message2
is	defined	with	string	format	placeholders:	Using	culture	{0}	and	UI
culture	{1}.

NOTE When	you	use	formatted	strings	in	resources,	the	syntax	with
interpolated	strings	cannot	be	used.	The	variables	or	expressions	used	with
interpolated	strings	in	the	placeholders	are	not	available	from	resources.

When	you	add	?culture=de-AT	to	the	URL	request	(which	uses	the
QueryStringRequestCultureProvider),	you	can	see	output	as	shown	in	Figure
22-5.

FIGURE	22-5

Localization	with	Data	Annotations
Another	way	to	retrieve	resource	values	with	ASP.NET	Core	is	via	applying
annotations.	To	see	the	annotations	in	action,	the	Book	record	type	is	defined	in
the	Models	directory.	This	type	has	DisplayName	attributes	added	to	the
properties	Title	and	Publisher	(code	file
ASPNETCoreLocalization/Models/Book.cs):

using	System.ComponentModel;

	

namespace	ASPNETCoreLocalization.Models

{

		public	record	Book(

				[property:	DisplayName("BookTitle")]	string	Title,

				[property:	DisplayName("Publisher")]	string	Publisher);

}

The	resource	file	Book.resx	together	with	localized	versions	contains	resource
values	for	the	keys	BookTitle	and	Publisher—the	names	specified	with	the
DisplayName	attribute.	With	the	code-behind	file	of	the	EditBook	Razor	page,	a
new	Book	instance	is	created,	and	the	Book	property	is	set	(code	file
ASPNETCoreLocalization/Pages/EditBook.cshtml.cs):

public	class	EditBookModel	:	PageModel

{

		public	void	OnGet()

		{

				Book	=	new	Book("Professional	C#",	"Wrox	Press");

		}

	

		public	Book?	Book	{	get;	set;	}

}

The	Razor	page	shows	edit	fields	for	all	the	Book	properties	by	using	the	HTML
helper	EditorFor	(code	file
ASPNETCoreLocalization/Pagesd/EditBook.cshtml):

@page

@model	ASPNETCoreLocalization.Pages.EditBookModel

	

@Html.EditorFor(model	=>	model.Book)

When	you	run	the	application	and	access	the	link	/EditBook?culture=de-at,
resources	are	retrieved	from	both	the	controller	and	the	view,	as	shown	in	Figure
22-6.	Defining	resources	just	for	English	(Book.resx)	and	German
(Book.de.resx)	returns	values	defined	with	the	German	culture	passing	the
Austrian	culture	de-at.

FIGURE	22-6

NOTE Don't	forget	to	enable	annotations	for	localization	by	invoking	the
method	AddDataAnnotationsLocalization	in	the	Startup	class.

LOCALIZATION	WITH	WINUI
Localization	with	WinUI	is	based	on	the	concepts	you've	learned	so	far,	but	there

are	some	differences.	As	part	of	the	Project	Reunion,	resources	are	managed	by
MRT	Core.	MRT	Core	is	the	modern	version	of	the	Windows	Resource
Management	System.

The	concepts	of	cultures,	regions,	and	resources	are	the	same,	but	because
Windows	apps	can	be	written	with	C#	or	C++	with	XAML	(many	of	the	built-in
Windows	apps	like	the	Windows	Calculator	are	built	with	C++	and	XAML),
these	concepts	need	to	be	available	with	all	programming	languages.	Unlike	the
previous	version	of	UWP	apps,	to	manage	resources,	MRT	Core	is	independent
of	the	Windows	10	version.	MRT	offers	more	than	just	support	localization	of
resources.	Besides	selecting	resources	based	on	the	language,	different	resources
can	be	used	based	on	a	theme,	the	device	family,	the	scale,	the	layout	direction,
the	contrast	needs,	and	more.

The	namespaces	for	resources	are	available	with	the
Microsoft.ApplicationModel.Resources	namespace.	Let's	get	into	an	example
so	you	can	see	localization	with	a	WinUI	Windows	app	in	action.	Create	a	small
application	using	the	Visual	Studio	project	template	Blank	App,	Packaged
(WinUI	in	Desktop).	Add	two	TextBlock	controls	and	one	TextBox	control	to
the	page.

With	the	OnLaunched	method	of	the	App	class,	a	new	ResourceLoader	and	a
ResourceManager	are	created	and	passed	to	the	constructor	of	the	MainWindow
class.	If	you	need	to	access	strings	with	your	application,	you	just	need	to	use	the
ResourceLoader.	For	more	complex	scenarios,	instead	use	the
ResourceManager.	The	sample	application	demonstrates	using	both	of	these
types	(code	file	WinUILocalization/App.xaml.cs):

protected	override	void	

OnLaunched(Microsoft.UI.Xaml.LaunchActivatedEventArgs	args)

{

		ResourceLoader	resourceLoader	=	new();

		ResourceManager	resourceManager	=	new();

		m:window	=	new	MainWindow(resourceLoader,	resourceManager);

		m:window.Activate();

}

With	the	implementation,	the	default	constructor	of	the	ResourceLoader	class	is
used.	Using	the	default	constructor,	a	resource	with	the	name	Resources	is
looked	for.	Other	constructors	allow	passing	a	filename	and	a	resource	map.	The
resource	map	is	discussed	later	in	the	section	about	using	the	ResourceManager.
With	the	constructor	of	the	ResourceManager,	you	can	also	pass	a	resource
name.	By	default,	the	ResourceManager	uses	the	root	resource.

The	resource	files	added	to	the	project	need	to	have	the	build	action	defined	to
PRIResource.	In	the	project	file,	this	is	specified	with	the	PRIResource	element
(project	file	WinUILocalization/WinUILocalization.csproj):

<ItemGroup>

		<PRIResource	Include="Resources.lang-de-de.resw"/>

		<PRIResource	Include="Resources.resw"/>

</ItemGroup>

Using	the	MRT	ResourceLoader
Using	the	ResurceLoader	is	a	simple	task.	With	the	MainWindow,	the
ResourceLoader	is	passed	to	the	constructor	(code	file
WinUILocalization/MainWindow.xaml.cs):

private	readonly	ResourceLoader	_resourceLoader;

private	readonly	ResourceManager	_resourceManager;

private	readonly	ResourceContext	_resourceContext;

public	MainWindow(ResourceLoader	resourceLoader,	ResourceManager	

resourceManager)

{

		_resourceLoader	=	resourceLoader;

		_resourceManager	=	resourceManager;

		//…

		this.InitializeComponent();

}

In	the	OnGetResource	method,	the	Text	property	of	the	textDate	field	is	filled
with	today's	date	using	the	current	culture.	The	_resourceLoader	variable
retrieves	the	resource	for	the	Hello	key	from	the	Resources.resw	file	(code	file
WinUILocalization/MainWindow.xaml.cs):

private	void	OnGetResource(object	sender,	RoutedEventArgs	e)

{

		textDate.Text	=	DateTime.Today.ToString("D");

		textHello.Text	=	_resourceLoader.GetString("Hello");

}

Using	the	MRT	ResourceManager
The	ResourceManager	class	offers	more	functionality.	To	access	the	resource,
first	the	ResourceMap	is	retrieved	using	the	MainResourceMap	property.	A
resource	map	is	a	collection	of	resources—for	example,	resources	with	a	specific
language	or	resources	from	an	app	package.	With	the	ResourceMap	class,	you
can	get	the	count	of	resources	(ResourceCount	property),	access	resources	by

index	(GetValueByIndex),	or	access	resources	by	value	(GetValue	or
TryGetValue).	The	TryGetValue	method	returns	null	if	the	resource	is	not
found.	If	the	resource	is	found,	TryGetValue	returns	a	ResourceCandidate
object.	With	this	class,	you	can	access	binary	resources	(ValueAsBytes)	or	string
resources	(ValueAsString).	You	also	can	use	the	ResourceCandidate	class	to
find	out	where	the	resource	was	coming	from—from	a	string,	a	file	path,	or
embedded	data	in	the	assembly.	With	the	following	code	snippet,	TryGetValue	is
used	to	access	the	resource	GoodMorning	from	the	file	Resources	(code	file
WinUILocalization/MainWindow.xaml.cs):

private	void	OnUseResourceManager(object	sender,	RoutedEventArgs	

e)

{

		ResourceMap	map	=	_resourceManager.MainResourceMap;								

		ResourceCandidate	candidate	=	

map.TryGetValue("Resources/GoodMorning");

		textGoodMorning.Text	=	candidate.ValueAsString;

}

Changing	the	Language	with	a	ResourceContext
When	you	use	the	ResourceManager,	you	can	create	a	ResourceContext,	which
allows	looking	for	localized	resources	or	resources	based	on	device	families	or
the	layout.	As	shown	in	the	following	code	snippet,	you	create	resource	contexts
by	invoking	the	method	CreateResourceContext	of	the	ResourceManager.	The
property	QualifierValues	returns	a	dictionary.	Here	you	can	define	the	qualifier
name	and	the	values	that	will	be	used	to	search	for	resources.	To	specify	the
language,	you	need	to	set	languages	for	the	key	value	language,	or	lang.	In	the
sample	code,	the	context	is	set	to	de	for	German	resources.	Examples	of	other
key	values	you	can	use	are	devicefamily,	layoutdirection,	scale,	and	theme
(code	file	WinUILocalization/MainWindow.xaml.cs):

public	MainWindow(ResourceLoader	resourceLoader,	ResourceManager	

resourceManager)

{

		_resourceLoader	=	resourceLoader;

		_resourceManager	=	resourceManager;

		_resourceContext	=	_resourceManager.CreateResourceContext();

		_resourceContext.QualifierValues["language"]	=	"de";	

	

		this.InitializeComponent();

}

To	use	the	localized	resource,	the	resource	context	can	be	passed	to	the
TryGetValue	method	of	the	ResourceMap	:

private	void	OnUseContext(object	sender,	RoutedEventArgs	e)

{

		ResourceMap	map	=	_resourceManager.MainResourceMap;

		ResourceCandidate	candidate	=	map.TryGetValue(

				"Resources/GoodEvening",	_resourceContext);

		textGoodEvening.Text	=	candidate.ValueAsString;

}

When	you	run	the	application,	you	can	see	the	resources	retrieved,	as	shown	in
Figure	22-7.

FIGURE	22-7

SUMMARY
This	chapter	demonstrated	how	to	globalize	and	localize	.NET	applications.	For
the	globalization	of	applications,	you	learned	about	using	the	namespace
System.Globalization	to	format	culture-dependent	numbers	and	dates.
Furthermore,	you	learned	that	sorting	strings	by	default	varies	according	to	the
culture,	and	you	looked	at	using	the	invariant	culture	for	a	culture-independent
sort.

Localizing	an	application	is	accomplished	by	using	resources,	which	you	can
pack	into	files	or	satellite	assemblies.	The	classes	used	with	localization	are	in
the	namespace	System.Resources.

You	also	learned	how	to	localize	ASP.NET	Core,	used	special	features	for
ASP.NET	Core,	and	localized	apps	using	WinUI	with	MRT.

The	next	chapter	provides	information	about	testing.	You	learn	how	to	create
unit	tests	with	xUnit	and	use	mocking	libraries.

23
Tests

WHAT'S	IN	THIS	CHAPTER?

Performing	unit	tests	with	xUnit.net

Determining	code	coverage

Using	a	mocking	library

Performing	integration	testing	with	ASP.NET	Core

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	2_Libs/Tests.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

UnitTestingSample

MockingSample

ASPNETCoreSample

All	the	samples	have	nullable	reference	types	enabled.

OVERVIEW
Application	development	is	becoming	agile.	When	using	waterfall	process
models	to	analyze	the	requirements,	it's	not	unusual	that	you	design	the
application	architecture,	do	the	implementation,	and	then	find	out	as	the	solution
is	ready	that	you	built	an	application	that	is	not	needed	by	the	user.	Software
development	becomes	agile	with	faster	release	cycles	and	early	participation	of

http://xunit.net
http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

the	end	users.	Just	take	a	look	at	Windows	10:	with	millions	of	Windows	insiders
who	give	feedback	to	early	builds,	updates	happen	every	few	months	or	even
weeks.	There	was	one	special	week	during	the	beta	program	of	Windows	10
when	Windows	insiders	received	three	builds	of	Windows	10	within	one	week.
Windows	10	is	a	huge	program,	but	Microsoft	managed	to	change	development
in	a	big	way.	Also,	if	you	participate	in	the	open-source	project	of	.NET,	you	can
get	nightly	builds	of	NuGet	packages.	If	you're	adventurous,	you	might	even
write	a	book	about	an	upcoming	technology.

With	such	fast	and	continuous	changes—and	nightly	builds	that	you	are	creating
—you	can't	wait	for	insiders	or	end	users	to	find	all	the	issues.	Windows	10
insiders	wouldn't	have	been	happy	with	Windows	10	crashing	every	few
minutes.	How	often	have	you	made	a	change	in	the	implementation	of	a	method
only	to	find	out	something	that	doesn't	seem	related	is	not	working	anymore?
You	might	have	tried	to	avoid	such	issues	by	not	changing	the	method	and
instead	copying	and	changing	the	code	to	create	a	new	method,	which	in	turn
creates	a	maintenance	nightmare.	It	frequently	happens	that	you	fix	a	method	in
one	place	but	miss	the	other	ones	with	code	duplicates.

You	can	avoid	issues	like	these.	Create	tests	for	your	methods,	and	let	the	tests
run	automatically.	Using	Visual	Studio	Enterprise,	you	can	even	run	the	tests
with	Live	Unit	Testing	where	the	test	runs	while	you're	typing	in	the	editor.
Later,	the	test	should	run	after	you've	checked	in	the	source	code.	With
continuous	integration	(CI)	pipelines,	load	and	security	tests	can	run	nightly	so
you	can	use	CPU	power	that	you	don't	need	overnight.

Creating	tests	from	the	start	increases	the	cost	for	the	project	from	the	beginning,
but	as	the	project	progresses	and	during	maintenance,	creating	tests	has
advantages	and	reduces	the	overall	project	cost.

This	chapter	has	a	focus	on	creating	unit	tests	but	also	explains	how	to	create
integration	tests	with	ASP.NET	Core	web	applications.	You'll	also	get	references
to	create	UI	tests	with	XAML-based	applications	and	to	load	tests	with	web
applications.

A	unit	test	should	verify	the	functionality	of	the	smallest	testable	parts	of	an
application—for	example,	methods.	When	you	pass	different	input	values,	a	unit
test	should	check	all	possible	paths	through	a	method.

UNIT	TESTING

Writing	unit	tests	helps	with	code	maintenance.	For	example,	when	you're
performing	a	code	update,	you	want	to	be	confident	that	the	update	isn't	going	to
break	something	else.	Having	automatic	unit	tests	in	place	helps	to	ensure	that
all	functionality	is	retained	after	code	changes	are	made.

The	.NET	CLI	has	built-in	support	to	create	and	run	unit	tests.	dotnet	new
mstest	creates	a	unit	test	project	with	MSTest
(https://github.com/microsoft/testfx).	You	can	create	a	unit	test	with
NUnit	with	dotnet	new	nunit	(https://nunit.org/).	dotnet	new	xunit
creates	a	unit	test	project	with	xUnit.net	(https://xunit.net/).

Because	the	.NET	and	ASP.NET	Core	teams	make	use	of	xUnit.net,	in	this
book,	the	test	projects	are	built	with	xUnit.net	as	well.	However,	if	you	prefer	a
different	framework,	it	shouldn't	be	too	hard	to	adapt.	With	other	unit	testing
frameworks,	you'll	see	different	attributes	to	specify	the	tests	and	different
methods	for	asserts,	but	the	functionality	is	largely	the	same.

Creating	Unit	Tests
The	following	example	tests	a	simple	method	in	a	class	library	named
UnitTestingSamples.	This	is	a	.NET	5	class	library.	The	class	DeepThought
contains	the
TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything	method,
which	returns	42	as	a	result	(code	file	UnitTestingSamples/DeepThought.cs):

public	class	DeepThought

{

		public	int	

TheAnswerOfTheUltimateQuestionOfLifeTheUniverseAndEverything()	

=>	42;

}

To	ensure	that	nobody	changes	the	method	to	return	a	wrong	result	(maybe
someone	who	didn't	read	The	Hitchhiker's	Guide	to	the	Galaxy),	a	unit	test	is
created.	To	create	a	unit	test	project	with	xUnit,	you	can	use	the	dotnet
command

>	dotnet	new	xunit

or	you	can	add	the	project	template	xUnit	Test	Project	from	Visual	Studio.

Before	creating	the	first	tests,	it's	a	good	idea	to	think	about	naming	tests	and	test
projects.	Of	course,	you	can	use	names	as	you	like,	but	you	can	find	a	good
guideline	from	the	.NET	Core	team	at

https://github.com/microsoft/testfx
https://nunit.org/
http://xunit.net
https://xunit.net/
http://xunit.net
http://xunit.net

https://github.com/dotnet/aspnetcore/wiki/Engineering-

guidelines#unit-tests-and-functional-tests

Here's	a	summary	of	the	guidelines:

A	test	project	has	the	name	Tests	appended	to	the	name	of	the	project—for
example,	for	the	project	UnitTestingSamples,	the	test	project	has	the	name
UnitTestingSamples.Tests.

Test	class	names	have	the	same	class	name	as	the	class	being	tested,	and	the
word	Test	is	appended	to	the	name.	For	example,	the	test	class	for
UnitTestingSamples.DeepThought	is
UnitTestingSamples.DeepThoughtTest.

Unit	test	method	names	have	a	descriptive	name.	For	example,	the	name
AddOrUpdateBookAsync_ThrowsForNull	indicates	a	unit	test	to	invoke	the
AddOrUpdateBookAsync	method	to	check	whether	it	throws	an	exception
passing	null.

The	xUnit.net	test	project	contains	references	to	the	NuGet	packages
Microsoft.NET.Test.Sdk,	xunit,	xunit.runner.visualstudio,	and
coverlet.collector.	coverlet.collector	is	used	to	analyze	the	code
coverage—the	percentage	of	the	source	code	lines	that	is	covered	by	unit	tests.

With	xUnit.net,	a	test	method	is	marked	with	the	attribute	Fact.	The
implementation	of	the	test	method	creates	an	instance	of	DeepThought	and
invokes	the	method	that	is	to	be	tested:
TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything.	The
return	value	is	compared	with	the	value	42	using	Assert.Equal.	In	case
Assert.Equal	fails,	the	test	fails	(code	file
UnitTestingSamples.UnitTestingSamples.Tests/DeepThoughtTest.cs):

public	class	DeepThoughtTest

{

		[Fact]

		public	void	

ResultOfTheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything()

		{

				//	arrange

				int	expected	=	42;

				DeepThought	dt	=	new();

	

				//	act

				int	actual	=

http://xunit.net
http://xunit.net

						

dt.TheAnswerToTheUltimateQuestionOfLifeTheUniverseAndEverything();

	

				//	assert

				Assert.Equal(expected,	actual);

		}

}

Unit	tests	are	defined	by	three	A's:	arrange,	act,	and	assert.	First,	everything	is
arranged	for	the	unit	test	to	start.	In	the	first	test,	with	the	arrange	phase,	a
variable	expected	is	assigned	the	value	that	is	expected	from	calling	the	method
to	test,	and	an	instance	of	the	DeepThought	class	is	invoked.	Now	everything	is
ready	to	test	the	functionality.	This	happens	with	the	act	phase—the	method	is
invoked.	After	completing	the	act	phase,	you	need	to	verify	whether	the	result	is
as	expected.	This	is	done	in	the	assert	phase	using	a	method	of	the	Assert	class.

The	Assert	class	is	part	of	the	xUnit.net	framework	in	the	Xunit	namespace.
This	class	offers	several	static	methods	that	you	can	use	with	unit	tests.	Here	you
have	many	different	options	to	check	for	valid	results.	Assert.True	requires	that
the	expression	returns	true	to	be	successful.	Assert.False	is	the	opposite	of
that;	the	expression	needs	to	return	false	to	be	successful.	With
Assert.InRange,	the	result	must	be	within	a	specified	range.	Assert.Null	and
Assert.NotNull	are	used	to	check	for	results	returning	null.	Results	of
collections	can	be	checked	with	Assert.Contains,	Assert.DoesNotContain,
and	Assert.All.

Running	Unit	Tests
To	run	unit	tests,	you	can	use	the	Test	Explorer	from	Visual	Studio	or	the	.NET
CLI:

>	dotnet	test

With	the	sample	application,	this	results	in	this	successful	output:

Determining	projects	to	restore…

Restored	

C:\procsharp\tests\UnitTestingSamples\UnitTestingSamples.csproj	

(in	94	ms).

Restored	

C:\procsharp\tests\UnitTestingSamples\UnitTestingSamples.Tests\

UnitTestingSamples.Tests.csproj	(in	482	ms).

UnitTestingSamples	->	

C:\procsharp\tests\UnitTestingSamples\UnitTestingSamples\bin\Debug\

http://xunit.net

net5.0\UnitTestingSamples.dll

UnitTestingSamples.Tests	->	

C:\procsharp\tests\UnitTestingSamples\UnitTestingSamples.Tests\

bin\Debug\net5.0\UnitTestingSamples.Tests.dll

Test	run	for	

C:\procsharp\tests\UnitTestingSamples\UnitTestingSamples.Tests\bin\Debug\net5.0\

	UnitTestingSamples.Tests.dll	(.NETCoreApp,Version=v5.0)

Microsoft	(R)	Test	Execution	Command	Line	Tool	Version	16.9.0

Copyright	(c)	Microsoft	Corporation.		All	rights	reserved.

	

Starting	test	execution,	please	wait…

A	total	of	1	test	files	matched	the	specified	pattern.

	

Passed!		-	Failed:					0,	Passed:					1,	Skipped:					0,	Total:					

1,	

Duration:	4	ms	-	UnitTestingSamples.Tests.dll	(net5.0)

Of	course,	this	was	a	simple	scenario;	the	tests	are	not	usually	that	simple.	For
example,	methods	can	throw	exceptions;	they	can	have	different	paths	for
returning	other	values;	and	they	can	make	use	of	other	code	(for	example,
database	access	code,	or	services	that	are	invoked)	that	shouldn't	be	tested	with
the	single	unit	test.	Now	let's	look	at	a	more	involved	scenario	for	unit	testing.

Implementing	Complex	Methods
The	StringSample	class	defines	a	constructor	with	a	string	parameter,	the
method	GetStringDemo,	and	a	field.	The	method	GetStringDemo	uses	different
paths	depending	on	the	first	and	second	parameters	and	returns	a	string	that
results	from	these	parameters	(code	file
UnitTestingSamples/StringSample.cs):

public	class	StringSample

{

		public	StringSample(string	init)

		{

				if	(init	is	null)

						throw	new	ArgumentNullException(nameof(init));

	

				_init	=	init;

		}

	

		private	string	_init;

	

		public	string	GetStringDemo(string	first,	string	second)

		{

				if	(first	is	null)	throw	new	

ArgumentNullException(nameof(first));

				if	(string.IsNullOrEmpty(first))	

						throw	new	ArgumentException("empty	string	is	not	allowed",	

first);

				if	(second	is	null)	throw	new	

ArgumentNullException(nameof(second));

				if	(second.Length>	first.Length)

						throw	new	ArgumentOutOfRangeException(nameof(second),

								"must	be	shorter	than	first");

	

				int	startIndex	=	first.IndexOf(second);

				if	(startIndex	<	0)

				{

						return	$"{second}	not	found	in	{first}";

				}

				else	if	(startIndex	<	5)

				{

						string	result	=	first.Remove(startIndex,	second.Length);

						return	$"removed	{second}	from	{first}:	{result}";

				}

				else

				{

						return	_init.ToUpperInvariant();

				}

		}

}

NOTE When	you're	writing	unit	tests	for	complex	methods,	the	unit	test
also	sometimes	gets	complex.	Here	it	is	helpful	to	debug	the	unit	test	to	find
out	what's	going	on.	Debugging	unit	tests	is	straightforward	with	Visual
Studio:	just	add	breakpoints	to	the	unit	test	code,	and	from	the	context	menu
of	the	Test	Explorer,	select	Debug	Selected	Tests.

Every	possible	execution	route	and	check	for	exceptions	should	be	covered	by
unit	tests,	as	discussed	next.

Expecting	Exceptions
When	invoking	the	constructor	of	the	StringSample	class	and	calling	the
method	GetStringDemo	with	null,	an	ArgumentNullException	is	expected.	You
can	easily	check	exceptions	with	testing	code:	apply	the	ExpectedException
attribute	to	the	test	method	as	shown	in	the	following	example.	This	way,	the	test

method	succeeds	with	the	exception	(code	file
UnitTestingSamples.Tests/StringSampleTest.cs):

[Fact]

public	void	GetStringDemoExceptions()

{

		StringSample	sample	=	new(string.Empty);

		Assert.Throws<ArgumentNullException>(()	=>	

sample.GetStringDemo(null!,	"a"));

		Assert.Throws<ArgumentNullException>(()	=>	

sample.GetStringDemo("a",	null!));

		Assert.Throws<ArgumentException>(()	=>

				sample.GetStringDemo(string.Empty,	"a"));

}

NOTE Although	the	library	project	has	nullable	reference	types	enabled
and	the	parameters	of	the	method	are	not	annotated	with	nullable	references,
you	should	still	check	for	receiving	null	values	and	throwing
ArgumentNullException.	If	the	calling	application	does	not	use	C#	8	or
later,	the	compiler	does	not	result	in	compiler	warnings	passing	null.	Older
compilers	ignore	the	attributes	created	for	nullable	reference	types,	and	the
result	would	just	be	a	NullReferenceException	at	locations	it's	probably
not	expected.	Even	with	nullable	reference	types	enabled,	it's	still	a	good
practice	to	check	for	null	with	the	method	parameters.

Testing	All	Code	Paths
To	test	all	code	paths,	you	can	create	multiple	tests,	with	each	one	taking	a
different	route.	The	following	test	sample	passes	the	strings	a	and	b	to	the
GetStringDemo	method.	Because	the	second	string	is	not	contained	within	the
first	string,	the	first	path	of	the	if	statement	applies.	The	result	is	checked
accordingly	(code	file	UnitTestingSamples.Tests/StringSampleTest.cs):

[Fact]

public	void	GetStringDemoBNotInA()

{

		//	arrange

		string	expected	=	"b	not	found	in	a";

		StringSample	sample	=	new(string.Empty);

	

		//	act

		string	actual	=	sample.GetStringDemo("a",	"b");

	

		//	assert

		Assert.Equal(expected,	actual);

}

You	can	also	define	a	test	method	with	parameters	and	use	attributes	passing
different	values.	For	this,	the	test	method	needs	to	have	the	attribute	Theory
instead	of	Fact	applied.	Data	can	be	passed	using	multiple	InlineData	attributes
that	define	the	values,	as	shown	in	the	following	code	snippet.	With	this	in	place,
the	test	runner	invokes	the	method	GetStringDemoInlineData	multiple	times
and	passes	values	for	every	InlineData	attribute:

[Theory]

[InlineData("",	"a",	"b",	"b	not	found	in	a")]

[InlineData("",	"longer	string",	"nger",	"removed	nger	from	

longer	string:	lo	string")]

[InlineData("init",	"longer	string",	"string",	"INIT")]

public	void	GetStringDemoInlineData(string	init,	string	a,	

string	b,	string	expected)

{

		StringSample	sample	=	new(init);

		string	actual	=	sample.GetStringDemo(a,	b);

		Assert.Equal(expected,	actual);

}	

Instead	of	using	multiple	InlineData	attributes,	you	can	also	define	a	method
that	returns	the	values	passed	to	the	test	method	(such	as	the	following
GetStringSampleData	method)	and	specify	the	method	name	with	the
MemberData	attribute.	This	way	you	can	use	any	source	of	data	for	the	unit	test:

[Theory]

[MemberData(nameof(GetStringSampleData))]

public	void	GetStringDemoMemberData(string	init,	string	a,	

string	b,	string	expected)

{

		StringSample	sample	=	new(init);

		string	actual	=	sample.GetStringDemo(a,	b);

		Assert.Equal(expected,	actual);

}

	

public	static	IEnumerable<object[]>	GetStringSampleData()	=>

		new[]

		{

				new	object[]	{	"",	"a",	"b",	"b	not	found	in	a"	},

				new	object[]	{	"",	"longer	string",	"nger",	

						"removed	nger	from	longer	string:	lo	string"	},

				new	object[]	{	"init",	"longer	string",	"string",	"INIT"	}

		};

Code	Coverage
To	see	what	code	is	covered	by	unit	tests	and	what	code	is	still	missing,	you	can
use	the	--collect	option	of	the	dotnet	test	command.	The	NuGet	package
coverlet.collector	is	added	to	the	project	to	collect	code	coverage	in	a
platform-independent	manner.	In	addition	to	the	NuGet	package,	you	need	to
add	the	.NET	CLI	tool	coverlet.console.	To	install	this	tool	with	the	test
project,	you	can	add	a	tool-manifest	file	and	add	the	coverlet.console	to	the
project	tools	(or	instead	add	this	tool	as	a	global	tool	to	your	profile	with	the
option	-g).	The	second	tool	installed	is	the	dotnet-reportgenerator,	which
gives	you	graphical	output	of	the	generated	XML	file	from	Coverlet:

>	dotnet	new	tool-manifest

>	dotnet	tool	install	coverlet.console

>	dotnet	tool	install	dotnet-reportgenerator-globaltool

With	the	collector	and	this	tool	in	place,	you	can	run	the	tests	with	the	--
collect	option	and	pass	the	string	XPlat	Code	Coverage,	as	shown	in	the	next
snippet.	After	running	the	unit	tests	with	this	option,	results	are	found	in	the
TestResults	folder.

>	dotnet	test	--collect	"XPlat	Code	Coverage"

To	get	an	HTML	view	of	the	report,	you	can	now	use	the	report	generator.	With
the	-reports	option,	you	specify	the	directory	of	the	XML	file	that	contains	the
collection	information.	The	option	-targetdir	specifies	the	name	of	the
directory	where	you	want	the	HTML	output.	With	the	-reportTypes	option,	you
can	specify	the	output	format:

>	dotnet	tool	run	reportgenerator	-reports:TestResults\

{GUID}\coverage.cobertura.xml	-

targetdir:coveragereport	-reportTypes:Html

When	you	open	the	HTML	that's	generated,	you	see	a	view	similar	to	Figure	23-
1.

FIGURE	23-1

See	the	documentation	at	https://github.com/coverlet-coverage/coverlet
and	https://github.com/Microsoft/vstest-
docs/blob/master/docs/analyze.md	for	more	information	on	the	different
options	you	have	with	Coverlet	and	how	to	use	this	and	other	collectors	with
Visual	Studio.

External	Dependencies
Many	methods	are	dependent	on	some	functionality	outside	the	application's
control—for	example,	calling	a	web	service	or	accessing	a	database.	Maybe	the
service	or	database	is	not	available	during	some	test	runs,	which	tests	the
availability	of	these	external	resources.	Or	worse,	maybe	the	database	or	service
returns	different	data	over	time,	and	it's	hard	to	compare	this	with	expected	data.
Such	functionality	outside	the	scope	of	what	should	be	tested	must	be	excluded
from	the	unit	test.

The	following	example	is	dependent	on	some	outside	functionality.	The	method
ChampionsByCountry	accesses	an	XML	file	from	a	web	server	that	contains	a	list
of	Formula	1	world	champions	with	Firstname,	Lastname,	Wins,	and	Country
elements.	This	list	is	filtered	by	country,	and	it's	numerically	ordered	using	the
value	from	the	Wins	element.	The	returned	data	is	an	XElement	that	contains

https://github.com/coverlet-coverage/coverlet
https://github.com/Microsoft/vstest-docs/blob/master/docs/analyze.md

converted	XML	code	(code	file	UnitTestingSamples/Formula1.cs):

public	XElement	ChampionsByCountry(string	country)

{

		XElement	champions	=	XElement.Load(F1Addresses.RacersUrl);

		var	q	=	from	r	in	champions.Elements("Racer")

										where	r.Element("Country").Value	==	country

										orderby	int.Parse(r.Element("Wins").Value)	descending

										select	new	XElement("Racer",

												new	XAttribute("Name",	r.Element("Firstname").Value	

+	"	"	+

														r.Element("Lastname").Value),

												new	XAttribute("Country",	

r.Element("Country").Value),

												new	XAttribute("Wins",	r.Element("Wins").Value));

										return	new	XElement("Racers",	q.ToArray());

}

The	link	to	the	XML	file	is	defined	by	the	F1Addresses	class	(code	file
UnitTestingSamples/F1Addresses.cs):

public	class	F1Addresses

{

		public	const	string	RacersUrl	=

				"http://www.cninnovation.com/downloads/Racers.xml";

}

For	the	method	ChampionsByCountry,	you	should	do	a	unit	test.	The	test	should
not	be	dependent	on	the	source	from	the	server.	Server	unavailability	is	one
issue,	but	it	can	also	be	expected	that	the	data	on	the	server	changes	over	time	to
return	new	champions	and	other	values.	The	test	should	ensure	that	filtering	and
ordering	is	done	as	expected	independent	of	the	source	from	the	server.

One	way	to	create	a	unit	test	that	is	independent	of	the	data	source	is	to	refactor
the	implementation	of	the	ChampionsByCountry	method	by	using	dependency
injection.	Here,	a	factory	that	returns	an	XElement	is	created	to	replace	the
XElement.Load	method.	The	interface	IChampionsLoader	is	the	only	outside
requirement	used	from	the	ChampionsByCountry	method.	The	interface
IChampionsLoader	defines	the	method	LoadChampions	that	can	replace	the
aforementioned	method	(code	file
UnitTestingSamples/IChampionsLoader.cs):

public	interface	IChampionsLoader

{

		XElement	LoadChampions();

}

The	class	ChampionsLoader	implements	the	interface	IChampionsLoader	by
using	the	XElement.Load	method—the	method	that	was	used	beforehand	by	the
ChampionsByCountry	method	(code	file
UnitTestingSamples/ChampionsLoader.cs):

public	class	ChampionsLoader:	IChampionsLoader

{

		public	XElement	LoadChampions()	=>	

XElement.Load(F1Addresses.RacersUrl);

}

Now	it's	possible	to	change	the	implementation	of	the	ChampionsByCountry
method	by	using	an	interface	to	load	the	champions	instead	of	directly	using
XElement.Load.	The	IChampionsLoader	is	passed	with	the	constructor	of	the
class	Formula1,	and	this	loader	is	then	used	by	ChampionsByCountry	(code	file
UnitTestingSamples/Formula1.cs):

public	class	Formula1

{

		private	readonly	IChampionsLoader	_loader;

		public	Formula1(IChampionsLoader	loader)	=>	_loader	=	loader;

	

		public	XElement	ChampionsByCountry(string	country)

		{

				var	q	=	from	r	in	_loader.LoadChampions().Elements("Racer")

												where	r.Element("Country").Value	==	country

												orderby	int.Parse(r.Element("Wins").Value)	

descending

												select	new	XElement("Racer",

														new	XAttribute("Name",	

r.Element("Firstname").Value	+	"	"	+

																r.Element("Lastname").Value),

														new	XAttribute("Country",	

r.Element("Country").Value),

														new	XAttribute("Wins",	r.Element("Wins").Value));

				return	new	XElement("Racers",	q.ToArray());

		}

}

With	a	typical	implementation,	a	ChampionsLoader	instance	would	be	passed	to
the	Formula1	constructor	to	retrieve	the	racers	from	the	server.

When	you're	creating	the	unit	test,	you	can	implement	a	custom	method	that
returns	sample	Formula	1	champions,	as	shown	in	the	method

Formula1SampleData	(code	file
UnitTestingSamples.Tests/Formula1Test.cs):

internal	static	string	Formula1SampleData()

{

		return	@"

<Racers>

		<Racer>

				<Firstname>Nelson</Firstname>

				<Lastname>Piquet</Lastname>

				<Country>Brazil</Country>

				<Starts>204</Starts>

				<Wins>23</Wins>

		</Racer>

		<Racer>

				<Firstname>Ayrton</Firstname>

				<Lastname>Senna</Lastname>

				<Country>Brazil</Country>

				<Starts>161</Starts>

				<Wins>41</Wins>

		</Racer>

		<Racer>

				<Firstname>Nigel</Firstname>

				<Lastname>Mansell</Lastname>

				<Country>England</Country>

				<Starts>187</Starts>

				<Wins>31</Wins>

		</Racer>

		//…	more	sample	data

The	method	Formula1VerificationData	returns	sample	test	data	that	matches
the	expected	result	(code	file	UnitTestingSamples.Tests/Formula1Test.cs):

internal	static	XElement	Formula1VerificationData()

{

		return	XElement.Parse(@"

<Racers>

		<Racer	Name=""Mika	Hakkinen""	Country=""Finland""	

Wins=""20""/>

		<Racer	Name=""Kimi	Raikkonen""	Country=""Finland""	

Wins=""18""/>

</Racers>");

}

The	loader	of	the	test	data	implements	the	same	interface—	IChampionsLoader
—as	the	ChampionsLoader	class.	This	loader	makes	use	of	the	sample	data;	it
doesn't	access	the	web	server	(code	file

UnitTestingSamples.Tests/Formula1Test.cs):

public	class	F1TestLoader:	IChampionsLoader

{

		public	XElement	LoadChampions()	=>	

XElement.Parse(Formula1SampleData());

}

Now	it's	easy	to	create	a	unit	test	that	makes	use	of	the	sample	data	(code	file
UnitTestingSamples.Tests/Formula1Test.cs):

[Fact]

public	void	ChampionsByCountryFilterFinland()

{

		Formula1	f1	=	new	Formula1(new	F1TestLoader());

		XElement	actual	=	f1.ChampionsByCountry("Finland");

		Assert.AreEqual(Formula1VerificationData().ToString(),	

actual.ToString());

}

Of	course,	a	real	test	should	do	more	than	cover	a	case	that	passes	Finland	as	a
string,	and	two	champions	are	returned	with	the	test	data.	You	should	write	other
tests	to	pass	a	string	with	no	matching	result	to	return	more	than	two	champions
and	to	result	in	a	number	sort	order	that	is	different	from	the	alphanumeric	sort
order.

NOTE To	test	methods	that	don't	use	dependency	injection	and	to	replace
the	internally	used	dependencies	with	test	classes,	you	can	use	Microsoft
Fakes.	Check	https://docs.microsoft.com/en-
us/visualstudio/test/isolating-code-under-test-with-microsoft-

fakes	for	more	information	on	Microsoft	Fakes.

USING	A	MOCKING	LIBRARY
Let's	get	into	a	more	complex	example:	creating	a	unit	test	for	a	client-side
service	library	from	an	app	using	the	MVVM	pattern.	Read	Chapter	30,
“Patterns	with	XAML	Apps,”	for	a	complete	picture	of	this	app.	The	sample
code	for	this	chapter	only	includes	a	library	used	by	this	app.	This	service	uses
dependency	injection	to	inject	the	repository	defined	by	the	interface
IBooksRepository.	The	unit	tests	for	testing	the	method	AddOrUpdateBookAsync
shouldn't	test	the	repository;	they	test	only	the	functionality	within	the	method.

https://docs.microsoft.com/en-us/visualstudio/test/isolating-code-under-test-with-microsoft-fakes

For	the	repository,	another	unit	test	should	be	done.	The	following	code	snippet
shows	the	implementation	of	the	BooksService	class	(code	file
MockingSamples/BooksLib/Services/BooksService.cs):

public	class	BooksService:	IBooksService

{

		private	readonly	ObservableCollection<Book>	_books	=	new();

		private	readonly	IBooksRepository	_booksRepository;

		public	BooksService(IBooksRepository	repository)	=>

				_booksRepository	=	repository;

	

		public	async	Task	LoadBooksAsync()

		{

				if	(_books.Count>	0)	return;

				IEnumerable<Book>	books	=	await	

_booksRepository.GetItemsAsync();

				_books.Clear();

				foreach	(var	b	in	books)

				{

						_books.Add(b);

				}

		}

	

		public	Book?	GetBook(int	bookId)	=>

				_books.Where(b	=>	b.BookId	==	bookId).SingleOrDefault();

	

		public	async	Task<Book>	AddOrUpdateBookAsync(Book	book)

		{

				if	(book	is	null)	throw	new	

ArgumentNullException(nameof(book));

	

				Book?	updated	=	null;

				if	(book.BookId	==	0)

				{

						updated	=	await	_booksRepository.AddAsync(book);

						_books.Add(updated);

				}

				else

				{

						updated	=	await	_booksRepository.UpdateAsync(book);

						if	(updated	is	null)	throw	new	

InvalidOperationException();

	

						Book	old	=	_books.Where(b	=>	b.BookId	==	

updated.BookId).Single();

						int	ix	=	_books.IndexOf(old);

						_books.RemoveAt(ix);

						_books.Insert(ix,	updated);

				}

				return	updated;

		}

	

		public	IEnumerable<Book>	Books	=>	_books;

}

Because	the	unit	test	for	AddOrUpdateBookAsync	shouldn't	test	the	repository
used	for	IBooksRepository,	you	need	to	implement	a	repository	used	for
testing.	To	make	this	easy,	you	can	use	a	mocking	library	that	automatically	fills
in	the	blanks.	A	commonly	used	mocking	library	is	Moq.	With	the	unit	testing
project,	the	NuGet	package	Moq	is	added.

NOTE Instead	of	using	the	Moq	framework,	you	also	can	implement	an
in-memory	repository	with	sample	data.	You	probably	do	this	anyway	to
have	sample	data	for	the	app	during	design	time	of	the	user	interface.

When	you	use	xUnit.net,	a	new	instance	of	the	test	class	is	created	for	every
test	run.	In	case	you	need	common	functionality	for	multiple	tests,	you	can	move
this	functionality	to	the	constructor.	If	resources	need	to	be	released	after	each
test	run,	you	can	implement	the	interface	IDisposable.

Within	the	constructor	of	the	BooksServiceTest	class,	a	Mock	object	is
instantiated	with	the	generic	parameter	IBooksRepository.	The	Mock	constructor
creates	an	implementation	for	the	interface.	Because	you	need	some	results	from
the	repository	other	than	null	to	create	useful	tests,	the	Setup	method	defines
which	parameters	can	be	passed,	and	the	ReturnsAsync	method	defines	the
result	that's	returned	from	the	method	stub.	You	access	the	mock	object	by	using
the	Object	property	of	the	Mock	class,	and	it	is	passed	on	to	create	an	instance	of
the	BooksService	class.	With	these	settings	in	place,	you	can	implement	the	unit
tests	(code	file
MockingSamples/BooksLib.Tests/Services/BooksServiceTest.cs):

public	class	BooksServiceTest	:	IDisposable

{

		private	const	string	TestTitle	=	"Test	Title";

		private	const	string	UpdatedTestTitle	=	"Updated	Test	Title";

		public	const	string	APublisher	=	"A	Publisher";

		private	BooksService	_booksService;

	

http://xunit.net

		private	Book	_newBook	=	new	Book

		{

				BookId	=	0,

				Title	=	TestTitle,

				Publisher	=	APublisher

		};

	

		private	Book	_expectedBook	=	new	Book

		{

				BookId	=	1,

				Title	=	TestTitle,

				Publisher	=	APublisher

		};

		private	Book	_notInRepositoryBook	=	new	Book

		{

				BookId	=	42,

				Title	=	TestTitle,

				Publisher	=	APublisher

		};

		private	Book	_updatedBook	=	new	Book

		{

				BookId	=	1,

				Title	=	UpdatedTestTitle,

				Publisher	=	APublisher

		};

	

		public	BooksServiceTest()

		{

				Mock<IBooksRepository>	mock	=	new();

				mock.Setup(repository	=>	

						

repository.AddAsync(_newBook)).ReturnsAsync(_expectedBook);

				mock.Setup(repository	=>		

						

repository.UpdateAsync(_notInRepositoryBook)).ReturnsAsync(null	

as	Book);

				mock.Setup(repository	=>	

						

repository.UpdateAsync(_updatedBook)).ReturnsAsync(_updatedBook);

	

				_booksService	=	new	BooksService(mock.Object);

		}

		//…

NOTE The	IDisposable	interface	is	explained	in	detail	in	Chapter	13,

“Managed	and	Unmanaged	Memory.”

The	first	unit	test	implemented—	AddOrUpdateBookAsync_ThrowsForNull—
verifies	that	an	ArgumentNullException	is	thrown	in	case	null	is	passed	to	the
AddOrUpdateBookAsync	method.	The	implementation	just	needs	the
_booksService	member	variable	that	is	instantiated	within	the	constructor,	but	it
doesn't	need	the	mocking	setup.	This	code	sample	also	shows	that	unit	test
methods	can	be	implemented	as	asynchronous	methods	that	return	a	Task	(code
file	MockingSamples/BooksLib.Tests/Services/BooksServiceTest.cs):

[Fact]

public	async	Task	AddOrUpdateBookAsync_ThrowsForNull()

{

		//	arrange

		Book	nullBook	=	null;

		//	act	and	assert

		await	Assert.ThrowsAsync<ArgumentNullException>(()	=>	

				_booksService.AddOrUpdateBookAsync(nullBook));

}

The	unit	test	method	AddOrUpdateBook_AddedBookReturnsFromRepository
adds	a	new	book	(variable	_newBook)	to	the	service	and	expects	the	book
_expectedBook	to	be	returned.	Within	the	implementation	of	the
AddOrUpdateBookAsync	method,	the	AddAsync	method	of	the	IBooksRepository
is	invoked;	thus,	the	previously	defined	mock	setup	for	this	method	applies.	The
result	of	this	method	should	be	that	the	Book	returned	is	equal	to	the
_expectedBook,	and	the	_	expectedBook	also	needs	to	be	added	to	the	books
collection	of	the	BooksService	(code	file
MockingSamples/BooksLib.Tests/Services/BooksServiceTest.cs):

[Fact]

public	async	Task	

AddOrUpdateBook_AddedBookReturnsFromRepository()

{

		//	arrange	in	constructor

		//	act

		Book	actualAdded	=	await	

_booksService.AddOrUpdateBookAsync(_newBook);

	

		//	assert

		Assert.Equal(_expectedBook,	actualAdded);

		Assert.Contains(_expectedBook,	_booksService.Books);

}

The	unit	test	AddOrUpdateBook_UpdateNotExistingBookThrows	verifies	that
trying	to	update	a	book	that	does	not	exist	in	the	service	needs	to	result	in	an
InvalidOperationException	(code	file
MockingSamples/BooksLib.Tests/Services/BooksServiceTest.cs):

[Fact]

public	async	Task	AddOrUpdateBook_UpdateNotExistingBookThrows()

{

		//	arrange	in	constructor

		//	act	and	assert

		await	Assert.ThrowsAsync<InvalidOperationException>(()	=>		

				_booksService.AddOrUpdateBookAsync(_notInRepositoryBook));

}

The	usual	case	to	update	a	book	is	dealt	with	in	the	unit	test
AddOrUpdateBook_UpdateBook.	Here,	extra	preparation	is	needed	to	first	add	the
book	to	the	service	before	updating	it	(code	file
MockingSamples/BooksLib.Tests/Services/BooksServiceTest.cs):

[Fact]

public	async	Task	AddOrUpdateBook_UpdateBook()

{

		//	arrange

		await	_booksService.AddOrUpdateBookAsync(_newBook);

	

		//	act

		Book	updatedBook	=	await	

_booksService.AddOrUpdateBookAsync(_updatedBook);

	

		//	assert

		Assert.Equal(_updatedBook,	updatedBook);

		Assert.Contains(_updatedBook,	_booksService.Books);

}

NOTE When	you	use	the	MVVM	pattern	with	XAML-based	applications
and	the	MVC	pattern	with	web-based	applications,	you	reduce	the
complexity	of	the	user	interface	and	reduce	the	need	for	complex	UI	testing.
However,	there	are	still	some	scenarios	that	should	be	tested	with	the	UI—
for	example,	navigating	through	pages,	drag	and	drop	of	elements,	and
more.	This	is	where	UI	testing	comes	in.	Appium	supports	testing	XAML
applications	including	UWP	and	Mobile	MAUI	applications.	Check
https://appium.io	for	more	information	about	Appium.	Visual	Studio	App
Center	(https://appcenter.ms)	makes	it	easy	to	run	UI	tests	of	MAUI
applications	on	hundreds	of	different	Android	and	iOS	devices.	Check

https://appium.io
https://appcenter.ms

https://github.com/ProfessionalCSharp/MoreSamples	and
https://csharp.christiannagel.com	for	samples	of	using	Appium	to	test
the	book's	WinUI	applications.

ASP.NET	CORE	INTEGRATION	TESTING
To	test	web	applications,	you	can	create	unit	tests	that	invoke	methods	of	the
controllers,	repository,	and	utility	classes.	Tag	helpers	are	simple	methods	in
which	the	test	can	be	covered	by	unit	tests.	Unit	tests	are	used	to	test	the
functionality	of	the	algorithms	of	the	methods—in	other	words,	the	logic	inside
the	methods.

To	test	not	only	small	units	but	all	the	functionality	together,	you	use	integration
tests.	With	integration	tests,	not	only	is	a	single	method	tested	but	all	the
functionality	in	combination	is	tested—for	example,	sending	a	request	to	open	a
page,	including	accessing	functionality	in	the	backend.	You	should	have	a	lot
more	unit	tests	than	integration	tests.	The	Azure	DevOps	team	has	thousands	of
unit	tests	but	only	a	few	integration	tests.	If	the	same	functionality	could	be
covered	either	by	unit	or	integration	tests,	you	should	choose	unit	tests.

ASP.NET	Core	offers	the	WebApplicationFactory	class	in	the	NuGet	package
and	the	namespace	Microsoft.AspNetCore.Mvc.Testing	to	bootstrap	an
application	in-memory	for	functional	end-to-end	testing.

To	create	an	ASP.NET	Core	integration	test,	create	an	ASP.NET	Core	Web
Application	named	ASPNETCoreSample	with	the	Empty	template.	Running	the
application	from	the	generated	code	returns	the	string	Hello	World!,	and	this
will	be	tested	from	an	integration	test	using	xUnit.net.

NOTE ASP.NET	Core	is	covered	in	detail	in	Chapters	24	to	28.

The	xUnit.net	project	ASPNETCoreSample.IntegrationTest	needs	a	package
reference	to	Microsoft.AspNetCore.Mvc.Testing.	This	package	contains	the
WebApplicationFactory	class	to	host	and	start	the	web	application	and	to	send
requests.	A	reference	to	the	web	project	ASPNETCoreSample	is	needed	as	well.

With	xUnit.net,	every	time	a	test	runs,	the	test	class	is	newly	instantiated,	and
the	constructor	is	invoked.	To	share	instances	between	multiple	test	methods,
you	use	the	generic	interface	IFixture	as	an	annotation	to	the	test	class.	The

https://github.com/ProfessionalCSharp/MoreSamples
https://csharp.christiannagel.com
http://xunit.net
http://xunit.net
http://xunit.net

type	generic	defined	with	this	interface	is	instantiated	once	for	all	test	methods
with	the	class.	In	the	following	code	snippet,	this	is	the	WebApplicationFactory
class.	The	generic	parameter	of	the	WebApplicationFactory	is	the	entry	point	of
the	application,	which	can	be	the	Startup	or	the	Program	class.	Here,	the
Startup	class	is	used	to	instantiate	the	web	application	to	configure	the
dependency	injection	container	and	the	middleware	(code	file
ASPNETCoreSample/ASPNETCoreSample.IntegrationTest/AspNetCoreSampleTest.cs

public	class	ASPNETCoreSampleTest

		:	

IClassFixture<WebApplicationFactory<ASPNETCoreSample.Startup>>

{

		private	readonly	

WebApplicationFactory<ASPNETCoreSample.Startup>	_factory;

	

		public	

ASPNETCoreSampleTest(WebApplicationFactory<ASPNETCoreSample.Startup>

	factory)

				=>	_factory	=	factory;

		//…

}

In	the	integration	test,	by	using	the	_factory	variable	you	create	an	HttpClient
object	that's	configured	by	the	factory.	This	client	makes	requests	to	the	web
application.	This	HttpClient	is	configured	to	follow	redirects	and	to	pass
cookies	received.	With	the	implementation	of	the	test	class	in	the	following	code
snippet,	an	HTTP	GET	request	is	done,	and	the	response	is	compared	with	the
Hello	World!	string	that	should	be	returned	from	the	web	application	(code	file
ASPNETCoreSample/ASPNETCoreSample.IntegrationTest/AspNetCoreSampleTest.cs

[Fact]

public	async	Task	ReturnHelloWorld()

{										

		//	arrange

		var	client	=	_factory.CreateClient();

	

		//	act

		var	response	=	await	client.GetAsync("/");

	

		//	assert

		response.EnsureSuccessStatusCode();

		string	responseString	=	await	

response.Content.ReadAsStringAsync();

		Assert.Equal("Hello	World!",	responseString);

}

With	the	HttpClient	class	returned	from	the	factory,	you	can	create	HTTP
requests	using	verbs	such	as	GET,	POST,	and	PUT,	and	add	HTTP	header
information.	Read	Chapter	19,	“Networking,”	for	more	information	on	this	class.
When	you	use	the	factory	with	_factory.Server.CreateWebSocketClient,	you
can	also	use	a	WebSocketClient	to	create	WebSocket	requests.	WebSockets	are
covered	in	Chapter	28,	“SignalR.”

NOTE With	web	applications,	it	is	also	a	good	practice	to	create
performance	and	load	tests.	Does	the	application	scale?	How	many	users
can	the	application	support	with	one	server?	How	many	servers	are	needed
to	support	a	specific	number	of	users?	Which	bottleneck	is	not	that	easy	to
scale?	To	answer	these	questions,	performance	and	load	tests	can	help.	To
create	end-to-end	tests	nowadays,	people	often	use	Selenium	or	Playwright.
Appium,	which	I	mentioned	earlier	with	testing	desktop	and	mobile
applications,	is	based	on	Selenium.	The	ASP.NET	Core	team	switched	after
the	release	of	.NET	5	from	Selenium	to	Playwright.	Read	more	about
Selenium	at	https://www.selenium.dev/.	Playwright	is	developed	by
Microsoft	(https://playwright.dev/)	with	the	source	code	available	at
https://github.com/microsoft/playwright.	Check
https://github.com/ProfessionalCSharp/MoreSamples	and
https://csharp.christiannagel.com	for	samples	and	articles	using
Playwright	to	test	the	web	samples	of	the	book.

SUMMARY
Source	code	is	not	complete	without	unit	tests.	To	test	the	functionality	of	your
application,	you	should	create	unit	tests.	With	unit	tests,	you're	safe	to	make
changes	in	your	code	without	breaking	other	parts.	You've	seen	how	to	create
unit	tests	with	xUnit.net	and	how	to	test	for	all	the	different	paths.	You've	seen
mock	classes	in	place	to	get	implementation	for	dependent	contracts	that	you
don't	want	to	test.

With	integration	tests,	you've	seen	how	an	ASP.NET	Core	web	application	can
be	loaded	in	memory	and	an	HTTP	client	can	be	used	from	a	test.

This	was	the	last	chapter	of	the	second	part	of	this	book.	The	next	part,	“Web
Applications	and	Services,”	is	where	you	begin	to	dig	into	web	applications	and
services	with	ASP.NET	Core.	In	that	part	you	will	use	Razor	Pages,	MVC,	and

https://www.selenium.dev/
https://playwright.dev/
https://github.com/microsoft/playwright
https://github.com/ProfessionalCSharp/MoreSamples
https://csharp.christiannagel.com
http://xunit.net

Blazor	for	the	user	interface,	and	ASP.NET	Core	Web	API,	Azure	Functions,
GRPC,	and	SignalR	for	the	services.

PART	III
Web	Applications	and	Services

CHAPTER	24:	ASP.NET	Core

CHAPTER	25:	Services

CHAPTER	26:	Razor	Pages	and	MVC

CHAPTER	27:	Blazor

CHAPTER	28:	SignalR

24
ASP.NET	Core

WHAT'S	IN	THIS	CHAPTER?

Understanding	ASP.NET	Core	and	web	technologies

Using	static	content

Creating	middleware	components

Working	with	endpoint	routing

Working	with	HTTP	request	and	response

Using	sessions	for	state	management

Hosting	web	applications	with	Microsoft	Azure

Creating	Docker	images

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	3_Web/ASPNETCore.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

SimpleHost

WebSampleApp

Samples	from	this	chapter	mainly	use	the	namespaces
Microsoft.AspNetCore	and	System.Text	(and	subnamespaces).	All	the
sample	projects	have	nullable	reference	types	enabled.

UNDERSTANDING	WEB	TECHNOLOGIES

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

After	ASP.NET	with	the	.NET	Framework	was	released	in	2002,	ASP.NET	Core
(the	first	version	released	in	2016)	was	a	complete	rewrite	that	not	only	offers
running	this	technology	on	Linux	but	also	uses	modern	patterns	(for	example,
dependency	injection	is	built	in)	and	offers	new	ways	to	create	web	applications.
Razor	Pages	offer	an	easy	way	to	create	HTML	pages	mixed	with	C#	code	with
support	for	dependency	injection.	From	the	outside,	ASP.NET	Core	MVC	looks
similar	to	the	previous	MVC	technology	with	ASP.NET,	but	inside	it's	very
different.	Blazor	gives	a	full-stack	.NET	option.	Instead	of	writing	JavaScript
code,	you	can	write	C#	code	that	runs	either	on	the	server	(Blazor	Server)	or	on
the	client	in	a	WebAssembly	(Blazor	WASM).	Blazor	is	based	on	Razor
Components	that	extend	the	functionality	of	Razor	Pages.

This	chapter	covers	the	foundation	of	ASP.NET	Core.	Chapter	25,	“Services,”
covers	services	where	the	Web	API	with	ASP.NET	Core	plays	an	important	part.
For	binary	platform-independent	communication,	Chapter	25	also	covers	GRPC.
Chapter	26,	“Razor	Pages	and	MVC,”	covers	ASP.NET	Razor	Pages	and	MVC.
Chapter	27,	“Blazor,”	extends	Razor	Pages	with	Razor	Components	and	covers
full-stack	.NET	development	with	Blazor.

Before	I	get	into	the	foundations	of	ASP.NET,	I'll	spend	a	few	pages	describing
core	web	technologies	that	are	important	to	know	when	creating	web
applications:	HTML,	CSS,	JavaScript,	scripting	libraries,	and	WebAssembly.

HTML
HTML	is	the	markup	language	that	is	interpreted	by	web	browsers.	It	defines
elements	to	display	various	headings,	tables,	lists,	and	input	elements	such	as
text	and	combo	boxes.

HTML	is	a	living	standard	that	refers	to	modern	web	technologies
(https://html.spec.whatwg.org/)	and	is	continuously	improving.	It	not	only
contains	the	semantic	structure	of	web	pages	with	the	HTML	elements	but	also
styling	with	CSS,	many	JavaScript	APIs	such	as	the	Fetch	API,
(https://fetch.spec.whatwg.org/),	the	Storage	API
(https://storage.spec.whatwg.org/),	and	others.

CSS
Whereas	HTML	defines	the	content	of	web	pages,	CSS	defines	the	look.	In	the
earlier	days	of	HTML,	for	example,	the	list	item	tag		defined	whether	list
elements	should	be	displayed	with	a	circle,	a	disc,	or	a	square.	Now,	such

https://html.spec.whatwg.org/
https://fetch.spec.whatwg.org/
https://storage.spec.whatwg.org/

information	is	completely	removed	from	HTML	and	is	instead	put	into	a
cascading	style	sheet	(CSS).
With	CSS	styles,	you	can	use	flexible	selectors	to	select	HTML	elements,	and
you	can	define	styles	for	these	elements.	You	can	select	an	element	via	its	ID	or
its	name,	and	you	can	define	CSS	classes	that	can	be	referenced	from	within	the
HTML	code.	With	newer	versions	of	CSS,	you	can	define	quite	complex	rules
for	selecting	specific	HTML	elements.

As	of	today,	some	web	project	templates	make	use	of	Bootstrap,	which	was
originally	developed	by	Twitter,	but	now	a	small	team	at	GitHub	maintains	it
(https://github.com/twbs/bootstrap).	Bootstrap	is	a	collection	of	CSS	and
HTML	conventions,	and	you	can	easily	adapt	different	looks	and	download
ready-to-use	templates.	Visit	https://getbootstrap.com	for	documentation
and	basic	templates.

JavaScript	and	TypeScript
Not	all	platforms	and	browsers	can	use	.NET	code,	but	nearly	every	browser
understands	JavaScript.	One	common	misconception	about	JavaScript	is	that	it
has	something	to	do	with	Java.	In	fact,	only	the	name	is	similar	because
Netscape	(the	originator	of	JavaScript)	made	an	agreement	with	Sun	(Sun
invented	Java)	to	be	allowed	to	use	Java	in	the	name.	Today,	neither	Netscape
nor	Sun	exists.	Sun	was	bought	by	Oracle,	and	now	Oracle	holds	the	trademark
for	Java.

Java	and	JavaScript	(and	C#)	have	the	same	roots—the	C	programming
language.	JavaScript	is	a	functional	programming	language	that	is	not	object-
oriented,	although	object-oriented	capabilities	have	been	added	to	it.

JavaScript	enables	accessing	the	document	object	model	(DOM)	from	the	HTML
page,	which	makes	it	possible	to	change	elements	dynamically	on	the	client.

ECMAScript	is	the	standard	that	defines	the	current	and	upcoming	features	of
the	JavaScript	language.	Check	https://tc39.es/ecma262/	for	the	current	state
and	future	changes	of	the	JavaScript	language.	New	features	are	added	every
year,	much	like	new	features	are	added	to	C#.

Even	though	many	browsers	don't	support	the	newest	ECMAScript	version,	you
can	still	write	new	ECMAScript	code.	Instead	of	writing	JavaScript	code,	you
can	use	TypeScript.	The	TypeScript	syntax	is	based	on	ECMAScript,	but	it	has
some	enhancements,	such	as	strongly	typed	code	and	annotations.	You'll	find
many	similarities	between	C#	and	TypeScript.	Because	the	TypeScript	compiler

https://github.com/twbs/bootstrap
https://getbootstrap.com
https://tc39.es/ecma262/

transpiles	(or	compiles)	to	JavaScript,	TypeScript	can	be	used	in	every	place
where	JavaScript	is	needed.	For	more	information	on	TypeScript,	check
https://www.typescriptlang.org.

Scripting	Libraries
In	addition	to	the	JavaScript	programming	language,	you	might	need	scripting
libraries.	Scripting	libraries	can	be	used	on	the	client	in	combination	with	the
server-side	functionality	of	ASP.NET	Core.

jQuery	(supported	by	the	OpenJS	Foundation	https://openjsf.org)	is	a
library	that	abstracts	browser	differences	when	accessing	DOM	elements
and	reacting	to	events.	A	few	years	ago,	this	library	was	used	with	nearly
every	website.	Today,	more	options	are	available,	and	you	can't	expect	to
have	jQuery	available	everywhere.

Angular	(https://angular.io)	is	a	library	from	Google	based	on	the
MVC	pattern	for	simplifying	development	and	testing	with	single-page	web
applications.	(Unlike	ASP.NET	MVC,	Angular	offers	the	MVC	pattern	with
client-side	code.)

React	(https://reactjs.org)	is	a	library	from	Facebook	that	offers
functionality	to	easily	update	user	interfaces	as	data	changes	in	the
background.

ASP.NET	Core	templates	for	Visual	Studio	include	templates	for	Angular	and
React.	Visual	Studio	2019	and	Visual	Studio	Code	support	IntelliSense	and
debugging	JavaScript	and	TypeScript	code.

WebAssembly
WebAssembly	is	another	standard	with	HTML	technologies
(https://webassembly.org/).	WebAssembly	allows	writing	binary	code	that's
running	in	the	browser	so	that	not	only	JavaScript	code	but	also	the	binary
WASM	code	can	run	in	the	browser.	The	code	is	still	running	in	the	sandboxed
environment	of	the	browser,	so	it's	safe	to	run	this	binary	code	on	the	client.	The
goal	is	to	allow	the	creation	of	applications	that	need	more	CPU	power	to	run	in
the	browser,	such	as	photo	and	video	editing	tools,	CAD	applications,	and	virtual
reality	and	virtual	machines	(https://webassembly.org/docs/use-cases/).

Microsoft	ported	the	.NET	runtime	to	WASM	code.	This	allows	running	.NET
assemblies	in	the	browser.	This	is	used	by	Blazor,	which	is	a	library	that	can	run

https://www.typescriptlang.org
https://openjsf.org
https://angular.io
https://reactjs.org
https://webassembly.org/
https://webassembly.org/docs/use-cases/

Razor	components	either	on	the	server	or	in	the	client	within	WebAssembly.
This	technology	is	covered	in	Chapter	27.

NOTE Styling	web	applications	and	writing	JavaScript	code	is	not
covered	in	this	book.	You	can	read	more	about	HTML	and	styles	in	HTML
and	CSS:	Design	and	Build	Websites	by	John	Duckett	(John	Wiley	&	Sons,
2011),	and	you	can	get	up	to	speed	with	Beginning	JavaScript,	Fifth	Edition,
by	Jeremy	McPeak	and	Paul	Wilton	(Wrox,	2015).

CREATING	AN	ASP.NET	CORE	WEB	PROJECT
Now	that	you	have	some	background	about	web	technologies,	let's	start	by
creating	a	simple	console	application	and	just	a	few	lines	of	code	to	convert	it	to
a	web	application.	This	first	web	app	sample	in	this	chapter	answers	HTTP
requests	and	returns	simple	HTML	code:

>	dotnet	new	console	-o	SimpleHost

The	SDK	of	the	project	file	needs	to	be	changed	to	Microsoft.NET.Sdk.Web	to
reference	all	of	the	NuGet	packages	needed	by	web	applications	(project
configuration	file	SimpleHost.csproj):

<Project	Sdk="Microsoft.NET.Sdk.Web">

	

		<PropertyGroup>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

</Project>

With	the	top-level	statements	of	the	application,	the	Start	method	of	the
WebHost	class	is	invoked.	This	method	has	a	parameter	of	RequestDelegate.
RequestDelegate	is	a	delegate	that	receives	an	HttpContext	as	parameter	and
returns	a	Task.	The	HttpContext	can	be	used	to	read	the	request	from	the	client
and	send	a	return.	With	the	sample	code,	a	response	containing	an	HTML	string
is	returned.	The	method	WaitForShutdownAsync	starts	a	task	and	keeps	this	task
running	until	you	use	Ctrl+C	or	SIGTERM	to	stop	the	application	(code	file
SimpleHost/Program.cs):

using	Microsoft.AspNetCore;

using	Microsoft.AspNetCore.Hosting;

using	Microsoft.AspNetCore.Http;

	

await	WebHost.Start(async	context	=>

{

		await	context.Response.WriteAsync("<h1>A	Simple	Host!</h1>");

}).WaitForShutdownAsync();

With	this	in	action,	you	can	start	the	application	with	dotnet	run	and	access	it
from	a	browser	with	the	address	https://localhost:5001.	As	soon	as	you
request	pages	from	the	server,	you'll	also	see	log	output	in	the	console.	ASP.NET
Core	hosting	shows	info-level	log	output	with	every	request,	such	as	the
following:

info:	Microsoft.AspNetCore.Hosting.Diagnostics[1]

						Request	starting	HTTP/2	GET	https://localhost:5001/	-	-

info:	Microsoft.AspNetCore.Hosting.Diagnostics[2]

						Request	finished	HTTP/2	GET	https://localhost:5001/	-	-	-	

200	-	-	31.4379ms

To	see	logging	output	when	starting	the	application	(which	also	shows	the	port
numbers	the	Kestrel	server	is	listening	to),	you	can	add	an	appsettings.json
file	that's	read	with	the	default	configuration	(config	file
SimpleHost/appsettings.json):

{

		"Logging":	{

				"Console":	{

						"LogLevel":	{

								"Default":	"Trace"

						}

				}

		}

}

With	this	simple	web	application,	you	can	read	the	request	coming	in	from	the
HttpContext	and	return	different	results	based	on	the	requests.

The	WebHost	class	uses	the	Host	class	discussed	in	Chapter	15,	“Dependency
Injection	and	Configuration.”	The	Start	method	of	the	WebHost	class	implicitly
invokes	the	CreateDefaultBuilder	of	the	Host	class	to	configure	several
services,	adds	services	for	ASP.NET	Core,	and	configures	the	Kestrel	server.	See
Chapter	19,	“Networking,”	for	information	on	how	to	define	a	custom
configuration	of	the	Kestrel	server.

You	can	change	the	configuration	of	the	WebHost	class	using	StartWith	where

https://localhost:5001

an	IApplicationBuilder	can	be	used	on	further	configuration.	The
IApplicationBuilder	is	shown	later	in	this	chapter	when	modifying
middleware	with	ASP.NET	Core.	The	Services	property	of	the	WebHost	class
can	be	used	to	register	services	with	the	DI	container.

Host	Server
Opening	the	project	with	Visual	Studio	creates	the	launchsetting.json	file	in
the	Properties	folder.	This	file	is	also	created	when	you	create	a	web	application
using	dotnet	new	web.	With	this	file,	you	can	specify	environment	variables
that	are	used	when	starting	the	application,	as	well	as	URLs	used	by	the	Kestrel
server.	A	profile	to	run	IIS	Express	is	configured	in	addition	to	the	project
command	where	the	Kestrel	server	is	started	(configuration	file
SimpleHost/Properties/launchsettings.json):

{

		"iisSettings":	{

				"windowsAuthentication":	false,

				"anonymousAuthentication":	true,

				"iisExpress":	{

						"applicationUrl":	"http://localhost:35246",

						"sslPort":	44397

				}

		},

		"profiles":	{

				"IIS	Express":	{

						"commandName":	"IISExpress",

						"launchBrowser":	true,

						"environmentVariables":	{

								"ASPNETCORE_ENVIRONMENT":	"Development"

						}

				},

				"SimpleHost":	{

						"commandName":	"Project",

						"dotnetRunMessages":	"true",

						"launchBrowser":	true,

						"applicationUrl":	

"https://localhost:5001;http://localhost:5000",

						"environmentVariables":	{

								"ASPNETCORE_ENVIRONMENT":	"Development"

						}

				}

		}

}

NOTE When	you	use	Visual	Studio	on	Windows,	Internet	Information
Services	(IIS)	Express	is	installed	with	Visual	Studio.	When	you	start	the	web
app	from	Visual	Studio,	you	can	select	between	the	different	profiles
configured	in	launchsettings.json	to	start	the	application	via	IIS
Express	or	the	SimpleHost	profile.	The	profile	with	the	same	name	as	the
application	just	starts	the	Kestrel	server.	When	IIS	is	started,	Kestrel	is	used
behind	the	scenes.	To	support	ASP.NET	Core	with	IIS,	a	module	is	installed
that	forwards	the	request	to	the	Kestrel	server.	This	Kestrel	functionality
within	IIS	can	run	out	of	process	or	in	process	of	the	worker	process.	When
you	install	the	ASP.NET	runtime	on	the	server	where	IIS	is	hosted,	make	sure
to	install	the	Hosting	Bundle	that	includes	the	IIS	module	(
https://dotnet.microsoft.com/download/dotnet/5.0).

Startup
Let's	move	into	a	more	powerful	web	application.	Creating	an	empty	web
application	using	dotnet	new	web	-o	WebSampleApp	creates	Program.cs	with	a
Main	method	using	the	Host	class,	a	Startup.cs	file	with	the	Startup	class,
appsettings.json	from	the	configuration,	and	launchsettings.json	to
configure	profiles	and	environment	variables.	Something	that's	different	with	the
configuration	of	the	Host	class	than	what	you've	seen	in	earlier	chapters	is	the
use	of	the	ConfigureWebHostDefaults	method	and	the	UseStartup	method,	as
shown	in	the	following	code	snippet.	The	method	ConfigureWebHostDefaults
configures	the	Kestrel	server	and	adds	IIS	integration	if	it's	running	on	the
Windows	platform,	sets	up	the	IWebHostEnvironment	for	static	web	assets,	and
configures	some	middleware	modules.	With	the	generic	type	parameter,	the
UseStartup	method	defines	the	class	that	should	be	used	next	for	starting	up	the
server;	from	the	template	generated,	this	is	the	Startup	class	(code	file
WebSampleApp/Program.cs):

public	class	Program

{

		public	static	void	Main(string[]	args)

		{

				CreateHostBuilder(args).Build().Run();

		}

	

		public	static	IHostBuilder	CreateHostBuilder(string[]	args)	=>

				Host.CreateDefaultBuilder(args)

https://dotnet.microsoft.com/download/dotnet/5.0

						.ConfigureWebHostDefaults(webBuilder	=>

						{

								webBuilder.UseStartup<Startup>();

						});

}

With	web	applications,	the	dependency	injection	container	usually	is	configured
with	the	Startup	class	instead	of	the	Host	class.	The	Startup	class	has	two
important	methods	that	are	invoked	dynamically	from	the	ASP.NET	Core
runtime	as	shown	in	the	following	code	snippet:	ConfigureServices	and
Configure.

The	ConfigureServices	method	is	used	to	configure	the	dependency	injection
container	(you	can	use	the	ConfigureServices	method	of	the	Host	class	in	a
similar	way).	This	method	has	an	IServiceCollection	property	that	contains	all
the	services	already	registered	in	the	Main	method,	and	it	allows	you	to	add
additional	services.

The	Configure	method	is	invoked	dynamically	to	configure	the	ASP.NET	Core
middleware.	Middleware	is	invoked	with	every	HTTP	request.	The	Configure
method	receives	parameters	via	dependency	injection.	The	parameters	defined	in
the	template	are	of	type	IApplicationBuilder	and	IWebHostEnvironment.

The	interface	IWebHostEnvironment	allows	you	to	access	the	name	of	the
environment	(EnvironmentName),	the	root	path	for	the	content	(the	directory	of
the	sources),	and	the	root	path	for	the	web	content	files	(the	subdirectory
wwwroot).	The	default	provider	that	accesses	these	directories	is	the
PhysicalFileProvider.	With	a	different	provider,	the	content	can	be	served
from	other	sources—for	example,	from	a	database.	Within	the	implementation	of
the	Configure	method,	the	IWebHostEnvironment	is	used	to	check	whether	the
current	environment	is	Development	by	invoking	the	extension	method
IsDevelopment.	Exceptions	are	returned	to	the	caller	only	in	the	development
environment.	Because	of	security	issues,	in	the	production	environment,	the	user
doesn't	see	detailed	information	on	the	exception.

The	IApplicationBuilder	interface	is	used	to	add	middleware	to	the	HTTP
request	pipeline.	When	you	invoke	the	Use	method	of	this	interface,	you	can
build	the	HTTP	request	pipeline	to	define	what	should	be	done	in	answer	to	a
request.	The	Use	method	is	implemented	using	a	fluent	API,	and	it	again	returns
an	IApplicationBuilder.	With	this,	multiple	middleware	objects	can	easily	be
added	to	the	pipeline.	Several	extension	methods,	such	as	UseRouting	and
UseEndpoints,	make	it	easier	to	add	middleware.	Middleware	will	be	added	in

several	sections	in	this	chapter.	Later	in	this	chapter,	in	the	section	“Creating
Custom	Middleware,”	you	can	create	custom	middleware	and	add	it	to	the
pipeline:

public	class	Startup

{

		public	void	ConfigureServices(IServiceCollection	services)

		{

		}

	

		public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

		{

				if	(env.IsDevelopment())

				{

						app.UseDeveloperExceptionPage();

				}

												

				app.UseRouting();

	

				app.UseEndpoints(endpoints	=>

				{

						endpoints.MapGet("/",	async	context	=>

						{

								await	context.Response.WriteAsync("Hello	World!");

						});

				});

		}

}

Sample	Application	Preparations
The	sample	application	contains	an	entry	page	where	all	the	features	shown	by
the	application	can	easily	be	accessed	using	HTML	links:

endpoints.MapGet("/",	async	context	=>

{

		string[]	lines	=	new[]

		{

				@"",

						@"Static	Files	-	requires	

"	+	

								@"UseStaticFiles",

						@"Request	and	Response",

								@"",

										@"Request	and	

Response",

										@"Header",

										@"<a	href=""/RequestAndResponse/add?

x=38&y=4"">Add",

	

										//…

	

								@"",

						@"",

				@""

		};

	

		StringBuilder	sb	=	new();

		foreach	(var	line	in	lines)

		{

				sb.Append(line);

		}

		string	html	=	sb.ToString().HtmlDocument("Web	Sample	App");

	

		await	context.Response.WriteAsync(html);

});

The	HTMLExtensions	class	is	defined	to	create	some	specific	HTML	and	reduce
the	amount	of	HTML	code	needed.	This	class	defines	extension	methods	to
create	div,	span,	and	li	elements	(code	file
WebSampleApp/Extensions/HtmlExtensions.cs):

public	static	class	HtmlExtensions

{

		public	static	string	Div(this	string	value)	=>

				$"<div>{value}</div>";

	

		public	static	string	Span(this	string	value)	=>

				$"{value}";

	

		public	static	string	Div(this	string	key,	string	value)	=>

				$"{key.Span()}:	{value.Span()}".Div();

	

		public	static	string	Li(this	string	value)	=>

				$@"{value}";

	

		public	static	string	Li(this	string	value,	string	url)	=>

				$@"{value}";

	

		public	static	string	Ul(this	string	value)	=>

				$"{value}";

	

		public	static	string	HtmlDocument(this	string	content,	string	

title)

		{

				StringBuilder	sb	=	new();

				sb.Append("<!DOCTYPE	HTML>");

				sb.Append("<head><meta	charset=\"utf-8\"><title>{title}

</title></head>");

				sb.Append("<body>");

				sb.Append(content);

				sb.Append("</body>");

				return	sb.ToString();

		}

}

ADDING	CLIENT-SIDE	CONTENT
Usually	you	don't	want	to	just	send	simple	strings	to	the	client.	By	default,
simple	HTML	files	and	other	static	content	can't	be	sent.	ASP.NET	Core	reduces
the	overhead	as	much	as	possible.	Even	static	files	are	not	returned	from	the
server	if	you	do	not	enable	them.

To	enable	static	files	served	from	the	web	server,	you	can	add	the	extension
method	UseStaticFiles	to	add	the	required	middleware.	This	middleware
checks	whether	the	request	matches	an	existing	file	(code	file
WebSampleApp/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		/…

		app.UseStaticFiles();

	

		app.UseRouting();

		//…

	

}

The	folder	where	you	add	static	files	is	the	wwwroot	folder	within	the	project.
Let's	add	static	content	by	adding	a	simple	HTML	file	(code	file
WebSampleApp/wwwroot/hello.html),	as	shown	here:

<!DOCTYPE	html>

<html>

		<head>

				<meta	charset="utf-8"/>

				<title>ASP.NET	Core	Sample</title>

		</head>

		<body>

				<h1>Hello,	ASP.NET	with	Static	Files</h1>

		</body>

</html>

Now	you	make	a	request	to	the	HTML	file	from	the	browser	after	starting	the
server—for	example,	https://localhost:5001/Hello.html.	If	you	uncomment
the	extension	method	UseStaticFiles,	the	HTML	file	is	not	returned	from	the
request.

The	NuGet	server	is	hosting	NuGet	packages	containing	.NET	libraries.	Most
JavaScript	libraries	can	be	found	on	the	Node	server.	These	libraries	are
packaged	with	Node	Package	Manager	(NPM),	WebPack,	Parcel,	or	other
package	managers.	This	topic	is	not	covered	here.

When	using	.NET,	you	can	create	a	web	application	using	Angular	and	an
ASP.NET	Core	backend	with	the	web	API:

>	dotnet	new	angular	-o	AngularSample

In	the	ClientApp	subfolder,	you'll	find	a	file	named	package.json,	which
contains	the	configuration	for	NPM.	You	can	create	a	similar	project	with	the
React	JavaScript	library	for	the	frontend	and	ASP.NET	Core	with	the	backend;
there's	a	similar	folder	structure	with	package.json	for	JavaScript	libraries:

>	dotnet	new	react	-o	ReactSample

This	is	a	separate	topic	on	its	own.	However,	if	you	don't	need	to	use	a
JavaScript	library	in	a	size	similar	to	Angular	or	React	and	just	want	to	use	a	few
JavaScript	and	CSS	files,	the	library	manager	can	be	all	that	you	need.	With	this
tool	you	can	download	JavaScript	libraries	from	providers,	select	the	files	from
the	libraries	you	need,	and	copy	them	to	your	local	source	code.

To	install	the	library	manager	as	a	global	tool,	use	this:

>	dotnet	tool	install	microsoft.web.librarymanager.cli	-g

Then	you	can	use	the	libman	command	to	get	libraries.	To	initialize	libman	for
the	project,	while	in	the	project	directory,	invoke	the	following	command:

>	libman	init

You'll	be	asked	where	to	get	the	JavaScript	libraries.	By	default,	cdnjs	is	used.

https://localhost:5001/Hello.html

This	creates	the	libman.json	file	as	shown	here:

{

		"version":	"1.0",

		"defaultProvider":	"cdnjs",

		"libraries":	[]

}

The	providers	you	can	use	are	cdnjs	(https://cdnjs.com),	jsdlvr
(https://www.jsdelivr.com/),	unpkg	(https://unpkg.com/),	and	filesystem.
unpkg	is	the	content	delivery	network	(CDN)	service	from	Node	that	offers	all
the	packages	available	on	the	Node	server.

To	get	the	files	needed	for	jQuery,	you	can	invoke	the	following	command:

>	libman	install	jquery

Within	the	libraries	section,	you'll	find	a	reference	to	the	library	and	the
destination	where	the	files	should	be	copied	to.	You	need	to	copy	the	files	to	the
wwwroot	directory	where	static	files	are	served	from	the	web	application,	as
shown	here:

{

		"version":	"1.0",

		"defaultProvider":	"cdnjs",

		"libraries":	[

				{

						"library":	"jquery@3.6.0",

						"destination":	"wwwroot\\lib\\jquery"

				}

]

}

If	you	don't	need	the	complete	package	content	with	your	application,	you	can
specify	what	files	should	be	retrieved	from	the	package	with	the	files	element,
and	you	can	change	to	get	a	specific	library	from	a	different	CDN	service	with
the	provider	element	(config	file	WebSampleApp/libman.json):

{

		"version":	"1.0",

		"defaultProvider":	"cdnjs",

		"libraries":	[

				{

						"provider":	"unpkg",

						"library":	"bootstrap@4.6.0",

						"files":	["dist/css/bootstrap.css",	

https://cdnjs.com
https://www.jsdelivr.com/
https://unpkg.com/

"dist/js/bootstrap.js"],

						"destination":	"wwwroot/lib/bootstrap"

				},

				{

						"library":	"jquery@3.6.0",

						"destination":	"wwwroot/lib/jquery"

				}

]

}

CREATING	CUSTOM	MIDDLEWARE
When	you	invoke	the	UseStaticFiles	extension	method	with	the
IApplicationBuilder,	as	shown	in	the	previous	section,	middleware	is
implemented.	This	middleware	checks	the	request	if	a	physical	file	is	available.
If	it	is,	this	file	is	returned.	Otherwise,	the	next	middleware	is	invoked.
Middleware	is	implemented	as	a	pipeline—one	middleware	follows	the	next
one.	With	middleware,	authentication	and	authorization,	session	handling,
caching,	and	more	functionalities	are	implemented.

You	can	implement	custom	middleware	functionality	by	invoking	the	Use
method.	The	Use	method	is	declared	with	this	parameter	and	return	type:

IApplicationBuilder	Use(Func<RequestDelegate,	RequestDelegate>	

middleware);

The	Use	method	returns	an	IApplicationBuilder,	so	you	can	invoke	the	Use
method	with	a	fluent	API.	The	parameter	is	a	delegate	with	a	RequestDelegate
as	a	parameter	and	return	type.	RequestDelegate	is	a	delegate	that	defines	an
HttpContext	as	a	parameter	returning	a	Task.

With	the	following	invocation	of	the	Use	method,	the	variable	next	is	a
RequestDelegate	parameter.	This	parameter	references	a	lambda	with	the
HttpContext	parameter	and	returns	a	Task.	With	the	implementation	of	the
lambda,	a	custom	header	named	CustomHeader1	is	written	to	the	HTTP
response,	and	then	the	next	middleware	defined	with	the	next	variable	is
invoked	(code	file	WebSampleApp/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

		}

	

		app.Use(next	=>	context	=>

		{

				context.Response.Headers.Add("CustomHeader1",	"custom	header	

value");

				return	next(context);

		});

	

	

		app.UseStaticFiles();

		//…

}

Instead	of	implementing	the	middleware	as	a	parameter	of	the	Use	method,	you
can	create	a	class	such	as	the	following	HeaderMiddleware	class.	With	a
middleware	class,	the	constructor	receives	the	next	middleware	with	the
RequestDelegate	parameter.	Here	you	need	to	remember	the	next	middleware
reference	to	invoke	it	after	the	middleware's	functionality	is	done.	With	the
Invoke	method,	you	implement	the	functionality	of	the	middleware	and	invoke
the	next	middleware	forwarding	the	HttpContext.	The	sample	code	writes	a
custom	HTTP	header	to	the	HTTP	response	similar	to	the	previous	middleware
(code	file	WebSampleApp/Middleware/HeaderMiddleware.cs):

public	class	HeaderMiddleware

{

		private	readonly	RequestDelegate	_next;

	

		public	HeaderMiddleware(RequestDelegate	next)	=>	_next	=	next;

	

		public	Task	Invoke(HttpContext	httpContext)

		{

				httpContext.Response.Headers.Add("CustomHeader2",	"custom	

header	value");

				return	_next(httpContext);

		}

}

Implementing	the	middleware	in	a	class	has	the	advantage	that	you	can	add	a	lot
more	to	the	constructor—for	example,	other	services	that	you	might	need	from
the	middleware	implementation	or	configuration	settings,	such	as	using	the
IOptions	interface.	IOptions	is	covered	in	Chapter	15.

To	make	it	easy	to	register	the	middleware,	an	extension	method	for	the
IApplicationBuilder	can	be	defined.	The	method	UseHeaderMiddleware

invokes	the	UseMiddleware	method	by	passing	the	HeaderMiddleware	as	a
generic	parameter	(code	file
WebSampleApp/Middleware/HeaderMiddleware.cs):

public	static	class	HeaderMiddlewareExtensions

{

		public	static	IApplicationBuilder	UseHeaderMiddleware(

				this	IApplicationBuilder	builder)	=>	

				builder.UseMiddleware<HeaderMiddleware>();

}

This	middleware	is	added	similar	to	the	way	all	the	other	middleware	is	added.
Because	the	middleware	extension	method	UseHeaderMiddleware	is	added	after
UseStaticFiles,	with	static	files	this	header	information	is	not	returned	to	the
client	(code	file	WebSampleApp/Startup.cs):

app.Use(next	=>	context	=>

{

		context.Response.Headers.Add("CustomHeader1",	"custom	header	

value");

		return	next(context);

});

	

app.UseStaticFiles();

	

app.UseHeaderMiddleware();

When	you	run	the	application,	you	see	the	header	returned	to	the	client	(using
the	browser's	developer	tools),	and	the	heading	shows	up	in	every	page,	no
matter	which	of	the	previously	created	links	you	use	(see	Figure	24-1).

FIGURE	24-1

ENDPOINT	ROUTING
How	the	links	map	to	code	is	defined	by	endpoint	routing.	Endpoint	routing	is
implemented	as	middleware,	using	the	UseRouting	method.	The	UseRouting
method	needs	to	be	followed	by	the	UseEndpoints	method	where	the	routes	are
defined.	UseRouting	uses	the	EndpointRoutingMiddleware	where	the	routing
decisions	are	made;	it	defines	what	route	maps	to	which	implementation.
However,	middleware	specified	before	the	routing	can	change	the	endpoint	for	a
request.	For	example,	if	a	request	is	denied	because	the	user	is	not	authenticated,
the	route	is	changed	for	this	request—for	example,	to	a	page	with	unauthorized
information.

To	define	routes,	different	technologies	offer	extension	methods	to	the	interface
IEndpointRouteBuilder.	With	Razor	Pages,	the	method	MapRazorPages	defines
routing	to	link	to	Razor	Pages	in	the	Pages	folder	where	the	link	maps	the	name
of	the	Razor	Page.	With	SignalR,	the	method	MapHub	maps	a	specified	link	to	a
class	that	derives	from	the	Hub	class.	In	the	next	four	chapters,	you'll	learn	about
different	routes	using	attribute-based	routing	with	web	APIs,	and	then	route
definitions	with	GRPC,	Razor	Pages,	MVC	routes,	Blazor,	and	SignalR.	In	this

chapter,	you	define	custom	routes	without	using	these	technologies.

Defining	Routes
In	the	previous	code	samples,	you	saw	how	to	define	a	route	with	the	Map	(or
MapGet)	method.	Using	the	string	/	as	an	argument	defined	the	response	to	the
root	path.	Map	is	an	extension	method	for	the	IEndpointRouteBuilder	interface,
which	is	the	parameter	type	of	the	UseEndpoints	method.

The	following	invocation	of	the	Map	method	defines	the	route	to	the	/session
URL.	If	the	URL	matches	this	link,	the	SessionSample	service	is	retrieved	from
the	DI	container,	and	the	SessionAsync	method	is	invoked	(code	file
WebSampleApp/Startup.cs):

endpoints.Map("/session",	async	context	=>

{

		var	service	=	

context.RequestServices.GetRequiredService<SessionSample>();

		await	service.SessionAsync(context);

});

The	following	code	snippet	shows	using	a	string	pattern	with	a	route	parameter.
The	URI	segment	that	follows	/randr/	maps	to	a	route	value	with	a	key	named
action.	Using	a	URI	such	as	/randr/header,	the	parts	of	this	URI	can	be
retrieved	using	the	GetRouteValue	method	of	the	HttpContext	object.	Because	a
?	is	added	to	the	route	parameter,	the	action	is	optional,	and	the	URI	/randr
without	following	URI	segments	also	matches	this	route	definition.	The	action
variable	will	be	null	in	that	case.	With	the	switch	expression	used	here,	the
switch	path	is	designed	using	tuple	pattern	matching	where	both	the	route
parameter	and	the	HTTP	method	are	used	for	the	decision	(code	file
WebSampleApp/Startup.cs):

endpoints.Map("/randr/{action?}",	async	context	=>	

{

		var	service	=	

context.RequestServices.GetRequiredService<RequestAndResponseSamples>

();

		string?	action	=	context.GetRouteValue("action")?.ToString();

		string	method	=	context.Request.Method;

		string	result	=	(action,	method)	switch

		{

				(null,	"GET")	=>	

service.GetRequestInformation(context.Request),

				("header",	"GET")	=>	

service.GetHeaderInformation(context.Request),

				("add",	"GET")	=>	service.QueryString(context.Request),

				("content",	"GET")	=>	service.Content(context.Request),

				("form",	"GET"	or	"POST")	=>	service.Form(context.Request),

				("writecookie",	"GET")	=>	

service.WriteCookie(context.Response),

				("readcookie",	"GET")	=>	

service.ReadCookie(context.Request),

				("json",	"GET")	=>	service.GetJson(context.Response),

				_	=>	string.Empty

		};

	

		if	(action	is	"json")

		{

				await	context.Response.WriteAsync(result);

		}

		else

		{

				var	doc	=	result.HtmlDocument("Request	and	Response	

Samples");

				await	context.Response.WriteAsync(doc);

		}

});

Route	Constraints
With	the	pattern	parameter,	you	can	specify	constraints	as	defined	in	the
following	code	snippet.	Here,	the	two	mandatory	URI	segments	that	follow	the
/add	need	to	map	to	int	values;	otherwise,	this	Map	method	doesn't	have	a	match
for	the	route,	and	the	following	route	definitions	are	checked	for	matches.	The
GetRouteValue	returns	a	nullable	object	containing	the	string	value,	and	you
need	to	convert	it	to	the	type	you	need	(code	file	WebSampleApp/Startup.cs):

endpoints.Map("/add/{x:int}/{y:int}",	async	context	=>

{

		int	x	=	int.Parse(context.GetRouteValue("x")?.ToString()	??	

"0");

		int	y	=	int.Parse(context.GetRouteValue("y")?.ToString()	??	

"0");

		await	context.Response.WriteAsync($"The	result	of	{x}	+	{y}	is	

{x	+	y}");

});

Besides	int,	you	can	pass	several	constraints	such	as	bool,	datetime,	min,	max,
length,	minlength,	range,	and	others.	Check	the	documentation	for	route
constraint	references	at	https://docs.microsoft.com/en-

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-5.0#route-constraint-reference

us/aspnet/core/fundamentals/routing?view=aspnetcore-5.0#route-

constraint-reference.

REQUEST	AND	RESPONSE
With	the	HTTP	protocol,	the	client	sends	an	HTTP	request	to	the	server.	This
request	is	answered	with	an	HTTP	response.

The	request	consists	of	a	header	and,	in	many	cases,	body	information	to	the
server.	The	server	uses	the	header	information	to	know	about	the	needs	of	the
client	and	can	send	different	results	based	on	this	information.	Let's	take	a	look
at	what	information	is	sent	by	the	client.

The	method	GetRequestInformation	uses	an	HttpRequest	object	to	access
Scheme,	Host,	Path,	QueryString,	Method,	and	Protocol	properties	(code	file
WebSampleApp/Services/RequestAndResponseSamples.cs):

public	string	GetRequestInformation(HttpRequest	request)

{

		StringBuilder	sb	=	new();

		sb.Append("scheme".Div(request.Scheme));

		sb.Append("host".Div(request.Host.HasValue	?	

request.Host.Value	:	

				"no	host"));

		sb.Append("path".Div(request.Path));

		sb.Append("query	string".Div(request.QueryString.HasValue	?	

				request.QueryString.Value	:	"no	query	string"));

		sb.Append("method".Div(request.Method));

		sb.Append("protocol".Div(request.Protocol));

		return	sb.ToString();

}

All	the	requests	to	demonstrate	the	sample	code	of	this	section	are	served
passing	the	path	/randr	to	the	server,	as	specified	in	the	Startup	class.	With	the
implementation	of	the	RequestDelegate	parameter,	the
RequestAndResponseSamples	object	is	retrieved	from	the	DI	container,	and	the
GetRequestInformation	method	is	invoked.	The	result	is	then	written	to	the
HttpResponse	object	(code	file	WebSampleApp/Startup.cs):

endpoints.Map("/randr/{action?}",	async	context	=>	

{

		var	service	=	

context.RequestServices.GetRequiredService<RequestAndResponseSamples>

();

		string?	action	=	context.GetRouteValue("action")?.ToString();

		string	method	=	context.Request.Method;

		string	result	=	(action,	method)	switch

		{

				(null,	"GET")	=>	

service.GetRequestInformation(context.Request),

				("header",	"GET")	=>	

service.GetHeaderInformation(context.Request),

				//…

		};

		await	context.Response.WriteAsync(result);

});

Starting	the	program	and	accessing	https://localhost:5001/randr/	results	in
the	following	information:

scheme:	https

host:	localhost:001

path:	/randr

query	string:	no	query	string

method:	GET

protocol:	HTTP/2

When	you	add	a	query	string,	such	as	https://localhost:5001/randr?
x=3&y=5,	the	query	string	accessing	the	property	QueryString	shows	up:

query	string:	?x=3&y=5

The	following	sections	implement	the	different	methods	to	show	request
headers,	query	strings,	and	more.

NOTE For	HTML	encoding	the	result,	read	Chapter	20,	“Security.”

Request	Headers
Let's	take	a	look	at	what	information	the	client	sends	within	the	HTTP	header.	To
access	the	HTTP	header	information,	the	HttpRequest	object	defines	the
Headers	property.	This	is	of	type	IHeaderDictionary,	and	it	contains	a
dictionary	with	the	name	of	the	header	and	a	string	array	for	the	values.	Using
this	information,	the	Div	method	created	earlier	is	used	to	write	div	elements	for
the	client	(code	file
WebSampleApp/Services/RequestAndResponseSamples.cs):

public	string	GetHeaderInformation(HttpRequest	request)

https://localhost:5001/randr/
https://localhost:5001/randr?x=3&y=5

{

		StringBuilder	sb	=	new();

		foreach	(var	header	in	request.Headers)

		{

				sb.Append(header.Key.Div(string.Join(";	",	header.Value)));

		}

		return	sb.ToString();

}

The	results	you	see	depend	on	the	HTTP	version,	browser,	operating	system,	and
configured	languages	that	you're	using.	With	Microsoft	Edge	running	on
Windows	10,	you	can	see	values	as	shown	here:

:authority:	localhost:5001

:method:	GET

:path:	/randr/header

:scheme:	https

Accept:	

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;

q=0.8,application/signed-exchange;v=b3;q=0.9

Accept-Encoding:	gzip,	deflate,	br

Accept-Language:	en-US,en;q=0.9,de;q=0.8

Cookie:	color=red

Host:	localhost:5001

Referer:	https://localhost:5001/

User-Agent:	Mozilla/5.0	(Windows	NT	10.0;	Win64;	x64)	

AppleWebKit/537.36	

(KHTML,	like	Gecko)	Chrome/91.0.4435.0	Safari/537.36	

Edg/91.0.825.0

Upgrade-Insecure-Requests:	1

sec-ch-ua:	"	Not;A	Brand";v="99",	"Microsoft	Edge";v="91",	

"Chromium";v="91"

sec-ch-ua-mobile:	?0

sec-fetch-site:	same-origin

sec-fetch-mode:	navigate

sec-fetch-user:	?1

sec-fetch-dest:	document

What	can	you	get	out	of	this	header	information?

With	HTTP/2	the	authority,	method,	path,	and	scheme	headers	are	now	prefixed
with	a	:.	Some	headers	used	with	HTTP/1.1,	such	as	the	Connection	header,	are
no	longer	needed	with	HTTP/2.

The	Accept	header	defines	the	Multipurpose	Internet	Mail	Extensions	(MIME)
formats	the	browser	accepts.	MIME	was	originally	used	with	email	attachments

but	now	has	a	more	general-purpose	use.	The	list	is	in	order	by	the	preferred
formats.	Depending	on	this	information,	you	might	decide	to	return	data	with
different	formats	based	on	the	client's	needs.	Edge	prefers	HTML	followed	by
XHTML	and	XML	followed	by	WEBP	and	APNG.	With	some	of	this
information,	a	quantifier	is	also	defined.	The	browsers	used	for	the	output	all
have	*	.	*	at	the	end	of	this	list	to	accept	all	data	returned.

The	User-Agent	header	was	used	in	ancient	HTML	times	to	differentiate	the
code	to	return	to	the	client.	Configuration	files	existed	that	list	the	capabilities	of
specific	browsers.	Because	this	often	failed	with	newer	browser	versions	and
some	browsers	allow	you	to	customize	this	string,	this	is	no	longer	used.	Just
check	the	user	agent	string	from	the	Edge	browser	that	marks	itself	as	Mozilla,
AppleWebKit,	Gecko,	Chrome,	Safari,	and	Edge.	Instead	of	using	the	user-agent
header,	just	check	dynamically	for	the	browser	capabilities	when	working	with
JavaScript	code.

The	Accept-Language	header	information	shows	the	languages	the	user	has
configured.	You	can	use	this	information	to	return	localized	information.
Localization	is	discussed	in	Chapter	22,	“Localization.”

The	sec-fetch-xx	header	information	belongs	to	the	fetch	metadata	request
headers	of	HTTP/2.	sec-fetch-site	is	used	with	cross-origin	resource	sharing
(CORS).	sec-fetch-mode	defines	how	the	request	was	initiated.	sec-fetch-
user	gives	the	information	if	the	request	was	initiated	by	a	user.	?1	is	true,	?0
false.	sec-fetch-dest	defines	the	request	destination	to	the	server.	With	HTML
code	where	the	navigation	was	initiated,	the	value	is	document.	Other	values	are
script,	serviceworker,	audio,	image,	and	others.

The	header	information	that	you've	seen	so	far	is	what	the	browser	sends	for
very	simple	sites.	Usually,	there	will	be	more	detail,	such	as	cookies,
authentication	information,	and	custom	information.	To	see	all	the	information
that	is	sent	to	and	from	a	server,	including	the	header	information,	you	can	use
the	browser's	developer	tools	and	start	a	network	session;	you'll	see	not	only	all
the	requests	that	are	sent	to	the	server	but	also	header,	body,	parameters,	cookies,
and	timing	information,	as	shown	in	Figure	24-2.

FIGURE	24-2

Query	Parameters
The	following	QueryParameters	method	is	used	to	retrieve	parameters	named	x
and	y	from	the	query	string.	If	parsing	the	parameters	to	int	values	succeeds,	a
calculation	is	done.	Depending	on	the	input,	different	HTML	code	is	returned
(code	file	WebSampleApp/Services/RequestAndResponseSamples.cs):

public	string	QueryString(HttpRequest	request)

{

		string	xtext	=	request.Query["x"];

		string	ytext	=	request.Query["y"];

	

		if	(xtext	==	null	||	ytext	==	null)

		{

				return	"x	and	y	must	be	set".Div();

		}

	

		if	(!int.TryParse(xtext,	out	int	x))

		{

				return	$"Error	parsing	{xtext}".Div();

		}

	

		if	(!int.TryParse(ytext,	out	int	y))

		{

				return	$"Error	parsing	{ytext}".Div();

		}

		return	$"{x}	+	{y}	=	{x	+	y}".Div();

}

The	IQueryCollection	returned	from	the	Query	string	also	enables	you	to
access	all	the	keys	using	the	Keys	property,	and	it	offers	a	ContainsKey	method
to	check	whether	a	specified	key	is	available.

Using	the	URL	https://localhost:5001/randr/add?x=39&y=3	shows	this
result	in	the	browser:

39	+	3	=	42

Form	Data
Instead	of	passing	data	from	the	user	to	the	server	with	a	query	string,	you	can
use	the	form	HTML	element.	This	example	uses	an	HTTP	POST	request	instead
of	GET.	With	a	POST	request,	the	user	data	is	passed	with	the	body	of	the
request	instead	of	within	the	query	string.

Using	form	data	is	defined	with	two	requests.	First,	the	form	is	sent	to	the	client
with	a	GET	request,	and	then	the	user	fills	in	the	form	and	submits	the	data	with
a	POST	request.	As	shown	in	the	following	code	snippet,	the	method	Form
invokes	the	GetForm	or	ShowForm	method,	depending	on	the	HTTP	method	type
(code	file	WebSampleApp/Services/RequestResponseSamples.cs):

public	string	Form(HttpRequest	request)	=>

		request.Method	switch

		{

				"GET"	=>	GetForm(),

				"POST"	=>	ShowForm(request),

				_	=>	string.Empty

		};

The	form	is	created	with	an	input	element	named	text1	and	a	Submit	button.
Clicking	the	Submit	button	invokes	the	form's	action	method	with	an	HTTP
method	as	defined	with	the	method	argument:

https://localhost:5001/randr/add?x=39&y=3

private	static	string	GetForm()	=>

		"<form	method=\"post\"	action=\"/randr/form\">"	+

		"<input	type=\"text\"	name=\"text1\"/>"	+

		"<input	type=\"submit\"	value=\"Submit\	"/>"	+

		"</form>";

For	reading	the	form	data,	the	HttpRequest	class	defines	a	Form	property.	This
property	returns	an	IFormCollection	object	that	contains	all	the	data	from	the
form	that	is	sent	to	the	server:

private	string	ShowForm(HttpRequest	request)

{

		StringBuilder	sb	=	new();

		if	(request.HasFormContentType)

		{

				IFormCollection	coll	=	request.Form;

				foreach	(var	key	in	coll.Keys)

				{

						sb.Append(key.Div(HtmlEncoder.Default.Encode(coll[key])));

				}

				return	sb.ToString();

		}

		else	return	"no	form".Div();

}

Using	the	/randr/form	link,	the	form	is	received	with	the	GET	request.	When
you	click	the	Submit	button,	the	form	is	sent	with	the	POST	request,	and	you	can
see	the	text1	key	for	the	form	data.

Cookies
To	remember	user	data	between	multiple	requests,	you	can	use	cookies.	Adding
a	cookie	to	the	HttpResponse	object	sends	the	cookie	within	the	HTTP	header
from	the	server	to	the	client.	By	default,	a	cookie	is	temporary	(not	stored	on	the
client),	and	the	browser	sends	it	back	to	the	server	if	the	URL	is	the	same
domain	where	the	cookie	was	coming	from.	You	can	set	the	Path	to	restrict
when	the	browser	returns	the	cookie.	In	this	case,	the	cookie	is	returned	only
when	it	comes	from	the	same	domain	and	the	path	/randr	is	used.	When	you	set
the	Expires	property,	the	cookie	is	a	persistent	cookie,	which	means	it	is	stored
on	the	client.	When	the	expiration	time	passes,	the	cookie	will	be	removed.
However,	there's	no	guarantee	that	the	cookie	isn't	removed	earlier	(code	file
WebSampleApp/Services/RequestResponseSamples.cs):

public	string	WriteCookie(HttpResponse	response)

{

		response.Cookies.Append("color",	"red",	new	CookieOptions

		{

				Path	=	"/randr",

				Expires	=	DateTime.Now.AddDays(1)

		});

		return	"cookie	written".Div();

}

The	cookie	can	be	read	again	by	reading	the	HttpRequest	object.	The	Cookies
property	contains	all	the	cookies	that	are	returned	by	the	browser:

public	string	ReadCookie(HttpRequest	request)

{

		StringBuilder	sb	=	new();

		IRequestCookieCollection	cookies	=	request.Cookies;

		foreach	(var	key	in	cookies.Keys)

		{

				sb.Append(key.Div(cookies[key]));

		}

		return	sb.ToString();

}

For	testing	cookies,	you	can	also	use	the	browser's	developer	tools.	The	tools
show	all	the	information	about	the	cookies	that	are	sent	and	received.

Sending	JSON
The	server	returns	more	than	HTML	code;	it	also	returns	many	kinds	of	data
formats,	such	as	CSS	files,	images,	and	videos.	The	client	knows	what	kind	of
data	it	receives	with	the	help	of	a	MIME	type	in	the	response	header.

The	method	GetJson	creates	a	JSON	string	from	an	anonymous	object	with
Title,	Publisher,	and	Author	properties.	To	serialize	this	object	with	JSON,	the
NuGet	package	NewtonSoft.Json	is	added,	and	the	namespace
NewtonSoft.Json	imported.	The	MIME	type	for	the	JSON	format	is
application/json.	This	is	set	via	the	ContentType	property	of	the
HttpResponse	(code	file
WebSampleApp/Services/RequestResponseSample.cs):

public	string	GetJson(HttpResponse	response)

{

		var	b	=	new

		{

				Title	=	"Professional	C#	and	.NET	-	2021	Edition",

				Publisher	=	"Wiley",

				Author	=	"Christian	Nagel"

		};

		string	json	=	JsonSerializer.Serialize(b);

		response.ContentType	=	"application/json";

		return	json;

}

This	is	the	data	returned	to	the	client:

{"Title":"Professional	C#	and	.NET	2021","Publisher":"Wiley",

		"Author":"Christian	Nagel"}

NOTE JSON	serialization	is	explained	in	Chapter	18,	“Files	and
Streams.”	Sending/receiving	JSON	with	REST	APIs	is	covered	in	Chapter
25,	“Services.”

SESSION	STATE
A	service	that	is	implemented	using	middleware	is	session	state.	Session	state
enables	temporarily	remembering	data	from	the	client	on	the	server.	Session
state	itself	is	implemented	as	middleware.

Session	state	is	initiated	when	a	user	first	requests	a	page	from	a	server.	While
the	user	keeps	opening	pages	on	the	server,	the	session	continues	until	a	timeout
(typically	10	minutes)	occurs.	To	keep	state	on	the	server	while	the	user
navigates	to	a	new	page,	state	can	be	written	to	a	session.	When	a	timeout	is
reached,	the	session	data	is	removed.

To	identify	a	session,	on	the	first	request,	a	temporary	cookie	with	a	session
identifier	is	created.	This	cookie	is	returned	from	the	client	with	every	request	to
the	server	until	the	browser	is	closed,	and	then	the	cookie	is	deleted.	Session
identifiers	can	also	be	sent	in	the	URL	string	as	an	alternative	to	using	cookies.

On	the	server	side,	session	information	can	be	stored	in	local	memory.	In	a	web
farm,	session	state	that	is	stored	in	local	memory	doesn't	propagate	between
different	systems.	With	a	sticky	session	configuration,	the	user	always	returns	to
the	same	physical	server,	so	the	user	has	the	state	available	on	the	server—unless
the	server	fails.	If	the	server	is	not	configured	to	use	sticky	sessions,	the	client
request	can	go	to	any	server	instance.	With	such	a	configuration,	you	can	store
session	state	within	distributed	memory	or	a	database.	Storing	session	state	in
distributed	memory	also	helps	with	process	recycling	of	the	server	process;
recycling	kills	session	state	if	you're	using	just	a	single	server	process.

To	enable	sessions,	you	need	to	configure	middleware	and	the	DI	container.	With
the	DI	container,	you	need	to	register	the	ISessionStore	interface	that's	used	by
the	middleware.

The	following	code	snippet	shows	the	registration	of	the	DI	container.	The
AddSession	method	is	an	extension	method	that	registers	ISessionStore	with
the	implementation	class	DistributedSessionStore.	The	class
DistributedSessionStore	needs	an	object	implementing	IDistributedCache
with	the	constructor.	This	is	registered	with	the	extension	method
AddDistributedMemoryCache.	With	the	options	of	the	AddSession	method,	you
can	configure	the	idle	timeout	and	the	cookie	options.	The	cookie	is	used	to
identify	the	session	(code	file	WebSampleApp/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddScoped<SampleService>();

		services.AddDistributedMemoryCache();

		services.AddSession(options	=>

				options.IdleTimeout	=	TimeSpan.FromMinutes(10));

		//…

}

NOTE Instead	of	using	AddDistributedMemoryCache	to	store	the	session,
you	can	add	the	NuGet	package
Microsoft.Extensions.Caching.StackExchangeRedis	and	configure	it	to
use	a	Redis	server	for	the	cache	across	different	instances.

The	second	part	is	to	configure	the	middleware	in	the	pipeline	by	calling	the
UseSession	extension	method.	You	need	to	invoke	this	method	before	any
response	is	written	where	the	session	might	be	required—such	as	is	done	with
the	UseHeaderMiddleware—thus	UseSession	is	called	before	the	other	methods.
The	code	that	uses	session	information	is	mapped	to	the	/Session	path	(code	file
WebSampleApp/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	ILoggerFactory	

loggerFactory)

{

		//…

		app.UseSession();

		app.UseHeaderMiddleware();

		//…

}

You	can	write	session	state	using	Setxxx	methods,	such	as	SetString	and
SetInt32.	These	methods	are	defined	with	the	ISession	interface	that	is
returned	from	the	Session	property	of	the	HttpContext.	Session	data	is
retrieved	using	Getxxx	methods	(code	file
WebSampleApp/Services/SessionSample.cs):

public	class	SessionSample

{

		private	const	string	SessionVisits	=	nameof(SessionVisits);

		private	const	string	SessionTimeCreated	=	

nameof(SessionTimeCreated);

		public	static	async	Task	SessionAsync(HttpContext	context)

		{

				int	visits	=	context.Session.GetInt32(SessionVisits)	??	0;

				string	timeCreated	=	

context.Session.GetString(SessionTimeCreated)	??

						string.Empty;

				if	(string.IsNullOrEmpty(timeCreated))

				{

						timeCreated	=	DateTime.Now.ToString("t",	

CultureInfo.InvariantCulture);

						context.Session.SetString(SessionTimeCreated,	

timeCreated);

				}

				DateTime	timeCreated2	=	DateTime.Parse(timeCreated);

				context.Session.SetInt32(SessionVisits,	++visits);

				await	context.Response.WriteAsync(

						$"Number	of	visits	within	this	session:	{visits}	"	+

						$"that	was	created	at	{timeCreated2:T};	"	+

						$"current	time:	{DateTime.Now:T}");

		}

}

NOTE The	sample	code	uses	an	invariant	culture	to	store	the	time	when
the	session	was	created.	The	time	shown	to	the	user	is	using	a	specific
culture.	It's	a	good	practice	to	use	invariant	cultures	storing	culture-specific
data	on	the	server.	Information	about	invariant	cultures	and	how	to	set
cultures	is	explained	in	Chapter	22.

HEALTH	CHECKS
When	you're	running	the	web	application	in	production,	it's	a	good	idea	to

implement	health	checks,	which	can	automatically	detect	if	there's	an	issue	while
the	application	is	being	monitored.	Based	on	this,	the	routers	can	redirect	to
different	service	instances,	the	application	can	be	restarted,	or	other	actions	can
be	triggered—for	example,	administrators	can	receive	notifications.

When	implementing	health	checks,	you	need	to	think	about	different	scenarios.
For	example,	the	application	might	be	live	as	soon	as	it	responds	to	requests	and
might	be	running	when	the	initialization	is	completed	and	the	caches	are	filled.
The	application	can	be	in	a	healthy	state	if	every	service	used	by	the	application
can	be	reached	and	the	database	can	be	accessed.	When	the	application	is
working	partially,	for	example	when	not	so	important	services	cannot	be
reached,	the	state	is	degraded.	If	the	application	cannot	be	reached,	it's
unhealthy.

With	ASP.NET	Core,	you	can	implement	health	checks	with	a	simple	method	or
a	class	that	implements	the	interface	IHealthCheck.	With	the	sample	application,
the	service	class	HealthSample	is	created	to	simulate	healthy	and	unhealthy
states.	Invoking	the	method	SetHealthy	by	passing	a	false	value,	the	properties
IsHealthy	and	IsReady	return	false.	By	setting	a	true	value,	the	IsHealthy
method	immediately	returns	true.	The	IsReady	property	returns	true	after	a	delay
of	10	seconds	(code	file	WebSampleApp/Services/HealthSample.cs):

public	class	HealthSample	:	IDisposable

{

		private	Timer?	_timer;

		public	void	SetHealthy(bool	healthy	=	true)

		{

				if	(IsHealthy	==	healthy)	return;

	

				_isReady	=	false;

				IsHealthy	=	healthy;

	

				if	(IsHealthy)

				{

						if	(_timer	is	not	null)

						{

								_timer.Dispose();

						}

						_timer	=	new(o	=>

						{

								_isReady	=	true;

						},	null,	TimeSpan.FromSeconds(10),	

Timeout.InfiniteTimeSpan);

				}

		}

	

		public	void	Dispose()	=>	_timer?.Dispose();

	

		public	bool	IsHealthy	{	get;	set;	}	=	false;

	

		private	bool	_isReady	=	false;

		public	bool	IsReady	=>	IsHealthy	&&	_isReady;

}

The	class	CustomHealthCheck	implements	the	interface	IHealthCheck.	This
interface	defines	the	method	CheckHealthAsync	that	needs	to	be	implemented	to
return	a	HealthCheckResult.	The	HealthCheckResult	can	be	Healthy,
Degraded,	and	Unhealthy.	With	the	health	test,	the	IsHealthy	property	of	the
HealthSample	is	checked	to	return	the	corresponding	state	(code	file
WebSampleApp/CustomHealthCheck.cs):

public	class	CustomHealthCheck	:	IHealthCheck

{

		private	readonly	HealthSample	_healthSample;

		public	CustomHealthCheck(HealthSample	healthSample)	=>	

_healthSample	=	healthSample;

	

		public	Task<HealthCheckResult>	

CheckHealthAsync(HealthCheckContext	context,	

				CancellationToken	cancellationToken	=	default)

		{

				if	(_healthSample.IsLive)	return	Task.FromResult(

						HealthCheckResult.Healthy("healthy"));

				else	return	

Task.FromResult(HealthCheckResult.Unhealthy("unhealthy"));

		}

}

The	class	CustomReadyCheck	is	implemented	in	a	similar	way.	It	just	checks	for
the	IsReady	property	of	the	HealthSample	service.

To	activate	health	checks,	you	need	to	register	the	service	classes	in	the	DI
container	and	define	routes	for	health	checking,	as	shown	in	the	following	code
snippet.	The	method	AddHealthChecks	registers	a	health	check	service	class	that
derives	from	the	abstract	base	class	HealthCheckService	and	returns	an
IHealthChecksBuilder	that	can	be	used	to	add	multiple	health	checks.	The	two
health	check	types	added	are	CustomHealthCheck	and	CustomReadyCheck	using
the	AddCheck	method.	The	first	parameter	of	this	method	defines	the	name	of	the
health	check.	With	the	second	parameter,	you	can	define	what	health	status

should	be	returned	on	failure.	The	third	parameter	defines	tags	that	you	can	use
to	select	specific	health	checks	that	should	be	used	with	a	health	link	(code	file
WebSampleApp/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		//…

		services.AddSingleton<HealthSample>();

		services.AddHealthChecks()

				.AddCheck<CustomHealthCheck>("livecheck",	

						HealthStatus.Unhealthy,	tags:	new[]	{	"liveness"	})

				.AddCheck<CustomReadyCheck>("readycheck",	

						HealthStatus.Degraded,	tags:	new[]	{	"readiness"	});

}

Instead	of	passing	a	type	with	the	generic	parameter	of	the	AddCheck	method,
you	can	pass	a	delegate	to	the	AddCheck	and	AddCheckAsync	methods.

In	the	Configure	method	where	the	middleware	is	configured,	you	specify	links
for	health	checks	with	the	endpoint	configuration.	With	the	following	code
snippet,	the	first	invocation	of	the	MapHealthChecks	method	defines	a	link
where	all	health	checks	specified	are	tested.	The	MapHealthChecks	method	has
an	option	to	pass	HealthCheckOptions	with	the	second	parameter.	Here,	the
Predicate	property	is	set	and	can	be	used	to	select	health	check	definitions	that
are	marked	with	the	tag	liveness.	You	can	also	specify	which	HTTP	status
codes	should	be	returned	based	on	the	health	information.	The	sample	code	just
specifies	the	same	configuration	as	the	default	configuration:	200	OK	with
healthy	and	degraded	status	and	503	service	unavailable	when	the	health	check
returned	unhealthy.	You	can	adapt	this	to	your	needs	(code	file
WebSampleApp/Startup.cs):

app.UseEndpoints(endpoints	=>

{

		endpoints.MapHealthChecks("/health/allchecks");

		endpoints.MapHealthChecks("/health/live",	new	

HealthCheckOptions()

		{

				Predicate	=	reg	=>	reg.Tags.Contains("liveness"),

				ResultStatusCodes	=	new	Dictionary<HealthStatus,	int>()

				{

						[HealthStatus.Healthy]	=	StatusCodes.Status200OK,

						[HealthStatus.Degraded]	=	StatusCodes.Status200OK,

						[HealthStatus.Unhealthy]	=	

StatusCodes.Status503ServiceUnavailable

				}

		});

To	implement	health	checks,	ASP.NET	Core	includes	functionality	in	the
namespace	Microsoft.Extensions.Diagnostics.HealthChecks.

The	next	health	check	maps	to	the	link	/health/ready	and	uses	the	readiness
health	check.	This	code	sample	shows	that	you	can	fully	customize	the	output
with	the	options	by	setting	the	ResponseWriter	property.	This	property	needs	a
delegate	that	receives	the	HttpContext	and	the	HealthReport	writer.	You	can
use	this	writer	to	get	every	issue	that	was	returned	from	the	different	health
checks	and	return	this	information	to	the	caller	via	the	HttpContext	(code	file
WebSampleApp/Startup.cs):

endpoints.MapHealthChecks("/health/ready",	new	

HealthCheckOptions

{

		Predicate	=	reg	=>	reg.Tags.Contains("readiness"),

		ResponseWriter	=	async	(context,	writer)	=>

		{

				context.Response.StatusCode	=	writer.Status	switch

				{

						HealthStatus.Healthy	=>	StatusCodes.Status200OK,

						HealthStatus.Degraded	=>	

StatusCodes.Status503ServiceUnavailable,

						HealthStatus.Unhealthy	=>	

StatusCodes.Status503ServiceUnavailable,

						_	=>	StatusCodes.Status503ServiceUnavailable

				};

	

				if	(writer.Status	==	HealthStatus.Healthy)

				{

						await	context.Response.WriteAsync("ready");

				}

				else

				{

						await	

context.Response.WriteAsync(writer.Status.ToString());

						await	context.Response.WriteAsync($"duration:	

{writer.TotalDuration}");

				}

		}

});

With	this	health	check	in	place,	you	can	try	the	links	to	receive	health	check
information.	With	the	downloadable	sample	code,	the	link	sethealthy/?
healthy=true	can	be	used	to	set	the	HealthSample	service	class	to	live	and

ready,	passing	false	to	unhealthy.

NOTE Instead	of	creating	health	check	types	for	every	scenario	you	need,
you	can	use	available	NuGet	packages	with	health-check	classes	such	as
Microsoft.Extensions.Diagnostics.HealthChecks.EntityFrameworkCore,
which	checks	for	accessibility	of	the	database	server	connected	to	the	EF
Core	context.	With	ASPNETCore.HealthChecks.*	packages	(these	packages
are	not	from	Microsoft),	health	checks	for	SQL	Server,	Redis,	Application
Insights,	MongoDB,	CosmosDB,	Azure	KeyVault,	and	many	other	scenarios
are	available	for	use.	Check	the	GitHub	repo	at
https://github.com/xabaril/AspNetCore.Diagnostics.HealthChecks

for	more	information.

DEPLOYMENT
To	publish	the	web	application,	from	the	Visual	Studio	Solution	Explorer,	you
can	select	the	Publish	option	in	the	context	menu	of	the	application.	From	there,
you	can	directly	publish	the	application	to	an	on-premises	IIS	or	a	Microsoft
Azure	App	Service.	Using	the	dotnet	CLI,	you	can	use	dotnet	publish	to
prepare	the	files	for	publication	(be	sure	the	current	directory	of	your	command
prompt	is	the	directory	of	the	project	file).	Use	the	option	-c	Release	to	prepare
release	code	to	publish.	Read	Chapter	1,	“.NET	Applications	and	Tools,”	to
include	the	runtime	with	the	publish	package.

With	Microsoft	Azure,	you	can	create	an	Azure	App	Service	plan	with	Windows
or	Linux	environments	and	a	web	app	and	publish	the	.NET	application	there.
See	the	readme	file	with	the	chapter's	downloadable	code	for	a	script	and
instructions	to	create	an	Azure	App	Service	plan	and	a	web	app	using	the	Azure
CLI.

One	great	option	to	publish	your	application	is	to	create	a	Docker	image.	With	a
Docker	image,	you	have	one	file	that	you	can	publish	into	a	registry	(such	as
hub.docker.com	or	your	private	Azure	Container	Registry),	and	you	can	pull	the
image	from	an	Azure	Container	Instance,	a	Kubernetes	cluster,	or	an	Azure	App
Service	to	run	the	image	within	a	Docker	container.

To	create	a	Docker	image	from	the	application,	you	need	to	have	a	file	named
Dockerfile	with	the	commands	to	create	the	image,	and	you	need	to	have
Docker	Desktop	installed.	The	following	Dockerfile	consists	of	multiple	stages

https://github.com/xabaril/AspNetCore.Diagnostics.HealthChecks
http://hub.docker.com

to	create	a	Docker	image.	Every	stage	starts	with	a	FROM	command.	The	first
FROM	command	creates	a	temporary	image	that	is	based	on	the	image
mcr.microsoft.com/dotnet/aspnet:5.0.	This	is	Microsoft's	prebuilt	image
containing	the	.NET	5	runtime	and	is	optimized	for	production.	With	the	Docker
command	EXPOSE,	ports	80	and	443	are	opened.

The	next	stage	is	based	on	a	different	image.
mcr.microsoft.com/dotnet/sdk:5.0	is	the	.NET	5.0	image	that	has	the	.NET
SDK	included.	The	new	temporary	image	that's	created	is	built	using	the	dotnet
restore	command	(to	restore	all	packages	from	the	NuGet	server)	and	the
dotnet	build	command	(to	build	the	binaries	for	the	application).	The	third
FROM	continues	with	the	second	build	image	(FROM	build	AS	publish)	and
invokes	the	dotnet	publish	command	to	create	the	files	needed	for	publication.
The	fourth	and	last	FROM	uses	the	result	of	the	first	image	(FROM	base	as
final),	copies	the	publish	files	from	the	publish	image,	and	defines	the	entry
point	of	the	resulting	image.	When	this	image	is	started,	the	dotnet	driver	is
used	to	load	WebSampleApp.dll	to	start	up	the	Kestrel	server	(Docker	file
WebSampleApp/Dockerfile):

FROM	mcr.microsoft.com/dotnet/aspnet:5.0	AS	base

WORKDIR	/app

EXPOSE	80

EXPOSE	443

	

FROM	mcr.microsoft.com/dotnet/sdk:5.0	AS	build

WORKDIR	/src

COPY	["WebSampleApp.csproj",	"."]

RUN	dotnet	restore	"./WebSampleApp.csproj"

COPY	.	.

WORKDIR	"/src/."

RUN	dotnet	build	"WebSampleApp.csproj"	-c	Release	-o	/app/build

	

FROM	build	AS	publish

RUN	dotnet	publish	"WebSampleApp.csproj"	-c	Release	-o	

/app/publish

	

FROM	base	AS	final

WORKDIR	/app

COPY	--from=publish	/app/publish	.

ENTRYPOINT	["dotnet",	"WebSampleApp.dll"]

	

Using	the	Docker	Desktop,	you	can	build	and	publish	the	image	using	the
Docker	CLI	with	the	current	directory	set	to	the	location	of	the	Dockerfile.	The

http://mcr.microsoft.com/dotnet/aspnet:5.0
http://mcr.microsoft.com/dotnet/sdk:5.0

command	docker	build	builds	the	image	(you	can	see	your	images	with	docker
images),	docker	tag	tags	the	image	with	the	prefix	name	of	your	container
registry,	and	docker	push	pushes	the	image	to	the	registry:

>	docker	build	.	-t	WebSampleApp/v1.0

>	docker	tag	WebSampleApp/v1.0	

{linktoyourregistry}/WebSampleApp/v1.0

>	docker	push	{linktoyourregistry}/WebSampleApp/v1.0

NOTE Check	www.docker.com	and	https://opencontainers.org	for
more	information	about	Docker.	Also	check	the	chapter's	readme	file	with
the	downloadable	source	code	for	instructions	and	a	script	to	create	an
Azure	Container	Registry	and	to	publish	the	image	stored	from	the	registry
to	an	Azure	App	Service.

SUMMARY
In	this	chapter,	you	explored	the	foundation	of	ASP.NET	Core	and	web
applications.	With	this	you	learned	how	to	register	services	with	the	DI	container
in	the	ASP.NET	Core	way,	as	well	as	configuring	and	creating	custom
middleware	in	the	Startup	class.	Using	endpoint	routing,	you	configured	routes
to	implement	functionality	based	on	requests	from	the	client	and	to	return	HTTP
responses	including	features	such	as	cookies,	form	data,	and	storing	session
information.

You've	seen	how	to	implement	health	checking,	which	can	be	of	great	use	when
deploying	Docker	images	and	when	you	use	many	services	that	interact	with
each	other.

The	next	chapter	shows	how	you	can	use	ASP.NET	Core	to	deal	with	JSON
request	and	responses	with	web	APIs	and	also	use	GRPC	for	the	binary
communication	with	services.

http://www.docker.com
https://opencontainers.org

25
Services

WHAT'S	IN	THIS	CHAPTER?

Overview	of	the	ASP.NET	Core	web	API

Creating	web	API	controllers

Creating	.NET	clients	calling	REST	APIs

Using	Entity	Framework	Core	with	services

Handling	authorization	and	authentication	with	REST	Services

Creating	gRPC	services	and	clients

Streaming	with	gRPC

Implementing	Azure	functions

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	3_Web/Services.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

BooksApi

BooksData

BooksDataAndAuthentication

GRPC

AzureFunctions

All	the	sample	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

UNDERSTANDING	TODAY'S	SERVICES
Once	upon	a	time,	Windows	Communication	Foundation	(WCF)	tried	to	offer	all
functionality	needed	by	services.	You	could	create	services	returning	XML	or
binary	data,	asynchronous	communication	was	offered	by	message	queuing,	and
UDP	could	be	used	as	well,	and	it	was	all	based	on	SOAP	standards.	Everything
was	possible,	and	you	could	configure	every	option.	The	issue	with	that	situation
was	that	even	seemingly	simple	scenarios	often	became	quite	complex.

Today,	we	are	back	to	many	different	options.	Microservices	can	be
implemented	with	different	technologies.	You	can	use	a	request/reply	pattern	or
a	disconnected	scenario	to	send	messages	to	a	queue	and	process	the	job
asynchronously.	Microservices	can	communicate	via	JSON	serialization	or	can
send	messages	in	a	binary	format.	There	are	many	options	you	can	choose	from,
and	many	options	are	covered	here	and	in	following	chapters:

Web	APIs	with	ASP.NET	Core	can	be	used	to	implement	a	request/reply
programming	model	based	on	the	Representational	State	Transfer	(REST)
guidelines.	Usually,	JSON	data	is	passed	and	returned,	but	you	can	pass
other	data	as	well—for	example,	a	PNG	image	or	XML	data.

gRPC	Remote	Procedure	Calls	(gRPC)	was	initially	developed	by	Google
and	is	a	platform-independent	technology	that	allows	for	binary
communication	based	on	HTTP/2.	ASP.NET	Core	has	built-in	support	for
gRPC.

Azure	Functions	give	you	a	consumption-based	offering	where	you	pay
only	for	the	seconds	you	need	CPU	and	memory.	You	can	create	a	REST
API	with	this	technology	as	well,	but	you	also	can	create	functions	that	are
triggered	on	events	other	than	HTTP	requests.	The	function	can	be	started
when	messages	arrive	in	a	queue,	when	data	is	written	to	an	Azure	Cosmos
DB,	or	when	an	event	is	published	to	an	Azure	Event	Grid.

SignalR	gives	an	abstraction	layer	to	WebSockets	(but	also	works	if
WebSockets	is	not	available)	and	offers	communication	from	the	server	to
the	client,	which	is	great	for	communication	with	a	group	of	clients.

SignalR	is	covered	in	Chapter	28,	“SignalR.”	All	the	other	technologies
mentioned	are	covered	in	this	chapter.

REST	SERVICES	WITH	ASP.NET	CORE

REST	is	not	a	standard;	it's	a	guideline.	This	guideline	was	defined	by	Roy
Fielding	in	his	2000	PhD	dissertation	“Architectural	Styles	and	the	Design	of
Network-based	Software	Architectures”
(https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
REST	is	based	on	these	principles:

Client-server	architecture

Stateless	communication,	which	allows	for	easy	scaling	of	services

Cacheable	data	so	the	client	can	keep	data	without	the	need	to	request	it
again

A	uniform	interface	to	access	resources

A	layered	system	that	doesn't	allow	you	to	see	beyond	the	immediate	layer
where	the	communication	is	taking	place

Code	on	demand	(optional),	which	allows	you	to	download	code	that	the
client	can	use	with	the	received	data

The	uniform	interface	is	central	to	the	REST	guidelines	and	covers	resources
that	can	be	identified	(for	example,	by	using	a	URI),	manipulation	of	resources
is	possible	with	representations	(for	example,	JSON,	XML),	messages	are	self-
describing,	and	a	key	concept	is	hypermedia	as	the	engine	of	application	state
(HATEOAS).	With	HATEOAS,	information	about	what	to	do	with	a	resource	is
returned	with	a	response—for	example,	different	links	for
deposit/withdraw/transfer/close	on	a	balance.

Not	all	services	require	all	REST	principles;	that's	why	Leonard	Richardson
defined	different	REST	levels
(https://www.martinfowler.com/articles/richardsonMaturityModel.html).
Only	REST	level	3	supports	all	the	guidelines,	including	HATEOAS.	REST
level	2	defines	that	a	service	supports	different	HTTP	verbs	(such	as	GET	to	read
resources	and	POST	to	create	new	resources)	and	HTTP	return	codes	(such	as
201	for	created).	Microsoft	Azure	defines	a	level	2	REST	API	to
create/update/read	resources,	such	as	resource	groups,	storage	accounts,	app
services,	and	a	lot	more.

Let's	start	with	creating	a	web	API	using	ASP.NET	Core	by	using	the	following
command:

>	dotnet	new	webapi	-o	BooksAPI

With	.NET	5,	this	template	creates	a	new	project	with	an	API	implementing	a

https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.martinfowler.com/articles/richardsonMaturityModel.html

weather	forecast	service	based	on	random	values	(isn't	there	some	randomness
with	published	weather	forecast	information?).	With	the	sample	code,	you'll	get
rid	of	the	weather	forecast	and	instead	implement	a	service	to	create	and	read
information	about	book	chapters.	Using	a	database	and	authorization	will	be
addressed	in	later	sections.

Defining	a	Model
First,	you	need	a	type	that	represents	the	data	to	return	and	change.	To	allow
using	the	model	both	from	the	client	and	from	the	server,	create	a	.NET	5	library
Books.Shared	that	contains	the	BookChapter	record	(code	file
BooksApi/Books.Shared/BookChapter.cs):

using	System;

	

namespace	Books.Models

{

		public	record	BookChapter(Guid	Id,	int	Number,	string	Title,	

int	PageCount);

}

Creating	a	Service
Next,	you	create	a	service	interface	and	class	offering	the	functionality.	The
methods	offered	by	the	service	are	defined	with	the	interface
IBookChapterService—methods	to	retrieve,	add,	and	update	book	chapters.
The	methods	are	defined	asynchronously	to	allow	for	different	implementations
—for	example,	an	implementation	that	calls	another	service	(code	file
BooksApi/BooksApi/Services/IBookChapterService.cs):

public	interface	IBookChapterService

{

		Task	AddAsync(BookChapter	chapter);

		Task	AddRangeAsync(IEnumerable<BookChapter>	chapters);

		Task<IEnumerable<BookChapter>>	GetAllAsync();

		Task<BookChapter?>	FindAsync(Guid	id);

		Task<BookChapter?>	RemoveAsync(Guid	id);

		Task<BookChapter?>	UpdateAsync(BookChapter	chapter);

}

The	implementation	of	the	service	is	defined	by	the	class	BookChapterService.
The	book	chapters	are	kept	in	a	collection	class.	Because	multiple	tasks	from
different	client	requests	can	access	the	collection	concurrently,	the	type
ConcurrentDictionary	is	used	for	the	book	chapters.	This	class	is	thread	safe.

The	Add,	Remove,	and	Update	methods	make	use	of	the	collection	to	add,
remove,	and	update	book	chapters	(code	file
BooksApi/BooksApi/Services/BookChaptersService.cs):

public	class	BookChapterService	:	IBookChapterService

{

		private	readonly	ConcurrentDictionary<Guid,	BookChapter>	

_chapters	=	new();

	

		private	BookChapter	GetInitializedId(BookChapter	chapter)

		{

				if	(chapter.Id	==	Guid.Empty)

				{

						chapter	=	chapter	with	{	Id	=	Guid.NewGuid()	};

				}

				return	chapter;

		}

	

		public	Task	AddAsync(BookChapter	chapter)

		{

				chapter	=	GetInitializedId(chapter);

				_chapters[chapter.Id]	=	chapter;

				return	Task.CompletedTask;

		}

	

		public	Task	AddRangeAsync(IEnumerable<BookChapter>	chapters)

		{

				foreach	(var	c	in	chapters)

				{

						var	chapter	=	GetInitializedId(c);

						_chapters[chapter.Id]	=	chapter;

				}

				return	Task.CompletedTask;

		}

	

		public	Task<BookChapter?>	FindAsync(Guid	id)

		{

				_chapters.TryGetValue(id,	out	BookChapter?	chapter);

				return	Task.FromResult(chapter);

		}

	

		public	Task<IEnumerable<BookChapter>>	GetAllAsync()	=>

				Task.FromResult<IEnumerable<BookChapter>>(_chapters.Values);

	

		public	Task<BookChapter?>	RemoveAsync(Guid	id)

		{

				_chapters.TryRemove(id,	out	BookChapter?	removed);

				return	Task.FromResult(removed);

		}

	

		public	async	Task<BookChapter?>	UpdateAsync(BookChapter	

chapter)

		{

				var	existingChapter	=	await	FindAsync(chapter.Id);

				if	(existingChapter	is	null)	return	null;

				_chapters[chapter.Id]	=	chapter;

				return	chapter;

		}

}

So	that	some	sample	chapters	are	available	when	you	first	access	the	service,	the
class	SampleChapters	fills	the	book	chapter	service	with	chapter	information
(code	file	BooksApi/BooksApi/Services/SampleChapters.cs):

public	class	SampleChapters

{

		private	readonly	IBookChapterService	_bookChaptersService;

		public	SampleChapters(IBookChapterService	bookChapterService)	

=>	

				_bookChaptersService	=	bookChapterService;

	

		private	string[]	_sampleTitles	=	new[]

		{

				".NET	Application	Architectures",

				"Core	C#",

				"Classes,	Structs,	Tuples,	and	Records",

				"Object-Oriented	Programming	with	C#",

				"Operators	and	Casts",

				"Arrays",

				"Delegates,	Lambdas,	and	Events",

				"Collections",

				"ADO.NET	and	Transactions"

		};

	

		private	int[]	_chapterNumbers	=	{	1,	2,	3,	4,	5,	6,	7,	8,	25	

};

	

		private	int[]	_pageCounts	=	{	35,	42,	33,	20,	24,	38,	20,	32,	

44	};

	

		public	void	CreateSampleChapters()

		{

				List<BookChapter>	chapters	=	new();

				for	(int	i	=	0;	i	<	8;	i++)

				{

						chapters.Add(new	BookChapter(Guid.NewGuid(),	

_chapterNumbers[i],	

								_sampleTitles[i],	_pageCounts[i]));

				}

				_bookChaptersService.AddRangeAsync(chapters);

		}

}

Let's	get	into	the	configuration	of	the	DI	container,	which	is	shown	with	the
following	code	snippet.	From	the	ASP.NET	Core	web	API	template	used,	you
can	see	the	AddControllers	extension	method.	This	method	registers	several
services	to	be	used	with	API	controllers,	such	as	route	handlers,	pipeline	filters,
result	handlers,	and	more.	With	the	.NET	5	template,	AddSwaggerGen	is	invoked
as	well.	This	method	is	defined	in	the	NuGet	package	Swashbuckle.AspNetCore,
which	implements	the	OpenAPI	standard	(originally	known	as	Swagger)	to
generate	a	description	for	the	API	services	in	the	project.	The	description	can	be
used	to	automatically	create	code	for	the	client.	With	Swashbuckle,	a	website	is
generated	where	you	can	test	the	API.	(See	https://openapis.org	for	more
information	on	this	standard.)	The	BookChapterService	and	SampleChapters
classes	also	are	registered	with	the	DI	container,	which	allows	the	DI	container
to	inject	these	types.	BookChapterService	is	declared	to	be	injected	as	singleton,
which	should	keep	state	between	invocations	(code	file
BooksApi/BooksApi/Startup.cs):

public	class	Startup

{

		public	Startup(IConfiguration	configuration)	=>	Configuration	

=	configuration;

	

		public	IConfiguration	Configuration	{	get;	}

	

		public	void	ConfigureServices(IServiceCollection	services)

		{

				services.AddControllers();

				services.AddSwaggerGen(c	=>

				{

						c.SwaggerDoc("v3",	new	OpenApiInfo	{	Title	=	"BooksApi",	

Version	=	"v3"	});

				});

	

				services.AddSingleton<IBookChapterService,	

BookChapterService>();

https://openapis.org

				services.AddScoped<SampleChapters>();

		}

		//…

}

	

NOTE If	you	add	C#	documentation	to	the	methods	of	the	API	(C#
documentation	is	covered	in	Chapter	2,	“Core	C#”),	after	creating	a
documentation	file,	you	can	add	this	documentation	to	the	OpenAPI
description	by	invoking	the	method	IncludeXmlComments	with	the	options	of
AddSwaggerGen	.

The	middleware	is	configured	in	the	Configure	method.	If	the	application	is
running	in	the	Development	environment,	OpenAPI	information	is	shown	by
invoking	the	methods	UseSwagger	and	UseSwaggerUI	to	configure	the
middleware	for	the	OpenAPI	definition	and	HTML	page.	In	case	you	want	other
developers	to	use	your	API	when	the	application	is	running	in	production,	you
can	move	these	methods	outside	of	the	IsDevelopment	check	to	invoke	it	from
all	environments.	Showing	exceptions	on	the	client
(UseDeveloperExceptionPage)	should	only	ever	be	used	in	the	Development
environment.	With	the	endpoint	routing	configuration,	MapControllers	is
invoked	to	allow	for	attribute-based	routing	for	the	API	controllers,	as	is	shown
in	the	next	section.	To	fill	the	sample	chapters,	a	route	to	/init	is	also	defined,
which	uses	an	instance	of	the	SampleChapters	class	to	fill	the	chapter	service
with	sample	chapters	(code	file	BooksApi/BooksApi/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

				app.UseSwagger();

				app.UseSwaggerUI(c	=>	

c.SwaggerEndpoint("/swagger/v3/swagger.json",	"BooksApi	v3"));

		}

	

		app.UseHttpsRedirection();

	

		app.UseRouting();

	

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapControllers();

	

				endpoints.MapGet("/init",	async	context	=>

				{

						var	sampleChapters	=	

context.RequestServices.GetRequiredService<SampleChapters>();

						sampleChapters.CreateSampleChapters();

						await	context.Response.WriteAsync("sample	chapters	

initialized");

				});

		});

}

Creating	a	Controller
The	BookChaptersController	class	that	implements	an	API	controller	is	shown
in	the	next	code	snippet.	A	controller	that's	routed	from	the	endpoint	routing	is	a
class	with	the	Controller	postfix.	Optionally,	a	controller	class	can	derive	from
the	base	class	ControllerBase.	The	ControllerBase	class	offers	some	practical
methods	and	properties,	such	as	the	HttpContext,	Request,	and	Response.
These	properties	are	used	to	access	the	HTTP	request	and	response	as	shown	in
the	previous	chapter.	The	base	class	also	offers	methods	that	can	be	used	to
directly	return	a	result.	The	route	to	the	controller	is	defined	with	the	Route
attribute.	The	route	starts	with	api	followed	by	the	name	of	the	controller—
which	is	the	name	of	the	controller	class	without	the	Controller	postfix.	The
Produces	and	ApiController	attributes	are	of	practical	use	for	the	OpenApi
definition.	The	Produces	attribute	gives	information	about	the	type	of	data
returned	from	the	controller.	The	ApiController	attribute	defines	some	default
behavior	typical	with	API	services.	For	example,	with	action	method	parameters,
you	don't	need	to	specify	the	FromBody	attribute	because	it	is	now	a	default	(code
file	BooksApi/BooksApi/Controllers/BookChaptersController.cs):

[Produces("application/json")]

[Route("api/[controller]")]

[ApiController]

public	class	BookChaptersController	:	ControllerBase

{

		private	readonly	IBookChapterService	_chapterService;

	

		public	BookChaptersController(IBookChapterService	

chapterService)	=>	

				_chapterService	=	chapterService;

		//…

}

	

NOTE With	an	ASP.NET	Core	API	controller,	by	default	JSON
information	is	returned.	If	you	want	to	return	XML,	you	must	add	an	XML
serializer	to	the	DI	container	with	the	IMvcBuilder	fluent	API	using	the
AddXmlSerializerFormatter	method.	You	also	must	add	the	Produces
attribute	that	the	controller	produces	application/xml	.	This	serializer
requires	a	parameterless	constructor;	thus,	a	nominal	record	cannot	be	used
in	such	a	scenario.	From	the	client	application,	you	need	to	specify	the
accept	header	accordingly.

Using	the	HttpGet	attribute	with	the	GetBookChapters	method	maps	the	HTTP
GET	request	with	the	route	specified	with	the	controller	class.	The	method
GetAllAsync	from	the	injected	service	returns
Task<IEnumerable<BookChapter>>	that's	directly	returned	from	this	action
method.	The	ProducesResponseType	attribute	specifies	the	HTTP	status	codes
returned	from	an	action	method.	This	information	is	used	by	the	OpenAPI
description	(code	file
BooksApi/BooksApi/Controllers/BookChaptersController.cs):

//	GET	api/bookchapters

[ProducesResponseType(StatusCodes.Status200OK)]

[HttpGet]

public	Task<IEnumerable<BookChapter>>	GetBookChapters()	=>	

	_chapterService.GetAllAsync();

To	not	return	the	complete	list	of	books,	you	can	specify	a	parameter	with	the
GetBookChapters	method	similar	to	the	GetBookChapterById	method	shown	in
the	next	code	snippet.	This	method	returns	a	single	chapter	based	on	the	received
Guid	parameter.	From	the	URL	path,	the	HttpGet	attribute	specifies	the	same
name	in	the	route.	The	route	specified	with	the	action	method	is	attached	to	the
route	defined	with	the	class.	In	case	the	chapter	is	not	found	from	the	service,	an
HTTP	404	status	code	is	returned	using	the	NotFound	method	from	the	base
class.	With	a	success,	a	200	status	code	is	returned	from	the	Ok	method.	The
method	is	declared	to	return	an	ActionResult,	which	is	flexible	in	what	to	return
—either	the	resource	specified	with	the	generic	parameter	(BookChapter)	or	just
the	error,	such	as	404	(code	file
BooksApi/BooksApi/Controllers/BookChaptersController.cs):

//	GET	api/bookchapters/guid

[ProducesResponseType(StatusCodes.Status200OK)]

[ProducesResponseType(StatusCodes.Status404NotFound)]

[HttpGet("{id}",	Name	=	nameof(GetBookChapterById))]

public	async	Task<ActionResult<BookChapter>>	

GetBookChapterById(Guid	id)

{

		BookChapter?	chapter	=	await	_chapterService.FindAsync(id);

		if	(chapter	is	null)

		{

				return	NotFound();

		}

		else

		{

				return	Ok(chapter);

		}

}

On	adding	a	new	book	chapter,	the	method	PostBookChapter	is	added.	This
method	receives	a	BookChapter	as	part	of	the	HTTP	body	that	is	assigned	to	the
method	parameter	after	deserialization.	In	case	the	parameter	chapter	is	null,	a
BadRequest	(HTTP	error	400)	is	returned.	When	adding	the	BookChapter,	this
method	returns	CreatedAtRoute.	CreatedAtRoute	returns	the	HTTP	status	201
(Created)	with	the	object	serialized.	The	returned	header	information	contains	a
link	to	the	resource—that	is,	a	link	to	the	GetBookChapterById	with	the	id	set	to
the	identifier	of	the	newly	created	object	(code	file
BooksApi/BooksApi/Controllers/BookChaptersController.cs):

//	POST	api/bookchapters

[ProducesResponseType(StatusCodes.Status400BadRequest)]

[ProducesResponseType(StatusCodes.Status201Created)]

[HttpPost]

public	async	Task<ActionResult>	PostBookChapter(BookChapter	

chapter)

{

		if	(chapter	is	null)

		{

				return	BadRequest();

		}

		await	_chapterService.AddAsync(chapter);

		return	CreatedAtRoute(nameof(GetBookChapterById),	new	{	id	=	

chapter.Id	},	chapter);

}

You	update	items	using	an	HTTP	PUT	request.	The	PutBookChapter	method
updates	an	existing	item	from	the	collection.	In	case	the	object	is	not	yet	in	the

collection,	NotFound	is	returned.	If	the	object	is	found,	it	is	updated,	and	a
success	result	204—no	content	with	an	empty	body—is	returned	(code	file
BooksApi/BooksApi/Controllers/BookChaptersController.cs):

//	PUT	api/bookchapters/guid

[ProducesResponseType(StatusCodes.Status400BadRequest)]

[ProducesResponseType(StatusCodes.Status404NotFound)]

[ProducesResponseType(StatusCodes.Status204NoContent)]

[HttpPut("{id}")]

public	async	Task<ActionResult>	PutBookChapter(Guid	id,	

BookChapter	chapter)

{

		if	(chapter	is	null	||	id	!=	chapter.Id)

		{

				return	BadRequest();

		}

		var	existingChapter	=	await	_chapterService.FindAsync(id);

	

		var	c	=	await	_chapterService.UpdateAsync(chapter);

		if	(c	is	null)

		{

				return	NotFound();

		}

		else

		{

				return	NoContent();

		}

}

With	the	HTTP	DELETE	request,	book	chapters	are	simply	removed	from	the
dictionary	(code	file
BooksApi/BooksApi/Controllers/BookChaptersController.cs):

[ProducesResponseType(StatusCodes.Status200OK)]

[HttpDelete("{id}")]

public	async	Task<ActionResult>	Delete(Guid	id)

{

		await	_chapterService.RemoveAsync(id);

		return	Ok();

}

NOTE With	the	sample	code,	the	Delete	method	deletes	the	book	chapter
if	it's	in	the	dictionary	and	does	nothing	if	it's	not	there.	An	alternative
version	would	be	to	return	a	404	(not	found)	status	code.	The	Microsoft
REST	API	guidelines	(https://github.com/Microsoft/api-

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md

guidelines/blob/master/Guidelines.md)	specify	the	DELETE	request	to	be
idempotent,	so	it	should	return	the	same	result	with	multiple	requests.	With
default	implementations	from	the	template	accessing	the	database,	404	is
returned	if	the	data	is	not	available.	You	need	to	decide	for	your	scenario	if
you	agree	with	the	guidelines	or	need	information	if	the	resource	is	not
found.

With	the	controller	and	Swagger	configuration	in	place,	it	is	possible	to	do	tests
from	the	browser.	You	can	see	the	OpenAPI	definition	at
https://localhost:5001/swagger/v3/swagger.json.	The	Swagger	graphical
UI	(see	Figure	25-1)	is	shown	at
https://localhost:5001/swagger/index.html.	With	this	page,	you	can	run
tests	to	your	API	from	the	browser.

Testing	REST	APIs
For	a	command-line	interface,	you	can	install	the	.NET	tool	microsoft.dotnet-
httprepl	(https://aka.ms/http-repl-doc).	The	downloadable	sample
application	has	this	tool	defined	as	a	local	tool.	You	can	install	local	tools	with
dotnet	tool	restore.	When	you	run	this	tool,	you	can	connect	to	a	running
service	and	send	get,	post,	and	put	commands.	Using	the	post	command,	you	can
submit	the	content	of	a	JSON	file	as	shown	here:

>	dotnet	httprepl

(Disconnected)>	connect	https://localhost:5001

https://localhost:5001/>	get	api/BookChapters/

https://localhost:5001/>	get	api/BookChapters/	"e89837d9-4392-

450c-902b-4e34fb72344c"

https://localhost:5001/>	post	api/BookChapters/	-f	

samplechapter.json

https://localhost:5001/swagger/v3/swagger.json
https://localhost:5001/swagger/index.html
https://aka.ms/http-repl-doc

FIGURE	25-1

REST	Results	and	Status	Codes
The	following	table	summarizes	the	results	a	service	returns	based	on	the	HTTP
methods:

HTTP
METHOD

DESCRIPTION REQUEST	BODY RESPONSE
BODY

GET Returns	a
resource

Empty The	resource

POST Adds	a	resource The	resource	to	add The	resource
PUT Updates	a

resource
The	resource	to
update

None

DELETE Deletes	a
resource

Empty Empty

The	following	table	shows	important	HTTP	status	codes	as	well	as	the
Controller	method	with	the	instantiated	object	that	returns	the	status	code.	To
return	any	HTTP	status	code,	you	can	return	an	HttpStatusCodeResult	object
that	can	be	initialized	with	the	status	code	you	need.

HTTP	STATUS	CODE CONTROLLER	METHOD TYPE
200	OK Ok OkResult

201	Created CreatedAtRoute CreatedAtRouteResult

204	No	Content NoContent NoContentResult

400	Bad	Request BadRequest BadRequestResult

401	Unauthorized Unauthorized UnauthorizedResult

404	Not	Found NotFound NotFoundResult

Any	status	code StatusCodeResult

All	success	status	codes	start	with	2;	error	status	codes	start	with	4.	You	can	find
a	list	of	status	codes	in	RFC	7231	at
https://tools.ietf.org/html/rfc7231#section-6.3.

CREATING	A	.NET	CLIENT
Using	the	browser	to	call	the	service	is	a	simple	way	to	handle	testing.	When
creating	JavaScript	clients,	you	can	use	the	Fetch	API	that	is	available	with	all
modern	browsers.	In	this	book,	a	.NET	client	is	created	using	the	HttpClient
API,	and	HttpClient	objects	are	created	using	the	HttpClient	factory.	Read
Chapter	19,	“Networking,”	for	more	information	about	the	HttpClient	factory.
The	NuGet	packages	needed	with	this	console	application	are
Microsoft.Extensions.Hosting	(to	use	the	Host	class),
Microsoft.Extensions.Http	(to	use	the	HttpClient	factory),	and
System.Net.Http.Json	(to	use	new	.NET	5	extension	methods	for	the
HttpClient	class	for	JSON	serialization;	using	the	JSON	serializer	is	discussed
in	Chapter	18,	“Files	and	Streams”).

In	the	sample	application,	with	the	configuration	of	the	DI	container,	the	factory
for	the	HttpClient	(AddHttpClient	method)	is	configured	to	use	a	typed	client:
the	BooksApiClient	class.	The	factory	configuration	sets	the	BaseAddress

https://tools.ietf.org/html/rfc7231#section-6.3

property	to	retrieve	the	URL	from	the	service	from	a	configuration	or	a	hard-
coded	string	if	it's	not	found	in	the	configuration	(code	file
BooksApi/BookServiceClient/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	bookApiSettings	=	

context.Configuration.GetSection("BooksService");

				services.Configure<BooksApiClientOptions>(bookApiSettings);

				services.AddHttpClient<BooksApiClient>(config	=>

				{

						var	baseAddress	=	

context.Configuration.GetSection("BooksService")["BaseAddress"]	

??	

								"https://localhost:5001";

						config.BaseAddress	=	new	Uri(baseAddress);

				});

		}).Build();

	

Console.WriteLine("Client	-	press	return	to	continue");

Console.ReadLine();

	

using	var	scope	=	host.Services.CreateScope();

	

var	client	=	

scope.ServiceProvider.GetRequiredService<BooksApiClient>();

await	client.ReadChaptersAsync();

await	client.ReadChapterAsync();

await	client.ReadNotExistingChapterAsync();

await	client.AddChapterAsync();

await	client.UpdateChapterAsync();

await	client.RemoveChapterAsync();

The	BooksApiClient	class	uses	BooksApiClientOptions	to	fill	the	link	to	the
API.	The	HttpClient	class	is	injected	with	the	constructor	(code	file
BooksApi/BookServiceClient/BooksApiClient.cs):

public	record	BooksApiClientOptions

{

		public	string?	BooksApiUri	{	get;	init;	}

}

	

public	class	BooksApiClient

{

		private	readonly	HttpClient	_httpClient;

		private	readonly	string	_booksApiUri;

		private	readonly	ILogger	_logger;

		private	Guid?	_chapterId;

	

		public	BooksApiClient(HttpClient,	

IOptions<BooksApiClientOptions>	options,

				ILogger<BooksApiClient>	logger)

		{

				_httpClient	=	httpClient;

				_logger	=	logger;

				_booksApiUri	=	options.Value.BooksApiUri	??	"api/books";

		}

		//…

}

To	have	all	the	URLs	needed	in	one	place,	they	are	configured	with	the	.NET
configuration	(which	you	can	override	from	command-line	parameters	and
extend	using	the	Azure	App	Configuration,	as	discussed	in	Chapter	15,
“Dependency	Injection	and	Configuration”	(configuration	file
BooksApi/BookServiceClient/appsettings.json):

{

		"BooksService":	{

				"BaseAddress":	"https://localhost:5001",

				"BooksApiUri":	"api/BookChapters"

		},

		//…

}

Sending	GET	Requests
The	server	controller	defines	two	methods	with	GET	requests:	one	method	that
returns	all	chapters	and	the	other	that	returns	just	a	single	chapter	but	requires
the	chapter's	identifier	with	the	URI.	The	method	ReadChaptersAsync	invokes
the	GetFromJsonAsync	method	using	the	HttpClient	instance.	This	method
returns	a	task	with	an	array	of	book	chapters	that	is	shown	on	the	console.	The
ID	of	the	first	chapter	is	remembered	in	the	field	_firstChapterId	because	this
will	be	used	in	other	methods	that	follow	(code	file
BooksApi/BookServiceClient/BooksApiClient.cs):

public	async	Task	ReadChaptersAsync()

{

		Console.WriteLine(nameof(ReadChapterAsync));

		var	chapters	=	await	

_httpClient.GetFromJsonAsync<IEnumerable<BookChapter>>(

				_booksApiUri);

		if	(chapters	is	null)	return;

		foreach	(var	chapter	in	chapters)

		{

				Console.WriteLine($"{chapter.Number}	{chapter.Title}");

		}

		_chapterId	=	chapters.FirstOrDefault()?.Id;

		Console.WriteLine();

}

The	method	GetFromJsonAsync	is	an	extension	method	defined	in	the
namespace	System.Net.Http.Json,	which	does	the	following:

It	uses	the	GetAsync	method	of	the	HttpClient	class	to	send	a	GET
request.

It	throws	an	exception	if	the	request	is	not	successful,	using	the
EnsureSuccessStatusCode	method	of	the	HttpResponseMessage	class.

It	uses	the	ReadAsStreamAsync	method	of	the	HttpContent	class	to	read	the
response	stream.

NOTE The	HttpContent	class	also	offers	the	ReadAsStringAsync	method
to	read	a	string	from	the	HTTP	response.	However,	this	method	should	be
used	only	with	strings	shorter	than	85,000	bytes.	When	you	get	data	from
API	services,	you	might	get	long	strings	(how	long	is	the	list	returned?),
which	are	put	into	the	large	object	heap	(LOH).	The	large	object	heap	is
handled	differently	from	the	garbage	collector	because	of	performance
constraints.	To	avoid	this	issue,	it's	best	to	use	streams	that	make	use	of	a
byte	array	buffer	that	is	reused.	Read	Chapter	13,	“Managed	and
Unmanaged	Memory,”	for	more	information	about	the	garbage	collector
and	the	LOH.

When	you	run	the	application,	you	need	to	start	both	the	service	as	well	as	the
client	app;	remember	to	initialize	the	data	by	accessing	the	link
https://localhost:5001/init.	Invoking	the	ReadChaptersAsync	method
shows	the	status	code	200	and	the	titles	from	the	chapters	(the	logging	output	is
simplified):

ReadChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	GET	

https://localhost:5001/init

https://localhost:5001/api/BookChapters

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	320.2596ms	-	200

1	.NET	Applications	and	Tools

2	Core	C#

3	Classes,	Structs,	Tuples,	and	Records

4	Object-Oriented	Programming	with	C#

5	Operators	and	Casts

6	Arrays

7	Delegates,	Lambdas,	and	Events

8	Collections

25	Services

The	method	ReadChapterAsync	shows	the	GET	request	to	retrieve	a	single
chapter.	With	this,	the	identifier	of	a	chapter	is	added	to	the	URI	string	(code	file
BooksApi/BookServiceClient/BooksApiClient.cs):

public	async	Task	ReadChapterAsync()

{

		Console.WriteLine(nameof(ReadChapterAsync));

		if	(_firstChapterId	is	not	null)

		{

				string	uri	=	$"{_booksApiUri}/{_firstChapterId}";

				var	chapter	=	await	

_httpClient.GetFromJsonAsync<BookChapter>(uri);

				if	(chapter	is	not	null)

				{

						Console.WriteLine($"{chapter.Number}	{chapter.Title}");

				}

		}

		Console.WriteLine();												

}

The	result	of	the	ReadChapterAsync	method	is	shown	here:

ReadChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	GET	

https://localhost:5001/api/BookChapters/

44ecb858-86c6-4602-bd9c-e1357d6b5c4e

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	72.0244ms	-	200

1	.NET	Applications	and	Tools

What	if	a	GET	request	is	sent	with	a	nonexistent	chapter	identifier?	The	method

ReadNotExistingChapterAsync	shows	how	to	deal	with	this.	Calling	the
GetFromJsonAsync	method	works	as	in	the	previous	code	snippet,	but	an
identifier	that	does	not	exist	is	added	to	the	URI.	Remember	from	the
implementation	of	the	GetFromJsonAsync	method	implementation	that	the
EnsureSuccessStatusCode	method	throws	an	exception.	This	exception	is
caught	with	a	try	-	catch	block	looking	for	the	HttpRequestException	type.
Here,	an	exception	filter	is	also	used	to	handle	only	exception	code	404	(not
found)	(code	file
BooksApi/BookServiceClient/BookChapterSampleRequest.cs):

public	async	Task	ReadNotExistingChapterAsync()

{

		Console.WriteLine(nameof(ReadNotExistingChapterAsync));

		string	requestIdentifier	=	Guid.NewGuid().ToString();

		try

		{

				string	uri	=	$"{_booksApiUri}/{requestIdentifier}";

				var	chapter	=	await	

_httpClient.GetFromJsonAsync<BookChapter>(uri);

		}

		catch	(HttpRequestException	ex)	when	

(ex.Message.Contains("404"))

		{

				_logger.LogError("book	chapter	with	identifier	{0}	not	

found",	requestIdentifier);

		}

		Console.WriteLine();

}

NOTE Handling	exceptions	and	using	exception	filters	is	discussed	in
Chapter	10,	“Errors	and	Exceptions.”

The	result	of	the	method	shows	the	NotFound	result	from	the	service:

ReadNotExistingChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	GET	

https://localhost:5001/api/BookChapters/

532eae52-1bed-4fc5-b8c0-ca7ec3b41eb8

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	37.3587ms	-	404

fail:	BookServiceClient.BooksApiClient[0]

						book	chapter	with	identifier	532eae52-1bed-4fc5-b8c0-

ca7ec3b41eb8	not	found

Sending	POST	Requests
Let's	send	new	objects	to	the	service	using	the	HTTP	POST	request.	Unlike	the
GET	request,	with	the	POST	request,	a	resource	needs	to	be	added	to	the	HTTP
body	in	application/json	format.	This	is	done	from	the	extension	method
PostAsJsonAsync.	After	the	POST	request	is	sent,	the	status	code	and	the
location	are	shown	in	the	console.	With	the	implementation	of	the	service
controller,	the	header	location	is	filled	from	the	CreatedAtRoute	method	(code
file	BooksApi/BookServiceClient/BooksApiClient.cs):

public	async	Task	AddChapterAsync()

{

		Console.WriteLine(nameof(AddChapterAsync));

		BookChapter	chapter	=	new(Guid.NewGuid(),	25,	"Services",	40);

		var	response	=	await	_httpClient.PostAsJsonAsync(_booksApiUri,	

chapter);

		Console.WriteLine($"status	code:	{response.StatusCode}");

		Console.WriteLine($"created	at	location:	

{response.Headers.Location?.AbsolutePath}");

		Console.WriteLine();

}

The	result	of	the	AddChapterAsync	method	shows	a	successful	run	to	create	the
object:

AddChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	POST	

https://localhost:5001/api/BookChapters

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	151.0361ms	-	201

status	code:	Created

created	at	location:	/api/BookChapters/7f0b05c1-2277-4c98-bb09-

48f195480b9c

Sending	PUT	Requests
The	HTTP	PUT	request—which	is	used	for	updating	a	record—is	sent	with	the
help	of	the	HttpClient	extension	method	PutAsJsonAsync.	PutAsJsonAsync
requires	the	URL	to	the	service	(including	the	identifier)	in	the	first	parameter,

and	the	updated	content	with	the	second	parameter.	With	the	following	code
snippet,	the	chapter	with	the	title	“.NET	Application	Architectures”	is	updated	to
a	new	title	(code	file	BooksApi/BookServiceClient/BooksApiClient.cs):

public	async	Task	UpdateChapterAsync()

{

		Console.WriteLine(nameof(UpdateChapterAsync));

	

		var	chapters	=	await	

_httpClient.GetFromJsonAsync<IEnumerable<BookChapter>>(

				_booksApiUri);

		if	(chapters	is	null)	return;

		var	chapter	=	chapters.SingleOrDefault(

				c	=>	c.Title	==	".NET	Application	Architectures");

		if	(chapter	is	not	null)

		{

				string	uri	=	$"{_booksApiUri}/{chapter.Id}";	

				chapter	=	chapter	with	{	Title	=	".NET	Applications	and	

Tools"	};

				var	response	=	await	_httpClient.PutAsJsonAsync(uri,	

chapter);

				if	(response.IsSuccessStatusCode)

				{

						Console.WriteLine($"Status	code:	{response.StatusCode}");

						Console.WriteLine($"updated	chapter	{chapter.Title}");

				}

		}

		Console.WriteLine();

}

The	console	output	of	the	UpdateChapterAsync	method	shows	an	HTTP
NoContent	result	and	the	updated	chapter	title:

UpdateChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	GET	

https://localhost:5001/api/BookChapters

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	35.1652ms	-	200

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	PUT	

https://localhost:5001/api/BookChapters/

40cfc158-38b5-43ff-8964-57a0bbf95903

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	7421.4237ms	-	204

Status	code:	NoContent

Updated	chapter	.NET	Applications	and	Tools

Sending	DELETE	Requests
The	last	request	shown	with	the	sample	client	is	the	HTTP	DELETE	request.
When	sending	a	DELETE	request,	JSON	information	is	not	needed;	only	the
identifier	needs	to	be	passed.	Instead	of	using	an	extension	method,	this	time	the
DeleteAsync	method	from	the	HttpClient	class	is	used	directly	to	delete	the
resource	(code	file	BooksApi/BookServiceClient/BooksApiClient.cs):

public	async	Task	RemoveChapterAsync()

{

		Console.WriteLine(nameof(RemoveChapterAsync));

		var	chapters	=	await	

_httpClient.GetFromJsonAsync<IEnumerable<BookChapter>>(

				_booksApiUri);

		if	(chapters	==	null)	return;

	

		var	chapter	=	chapters.SingleOrDefault(c	=>	c.Title	==	

"ADO.NET	and	Transactions");

		if	(chapter	!=	null)

		{

				string	uri	=	$"{_booksApiUri}/{chapter.Id}";

				var	response	=	await	_httpClient.DeleteAsync(uri);

				if	(response.IsSuccessStatusCode)

				{

						Console.WriteLine($"removed	chapter	{chapter.Title}");

				}

		}

		Console.WriteLine();

}

When	you	run	the	application,	the	RemoveChapterAsync	method	first	shows	the
status	of	the	HTTP	GET	method	because	a	GET	request	is	done	to	retrieve	all
chapters.	After	this	status	information,	the	successful	DELETE	request	is	shown:

RemoveChapterAsync

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	GET	

https://localhost:5001/api/BookChapters

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	36.4147ms	-	200

https://localhost:5001/api/BookChapters/cefbfc7d-1b21-4851-94c0-

1c4fe76d47e7

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[100]

						Sending	HTTP	request	DELETE	

https://localhost:5001/api/BookChapters/

cefbfc7d-1b21-4851-94c0-1c4fe76d47e7

info:	

System.Net.Http.HttpClient.BooksApiClient.ClientHandler[101]

						Received	HTTP	response	headers	after	34.8404ms	-	200

removed	chapter	ADO.NET	and	Transactions

USING	EF	CORE	WITH	SERVICES
Chapter	21,	“Entity	Framework	Core,”	introduces	mapping	objects	to	relations
with	Entity	Framework	Core	(EF	Core).	A	web	API	controller	can	easily	use	a
DbContext.	In	the	sample	app,	you	don't	need	to	change	the	controller	at	all;	you
just	need	to	create	and	register	a	different	repository	for	using	EF	Core.	All	the
steps	needed	are	described	in	this	section.

Let's	start	with	the	code	accessing	the	database	in	a	new	.NET	5	library	named
Books.Data.	For	using	EF	Core	with	SQL	Server,	the	NuGet	package
Microsoft.EntityFrameworkCore.SqlServer	needs	to	be	added	to	the	project
that	contains	the	services.	The	BookChapter	record	and	the
IBookChapterService	interface	were	already	defined	earlier.	With	the	new
solution,	the	BookChapter	record	is	defined	in	the	shared	library	Books.Shared,
which	is	used	both	from	the	client	and	from	the	server.	The	IBookChapter
interface	is	defined	in	the	Books.Data	library,	which	is	only	used	on	the	server.

The	BooksContext	class	shown	in	the	following	code	snippet	defines	the
mapping	of	the	BookChapter	record	to	a	database	table.	The	Title	column	is
restricted	to	a	maximum	of	120	characters	as	specified	with	the	model	definition.
For	the	controller	to	not	have	a	strong	dependency	on	the	context,	the
BooksContext	class	implements	the	interface	IBookChapterService	.	Contrary	to
the	previous	implementation	of	this	interface,	now	the	members	of	the
DbContext	base	class	are	used	to	write	the	data	to	the	database	(code	file
BooksData/Books.Data/Models/BooksContext.cs):

public	class	BooksContext	:	DbContext,	IBookChapterService,	

IDisposable

{

		public	BooksContext(DbContextOptions<BooksContext>	options)

				:	base(options)	

		{

				ChangeTracker.QueryTrackingBehavior	=	

QueryTrackingBehavior.NoTracking;

		}

	

		public	DbSet<BookChapter>	Chapters	=>	Set<BookChapter>();

	

		protected	override	void	OnModelCreating(ModelBuilder	

modelBuilder)

		{

				modelBuilder.Entity<BookChapter>().Property(b	=>	

b.Title).HasMaxLength(120);

		}

	

		public	async	Task	AddAsync(BookChapter	chapter)

		{

				await	Chapters.AddAsync(chapter);

				await	SaveChangesAsync();

		}

	

		public	async	Task	AddRangeAsync(IEnumerable<BookChapter>	

chapters)

		{

				await	this.Chapters.AddRangeAsync(chapters);

				await	SaveChangesAsync();

		}

	

		public	async	Task<IEnumerable<BookChapter>>	GetAllAsync()

		{

				var	chapters	=	await	Chapters.ToListAsync();

				return	chapters;

		}

	

		public	async	Task<BookChapter?>	FindAsync(Guid	id)

		{

				var	chapter	=	await	Chapters.FindAsync(id);

				return	chapter;

		}

	

		public	async	Task<BookChapter?>	RemoveAsync(Guid	id)

		{

				var	chapter	=	await	Chapters.FindAsync(id);

				Chapters.Remove(chapter);

				await	SaveChangesAsync();

				return	chapter;

		}

	

		public	async	Task<BookChapter?>	UpdateAsync(BookChapter	

chapter)

		{

				Chapters.Update(chapter);

				await	SaveChangesAsync();

				return	chapter;

		}

}

With	the	DI	container,	EF	Core	and	SQL	Server	need	to	be	added	to	invoke	the
extension	methods	AddDbContext	and	UseSqlServer.	When	a	service	(or	a
controller	in	this	case)	requests	the	IBookChapterService,	now	an	instance	of
the	BooksContext	class	is	returned.	The	BooksContext	is	added	with	the	method
AddDbContext.	With	the	options	of	this	method,	the	connection	string	is	passed
(code	file	BooksData/BooksApi/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddDbContext<IBookChapterService,	BooksContext>

(options	=>

		{

				var	connectionString	=	

Configuration.GetConnectionString("BooksConnection");

						options.UseSqlServer(connectionString);

		});

		services.AddControllers();

		//…

}

The	connection	string	itself	is	defined	with	the	application	settings	in	the	host
application	project	(configuration	file
BooksData/BooksApi/appsettings.json):

"ConnectionStrings":	{

		"BooksConnection":	"server=

(localdb)\\mssqllocaldb;database=APIBooksSample;

		trusted_connection=true;"

}

To	create	and	initialize	the	database	with	sample	data,	create	a	console
application	using	the	sample	EF	Core	context	class	(referencing	the	Books.Data
library)	and	use	the	sample	implementation	for	the	SampleChapters	class	used
previously.	The	following	code	snippet	shows	the	top-level	statements	of	the
initializer	application	where	the	DI	container	is	configured.	Using	the

BooksContext,	the	database	is	created.	Then	chapters	from	the	SampleChapters
class	are	used	to	fill	the	database	(code	file
BooksData/Books.Initializer/Program.cs):

using	Books.Data;

using	Books.Services;

using	Microsoft.EntityFrameworkCore;

using	Microsoft.Extensions.Configuration;

using	Microsoft.Extensions.DependencyInjection;

using	Microsoft.Extensions.Hosting;

	

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				string	booksConnection	=	

context.Configuration.GetConnectionString("BooksConnection");

				services.AddDbContext<BooksContext>(options	=>

				{

						options.UseSqlServer(booksConnection);

				});

	

				services.AddTransient<SampleChapters>();

		})

		.Build();

	

using	var	scope	=	host.Services.CreateScope();

var	booksContext	=	

scope.ServiceProvider.GetRequiredService<BooksContext>();

await	booksContext.Database.EnsureCreatedAsync();

	

var	sampledata	=	

scope.ServiceProvider.GetRequiredService<SampleChapters>();

var	chapters	=	sampledata.GetSampleChapters();

await	booksContext.Chapters.AddRangeAsync(chapters);

await	booksContext.SaveChangesAsync();

NOTE EF	Core	also	allows	creating	databases	using	migrations.	Read
Chapter	21	for	information	about	how	to	implement	migrations	in	the
application.

With	the	controller,	no	changes	are	required	compared	to	the	previous	sample
code.	The	controller	class	BookChaptersController	injects	the
IBookChapterService.	This	sample	solution	contains	a	different
implementation,	but	for	the	controller,	the	same	contract	is	fulfilled,	and	now

you	can	run	both	the	client	and	the	server	using	the	database.

AUTHENTICATION	AND	AUTHORIZATION	WITH
AZURE	AD	B2C
Authentication	and	authorization	are	important	parts	of	developing	services.	Not
every	user	or	every	application	should	be	allowed	to	write	data	to	the	database,
and	probably	more	users	should	be	allowed	to	read	the	data.

Chapter	20,	“Security,”	discusses	authentication	and	authorization	of	ASP.NET
Core	web	applications	using	the	Azure	Active	Directory	(AD).	In	this	chapter,
you	use	the	Azure	Active	Directory	Business-to-Consumer	(B2C)	to	secure	web
APIs	built	with	ASP.NET	Core.	The	Azure	Active	Directory	B2C	includes	all
the	features	of	an	Azure	Active	Directory,	but	includes	an	extension	app,	which
allows	users	to	register	with	the	AD,	either	using	email	and	password	or	using
their	existing	Twitter,	Facebook,	Google,	Microsoft,	or	other	OpenID	Connect
and	OAuth	accounts.	You	just	need	to	register	applications	with	the	providers
you	would	like	to	support.

After	creating	the	Azure	Active	Directory	B2C	service,	you	can	configure
identity	providers,	as	shown	in	Figure	25-2.	With	each	identity	provider	you
select,	you	need	to	configure	a	client	ID	and	client	secret.	User	attributes	enable
you	to	collect	information	from	users,	such	as	the	name,	email	address,	city,
country,	and	other	values	(see	Figure	25-3).	In	addition	to	the	built-in	user
attributes,	you	can	add	custom	attributes	that	you	ask	the	user	for	when	the	user
registers	with	the	application	or	makes	changes	to	their	profile.	To	define	what
the	user	should	be	asked	with	the	registration	and	what	information	should	be
sent	to	the	API	service,	you	create	user	flows.	You	can	create	different	user
flows	for	signing	up	and	signing	in,	editing	of	the	profile,	and	resetting	the
password.	With	a	user	flow,	you	define	the	identity	providers	used,	the
information	that	should	be	requested	from	the	user,	and	what	information	should
be	sent	to	the	application	as	claims	within	a	token	(see	Figure	25-4).	After
creating	the	flow,	you	can	change	the	layout	of	the	dialog	and	test	it	directly
from	the	portal	(see	Figure	25-5).

FIGURE	25-2

FIGURE	25-3

To	allow	the	ASP.NET	Core	service	to	receive	the	token	and	access	claims	from
the	AD	and	to	allow	the	console	application	to	verify	the	user,	you	need	to
register	these	applications.	With	the	service,	register	a	web	application,	as	shown
in	Figure	25-6.	After	registering	the	application,	you	can	define	scopes	for	the
API.	With	the	sample	application,	the	scopes	Books.Read	and	Books.Write	are
defined	to	differ	between	reading	and	writing	book	chapters.	The	client
application	needs	to	be	registered	as	a	public	client/native	(mobile	and	desktop)
application.	With	the	client	application,	you	need	to	configure	API	permissions
and	select	the	Books.Read	and	Books.Write	permissions	that	were	previously
created.

Creating	and	Configuring	the	Service

The	service	using	authentication	via	the	AD	B2C	can	be	created	using	the	Azure
CLI.	Several	options	are	available	for	configuration:	--client-id	for	the	client
ID	or	application	ID,	--domain	for	the	AD	domain	name,	--tenant-id	to	pass
the	AD	tenant	ID,	--susi-policy-id	to	pass	the	name	of	the	flow,	and	more.
You	can	change	the	configurations	later	in	the	code	as	well:

>	dotnet	new	api	--auth	IndividualB2C	-o	BooksApi

FIGURE	25-4

When	you're	changing	the	existing	web	API	service,	these	NuGet	packages	need
to	be	added:	Microsoft.Identity.Web,

Microsoft.AspNetCore.Authentication.JwtBearer,	and
Microsoft.AspNetCore.Authentication.OpenIdConnect.

With	the	configuration	file	appsettings.json,	you	need	to	specify	the	values
for	the	AzureADB2C	section.	You	get	the	values	from	the	Azure	AD	B2C
configuration	(configuration	file
BookDataWithAuthentication/BooksApi/appsettings.json):

		"AzureAdB2C":	{

				"Instance":	"https://login.microsoftonline.com/tfp/",

				"ClientId":	"11111111-1111-1111-11111111111111111",

				"Domain":	"qualified.domain.name",

				"SignUpSignInPolicyId":	""

		},

FIGURE	25-5

The	DI	container	needs	some	registration	for	the	authentication.	The	method
AddAuthentication	registers	the	services	needed	for	the	authentication.	For

working	with	bearer	tokens,	the	constant
JwtBearerDefaults.AuthenticationScheme	is	used.	The	method
AddAuthentication	returns	an	AuthenticationBuilder.	With	this	builder,	the
method	AddMicrosoftIdentityWebApi	is	used.	By	default,	this	API	uses	the
bearer	scheme.	The	section	where	the	configuration	is	read	is	configured	with
the	IConfigurationSection	argument.	Setting	the	argument
subscribeToJwtBearerMiddlewareDiagnosticsEvents	to	true	adds	logging
information	(code	file	BookDataAndAuthentication/BooksApi/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)

				

.AddMicrosoftIdentityWebApi(Configuration.GetSection("AzureAdB2C"),

	

						subscribeToJwtBearerMiddlewareDiagnosticsEvents:	true);

	

		//…

}

To	authorize	the	clients	as	well	as	authenticate	them,	the	UseAuthorization
method	needs	to	be	added	to	the	middleware	configuration	in	the	Configure
method	(code	file	BookDataAndAuthentication/BooksApi/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

				app.UseSwagger();

				app.UseSwaggerUI(c	=>	

c.SwaggerEndpoint("/swagger/v1/swagger.json",	"BooksApi	v1"));

		}

	

		app.UseHttpsRedirection();

	

		app.UseRouting();

	

		app.UseAuthentication();

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapControllers();

		});

}

FIGURE	25-6

With	the	controller,	you	need	to	add	the	Authorize	attribute	not	to	allow
anonymous	invocations.	To	programmatically	check	for	the	scopes	with	different
API	calls,	you	can	invoke	the	extension	method	VerifyUserHasAcceptedScope
to	check	whether	the	received	token	has	the	scopes	on	the	HttpContext.	If	the

user	is	not	authenticated,	this	method	returns	401	(Unauthenticated).	If	the	user
is	authenticated	but	the	token	does	not	have	the	required	scope,	it	returns	403
(Forbidden)	(code	file
BookDataAndAuthentication/BooksApi/Controllers/BookChaptersController.cs

[Produces("application/json")]

[Route("api/[controller]")]

[Authorize]

[ApiController]

public	class	BookChaptersController	:	ControllerBase

{

		private	readonly	IBookChapterService	_chapterService;

		static	readonly	string[]	readScopesRequired	=	{	"Books.Read"	

};

		static	readonly	string[]	writeScopesRequired	=	{	"Books.Write"	

};

	

		public	BookChaptersController(IBookChapterService	

chapterService)

		{

				_chapterService	=	chapterService;

		}

	

		//	GET	api/bookchapters/guid

		[HttpGet]

		public	Task<IEnumerable<BookChapter>>	GetBookChapters()

		{

				

HttpContext.VerifyUserHasAnyAcceptedScope(readScopesRequired);

	

				return	_chapterService.GetAllAsync();

		}

		//…

}

Adding	Authentication	to	the	Client	Application
With	the	client	application,	the	user	needs	to	log	in,	and	every	invocation	of	the
API	service	needs	to	have	the	access	token	header.	The	NuGet	package	needed
with	the	client	is	Microsoft.Identity.Client.	For	authentication	with	the
Azure	AD,	an	AzureAdB2C	configuration	section	is	added	to	appsettings.json
(config	file
BookDataWithAuthentication/BookServiceClient/appsettings.json):

		"AzureAdB2C":	{

				"ClientId":	"11111111-1111-1111-11111111111111111",

				"TenantId":	"qualified.domain.name",

				"SignUpSignInPolicyId":	""

		},

To	deal	with	the	authentication	of	the	user,	the	ClientAuthentication	class	is
defined	to	use	the	PublicClientApplicationBuilder	class	to	create	an
IPublicClientApplication	object.	Check	the	code	download	and	read	Chapter
20	for	information	about	using	this	class.	What's	important	here	for	accessing	the
API	is	to	use	the	retrieved	access	token	after	logging	in.	With	the	LoginAsync
method	of	the	class	ClientAuthentication,	the	access	token	is	retrieved	using
the	AccessToken	property	of	the	AuthenticationResult.	The	value	is	then
written	to	the	_accessToken	field.	The	GetAccesstokenAsync	method	returns
this	access	token	value	as	shown	in	the	following	code	snippet.	In	case	the	field
_accessToken	is	null	or	the	refresh	parameter	is	true,	another	invocation	to
LoginAsync	is	done	to	retrieve	the	access	token.	This	token	is	then	returned	from
the	method	(code	file
BookDataAndAuthentication/BookServiceClient/ClientAuthentication.cs):

private	string?	_accessToken;

	

public	async	ValueTask<string>	GetAccesstokenAsync(bool	refresh	

=	false)

{

		if	(_accessToken	is	null	||	refresh)

		{

				await	LoginAsync();

		}

		if	(_accessToken	is	null)

		{

				throw	new	InvalidOperationException("No	access	token	

received!");

		}

		return	_accessToken;

}

The	access	token	is	used	with	a	delegating	handler
AuthenticationMessageHandler,	as	shown	in	the	following	code	snippet.	To
retrieve	the	token,	the	ClientAuthentication	service	is	injected	in	the
constructor.	With	the	implementation	of	the	overridden	method	SendAsync,	the
access	token	is	retrieved	from	the	authentication	service	and	added	to	the	request
headers.	Then	the	request	is	sent	to	the	service	by	invoking	the	SendAsync
method.	In	case	an	unauthorized	or	forbidden	result	is	returned,	the	token	is
refreshed,	and	the	request	is	repeated	(code	file

BookDataAndAuthentication/BookServiceClient/AuthenticationMessageHandler.cs

public	class	AuthenticationMessageHandler	:	DelegatingHandler

{

		private	readonly	ClientAuthentication	_clientAuthentication;

		public	AuthenticationMessageHandler(ClientAuthentication	

clientAuthentication)

		{

				_clientAuthentication	=	clientAuthentication;

		}

	

		protected	override	async	Task<HttpResponseMessage>	

SendAsync(HttpRequestMessage	request,	

				CancellationToken	cancellationToken)

		{

				string	token	=	await	

_clientAuthentication.GetAccesstokenAsync();

				request.Headers.Authorization	=	new	

AuthenticationHeaderValue("Bearer",	token);

				var	response	=	await	base.SendAsync(request,	

cancellationToken);

				if	(response.StatusCode	is	HttpStatusCode.Unauthorized	or	

HttpStatusCode.Forbidden)

				{

						token	=	await	

_clientAuthentication.GetAccesstokenAsync(refresh:	true);

						request.Headers.Authorization	=	new	

AuthenticationHeaderValue("Bearer",	token);

						response	=	await	base.SendAsync(request,	

cancellationToken);

				}

				return	response;

		}

}

With	the	configuration	of	the	DI	container,	the	ClientAuthentication	service	is
registered	as	a	singleton,	and	the	AuthenticationMessageHandler	is	added	as	a
handler	for	the	HttpClient	factory	configuration	for	the	typed	client
BooksApiClient	(code	file
BookDataAndAuthentication/BookServiceClient/Program.cs):

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				var	clientAuthenticationSettings	=	

context.Configuration.GetSection("AzureAdB2C");

				services.Configure<ClientAuthenticationOptions>

(clientAuthenticationSettings);

				services.AddSingleton<ClientAuthentication>();

				var	bookApiSettings	=	

context.Configuration.GetSection("BooksService");

				services.Configure<BooksApiClientOptions>(bookApiSettings);

				services.AddTransient<AuthenticationMessageHandler>();

				services.AddHttpClient<BooksApiClient>(config	=>

				{

						var	baseAddress	=	

context.Configuration.GetSection("BooksService")["BaseAddress"]	

								??	"https://localhost:5001";

						config.BaseAddress	=	new	Uri(baseAddress);

				}).AddHttpMessageHandler<AuthenticationMessageHandler>();

		}).Build();

With	this	in	place,	the	user	is	authenticated	on	starting	the	application.	The
implementation	of	the	BooksApiClient	class	can	stay	like	before—with	the
message	handler,	every	invocation	of	the	HttpClient	is	injected	to	add	the
access	token.

IMPLEMENTING	AND	USING	SERVICES	WITH
GRPC
Sending	JSON	from	a	service	is	optimal	with	JavaScript	clients.	JavaScript
objects	can	easily	be	created	from	a	JSON	tree.	However,	to	reduce	CPU	time
needed	for	the	serialization,	memory	needs,	and	the	bandwidth	across	the
network	(which	also	can	decrease	the	cost),	other	options	can	be	more	useful.
With	the	next	solution,	the	same	Books.Shared	and	Books.Data	libraries	are
used,	but	the	service	and	clients	are	implemented	using	gRPC.

Creating	a	gRPC	Project
The	.NET	SDK	has	built-in	support	for	gRPC.	You	can	create	a	new	gRPC
service	project	with	the	.NET	CLI:

>	dotnet	new	grpc	-o	GRPCService

A	gRPC	project	is	an	ASP.NET	Core	project	with	just	a	few	additions.	In	the
project	file,	you	can	see	the	NuGet	package	Grpc.AspNetCore	referenced.	This
package	has	a	dependency	on	Google.Protobuf	and	Grpc.Tools.	Protocol
buffers	(Protobuf)	are	defined	by	Google	for	binary	serialization	(see
https://developers.google.com/protocol-buffers/).	The	.NET	SDK

https://developers.google.com/protocol-buffers/

includes	a	Protobuf	compiler	that	creates	classes	based	on	definition	files
referenced	by	the	Protobuf	element.	Setting	the	GrpcServices	attribute	to
Server,	a	stub	for	the	server	is	created.	This	stub	receives	the	binary	message,
invokes	a	method	with	the	service,	and	returns	a	binary	message	to	the	caller
(project	file	GRPC/GRPCService/GRPCService.csproj):

<Project	Sdk="Microsoft.NET.Sdk.Web">

	

		<PropertyGroup>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

		<ItemGroup>

				<None	Remove="Protos\sensor.proto"/>

		</ItemGroup>

	

		<ItemGroup>

				<Protobuf	Include="Protos\sensor.proto"	

GrpcServices="Server"	/>

				<Protobuf	Include="Protos\books.proto"	GrpcServices="Server"	

/>

		</ItemGroup>

	

		<ItemGroup>

				<PackageReference	Include="Grpc.AspNetCore"	Version="2.34.0"	

/>

		</ItemGroup>

	

		<ItemGroup>

				<ProjectReference	

Include="..\Books.Data\Books.Data.csproj"/>

		</ItemGroup>

	

</Project>

With	the	template-generated	code,	the	Program.cs	file	contains	the	Main	method
with	the	Host	class	to	configure	the	Startup	class;	this	code	is	not	different
compared	to	the	ASP.NET	Core	projects	you've	seen	so	far,	which	is	the	reason
it's	not	repeated	here.	With	the	Startup	class,	the	AddGrpc	method	is	used	to
configure	the	services	used	by	gRPC	in	the	DI	container,	as	shown	in	the
following	code	snippet.	The	AddGrpc	method	returns	an	IGrpcServerBuilder,
which	allows	further	configuration	of	the	gRPC	service.	In	addition,	the	EF	Core
context	is	configured	as	before	(code	file	GRPC/GRPCService/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddGrpc();

		services.AddDbContext<IBookChapterService,	BooksContext>

(options	=>

		{

				string	connectionString	=	

_configuration.GetConnectionString("BooksConnection");

				options.UseSqlServer(connectionString);

		});

}

With	the	configuration	of	the	endpoint	routing	in	the	middleware	method
Configure,	MapGrpcService	is	used	to	map	the	BooksService	and
SensorService	classes	to	endpoints	(code	file	GRPC/GRPCService/Startup.cs):

app.UseEndpoints(endpoints	=>

{

		endpoints.MapGrpcService<BooksService>();

		endpoints.MapGrpcService<SensorService>();

	

		endpoints.MapGet("/",	async	context	=>

		{

				await	context.Response.WriteAsync("Use	a	gRPC	client!");

		});

});

Defining	the	Contract	with	Protobuf
Before	implementing	the	service	classes,	the	contracts	need	to	be	specified	with
a	.proto	file.	With	the	sample	application,	books.proto	in	the	following	code
segment	defines	the	contracts	for	the	service	that	uses	the	database	to	read	and
write	book	chapters.	The	syntax	element	defines	the	Protobuf	version.	The
package	element	is	used	to	prevent	naming	conflicts.	If	the	csharp_namespace
option	is	not	specified,	the	package	name	defines	the	namespace	of	the	generated
C#	classes.	In	the	sample	code,	csharp_namespace	is	defined;	thus,	the
generated	namespace	name	is	GRPCService.	The	service	elements	specify	the
operations	offered	from	the	service.	The	sample	code	defines	the	operations
GetBookChapters	and	AddBookChapter.	Each	operation	requires	information
about	the	message	that	is	sent	to	the	service	and	the	message	that	is	returned.
GetBookChapters	returns	a	message	defined	with	the	name
GetBookChapterResponse.	This	operation	doesn't	require	data	to	send	to	the
service;	thus,	an	Empty	message	is	used.	To	make	the	Empty	message	available,
the	file	empty.proto	needs	to	be	imported.

GetBookChapterResponse	is	defined	with	the	message	element.	This	element
nests	another	message	element:	Chapter.	Declaring	a	field	with	the	repeated
modifier,	the	field	can	be	repeated	any	number	of	times	(which	is	the	case	with
any	number	of	book	chapters	returned).	The	message	Chapter	specifies	all	the
members	that	are	needed	to	read	and	write	book	chapter	records	from	the
database.	The	numbers	used	with	every	field	are	unique	tags	for	binary
encoding.	You	can	use	Protobuf-specific	data	types	such	as	string,	int32.
These	types	are	platform-independent	and	map	to	C#	data	types	such	as	string
and	int	(proto	file	GRPC/GRPCService/Protos/books.proto):

syntax	=	"proto3";

package	bookservice;

option	csharp_namespace	=	"GRPCService";

	

import	"google/protobuf/empty.proto";

	

	

//	The	book	service	definition.

service	GRPCBooks	{

		rpc	GetBookChapters	(google.protobuf.Empty)	returns	

(GetBookChapterResponse);

		rpc	AddBookChapter	(AddBookChapterRequest)	returns	

(AddBookChapterResponse);

}

	

message	AddBookChapterRequest	{

		Chapter	Chapter	=	1;

}

	

message	AddBookChapterResponse	{

		Chapter	Chapter	=	1;

}

	

message	GetBookChapterResponse	{

		repeated	Chapter	chapters	=	1;

}

	

message	Chapter	{

		string	id	=	1;

		int32	number	=	2;

		string	title	=	3;

		int32	pageCount	=	4;

}

NOTE Protobuf	is	not	the	only	option	for	serialization	with	gRPC.

Another	option	is	Microsoft's	Bond	framework	(see
https://github.com/microsoft/bond).	Bond	offers	multiplatform	and
multilanguage	support	like	gRPC	and	Protobuf.	To	use	Bond	with	gRPC,	see
https://microsoft.github.io/bond/manual/bond_over_grpc.html.
Although	Bond	is	often	used	within	Microsoft,	gRPC	with	Protobuf	has	more
support	from	the	community.

Implementing	a	gRPC	Service
The	Protobuf	compiler	creates	classes	for	every	message	defined	and	classes	for
the	services.	Using	the	libraries	to	access	the	database,	the	BookChapter	record
is	defined.	With	the	gRPC	service,	the	corresponding	Chapter	class	is	created	by
the	Protobuf	compiler.	For	an	easy	conversion	between	these	two	types,	the
application	defines	the	extension	methods	ToBookChapter	and	ToGRPCChapter
(code	file	GRPC/GRPCService/Services/BooksService.cs):

static	class	ChapterExtensions

{

		public	static	BookChapter	ToBookChapter(this	Chapter	chapter)	

=>

				new	BookChapter(

						Guid.Parse(chapter.Id),

						chapter.Number,

						chapter.Title,

						chapter.PageCount);

	

		public	static	Chapter	ToGRPCChapter(this	BookChapter	chapter)	

=>

				new	Chapter

				{

						Id	=	chapter.Id.ToString(),

						Number	=	chapter.Number,

						Title	=	chapter.Title,

						PageCount	=	chapter.PageCount

				};

}

Because	of	the	service	definition	in	the	proto	file,	a	static	class	GRPCBooks	with
an	inner	abstract	base	class	is	created:	GRPCBooks.GRPCBooksBase.	The	name	of
the	outer	class	comes	from	the	name	of	the	service,	and	the	name	Base	is	used	as
a	postfix	for	the	inner	class.	The	class	GRPCBooksBase	defines	the	methods
GetBookChapters	and	AddBookChapter	that	you	need	to	override,	as	shown	in
the	following	code	snippet.	With	the	implementation	of	AddBookChapter,	the

https://github.com/microsoft/bond
https://microsoft.github.io/bond/manual/bond_over_grpc.html

injected	IBookChapterService	is	used	to	add	a	book	(after	converting	it	from
the	gRPC	class	to	the	record)	to	the	database.	With	the	GetBookChapters,	the
database	is	queried	for	all	the	book	chapters,	and	the	chapters	are	converted	and
added	to	the	response	(code	file
GRPC/GRPCService/Services/BooksService.cs):

public	class	BooksService	:	GRPCBooks.GRPCBooksBase

{

		private	readonly	IBookChapterService	_bookChapterService;

		private	readonly	ILogger	_logger;

		public	BooksService(ILogger<BooksService>	logger,	

				IBookChapterService	bookChapterService)

		{

				_logger	=	logger;

				_bookChapterService	=	bookChapterService;

		}

	

		public	override	async	Task<AddBookChapterResponse>	

AddBookChapter(

				AddBookChapterRequest	request,	ServerCallContext	context)

		{

				var	bookChapter	=	request.Chapter.ToBookChapter();

				await	_bookChapterService.AddAsync(bookChapter);

				AddBookChapterResponse	response	=	new()

				{

						Chapter	=	bookChapter.ToGRPCChapter()

				};

				return	response;

		}

	

		public	override	async	Task<GetBookChapterResponse>	

GetBookChapters(

				Empty	request,	ServerCallContext	context)

		{

				var	bookChapters	=	await	_bookChapterService.GetAllAsync();

				GetBookChapterResponse	response	=	new();

				response.Chapters.AddRange(bookChapters.Select(bc	=>	

bc.ToGRPCChapter()).ToArray());

				return	response;

		}

}

Implementing	a	gRPC	Client
To	implement	a	gRPC	client	application,	a	.NET	console	application	is	used.	For
adding	the	NuGet	packages	and	the	definitions	to	create	the	client-side	stub,	with

Visual	Studio	you	can	add	a	connected	service	to	the	gRPC	service	and	reference
the	proto	file.	Without	using	Visual	Studio,	you	need	to	add	the	NuGet	packages
Google.Protobuf,	Grpc.Net.ClientFactory,	and	Grpc.Tools.	To	use	the	Host
class	with	the	client,	the	NuGet	package	Microsoft.Extensions.Hosting	needs
to	be	added	as	well.	To	create	the	client-side	proxy,	the	proto	file	from	the	server
is	referenced	using	a	Protobuf	element	with	the	GrpcServices	attribute	set	to
Client.	This	creates	the	stub	for	the	client	(project	file
GRPC/GRPC.BooksClient/GRPC.BooksClient.csproj):

<Project	Sdk="Microsoft.NET.Sdk">

		<PropertyGroup>

				<OutputType>Exe</OutputType>

				<TargetFramework>net5.0</TargetFramework>

				<Nullable>enable</Nullable>

		</PropertyGroup>

	

		<ItemGroup>

				<PackageReference	Include="Google.Protobuf"	Version="3.15.6"	

/>

				<PackageReference	Include="Grpc.Net.ClientFactory"	

Version="2.36.0"	/>

				<PackageReference	Include="Grpc.Tools"	Version="2.36.4">

						<PrivateAssets>all</PrivateAssets>

						<IncludeAssets>runtime;	build;	native;	contentfiles;	

analyzers;	

								buildtransitive</IncludeAssets>

				</PackageReference>

				<PackageReference	Include="Microsoft.Extensions.Hosting"	

Version="5.0.0"/>

		</ItemGroup>

	

		<ItemGroup>

				<ProjectReference	

Include="..\Books.Shared\Books.Shared.csproj"/>

		</ItemGroup>

	

		<ItemGroup>

				<Protobuf	Include="..\GRPCService\Protos\books.proto"	

GrpcServices="Client">

						<Link>Protos\books.proto</Link>

				</Protobuf>

		</ItemGroup>

	

		<ItemGroup>

				<None	Update="appsettings.json">

						

<CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>

				</None>

		</ItemGroup>

	

</Project>

The	stub	that's	created	from	the	books.proto	file	has	the	name
GRPCBooks.GRPCBooksClient.	The	NuGet	package	Grpc.Net.ClientFactory
offers	a	similar	factory	as	you've	seen	with	the	HttpClient	factory.	As	you	can
see	in	the	following	code	snippet,	you	can	invoke	the	AddGrpcClient	method
and	pass	the	generated	stub	class	with	the	generic	parameter.	Using	the	options
of	type	GrpcClientFactoryOptions,	beside	other	configurations,	you	can
specify	the	Address	to	the	service.	GrpcChannelOptions	allow	you	to	specify
the	maximum	message	size,	the	number	of	retry	attempts,	buffer	sizes,	and
whether	an	OperationCanceledException	should	be	thrown	on	cancelation
(code	file	GRPC/GRPC.BooksClient/Program.cs):

using	GRPCService;

using	Microsoft.Extensions.DependencyInjection;

using	Microsoft.Extensions.Hosting;

using	System;

	

using	var	host	=	Host.CreateDefaultBuilder(args)

		.ConfigureServices((context,	services)	=>

		{

				services.AddGrpcClient<GRPCBooks.GRPCBooksClient>(options	=>

				{

						string	grpcServiceUri	=	

context.Configuration["GrpcServiceUri"]	

								??	"https://localhost:5001";

						options.Address	=	new	Uri(grpcServiceUri);

						options.ChannelOptionsActions.Add(options	=>

						{

								options.ThrowOperationCanceledOnCancellation	=	true;

						});

				});

	

				services.AddSingleton<Runner>();

		})

		.Build();

	

Console.WriteLine("press	return	to	start");

Console.ReadLine();

	

var	runner	=	host.Services.GetRequiredService<Runner>();

await	runner.RunAsync();

	

Console.ReadLine();

The	Runner	class	makes	use	of	the	gRPC	client	stub	to	invoke	the	service.	The
GRPCBooksGRPCBooksClient	is	injected	in	the	constructor.	Within	the	RunAsync
method,	the	proxy	methods	AddBookChaptersAsync	and	GetBookChaptersAsync
are	invoked	to	send	messages	to	the	services	and	receive	the	results	(code	file
GRPC/GRPC.BooksClient/Runner.cs):

public	class	Runner

{

		private	readonly	GRPCBooks.GRPCBooksClient	_booksClient;

		private	readonly	ILogger	_logger;

		public	Runner(GRPCBooks.GRPCBooksClient	booksClient,	

ILogger<Runner>	logger)

		{

				_booksClient	=	booksClient;

				_logger	=	logger;

		}

	

		public	async	Task	RunAsync()

		{

				CancellationTokenSource	cts	=	new(10000);	//	cancel	after	10	

seconds

	

				try

				{

						BookChapter	bookChapter	=	new(Guid.NewGuid(),	43,	"A	new	

GPRC	chapter",	20);

						AddBookChapterRequest	request	=	new()	

						{	

								Chapter	=	bookChapter.ToGRPCChapter()	

						};

						var	addBookResponse	=	await	

_booksClient.AddBookChapterAsync(request);

						Console.WriteLine($"added	a	new	book");

	

						var	getBookResponse	=	await	

_booksClient.GetBookChaptersAsync(new	Empty());

						var	bookChapters	=	getBookResponse.Chapters.Select(

								c	=>	c.ToBookChapter()).ToArray();

						foreach	(var	chapter	in	bookChapters)

						{

								Console.WriteLine($"{chapter.Number}:	{chapter.Title}");

						}

				}

				catch	(Exception	ex)

				{

						_logger.LogError(ex,	ex.Message);

						throw;

				}

		}

}

Streaming	with	gRPC
gRPC	offers	asynchronous	streaming,	as	shown	in	the	next	sample.	Instead	of
using	a	request/reply	scenario,	a	stream	of	data	can	be	sent	from	the	client	to	the
service	or	from	the	service	to	the	client,	or	streams	can	be	sent	in	both	directions.

To	implement	streaming,	the	GRPCService	is	enhanced	with	a	simulation	of	a
device	that	continuously	sends	sensor	data	to	the	client.	With	the	following
sensor.proto	file,	a	stream	of	SensorData	messages	is	returned	to	the	client
after	a	message	is	received	to	invoke	the	GetSensorData	operation.	The	data	that
is	sent	is	defined	with	the	message	SensorData.	This	message	includes	two
int32	values	and	a	timestamp.	For	the	timestamp	value,
google/protobuf/timestamp.proto	needs	to	be	imported.	To	pass	a	stream	to
the	client,	the	rpc	operation	GetSensorData	specifies	to	return	a	stream	of
SensorData	messages	with	the	stream	modifier	(proto	file
GRPC/GRPCSerivce/Protos/sensor.proto):

syntax	=	"proto3";

package	sensing;

option	csharp_namespace	=	"GRPCService";

	

import	"google/protobuf/empty.proto";

import	"google/protobuf/timestamp.proto";

	

service	Sensor	{

		rpc	GetSensorData	(google.protobuf.Empty)	returns	(stream	

SensorData);

}

	

message	SensorData	{

		google.protobuf.Timestamp	timestamp	=	1;

		int32	val1	=	2;

		int32	val2	=	3;

}

With	this	proto	file,	the	method	that	needs	to	be	overridden	is	declared	with	an
IServerStreamWriter<SensorData>	parameter.	With	this,	the	stream	of	data	can
be	sent	by	invoking	the	WriteAsync	method	(code	file
GRPC/GRPCService/Services/SensorService.cs):

public	override	async	Task	GetSensorData(Empty	request,	

		IServerStreamWriter<SensorData>	responseStream,	

ServerCallContext	context)

{

		try

		{

				Random	=	new();

	

				while	(!context.CancellationToken.IsCancellationRequested)

				{

						await	Task.Delay(100,	context.CancellationToken);

						SensorData	data	=	new()

						{

								Timestamp	=	Timestamp.FromDateTime(DateTime.UtcNow),

								Val1	=	random.Next(100),

								Val2	=	random.Next(100)

						};

						Console.WriteLine($"returning	data	{data}");

						await	responseStream.WriteAsync(data);

				}

		}

		catch	(TaskCanceledException	ex)

		{

				_logger.LogInformation(ex.Message);

		}

}

The	client	application	is	implemented	in	a	similar	way	as	before;	the	difference
is	the	sensor.proto	file.	When	a	return	stream	is	declared,	the	stub-created
method	returns	an	object	of	AsyncServerStreamingCall<SensorData>.	This
object	can	be	used	to	access	the	ResponseStream	and	invoke	the	method
ReadAllAsync.	ReadAllAsync	is	an	extension	method	for	the
IAsyncStreamReader	and	returns	IAsyncEnumerable.	This	interface	can	be	used
with	await	foreach	to	asynchronously	iterate	through	the	stream	(code	file
GRPC/GRPC.SensorClient/Runner.cs):

public	async	Task	RunAsync()

{

		CancellationTokenSource	cts	=	new(10000);	//	cancel	after	10	

seconds

	

		try

		{

				using	var	stream	=	_sensorClient.GetSensorData(new	Empty());

	

				await	foreach	(var	data	in	

						

stream.ResponseStream.ReadAllAsync().WithCancellation(cts.Token))

				{

						Console.WriteLine($"data	{data.Val1}	{data.Val2}	

{data.Timestamp.ToDateTime():T}");

				}

		}

		catch	(TaskCanceledException	ex)

		{

				_logger.LogInformation(ex.Message);

		}

}

NOTE Streaming	with	IAsyncEnumerable	is	shown	in	Chapter	11,	“Tasks
and	Asynchronous	Programming.”

When	you	run	both	the	service	and	the	client	application,	a	stream	is	returned	to
the	client	until	the	cancelation	is	requested	after	10	seconds.

NOTE Besides	gRPC,	streaming	is	also	supported	with	SignalR.	SignalR
is	covered	in	Chapter	28,	“SignalR.”

USING	AZURE	FUNCTIONS
When	you	create	a	REST	API	with	ASP.NET	Core,	you	can	host	it	either	with
your	own	Windows	server	or	with	a	Linux	server,	or	you	can	use	a	platform-as-
a-service	(PaaS)	offering	and	run	it	with	Azure	App	Services—no	matter
whether	you	use	Docker	images	or	deploy	the	application	directly.	In	all	these
cases,	you	have	a	virtual	(or	even	physical)	machine	you	pay	for.	Another	option
to	create	REST	APIs	is	with	Azure	Functions.	With	this	technology,	you	have
consumption-based	pricing	as	one	option;	you	just	pay	for	the	seconds	you	need
of	the	memory	and	CPU	when	the	function	is	invoked.	This	consumption-based
pricing	is	also	known	as	the	service	offering	functions	as	a	service	(FaaS)	or	by

the	term	serverless.	Of	course,	there's	always	a	server	in	the	backend,	but	the
pricing	model	is	different.

Azure	Functions	already	had	several	iterations	with	Microsoft	Azure.	The	first
version	is	based	on	the	.NET	Framework.	Versions	2	and	3	of	Azure	Functions
are	based	on	.NET	Core	2.1	and	3—the	long-term	supported	versions	of	.NET
Core.	Now	the	next	generation	is	available.	With	the	new	generation,	Azure
Functions	can	run	in	an	isolated	process	mode	that	allows	you	to	run	the
function's	code	in	a	different	process	than	the	hosting	environment:	out	of
process.	This	way,	you	are	independent	of	the	runtime	that's	available	on	the
hosting	platform	and	can	use	.NET	5.	At	the	time	of	this	writing,	there	are	some
limits	with	this	version	because	you	don't	have	a	Visual	Studio	template	to	create
this	Azure	Function,	and	you	cannot	create	the	function	app	in	the	Azure	portal.
Instead,	you	can	use	the	Azure	CLI	and	the	Azure	Functions	Core	Tools.	(See
https://docs.microsoft.com/en-us/azure/azure-functions/functions-

run-local	for	information	on	installing	the	Azure	Functions	Core	Tools	with
Windows,	macOS,	and	Linux.)

The	sample	application	for	the	Azure	Functions	offers	the	same	functionality	as
the	ASP.NET	Core	web	API	and	gRPC	samples	to	read	and	create	book
chapters,	using	the	same	libraries	as	before.	If	you	create	the	functionality	of
your	applications	independent	of	the	hosting	environment,	you	have	the
flexibility	to	choose	and	change	technologies.

Creating	an	Azure	Functions	Project
To	create	an	Azure	Function,	create	a	new	folder	Books.Function,	and	with	the
current	directory	set	to	this	folder,	use	the	Azure	Functions	command-line
interface	and	specify	dotnetIsolated	with	the	--worker-runtime	option	and
the	init	action:

>	func	init	--worker-runtime	dotnetIsolated

This	creates	a	.NET	5	console	application	with	a	project	file	referencing	the
NuGet	packages	Microsoft.Azure.Functions.Worker.Sdk	and
Microsoft.Azure.Functions.Worker,	configuration	files	host.json	and
local.settings.json,	and	the	Program	class	using	the	.NET	where	the	Host
class	is	created.	However,	this	time,	instead	of	CreateDefaultBuilder	to
configure	services,	configuration,	and	logging,	the	method
ConfigureFunctionsWorkerDefaults	is	invoked	as	shown	in	the	following	code
snippet.	With	the	sample	application,	the	projects	Books.Shared	and	Books.Data

https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

are	referenced	to	use	this	existing	functionality,	and	the	EF	Core	context	is
configured	with	the	ConfigureServices	method	as	you've	configured	it
previously.	What's	different	is	that	the	connection	string	is	retrieved	from	an
environment	variable	instead	of	by	using	the	IConfiguration	interface	(code
file	AzureFunctions/Books.Function/Program.cs):

using	Books.Data;

using	Books.Services;

using	Microsoft.EntityFrameworkCore;

using	Microsoft.Extensions.DependencyInjection;

using	Microsoft.Extensions.Hosting;

using	System;

	

using	var	host	=	new	HostBuilder()

		.ConfigureFunctionsWorkerDefaults()

		.ConfigureServices(services	=>

		{

				string?	connectionString	=	

Environment.GetEnvironmentVariable("BooksConnection");

				if	(connectionString	is	null)	

						throw	new	InvalidOperationException("Configure	the	

BooksConnection");

	

				services.AddDbContext<IBookChapterService,	BooksContext>

(options	=>

				{

						options.UseSqlServer(connectionString);

				});

		})

		.Build();

	

await	host.RunAsync();

The	method	ConfigureFunctionsWorkerDefaults	customizes	the	JSON
serializer	to	ignore	casing,	configures	logging	to	integrate	the	ILogger	with
Azure	Functions	logging,	configures	Azure	Function	binding	middleware,	and
adds	gRPC	support.

The	file	local.settings.json	is	used	for	the	Azure	Functions	configuration
values	when	you	run	this	locally	on	your	system.	This	file	is	not	part	of	the	Git
repository	and	is	not	deployed	to	Microsoft	Azure.	The	values	configured	within
the	Values	section	are	put	into	environment	variables	from	the	Azure	Functions
host	environment.	Creating	the	Azure	Function	with	the	dotnetIsolated	option
specifies	the	dotnet-isolated	worker	runtime.	Azure	Functions	require	an

Azure	Storage	account	for	storing	the	Azure	Function	as	well	as	for	logging.	To
run	the	Azure	Function	locally,	a	simulation	environment	is	used	instead	of	the
real	storage	account.	This	is	specified	with	the	UseDevelopmentStorage	setting.
The	BooksConnection	needs	to	be	added	to	reference	your	SQL	Server	database:

{

		"IsEncrypted":	false,

		"Values":	{

				"AzureWebJobsStorage":	"UseDevelopmentStorage=true",

				"FUNCTIONS_WORKER_RUNTIME":	"dotnet-isolated",

				"BooksConnection":	

						"server=

(localdb)\\mssqllocaldb;database=BooksDatabase;trusted_connection=true"

		}

}

You	can	customize	the	Host	class	to	add	custom	middleware	as	you've	read	in
the	previous	chapter	(using	the	IFunctionsWorkerApplicationBuilder
parameter	of	the	ConfigureFunctionsWorkerDefaults	method),	configuration
providers	(for	example	the	Azure	App	Configuration	provider	introduced	in
Chapter	15),	and	custom	services	for	DI	injection.

Adding	HTTP	Trigger	Functions
To	add	a	function	to	the	project,	you	use	func	new	by	supplying	the	name	of	the
template	with	the	--template	argument.	With	the	sample	application,	the
function	will	be	triggered	on	HTTP	requests;	thus,	the	Http	Trigger	template	is
used:

>	func	new	--name	BooksService	--authlevel	anonymous	--template	

"Http	Trigger"

The	class	that's	generated	is	defined	as	a	static	class	with	static	methods.
However,	you	can	change	that	to	an	instance	class	to	use	constructor	injection.
With	the	following	code	snippet,	the	IBookChapterService	is	injected	with	the
constructor	(code	file	AzureFunctions/Books.Function/BooksService.cs):

public	class	BooksService

{

		private	readonly	IBookChapterService	_bookChapterService;

		public	BooksService(IBookChapterService	bookChapterService)

		{

				if	(bookChapterService	is	null)	

						throw	new	

ArgumentNullException(nameof(bookChapterService));

				_bookChapterService	=	bookChapterService;

		}

		//…

}

A	function	is	declared	with	the	Function	attribute.	The	HttpTrigger	attribute
specified	with	the	first	parameter	of	the	GetChaptersAsync	method	defines	how
the	function	is	invoked.	With	the	following	declaration,	the	function	is	invoked
on	an	HTTP	GET	request	with	the	route	chapters.	With	different	trigger	types,
different	parameter	types	are	used.	With	the	HttpTrigger,	the	parameter	needs
to	be	of	type	HttpRequestData.	This	type	is	used	to	read	the	request	from	the
caller	and	to	send	a	response.	With	the	sample	implementation,	the
IBookChapterService	is	used	to	get	the	chapter	list,	convert	it	to	JSON	with	the
WriteAsJsonAsync	extension	method	(defined	in	the
Microsoft.Azure.Functions.Worker.Http	namespace),	create	the	JSON	data,
and	write	it	to	the	response	body	(code	file
AzureFunctions/Books.Function/BooksService.cs):

[Function("GetChapters")]

public	async	Task<HttpResponseData>	GetChaptersAsync(

		[HttpTrigger(AuthorizationLevel.Anonymous,	"get",	Route	=	

"chapters")]	

				HttpRequestData	req,

		FunctionContext	executionContext)

{

		var	logger	=	executionContext.GetLogger("BooksService");

		logger.LogInformation("Function	GetChapters	invoked.");

	

		var	response	=	req.CreateResponse(HttpStatusCode.OK);

		var	chapters	=	_bookChapterService.GetAllAsync();

		await	response.WriteAsJsonAsync(chapters);

		return	response;

}

The	function	AddChapterAsync	is	declared	with	an	HttpTrigger	for	an	HTTP
POST	request	on	the	same	route.	Here,	the	HTTP	body	received	is	read	using	the
ReadFromJsonAsync	extension	method,	and	with	the	help	of	the
IBookChapterService,	the	book	chapter	is	written	to	the	database	(code	file
AzureFunctions/Books.Function/BooksService.cs):

[Function("AddChapter")]

public	async	Task<HttpResponseData>	AddChapterAsync(

		[HttpTrigger(AuthorizationLevel.Anonymous,	"post",	Route	=	

"chapters")]	

				HttpRequestData	req,

		FunctionContext	executionContext)

{

		var	logger	=	executionContext.GetLogger("BooksService");

		logger.LogInformation("Function	AddChapter	invoked.");

	

		var	chapter	=	await	req.ReadFromJsonAsync<BookChapter>();

		if	(chapter	is	null)

		{

				logger.LogError("invalid	chapter	received");

				return	req.CreateResponse(HttpStatusCode.BadRequest);

		}

		var	response	=	req.CreateResponse(HttpStatusCode.OK);

		await	_bookChapterService.AddAsync(chapter);

		await	response.WriteAsJsonAsync(chapter);

		return	response;

}

To	run	the	Azure	Function	on	your	local	system,	you	can't	start	it	from	Visual
Studio	(at	least	at	the	time	of	this	writing);	you	need	to	start	it	with	the	Azure
Functions	Core	Tools,	giving	you	the	host	environment:

>	func	start

By	default,	the	Azure	Function	is	available	at	port	7071.	The	URL	to	send	the
GET	and	POST	requests	is	http://localhost:7071/api/chapters.

To	debug	from	Visual	Studio,	you	can	start	the	function	with	the	option	--
dotnet-isolated-debug.	By	setting	this,	the	worker	process	waits	until	a
debugger	is	attached.

To	send	HTTP	requests,	you	can	use	dotnet	httprepl	(which	is	explained	in
Chapter	24,	“ASP.NET	Core”)	or	customize	the	previously	created	client
application.

MORE	AZURE	SERVICES
More	can	be	done	with	Azure	Functions	beyond	implementing	them	to	be
triggered	on	HTTP	requests.	They	also	can	be	triggered	when	a	message	arrives
in	a	queue	of	an	Azure	Storage	account,	with	queues	and	tokens	from	the	Azure
Service	Bus,	when	data	is	changed	in	an	Azure	Cosmos	database,	on	events	from
Azure	Event	Grid	or	the	Azure	Event	hub,	or	with	a	timer	trigger.	For	creating
small	services,	it's	not	always	necessary	to	react	to	network	events,	such	as
invocations	from	REST	APIs	or	RPC	calls.	Communication	can	also	be	done

http://localhost:7071/api/chapters

asynchronously.

If	your	application	now	uses	several	APIs,	you	want	to	allow	the	client	to	use
just	one	API	layer	that	is	then	forwarded	to	the	correct	service	with	the	correct
version	based	on	the	request,	and	you	want	to	implement	throttling	based	on
different	subscriptions	used	by	the	client	APIs,	you	might	consider	using	Azure
API	management.	This	service	gives	you	great	options	for	these	scenarios.

Check	https://github.com/ProfessionalCSharp/MoreSamples	for	additional
samples	for	these	scenarios.

SUMMARY
This	chapter	described	the	features	of	the	web	API	using	ASP.NET	Core.	This
technology	offers	an	easy	way	to	create	REST	services	that	can	be	called	from
any	client—be	it	JavaScript	or	a	.NET	client.	With	a	.NET	client,	you	saw	how
to	use	the	HttpClient	class	that	sends	requests	using	different	HTTP	verbs,
including	the	use	of	the	new	JSON	extension	methods	to	deal	with	sending	and
receiving	JSON	data.

You've	seen	enhancements	of	the	API	sample	to	access	a	database	with	EF	Core
without	big	changes,	and	you’ve	read	about	adding	authentication	and
authorization	both	to	the	service	and	to	the	client	application.

This	chapter	also	covered	communication	in	a	platform-independent	form	using
gRPC	and	streaming	with	gRPC.

Another	option	for	implementing	REST	APIs	is	by	using	Azure	Functions.	With
the	advantage	of	a	DI	container,	you	could	use	the	classes	implemented	earlier	to
offer	the	same	functionality	by	using	an	Azure	Function.

The	next	chapter	covers	creating	user	interfaces	with	ASP.NET	Core	using
Razor	Pages	and	MVC.

https://github.com/ProfessionalCSharp/MoreSamples

26
Razor	Pages	and	MVC

WHAT'S	IN	THIS	CHAPTER?

Working	with	Razor	Pages

Using	Razor	syntax

Routing	with	Razor	Pages	and	MVC

Implementing	Razor	Pages	in	a	library

Injecting	services

Using	HTML	Helpers

Creating	and	using	Tag	Helpers

Creating	and	using	view	components

Differences	between	Razor	Pages	and	ASP.NET	Core	MVC

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	3_Web/RazorAndMVC.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

WebAppSample	(Razor	Pages	web	application)

BooksViews	(Razor	Pages	in	a	library)

CustomTagHelpers

EventViews	(view	components)

MVCSample	(ASP.NET	Core	MVC	web	application)

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

SETTING	UP	SERVICES	FOR	RAZOR	PAGES
AND	MVC
Chapter	24,	“ASP.NET	Core,”	explains	the	foundation	of	ASP.NET	Core	with
dependency	injection	and	middleware	and	the	features	of	HTTP	requests	and
responses.	This	chapter	makes	use	of	dependency	injection	and	middleware	for
Razor	Pages	and	MVC	to	reduce	the	code	needed	for	creating	full-featured	web
applications.

Web	pages	built	based	on	the	Model-View-Controller	(MVC)	pattern	(Figure	26-
1)	clearly	separate	models	(entity	objects	representing	data),	views	(the	user
interface,	including	HTML	code),	and	functionality	(controllers).

FIGURE	26-1

Razor	Pages	give	you	a	simpler	concept	where	you	mix	HTML	code	with	C#
within	a	single	page,	but	you	can	also	separate	this	using	a	code-behind	file,
which	you	probably	already	know	from	WPF	or	WinUI	applications.
Dependency	injection	is	an	important	concept	that's	needed	both	with	Razor
Pages	and	MVC.

Creating	Razor	Pages	Projects
Razor	Pages	were	introduced	with	ASP.NET	Core	2.0	to	remove	the	complexity
with	MVC.	Razor	Pages	offer	an	easier	way	to	start	creating	web	applications.	In
case	you	already	have	experience	with	MVC,	many	of	the	same	features	of
MVC	can	be	used	with	Razor	Pages.	You	can	also	mix	MVC	projects	with	Razor
Pages.

When	you're	using	Visual	Studio,	you	can	create	a	Razor	Pages	application	by
using	the	project	template	Web	Application.	You	use	the	command	line	to	create
the	sample	application	with	this:

>	dotnet	new	webapp	-o	WebAppSample

With	this	template,	the	Main	method	uses	the	Host	class	in	the	same	way	as	you
saw	in	Chapter	24,	“ASP.NET	Core,”	with	the	empty	web	application.	The
configuration	of	the	DI	container	is	done	in	the	ConfigureServices	method	of
the	Startup	class.	With	Razor	Pages,	the	extension	method	AddRazorPages	is
used	to	register	all	the	services	required;	the	most	important	are	the	Razor	view
engine	and	services	to	find	and	activate	pages	(code	file
WebAppSample/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddRazorPages();

}

With	the	configuration	of	the	middleware,	static	files	are	added	by	default	(with
web	applications,	you	usually	need	static	files	such	as	CSS	files	and	JavaScript
files).	With	endpoint	routing,	routes	for	Razor	Pages	are	added	by	invoking	the
method	MapRazorPages	(code	file	WebAppSample/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

		}

		else

		{

				app.UseExceptionHandler("/Error");

				app.UseHsts();

		}

	

		app.UseHttpsRedirection();

		app.UseStaticFiles();

	

		app.UseRouting();

	

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapRazorPages();

		});

}

With	the	default	configuration,	Razor	Pages	routing	uses	a	Pages	folder	and
subfolders	and	maps	the	URL	to	the	.cshtml	files	in	that	folder.	You	can
override	settings	by	using	the	methods	AddRazorOptions	and
AddRazorPageOptions.	If	you're	accessing	the	URL	/Hello,	the	page
Pages/Hello.cshtml	is	searched.	With	the	URL	/Admin/User,	the	page
Pages/Admin/User.cshtml	is	expected.	If	these	pages	are	not	found,	search
continues	in	the	Views/Shared	folder.	When	you	set	the	property
PageViewLocationFormats	with	the	method	AddRazorOptions,	this	behavior
can	be	changed.	Just	by	changing	the	folder	Pages	to	a	different	folder,	the
AddRazorPagesOptions	method	can	be	used	to	set	the	RootDirectory	property
of	the	RazorPagesOptions.

Understanding	Razor	Syntax
Razor	Pages	(and	also	Razor	views,	as	with	MVC,	and	Razor	components	used
with	Blazor)	use	Razor	syntax.	With	Razor	syntax,	you	can	mix	HTML	and	C#
code.	Razor	uses	the	@	character	as	a	transition	character	to	switch	from	HTML
to	C#.

An	important	distinction	you	need	to	make	here	is	with	statements	that	return	a
value	and	statements	that	don't.	A	value	that	is	returned	can	be	used	directly	with
an	implicit	Razor	expression.	For	example,	ViewData["Title"]	returns	a	string.
The	returned	string	is	put	directly	between	the	HTML	title	tags	as	shown	in	the
following	code	snippet.	After	this	expression,	Razor	switches	to	HTML,	and	the
following	string	before	the	title	end	element	is	simple	HTML:

<title>@ViewData["Title"]	-	WebAppSample</title>

With	the	Razor	syntax,	the	engine	automatically	detects	the	end	of	the	C#	code
when	it	finds	an	HTML	element.	There	are	some	cases	in	which	the	end	of	the

C#	code	cannot	be	detected	automatically.	You	can	resolve	this	by	using
parentheses,	as	shown	in	the	following	example	to	mark	a	variable,	and	then	the
normal	text	continues.	This	is	an	explicit	Razor	expression:

<div>@(name),	Stephanie</div>

When	you're	invoking	methods	that	return	void	or	specifying	some	other
statements	that	don't	return	a	value,	you	need	a	Razor	code	block.	The	following
code	block	defines	a	string	variable:

@{

		string	name	=	"Angela";

}

You	can	now	use	the	variable	with	an	implicit	Razor	expression;	you	just	use	the
transition	character	@	to	access	the	variable:

<div>@name</div>

Another	way	to	start	a	Razor	code	block	is	with	the	foreach	statement:

@foreach(var	item	in	list)

{

		The	item	name	is	@item.

}

With	Razor,	you	can	also	use	control	structures	with	@if,	else	if,	else,	and
@switch.	Looping	can	be	done	with	@for,	@foreach,	@while,	and	@do	while.

NOTE Usually,	text	content	is	automatically	detected	with	Razor—for
example,	Razor	detects	an	opening	angle	bracket	or	parenthesis	with	a
variable.	There	are	a	few	cases	in	which	this	does	not	work.	Here,	you	can
explicitly	use	@:	to	define	the	start	of	text.

Instead	of	importing	namespaces	with	every	Razor	Page,	you	can	import
namespaces	with	the	file	_ViewImports.cshtml	that's	defined	in	the	Pages
folder	with	@using.	To	declare	a	namespace	for	the	types	defined	in	the	folder,
you	can	use	@namespace	(code	file
WebAppSample/Pages/_ViewImports.cshtml):

@using	WebAppSample

@namespace	WebAppSample.Pages

@addTagHelper	*,	Microsoft.AspNetCore.Mvc.TagHelpers

Tag	helpers	opened	with	@addTagHelper	in	this	file	are	explained	later	in	the
section	“Working	with	Tag	Helpers.”

RAZOR	PAGES
Razor	Pages	have	the	file	extension	.cshtml	and	start	with	a	@page	directive.
This	is	a	simple	Razor	Page	with	HTML	code:

@page

<h2>HTML	Heading</h2>

You	can	create	a	Razor	Page	with	dotnet	new	page	and	pass	a	name	to	the	--
name	option:

>	dotnet	new	page	--name	PageWithCodeBehind

>	dotnet	new	page	--name	InlinePage	--no-pagemodel

Razor	Pages	can	be	created	with	inline	code	(using	the	--no-pagemodel	option).
With	this,	C#	methods	can	be	declared	in	a	@functions	code	block.	Everything
is	in	a	single	file.	Without	using	the	--no-pagemodel	option,	a	code-behind	file
is	generated,	and	C#	methods	are	declared	within	a	page-model	class	in	the
code-behind	file	with	the	.cshtml.cs	file	extension.	By	default,	a	code-behind
file	is	used	as	shown	with	the	Error	page	(code	file
WebAppSample/Pages/Error.cshtml):

@page

@model	ErrorModel

@*	…	*@

With	a	Razor	Page,	a	class	is	created	that	derives	from	the	base	class
Microsoft.AspNetCore.Mvc.RazorPages.Page.	The	@model	directive	uses	a
generic	version	of	this	base	class	and	specifies	the	type	of	the	model	as	the
generic	parameter.	With	this,	the	Model	property	of	the	generated	class	can	be
used	to	access	data	of	the	underlying	code.

With	the	code-behind	file,	you	can	see	the	class	declared	with	the	@model
directive	deriving	from	the	base	class	PageModel	(code	file
WebAppSample/Pages/Error.cshtml.cs):

public	class	ErrorModel	:	PageModel

{

		//…

}

Other	than	using	inline	code	with	an	@functions	code	block	or	using	a	code-
behind	file	with	a	PageModel	-derived	class	in	the	code-behind	file,	you	have	a
third	option:	you	can	create	a	PageModel	-derived	class	in	the	@functions	code
block.	The	model	declaration	is	the	same	in	this	variant;	you're	just	using	one
file	instead	of	two	files	to	implement	the	Razor	Page.	It's	a	matter	of	taste.	By
default,	Visual	Studio	creates	Razor	Pages	with	code-behind	files.	Razor
components	that	you'll	create	in	the	next	chapter	use	inline	code.

Layouts
Usually,	many	pages	of	web	applications	share	some	of	the	same	content—for
example,	copyright	information,	a	logo,	and	a	main	navigation	structure.	Using
layout	pages,	you	can	share	HTML	code	with	different	Razor	Pages.

To	use	a	layout,	the	Razor	Page	base	class	PageModel	defines	the	Layout
property.	To	specify	default	settings	for	Razor	Pages,	you	use	the
_ViewStart.cshml	file.	In	the	following	code	snippet,	you	can	see	the	Layout
property	set	to	_Layout	(code	file	WebAppSample/Pages/_ViewStart.cshtml):

@{

		Layout	=	"_Layout";

}

You	can	override	this	setting	in	specific	pages	to	reference	other	layout	files,	or
you	can	create	other	_Layout.cshtml	files	with	changed	content	in	other	folders.

The	layout	page	contains	the	HTML	declaration,	html,	head,	and	body	elements,
and	in	the	body	header	and	footer	elements.	Of	course,	you	can	also	use	Razor
syntax	within	this	file.	With	the	.cshtml	file	extension	(and	without	a	@page
directive),	the	class	used	behind	the	scenes	for	the	layout	page	is	the	RazorPage
class.

The	invocation	of	the	method	RenderBody	is	important	with	layout	pages.	This
method	is	implemented	with	the	base	class	and	renders	the	content	of	the	Razor
Page.

<div	class="container">

		<main	role="main"	class="pb-3">

				@RenderBody()

		</main>

</div>

After	you	know	the	details,	let's	recapitulate	how	this	process	works:	based	on
the	route,	a	Razor	Page	is	selected.	With	the	Razor	Page,	the	Layout	property	is

set	(either	within	the	page	itself	or	with	the	default	settings	from
_ViewStart.csthml).	Based	on	this	information,	the	page	is	processed,	and	a
layout	file	is	selected	that's	rendered.	With	the	layout	file,	the	@RenderBody
method	defines	the	position	within	the	UI	where	the	result	of	the	Razor	Page	is
rendered.	Figure	26-2	shows	the	rendering	of	the	Index	page	within	the	layout
showing	menu	and	footer	information.

FIGURE	26-2

Passing	Data	Between	Views
Often	you	need	to	pass	information	from	one	view	to	the	other.	Of	course,	you
can	create	a	service	that	shares	state	during	a	request	(for	example,	registered	as
scoped	within	the	DI	container)	and	inject	the	service	in	the	views.	However,
this	is	too	much	to	do	to	share	just	simple	data,	such	as	a	title	that	should	be	set
with	a	Razor	Page	and	shown	within	the	layout.	To	do	this,	you	use	the
ViewData	property	of	the	page.	ViewData	offers	a	dictionary	where	you	can	use	a
string	as	the	key	and	pass	and	access	the	data	using	an	indexer.	The	data	can	be
any	object.

The	Index	page	sets	ViewData	with	the	Title	index	(code	file
WebAppSample/Pages/Index.cshtml):

@{

		ViewData["Title"]	=	"Home	page";

}

With	the	layout,	the	value	from	the	ViewData	is	retrieved	to	show	it	with	the	title
element	(code	file	WebAppSample/Pages/Shared/_Layout.cshtml):

<title>@ViewData["Title"]	-	WebAppSample</title>

Instead	of	using	the	ViewData	property,	you	can	use	the	ViewBag	property.
ViewBag	accesses	the	same	dictionary,	but	you	can	use	property-like	syntax:

ViewBag.Title	=	"Home	page";

This	looks	like	cleaner	code,	but	IntelliSense	doesn't	offer	you	the	property
names.	The	ViewBag	property	is	of	type	dynamic	(see	Chapter	12,	“Reflection,
Metadata,	and	Source	Generators,”	for	more	information	on	dynamic),	and	thus
the	compiler	does	not	complain	if	you	use	an	incorrect	string.

For	information	that	should	be	read	only	once,	you	can	use	the	TempData
property.	A	TempData	value	can	be	read	only	once	and	is	released	after	reading.

Render	Sections
In	case	you	want	to	put	your	page	content	in	different	parts	of	the	layout,	you
can	render	sections.	To	do	this,	you	invoke	the	RenderSectionAsync	method	in
the	layout	page,	as	shown	in	the	following	code	snippet.	The	layout	has
JavaScript	files	referenced	that	are	useful	for	all	the	pages	of	the	web
application.	With	the	section	Scripts,	additional	JavaScript	files	useful	only	for
specific	pages	can	be	referenced.	If	you	don't	want	to	require	every	page	to	have
a	Scripts	section,	the	required	argument	is	set	to	false	(code	file
WebAppSample/Pages/Shared/_Layout.cshtml):

<body>

		<!--	-->	

		<script	src="~/lib/jquery/dist/jquery.min.js"></script>

		<script	src="~/lib/bootstrap/dist/js/bootstrap.bundle.min.js">

</script>

		<script	src="~/js/site.js"	asp-append-version="true"></script>

			@await	RenderSectionAsync("Scripts",	required:	false)

</body>

Within	the	head	element	of	the	layout	page,	the	section	with	the	name	Keywords
is	referenced.	Within	the	head	element,	every	page	can	add	HTML	keyword
meta	values	(code	file	WebAppSample/Pages/Shared/_Layout.cshtml):

<head>

		<meta	charset="utf-8"/>

		<meta	name="viewport"	content="width=device-width,	initial-

scale=1.0"/>

		<title>@ViewData["Title"]	-	WebAppSample</title>

		@await	RenderSectionAsync("Keywords",	required:false)

		<link	rel="stylesheet"	

href="~/lib/bootstrap/dist/css/bootstrap.min.css"/>

		<link	rel="stylesheet"	href="~/css/site.css"/>

</head>

A	Razor	Page	can	now	supply	sections	as	shown	in	the	following	code	snippet
using	the	Razor	directive	@section	and	using	the	name	of	the	section	(code	file
WebAppSample/Pages/Index.cshtml):

@section	Keywords	{

		<meta	name="keywords"	content="C#,	.NET,	Azure">

}

Routing	with	Parameters
Routing	with	Razor	Pages	is	defined	with	a	simple	convention:	the	filename	of	a
Razor	Page	within	the	Pages	folder	is	used	with	the	URI.	In	addition	to	this,	you
can	pass	parameters	to	the	page	as	shown	with	the	following	inline	Razor	Page.
With	Razor	Pages	depending	on	the	HTTP	verbs	sent,	you	specify	the	methods
OnGet	and	OnPost.	The	parameters	that	you	specify	with	these	methods	are
mapped	from	the	request.	Here,	the	title	and	publisher	parameters	are
assigned	to	the	Title	and	Publisher	properties,	which	in	turn	are	used	with	the
HTML	content	with	implicit	Razor	expressions	accessing	the	properties	(code
file	WebAppSample/Pages/ShowBook.cshtml):

@page

	

<div>

		<dl	class="row">

				<dt	class="col-sm-2">

						Title

				</dt>

				<dd	class="col-sm-10">

						@Title

				</dd>

				<dt	class="col-sm-2">

						Publisher

				</dt>

				<dd	class="col-sm-10">

						@Publisher

				</dd>

		</dl>

</div>

	

@functions	{

		private	string?	Title	{	get;	set;	}

		private	string?	Publisher	{	get;	set;	}

		public	void	OnGet(string?	title,	string?	publisher)	=>	

				(Title,	Publisher)	=	(title,	publisher);

}

NOTE When	implementing	the	methods	for	the	HTTP	GET	and	HTTP
POST	requests,	you	have	many	options;	the	methods	just	need	to	have	the
names	OnGet	and	OnPost	(or	OnGetAsync	and	OnPostAsync	,	if
asynchronous	methods	are	used	with	the	implementation).	The	parameters
you	specify	map	with	the	route	definition.	With	the	sample	code	here,	the
OnGet	method	is	declared	to	return	void	.	You	can	also	declare	to	return
other	data	types—for	example,	you	can	return	a	string	if	just	a	string
should	be	returned.	To	return	specific	HTTP	error	codes	together	with
content,	you	can	declare	the	method	to	return	an	object	implementing	the
interface	IActionResult	.	Later	in	this	chapter	in	the	section	“Model
Binding,”	you	declare	methods	to	return	IAsyncResult	.

Now	you	can	pass	the	values	with	the	URL	string
https://localhost:5001/ShowBook?title=ProCSharp&publisher=Wrox	to
show	it	in	the	returned	HTML	page,	as	shown	in	Figure	26-3.

FIGURE	26-3

Instead	of	using	parameters	with	the	OnGet	method,	you	can	also	access	the
RouteData	property	of	the	base	class	to	access	all	the	route	values.

With	the	@page	directive,	you	can	create	a	custom	route	to	map	route	values	to
parameter	values.	Using	an	@page	directive	such	as	@page	{title}	maps	ABook
from	the	URL	https://localhost:5001/ShowBook/ABook	to	the	title	variable.

https://localhost:5001/ShowBook/ABook

The	Calc	page	uses	the	@page	directive	"{op}/{x}/{y}".	With	the	URL
https://localhost:5001/Calc/add/38/4,	the	op	variable	gets	the	value	add,
the	x	variable	the	value	38,	and	the	y	variable	the	value	4.

Optionally,	you	can	also	define	constraints	to	the	route.	If	you	specify	x	to	be	of
type	int,	with	@page	"{op}/{x:int}/{y:int}",	a	URL	where	the	value	passed
cannot	be	converted	to	int	does	not	apply,	and	the	next	route	that	matches	is
searched.

The	following	code	snippet	uses	a	custom	route	with	constraints	where	the	parts
of	the	URL	that	map	to	the	x	and	y	parameters	need	to	be	convertible	to	int	and
a	constraint	specifying	a	regular	expression.	With	the	regex	constraint,	the
values	of	the	route	need	to	match	one	of	add,	sub,	mul,	and	div	to	pass	it	to	the
op	parameter.	The	Razor	Page	Calc	uses	the	model	CalcModel	and	accesses	the
Op,	X,	Y,	and	Result	properties	with	Razor	expressions	(code	file
WebAppSample/Pages/Calc.cshtml):

@page	"{op:regex(^[add|sub|mul|div])}/{x:int}/{y:int}"

@model	WebAppSample.Pages.CalcModel

	

<h2>Calculation</h2>

<h4>The	operation	@Model.Op	with	@Model.X	and	@Model.Y	results	

in	@Model.Result</h4>

With	the	code-behind	file,	the	CalcModel	class	receives	the	op,	x,	and	y
parameters	with	the	OnGet	method,	does	calculations	depending	on	the	value	of
the	op	variable,	and	passes	the	result	to	the	Result	property	(code	file
WebAppSample/Pages/Calc.cshtml.cs):

public	class	CalcModel	:	PageModel

{

		public	string	Op	{	get;	set;	}	=	string.Empty;

		public	int	X	{	get;	set;	}

		public	int	Y	{	get;	set;	}

		public	int	Result	{	get;	private	set;	}

		public	void	OnGet(string	op,	int	x,	int	y)

		{

				Op	=	op;

				X	=	x;

				Y	=	y;

				Result	=	Op	switch

				{

						"add"	=>	X	+	Y,

						"sub"	=>	X	-	Y,

						"mul"	=>	X	*	Y,

https://localhost:5001/Calc/add/38/4

						"div"	=>	X	/	Y,

						_	=>	X	+	Y

				};

		}

}

When	you	run	the	application,	you	can	pass	URLs	such	as	Calc/add/17/25	or
Calc/mul/8/4	to	see	the	results	(Figure	26-4).

FIGURE	26-4

Razor	Libraries	and	Areas
Let's	extend	the	sample	solution	to	dig	deeper	with	Razor	Pages.	Next,	libraries
are	added	to	access	a	database.	This	solution	consists	of	the	web	application
created	earlier	with	a	.NET	5	library	BooksModel	and	a	Razor	Class	Library
BooksViews.	The	BooksModel	class	just	contains	a	Book	record	and	a
BooksContext	to	access	the	database.	Read	Chapter	21,	“Entity	Framework
Core,”	for	more	information	on	accessing	the	database.

A	Razor	Class	Library	can	be	created	with	this	.NET	CLI	command:

>	dotnet	new	razorclasslib	--support-pages-and-views	-o	

BooksViews

Be	sure	to	add	the	option	support-pages-and-views	for	Razor	Pages	support.
Without	this	option,	the	library	is	meant	to	host	Razor	components	that	are
covered	in	the	next	chapter.	Using	this	option	adds	the	element
AddRazorSupportForMvc	to	the	project	file.

When	you	use	Razor	class	libraries	with	Razor	Pages,	to	not	get	in	conflicts	with
naming	pages,	you	should	use	areas.	Areas	give	you	subfolders	with	URLs	to
reduce	conflicts	when	you	use	pages	from	different	categories	in	web
applications.

When	you	use	areas,	below	the	Areas	folder	you	add	a	subfolder	with	the	name
of	a	category	(such	as	Admin	or	Books)	and	then	a	Pages	subfolder	where	you
store	your	Razor	Pages.	The	sample	application	defines	Index,	Details,	Create,

Edit,	and	Delete	Razor	Pages	to	read	and	write	Book	objects.	By	referencing	the
library	from	the	application,	the	URL	https://localhost:5001/Books/Create
can	be	used	to	access	the	Create	page	in	the	Books	area,	as	shown	in	Figure	26-
5.

FIGURE	26-5

When	using	the	Razor	Class	Library	from	the	web	application,	all	the	pages
from	the	library	can	be	accessed	from	the	application,	but	you	can	override
specific	pages	just	by	creating	the	same	folder	structure	in	the	web	application
and	adding	the	Razor	Pages	to	override	in	this	folder.

Within	the	library,	no	layout	is	defined.	Usually,	it's	more	practical	to	use	the

same	layout	as	defined	by	the	web	application.	To	use	the	same	layout,	you	need
to	create	the	folder	structure	for	the	area	and	add	a	_ViewStart.cshtml	file
setting	the	Layout	property	of	the	Razor	Pages	within	the	view	(code	file
WebAppSample/Areas/Books/_ViewStart.cshtml):

@{

		Layout	=	"~/Pages/Shared/_Layout.cshtml";

}

Injecting	Services
With	the	code-behind	file	of	a	Razor	page,	you	can	inject	services	as	you've	seen
it	done	with	controllers	and	middleware	types	in	the	previous	two	chapters.	In
the	next	code	snippet,	in	the	CreateModel	class,	the	EF	Core	context	class
BooksContext	is	injected	in	the	constructor	(code	file
BooksViews/Areas/Books/Pages/Create.cshtml.cs):

public	class	CreateModel	:	PageModel

{

		private	readonly	BookModels.BooksContext	_context;

	

		public	CreateModel(BookModels.BooksContext	context)

		{

				_context	=	context;

		}

		//…

}

Instead	of	injecting	the	EF	Core	context,	you	can	use	the	repository	pattern	and
use	an	abstraction	to	the	EF	Core	context	that	helps	with	becoming	independent
of	the	EF	Core	context	and	helps	with	testability	as	shown	in	Chapter	25,
“Services.”

To	inject	the	service	directly	with	the	.cshtml	file	and	not	with	code-behind	file,
you	can	use	the	@inject	declaration.	This	kind	of	dependency	injection	is	used
with	Razor	components	shown	in	Chapter	27,	“Blazor.”

Returning	Results
When	creating	new	books,	first	an	HTTP	GET	request	is	done	to	get	a	form	to
fill	out	the	data.	As	the	data	is	filled	out	by	the	user,	an	HTTP	POST	request
sends	the	book	data	with	the	HTTP	body	to	the	server.

If	a	GET	request	is	sent	from	the	client,	the	OnGet	method	in	the	Create	page	is

invoked.	Here,	just	the	empty	page	is	returned.	With	the	implementation	in	the
following	code	snippet,	the	OnGet	method	returns	IActionResult.	The
PageModel	base	class	defines	several	helper	methods	to	return	results.	Examples
are	the	NotFound	method,	which	returns	a	NotFoundResult	and	an	HTTP	404
status	code,	and	the	Unauthorized	method,	which	returns	an
UnauthorizedResult	with	status	code	401.	With	the	StatusCode	method,	you
have	full	control	on	the	status	code	returned.	The	methods	from	the	base	class
PageModel	are	similar	to	the	methods	of	the	ControllerBase	class	from	Chapter
25.	The	ControllerBase	class	methods	also	are	used	with	MVC,	as	you'll	see
later	in	this	chapter	in	the	section	“ASP.NET	Core	MVC.”
With	the	Create	page,	the	OnGet	method	invokes	the	Page	method	to	return	the
content	of	the	Razor	page	with	a	status	code	200	(code	file
BooksView/Areas/Pages/Create.cshtml.cs):

public	IActionResult	OnGet()

{

		return	Page();

}

When	sending	a	GET	request,	the	user	receives	the	form,	can	fill	out	the	data,
and	submits	the	form	by	clicking	the	submit	button	(as	shown	in	the	following
code	snippet).	This	way,	an	HTTP	POST	request	is	sent,	which	is	covered	next
(code	file	BooksView/Areas/Pages/Create.cshtml):

<form	method="post">

		<!--	…	-->

		<input	type="submit"	value="Create"	class="btn	btn-primary"/>

</form>

Model	Binding
To	access	the	data	received	with	the	POST	request,	the	BindProperty	attribute
can	be	used.	BindProperty	uses	a	model	binder	(interface	IModelBinder)	to
assign	values	from	the	form	data	to	the	type	where	the	attribute	is	assigned	to;	in
the	following	code	snippet,	the	property	Book	of	type	Book	is	annotated	with	the
BindProperty	attribute.	With	the	OnPostAsync	method	that	is	invoked	with	the
POST	request,	the	Book	property	received	is	used	to	add	a	new	record	to	the	EF
Core	context	and	write	the	new	record	to	the	database.	With	a	success,	an	HTTP
redirect	request	is	sent	to	the	browser,	so	the	browser	continues	with	a	GET
request	to	the	Index	page	(code	file
BooksView/Areas/Pages/Create.cshtml.cs):

[BindProperty]

public	Book?	Book	{	get;	set;	}

	

public	async	Task<IActionResult>	OnPostAsync()

{

		if	(!ModelState.IsValid	||	Book	is	null)

		{

				return	Page();

		}

	

		_context.Books.Add(Book);

		await	_context.SaveChangesAsync();

	

		return	RedirectToPage("./Index");

}

NOTE With	the	model	type,	you	should	make	sure	that	the	model	type
doesn't	implement	properties	that	should	not	be	filled	from	a	POST	request.
In	case	your	model	has	such	properties,	an	overposting	attack	could	be	done
to	fill	these	properties	with	a	hacker's	POST	request.	To	avoid	this,	you	can
create	a	view-model	type	with	only	the	properties	that	should	be	set	and
programmatically	assign	the	model	type	to	the	values	from	the	view-model
type.	Another	option	is	to	invoke	the	TryUpdateModelAsync	(a	method	from
the	base	class	PageModel)	instead	of	the	BindProperty	attribute.	With	an
argument	of	this	method,	you	can	explicitly	specify	the	properties	that	should
be	set.

Working	with	HTML	Helpers
Let's	get	into	the	user	interface.	Instead	of	just	using	HTML	code	with	Razor
syntax	with	expressions	accessing	the	model,	you	can	use	HTML	Helpers.

With	a	Razor	page,	the	generated	class	contains	an	Html	property	of	type
IHtmlHelper	or,	if	the	@model	directive	is	used,	an	Html	property	of	the	generic
type	IHtmlHelper<Model>.	With	this	interface,	several	HTML	Helpers	are
available	that	return	HTML	code.	You	can	also	create	a	custom	HTML	Helper
by	defining	an	extension	method	that	extends	the	IHtmlHelper	interface	and
returns	a	string.

With	the	Index	page	as	shown	in	the	following	code	snippet,	the	HTML	Helpers
DisplayNameFor	and	DisplayFor	are	used	to	generate	HTML	code.
DisplayNameFor	uses	a	lambda	expression	to	define	the	property	that	should	be

used	to	access	the	property	name.	The	name	of	the	property	is	then	returned	with
the	HTML	code.	The	DisplayFor	method	uses	the	same	expression	but	returns
the	value	of	the	property.	The	DisplayNameFor	HTML	Helper	is	used	within	the
heading	of	the	HTML	table,	the	DisplayFor	method	within	the	@foreach
iteration	to	show	every	value	of	the	collection	(code	file
BooksView/Areas/Pages/Index.cshtml):

<table	class="table">

		<thead>

				<tr>

						<th>

								@Html.DisplayNameFor(model	=>	model.Books![0].Title)

						</th>

						<th>

								@Html.DisplayNameFor(model	=>	model.Books![0].Publisher)

						</th>

						<th></th>

				</tr>

		</thead>

		<tbody>

@foreach	(var	item	in	Model.Books!)	{

		<tr>

				<td>

						@Html.DisplayFor(modelItem	=>	item.Title)

				</td>

				<td>

						@Html.DisplayFor(modelItem	=>	item.Publisher)

				</td>

				<!--	…	-->

		</tr>

}

</tbody>

Displaying	the	name	of	the	property	is	not	useful	in	many	cases.	As	shown	with
the	following	code	snippet,	with	the	model	(or	view-model	type),	you	can	use
attributes	such	as	the	DisplayName	attribute	to	specify	a	name	that	should	be
used	for	display	(code	file	BooksModels/Book.cs):

public	record	Book(

		[property:	MaxLength(50)]

		[property:	DisplayName("Title")]

		string	Title,

	

		[property:MaxLength(50)]

		[property:DisplayName("Publisher")]

		string	Publisher,

	

		int	BookId	=	0);

NOTE With	the	DisplayName	attribute,	you	can	specify	resources	to	be
used	to	retrieve	the	name	to	display	from	a	resource	file.	This	allows	for
localization	of	the	user	interface.	Read	Chapter	22,	“Localization,”	for	more
information.

ASP.NET	Core	includes	many	HTML	Helpers.	Helpers	that	return	simple	HTML
elements	such	as	BeginForm	(a	form	element),	CheckBox	(input
type=”checkbox”),	TextBox	(input	type=”text”),	DropDownList	(select	with
option),	and	helpers	that	return	a	complete	form	based	on	a	model,	such	as
EditorForModel.

Working	with	Tag	Helpers
HTML	Helpers	have	been	available	since	early	versions	of	ASP.NET	MVC,	the
.NET	Framework	version	of	MVC.	Tag	Helpers	are	a	newer	construct,	available
with	ASP.NET	Core.	Instead	of	using	Razor	syntax	to	activate	the	HTML
Helpers,	with	Tag	Helpers	you	write	HTML	syntax	in	your	Razor	Pages.	Tag
Helpers	are	still	resolved	on	the	server	with	server-side	code;	HTML	and
JavaScript	syntax	is	returned	to	the	client.

Tag	Helpers	can	be	implemented	by	adding	attributes	to	existing	HTML
elements,	and	they	can	also	replace	existing	elements	or	create	new	elements,	as
shown	in	this	section	and	the	next.

Let's	get	into	an	example	using	the	anchor	Tag	Helper.	With	the	following	code
snippet,	the	HTML	element	a	is	used	to	create	a	link	within	a	Razor	page.	With
this	element,	the	attributes	asp-page,	asp-route-id,	and	asp-area	are	specified.
What's	behind	the	scenes	is	the	AnchorTagHelper	class	with	the	properties	Page,
Area,	and	RouteValues.	These	properties	are	annotated	with	the	attribute
HtmlAttributeName	using	the	values	"	asp-page	",	"	asp-area	",	and	"	asp-
route-{value}	".	With	the	asp-	prefix	used,	you	can	easily	distinguish	these
server-side	attribute	names	from	HTML	attribute	names.	When	you	use	these
attributes	with	the	AnchorTagHelper,	an	href	attribute	is	returned	to	the	link	of
the	corresponding	Razor	page	including	the	id	parameter	(code	file
BooksView/Areas/Books/Pages/Index.cshtml):

<td>

		<a	asp-page="./Edit"	asp-route-id="@item.BookId"	asp-

area="Books">Edit	|

		<a	asp-page="./Details"	asp-route-id="@item.BookId"	asp-

area="Books">Details	|

		<a	asp-page="./Delete"	asp-route-id="@item.BookId"	asp-

area="Books">Delete

</td>

Other	examples	of	Tag	Helpers	are	the	InputTagHelper	and	the
LabelTagHelper	shown	in	the	following	code	snippet.	The	LabelTagHelper	is
used	with	a	label	element	and	creates	code	for	a	display	(and	also	using	the
annotations	you've	already	seen	with	the	HTML	Helper),	and	the
InputTagHelper	is	used	with	the	input	element.	Both	of	these	helpers	map	the
asp-for	attribute	to	the	For	property	(code	file
BooksView/Areas/Books/Pages/Create.cshtml):

<label	asp-for="Book!.Publisher"	class="control-label"></label>

<input	asp-for="Book!.Publisher"	class="form-control"/>

Not	all	Tag	Helpers	are	that	easily	detectable	by	using	the	asp-	prefix.	The
EnvironmentTagHelper	uses	the	environment	element.	The	content	within	the
environment	element	is	rendered	only	if	the	code	is	built	for	the	specified
environment.	With	the	environment	element,	you	can	use	the	include	and
exclude	attributes	to	include	a	list	or	exclude	a	list	of	environments.	The
following	code	snippet	uses	the	environment	element	to	either	reference
minified	or	full-size	JavaScript	files	that	help	with	debugging	(code	file
WebAppSample/Pages/Shared/_Layout.cshtml):

<environment	include="Development">

		<script	src="~/lib/jquery/dist/jquery.js"></script>

		<script	src="~/lib/bootstrap/dist/js/bootstrap.js"></script>

</environment>

<environment	exclude="Development">

		<script	src="~/lib/jquery/dist/jquery.min.js"></script>

		<script	src="~/lib/bootstrap/dist/js/bootstrap.min.js">

</script>

</environment>

The	ASP.NET	Core	Tag	Helpers	are	defined	in	the	assembly
Microsoft.AspNetCore.Mvc.TagHelpers.	To	allow	Tag	Helpers	in	Razor	Pages,
Tag	Helpers	need	to	be	activated	with	the	@addTagHelper	directive.	The
following	@addTagHelper	directive	opens	all	Tag	Helpers	specified	by	the	*
from	the	assembly	Microsoft.AspNetCore.Mvc.TagHelpers	(code	file
WebAppSample/Areas/Books/_ViewImports.cshtml):

@addTagHelper	*,	Microsoft.AspNetCore.Mvc.TagHelpers

Instead	of	the	*,	you	can	use	the	fully	qualified	class	name	of	the	Tag	Helpers.
Specifying	the	@addTagHelper	directive	in	the	_ViewImports.cshtml	file
enables	Tag	Helpers	in	all	the	Razor	Pages	of	this	directory	and	subdirectories.	If
Tag	Helpers	should	just	be	enabled	in	specific	pages,	use	this	directive	in	these
pages.

Validation	of	User	Input
To	validate	user	input	on	the	client,	you	can	use	Tag	Helpers.	The
ValidationMessageTagHelper	attaches	error	messages	to	input	fields	(using	the
attribute	asp-validation-for).	This	helper	creates	the	HTML	5	attribute	data-
valmsg-for.	The	ValidationSummaryTagHelper	(with	the	attribute	asp-
validation-summary)	shows	summary	information	with	errors	of	the	complete
form	(code	file	BooksViews/Areas/Books/Pages/Edit.cshtml):

<div	asp-validation-summary="ModelOnly"	class="text-danger">

</div>

<div	class="form-group">

		<label	asp-for="Book!.Title"	class="control-label"></label>

		<input	asp-for="Book!.Title"	class="form-control"/>

		

</div>

The	validation	controls	make	use	of	model	annotations,	such	as	the	Required
and	StringLength	attributes.	With	the	attributes	CreditCard,	EmailAddress,
Phone,	and	Url,	you	can	use	more	attributes	for	input	validation	with	typically
used	data.	The	Range	attribute	checks	whether	the	input	falls	within	the	specified
range.	With	the	RegularExpression,	you	can	specify	a	regular	expression	to
check	for	the	correct	input.	The	validation	Tag	Helpers	are	based	on	the	jQuery
Validation	plug-in	(https://jqueryvalidation.org/).	This	library	needs	to	be
referenced	from	the	web	application.

Although	validating	the	user	input	on	the	client	enhances	usability	and	reduces
the	network	traffic,	you	also	always	need	to	verify	the	input	with	server-side
code.	With	server-side	code,	you	use	the	ModelState	property	of	the	PageModel
class	by	checking	the	IsValid	property:	ModelState.IsValid.	This	verifies
whether	the	received	data	that	is	bound	is	valid.	Here,	the	same	annotations	that
you	added	to	the	model	(or	the	view	model)	apply.

Creating	Custom	Tag	Helpers

https://jqueryvalidation.org/

Aside	from	using	the	predefined	Tag	Helpers,	you	can	create	a	custom	Tag
Helper.	The	first	custom	Tag	Helper	converts	Markdown	code	to	HTML	with	the
help	of	the	NuGet	package	Markdig.

NOTE Markdown	is	a	markup	language	that	can	be	created	with	a	text
editor.	Markdown	is	designed	to	be	converted	to	HTML	easily.	Read	my	blog
article	“Using	Markdown”	for	information	about	using	Markdown	with
.NET	at	https://csharp.christiannagel.com/2016/07/03/markdown/.

The	Tag	Helper	MarkdownTagHelper	is	implemented	in	a	.NET	5.0	library
named	CustomTagHelpers.	This	library	references	the	NuGet	package	Markdig
and	has	a	FrameworkReference	Microsoft.AspNetCore.App.	With	.NET	5
libraries,	this	FrameworkReference	includes	a	reference	to	many	ASP.NET	Core
packages.

The	following	code	snippet	shows	the	class	declaration	of	the
MarkdownTagHelper.	A	Tag	Helper	derives	from	the	base	class	TagHelper.	The
attribute	HtmlTargetElement	specifies	the	element	or	attribute	names	that	are
used	to	specify	the	Tag	Helper.	This	Tag	Helper	can	be	used	either	with	the
markdown	element	or	with	the	markdownfile	attribute	that	can	be	used	within	a
div	element.	The	TagStructure	attribute	allows	configuration	if	the	element
needs	self-closing	(enumeration	value	WithoutEndTag)	or	allows	an	end	tag	or
self-closing	with	NormalOrSelfClosing	(code	file
CustomTagHelpers/MarkdownTagHelper.cs):

[HtmlTargetElement("markdown",	

		TagStructure	=	TagStructure.NormalOrSelfClosing)]

[HtmlTargetElement(Attributes	=	"markdownfile")]

public	class	MarkdownTagHelper	:	TagHelper

{

		//…

}

Tag	Helpers	can	make	use	of	dependency	injection.	Because	the
MarkdownTagHelper	needs	the	directory	of	the	wwwroot	files,	and	this	directory
is	returned	from	the	IWebHostEnvironment	interface,	this	interface	is	injected	in
the	constructor:

private	readonly	IWebHostEnvironment	_env;

public	MarkdownTagHelper(IWebHostEnvironment	env)	=>	_env	=	env;

Properties	of	a	Tag	Helper	are	automatically	applied	by	the	infrastructure	when

https://csharp.christiannagel.com/2016/07/03/markdown/

they	are	annotated	with	the	HtmlAttributeName	attribute.	Here,	the	property
MarkdownFile	gets	its	value	from	the	markdownfile	attribute:

[HtmlAttributeName("markdownfile")]

public	string?	MarkdownFile	{	get;	set;	}

Next,	let's	get	into	the	main	functionality	of	this	Tag	Helper.	Tag	Helpers	need	to
override	one	of	the	methods	Process	or	ProcessAsync.	The	ProcessAsync
method	is	used	when	async	functionality	is	needed,	whereas	you	can	use	the
Process	method	if	you	invoke	only	synchronous	methods.	The	following	code
snippet	overrides	the	ProcessAsync	method	because	the	asynchronous	method
GetChildContentAsync	is	used	within	the	implementation.	With	the
implementation,	the	two	different	uses	of	the	MarkdownTagHelper	are
considered.	One	use	is	to	specify	the	markdown	element	where	the	content	comes
as	a	child	of	the	element,	and	the	other	is	the	markdownfile	attribute	that
references	a	markdown	file.

If	the	attribute	markdownfile	is	used,	the	MarkdownFile	property	is	set;	thus,	the
file	specified	with	this	property	is	read,	and	the	content	is	written	to	the
markdown	variable.	The	directory	of	the	file	is	retrieved	via	the	_env	variable	of
type	IHostingEnvironment.	This	interface	defines	the	WebRootPath	property
that	returns	the	root	path	for	the	web	files.

If	the	MarkdownFile	property	is	not	set,	but	instead	the	markdown	element	is
used,	the	content	of	this	element	is	read.	The	content	of	the	element	that	is
specified	within	Markdown	can	be	accessed	using	the	TagHelperOutput.	To
retrieve	the	content,	the	method	GetChildContentAsync	needs	to	be	invoked,
and	after	this	method	returns,	the	GetContent	method	needs	to	be	invoked	that
finally	returns	the	content	as	specified	in	the	HTML	page.	Using	the	Markdown
class	of	the	Markdig	library,	the	Markdown	content	is	converted	to	HTML.	This
HTML	code	is	then	put	into	the	content	of	the	TagHelperOutput	by	invoking	the
SetHtmlContent	method	(code	file
CustomTagHelpers/MarkdownTagHelper.cs):

public	override	async	Task	ProcessAsync(TagHelperContext	

context,			

		TagHelperOutput	output)

{

		string	markdown;

		if	(MarkdownFile	is	not	null)

		{

				string	filename	=	Path.Combine(_env.WebRootPath,	

MarkdownFile);

				markdown	=	File.ReadAllText(filename);

		}

		else

		{

				markdown	=	(await	

output.GetChildContentAsync()).GetContent();

		}

		output.Content.SetHtmlContent(Markdown.ToHtml(markdown));

}

After	creating	the	MarkdownTagHelper	you	can	use	it	from	a	Razor	page.	The
@addTagHelper	adds	all	Tag	Helpers	from	the	library	CustomTagHelpers.	In	the
HTML	code,	the	markdown	element	is	used.	This	element	contains	a	small
segment	of	Markdown	syntax	with	a	heading	2,	a	link,	and	a	list	(code	file
WebAppSample/Pages/UseMarkdown.cshtml):

@page

@addTagHelper	*,	CustomTagHelpers

	

<h2>Markdown	Sample</h2>

	

<markdown>

##	This	is	simple	Markdown

	

[C#	Blog](https://csharp.christiannagel.com)

	

*	one

*	two

*	three

</markdown>

When	you	run	the	application,	the	Markdown	syntax	gets	converted	to	HTML
output,	as	shown	in	Figure	26-6.

FIGURE	26-6

Now,	the	same	functionality	can	be	achieved	by	creating	the	file	Sample.md
(which	contains	the	same	Markdown	content	as	shown	earlier)	and	referencing
the	file	from	the	markdownfile	attribute	(code	file
WebAppSample/Pages/UseMarkdownAttribute.cshtml):

<div	markdownfile="Sample.md"></div>

With	this	in	place,	the	property	MarkdownFile	of	the	MarkdownTagHelper	is	set,
and	thus	the	Markdown	file	is	read.

Creating	Elements	with	Tag	Helpers
The	next	custom	Tag	Helper	you	build	in	this	section	extends	the	HTML	table
element	to	show	a	row	for	every	item	in	a	list	and	a	column	for	every	property.	A
model	of	data	information	is	passed	to	the	Tag	Helper,	and	the	Tag	Helper
creates	table,	tr,	th,	and	td	elements	dynamically.	This	Tag	Helper	uses
reflection	to	create	the	required	information.	Similar	functionality	like	this	can
be	implemented	in	view	components	as	well,	and	the	view	helpers	can	be	used
with	a	Tag	Helper.	This	section	goes	into	detail	about	creating	more	complex
Tag	Helpers	and	using	the	TagBuilder	class	to	dynamically	create	HTML
elements.

NOTE Reflection	is	explained	in	Chapter	12.

For	this	sample,	the	service	class	MenusSamplesService	implements	the	method
CreateMenuItems	to	return	a	list	of	MenuItem	objects	(code	file
WebAppSample/Services/MenusSampleService.cs):

public	class	MenuSamplesService

{

		private	List<MenuItem>?	_menuItems;

	

		public	IEnumerable<MenuItem>	GetMenuItems()	=>

				_menuItems	??=	CreateMenuItems();

	

		private	List<MenuItem>	CreateMenuItems()

		{

				DateTime	today	=	DateTime.Today;

				return	Enumerable.Range(1,	10).Select(i	=>	

						new	MenuItem(i,	$"menu	{i}",	14.8,	

today.AddDays(i))).ToList();

		}

}

The	Tag	Helper	class	TableTagHelper	is	activated	with	the	HTML	table
element.	Unlike	the	previous	helper	with	the	markup	element,	this	helper	is	used
with	a	valid	HTML	element.	The	HtmlTargetElement	specifies	table	to	apply
this	helper	and	specifies	the	attribute	items.	This	attribute	is	used	to	set	the
Items	property	as	specified	by	the	HtmlAttributeName	attribute	(code	file
CustomTagHelpers/TableTagHelper.cs):

[HtmlTargetElement("table",	Attributes	=	ItemsAttributeName)]

public	class	TableTagHelper	:	TagHelper

{

		private	const	string	ItemsAttributeName	=	"items";

	

		[HtmlAttributeName(ItemsAttributeName)]

		public	IEnumerable<object>	Items	{	get;	set;	}

		//…

}

The	heart	of	the	Tag	Helper	is	in	the	method	Process.	This	time	the	synchronous
variant	of	this	method	can	be	used	because	no	async	method	is	used	in	the
implementation.	With	the	parameters	of	the	Process	method,	you	receive	a
TagHelperContext.	This	context	contains	both	the	attributes	of	the	HTML
element	where	the	Tag	Helper	is	applied	and	all	child	elements.	With	the	table
element	specified	when	using	the	Tag	Helper,	rows	and	columns	could	already

have	been	defined,	and	you	could	merge	the	result	with	the	existing	content.	In
the	sample,	this	is	ignored,	and	just	the	attributes	are	taken	to	put	them	in	the
result.	The	result	needs	to	be	written	to	the	second	parameter:	the
TagHelperOutput	object.	For	creating	HTML	code,	the	TagBuilder	type	is	used.
The	TagBuilder	helps	create	HTML	elements	with	attributes,	and	it	deals	with
closing	of	elements.	To	add	attributes	to	the	TagBuilder,	you	use	the	method
MergeAttributes.	This	method	requires	a	dictionary	of	all	attribute	names	and
their	values.	This	dictionary	is	created	by	using	the	LINQ	extension	method
ToDictionary.	With	the	Where	method,	all	of	the	existing	attributes—with	the
exception	of	the	items	attribute—of	the	table	element	are	taken.	The	items
attribute	is	used	for	defining	items	with	the	Tag	Helper	but	is	not	needed	later	by
the	client:

public	override	void	Process(TagHelperContext	context,	

TagHelperOutput	output)

{

		TagBuilder	table	=	new("table");

		table.GenerateId(context.UniqueId,	"id");

		var	attributes	=	context.AllAttributes

				.Where(a	=>	a.Name	!=	ItemsAttributeName)

				.ToDictionary(a	=>	a.Name);

		table.MergeAttributes(attributes);

	

		PropertyInfo[]	properties	=	CreateHeading(table);

		//…

}

NOTE LINQ	is	explained	in	Chapter	9,	“Language	Integrated	Query.”

Next,	create	the	first	row	in	the	table	by	using	the	CreateHeading	method.	This
first	row	contains	a	tr	element	as	a	child	of	the	table	element,	and	it	contains	th
(table	heading)	elements	for	every	property.	To	get	all	the	property	names,	you
invoke	the	First	method	to	retrieve	the	first	object	of	the	collection.	You	access
the	properties	of	this	instance	using	reflection,	invoking	the	GetProperties
method	on	the	Type	object,	and	writing	the	name	of	the	property	to	the	inner	text
of	the	th	HTML	element:

private	PropertyInfo[]	CreateHeading(TagBuilder	table)

{

		if	(Items	is	null)	throw	new	InvalidOperationException("Items	

are	empty");

	

		TagBuilder	tr	=	new("tr");

		var	heading	=	Items.First();

		PropertyInfo[]	properties	=	heading.GetType().GetProperties();

		foreach	(var	prop	in	properties)

		{

				var	th	=	new	TagBuilder("th");

				th.InnerHtml.Append(prop.Name);

				tr.InnerHtml.AppendHtml(th);

		}

		table.InnerHtml.AppendHtml(tr);

		return	properties;

}

The	final	part	of	the	Process	method	iterates	through	all	items	of	the	collection
and	creates	more	rows	(tr)	for	every	item.	With	every	property,	a	td	element	is
added,	and	the	value	of	the	property	is	written	as	inner	text.	Last,	the	inner
HTML	code	of	the	created	table	element	is	written	to	the	output:

foreach	(var	item	in	Items)

{

		TagBuilder	tr	=	new("tr");

		foreach	(var	prop	in	properties)

		{

				TagBuilder	td	=	new("td");

				td.InnerHtml.Append(prop.GetValue(item).ToString());

				tr.InnerHtml.AppendHtml(td);

		}

		table.InnerHtml.AppendHtml(tr);

		}

		output.Content.Append(table.InnerHtml);

}

After	you've	created	the	Tag	Helper,	creating	the	view	becomes	very	simple.
With	the	code-behind	file	of	the	Razor	page	UseTableTagHelper,	the	service
MenuSampleService	is	injected	to	receive	the	menus	(code	file
WebAppSample/Pages/UseTableTagHelper.cshtml.cs):

public	class	UseTableTagHelperModel	:	PageModel

{

		public	UseTableTagHelperModel(MenuSamplesService	

menuSampleService)	=>	

				MenuItems	=	menuSampleService.GetMenuItems();

	

		public	IEnumerable<MenuItem>	MenuItems	{	get;	}

}

With	the	Razor	page	content,	the	Tag	Helper	needs	to	be	activated	by	invoking

addTagHelper.	To	create	an	instance	of	the	TableTagHelper,	the	items	attribute
is	added	to	the	HTML	table	element	(code	file
WebAppSample/Pages/UseTableTagHelper.cshtml):

@page

@addTagHelper	*,	CustomTagHelpers

@model	WebAppSample.Pages.UseTableTagHelperModel

	

<table	class="table"	items="@Model.MenuItems"></table>

When	you	run	the	application,	the	table	you	see	should	look	like	the	one	shown
in	Figure	26-7.	After	you've	created	the	Tag	Helper,	it	is	really	easy	to	use.	All
the	formatting	that	is	defined	using	CSS	still	applies	because	all	the	attributes	of
the	defined	HTML	table	are	still	in	the	resulting	HTML	output.

FIGURE	26-7

With	the	TableTagHelper,	there's	still	room	for	improvement.	It	just	uses	the
name	of	the	properties	to	display	the	title	of	the	column.	The	values	are	shown
with	a	default	representation.	How	can	you	change	this?	The	TableTagHelper
can	be	implemented	to	access	annotations	from	the	model	to	retrieve	attributes
such	as	DisplayName,	and	the	DataType	attribute	specifies	that	only	the	data	part
of	DateTime	should	be	displayed.

View	Components
ASP.NET	Core	gives	another	option	to	create	reusable	views:	view	components.
If	you	have	a	component	with	a	complex	user	interface	that	should	be	usable
across	different	web	applications,	you	can	add	a	view	component	to	a	library.
Examples	where	view	components	are	really	useful	are	dynamic	navigation	of
menus,	a	login	panel,	or	a	sidebar	content	in	a	blog.

With	view	components,	the	controller	functionality	is	implemented	in	a	class	that
derives	from	ViewComponent	with	a	name	that's	postfixed	with	ViewComponent
or	has	the	attribute	ViewComponent	applied.	The	user	interface	is	defined
similarly	to	a	view,	but	the	method	to	invoke	the	view	component	is	different.

The	view	component	for	the	sample	application	is	implemented	in	a	Razor	Class
Library	with	support	for	Razor	Pages	and	views.	The	following	code	snippet
defines	the	class	EventListComponent	that	derives	from	the	base	class
ViewComponent.	This	class	uses	the	IEventsService	contract	type	that	needs	to
be	registered	with	the	DI	container.	The	InvokeAsync	method	is	defined	to	be
called	from	the	page	that	shows	the	view	component.	This	method	can	have	any
number	and	type	of	parameters.	Instead	of	using	an	async	method
implementation,	you	can	synchronously	implement	this	method	to	return
IViewComponentResult	instead	of	Task<IViewComponentResult>.	However,
typically	the	async	variant	is	the	best	to	use—for	example,	for	accessing	a
database.	The	View	method	used	to	return	the	IViewComponentResult	is	defined
with	the	ViewComponent	base	class	and	returns	a	ViewViewComponentResult.
ViewViewComponentResult	receives	a	model	with	the	constructor	that	can	then
be	used	by	the	Razor	user	interface	(code	file
EventViews/ViewComponents/EventListViewComponent.cs):

[ViewComponent(Name	="EventList")]

public	class	EventListViewComponent	:	ViewComponent

{

		private	readonly	IEventsService	_eventsService;

		public	EventListViewComponent	(IEventsService	eventsService)	

=>	

				_eventsService	=	eventsService;

	

		public	Task<IViewComponentResult>	InvokeAsync(DateTime	from,	

DateTime	to)	=>

				Task.FromResult<IViewComponentResult>(

						View(EventsByDateRange(from,	to)));

	

		private	IEnumerable<Event>	EventsByDateRange(DateTime	from,	

DateTime	to)	=>

				_eventsService.Events.Where(e	=>	e.Date>=	from	&&	e.Date	<=	

to);

}

The	library	contains	a	default	look	for	the	view	component	that	could	be
changed	by	the	application	using	the	view	component.	The	default	user	interface
needs	to	be	stored	with	the	name	default.cshtml	(a	Razor	view)	in	the	folder
Views/Shared/Components/[viewcomponent]	or
Pages/Shared/Components/[viewcomponent].	The	Views	folder	works	both
with	Razor	Pages	and	Razor	views.	Razor	views	are	discussed	in	the	section
“ASP.NET	Core	MVC.”	With	the	application	using	the	view	component,	a
different	look	can	be	created	in	the	same	directory	structure	of	the	web
application	or	in	the	folder	Pages/Components/[viewcomponent].	With	the
sample	library,	the	view	is	stored	in	the	folder
Views/Shared/Components/EventList.	The	default.cshtml	file	is	a	simple
Razor	view	(it	doesn't	have	the	@page	directive)	that	has	a	model	specified	(with
the	@model	directive).	With	Razor	syntax,	the	Model	property	is	used	to	access
data	from	the	Event	type	(code	file
EventViews/Views/Shared/Components/EventList/default.cshtml):

@using	EventViews.Models

@model	IEnumerable<Event>

	

<h5>Dates	with	the	UI	from	the	library</h5>

<table	class="table">

		<thead>

				<tr>

						<td>Date</td>

						<td>Text</td>

				</tr>

		</thead>

		<tbody>

				@foreach	(var	ev	in	Model)

				{

						<tr>

								<td>@ev.Date.ToString("d")</td>

								<td>@ev.Text</td>

						</tr>

				}

		</tbody>

</table>

With	the	web	application,	the	IEventsService	interface	is	registered	with	an
implementation	of	the	Formula1Events	class.	This	class	returns	a	list	for
Formula	1	race	dates	and	is	injected	with	the	constructor	of	the	view	component
implementation	(code	file	WebAppSample/Startup.cs):

services.AddSingleton<IEventsService,	Formula1Events>();

Using	the	view	model	becomes	simple:	you	use	a	Tag	Helper	for	view
components.	A	simple	Razor	page	is	now	used	to	ask	the	user	for	start	and	end
dates,	and	as	the	information	is	posted,	the	view	component	is	shown.	After	the
user	interface	is	shown	with	a	GET	request,	the	user	fills	out	start	and	end	dates.
With	a	POST	request,	the	dates	match	the	binding	with	the
DateSelectionViewModel.	After	the	POST,	the	same	page	is	returned	to	the
client,	but	the	value	of	the	ShowEvents	property	switches	to	true	to	show	the
information	from	the	view	component	(code	file
WebAppSample/Pages/UseViewComponent.cshtml.cs):

public	class	UseViewComponentModel	:	PageModel

{

		public	bool	ShowEvents	{	get;	set;	}	=	false;

	

		public	IActionResult	OnGet()	=>	Page();

	

		[BindProperty]

		public	DateSelectionViewModel	DateSelection	{	get;	set;	}	=	

				new	DateSelectionViewModel();

	

		public	IActionResult	OnPost()

		{

				ShowEvents	=	true;

				return	Page();

		}

}

	

public	class	DateSelectionViewModel

{

		public	DateTime	From	{	get;	set;	}	=	DateTime.Today;

		public	DateTime	To	{	get;	set;	}	=	DateTime.Today.AddDays(20);

}

The	Razor	page	adds	Tag	Helpers	referencing	the	library	where	the	view
component	is	implemented.	This	enables	Tag	Helpers	for	view	components.
Label	and	input	elements	are	used	that	map	the	From	and	To	properties	of	the
DateSelectionViewModel.	When	the	submit	button	is	clicked,	the	POST	request
is	sent	to	the	server	(code	file
WebAppSample/Pages/UseViewComponent.cshtml):

@page

@model	WebAppSample.Pages.UseViewComponentModel

	

@addTagHelper	*,	EventViews

	

<h2>Formula	1	Calendar</h2>

<form	method="post">

		<label	asp-for="DateSelection.From"	class="control-label">

</label>

		<input	asp-for="DateSelection.From"	class="form-control"/>

		

		<label	asp-for="DateSelection.To"	class="control-label">

</label>

		<input	asp-for="DateSelection.To"	class="form-control"/>

		<input	type="submit"	value="submit"/>

</form>

The	last	part	of	the	Razor	page	is	the	view	component	that's	shown	if	the
ShowEvents	property	returns	true.	Tag	Helpers	for	view	components	are	prefixed
with	vc	and	are	named	after	the	name	of	the	view	component.	The	Tag	Helper
name	uses	a	naming	convention	known	as	lower	kebab	casing.	With	the	class
name	where	parts	have	uppercase	characters,	the	-	is	used.	In	addition,	the
ViewComponent	postfix	is	removed.	Thus,	the	class	name
EventListViewComponent	changes	to	the	Tag	Helper	name	event-list.	The
parameter	names	of	the	InvokeAsync	method	are	mapped	by	attributes	of	the
Tag	Helper	(code	file	WebAppSample/Pages/UseViewComponent.cshtml):

@if	(Model.ShowEvents)

{

<vc:event-list	from="@Model.DateSelection.From"	

to="@Model.DateSelection.To"/>

}

When	you	run	the	application,	you	can	see	the	view	component	rendered	as

shown	in	Figure	26-8.

FIGURE	26-8

ASP.NET	CORE	MVC
After	you	know	the	ins	and	outs	of	Razor	Pages,	it's	time	to	move	on	to
ASP.NET	Core	MVC.	Many	things	you've	seen	so	far	are	the	same	with	MVC,
so	I'm	focusing	on	the	differences.	With	ASP.NET	Core	MVC,	you	can	use
Razor	syntax,	HTML	Helpers,	Tag	Helpers,	view	components,	and	more.	MVC
adds	a	controller	and	uses	Razor	views	instead	of	Razor	pages.	Razor	views	are
simpler	than	Razor	pages.	In	principle,	the	code	from	the	Razor	page	moves	to
the	controller.

In	this	section,	you	create	a	sample	application	using	ASP.NET	Core	MVC	with
user	registration	where	the	information	is	stored	in	a	local	database.	You	can
create	this	application	using	this	dotnet	CLI	command:

>	dotnet	new	mvc	--auth	Individual	-o	MVCSample

NOTE A	template	that	allows	user	registration	is	also	available	with
Razor	Pages.	You	just	need	to	supply	the	template	name	webapp	instead	of
mvc	.

MVC	Bootstrapping
The	first	change	to	Razor	Pages	is	the	configuration	of	the	DI	container.	The
extension	method	AddControllersWithViews	registers	all	services	needed	for
controllers,	views,	and	the	Razor	engine.	The	configuration	of	the	EF	Core
context	and	the	default	identity	comes	from	the	--auth	option.	The
ApplicationDbContext	is	an	EF	Core	context	that	defines	DbSet	properties	to
store	user	information,	roles	of	users,	user	claims,	and	login	information.	This
context	class	can	be	extended	in	case	you	need	some	additional	information
(code	file	MVCSample/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddDbContext<ApplicationDbContext>(options	=>

				options.UseSqlite(

						Configuration.GetConnectionString("DefaultConnection")));

		services.AddDatabaseDeveloperPageExceptionFilter();

	

		services.AddDefaultIdentity<IdentityUser>(options	=>	

				options.SignIn.RequireConfirmedAccount	=	true)

						.AddEntityFrameworkStores<ApplicationDbContext>();

		services.AddControllersWithViews();

}

MVC	Routing
An	important	change	to	Razor	Pages	is	the	endpoint	routing	configuration	with
the	middleware	in	the	Configure	method.	The	method	MapControllerRoute
specifies	the	routing	for	MVC.	With	the	web	API	in	the	previous	chapter,	you
used	attribute-based	routing	that	you	specified	with	the	controller.	With	Razor
Pages,	routing	is	based	on	the	name	of	a	Razor	page.	With	the	@page	directive,
you	can	specify	customizations	to	the	route.	With	MVC	you	have	a	central	place
to	specify	all	your	routes.	You	can	invoke	MapControllerRoute	multiple	times
with	different	route	names	where	you	can	specify	different	patterns	for	the	route.
The	controller	and	action	terms	need	to	be	part	of	the	pattern.	The	term

controller	references	the	name	of	a	Controller	class	(without	the	Controller
postfix),	and	action	references	the	name	of	a	method	in	the	controller—an
action	method.	With	the	pattern	specified,	id	is	optional	(because	of	the	?)	and
specifies	the	name	of	a	method	parameter.	Using	URI	Books/Details/42	maps
to	the	BooksController	with	the	Details	action	method	and	passes	42	for	the
id	parameter.	The	pattern	specifies	default	values	for	controller	and	action	to
be	Home	and	Index.	So	by	default	with	the	URI	/,	the	Index	method	of	the
HomeController	is	invoked	without	passing	an	argument	value	to	the	Index
method.	You	can	just	use	the	URI	Books,	which	invokes	the	Index	method	in	the
BooksController	class	(code	file	MVCSample/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		//…

		app.UseRouting();

	

		app.UseAuthentication();

		app.UseAuthorization();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapControllerRoute(

						name:	"default",

						pattern:	"{controller=Home}/{action=Index}/{id?}");

				endpoints.MapRazorPages();

		});

}

Similar	to	Razor	Pages,	you	can	also	define	constraints	with	a	route,	so	it's
possible	to	have	a	route	with	ASP.NET	Core	MVC	that	matches	only	when
number	values	are	passed.

Controllers
In	the	previous	chapter,	you	created	ASP.NET	Core	controllers	to	build	web
APIs.	With	ASP.NET	Core	MVC,	it's	the	same	controller;	it	just	derives	from	the
Controller	base	class	instead	of	ControllerBase.	The	Controller	class
derives	from	ControllerBase	but	adds	features	used	by	MVC.	The	Controller
base	class	implements	methods	to	return	different	kinds	of	views,	such	as	the
View,	PartialView,	and	ViewComponent	methods,	and	ViewData	and	TempData
properties.	You've	already	used	the	ViewData	property	from	a	Razor	Pages	base
class	to	pass	data	between	different	views.	You	can	also	pass	data	between

controllers	and	views.

The	following	code	snippet	shows	the	implementation	of	the	HomeController
class.	A	controller	needs	to	be	located	in	the	Controller	subdirectory	and
named	with	a	Controller	postfix.	Deriving	from	the	Controller	base	class	is
optional.	The	HomeController	implements	the	action	methods	Index	and
Privacy.	Similar	to	the	OnGet	and	OnPost	method	you	looked	at	with	Razor
Pages,	the	action	methods	typically	return	IActionResult	(but	can	return	any
data	type).	The	View	method	that's	used	here	searches	for	a	view	with	a	specific
convention	and	returns	the	view	to	the	caller	(code	file
MVCSample/Controllers/HomeController.cs):

public	class	HomeController	:	Controller

{

		private	readonly	ILogger<HomeController>	_logger;

	

		public	HomeController(ILogger<HomeController>	logger)

		{

				_logger	=	logger;

		}

	

		public	IActionResult	Index()

		{

				return	View();

		}

	

		public	IActionResult	Privacy()

		{

				return	View();

		}

	

		[ResponseCache(Duration	=	0,	Location	=	

ResponseCacheLocation.None,	NoStore	=	true)]

		public	IActionResult	Error()

		{

				return	View(new	ErrorViewModel

				{	

						RequestId	=	Activity.Current?.Id	??	

HttpContext.TraceIdentifier	

				});

		}

}

The	convention	that's	used	with	ASP.NET	Core	MVC	to	look	for	views	is	to
search	in	the	Views	folder	for	a	folder	with	the	same	name	as	the	controller—for

example,	Views/Home.	Within	this	folder,	if	a	view	has	the	same	name	as	the
action	method,	this	view	is	returned.	If	a	view	is	not	found	in	this	folder,	a	view
is	searched	for	in	the	Shared	folder.	With	the	Shared	folder,	it's	using	the	same
fallback	mechanism	as	you've	seen	with	Razor	Pages.	To	look	for	a	different
view	name,	you	can	pass	the	name	of	the	view	to	the	View	method.	In	addition	to
the	name,	you	can	also	supply	a	model	to	the	view—	any	data	object	the	view
should	work	with.	In	addition	to	passing	data	with	ViewData,	you	can	pass	data
with	a	model.

Razor	Views
Views	used	with	ASP.NET	Core	MVC	are	Razor	views,	as	shown	with	the
Privacy	view	in	the	following	code	snippet.	The	same	file	extension	and	base
class	RazorPage	is	used	with	Razor	views.	In	the	code	snippet,	you	can	see	the
ViewData	property	of	the	RazorPage	class	to	be	used	to	set	and	get	the	value
with	the	Title	index	(code	file	MVCSample/Views/Home/Privacy.cshtml):

@{

		ViewData["Title"]	=	"Privacy	Policy";

}

<h1>@ViewData["Title"]</h1>

<p>Use	this	page	to	detail	your	site's	privacy	policy.</p>

Razor	views	don't	have	code-behind	files.	Usually	there's	not	a	lot	of	code
needed	with	Razor	views.	The	main	functionality	is	within	the	controller—or,
even	better,	with	the	services	that	are	injected	with	the	controller.

The	html	element	as	well	as	the	head	and	body	elements	are	not	specified	by	the
view.	With	MVC,	you	use	a	_Layout	page	in	the	Shared	folder	using	the
methods	RenderBody	and	RenderSection,	as	you	already	learned	with	Razor
Pages.

Strongly	Typed	Views
Razor	views	where	a	model	is	passed	from	the	controller	and	the	@model
directive	is	used	with	the	view	are	known	by	the	name	strongly	typed	view.	With
a	strongly	typed	view,	you	have	a	Model	property	with	the	type	that's	defined	by
the	@model	directive.

With	the	following	code	snippet,	the	Books	action	method	of	the
HomeController	returns	a	list	of	Book	objects	(code	file
MVCSample/Controllers/HomeController.cs):

public	IActionResult	Books()

{

		IEnumerable<Book>	books	=	Enumerable.Range(6,	12)

				.Select(i	=>	new	Book(i,	$"Professional	C#	{i}",	"Wrox	

Press")).ToArray();

		return	View(books);

}

Because	no	different	view	name	is	specified	with	the	Books	method,	a	view	with
the	name	Books	is	searched	in	the	folder	Views/Home.	This	Razor	view	has	the
@model	directive	applied,	as	shown	in	the	following	code	snippet,	so	the	model
can	be	used	with	the	HTML	Helpers	(code	file
MVCSample/Views/Home/Books.cshtml):

@model	IEnumerable<MVCSample.Controllers.Book>

@{

		ViewData["Title"]	=	"Books";

}

	

<h1>Books</h1>

	

<p>

		<a	asp-action="Create">Create	New

</p>

<table	class="table">

		<thead>

				<tr>

						<th>

								@Html.DisplayNameFor(model	=>	model.Id)

						</th>

						<th>

								@Html.DisplayNameFor(model	=>	model.Title)

						</th>

						<th>

								@Html.DisplayNameFor(model	=>	model.Publisher)

						</th>

				</tr>

		</thead>

		<tbody>

		@foreach	(var	item	in	Model)	{

				<tr>

						<td>

								@Html.DisplayFor(modelItem	=>	item.Id)

						</td>

						<td>

								@Html.DisplayFor(modelItem	=>	item.Title)

						</td>

						<td>

								@Html.DisplayFor(modelItem	=>	item.Publisher)

						</td>

				</tr>

		}

		</tbody>

</table>

As	you	can	see,	it's	the	same	technology	used	with	MVC	and	Razor	Pages.

Partial	Views
Another	type	of	view	is	the	partial	view.	Behind	the	scenes,	a	partial	view	is	a
Razor	view	with	the	same	base	class;	nothing	is	different.	It's	just	used	in	a
different	way.	A	partial	view	doesn't	have	a	layout	assigned	because	it's	only	to
be	used	within	another	Razor	view	(or	Razor	page).	So,	what's	different	from
HTML	or	Tag	Helpers?	You	use	the	.cshtml	files	with	HTML	and	Razor	syntax
to	implement	the	partial	view.	To	use	the	partial	view,	you	can	use	the	HTML
Helper	PartialAsync	or	the	partial	Tag	Helper,	as	shown	here:

<partial	name="MyPartial"/>

A	reason	why	the	partial	view	is	more	important	with	MVC	is	that	you	can
create	a	controller	action	method	to	return	a	partial	view	using	the	PartialView
method	of	the	Controller	base	class.	This	way,	you	can	make	an	HTTP	request
from	a	browser	client	to	load	an	HTML	fragment	and	only	update	parts	of	the
page.	Using	the	partial	HTML	or	Tag	Helpers,	the	controller	action	method	is
not	invoked.

Partial	views	use	the	same	base	class	RazorPage	and	offer	the	same
functionality.	Strongly	typed	views	use	the	same	@model	directive	as	you've	seen
with	Razor	Pages.

Identity	UI
The	sample	application	created	has	authentication	and	authorization	for
individual	users	turned	on.	When	you	start	the	application,	you	can	register	a
new	user	and	see	the	dialog	shown	in	Figure	26-9.	You	can	see	other	dialogs	as
well—for	logging	in	the	user,	changing	profile	information,	and	more.

FIGURE	26-9

Where	are	these	dialogs	coming	from?	With	the	application,	you'll	see	an	Areas
folder	with	the	subfolder	Identity	and	the	subfolder	Pages.	The	only	file	within
this	folder	is	the	file	_ViewStart.cshtml	:

@{

		Layout	=	"/Views/Shared/_Layout.cshtml";

}

All	the	user	interfaces	for	the	identity	area	are	coming	from	the	Razor	Class
Library	Microsoft.AspNetCore.Identity.UI.	This	library	defines	Razor	Pages
for	all	the	different	dialogs	used.	The	layout	used	with	all	these	dialogs	is
coming	from	your	web	application.

As	you	learned	in	the	section	“Razor	Libraries	and	Areas,”	you	can	override
every	Razor	page	of	a	Razor	library.	With	Visual	Studio,	from	the	Solution
Explorer	you	can	select	Add	➪	Add	New	Scaffolded	Item	and	select	Identity.
When	you	click	the	Add	button,	you	can	see	all	the	different	dialogs	you	can
override	with	your	application,	as	shown	in	Figure	26-10.	For	all	the	pages	you
select,	a	copy	of	the	Razor	page,	including	the	code-behind	file,	is	created	in
your	application,	and	you	can	change	it	as	needed.

As	you	saw	with	the	last	step,	MVC	and	Razor	Pages	mix	very	well.

FIGURE	26-10

SUMMARY
In	this	chapter,	you	explored	many	features	available	with	ASP.NET	Core	for
Razor	Pages	as	well	as	ASP.NET	Core	MVC.	Razor	syntax	plays	an	important
role	with	Razor	Pages	and	views,	and	you	can	reuse	and	create	UI	components
written	with	partial	views,	HTML	Helpers,	Tag	Helpers,	and	view	components.

You've	seen	how	routing	is	done	with	Razor	Pages	and	how	this	differs	with
ASP.NET	Core	MVC.

The	next	chapter	dives	into	a	new	technology	where	Razor	is	used:	Razor
components.	Razor	components	are	based	on	the	ideas	of	Razor	Pages	but	are
very	different	because	you	can't	use	Tag	Helpers	and	HTML	Helpers.	With
Razor	components,	you	can	run	.NET	code	on	the	client	within	a	WebAssembly
using	the	Blazor	technology.

27
Blazor

WHAT'S	IN	THIS	CHAPTER?

Getting	to	know	Blazor	Server	and	Blazor	WebAssembly

Understanding	the	layout	with	Blazor	applications

Navigating	between	Razor	components

Creating	and	using	Razor	components

Injecting	services

Implementing	event	callbacks	between	components

Using	two-way	binding

Cascading	parameters	with	component	hierarchies

Creating	templated	components

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	3_Web/Blazor.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

Blazor.ServerSample

Blazor.WASMSample

Blazor.ComponentsSample

All	the	projects	have	nullable	reference	types	enabled.

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

BLAZOR	SERVER	AND	BLAZOR
WEBASSEMBLY
Blazor	is	a	new	ASP.NET	Core	technology	to	create	interactive	web
applications.	With	Blazor,	you	get	full-stack	.NET	development	without	the	need
to	write	JavaScript	code.	The	application	can	be	built	using	HTML,	C#,	and	CSS
—both	for	the	client	and	for	the	server.

You	need	to	understand	the	difference	between	two	options:	Blazor	Server	and
Blazor	WebAssembly.	Both	options	offer	full-stack	.NET	development,	and	with
both	of	these	options,	you're	creating	Razor	components.	Razor	components	are
an	extension	of	Razor	Pages,	which	are	covered	in	Chapter	26,	“Razor	Pages	and
MVC.”	With	Blazor	Server,	Razor	components	run	on	the	server.	With	Blazor
WebAssembly,	Razor	components	run	on	the	client.	To	understand	the
differences	and	the	advantages	and	disadvantages	of	these	options,	let's	get	into
more	details.

Blazor	Server
With	Blazor	Server	(see	Figure	27-1),	the	client	always	needs	to	be	connected	to
the	server.	You	can	write	server-side	C#	code	using	Razor	components.	You
directly	work	with	HTML	and	C#	on	the	server	and	make	updates	to	HTML	via
data	binding.	Behind	the	scenes,	HTML	updates	are	sent	to	the	client,	and	a
Blazor	client-side	JavaScript	library,	which	you	don't	need	to	deal	with,	updates
the	user	interface.	With	Blazor	Server,	a	connection	(a	circuit)	between	the	client
and	the	server	stays	open,	and	the	client	just	needs	to	run	HTML	and	JavaScript.
To	keep	the	connection	open	and	to	communicate	between	the	client	and	the
server,	SignalR	is	used.	SignalR	offers	an	abstraction	layer	to	WebSockets.

NOTE More	information	on	SignalR	and	how	you	can	use	SignalR
directly	from	.NET	and	JavaScript	is	covered	in	Chapter	28,	“SignalR.”

FIGURE	27-1

When	you	use	Blazor	Server,	the	size	of	the	code	downloaded	to	the	client	is
significantly	smaller	than	with	Blazor	WebAssembly.	With	Blazor	Server,	you
can	use	the	server	capabilities	(for	example,	features	discussed	in	the	previous
chapters),	and	tooling	is	much	more	mature.	A	disadvantage	of	Blazor	Server	is
that	the	clients	are	always	connected.	There's	no	offline	support.	This	way	more
continuous	load	is	created	on	the	server	and	on	the	network.	What	is	the	number
of	clients	simultaneously	connected	to	the	server?

WebAssembly
Blazor	WebAssembly	is	based	on	the	WebAssembly	(Wasm)	standard	(see
https://www.w3.org/TR/wasm-core-1/).	Wasm	defines	binary	code	that	can
run	in	the	browser.	All	modern	browsers	support	Wasm	(see
https://caniuse.com/?search=webassembly).	That	is,	Internet	Explorer	(IE)
does	not	support	Wasm,	but	this	shouldn't	be	an	issue	today	because	many
websites	no	longer	support	IE.	However,	you	need	to	be	aware	of	what
WebAssembly	features	are	supported	by	the	browser.	WebAssembly	is
continuously	enhanced	with	new	features;	check	the	roadmap	for	planned
features	for	WebAssembly	at	https://webassembly.org/roadmap/.

Code	to	compile	Wasm	code	can	be	written	with	many	programming	languages
including	C#,	F#,	C++,	Rust,	Go,	Swift,	and	Pascal.

Goals	defined	by	WebAssembly	are	to	have	fast-running	code	(near-native	code
performance),	to	be	capable	of	running	in	a	safe	environment	(the	browser's
sandbox),	and	to	be	portable.	Use	cases	for	WebAssembly	are	to	create	apps	that
have	issues	with	JavaScript	(such	as	video	or	image	editing	and	CAD	apps),	run
fat	clients	in	the	browser,	and	use	it	for	language	interpreters	and	virtual
machines.	Microsoft	created	a	.NET	runtime	to	run	in	the	browser	that's	running
binary	Wasm	code.	The	C#	compiler	creates	IL	code,	and	this	IL	code	can	run	in
the	.NET	runtime	in	the	browser.

NOTE ASP.NET	Core	Blazor	WebAssembly	is	one	way	to	run
WebAssembly	code	in	the	browser.	Another	option	is	the	Uno	Platform
(https://platform.uno/),	which	allows	you	to	run	C#	and	XAML	code
with	WinUI	controls	in	the	browser.	See	Chapters	for	more	information	on
WinUI.

Blazor	WebAssembly

https://www.w3.org/TR/wasm-core-1/
https://caniuse.com/?search=webassembly
https://webassembly.org/roadmap/
https://platform.uno/

When	you	use	Blazor	WebAssembly,	you	write	Razor	components	similar	to
Blazor	Server,	but	that's	where	the	similarities	end.	Outside	of	the	programming
environment,	Blazor	WebAssembly	is	very	different.	Here,	the	.NET	code	runs
on	the	client	(Figure	27-2);	you	don't	need	a	server	at	all	because	the	files	just
need	to	be	distributed	to	the	client.	Blazor	WebAssembly	can	also	be	created	to
be	a	progressive	web	application	(PWA),	which	can	run	without	connection	to	a
server	(after	the	application	is	installed	on	the	client).

FIGURE	27-2

Blazor	WebAssembly	is	not	making	use	of	SignalR.	Instead,	the	.NET	runtime
(Wasm	binary)	and	the	Blazor	runtime	are	sent	to	the	client	along	with	the	.NET
DLLs	(IL	code)	of	your	application.	Now,	you	might	think	that	the	.NET	runtime
is	huge.	It's	not	as	big	as	you	might	expect	because	it's	a	specific	runtime	built
for	WebAssembly	and	doesn't	support	all	the	features	of	the	.NET	runtime	that's
running	locally	on	your	system.	Also,	the	binaries	built	for	ASP.NET	Core
Blazor	WebAssembly	and	from	your	application	are	trimmed.	Trimming	of	the
binaries	means	that	code	that's	not	used	is	trimmed	from	the	binaries,	and	it
plays	an	important	role.	Read	Chapter	1,	“.NET	Applications	and	Tools,”	for
information	on	trimming	assemblies.

Blazor	WebAssembly	can	be	hosted	with	a	static	web	app—for	example,	using
an	Azure	Storage	account	or,	even	better,	Azure	Static	Web	Apps.	Of	course,
usually	a	backend	is	needed	as	well.	With	Azure	Static	Web	Apps,	you	can
create	a	REST	API	service	using	Azure	Functions,	which	is	covered	in	Chapter
25,	“Services.”

To	take	full	advantage	of	Blazor	WebAssembly,	it's	still	advantageous	to	use
.NET	on	the	server.	Using	.NET	on	the	server	allows	you	to	prerender	HTML
code	that	is	sent	to	the	client,	so	the	client	can	see	the	HTML	code	before	the
WebAssembly	code	is	downloaded	and	runs.

Advantages	of	using	Blazor	WebAssembly	compared	to	Blazor	Server	are	that
you	can	use	the	client	capabilities	and	processing	power	and	that	the	application
can	be	installed	as	a	PWA	and	can	still	run	without	the	server	available.	Of

course,	there	are	disadvantages	because	more	code	needs	to	be	downloaded	to
the	client,	and	the	development	environment	is	not	as	mature	as	with	the	server
side.	Today	debugging	of	client-side	.NET	Code	works	in	most	scenarios,	but
not	in	all.

CREATING	A	BLAZOR	SERVER	WEB
APPLICATION
Let's	start	by	creating	a	Blazor	server	web	application	using	the	.NET	CLI	with
the	following:

>	dotnet	new	blazorserver	-o	Blazor.ServerSample

Of	course,	you	can	also	use	a	Visual	Studio	template.	With	the	generated	code,
the	Program.cs	file	with	the	Host	class	configuration	is	the	same	as	you've	seen
it	in	the	previous	chapters,	but	the	configuration	of	the	dependency	injection
container	in	the	Startup	class	is	different,	as	shown	in	the	following	code
snippet.	After	adding	Razor	Pages	with	the	extension	method	AddRazorPages,
services	needed	for	server-side	Blazor	are	added	with	the	extension	method
AddServerSideBlazor.	AddServerSideBlazor	returns	an
IServerSideBlazorBuilder,	which	allows	configuring	hub	(AddHubOptions)
and	circuit	(AddCircuitOptions)	options.	Hub	options	allow	you	to	configure
client	timeouts,	configure	buffer	sizes,	and	enable	detailed	errors.	The	generated
template	also	registers	a	singleton	for	weather	forecast	information	(code	file
Blazor.ServerSample/Startup.cs):

public	void	ConfigureServices(IServiceCollection	services)

{

		services.AddRazorPages();

		services.AddServerSideBlazor();

		services.AddSingleton<WeatherForecastService>();

}

With	the	middleware,	static	files	need	to	be	configured	to	be	sent	to	the	client
(UseStaticFiles).	Endpoint	routing	specifies	that	Blazor	takes	over	the	default
routing	(MapBlazorHub);	this	configures	the	SignalR	hub	route	used	for	the
WebSocket	communication	from	the	client	to	the	server.	In	case	a	route	is	not
found,	the	fallback	is	set	to	_Host	with	MapFallbackToPage	(code	file
Blazor.ServerSample/Startup.cs):

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		//…

		app.UseHttpsRedirection();

		app.UseStaticFiles();

	

		app.UseRouting();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapBlazorHub();

				endpoints.MapFallbackToPage("/_Host");

		});

}

Blazor	Server	Startup
After	the	startup	of	ASP.NET	Core	with	the	DI	container	configuration	and	the
middleware	configuration,	the	next	step	to	start	Blazor	Server	is	the
_Host.cshtml	Razor	page.	This	file	contains	the	component	tag	helper	(which
are	discussed	in	Chapter	26),	as	shown	in	the	following	code	snippet,	which
renders	the	Razor	component	App.	With	the	render-mode	options,	you	can
specify	the	output	of	the	Razor	component.	Setting	this	to	Static	just	renders
HTML,	and	Blazor	code	is	not	active.	Using	Server	creates	markers	that	are
used	by	the	Blazor	communication	to	send	the	HTML	and	JavaScript	output
dynamically	via	SignalR.	The	default	option	is	ServerPrerendered,	where
HTML	is	already	prerendered	on	the	server,	and	in	addition	to	HTML,	markers
are	sent	to	the	client.	With	ServerPrerendered,	the	client	sees	the	first	HTML
output	faster.	The	markers	are	then	used	for	dynamic	updates	(code	file
Blazor.ServerSample/Pages/_Host.cshtml):

<component	type="typeof(App)"	render-mode="ServerPrerendered"/>

With	the	_Host	file,	the	HTML	element	base	plays	an	important	role	in	setting
the	base	route	for	Blazor.	This	helper	is	used	among	other	HTML	header	settings
and	includes	style	sheets	used	by	all	the	Razor	components	(code	file
Blazor.ServerSample/Pages/_Host.cshtml):

<head>

				<meta	charset="utf-8"/>

				<meta	name="viewport"	content="width=device-width,	initial-

scale=1.0"/>

				<title>Blazor.ServerSample</title>

				<base	href="~/"	/>

				<link	rel="stylesheet"	

href="css/bootstrap/bootstrap.min.css"/>

				<link	href="css/site.css"	rel="stylesheet"/>

				<link	href="Blazor.ServerSample.styles.css"	

rel="stylesheet"/>

</head>

App	is	the	first	Razor	component	that	comes	into	play	with	bootstrapping	of	the
application.	The	complete	generated	App	component	is	shown	in	the	following
code	snippet.	This	component	includes	some	other	Razor	components	and	a	little
HTML	code.	The	p	element	is	HTML;	all	the	other	elements	are	Razor
components:	Router,	Found,	NotFound,	RouteView,	and	LayoutView	(code	file
Blazor.ServerSample/App.razor):

<Router	AppAssembly="@typeof(Program).Assembly"	

PreferExactMatches="@true">

		<Found	Context="routeData">

				<RouteView	RouteData="@routeData"	

DefaultLayout="@typeof(MainLayout)"/>

		</Found>

		<NotFound>

				<LayoutView	Layout="@typeof(MainLayout)">

						<p>Sorry,	there's	nothing	at	this	address.</p>

				</LayoutView>

		</NotFound>

</Router>

The	Router	component	is	responsible	for	the	routing	of	Blazor	apps.	Chapter	26
covers	creating	routes	with	Razor	pages	and	the	@page	directive.	The	@page
directive	is	used	with	Razor	components	as	well	(but	with	Razor	components,
the	@page	directive	is	optional).	If	the	Razor	component	includes	a	route,	it	is
used	by	the	Router	component	to	add	it	to	the	possible	route	matches.	If	a	match
is	found	(using	the	Found	component),	the	RouteView	component	is	used	to
continue.	If	a	match	is	not	found	(see	the	NotFound	component),	the	LayoutView
component	is	used.	With	the	generated	file,	both	the	RouteView	as	well	as	the
LayoutView	use	the	same	Razor	component,	MainLayout,	to	render	the	HTML
layout.	The	LayoutView	renders	the	child	content	within	the	associated	layout
specified	by	the	Layout	property.	With	the	generated	code,	simple	HTML	code	is
shown	if	the	URL	does	not	have	a	matching	route.	With	the	RouteView,	a	default
layout	is	specified,	which	can	be	overridden	with	the	components	if	specific
components	should	use	a	different	layout.	Next,	the	main	responsibility	of	the
RouteView	is	to	activate	a	Razor	component	that	matches	the	route	and	to	pass
route	data	to	this	component.

Blazor	Layout
According	to	the	definition	of	the	App	component,	the	MainLayout	component	as
shown	in	the	following	code	snippet	is	used	for	the	default	layout.	This
component	inherits	from	the	base	class	LayoutComponentBase.
LayoutComponentBase	defines	the	Body	property	of	type	RenderFragment.
RenderFragment	allows	creating	templated	components	as	shown	in	detail	in	the
section	“Using	Templated	Components.”	With	the	MainLayout,	the	Body
property	is	used	to	render	the	Razor	component	passed	from	the	RouteView.
Within	the	MainLayout,	you	can	see	another	Razor	component	used:	NavMenu	is
a	component	to	show	the	navigation	of	the	application.	Other	than	that,	the
MainLayout	only	contains	HTML	(code	file
Blazor.ServerSample/Shared/MainLayout.razor):

@inherits	LayoutComponentBase

	

<div	class="page">

		<div	class="sidebar">

				<NavMenu	/>

		</div>

	

		<div	class="main">

				<div	class="top-row	px-4">

						<a	href="https://docs.microsoft.com/aspnet/"	

target="_blank">About

				</div>

	

				<div	class="content	px-4">

						@Body

				</div>

		</div>

</div>

The	MainLayout	is	stored	in	the	folder	Shared.	Blazor	makes	use	of	the	same
mechanisms	you've	seen	in	the	previous	chapter.	Components	are	searched	first
in	the	Pages	folder,	and	if	they	can't	be	found	there,	the	search	continues	in	the
Shared	folder.	This	way	you	can	override	the	application	to	use	different
MainLayout.razor	layouts	in	different	Pages	and	Areas	folders.

Navigation
With	the	Razor	component	NavMenu,	you	can	see	some	more	Blazor	features	in
action.	As	shown	in	the	following	code	snippet,	this	component	uses	an	HTML
button	where	the	onclick	event	is	bound	to	the	C#	method	ToggleNavMenu.

With	Blazor	Server,	as	the	user	clicks	the	HTML	button	on	the	client,
communication	happens	with	the	server	where	the	ToggleNavMenu	method	runs
on	the	server	(code	file	Blazor.ServerSample/Shared/NavMenu.razor):

<div	class="top-row	pl-4	navbar	navbar-dark">

		Blazor.ServerSample

		<button	class="navbar-toggler"	@onclick="ToggleNavMenu">

				

		</button>

</div>

For	mapping	HTML	element	events	to	.NET	methods,	you	just	need	to	use	the	@
symbol	as	a	prefix	to	the	event	name	to	bind	the	event	to	a	.NET	method.	This	is
covered	with	more	detail	in	the	section	“Two-Way	Binding.”

With	Razor	components,	the	C#	code	is	defined	within	the	@code	section	(which
is	different	than	the	@functions	section	with	Razor	pages).	With	this	code
section,	you	can	see	the	ToggleNavMenu	that	switches	the	value	of	the
collapseNavMenu	between	true	and	false.	The	NavMenuCssClass	returns
different	values,	collapse	or	null,	based	on	the	value	of	the	Boolean	field	(code
file	Blazor.ServerSample/Shared/NavMenu.razor):

@code	{

		private	bool	collapseNavMenu	=	true;

	

		private	string?	NavMenuCssClass	=>	collapseNavMenu	?	

"collapse"	:	null;

	

		private	void	ToggleNavMenu()

		{

				collapseNavMenu	=	!collapseNavMenu;

		}

}

Binding	in	the	other	direction—	from	the	C#	code	to	HTML—	is	done	with	the
class	attribute	of	the	first	div	element	in	the	following	code	snippet.	The
HTML	attribute	class	binds	to	the	NavMenuCssClass	string	defined	with	the
code	segment.	When	an	event	occurs	(such	as	the	click	event)	and	the	C#
source	changes,	the	user	interface	gets	updated.	The	div	element	also	binds	the
onclick	event	to	the	ToggleNavMenu	method,	so	you	can	either	click	the	button
or	click	the	div	element	to	invoke	this	method.	The	NavMenu	component	also
contains	NavLink	components	to	create	HTML	links	to	Razor	components	that
match	the	default	route	and	the	counter	and	fetchdata	routes	as	specified	by
the	href	attributes.	The	href	attributes	are	added	to	the	anchor	(a)	elements	that

are	rendered	from	NavMenu	(code	file
Blazor.ServerSample/Shared/NavMenu.razor):

<div	class="@NavMenuCssClass"	@onclick="ToggleNavMenu">

		<ul	class="nav	flex-column">

				<li	class="nav-item	px-3">

						<NavLink	class="nav-link"	href=""	

Match="NavLinkMatch.All">

									Home

						</NavLink>

				

				<li	class="nav-item	px-3">

						<NavLink	class="nav-link"	href="counter">

									

Counter

						</NavLink>

				

				<li	class="nav-item	px-3">

						<NavLink	class="nav-link"	href="fetchdata">

									

Fetch	data

						</NavLink>

				

		

</div>

The	NavLink	component	not	only	creates	an	HTML	anchor	(a)	element,	but	it
also	toggles	the	active	CSS	class.	Setting	the	Match	property	to
NavLinkMatch.All	activates	the	class	only	if	the	link	matches	completely.	With
the	default	NavLinkMatch.Prefix,	the	CSS	class	is	activated	if	the	start	of	the
link	matches.

The	Counter	Component
Now	that	we've	gone	through	the	bootstrap,	the	layout,	and	the	navigation,	let's
move	on	to	components.	The	Counter	component	is	one	of	the	components
created	with	the	default	template.	There's	not	a	big	difference	from	the
components	MainLayout	and	NavMenu.	The	Counter	component	starts	with	a
@page	directive,	which	defines	the	link	/counter.	Razor	components	without	a
@page	directive	can	only	be	used	within	other	components.	Because	Counter	has
a	@page	directive	with	the	link	/counter,	this	component	can	be	accessed	by
passing	/counter	with	the	URI.	The	Counter	component	also	makes	use	of
binding	to	connect	the	onclick	event	of	the	button	to	the	.NET	method
IncrementCount	and	to	retrieve	the	value	of	the	currentCount	field	using

@currentCount	(code	file	Blazor.ServerSample/Pages/Counter.razor):

@page	"/counter"

	

<h1>Counter</h1>

	

<p>Current	count:	@currentCount</p>

	

<button	class="btn	btn-primary"	@onclick="IncrementCount">Click	

me</button>

	

@code	{

		private	int	currentCount	=	0;

	

		private	void	IncrementCount()

		{

				currentCount++;

		}

}

When	you	run	the	application,	you	can	see	the	Counter	component	and	click	the
button	to	increment	the	count.	When	you	resize	the	application	to	make	it
smaller,	the	look	changes	because	of	the	Bootstrap	theme	used.	Making	the
application	smaller,	the	toggle	button	discussed	earlier	in	the	section
“Navigation”	is	visible	(Figure	27-3),	and	you	can	show	or	hide	the	menus.

FIGURE	27-3

The	FetchData	Component

Another	interesting	component	created	with	the	default	template	is	the
FetchData	component.	This	component	injects	the	WeatherForecastService
using	the	@inject	directive.	Remember,	this	service	was	registered	into	the	DI
container	at	the	start	of	the	section	“Creating	a	Blazor	Server	Web	Application”
(code	file	Blazor.ServerSample/Pages/FetchData.razor):

@page	"/fetchdata"

	

@using	Blazor.ServerSample.Data

@inject	WeatherForecastService	ForecastService

<!--	…		-->

Within	the	code	section,	in	the	OnInitializeAsync	method,	the
GetForecastAsync	method	is	invoked,	which	returns	weather	information	for
the	next	few	days.	With	Razor	components,	on	initialization	the	method
OnInitializeAsync	is	invoked	(code	file
Blazor.ServerSample/Pages/FetchData.razor):

@code	{

		private	WeatherForecast[]?	forecasts;

	

		protected	override	async	Task	OnInitializedAsync()

		{

				forecasts	=	await	

ForecastService.GetForecastAsync(DateTime.Now);

		}

}

NOTE The	lifetime	of	Razor	components	is	different	than	Razor	Pages.	As
a	parent	component	renders,	you	can	override	the	following	methods;	they
are	invoked	in	the	listed	order:	SetParametersAsync	(sets	the	parameters),
OnInitialized(Async)	(override	for	your	initialization	code),
OnParametersSet(Async)	(parameters	are	assigned),	StateHasChanged	,
ShouldRender	(returns	true	if	rendering	should	be	done),	and
OnAfterRender(Async)	(invoked	after	rendering).	Some	of	the	methods	have
a	synchronous	as	well	an	asynchronous	version.	The	synchronous	method	is
invoked	before	the	asynchronous.	If	you	invoke	async	APIs,	override	the
async	method.	The	OnInitialized(Async)	methods	are	invoked	only	once
when	the	component	is	initialized.	The	other	methods	are	invoked	every	time
the	component	is	shown.

With	the	following	code	snippet,	the	WeatherForecast	array	is	used	to	display

the	information	returned—using	Razor	syntax	mixed	with	HTML
(Blazor.ServerSample/Pages/FetchData.razor):

@if	(forecasts	==	null)

{

		<p>Loading…</p>

}

else

{

		<table	class="table">

				<thead>

						<tr>

								<th>Date</th>

								<th>Temp.	(C)</th>

								<th>Temp.	(F)</th>

								<th>Summary</th>

						</tr>

				</thead>

				<tbody>

						@foreach	(var	forecast	in	forecasts)

						{

								<tr>

										<td>@forecast.Date.ToShortDateString()</td>

										<td>@forecast.TemperatureC</td>

										<td>@forecast.TemperatureF</td>

										<td>@forecast.Summary</td>

								</tr>

						}

				</tbody>

		</table>

}

When	you	run	the	application,	you	can	open	the	browser's	developer	tools	to	see
WebSocket	communication	is	used	between	client	and	server.

BLAZOR	WEBASSEMBLY
Now	that	you	understand	the	path	through	a	Blazor	Server	project,	let's	get	into
the	differences	with	Blazor	WebAssembly.	dotnet	new	blazorwasm	creates	a
new	Blazor	WebAssembly	project	that	you	can	publish	to	a	server	to	publish
files	that	need	to	be	returned	to	the	client.	Let's	add	the	--hosted	and	--pwa
options	to	this:

>	dotnet	new	blazorwasm	--hosted	--pwa	-o	Blazor.WasmSample

As	a	result	of	this	command,	three	projects	are	created:	a	shared	library
containing	code	that	can	be	used	both	from	the	API	and	from	Blazor
WebAssembly,	an	ASP.NET	Core	Web	API	project	that	not	only	hosts	a	Web
API	controller	but	also	is	used	to	contain	all	the	Blazor	WebAssembly	files
needed	when	publishing	to	send	it	to	the	client,	and	a	project	for	Blazor
WebAssembly.

The	Blazor.WasmSample.Server	project	references	both	the
Blazor.WasmSample.Client	project	as	well	as	the	Blazor.WasmSample.Shared
project.	This	is	an	ASP.NET	Core	project	hosting	Razor	Pages	(covered	in
Chapter	26),	an	ASP.NET	Core	Web	API	(covered	in	Chapter	25),	and	the	code
to	serve	the	Blazor	client	files	for	the	client.	When	publishing,	you	need	to	create
a	publish	package	with	this	project	that	contains	all	the	files	you	need	to	publish
to	the	web	server.	A	NuGet	package	added	for	the	server-side	part	is
Microsoft.AspNetCore.Components.WebAssembly.Server.

With	the	Startup	class,	you'll	see	some	specific	Blazor	configurations	with	the
configuration	of	the	middleware.	In	development	mode,
UseWebAssemblyDebugging,	middleware	is	added	to	allow	debugging	Blazor
WebAssembly	applications	in	Chromium-based	browsers.	Google	Chrome	and
Microsoft	Edge	can	be	used	for	debugging.	UseBlazorFrameworkFiles	defines
the	path	to	be	used	for	Blazor	WebAssembly.	With	an	overload	of	the	method,
you	can	supply	a	path.	By	default,	the	root	path	is	used	for	Blazor.	With	the
endpoint	configuration,	Razor	Pages	are	mapped	(the	project	contains	an
Error.cshtml	Razor	page	that's	returned	if	a	server-side	exception	is	returned	as
defined	by	the	UseExceptionHandler	method)	with	the	invocation	of
MapRazorPages,	and	API	controllers	are	mapped	with	the	invocation	of
MapControllers.	This	project	contains	the	WeatherForecastController	to
return	weather	information	from	the	server.	With	this	project,	the	fallback	path	is
set	to	index.html.	This	file	cannot	be	found	on	the	server;	it's	part	of	the
Blazor.WasmSample.Client	project.	The	complete	wwwroot	directory	is	defined
with	the	client	project.

public	void	Configure(IApplicationBuilder	app,	

IWebHostEnvironment	env)

{

		if	(env.IsDevelopment())

		{

				app.UseDeveloperExceptionPage();

				app.UseWebAssemblyDebugging();

		}

		else

		{

				app.UseExceptionHandler("/Error");

				app.UseHsts();

		}

	

		app.UseHttpsRedirection();

		app.UseBlazorFrameworkFiles();

		app.UseStaticFiles();

	

		app.UseRouting();

	

		app.UseEndpoints(endpoints	=>

		{

				endpoints.MapRazorPages();

				endpoints.MapControllers();

				endpoints.MapFallbackToFile("index.html");

		});

}

Blazor	WebAssembly	Startup
After	the	Blazor	files	are	sent	to	the	client,	the	bootstrap	with	Blazor
WebAssembly	is	different	from	Blazor	Server.	The	first	difference	is	the
index.html	file	that's	used	instead	of	the	_Host	Razor	page.	Razor	Pages	cannot
be	used	on	the	client.	index.html	uses	the	base	element	for	relative	addresses
and	references	style	sheets	similar	to	_Host.	Other	than	that,	the	JavaScript	file
_framework/blazor.webassembly.js	is	referenced	to	load	the	Blazor
WebAssembly.

With	the	Blazor.WasmSample.Client	project,	a	Main	method	is	available	that's
the	start	of	the	.NET	code,	as	shown	in	the	following	code	snippet.	With	the
WebAssembly,	the	CreateDefaultBuilder	method	of	the	Host	class	cannot	be
used	because	some	parts	there	are	not	available	in	the	sandbox	of	the	browser.
However,	the	code	is	not	that	much	different,	and	a	ServiceCollection	for	the
DI	container	is	used	as	well.	Here,	the	WebAssemblyHostBuilder	with	the
CreateDefault	method	is	used	to	create	a	WebAssemblyHostBuilder	instance.
This	type	can	be	used	(similar	to	the	HostBuilder	class)	to	configure
dependency	injection,	logging,	and	configuration.	With	the	generated	code,	an
HttpClient	instance	is	registered	in	the	DI	container.	This	is	important	because
when	you're	running	in	a	WebAssembly,	you're	restricted	to	the	sandbox	of	the
browser,	and	you	can't	just	create	a	new	HttpClient	instance	and	do	HTTP
requests.	Instead,	you	are	limited	to	using	APIs	offered	by	the	browser.	So	that
you	still	can	use	the	HttpClient	class	with	Blazor	WebAssembly,

System.Net.Http.BrowserHttpHandler	is	registered	as	a	handler.	This	handler
creates	HTTP	requests	using	the	browser	API.	Because	HttpClient	is	registered
with	the	DI	container,	you	can	inject	it	and	use	it	in	the	way	you're	accustomed
to.	The	root	component	configured	with	the	DI	container	is	the	App	Razor
component	(code	file	Blazor.WasmSample.Client/Program.cs):

public	static	async	Task	Main(string[]	args)

{

		var	builder	=	WebAssemblyHostBuilder.CreateDefault(args);

		builder.RootComponents.Add<App>("#app");

	

		builder.Services.AddScoped(sp	=>	new	HttpClient	

		{	

				BaseAddress	=	new	Uri(builder.HostEnvironment.BaseAddress)	

		});

	

		await	builder.Build().RunAsync();

}

The	App	component,	the	NavMenu	component,	and	the	MainLayout	component
are	exactly	the	same	with	Blazor	WebAssembly	as	with	Blazor	Server.

Injecting	HttpClient	with	Blazor	WebAssembly
The	Counter	component	you've	seen	with	Blazor	server	is	the	same	with	Blazor
WebAssembly.	This	code	doesn't	need	any	changes.	With	Blazor	WebAssembly,
the	Counter	component	can	run	completely	on	the	client.	What's	different	is	the
FetchData	component.	With	Blazor	Server,	functionality	on	the	server	can	be
directly	accessed	from	the	server	because	with	Blazor	Server	the	components
run	on	the	server.	With	Blazor	WebAssembly,	for	getting	the	weather
information	from	the	server,	an	API	can	be	accessed.

The	following	code	snippet	shows	the	injection	of	the	HttpClient	instance	that's
registered	with	the	DI	container	using	the	@inject	declaration.	With	this
component,	the	namespace	Blazor.WasmSample.Shared	is	also	imported.	The
class	WeatherForecast	defined	in	the	shared	library	can	be	used	both	with	the
API	controller	and	the	client	application—.NET	full-stack	(code	file
Blazor.WasmSample/Pages/FetchData.razor):

@page	"/fetchdata"

@using	Blazor.WasmSample.Shared

@inject	HttpClient	Http

On	initialization	of	the	component,	weather	forecast	information	is	retrieved	by

using	the	GetFromJsonAsync	extension	method	(code	file
Blazor.WasmSample/Pages/FetchData.razor):

@code	{

		private	WeatherForecast[]?	forecasts;

	

		protected	override	async	Task	OnInitializedAsync()

		{

				forecasts	=	await	Http.GetFromJsonAsync<WeatherForecast[]>

("WeatherForecast");

		}

}

When	you	run	the	application,	you	can	open	the	browser	developer	tools	and	see
the	dotnet.wasm	file	downloaded,	which	is	the	.NET	runtime	in	WebAssembly
form.	Figure	27-4	shows	the	weather	information	returned	from	the	API	and
with	the	FetchData	component.

NOTE With	this	implementation	of	the	FetchData	Razor	component,	the
component	is	specific	for	Blazor	WebAssembly.	If	you	inject	an	EF	Core
context	with	a	Razor	component,	this	component	can	be	used	only	with
Blazor	Server.	However,	you	could	inject	a	service	that's	independent	from
the	client	and	the	server—for	example,	use	the	IBooksService	interface
from	the	Razor	component.	For	a	Blazor	WebAssembly	project,	you
implement	the	IBooksService	interface	with	a	BooksApiClient
implementation,	which	injects	the	HttpClient,	and	configure	the
BooksApiClient	with	the	DI	container	of	the	Blazor	WebAssembly	project.
For	a	Blazor	Server	project,	you	implement	the	IBooksService	interface
with	a	BooksDataClient	implementation	that	injects	the	EF	Core	context.
With	the	Blazor	Server	project,	you	configure	the	DI	container	to	use	the
BooksDataClient	implementation	when	IBooksService	is	requested.	This
way	you	can	put	the	BooksComponent	in	a	Razor	Class	Library	and	use	the
library	both	from	Blazor	WebAssembly	and	from	Blazor	Server.

FIGURE	27-4

Working	with	Progressive	Web	Applications
Blazor	WebAssembly	can	be	configured	to	run	as	a	PWA	application.	Using	the
--pwa	option	when	creating	the	application	adds	the	service-worker.js	script.
If	this	is	enabled,	an	installation	button	is	available	with	the	browser	so	you	can
install	the	application	locally.	The	application	works	without	being	connected	to
the	server.

There	are	some	caveats	with	PWAs.	You	should	use	this	functionality	only	if	the
application	works	mainly	with	local	data.	Two	major	HTML	APIs	can	be	used	to
read	and	write	data	in	the	browser:	local	storage	and	IndexedDB.	Local	storage
(https://developer.mozilla.org/docs/Web/API/Window/localStorage)
allows	storing	and	retrieving	objects	using	a	string	index.	The	Indexed	Database
API	(IndexedDB,	https://www.w3.org/TR/IndexedDB/)	supports	storing	data
in	tables,	allows	using	transactions,	and	allows	queries.	The	network	might	not
be	accessible	when	the	application	is	used,	and	your	APIs	might	not	be

https://developer.mozilla.org/docs/Web/API/Window/localStorage
https://www.w3.org/TR/IndexedDB/

accessible.	When	the	network	is	available	and	a	new	version	of	the	application	is
available,	an	update	happens	automatically.	Be	aware	that	the	update	only
completes	as	the	user	closes	the	tab	of	the	browser	or	the	application.	While	the
update	is	still	in	progress,	the	user	runs	an	older	version	of	the	application.	You
cannot	be	sure	which	version	the	user	is	running,	so	you	need	to	make	sure	you
don't	create	breaking	changes	with	your	applications	that	break	existing	client
versions.

Be	aware	that	two	versions	of	the	service-worker.js	scripts	are	created.	In
development	mode,	there's	no	implementation	in	this	file.	To	avoid	caching
problems	while	developing,	the	application	is	not	cached	locally.	Having	an
older	version	of	the	application	would	generate	headaches	with	debugging.	For
publishing,	the	service-worker.published.js	file	is	renamed	to	be	used	with
the	installation,	which	contains	all	the	functionality	for	caching	and	updating	the
application	on	the	local	system.	When	the	application	is	configured	with	--pwa,
the	project	configuration	file	shows	the	ServiceWorker	definition	to	use
service-worker.published.js	on	publishing	(project	configuration	file
Blazor.WasmSample.Client/Blazor.WasmSample.Client.csproj):

<ItemGroup>

		<ServiceWorker	Include="wwwroot\service-worker.js"	

				PublishedContent="wwwroot\service-worker.published.js"/>

</ItemGroup>

RAZOR	COMPONENTS
Now	that	you	know	the	differences	between	Blazor	Server	and	Blazor
WebAssembly,	let's	dig	into	Razor	components.	You	can	use	these	components
with	both	Blazor	Server	and	Blazor	WebAssembly.

Although	Razor	components	are	built	on	the	concept	of	Razor	Pages	(which	are
covered	in	Chapter	26),	there	are	important	differences.	The	@page	directive	can
be	used	with	both	technologies.	With	Razor	components,	you	cannot	use	HTML
Helpers,	Tag	Helpers,	and	view	components.	These	features	use	server-side
functionality	that	is	not	available	when	the	components	run	on	the	client.

To	dig	into	the	features	of	Razor	components,	a	Blazor	WebAssembly	with	a
hosting	API	is	created:

>	dotnet	new	blazorwasm	--hosted	-o	Blazor.ComponentsSample

In	this	section,	you	learn	about	passing	parameters	to	components,	injecting

services,	using	event	callbacks,	programmatically	updating	the	user	interface,
two-way	binding,	cascading	parameters,	templated	components,	and	built-in
components.

Understanding	the	Parameters	of	Components
The	“The	Counter	Component”	section	earlier	in	this	chapter	described	the
Counter	component	and	how	you	navigate	to	it.	A	component	can	also	be
contained	in	other	components,	and	properties	can	be	assigned	to	it.

The	next	code	snippet	shows	the	code	block	of	the	Counter	component	with	an
Incrementor	property	specified.	With	the	Parameter	attribute,	this	property	can
be	assigned	when	using	the	component.	Instead	of	incrementing	the
currentCount	variable	by	1,	the	value	of	the	Incrementor	property	is	now	used
to	calculate	the	new	value	(code	file
BlazorComponentsSample/Pages/Counter.razor):

@code	{

		private	int	currentCount	=	0;

	

		[Parameter]

		public	int	Incrementor	{	get;	set;	}	=	1;

	

		private	void	IncrementCount()

		{

				currentCount	+=	Incrementor;

		}

}

The	Counter	component	is	now	added	to	the	Index	component.	When	used
within	this	component,	the	Counter	component	uses	an	Incrementor	value	of	3
(code	file	BlazorComponentsSample/Pages/Index.razor):

<Counter	Incrementor="3"/>

When	you	run	the	application	now,	you	can	see	the	Counter	component	to	show
up	within	the	Index	page	(and	also	with	the	navigation	of	the	application).	In	the
Index	component,	an	increment	of	3	is	done,	while	navigating	to	the	Counter
component	uses	the	default	increment	of	1.

Injecting	Services
When	you	run	the	application	and	use	the	Counter	component	(which	is
contained	in	the	Index	and	Counter	pages),	the	currentCount	variable	starts

with	0	every	time	you	open	the	page.	When	you	open	the	pages,	the	component
is	newly	initialized.
You	can	create	a	service	to	keep	the	state	and	share	it	with	different	components.
The	following	CounterService	class	defines	the	Counter	property	for	the	state
(code	file	BlazorComponentsSample/Services/CounterService.cs):

public	class	CounterService

{

		public	int	Counter	{	get;	set;	}

}

With	the	configuration	of	the	DI	container,	the	CounterService	is	registered	as	a
singleton	service	as	shown	here	(code	file
BlazorComponentsSample.Client/Program.cs):

public	static	async	Task	Main(string[]	args)

{

		var	builder	=	WebAssemblyHostBuilder.CreateDefault(args);

		builder.RootComponents.Add<App>("#app");

	

		builder.Services.AddScoped(sp	=>	new	HttpClient	

		{	

				BaseAddress	=	new	Uri(builder.HostEnvironment.BaseAddress)	

		});

		builder.Services.AddScoped<CounterService>();

		await	builder.Build().RunAsync();

}

NOTE Blazor	WebAssembly	currently	doesn't	have	a	concept	for	DI
scopes.	Scopes	behave	like	singleton	services.	Read	Chapter	15,
“Dependency	Injection	and	Configuration,”	for	information	about	the
different	modes	for	configuring	services.	With	Blazor	Server,	the	DI
container	is	configured	on	the	server	side	with	ASP.NET	Core	and	has	the
behavior	you	are	used	to	with	ASP.NET	Core	web	applications.

With	the	component,	the	CounterService	is	injected	using	the	@inject
directive.	This	directive	creates	a	property	of	the	specified	type,	and	the
CounterService	can	be	used	to	access	the	Counter	property	with	the
IncrementCount	method	to	read	the	value	using	binding,	as	shown	in	the
following	code	snippet	(code	file
BlazorComponentsSample/Pages/CounterWithService.razor):

@page	"/counterwithservice"

@inject	CounterService	CounterService

	

<h1>Counter</h1>

	

<p>Current	count:	@CounterService.Counter</p>

	

<button	class="btn	btn-primary"	@onclick="IncrementCount">Click	

me</button>

	

@code	{

		[Parameter]

		public	int	Incrementor	{	get;	set;	}	=	1;

	

		private	void	IncrementCount()

		{

				CounterService.Counter	+=	Incrementor;

		}

}

When	you	use	the	application	and	switch	to	this	component,	then	switch	to	other
components,	and	then	switch	back,	the	state	is	kept.

Working	with	Event	Callback
Razor	components	can	publish	events.	To	submit	events	to	a	parent	component,
you	need	to	define	a	property	of	type	EventCallback.	As	the	following	code
snippet	of	the	TimerEventshows,	an	event	is	fired	to	the	parent	every	time	the
Elapsed	event	of	the	.NET	class	Timer	is	fired.	With	the	generic	EventCallback
type,	you	can	specify	information	to	pass	to	the	parent	component.	The	generic
parameter	needs	to	derive	from	the	EventArgs	base	class.	The	custom
TimerEventArgs	class	defines	the	SignalTime	property	of	type	DateTime.	This
value	is	assigned	when	firing	the	callback	using	the	InvokeAsync	method	of	the
EventCallback	class.	The	TimerEvent	component	defines	Start	and	Stop
methods	to	start	and	stop	the	timer	(code	file
BlazorComponentsSample/Pages/TimerEvent.razor):

@using	System.Timers

@implements	IDisposable

	

<h4>Timer	Event</h4>

	

@code	{

		[Parameter]

		public	int	DelaySeconds	{	get;	set;	}	=	10;

	

		[Parameter]

		public	EventCallback<TimerEventArgs>	OnTimerCallback	{	get;	

set;	}

	

		public	void	Start()	=>	timer?.Start();

	

		public	void	Stop()	=>	timer?.Stop();

	

		private	Timer?	timer;

		protected	override	void	OnInitialized()

		{

				timer	=	new()

				{

						Interval	=	1000	*	DelaySeconds

				};

				timer.Elapsed	+=	async	(sender,	e)	=>

				{

						await	OnTimerCallback.InvokeAsync(new	TimerEventArgs	{	

SignalTime	=	e.SignalTime	});

				};

		}

	

		public	void	Dipose()	=>	timer?.Dispose();

}

You	use	the	TimerEvent	component	from	the	UseTimer	component.	The	number
of	seconds	to	specify	with	the	timer	is	set	by	assigning	a	value	to	the
DelaySeconds	property.	The	OnTimerCallback	is	similarly	assigned	to	the
address	of	the	ShowTimer	method.	The	TimerEvent	uses	the	ref	keyword	to	map
it	to	a	variable.	This	allows	using	the	TimerEvent	component	from	the	code	to
invoke	methods	(code	file	BlazorComponentsSample/Pages/UseTimer.razor):

<TimerEvent	@ref="myTimer"	DelaySeconds="3"	

OnTimerCallback="@ShowTimer"/>

With	the	code	declaration,	the	ShowTimer	method	is	specified	to	receive	a
parameter	of	type	TimerEventArgs—the	parameter	that	was	specified	with	the
EventCallback	parameter	in	the	TimerEvent	component.	With	the
implementation	of	this	method,	the	message	and	timeMessage	fields	are	updated
to	show	information	from	the	event	with	the	UI	elements	that	bind	to	these	fields
(code	file	BlazorComponentsSample/Pages/UseTimer.razor):

@code	{

		private	TimerEvent?	myTimer;

		private	string	timeMessage	=	string.Empty;

		private	bool	disableStartTimerButton	=	false;

		private	bool	disableStopTimerButton	=	true;

	

		string	message	=	string.Empty;

		private	void	ShowTimer(TimerEventArgs	e)

		{

				message	+=	".";

				timeMessage	=	e.SignalTime.ToLongTimeString();

		}

		//…

}

You've	seen	the	ref	keyword	used	with	the	HTML	code	where	the	TimerEvent
component	was	referenced.	Using	this	keyword	requires	that	you	declare	a
variable	with	the	same	name	as	the	ref	name	of	the	type	of	the	component.	This
variable	will	be	filled	when	the	component	is	created.	With	this,	methods	of	the
component	can	be	invoked	as	shown	in	the	following	snippet	by	invoking	the
Start	and	Stop	methods	(code	file
BlazorComponentsSample/Pages/UseTimer.razor):

private	TimerEvent?	myTimer;

private	void	StartTimer()

{

		myTimer?.Start();

		DisableStartTimerButton();

}

	

private	void	StopTimer()

{

		myTimer?.Stop();

		DisableStartTimerButton(false);

}

When	you	run	the	application	and	click	the	Start	button	of	the	UseTimer
component,	you	see	the	timer	callback	called	to	show	dots	and	an	update	of	the
time,	as	shown	with	Figure	27-5.

FIGURE	27-5

Programmatically	Updating	the	UI
The	user	interface	is	automatically	updated	with	events	that	are	triggered	by	the
user	interface	or	with	events	specified	with	the	EventCallback	type.	In	case
some	functionality	is	triggered	in	the	background,	you	need	to	inform	the	UI	that
the	state	has	changed	to	start	rendering	again	by	invoking	the	method
StateHasChanged.

The	following	code	snippet	uses	a	Timer	object	within	a	Razor	component	that
updates	the	counter	field	with	the	Elapsed	event.	In	the	event	handler,
StateHasChanged	is	invoked	to	update	the	user	interface.	You	can	try	to
comment	this	method	invocation	to	see	that	the	user	interface	is	not	updated
without	this	invocation.	Another	thing	you	can	see	with	this	code	snippet	is	the
expression	syntax	with	binding.	The	onclick	handler	invoking	the	Start	and
Stop	methods	is	implemented	directly	with	the	declaration	(code	file
BlazorComponentsSample/Pages/Timer2.razor):

@page	"/timer"

@using	System.Timers

@implements	IDisposable

	

<h4>Timer	Event</h4>

	

<p>@counter</p>

	

<button	@onclick="(()	=>	timer.Start())">Start</button>

	

<button	@onclick="(()	=>	timer.Stop())">Stop</button>

	

@code	{

		private	int	counter	=	0;

	

		private	Timer	timer	=	new(1000);

	

		protected	override	void	OnInitialized()

		{

				timer.Elapsed	+=	(sender,	e)	=>

				{

						counter++;

						StateHasChanged();

				};

		}

	

		public	void	Dispose()	=>	timer.Dispose();

}

Two-Way	Binding
With	previous	code	samples,	you've	seen	binding	from	the	source	(a	field)	to	the
HTML	DOM	and	from	events	to	methods.	Blazor	also	supports	two-way	binding
with	the	@bind	directive,	as	shown	with	the	following	code	snippet.	The
following	code	snippet	binds	the	text1	field	to	the	value	attribute	of	the	input
element	(source	to	DOM)	and	the	onchange	event	of	the	input	element	to	update
the	text1	field	(code	file
BlazorComponentsSample.Client/Pages/Binding.razor):

<input	id="input1"	@bind="text1"	/>

<div>@text1</div>

When	you	run	the	application,	you	can	see	the	updated	input	value	within	the
div	element	as	soon	as	focus	is	lost.	To	use	two-way	binding	for	other	events,
you	can	specify	the	event	by	adding	the	event	keyword	to	the	@bind	directive.
The	following	code	snippet	binds	the	text2	field	to	update	with	the	oninput
event;	thus,	the	text2	field	changes	with	every	single	character	change	of	the
input	element	(code	file
BlazorComponentsSample.Client/Pages/Binding.razor):

<input	id="input2"	@bind-value="text2"	@bind-

value:event="oninput"	/>

<div>@text2</div>

Cascading	Parameters
When	you	use	the	Parameter	attribute,	you	can	set	values	from	a	parent
component	to	a	child	component.	As	the	user	interface	grows,	you	might	create	a
hierarchy	of	components—components	that	might	be	nested	one	within	the
other.	Here,	you	can	pass	parameters	from	the	outside	to	the	inside,	while
components	in	between	don't	need	to	know	anything	about	the	parameters
flowing	from	the	outside	to	the	inside.	You	can	do	this	with	cascading
parameters.

With	the	inner	components,	you	define	properties	that	are	annotated	with	the
CascadingParameter	attribute.	The	Cascade3	component	uses	the
CascadingParameter	named	Value1	and	displays	the	value	(code	file
BlazorComponentsSample.Client/Pages/Cascade3.razor):

<h3>Cascade3</h3>

	

<div>@Value1</div>

	

@code	{

		[CascadingParameter(Name	=	"Value1")]

		public	string	Value1	{	get;	set;	}	=	string.Empty;

}

There's	one	component	in	between.	The	Cascade2	component	doesn't	know
anything	about	the	Value1	property	and	just	nests	the	Cascade3	component
(code	file	BlazorComponentsSample/Pages/Cascade2.razor):

<h3>Cascade2</h3>

<Cascade3/>

To	pass	the	value	down	through	the	complete	tree,	the	Cascade1	component	uses
the	CascadingValue	component.	With	this	component,	the	Value	is	bound	to	the
SomeValue	property.	The	Name	references	Value1,	the	same	name	used	with	the
CascadingParameter	value	with	the	inner	component	(code	file
BlazorComponentsSample/Pages/Cascade1.razor):

@page	"/cascade"

<h3>Cascade1</h3>

	

<input	type="text"	@bind-value="SomeValue"	@bind-

value:event="oninput"/>

	

<CascadingValue	Value="@SomeValue"	Name="Value1">

		<Cascade2	/>

</CascadingValue>

	

@code	{

		[Parameter]

		public	string	SomeValue	{	get;	set;	}	=	string.Empty;

}

When	you	run	the	application,	you	can	see	the	value	you	enter	with	the
outermost	component	is	displayed	with	the	innermost	component.	The	matching
between	the	CascadingValue	component	and	the	CascadingParameter	attribute
happens	with	the	type	and	the	name.	Supplying	the	name	is	optional	if	you	do
not	use	multiple	cascading	parameters	with	the	same	type.

Using	Templated	Components
When	you	create	nested	components,	you	can	supply	the	content	of	the	nested
component	with	the	outer	component	and	pass	it	to	the	nested	inner	component.
Such	components	are	known	by	the	term	templated	components.	Templated
components	specify	one	or	more	properties	of	type	RenderFragment.	With
templated	components,	generic	types	can	be	useful,	but	this	is	not	a	requirement.

The	following	code	snippet	shows	the	templated	component	Repeater.	With	this
component,	you	can	supply	a	list	of	items	with	the	property	Items.	The	generic
type	used	is	TItem,	as	specified	with	the	@typeparam	at	the	beginning	of	the
code.	Two	properties	are	of	type	RenderFragment.	The	HeaderTemplate
property	is	used	to	show	header	information,	and	the	ItemTemplate	property
specifies	the	look	for	every	item	and	is	invoked	within	the	@foreach	iteration
(code	file	BlazorComponentsSample/Shared/Repeater.razor):

@typeparam	TItem

	

<div>

		<div>@HeaderTemplate</div>

		@foreach	(var	item	in	Items	??	Array.Empty<TItem>())

		{

				<div>@ItemTemplate(item)</div>

		}

</div>

	

@code	{

#nullable	disable

		[Parameter]

		public	RenderFragment	HeaderTemplate	{	get;	set;	}

		[Parameter]

		public	RenderFragment<TItem>	ItemTemplate	{	get;	set;	}

#nullable	restore

		[Parameter]

		public	IEnumerable<TItem>?	Items	{	get;	set;	}

}

When	you	use	the	Repeater	component,	the	HeaderTemplate	and	ItemTemplate
are	used	as	child	elements.	Each	of	these	elements	defines	the	content	to	be	used
within	the	Repeater	component.	The	TItem	attribute	specified	with	the
Repeater	element	defines	the	generic	type,	the	Book	class.	The	Context	attribute
defines	the	content	parameter	for	the	iteration	(code	file
BlazorComponentsSample/Pages/UseTemplate.razor):

@page	"/template"

<h3>UseTemplate</h3>

	

<Repeater	Items="@books"	TItem="Book">

		<HeaderTemplate>

				<div	class="bookstitle">The	Books</div>

		</HeaderTemplate>

		<ItemTemplate	Context="book">

				<div	class="book">@book.Title</div>

		</ItemTemplate>

</Repeater>

	

@code	{

		private	IEnumerable<Book>	books	=	Enumerable.Range(1,	10)

				.Select(i	=>	new	Book

				{

						Id	=	Guid.NewGuid(),

						Title	=	$"title	{i}",

						Publisher	=	"Sample",

						ReleaseDate	=	DateTime.Today.AddDays(i)

				}).ToArray();

}

Using	Built-in	Components
Blazor	includes	several	components	that	can	be	used	with	your	application.
Probably	the	most	important	ones	are	form	components	that	you	can	use	to
create	editable	forms.	The	next	sample	defines	a	type	for	a	form	with	annotations
that	can	be	used	to	validate	the	user	input.

To	see	an	edit	form	in	action,	define	a	model-type	for	all	the	data	that	should	be
filled	out	with	the	form,	as	shown	with	the	following	code	snippet.	With	this

model,	annotations	are	used	for	input	validation	(code	file
BlazorComponentsSample/Models/BookEditModel.cs):

public	class	BookEditModel

{

		[StringLength(20,	ErrorMessage	=	"Title	is	too	long")]

		[Required]

		public	string	Title	{	get;	set;	}	=	string.Empty;

	

		public	DateTime	ReleaseDate	{	get;	set;	}	=	DateTime.Today;

		public	string?	Type	{	get;	set;	}	=	string.Empty;

}

To	create	an	input	formula,	the	EditForm	component	can	be	used	as	shown	with
the	following	code	snippet.	The	EditForm	component	creates	an	EditContext	as
a	cascading	parameter.	All	the	children	of	the	EditForm	component	can	access
this	context	to	register	notifications	and	play	a	part	in	validation.	Instead	of
assigning	the	EditContext	directly	with	the	EditForm,	the	Model	property	can	be
assigned	to	the	model	type	(the	BookEditModel	with	the	sample),	which	in	turn
implicitly	sets	the	EditContext.	Child	components	used	are	the
DataAnnotationValidator	and	the	ValidationSummary	components.	The
DataAnnotationValidator	uses	the	annotations	of	the	model	(such	as	the
StringLength	and	Required	attributes)	to	validate	the	model.	When	you	click
the	submit	button	of	the	form,	the	validation	is	invoked,	and	error	messages	are
shown	with	the	ValidationSummary	component.	Information	on	the	errors	is
accessible	with	the	EditContext,	which	is	used	both	from	the
DataAnnotationValidator	as	well	as	the	ValidationSummary	components.	If
the	validation	is	successful,	the	handler	with	the	OnValidSubmit	callback	is
invoked.	With	invalid	inputs,	you	can	implement	a	handler	for
OnInvalidSubmit.	To	read	details	of	the	validation,	the	HandleValidSubmit
method	can	access	the	EditContext	parameter.	With	the	form,	the	components
InputText,	InputSelect,	and	InputDate	are	used	to	bind	to	properties	of	the
model.	These	components	generate	HTML	input,	select,	and	input
type="date"	elements	and	access	the	EditContext	(code	file
BlazorComponentsSample/Pages/Editor.razor):

<EditForm	Model="@bookEditModel"	

OnValidSubmit="HandleValidSubmit">

		<DataAnnotationsValidator	/>

		<ValidationSummary	/>

		<p>

				<label>

						Title:

						<InputText	@bind-Value="bookEditModel.Title"	/>

				</label>

		</p>

		<p>

				<label>

						Type:

						<InputSelect	@bind-Value="bookEditModel.Type">

								<option	value="Hardcover">Hardcover</option>

								<option	value="Ebook">Ebook</option>

						</InputSelect>

				</label>

		</p>

		<p>

				<label>

						Release	date:

						<InputDate	@bind-Value="bookEditModel.ReleaseDate"	/>

				</label>

		</p>

	

		<button	type="submit">Submit</button>

		<div>@validText</div>

</EditForm>

	

@code	{

		private	BookEditModel	bookEditModel	=	new();

		private	string	validText	=	string.Empty;

	

		private	void	HandleValidSubmit(EditContext	context)

		{

				validText	=	"Input	is	valid,	ready	to	send	it	to	the	

server";

		}

}

Other	built-in	Razor	components	you	can	use	in	a	form	are	InputCheckbox,
InputFile,	InputNumber,	InputRadio,	InputRadioGroup,	and	InputTextArea.
For	custom	validation,	you	can	write	custom	attributes	for	overriding	the
ValidationAttribute	or	write	components	that	access	the	EditContext	for
validation	similar	to	the	DataAnnotationValidator.

For	Blazor,	you	can	find	components	from	many	third-party	vendors,	such	as
Telerik,	Syncfusion,	DevExpress,	Mublazor,	and	others.	Just	look	for	available
NuGet	packages.

SUMMARY

This	chapter	introduced	you	to	the	newest	way	to	create	ASP.NET	Core
applications:	Blazor.	You've	seen	Blazor	with	server-side	components	and	Blazor
making	use	of	WebAssembly	to	run	.NET	in	the	browser.

You've	seen	the	features	of	Razor	components,	including	passing	parameters,
injecting	services,	using	events,	two-way	binding,	and	more.

The	next	chapter	dives	into	SignalR,	a	technology	for	real-time	communication.
Blazor	Server	is	based	on	SignalR.	With	Blazor	WebAssembly,	you	can	use
SignalR	to	send	notifications	to	a	group	of	clients.

28
SignalR

WHAT'S	IN	THIS	CHAPTER?

Overview	of	SignalR

Creating	a	SignalR	hub

Creating	a	SignalR	client	with	HTML	and	JavaScript

Creating	a	SignalR	.NET	client

Using	groups	with	SignalR

Streaming	with	SignalR

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	3_Web/SignalR.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

SignalRSample/ChatServer

SignalRSample/WinAppChatClient

SignalRStreaming

The	major	namespace	used	is	Microsoft.AspNetCore.SignalR.	All	the
projects	have	nullable	reference	types	enabled.

OVERVIEW
With	.NET	you	can	use	events	to	get	notifications.	You	can	register	an	event
handler	method	with	an	event,	also	known	as	subscribing	to	an	event,	and	as

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

soon	as	the	event	is	fired	from	another	place,	your	method	gets	invoked.	Events
cannot	be	used	with	web	applications.

Previous	chapters	covered	a	lot	about	web	applications	and	web	services.	What
was	common	with	these	applications	and	services	is	that	the	request	was	always
started	from	the	client	application.	The	client	makes	an	HTTP	request	and
receives	a	response.

What	if	the	server	has	some	news	to	tell?	There's	nothing	like	events	that	you
can	subscribe	to,	or	is	there?	With	the	web	technologies	you've	seen	so	far,	this
can	be	resolved	by	the	client	polling	for	new	information.	The	client	has	to	make
a	request	to	the	server	to	ask	whether	new	information	is	available.	Depending
on	the	request	interval	defined,	this	way	of	communication	results	in	either	a
high	load	of	requests	on	the	network	that	just	results	in	“no	new	information	is
available,”	or	the	actual	information	is	already	old	by	the	time	the	client	asks	for
it.

With	clients	behind	a	firewall,	when	using	the	HTTP	protocol,	there's	no	way	for
the	server	to	initiate	a	connection	to	the	client.	The	connection	always	needs	to
be	started	from	the	client	side.	Because	HTTP	connections	are	stateless	and
clients	often	can't	connect	to	ports	other	than	port	80	or	443,	WebSockets	can
help.	WebSockets	are	initiated	with	an	HTTP	request,	but	they're	upgraded	to	a
WebSocket	connection	where	the	connection	stays	open.	When	you	use	the
WebSockets	protocol,	the	server	can	send	information	to	the	client	over	the	open
connection	as	soon	as	the	server	has	new	information.

SignalR	is	an	ASP.NET	Core	web	technology	that	offers	an	easy	abstraction	over
WebSockets.	Using	SignalR	is	a	lot	easier	than	programming	using	the	sockets
interface,	and	you	get	more	features	right	out	of	the	box.

CREATING	A	SIMPLE	CHAT	USING	SIGNALR
SignalR	is	a	technology	based	on	WebSockets	but	can	fall	back	to	other	options.
If	WebSockets	are	not	available	both	on	the	client	and	on	the	server,	polling	is
used	from	the	client	to	continuously	check	for	new	data.	Nowadays,	all	browsers
and	servers	support	WebSockets.	However,	they	can	be	turned	off,	and	you	may
have	some	issues	when	using	proxies.	If	you	deploy	your	web	application	with
Azure	App	Services,	WebSockets	are	turned	off	by	default	because	you	need
more	resources	for	WebSockets	on	the	server	to	support	the	connection	to	the
client	that	is	kept	open.	With	an	Azure	App	Service,	you	need	to	explicitly
enable	WebSockets.	Using	proxies	before	your	web	application,	you	also	need	to

think	about	support	of	WebSockets.	For	example,	when	you	use	Azure	Front
Door	(https://azure.microsoft.com/services/frontdoor/)	for	load
balancing	and	protection,	this	service	does	not	support	WebSockets	(at	the	time
of	this	writing).

The	first	SignalR	sample	application	is	a	chat	application,	which	is	easy	to	create
with	SignalR.	With	this	application,	multiple	clients	can	be	started	to
communicate	with	each	other	via	the	SignalR	hub	(see	Figure	28-1).	When	one
of	the	client	applications	sends	a	message,	all	the	connected	clients	receive	this
message	in	turn.

FIGURE	28-1

The	server	application	is	started	as	an	empty	ASP.NET	Core	web	application.
One	of	the	clients	is	created	with	HTML	and	JavaScript,	and	the	other	client
application	is	a	Windows	app	that	uses	WinUI.

Creating	a	Hub
The	empty	ASP.NET	Core	web	project	is	named	ChatServer.	After	you	create

https://azure.microsoft.com/services/frontdoor/

the	project,	add	a	new	class	named	ChatHub	to	the	Hubs	folder.	The	main
functionality	of	SignalR	is	defined	with	the	hub.	The	hub	is	indirectly	invoked
by	the	clients,	and	in	turn	the	clients	are	called.	The	class	ChatHub	derives	from
the	base	class	Hub	to	get	the	needed	hub	functionality.	The	method	Send	is
defined	to	be	invoked	by	the	client	applications	sending	a	message	to	the	other
clients.	You	can	use	any	method	name	with	any	number	of	parameters.	The
client	code	just	needs	to	match	the	method	name	as	well	as	the	parameters.	To
send	a	message	to	the	clients,	the	Clients	property	of	the	Hub	class	is	used.	The
Clients	property	returns	an	object	that	implements	the	interface
IHubCallerClients.	This	interface	allows	you	to	send	messages	to	specific
clients	or	to	all	connected	clients.	To	return	a	message	to	just	a	single	client,	you
can	use	the	Client	method	to	pass	a	connection	identifier.	The	sample	code
sends	a	message	to	all	clients	using	the	All	property.	The	All	property	returns	an
IClientProxy.	IClientProxy	defines	the	method	SendAsync	to	invoke	a	method
within	the	client.	The	method	invoked	is	the	first	parameter,	which	is	the	method
name.	The	SendAsync	method	is	overloaded	to	allow	passing	up	to	10	arguments
to	the	client	method.	In	case	you	have	more	than	10,	an	overload	allows	passing
an	object	array.	With	the	sample	code,	the	method	name	defined	is
BroadcastMessage,	and	two	string	parameters—the	name	and	the	message	—are
passed	to	this	method	(code	file
SignalRSample/ChatServer/Hubs/ChatHub.cs):

public	class	ChatHub:	Hub

{

		public	void	Send(string	name,	string	message)	=>

				Clients.All.BroadcastMessage(

						HttpUtility.HtmlEncode(name),	

						HttpUtility.HtmlEncode(message));

}

	

NOTE With	the	ChatHub	class,	before	returning	the	data	that	is	received
from	the	client,	it	is	HTML-encoded.	Otherwise,	the	client	could	send
HTML-formatted	data	or	even	JavaScript	content—for	example,	to	redirect
all	users	receiving	the	data	to	another	website.	Read	Chapter	20,
“Security,”	for	security	issues	with	web	applications.

To	use	SignalR,	the	interfaces	for	SignalR	need	to	be	registered	with	the
dependency	injection	container.	You	do	this	in	the	ConfigureServices	method
of	the	Startup	class—invoking	the	AddSignalR	extension	method	for	the

IServiceCollection	interface	(code	file
SignalRSample/ChatServer/Startup.cs):

public	class	Startup

{

		public	void	ConfigureServices(IServiceCollection	services)

		{

				services.AddSignalR();

		}

		//…

}

With	the	configuration	of	the	middleware	in	the	Configure	method,	SignalR
needs	to	be	mapped	with	the	endpoint	configuration.	When	you	use	the	MapHub
extension	method	of	the	IEndpointRouteBuilder,	you	specify	the	class	type	for
the	hub	(which	needs	to	derive	from	the	Hub	class)	and	the	link	to	use	this	route.
With	an	overload	of	the	method,	you	can	also	specify	options	for	the	underlying
WebSockets	(code	file	SignalRSample/ChatServer/Startup.cs):

app.UseEndpoints(endpoints	=>

{

		endpoints.MapHub<ChatHub>("/chat");

		//…

		endpoints.Map("/",	async	context	=>

		{

				StringBuilder	sb	=	new();

				sb.Append("<h1>SignalR	Sample</h1>");

				sb.Append("<div>Open	ChatWindow	"	+

						"for	communication</div>");

				await	context.Response.WriteAsync(sb.ToString());

		});

});

NOTE For	serving	the	HTML	client	from	the	same	web	server	as	the
SignalR	server,	the	extension	method	UseStaticFiles	needs	to	be	added	to
the	middleware	pipeline,	and	the	folder	wwwroot	needs	to	be	created.

Creating	a	Client	with	HTML	and	JavaScript
The	previous	version	of	SignalR	included	a	JavaScript	library	with	jQuery
extensions.	At	that	time,	nearly	every	website	was	using	jQuery	to	access	the
DOM	elements	of	the	HTML	page.	The	ASP.NET	Core	version	of	the	SignalR

library	doesn't	have	a	dependency	on	any	other	scripting	library.	All	you	need	is
a	JavaScript	file	that	you	can	retrieve	from	content	delivery	network	(CDN)
servers.	With	the	sample	application,	libman	is	used	to	retrieve	the	JavaScript
file	and	was	introduced	in	Chapter	24,	“ASP.NET	Core.”

To	install	libman	as	a	tool	for	the	project,	you	need	to	create	a	tool	manifest	file
and	add	libman	to	the	manifest	file:

>	dotnet	new	tool-manifest

>	dotnet	tool	install	microsoft.web.library.manager.cli

After	this	tool	is	installed,	you	can	create	a	libman.json	configuration	file	using
libman	init	and	add	the	JavaScript	library	with	the	libman	install	command.
Be	aware	that	the	SignalR	JavaScript	library	is	not	available	at	the	libman	-
default	CDN	provider	CDNJS,	but	it	is	available	at	the	CDN	server	from	Node
(https://unpkg.com):

>	dotnet	libman	init

>	dotnet	libman	install	@microsoft/signalr@latest	--provider	

unpkg	

		--destination	wwwroot/lib/signalr	--files	

dist/browser/signalr.js	

		--files	dist/browser/signalr.min.js

For	the	HTML	client,	two	input	fields	and	a	button	are	defined	to	allow	the	user
to	enter	a	name	and	a	message	and	then	click	a	button	to	send	the	message	to	the
SignalR	server.	The	messages	received	will	be	displayed	in	the	output	element
(code	file	SignalRSample/ChatServer/wwwroot/ChatWindow.html):

<label	for="name">Name:</label>

<input	type="text"	id="name"/>

<label	for="message">Message:</label>

<input	type="text"	id="message"/>

<input	id="sendButton"	type="button"	value="send"/>

<p/>

<output	id="output"></output>

The	first	script	element	references	the	JavaScript	file	from	the	SignalR	library.
Remember	to	use	the	minified	file	for	production.	When	the	DOM	tree	of	the
HTML	file	is	loaded,	a	connection	to	the	Chat	server	is	created.	When	you	use
connection.on,	you	define	what	should	happen	when	a	message	arrives	from
the	SignalR	server.	The	first	parameter	is	the	name	of	the	method	used	when
calling	the	proxy	in	the	server	except	the	casing	changes	from	C#	Pascal	casing

https://unpkg.com

(BroadcaseMessage)	to	JavaScript	camel	casing	(broadcastMessage).	With	the
second	parameter,	a	function	is	defined	that	has	the	same	number	of	parameters
as	are	sent	from	the	server.	When	a	message	arrives,	the	content	of	the	output
element	changes	to	include	this	message.	After	registering	to	receive	this	event,
the	connection	to	the	SignalR	server	is	started	by	invoking	the	start	function.
When	the	connection	completes	successfully,	the	then	function	defines	what's
next.	Here,	an	event	listener	is	assigned	to	the	click	event	of	the	button	to	send
the	message	to	the	SignalR	server.	The	method	that	is	invoked	with	the	SignalR
server	is	defined	with	the	first	parameter	of	the	invoke	function—	send	in	the
sample	code—that's	the	same	name	as	the	method	that	is	defined	in	the	ChatHub
(just	the	casing	differs).	Again,	the	same	number	of	arguments	are	used	(code
file	SignalRSample/ChatServer/wwwroot/ChatWindow.html):

<script	src="lib/signalr/dist/browser/signalr.min.js"></script>

<script>

		document.addEventListener("DOMContentLoaded",	function	()	{

				const	connection	=	new	signalR.HubConnection('/chat');

				connection.on('broadcastMessage',	(name,	message)	=>	{

						console.log(message);

						document.getElementById('output').innerHTML	+=	

								`message	from	${name}:	${message}
`;

				});

	

				connection.start().then(function	()	{

						document.getElementById('sendButton')

								.addEventListener('click',	function	()	{

										let	name	=	document.getElementById('name').value;

										let	message	=	

document.getElementById('message').value;

	

										connection.invoke('send',	name,	message);

								});

						});

				});

</script>

When	you	run	the	application,	you	can	open	multiple	browser	windows—even
using	different	browser	applications—and	you	can	enter	names	and	messages	for
a	chat	(see	Figure	28-2).

FIGURE	28-2

When	you	use	the	Microsoft	Edge	Developer	Tools	(press	F12	while	Microsoft
Edge	is	open),	you	can	use	network	monitoring	to	see	the	upgrade	from	the
HTTP	protocol	to	the	WebSocket	protocol,	as	shown	in	Figure	28-3.

FIGURE	28-3

Creating	SignalR	.NET	Clients
The	sample	.NET	client	application	to	use	the	SignalR	server	is	a	WinUI	3	app.
The	functionality	is	similar	to	the	HTML/JavaScript	application	shown	earlier.
Check	the	readme	file	of	the	downloadable	code	to	see	what's	needed	to	build
the	application.	NuGet	packages	that	need	to	be	added	are
Microsoft.AspNetCore.SignalR.Client	(the	SignalR	client	library	for	.NET),
Microsoft.Extensions.Hosting	(for	the	DI	container),	and
Microsoft.Toolkit.Mvvm	(an	MVVM	library	from	Microsoft;	see	more	about
MVVM	in	Chapter	30,	“Patterns	with	XAML	Apps”).

The	user	interface	of	the	Windows	application	defines	two	TextBox	es,	two
Button	s,	and	one	ListBox	element	to	enter	the	name	and	message,	to	connect	to
the	service	hub,	and	to	show	a	list	of	received	messages,	respectively	(code	file
SignalRSample/WinAppChatClient/Views/ChatUC.xaml):

<TextBox	Header="Name"	Text="{x:Bind	ViewModel.Name,	

Mode=TwoWay}"	

		Grid.Row="0"	Grid.Column="0"/>

<TextBox	Header="Message"	Text="{x:Bind	ViewModel.Message,	

Mode=TwoWay}"	

		Grid.Row="1"	Grid.Column="0"/>

<StackPanel	Orientation="Vertical"	Grid.Column="1"	

Grid.RowSpan="2">

		<Button	Content="Connect"	Command="{x:Bind	

ViewModel.ConnectCommand}"/>

		<Button	Content="Send"	

				Command="{x:Bind	ViewModel.SendCommand,	Mode=OneTime}"/>

</StackPanel>

<ListBox	ItemsSource="{x:Bind	ViewModel.Messages,	Mode=OneWay}"	

Grid.Row="2"	

		Grid.ColumnSpan="2"	Margin="12"/>

With	the	App	class	of	the	application,	the	DI	container	is	configured	as	shown	in
the	following	code	snippet.	Here,	services	are	registered	for	showing	a	dialog
(DialogService)	to	have	a	central	place	for	the	configuration	for	the	service
links	(UrlService)	and	for	the	view	models	that	are	used	with	the	application
(code	file	SignalRSample/WinAppChatClient/App.xaml.cs):

public	App()

{

		this.InitializeComponent();

		_host	=	Host.CreateDefaultBuilder()

				.ConfigureServices(services	=>

				{

						services.AddScoped<IDialogService,	DialogService>();

						services.AddScoped<UrlService>();

						services.AddScoped<ChatViewModel>();

						services.AddScoped<GroupChatViewModel>();

				}).Build();

}

	

private	IHost	_host;

	

internal	IServiceProvider	Services	=>	_host.Services;

The	UrlService	class	that	is	registered	with	the	DI	container	contains	the	URL
addresses	to	the	chat	server.	You	need	to	change	the	BaseUri	to	the	address	that
is	shown	when	starting	your	SignalR	server	(code	file
SignalRSample/WinAppChatClient/Services/UrlService.cs):

public	class	UrlService

{

		private	string	BaseUri	=	"https://localhost:5001/";

		public	string	ChatAddress	=>	$"{BaseUri}/chat";

		public	string	GroupAddress	=>	$"{BaseUri}/groupchat";

}

Within	the	code-behind	file	of	the	user	control,	the	ChatViewModel	is	assigned	to
the	ViewModel	property	using	the	DI	container	(code	file
SignalRSample/WinAppChatClient/Views/ChatUC.xaml.cs):

public	sealed	partial	class	ChatUC	:	UserControl

{

		public	ChatUC()

		{

				this.InitializeComponent();

	

				if	(Application.Current	is	App	app)

				{

						_scope	=	app.Services.CreateScope();

						ViewModel	=	

_scope.ServiceProvider.GetRequiredService<ChatViewModel>();

				}

				else

				{

						throw	new	InvalidOperationException("Application.Current	

is	not	App");

				}												

		}

	

		private	readonly	IServiceScope?	_scope;

		public	ChatViewModel	ViewModel	{	get;	private	set;	}

The	hub-specific	code	is	implemented	in	the	class	ChatViewModel.	First,	take	a
look	at	the	bound	properties	and	commands.	The	property	Name	is	bound	to	enter
the	chat	name	and	the	Message	property	to	enter	the	message.	The
ConnectCommand	property	maps	to	the	OnConnect	method	to	initiate	the
connection	to	the	server;	the	SendCommand	property	maps	to	the	OnSendMessage
method	to	send	a	chat	message	(code	file
SignalRSample/WinAppChatClient/ViewModels/ChatViewModel.cs):

public	sealed	class	ChatViewModel

{

		private	readonly	IDialogService	_dialogService;

		private	readonly	UrlService	_urlService;

	

		public	ChatViewModel(IDialogService	dialogService,	UrlService	

urlService)

		{

				_dialogService	=	dialogService;

				_urlService	=	urlService;

	

				ConnectCommand	=	new	RelayCommand(OnConnect);

				SendCommand	=	new	RelayCommand(OnSendMessage);

		}

	

		public	string	Name	{	get;	set;	}

		public	string	Message	{	get;	set;	}

	

		public	ObservableCollection<string>	Messages	{	get;	}	=

				new	ObservableCollection<string>();

		public	RelayCommand	SendCommand	{	get;	}

		public	RelayCommand	ConnectCommand	{	get;	}

		//…

}

The	OnConnect	method	initiates	the	connection	to	the	server.	You	can	create	a
HubConnection	with	the	HubConnectionBuilder.	This	builder	uses	a	fluent	API
for	its	configuration.	In	the	sample	code,	you	can	see	the	URL	to	the	server	first
configured	with	the	WithUrl	method.	After	the	configuration	is	done,	the	Build
method	of	the	HubConnectionBuilder	creates	a	HubConnection.	To	register	with
messages	that	are	returned	from	the	server,	the	On	method	is	invoked.	The	first
parameter	passed	to	the	On	method	defines	the	method	name	that	is	called	by	the

server;	the	second	parameter	defines	a	delegate	to	the	method	that	is	invoked.
The	method	OnMessageReceived	has	the	parameters	specified	with	the	generic
parameter	arguments	of	the	On	method:	two	strings.	To	finally	initiate	the
connection,	the	StartAsync	method	on	the	HubConnection	instance	is	invoked
to	connect	to	the	SignalR	server	(code	file
SignalRSample/WinAppChatClient/ViewModels/ChatViewModel.cs):

private	HubConnection	_hubConnection;

	

public	async	void	OnConnect()

{

		await	CloseConnectionAsync();

		_hubConnection	=	new	HubConnectionBuilder()

				.WithUrl(_urlService.ChatAddress)

				.Build();

	

		_hubConnection.Closed	+=	HubConnectionClosed;

		_hubProxy.On<string,	string>("BroadcastMessage",	

OnMessageReceived);

	

		try

		{

				await	_hubConnection.StartAsync();

				await	_dialogService.ShowMessageAsync("Client	connected");

		}

		catch	(Exception	ex)

		{

				_dialogService.ShowMessage(ex.Message);

		}

}

NOTE SignalR	supports	both	JSON	and	the	MessagePack	protocol	(see
https://msgpack.org).	When	you	use	.NET	clients,	MessagePack	has	its
advantages	because	it	is	more	compact.	To	use	MessagePack,	add	the	NuGet
package	Microsoft.AspNetCore.SignalR.Protocols.MessagePack	and
invoke	the	AddMessagePackProtocol	method	with	the	configuration	of	the
hub	connection.

Sending	messages	to	SignalR	requires	only	calls	to	the	SendAsync	method	of	the
HubConnection.	The	first	parameter	is	the	name	of	the	method	that	should	be
invoked	by	the	server;	the	following	parameters	are	the	parameters	of	the
method	on	the	server	(code	file
SignalRSample/WinAppChatClient/ViewModels/ChatViewModel.cs):

https://msgpack.org

Public	async	void	OnSendMessage()

{

		try

		{

				_hubConnection.SendAsync("Send",	Name,	Message);

		}

		catch	(Exception	ex)

		{

				await	_dialogService.ShowMessageAsync(ex.Message);

		}

}

When	receiving	a	message,	the	OnMessageReceived	method	is	invoked.	The
Messages	property	is	an	ObservableCollection	class	to	immediately	update	the
user	interface	when	a	message	arrives	(code	file
SignalRSample/WinAppChatClient/ViewModels/ChatViewModel.cs):

public	async	void	OnMessageReceived(string	name,	string	message)

{

		try

		{

				Messages.Add($"{name}:	{message}");

		}

		catch	(Exception	ex)

		{

				await	_dialogService.ShowMessageAsync(ex.Message);

		}

}

When	you	run	the	application,	you	can	receive	and	send	messages	from	the
Windows	app	client,	as	shown	in	Figure	28-4.	You	can	also	open	the	web	page
simultaneously	and	communicate	between	them.

FIGURE	28-4

GROUPING	CONNECTIONS
Usually,	you	don't	want	to	communicate	among	all	clients.	Instead,	you	want	to
communicate	among	a	group	of	clients.	There's	support	out	of	the	box	for	such	a
scenario	with	SignalR.

In	this	section,	you	add	another	chat	hub	with	grouping	functionality	and	have	a
look	at	other	options	that	are	possible	using	SignalR	hubs.	The	Windows	app
client	application	is	extended	to	enter	groups	and	send	a	message	to	a	selected
group.

Extending	the	Hub	with	Groups
To	support	a	group	chat,	you	create	the	class	GroupChatHub.	With	the	previous
hub,	you	saw	how	to	use	the	SendAsync	method	to	define	the	message	that	is
sent	to	the	clients.	Instead	of	using	this	method,	you	can	also	create	a	custom
interface,	as	shown	in	the	following	code	snippet.	This	interface	is	used	as	a
generic	parameter	with	the	base	class	Hub	(code	file
SignalRSample/ChatServer/Hubs/GroupChatHub.cs):

public	interface	IGroupClient

{

		Task	MessageToGroup(string	groupName,	string	name,	string	

message);

}

	

public	class	GroupChatHub:	Hub<IGroupClient>

{

		//…

}

AddGroup	and	LeaveGroup	are	methods	defined	to	be	called	by	the	client.	When
you	register	the	group,	the	client	sends	a	group	name	with	the	AddGroup	method.
The	Hub	class	defines	a	Groups	property	where	connections	to	groups	can	be
registered.	The	Groups	property	of	the	generic	Hub	class	returns	IGroupManager.
This	interface	defines	two	methods:	AddToGroupAsync	and
RemoveFromGroupAsync.	Both	methods	need	a	group	name	and	a	connection
identifier	to	add	or	remove	the	specified	connection	to	the	group.	The	connection
identifier	is	a	unique	identifier	associated	with	a	client	connection.	The	client
connection	identifier—as	well	as	other	information	about	the	client—can	be
accessed	with	the	Context	property	of	the	Hub	class.	The	following	code	snippet
invokes	the	AddToGroupAsync	method	of	the	IGroupManager	to	register	a	group
with	the	connection,	and	it	invokes	the	RemoveFromGroupAsync	method	to
unregister	a	group	(code	file
SignalRSample/ChatServer/Hubs/GroupChatHub.cs):

public	Task	AddGroup(string	groupName)	=>

		Groups.AddToGroupAsync(Context.ConnectionId,	groupName);

	

public	Task	LeaveGroup(string	groupName)	=>

		Groups.RemoveFromGroupAsync(Context.ConnectionId,	groupName);

NOTE The	Context	property	of	the	Hub	class	returns	an	object	of	type
HubCallerContext	.	With	this	class,	not	only	can	you	access	the	connection
identifier	associated	with	the	connection,	but	you	can	access	other
information	about	the	client,	such	as	the	user,	but	only	if	the	user	is
authorized.

Invoking	the	Send	method—this	time	with	three	parameters,	including	the	group
—sends	information	to	all	connections	that	are	associated	with	the	group.	The
Clients	property	is	now	used	to	invoke	the	Group	method.	The	Group	method
accepts	a	group	string	to	send	the	MessageToGroup	message	to	all	connections
associated	with	the	group	name.	With	an	overload	of	the	Group	method,	you	can

add	connection	IDs	that	should	be	excluded.	Because	the	Hub	implements	the
interface	IGroupClient,	the	Group	method	returns	the	IGroupClient.	This	way,
the	MessageToGroup	method	can	be	invoked	using	compile-time	support	(code
file	SignalRSample/ChatServer/Hubs/GroupChatHub.cs):

public	Task	Send(string	group,	string	name,	string	message)	=>

		Clients.Group(group).MessageToGroup(group,	name,	message);

Several	other	extension	methods	are	defined	to	send	information	to	a	list	of
client	connections.	You've	seen	the	Group	method	to	send	messages	to	a	group	of
connections	that's	specified	by	a	group	name.	With	this	method,	you	can	exclude
client	connections.	For	example,	the	client	who	sent	the	message	might	not	need
to	receive	it.	The	Groups	method	accepts	a	list	of	group	names	where	a	message
should	be	sent.	You've	already	seen	the	All	property	to	send	a	message	to	all
connected	clients.	Methods	to	exclude	sending	the	message	to	the	caller	are
OthersInGroup	and	OthersInGroups.	These	methods	send	a	message	to	one
specific	group	excluding	the	caller,	or	a	message	to	a	list	of	groups	excluding	the
caller.

You	can	also	send	messages	to	a	customized	group	that's	not	based	on	the	built-
in	grouping	functionality.	Here,	it	helps	to	override	the	methods
OnConnectedAsync	and	OnDisconnectedAsync.	The	OnConnectedAsync	method
is	invoked	every	time	a	client	connects;	the	OnDisconnectedAsync	method	is
invoked	when	a	client	disconnects.	Within	these	methods,	you	can	access	the
Context	property	of	the	Hub	class	to	access	client	information	as	well	as	the
client-associated	connection	ID.	Here,	you	can	write	the	connection	information
to	a	shared	state	to	have	your	server	scalable	using	multiple	instances,	accessing
the	same	shared	state.	You	can	also	select	clients	based	on	your	own	business
logic.	For	example,	your	implementation	can	decide	to	send	messages	first	to
clients	based	on	priorities.

public	override	Task	OnConnectedAsync()	=>

		base.OnConnectedAsync();

	

public	override	Task	OnDisconnectedAsync(Exception	exception)	=>

		base.OnDisconnected(exception);

Extending	the	Windows	Client	App	with	Groups
After	readying	the	grouping	functionality	with	the	hub,	you	can	extend	the
Windows	app	client	application.	For	the	grouping	features,	another	user	control
associated	with	the	GroupChatViewModel	class	is	defined.

The	GroupChatViewModel	class	defines	some	more	properties	and	commands
compared	to	the	ChatViewModel	defined	earlier.	The	NewGroup	property	defines
the	group	the	user	registers	to.	The	SelectedGroup	property	defines	the	group
that	is	used	with	the	continued	communication,	such	as	sending	a	message	to	the
group	or	leaving	the	group.	The	SelectedGroup	property	needs	change
notification	to	update	the	user	interface	on	changing	this	property;	that's	why	the
INotifyPropertyChanged	interface	is	implemented	with	the
GroupChatViewModel	class,	and	the	set	accessor	of	the	property	SelectedGroup
fires	a	notification.	Commands	to	join	and	leave	the	group	(the
EnterGroupCommand	and	LeaveGroupCommand	properties,	respectively)	are
defined	as	well	(code	file
SignalRSample/WinAppChatClient/ViewModels/GroupChatViewModel.cs):

public	sealed	class	GroupChatViewModel

{

		private	readonly	IDialogService	_dialogService;

		private	readonly	UrlService	_urlService;

	

		public	GroupChatViewModel(IDialogService	dialogService,	

				UrlService	urlService)

		{

				_dialogService	=	dialogService;

				_urlService	=	urlService;

	

				ConnectCommand	=	new	RelayCommand(OnConnect);

				SendCommand	=	new	RelayCommand	(OnSendMessage);

				EnterGroupCommand	=	new	RelayCommand	(OnEnterGroup);

				LeaveGroupCommand	=	new	RelayCommand	(OnLeaveGroup);

		}

	

		public	string?	Name	{	get;	set;	}

		public	string?	Message	{	get;	set;	}

		public	string?	NewGroup	{	get;	set;	}

		public	string?	SelectedGroup	{	get;	set;	}

	

		public	ObservableCollection<string>	Messages	{	get;	}	=

				new	ObservableCollection<string>();

		public	ObservableCollection<string>	Groups	{	get;	}	=

				new	ObservableCollection<string>();

		public	ICommand	SendCommand	{	get;	}

		public	ICommand	ConnectCommand	{	get;	}

		public	ICommand	EnterGroupCommand	{	get;	}

		public	ICommand	LeaveGroupCommand	{	get;	}

		//…

}

The	handler	methods	for	the	EnterGroupCommand	and	LeaveGroupCommand
commands	are	shown	in	the	following	code	snippet.	Here,	the	AddGroup	and
RemoveGroup	methods	are	called	within	the	group	hub	(code	file
SignalRSample/WinAppChatClient/ViewModels/GroupChatViewModel.cs):

public	async	void	OnEnterGroup()

{

		try

		{

				if	(NewGroup	is	not	null)

				{

						await	_hubConnection.InvokeAsync("AddGroup",	NewGroup);

						Groups.Add(NewGroup);

						SelectedGroup	=	NewGroup;

				}

		}

		catch	(Exception	ex)

		{

				await	_dialogService.ShowMessageAsync(ex.Message);

		}

}

	

public	async	void	OnLeaveGroup()

{

		try

		{

				if	(SelectedGroup	is	not	null)

				{

						await	_hubConnection.InvokeAsync("LeaveGroup",	

SelectedGroup);

						Groups.Remove(SelectedGroup);

				}

		}

		catch	(Exception	ex)

		{

				_dialogService.ShowMessage(ex.Message);

		}

}

Sending	and	receiving	the	messages	is	similar	to	the	previous	sample.	The
difference	is	that	the	group	information	is	added	now	(code	file
SignalRSample/WinAppChatClient/ViewModels/GroupChatViewModel.cs):

public	async	void	OnSendMessage()

{

		try

		{

				await	_hubConnection.InvokeAsync("Send",	SelectedGroup,	

Name,	Message);

		}

		catch	(Exception	ex)

		{

				_dialogService.ShowMessage(ex.Message);

		}

}

	

public	void	OnMessageReceived(string	group,	string	name,	string	

message)

{

		try

		{

						Messages.Add($"{group}-{name}:	{message}");

		}

		catch	(Exception	ex)

		{

				await	_dialogService.ShowMessageAsync(ex.Message);

		}

}

When	you	run	the	application,	you	can	send	messages	for	all	groups	that	have
been	joined	and	see	received	messages	for	all	registered	groups,	as	shown	in
Figure	28-5.

FIGURE	28-5

STREAMING	WITH	SIGNALR
SignalR	supports	streaming,	including	from	the	server	to	the	client,	from	the
client	to	the	server,	and	simultaneously	in	both	directions.

The	sample	application	returns	a	stream	of	simulated	sensor	data	to	the	client.	To
implement	this,	create	a	new	empty	ASP.NET	Core	web	application	and	add	the
configuration	of	SignalR	similar	to	the	previous	sample.	The	hub	class
StreamingHub	is	now	declared	to	return	IAsyncEnumerable<SensorData>.	The
hub	passes	1,000	SensorData	values	to	the	client	unless	the	client	sends	a
cancellation	that	is	received	with	the	cancellationtoken	(code	file
SignalRStreaming/Hubs/StreamingHub.cs):

public	record	SensorData(int	Val1,	int	Val2,	DateTime	

TimeStamp);

	

public	class	StreamingHub	:	Hub

{

		public	async	IAsyncEnumerable<SensorData>	GetSensorData(

				[EnumeratorCancellation]	CancellationToken	

cancellationToken)

		{

				Random	r	=	new();

				for	(int	i	=	0;	i	<	1000;	i++)

				{

						yield	return	new	SensorData(r.Next(20),	r.Next(20),	

DateTime.Now);

						await	Task.Delay(1000,	cancellationToken);

				}

		}

}

NOTE Instead	of	using	IAsyncEnumerable	for	streaming,	a	SignalR
streaming	hub	can	also	return	a	ChannelReader	or	a	ChannelWriter	—
depending	on	the	direction	of	the	stream—from	the	namespace
System.Threading.Channels	.	Using	IAsyncEnumerable	is	just	the	simpler
option	to	implement	with	the	help	of	C#	extensions	with	the	yield	statement
and	await	foreach	.	The	foundation	of	async	streams	is	covered	in	Chapter
11,	“Tasks	and	Asynchronous	Programming.”

This	time,	the	client	application	is	created	with	a	.NET	console	application
template.	The	creation	and	starting	of	the	hub	connection	is	done	in	the	same
way	as	before.	Now,	the	StreamAsync	method	is	used	to	invoke	the
GetSensorData	method.	This	method	returns	IAsyncEnumerable,	which	can
now	be	used	with	the	await	foreach	statement.	Passing	the	cancellation	token
to	the	service	is	done	with	the	WithCancellation	method;	after	10	seconds,
requesting	the	stream	is	canceled	(code	file	StreamingClient/Program.cs):

using	Microsoft.AspNetCore.SignalR.Client;

using	System;

using	System.Threading;

using	System.Threading.Tasks;

	

Console.WriteLine($"Wait	for	service	-	press	return	to	start");

Console.ReadLine();

	

var	connection	=	new	HubConnectionBuilder()

		.WithUrl("https://localhost:5001/stream")

		.Build();

	

await	connection.StartAsync();

	

CancellationTokenSource	cts	=	new(10000);

	

try

{

		await	foreach	(var	data	in	

				connection.StreamAsync<SensorData>

("GetSensorData").WithCancellation(cts.Token))

		{

				Console.WriteLine(data);

		}

}

catch	(OperationCanceledException)

{

		Console.WriteLine("Canceled!");

}

	

await	connection.StopAsync();

	

Console.WriteLine("Completed");

	

	

public	record	SensorData(int	Val1,	int	Val2,	DateTime	

TimeStamp);

When	you	run	both	the	service	and	the	client	application,	the	stream	of	sensor
data	is	shown	in	the	client	application	until	the	cancellation	happens	after	10
seconds.

NOTE Instead	of	invoking	StreamAsync	on	the	client,	you	can	invoke	the
method	StreamAsChannelAsync	.	This	returns	a	ChannelReader	,	no	matter
whether	you	returned	a	ChannelReader	or	IAsyncEnumerable	with	the
service.

SUMMARY
This	chapter	described	communicating	with	multiple	clients	with	ASP.NET	Core
SignalR.	SignalR	offers	an	easy	way	to	use	the	WebSocket	technology	to	keep
the	network	connection	open	to	allow	passing	continuous	information	from	the
server	to	the	client.	With	SignalR	you	can	also	send	information	to	all	connected
clients	or	a	group	of	clients.	The	sample	application	demonstrated	how	you	can

implement	clients	to	register	for	groups,	and	the	server	returns	information	from
groups.

With	creating	SignalR	clients,	you've	seen	using	JavaScript	as	well	as	.NET
clients.	The	API	is	similar	for	the	different	client	libraries—just	the	naming	of
the	hub	methods	differs.

You've	seen	how	to	implement	streaming	with	SignalR	using	the	yield
statement	to	return	IAsyncEnumerable	and	using	await	foreach.

The	next	chapter	is	the	start	of	Part	IV	of	the	book	and	is	the	first	chapter	of
several	that	cover	how	to	use	XAML	to	create	Windows	apps.

PART	IV
Apps

CHAPTER	29:	Windows	Apps

CHAPTER	30:	Patterns	with	XAML	Apps

CHAPTER	31:	Styling	Windows	Apps

29
Windows	Apps

WHAT'S	IN	THIS	CHAPTER?

Introducing	XAML

Working	with	controls

Working	with	compiled	data	binding

Implementing	navigation

Using	layout	panels

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	4_Apps/Windows.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

XAMLIntro

ControlsSamples

DataBindingSamples

NavigationControls

LayoutSamples

All	the	projects	have	nullable	reference	types	enabled.

INTRODUCING	WINDOWS	APPS
Many	options	are	available	for	creating	Windows	applications.	When	the	.NET

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

Framework	was	first	released	in	2002,	Windows	Forms	was	the	technology	to
create	Windows	applications.	Since	.NET	Core	3.1,	you	can	also	create
Windows	Forms	applications	with	the	new	.NET.	The	“old”	.NET	(.NET
Framework	3.0)	introduced	Windows	Presentation	Foundation	(WPF).	With
WPF,	the	user	interface	is	created	with	eXtensible	Application	Markup
Language	(XAML),	an	XML	syntax	that	allows	flexible	scaling.	Silverlight
(code	name	WPF-E	or	WPF	Everywhere)	was	a	technology	that	brought	XAML
syntax	to	the	browser,	and	the	Windows	phone	with	a	slimmed-down	version	of
.NET.	This	technology	needed	an	add-in	with	the	browser.	For	some	years,
Silverlight	was	also	the	technology	to	create	applications	for	Windows	phones.
The	last	version	of	Silverlight	had	the	goal	for	more	desktop	support	with	the
ability	to	control	Microsoft	Office	(after	more	features	had	been	integrated	with
HTML	5).	With	this,	the	Universal	Windows	Platform	(UWP)	became	the
successor	of	Silverlight	to	create	XAML-based	applications	for	Windows.

Compared	to	WPF,	UWP	offers	modern	XAML	features	not	available	with	WPF.
UWP	applications	run	in	a	sandboxed	environment	where	the	user	is	in	control
of	what	the	app	can	do.	When	installing	UWP	applications	from	the	Microsoft
Store,	the	user	gets	some	guarantees	about	what	the	app	might	do	and	can
uninstall	the	application	again	without	keeping	some	files	or	registry	keys	on	the
system.	With	UWP,	a	slimmed-down	version	of	.NET	with	the	Windows
Runtime	(WinRT)	is	used.

Now	we	have	a	new	technology	for	the	user	interface.	Modern	XAML	syntax	is
used	with	rich	desktop	applications,	and	the	desktop	applications	can	take
advantage	of	the	newest	C#	language	features	with	the	latest	version	of	.NET:
WinUI.	The	controls	are	separated	from	the	Windows	10	version.	Instead	of
waiting	for	new	Windows	10	versions	to	be	available	with	the	users	before	using
new	UI	controls,	the	UI	controls	are	part	of	the	library	and	can	be	used	with
older	Windows	10	versions.

WinUI	gives	you	different	options	to	create	applications:	packaged	desktop
applications,	desktop	applications	that	are	not	packaged,	and	UWP	applications.
Packaged	desktop	applications	make	use	of	MSIX.	MSIX	is	the	Windows	app
package	format	for	deploying	Windows	apps	(https://docs.microsoft.com
windows/msix).	With	packaged	desktop	applications,	two	projects	are	created:
one	with	the	application	code	and	one	to	create	the	deployment	package.
Applications	deployed	using	MSIX	run	in	a	lightweight	app	container.	When
you	use	MSIX,	the	application	is	isolated	from	other	apps	and	can	be	fully
uninstalled	without	having	bits	left	on	your	system.	A	UWP	app	container,	also

https://docs.microsoft.com

known	as	native	container,	supports	better	battery	life	(by	suspending
applications	when	they	are	not	used)	and	explicit	security	control.	With	a	native
container,	the	user	grants	permissions	defining	what	the	application	is	allowed	to
do.	Within	the	Microsoft	Store,	you	can	add	not	only	applications	using	a	native
container	but	also	applications	using	MSIX	app	containers.	With	MSIX
containers,	some	users	complain	that	your	app	needs	full	permissions	to	run.

At	the	time	of	this	writing,	WinUI	supports	only	packaged	desktop	applications,
but	the	other	application	types	are	on	the	WinUI	roadmap.	See	the	WinUI	3.0
feature	roadmap	for	the	current	state	of	WinUI:
https://github.com/Microsoft/microsoft-ui-

xaml/blob/master/docs/roadmap.md#winui-30-feature-roadmap.

NOTE The	GitHub	repo	of	the	previous	edition	of	this	book
(https://github.com/ProfessionalCSharp/ProfessionalCSharp7)
includes	UWP	samples	using	the	ink	control	and	the	map	control	and	some
other	UWP	features.	At	the	time	of	this	writing,	WinUI	does	not	have	support
for	ink	and	maps.	With	the	fast	updates	of	WinUI,	make	sure	to	check	the
readme	file	of	the	book	samples	for	updates	and	see
https://github.com/ProfessionalCSharp/MoreSamples	for	additional
samples	with	WinUI—for	example,	with	the	ink	and	map	controls.

This	chapter	and	the	following	chapters	provide	information	on	creating
Windows	applications	with	WinUI.	Nearly	all	the	topics	discussed	are	possible
with	other	XAML-based	technologies	as	well.	Practically	the	same	syntax	can	be
used	with	UWP	applications.

When	you	compare	WinUI	with	WPF,	the	XAML	syntax	looks	nearly	the	same,
but	there	are	important	differences.	Besides	having	more	modern	controls	with
WinUI,	controls	have	other	properties	(such	as	the	Header	property	with	the
TextBlock	element).	WinUI	offers	compiled	binding	(in	addition	to	the
reflection-based	binding	that's	also	available	with	WPF).	The	class	hierarchy	of
WinUI	is	simpler	than	the	class	hierarchy	of	WPF;	there	are	many	similarities
but	with	completely	different	implementations.	Whereas	WPF	is	developed	with
.NET,	the	WinUI	controls	have	been	built	with	C++.

Another	user	interface	option	that's	making	use	of	XAML	is	.NET	Multi-
Platform	App	UI	(MAUI).	This	library	is	the	successor	of	Xamarin.Forms.	Here
you	have	other	controls	and	other	control	hierarchies	offering	renderers	for
Android	and	iOS.

https://github.com/Microsoft/microsoft-ui-xaml/blob/master/docs/roadmap.md#winui-30-feature-roadmap
https://github.com/ProfessionalCSharp/ProfessionalCSharp7
https://github.com/ProfessionalCSharp/MoreSamples

NOTE The	Project	Reunion	is	a	code	name	from	Microsoft	to	combine	all
the	desktop	technologies	under	one	umbrella.	Instead	of	porting	your
existing	C++/MFC	and	WPF	applications	to	WinUI,	you	can	use	WinUI
controls	from	all	the	desktop	technologies	and	easily	use	new	features	in
your	existing	applications.

Windows	Runtime
Before	digging	into	the	XAML	syntax,	you	need	to	know	about	the	Windows
Runtime	(WinRT).	WinRT	is	the	modern	native	API	of	the	Windows	platform,
and	WinUI	(and	UWP)	applications	make	use	of	this	runtime.	It's	built	with	C++
and	a	new	generation	of	COM	objects.	Many	applications	available	as	part	of	the
Windows	operating	system	(for	example,	Calculator)	are	developed	with	C++
and	XAML.	You	can	check	the	source	code	of	the	Calculator	at
https://github.com/Microsoft/Calculator	to	see	the	XAML	code	and	its
C++	view	models,	and	you	can	even	add	pull	requests	to	enhance	its
functionality.

To	use	WinRT	from	.NET	applications,	C#/WinRT	offers	projection	support	for
C#.	With	the	projection	support,	native	details	of	WinRT	APIs	are	hidden	and
mapped	to	.NET	data	types.

With	.NET,	metadata	is	extensible	with	custom	attributes	and	can	be	accessed
using	reflection.	(Read	more	about	this	in	Chapter	12,	“Reflection,	Metadata,
and	Dynamic	Programming.”)	WinRT	is	using	the	same	format	for	its	metadata
as	.NET.	Thus,	you	can	open	the	.winmd	files	(metadata	files	for	WinRT)	using
the	ildasm	command	line	to	see	the	API	calls	with	their	parameters.	You	can
find	the	Windows	metadata	files	in	the	directory
%ProgramFiles(x86)%\Windows	Kits\10\References\.

Language	projection	maps	Windows	Runtime	types	to	.NET	types.	For	example,
in	the	file	Windows.Foundation.FoundationContract.winmd,	you'll	find	the
IIterable	and	IIterator	interfaces	in	the	namespace
Windows.Foundation.Collections.	These	interfaces	look	similar	to	the	.NET
interfaces	IEnumerable	and	IEnumerator.	Indeed,	they	are	automatically
mapped	with	language	projection.

Not	all	the	interfaces	of	the	contracts	can	be	directly	mapped.	Chapter	18,	“Files
and	Streams,”	shows	files	and	streams	with	the	Windows	Runtime	from	the
namespace	Windows.Storage.Streams.	To	use	the	Windows	streams	with	.NET

https://github.com/Microsoft/Calculator

streams,	you	can	use	extension	methods	such	as	AsStream,	AsStreamForRead,
and	AsStreamForWrite.

To	use	WinRT,	all	that	needs	to	be	configured	with	.NET	5	is	to	use	the	correct
target	framework	moniker.	Instead	of	using	net5.0	as	the	target	framework	(as
you've	done	so	far	with	.NET	console	and	ASP.NET	Core	applications),	the
target	framework	moniker	net5.0-windows10.0.19041.0	is	used	with	WinUI
applications.	19041.0	specifies	the	Windows	10	build	version	to	use	the
C#/WinRT	projection	and	thus	the	APIs	available.	Be	aware	that	a	new
projection	layer	is	not	available	with	every	Windows	10	update.	Windows	10
version	20H2	with	build	number	19042	and	version	21H1	with	build	19043	only
include	minor	updates	without	new	APIs;	thus,	no	new	projections	are	required.

The	following	project	file	snippet	shows	the	TargetFramework	configuration	of
the	sample	applications	(project	file
XAMLIntro/HelloWindows/HelloWindows.csproj):

<TargetFramework>net5.0-windows10.0.19041.0</TargetFramework>

NOTE See	https://docs.microsoft.com/windows/uwp/csharp-winrt/
for	more	information	about	the	projection	layer	C#/WinRT	with	information
on	how	you	can	write	your	own	projections	for	native	libraries.

Hello,	Windows
Let's	start	creating	a	new	Windows	app	with	Visual	Studio.	Search	for	WinUI
desktop	application	with	the	templates.	Make	sure	to	check	this	chapter's	readme
file	for	updates.	After	you	input	the	name	and	location,	the	next	question	asked
is	the	target	and	minimum	version	supported.	With	every	newer	platform
version,	you	get	more	features	from	the	Windows	Runtime.	However,	you	need
to	pay	attention	to	the	version	of	Windows	10	that	your	users	have.	They	can't
install	and	run	your	Windows	10	app	if	the	platform	version	is	not	supported.
With	WinUI	3.0,	the	user	interface	components	are	independent	of	the	version	of
the	Windows	runtime	and	supports	Windows	10	back	to	version	1809,	which	has
the	build	number	17763.	Version	1809	was	released	in	November	2018.

With	the	target	version	you	select,	you	specify	the	API	version	that	can	be	used
by	the	app.	With	the	minimum	version,	you	specify	the	build	version	where	the
app	can	be	installed	and	run.	If	you	set	the	target	and	minimum	version	to
different	values,	you	need	to	write	adaptive	code	if	you	use	APIs	that	are	not

https://docs.microsoft.com/windows/uwp/csharp-winrt/

available	in	the	minimum	version.

Application	Manifest
You	can	change	the	build	target	and	minimum	version	numbers	with	the	project
properties	of	the	package	project.	Windows	apps	have	another	important
configuration	for	the	packaging:	the	file	Package.appxmanifest.	Opening	this
file	with	Visual	Studio	opens	the	Package	Manifest	Editor.

With	the	Application	settings	(see	Figure	29-1),	you	can	configure	the	display
name	of	the	application,	the	default	language,	supported	rotations	of	the	device,
and	automatic	periodic	tile	updates.

On	the	Visual	Assets	tab,	you	can	configure	all	the	different	icons	of	the
application—tile	images	for	different	tile	sizes,	different	device	resolutions,	a
splash	screen,	and	a	package	logo	for	the	Windows	Store.

Settings	in	the	Capabilities	tab	allow	you	to	select	the	capabilities	needed	by	the
app.	Examples	of	such	capabilities	are	Internet,	Microphone,	Bluetooth,
Webcam,	and	others	that	allow	the	application	access	to	these	resources	(if	the
user	agrees	to	grant	access).	This	is	important	with	UWP-style	applications	that
use	the	native	app	container.	Packaged	WinUI	applications	use	the	MSIX
environment	and	thus	require	more	privileges.

With	the	Declarations	settings	(see	Figure	29-2),	you	can	add	features	of	the
application	that	Windows	needs	to	know	about.	For	example,	when	sharing	data
from	one	app,	Windows	shows	the	apps	that	accept	the	shared	data.	For	this,	the
app	needs	to	be	registered	as	a	share	target.	Besides	using	the	application	as
share	target,	examples	of	when	you	need	to	specify	declarations	are	when	the
app	should	be	activatable	via	a	protocol	or	a	file	type	extension,	when
communication	should	be	done	between	app	services,	or	when	the	app	should
communicate	via	app	services.

The	Content	URIs	tab	allows	for	deep	linking	within	the	app.	Here,	you	can
specify	URLs	to	open	pages	in	the	app.	Finally,	with	the	Packaging	tab,	you	can
configure	the	package	name,	version,	and	information	about	the	publisher.

Application	Startup
The	entry	point	into	the	application,	HelloWindows.App,	is	defined	in	the
application	manifest,	as	shown	in	the	previous	section.	The	App	class	derives
from	the	Application	base	class	and	invokes	the	InitializeComponent	method

that's	generated	in	the	other	part	of	the	partial	class	to	initialize	the	XAML	code
(code	file	HelloWindows/App.xaml.cs):

sealed	partial	class	App	:	Application

{

		public	App()

		{

				this.InitializeComponent();

		}

		//…

}

FIGURE	29-1

With	the	XAML	code	specified	in	App.xaml,	you	can	see	that	XAML	control
resources	from	Microsoft.UI.Xaml.Controls	are	referenced.	With	this
namespace,	the	default	styles	for	the	WinUI	XAML	controls	are	specified.	How
to	customize	the	look	of	resources	with	resource	dictionaries	is	covered	in
Chapter	31,	“Styling	Windows	Apps.”

With	the	C#	App	class,	the	OnLaunched	method	is	overridden.	This	method	is
invoked	when	the	application	is	started.	As	you	learned	from	the	application
manifest,	there	are	different	ways	to	start	the	application.	When	reading
information	from	the	LaunchActivatedEventArgs	parameter,	you	can	find	out
how	the	application	was	started.	The	application	can	be	started	directly	from	the
user	or	started	when	the	user	shares	data	from	another	application.	With	the
default	implementation,	an	instance	of	the	MainWindow	is	created,	and	the
Activate	method	is	invoked	(code	file
XAMLIntro/HelloWindows/App.xaml.cs)	:

protected	override	void	

OnLaunched(Microsoft.UI.Xaml.LaunchActivatedEventArgs	args)

{

		m:window	=	new	MainWindow();

		m:window.Activate();

}

	

private	Window?	m:window;

FIGURE	29-2

Main	Window
Let's	open	the	MainWindow.xaml	file.	The	user	interface	is	defined	using	XAML,
a	language	that	extends	XML	with	some	functionality	that's	discussed	in	detail	in
the	section	“Introducing	XAML.”	As	shown	in	the	following	code	snippet,	the
root	element	is	the	Window	that	has	some	specialty	with	WinUI	and	is	different
from	the	other	XAML	elements.	This	class	is	not	part	of	the	hierarchy	of	the
other	XAML	elements.	The	Window	class	doesn't	have	a	base	class	and
implements	some	interfaces	important	for	WinRT.	This	means	you	don't	have
direct	access	to	the	properties	available	with	all	the	framework	elements.	The
custom	class	that's	used	in	the	code-behind	is	specified	with	the	x:Class
attribute:	this	is	the	MainWindow	class.	MainWindow	derives	from	the	Window
class.	The	xmlns	attributes	used	are	similar	to	the	way	the	C#	using	directive	is
used	to	import	namespaces.	With	xmlns,	you	open	types	to	be	used	with	the

XAML	file.	Similar	to	the	using	directive,	you	can	create	an	alias.	The	alias	x
references	types	specified	with
http://schemas.microsoft.com/winfx/2006/xaml.	The	alias	is	then	used	as	a
prefix,	as	in	x:Name	to	define	a	name	for	the	Button	element.	The	namespace
that	is	opened	by	default	and	thus	doesn't	require	a	prefix	when	using	the
elements	is	http://schemas.microsoft.com/winfx/2006/xaml/presentation.
This	is	the	namespace	where	the	WinUI	XAML	controls	are	defined.	You	can
open	.NET	namespaces	and	use	.NET	classes	within	XAML	code	by	opening	the
.NET	namespace	with	using	as	with	xmlns:local="using:HelloWindows".	This
way,	with	the	local	prefix,	simple	.NET	classes	can	be	used	within	the	XAML
code,	as	shown	in	the	next	section.	In	the	following	code	snippet,	the
StackPanel	and	Button	controls	are	added	as	child	elements	of	the	Window
element.	With	the	StackPanel,	the	attributes	Orientation,
HorizontalAlignment,	and	VerticalAlignment	are	set.	Using	this	XML	syntax,
the	corresponding	properties	of	the	StackPanel	class	are	set.	With	the	Button
control,	the	content	is	set	to	a	simple	string	(which	sets	the	Content	property),
and	the	Click	attribute	is	set	to	the	myButton_Click	event	handler.	Click	is	an
event	in	the	Button	control.	Read	Chapter	7,	“Delegates,	Lambdas,	and	Events,”
for	details	on	C#	events	(code	file
XAMLIntro/HelloWindows/MainWindow.xaml):

<Window

		x:Class="HelloWindows.MainWindow"

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		xmlns:local="using:HelloWindows"

		xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

		xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

		mc:Ignorable="d">

	

		<StackPanel	Orientation="Horizontal"	

HorizontalAlignment="Center"	

				VerticalAlignment="Center">

				<Button	x:Name="myButton"	Click="myButton_Click">Click	

Me</Button>

		</StackPanel>

</Window>

In	the	code-behind	file,	the	button	can	be	accessed	using	the	myButton	variable.
The	x:Name	attribute	with	the	XAML	file	creates	.NET	variables.	On	clicking	the

http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation

button,	the	value	of	the	Content	property	is	changed	with	the	myButton_Click
event	handler	(code	file	XAMLIntro/HelloWindows/MainWindow.xaml.cs):

using	Microsoft.UI.Xaml;

	

namespace	HelloWindows

{

		public	sealed	partial	class	MainWindow	:	Window

		{

				public	MainWindow()

				{

						this.InitializeComponent();

				}

	

				private	void	myButton_Click(object	sender,	RoutedEventArgs	

e)

				{

						myButton.Content	=	"Clicked";

				}

		}

}

After	building	and	deploying	the	application,	you	can	run	it	and	click	the	button
to	see	its	content	changes.	Deployment	of	the	application	is	automatically	done
from	Visual	Studio	on	a	build	when	the	Deploy	configuration	is	set	in	the
Configuration	Manager	(Build	➪	Configuration	Manager).	If	you	don't	deploy
the	app	on	build,	you	need	to	deploy	it	after	build	by	using	the	Deploy	option	in
the	context	menu	when	you	select	the	project	in	Solution	Explorer,	or	you	can
deploy	all	the	projects	in	the	solution	with	Visual	Studio	by	selecting	Build	➪
Deploy	Solution.

INTRODUCING	XAML
When	creating	web	applications	with	ASP.NET	Core,	you	need	to	know	HTML,
CSS,	and	JavaScript	in	addition	to	knowing	C#.	When	you	create	Windows
apps,	you	need	to	know	XAML	besides	C#.	XAML	is	not	only	used	to	create
Windows	apps;	it's	also	used	with	Windows	Presentation	Foundation	(WPF),
Windows	Workflow	Foundation	(WF),	and	cross-platform	apps	with	Xamarin.

Anything	that	can	be	done	with	XAML	can	also	be	done	with	C#.	Every	XAML
element	is	represented	with	a	class	and	thus	can	be	accessed	from	C#.	Why	is
there	a	need	for	XAML?	XAML	is	typically	used	to	describe	objects	and	their
properties,	and	this	is	possible	in	a	deep	hierarchy.	For	example,	a	Page	contains

a	Grid	control;	the	Grid	control	contains	a	StackPanel	and	other	controls;	and
the	StackPanel	contains	Button	and	TextBox	controls.	XAML	makes	it	easy	to
describe	such	a	hierarchy	and	assign	properties	of	objects	via	XML	attributes	or
elements.

XAML	allows	writing	code	in	a	declarative	manner.	Whereas	C#	is	mainly	an
imperative	programming	language,	XAML	allows	for	declarative	definitions.
With	an	imperative	programming	language	(like	C#),	the	compiler	compiles	a
C#	for	loop	to	a	for	loop	with	the	Intermediate	Language	(IL)	code.	With	a
declarative	programming	language,	you	declare	what	should	be	done,	but	not
how	it	should	be	done.

XAML	is	an	XML	syntax,	but	it	defines	several	enhancements	to	XML.	With
these	enhancements,	XAML	is	still	valid	XML.	The	enhancements	just	have
special	meaning	and	special	functionality.	Examples	for	the	enhancements	are
curly	brackets	within	XML	attributes.	For	XML,	this	is	still	just	a	string	and	thus
valid	XML.	For	XAML,	this	is	a	markup	extension.

Before	you	can	use	XAML	efficiently,	you	need	to	understand	some	important
features	of	this	programming	language.	These	features	are	described	in	the
following	sections:

Dependency	properties—From	the	outside,	dependency	properties	look
like	normal	properties.	However,	they	need	less	storage	and	implement
change	notification.

Routed	events—From	the	outside,	routed	events	look	like	normal	.NET
events.	However,	you	use	custom	event	implementation	with	add	and
remove	accessors	to	allow	bubbling	and	tunneling.	Events	can	tunnel	from
outer	controls	to	inner	controls	and	bubble	from	inner	controls	to	outer
controls.

Attached	properties—With	attached	properties,	it	is	possible	to	add
properties	to	other	controls.	For	example,	the	Button	control	doesn't	have	a
property	to	position	it	within	a	Grid	control	in	a	specific	row	and	column.
With	XAML,	it	looks	like	it	has	such	a	property.

Markup	extensions—Writing	XML	attributes	requires	less	coding
compared	to	XML	elements.	However,	XML	attributes	can	only	be	strings;
you	can	write	much	more	powerful	syntax	with	XML	elements.	To	reduce
the	amount	of	code	that	needs	to	be	written,	markup	extensions	allow
writing	powerful	syntax	within	attributes.

Mapping	Elements	to	Classes
Behind	every	XAML	element	there's	a	class	with	properties,	methods,	and
events.	You	can	create	UI	elements	either	with	C#	code	or	using	XAML.	Let's
get	into	an	example.	With	the	following	code	snippet,	a	StackPanel	is	defined
that	contains	a	Button	control.	With	XML	attributes,	the	Button	has	the	Content
property	and	the	Click	event	assigned.	The	Content	property	just	contains	a
simple	string,	whereas	the	Click	event	references	the	address	of	the	method
OnButtonClick.	The	XML	attribute	x:Name	is	used	to	declare	a	name	to	the
Button	control	that	can	be	used	both	from	XAML	and	from	the	C#	code-behind
file	(code	file	XAMLIntro/Intro/MainWindow.xaml):

<StackPanel	x:Name="stackPanel1">

		<Button	Content="Click	Me!"	x:Name="button1"	

Click="OnButtonClick"	/>

		<!--	…	-->

</StackPanel>

On	top	of	the	page,	you	can	see	the	Window	element	with	the	XML	attribute
x:Class.	This	defines	the	name	of	the	class	where	the	XAML	compiler
generates	partial	code.	With	the	code-behind	file	in	Visual	Studio,	you	can	see
the	part	of	this	class	that	you	can	modify	(code	file
XAMLIntro/Intro/MainWindow.xaml):

<Window

		x:Class="XAMLIntro.MainWindow"

		<!--	…	-->

</Window>

The	code-behind	file	contains	part	of	the	class	MainWindow	(the	part	that	is	not
generated	by	the	XAML	compiler).	In	the	constructor,	the	method
InitializeComponent	is	invoked.	The	implementation	of
InitializeComponent	is	created	by	the	XAML	compiler.	This	method	loads	the
XAML	file	and	converts	it	to	an	object	as	specified	with	the	root	element	in	the
XAML	file.	The	OnButtonClick	method	is	a	handler	for	the	Click	event	of	the
Button	that	was	previously	created	in	XAML	code.	The	implementation	just
opens	up	a	MessageDialog	(code	file	XAMLIntro/Intro/MainWindow.xaml.cs):

public	sealed	partial	class	MainWindow	:	Window

{

		public	MainPage()

		{

				this.InitializeComponent();

		}

	

		private	async	void	OnButtonClick(object	sender,	

RoutedEventArgs	e)

		{

				await	new	MessageDialog("button	1	clicked").ShowAsync();

		}

}

Now	let's	create	a	new	object	from	the	Button	class	from	C#	code	and	add	it	to
the	existing	StackPanel.	In	the	following	code	snippet,	the	constructor	of	the
MainPage	was	modified	to	create	a	new	Button,	set	the	Content	property,	and
assign	a	lambda	expression	to	the	Click	event.	Finally,	the	newly	created	button
is	added	to	the	Children	of	the	StackPanel	(code	file
XAMLIntro/Intro/MainWindow.xaml.cs):

public	MainWindow()

{

		this.InitializeComponent();

		Button	button2	=	new()

		{

				Content	=	"created	dynamically"

		};

		button2.Click	+=	async	(sender,	e)	=>	

				await	new	MessageDialog("button	2	clicked").ShowAsync();

		stackPanel1.Children.Add(button2);

}

As	you've	seen,	XAML	is	just	another	way	to	deal	with	objects,	properties,	and
events.	The	next	sections	show	you	the	advantages	of	XAML	for	user	interfaces.

Using	Custom	.NET	Classes	with	XAML
To	use	custom	.NET	classes	within	XAML	code,	you	can	use	a	simple	plain	old
CLR	object	(POCO)	class;	there	are	no	special	requirements	on	the	class
definition.	You	just	have	to	add	the	.NET	namespace	to	the	XAML	declaration.
To	demonstrate	this,	a	simple	Person	class	with	the	FirstName	and	LastName
properties	is	defined	as	shown	here	(code	file	XAMLIntro/DataLib/Person.cs):

public	class	Person

{

		public	string?	FirstName	{	get;	set;	}

		public	string?	LastName	{	get;	set;	}

		public	override	string	ToString()	=>	$"{FirstName}	

{LastName}";

}

In	XAML,	an	XML	namespace	alias	named	datalib	is	defined	that	maps	to	the
.NET	namespace	DataLib	in	the	assembly	DataLib.	With	this	alias	in	place,	it's
now	possible	to	use	all	classes	from	this	namespace	by	using	the	alias	as	a	prefix
for	the	elements.

In	the	XAML	code,	you	add	a	ListBox	that	contains	items	of	type	Person.	When
you	use	XAML	attributes,	you	set	the	values	of	the	properties	FirstName	and
LastName.	When	you	run	the	application,	the	output	of	the	ToString	method	is
shown	inside	the	ListBox	(code	file	XAMLIntro/Intro/	MainWindow.xaml):

<Window	x:Class="XamlIntro.MainWindow"

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		xmlns:local="using:XAMLIntro"

		xmlns:datalib="using:DataLib"

		xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

		xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

		mc:Ignorable="d">

	

		<StackPanel	x:Name="stackPanel1">

				<Button	Content="Click	Me!"	x:Name="button1"	

Click="OnButtonClick">							

				<ListBox>

						<datalib:Person	FirstName="Stephanie"	LastName="Nagel"	/>

						<datalib:Person	FirstName="Matthias"	LastName="Nagel"	/>

						<datalib:Person	FirstName="Katharina"	LastName="Nagel"	/>

				</ListBox>

		</StackPanel>

</Window>

NOTE WPF	and	Xamarin	use	clr-namespace	instead	of	using	within	the
alias	declaration.	The	reason	is	that	XAML	with	WinUI	and	UWP	is	neither
based	on	nor	restricted	to	.NET.	You	can	use	native	C++	with	XAML	as	well,
and	thus	clr	(Common	Language	Runtime)	would	not	be	a	good	fit.

Setting	Properties	as	Attributes
With	the	previous	XAML	samples,	properties	of	classes	have	been	set	by	using
XML	attributes.	To	set	properties	from	XAML,	you	can	use	XML	attributes	as
long	as	the	property	type	can	be	represented	as	a	string	or	there	is	a	conversion

from	a	string	to	the	property	type.	The	following	code	snippet	sets	the	Content
and	Background	properties	of	the	Button	element	with	XML	attributes:

<Button	Content="Click	Me!"	Background="LightGoldenrodYellow"	/>

With	the	previous	code	snippet,	the	Content	property	is	of	type	object	and	thus
accepts	a	string.	The	Background	property	is	of	type	Brush.	A	string	is	converted
to	a	SolidColorBrush	type	that	derives	from	Brush.

Using	Properties	as	Elements
It's	also	always	possible	to	use	the	element	syntax	to	supply	the	value	for
properties.	You	can	set	the	Background	property	of	the	Button	class	with	the
child	element	Button.Background.	The	following	code	snippet	defines	the
Button	with	the	same	result	as	shown	earlier	with	attributes:

<Button>

		Click	Me!

		<Button.Background>

				<SolidColorBrush	Color="LightGoldenrodYellow"	/>

		</Button.Background>

</Button>

Using	elements	instead	of	attributes	allows	you	to	apply	more	complex	brushes
to	the	Background	property,	such	as	a	LinearGradientBrush,	as	shown	in	the
following	example	(code	file	XAMLIntro/Intro/MainWindow.xaml):

<Button	x:Name="button1"	Click="OnButtonClick">

		Click	Me!

		<Button.Background>

				<LinearGradientBrush	StartPoint="0.5,0.0"	EndPoint="0.5,	

1.0">

						<GradientStop	Offset="0"	Color="Yellow"	/>

						<GradientStop	Offset="0.3"	Color="Orange"	/>

						<GradientStop	Offset="0.7"	Color="Red"	/>

						<GradientStop	Offset="1"	Color="DarkRed"	/>

				</LinearGradientBrush>

		</Button.Background>

</Button>

NOTE When	you	set	the	content	in	the	sample,	neither	the	Content
attribute	nor	a	Button.Content	element	is	used	to	write	the	content;	instead,
the	content	is	written	directly	as	a	child	value	to	the	Button	element.	That's
possible	because	with	a	base	class	of	the	Button	class	(ContentControl),
the	ContentProperty	attribute	is	applied	with

[ContentProperty("Content")].	This	attribute	marks	the	Content	property
as	a	ContentProperty.	This	way	the	direct	child	of	the	XAML	element	is
applied	to	the	Content	property.

Dependency	Properties
XAML	uses	dependency	properties	for	data	binding,	animations,	property
change	notification,	styling,	and	so	forth.	What's	the	reason	for	dependency
properties?	Let's	assume	you	create	a	class	with	100	properties	of	type	int,	and
this	class	is	instantiated	100	times	on	a	single	form.	How	much	memory	is
needed?	Because	an	int	has	a	size	of	4	bytes,	the	result	is	4	×	100	×	100	=
40,000	bytes.	Did	you	already	have	a	look	at	the	properties	of	a	XAML	element?
Because	of	the	huge	inheritance	hierarchy,	a	XAML	element	defines	hundreds	of
properties.	The	property	types	are	not	simple	int	types;	instead,	they're	a	lot
more	complex.	I	think	you	can	imagine	that	such	properties	could	consume	a
huge	amount	of	memory.	However,	you	usually	change	only	the	values	of	a	few
of	these	properties,	and	most	of	the	properties	keep	their	default	values	that	are
common	for	all	instances.	This	dilemma	is	solved	with	dependency	properties.
With	dependency	properties,	object	memory	is	not	allocated	for	every	property
and	every	instance.	Instead,	the	dependency	property	system	manages	a
dictionary	of	all	properties	and	allocates	memory	only	if	a	value	is	changed.
Otherwise,	the	default	value	is	shared	between	all	instances.

Dependency	properties	also	have	built-in	support	for	change	notification.	With
normal	properties,	you	need	to	implement	the	interface
INotifyPropertyChanged	for	change	notification.	How	the	interface
INotifyPropertyChanged	can	be	implemented	is	explained	later	in	this	chapter
in	the	section	“Working	with	Data	Binding.”	Such	a	change	mechanism	is	built-
in	with	dependency	properties.	For	data	binding,	the	property	of	the	UI	element
that	is	bound	to	the	source	of	a	.NET	property	must	be	a	dependency	property.
Now,	let's	get	into	the	details	of	dependency	properties.

From	the	outside,	a	dependency	property	looks	like	a	normal	.NET	property.
However,	with	a	normal	.NET	property,	you	usually	also	define	the	data	member
that	is	accessed	by	the	get	and	set	accessors	of	the	property:

private	int	_value;

public	int	Value

{

		get	=>	_value;

		Set	=>	_value	=	value;

}

Similar	to	normal	properties,	a	dependency	property	has	get	and	set	accessors,
but	doesn't	declare	a	data	member.	With	dependency	properties,	the	accessors
invoke	the	methods	GetValue	and	SetValue	of	the	DependencyObject.	This
stipulates	a	requirement	for	dependency	objects	that	they	must	be	implemented
in	a	class	that	derives	from	DependencyObject	from	the	namespace
Microsoft.UI.Xaml.

With	a	dependency	property,	the	data	member	is	kept	inside	an	internal
collection	that	is	managed	by	the	base	class	and	allocates	data	only	if	the	value
changes.	With	unchanged	values,	the	data	can	be	shared	between	different
instances	or	base	classes.	The	GetValue	and	SetValue	methods	require	a
DependencyProperty	argument.	This	argument	is	defined	by	a	static	member	of
the	class	that	has	the	same	name	as	the	property	appended	to	the	term	Property.
With	the	property	Value,	the	static	member	has	the	name	ValueProperty.
DependencyProperty.Register	is	a	helper	method	that	registers	the	property	in
the	dependency	property	system.	The	following	code	snippet	uses	the	Register
method	with	four	arguments	to	define	the	name	of	the	property,	the	type	of	the
property,	the	type	of	the	owner—that	is,	the	class	MyDependencyObject	—and
the	default	value	with	the	help	of	PropertyMetadata	(code	file
XAMLIntro/DependencyObjectSample/MyDependencyObject.cs):

public	class	MyDependencyObject:	DependencyObject

{

		public	int	Value

		{

				get	=>	(int)GetValue(ValueProperty);

				set	=>	SetValue(ValueProperty,	value);

		}

	

		public	static	readonly	DependencyProperty	ValueProperty	=

				DependencyProperty.Register("Value",	typeof(int),

						typeof(MyDependencyObject),	new	PropertyMetadata(0));

}

Creating	a	Dependency	Property
This	section	looks	at	an	example	that	defines	not	one	but	three	dependency
properties.	The	class	MyDependencyObject	defines	the	dependency	properties
Value,	Minimum,	and	Maximum.	All	of	these	properties	are	dependency	properties
that	are	registered	with	the	method	DependencyProperty.Register.	The
methods	GetValue	and	SetValue	are	members	of	the	base	class

DependencyObject.	For	the	Minimum	and	Maximum	properties,	default	values	are
defined	that	can	be	set	with	the	DependencyProperty.Register	method	and	a
fourth	argument	to	set	the	PropertyMetadata.	When	you	use	a	constructor	with
one	parameter,	PropertyMetadata,	the	Minimum	property	is	set	to	0,	and	the
Maximum	property	is	set	to	100	(code	file
XAMLIntro/DependencyObjectSample/MyDependencyObject.cs):

public	class	MyDependencyObject:	DependencyObject

{

		public	int	Value

		{

				get	=>	(int)GetValue(ValueProperty);

				set	=>	SetValue(ValueProperty,	value);

		}

	

		public	static	readonly	DependencyProperty	ValueProperty	=

				DependencyProperty.Register(nameof(Value),	typeof(int),

						typeof(MyDependencyObject));

	

		public	int	Minimum

		{

				get	=>	(int)GetValue(MinimumProperty);

				set	=>	SetValue(MinimumProperty,	value);

		}

	

		public	static	readonly	DependencyProperty	MinimumProperty	=

				DependencyProperty.Register(nameof(Minimum),	typeof(int),

						typeof(MyDependencyObject),	new	PropertyMetadata(0));

	

		public	int	Maximum

		{

				get	=>	(int)GetValue(MaximumProperty);	

				set	=>	SetValue(MaximumProperty,	value);

		}

	

		public	static	readonly	DependencyProperty	MaximumProperty	=

				DependencyProperty.Register(nameof(Maximum),	typeof(int),

						typeof(MyDependencyObject),	new	PropertyMetadata(100));

}

NOTE Within	the	implementation	of	the	get	and	set	property	accessors,
you	should	not	do	anything	other	than	invoke	the	GetValue	and	SetValue
methods.	When	you	use	the	dependency	properties,	the	property	values	can
be	accessed	from	the	outside	with	the	GetValue	and	SetValue	methods,
which	is	also	done	from	WinUI;	therefore,	the	strongly	typed	property

accessors	might	not	be	invoked	at	all.	They	are	just	here	for	convenience,	so
you	can	use	the	normal	property	syntax	from	your	custom	code.

Value	Changed	Callbacks	and	Events
To	get	some	information	on	value	changes,	dependency	properties	also	support
value	changed	callbacks.	You	can	add	a	DependencyPropertyChanged	event
handler	to	the	DependencyProperty.Register	method	that	is	invoked	when	the
property	value	changes.	In	the	sample	code,	the	handler	method	OnValueChanged
is	assigned	to	the	PropertyChangedCallback	of	the	PropertyMetadata	object.
In	the	OnValueChanged	method,	you	can	access	the	old	and	new	values	of	the
property	with	the	DependencyPropertyChangedEventArgs	argument	(code	file
XAMLIntro/DependencyObjectSample/MyDependencyObject.cs):

public	class	MyDependencyObject:	DependencyObject

{

		public	int	Value

		{

				get	=>	(int)GetValue(ValueProperty);

				set	=>	SetValue(ValueProperty,	value);

		}

	

		public	static	readonly	DependencyProperty	ValueProperty	=

				DependencyProperty.Register(nameof(Value),	typeof(int),

						typeof(MyDependencyObject),

						new	PropertyMetadata(0,	OnValueChanged,	CoerceValue));

	

		private	static	void	OnValueChanged(DependencyObject	obj,

				DependencyPropertyChangedEventArgs	e)

		{

				int	oldValue	=	(int)e.OldValue;

				int	newValue	=	(int)e.NewValue;

				//…

		}

}	

Routed	Events
Chapter	7	covers	the	.NET	event	model.	With	default	implemented	events,	when
an	event	is	fired,	the	handler	directly	connected	to	the	event	is	invoked.	When
you	use	UI	technologies,	there	are	different	requirements	for	event	handling.
With	some	events,	it	should	be	possible	to	create	a	handler	with	a	container
control	and	react	to	events	coming	from	children	controls.	Such	an

implementation	is	possible	by	creating	a	custom	implementation	for	.NET
events,	as	shown	in	Chapter	7	with	add	and	remove	accessors.

WinUI	offers	routed	events.	The	sample	app	defines	a	UI	consisting	of	a
CheckBox	that,	if	selected,	stops	the	routing;	a	Button	control	with	the	Tapped
event	set	to	the	OnTappedButton	handler	method;	and	a	Grid	with	the	Tapped
event	set	to	the	OnTappedGrid	handler.	The	Tapped	event	is	one	of	the	routed
events	with	WinUI.	This	event	can	be	fired	with	the	mouse,	touch,	and	pen
devices	(code	file	XAMLIntro/RoutedEvents/MainWindow.xaml):

<Grid	Tapped="OnTappedGrid">

		<Grid.RowDefinitions>

				<RowDefinition	Height="auto"	/>

				<RowDefinition	Height="auto"	/>

				<RowDefinition	/>

		</Grid.RowDefinitions>

		<StackPanel	Grid.Row="0"	Orientation="Horizontal">

				<CheckBox	x:Name="CheckStopRouting">Stop	Routing</CheckBox>

				<Button	Click="OnCleanStatus">Clean	Status</Button>

		</StackPanel>

		<Button	Grid.Row="1"	Tapped="OnTappedButton">Tap	me!</Button>

		<TextBlock	Grid.Row="2"	Margin="20"	x:Name="textStatus"	/>

</Grid>	

The	OnTappedXX	handler	methods	write	status	information	to	a	TextBlock	to
show	the	handler	method	as	well	as	the	control	that	was	the	original	source	of
the	event	(code	file	XAMLIntro/RoutedEvents/MainWindow.xaml.cs):

private	void	OnTappedButton(object	sender,	TappedRoutedEventArgs	

e)

{

		ShowStatus(nameof(OnTappedButton),	e);

		e.Handled	=	CheckStopRouting.IsChecked	==	true;

}

	

private	void	OnTappedGrid(object	sender,	TappedRoutedEventArgs	

e)

{

		ShowStatus(nameof(OnTappedGrid),	e);

		e.Handled	=	CheckStopRouting.IsChecked	==	true;

}

	

private	void	ShowStatus(string	status,	RoutedEventArgs	e)

{

		textStatus.Text	+=	$"{status}	

{e.OriginalSource.GetType().Name}";

		textStatus.Text	+=	"\r\n";

}

	

private	void	OnCleanStatus(object	sender,	RoutedEventArgs	e)

{

		textStatus.Text	=	string.Empty;

}

When	you	run	the	application	and	click	outside	the	button	but	within	the	grid,
you	see	the	OnTappedGrid	event	handled	with	the	Grid	control	as	the	originating
source:

OnTappedGrid	Grid

Click	in	the	middle	of	the	button	to	see	that	the	event	is	routed.	The	first	handler
that	is	invoked	is	OnTappedButton	followed	by	OnTappedGrid	:

OnTappedButton	TextBlock

OnTappedGrid	TextBlock

What's	also	interesting	is	that	the	event	source	is	not	the	Button	but	a
TextBlock.	The	reason	is	that	the	button	is	styled	using	a	TextBlock	to	contain
the	button	text.	If	you	click	other	positions	within	the	button,	you	can	also	see
Grid	or	ContentPresenter	as	the	originating	event	source.	The	Grid	and
ContentPresenter	are	other	controls	the	button	is	created	from.

If	you	select	the	check	box	CheckStopRouting	before	clicking	the	button,	you
can	see	that	the	event	is	no	longer	routed	because	the	Handled	property	of	the
event	arguments	is	set	to	true	:

OnTappedButton	TextBlock

Within	the	Microsoft	API	documentation	of	the	events,	you	can	see	whether	an
event	type	is	routing	within	the	remarks	section	of	the	documentation.	With
WinUI	applications,	tapped,	drag	and	drop,	key	up	and	key	down,	pointer,	focus,
and	manipulation	events	are	routed	events.

Attached	Properties
Whereas	dependency	properties	are	properties	available	with	a	specific	type,
with	an	attached	property,	you	can	define	properties	for	other	types.	Some
container	controls	define	attached	properties	for	their	children;	for	example,	if
the	RelativePanel	control	is	used,	a	Below	property	is	available	for	its	children.
The	Grid	control	defines	Row	and	Column	properties.

The	following	code	snippet	demonstrates	how	this	looks	in	XAML.	The	Button
class	doesn't	have	the	property	Grid.Row,	but	it's	attached	from	the	Grid	:

<Grid>

		<Grid.RowDefinitions>

				<RowDefinition	/>

				<RowDefinition	/>

		</Grid.RowDefinitions>

		<Button	Content="First"	Grid.Row="0"	Background="Yellow"	/>

		<Button	Content="Second"	Grid.Row="1"	Background="Blue"	/>

</Grid>

Attached	properties	are	defined	similarly	to	dependency	properties,	as	shown	in
the	next	example.	The	class	that	defines	the	attached	properties	must	derive	from
the	base	class	DependencyObject	and	define	a	normal	property,	where	the	get
and	set	accessors	invoke	the	methods	GetValue	and	SetValue	of	the	base	class.
This	is	where	the	similarities	end.	Instead	of	invoking	the	method	Register	with
the	DependencyProperty	class,	now	RegisterAttached	is	invoked,	which
registers	an	attached	property	that	is	available	with	every	element	(code	file
XAMLIntro/AttachedProperty/MyAttachedProperyProvider.cs):

public	class	MyAttachedPropertyProvider:	DependencyObject

{

		public	static	readonly	DependencyProperty	MySampleProperty	=

				DependencyProperty.RegisterAttached

						"MySample",	

						typeof(string),

						typeof(MyAttachedPropertyProvider),	

						new	PropertyMetadata(string.Empty));

	

		public	static	void	SetMySample(UIElement	element,	string	

value)	=>

				element.SetValue(MySampleProperty,	value);

	

		public	static	int	GetMyProperty(UIElement	element)	=>

				(string)element.GetValue(MySampleProperty);

}

NOTE You	might	assume	that	Grid.Row	can	be	added	only	to	elements
within	a	Grid.	That's	not	the	case.	Attached	properties	can	be	added	to	any
element.	However,	no	one	would	use	this	property	value.	The	Grid	is	aware
of	this	property	and	reads	it	from	its	children	elements	to	arrange	them.	It
doesn't	read	it	from	children	of	children.

In	the	XAML	code,	the	attached	property	can	now	be	attached	to	any	elements.
The	second	Button	control,	named	button2,	has	the	property
MyAttachedPropertyProvider.MySample	attached	to	it,	and	the	value	42
assigned	(code	file	XAMLIntro/AttachedProperty/MainWindow.xaml):

<Grid	x:Name="grid1">

		<Grid.RowDefinitions>

				<RowDefinition	Height="Auto"/>

				<RowDefinition	Height="Auto"/>

				<RowDefinition	Height="*"/>

		</Grid.RowDefinitions>

		<Button	Grid.Row="0"	x:Name="button1"	Content="Button	1"	/>

		<Button	Grid.Row="1"	x:Name="button2"	Content="Button	2"

				local:MyAttachedPropertyProvider.MySample="42"	/>

		<ListBox	Grid.Row="2"	x:Name="list1"	/>

</Grid>

When	doing	the	same	in	code-behind,	it	is	necessary	to	invoke	the	static	method
SetMyProperty	of	the	class	MyAttachedPropertyProvider.	It's	not	possible	to
extend	the	class	Button	with	a	property.	The	method	SetProperty	gets	a
UIElement	instance	that	should	be	extended	by	the	property	and	the	value.	In	the
following	code	snippet,	the	property	is	attached	to	button1,	and	the	value	is	set
to	sample	value	(code	file
XAMLIntro/AttachedProperty/MainWindow.xaml.cs):

public	MainWindow()

{

		InitializeComponent();

		MyAttachedPropertyProvider.SetMySample(button1,	"sample	

value");

		//…

}	

To	read	attached	properties	that	are	assigned	to	elements,	you	can	use	the
VisualTreeHelper	to	iterate	every	element	in	the	hierarchy	and	try	to	read	its
attached	properties.	The	VisualTreeHelper	is	used	to	read	the	visual	tree	of	the
elements	during	runtime.	The	method	GetChildrenCount	returns	the	count	of
the	child	elements.	To	access	a	child,	you	can	use	the	method	GetChild	and	pass
the	index	for	an	element	with	the	second	argument.	This	method	then	returns	the
element.	The	implementation	of	the	GetChildren	method	returns	elements	only
if	they	are	of	type	FrameworkElement	(or	derived	therefrom)	and	if	the	predicate
passed	with	the	Func	argument	returns	true	(code	file
XAMLIntro/AttachedProperty/MainWindow.xaml.cs):

private	IEnumerable<FrameworkElement>	

GetChildren(FrameworkElement	element,

		Func<FrameworkElement,	bool>	pred)

{

		int	childrenCount	=	

VisualTreeHelper.GetChildrenCount(rootElement);

		for	(int	i	=	0;	i	<	childrenCount;	i++)

		{

				var	child	=	VisualTreeHelper.GetChild(rootElement,	i)	as	

FrameworkElement;

				if	(child	!=	null	&&	pred(child))

				{

						yield	return	child;

				}

		}

}

The	method	GetChildren	is	now	used	from	within	the	constructor	of	the	page	to
add	all	elements	with	an	attached	property	to	the	ListBox	control	(code	file
XAMLIntro/AttachedProperty/MainPage.xaml.cs):

public	MainWindow()

{

		InitializeComponent();

		MyAttachedPropertyProvider.SetMySample(button1,	"sample	

value");

		foreach	(var	item	in	GetChildren(grid1,	e	=>

				MyAttachedPropertyProvider.GetMySample(e)	!=	string.Empty))

		{

				list1.Items.Add(

						$"{item.Name}:	

{MyAttachedPropertyProvider.GetMySample(item)}");

		}

}

When	you	run	the	application,	you	see	the	two	button	controls	in	the	ListBox
with	these	values:

button1:	sample	value

button2:	42

NOTE Later	in	this	chapter	in	the	section	“Implementing	Layout	Panels,”
you	can	see	attached	properties	with	many	container	controls,	such	as
Canvas	,	Grid	,	and	RelativePanel	.

Markup	Extensions
With	markup	extensions,	you	can	extend	XAML	with	either	element	or	attribute
syntax.	If	an	XML	attribute	contains	curly	brackets,	that's	a	sign	of	a	markup
extension.	Often	markup	extensions	with	attributes	are	used	as	shorthand
notation	instead	of	using	elements.

One	example	of	such	a	markup	extension	is	StaticResourceExtension,	which
finds	resources.	Here's	a	resource	of	a	linear	gradient	brush	with	the	key
gradientBrush1	(code	file	XAMLIntro/MarkupExtensions/MainWindow.xaml):

<StackPanel.Resources>

		<LinearGradientBrush	x:Key="gradientBrush1"	

StartPoint="0.5,0.0"		

				EndPoint="0.5,	1.0">

				<GradientStop	Offset="0"	Color="Yellow"	/>

				<GradientStop	Offset="0.3"	Color="Orange"	/>

				<GradientStop	Offset="0.7"	Color="Red"	/>

				<GradientStop	Offset="1"	Color="DarkRed"	/>

		</LinearGradientBrush>

</StackPanel.Resources>

This	resource	can	be	referenced	by	using	the	StaticResourceExtension	with
attribute	syntax	to	set	the	Background	property	of	a	Button.	Attribute	syntax	is
defined	by	curly	brackets	and	the	name	of	the	extension	class	without	the
Extension	suffix:

<Button	Content="Test"	Background="{StaticResource	

gradientBrush1}"	/>

Windows	apps	do	not	support	all	the	markup	extensions	that	have	been	available
with	WPF,	but	there	are	some.	StaticResource	and	ThemeResource	are
discussed	in	Chapter	31,	and	the	binding	markup	extensions	Binding	and	x:Bind
are	discussed	later	in	this	chapter	in	the	section	“Working	with	Data	Binding.”

Custom	Markup	Extensions
Custom	markup	extensions	allow	you	to	add	your	own	features	within	the	curly
brackets	in	XAML	code.	You	can	create	custom	binding,	condition-based
evaluation,	or	a	simple	calculator,	as	shown	in	the	next	sample.

The	Calculator	markup	extension	enables	you	to	calculate	two	values	using
add,	subtract,	multiply,	and	divide	operations.	A	markup	extension	is	really
simple:	the	class	name	contains	the	Extension	postfix,	and	it	derives	from	the

base	class	MarkupExtension	and	overrides	the	method	ProvideValue.	With
ProvideValue,	the	markup	extension	returns	the	value	or	object	that	is	assigned
to	the	property	where	the	markup	is	defined.	The	type	of	the	returned	value	is
defined	by	the	MarkupExtensionReturnType	attribute.	The	following	code
snippet	shows	the	implementation	of	the	Calculator	markup	extension.	This
extension	defines	three	properties	that	can	be	set:	properties	for	X,	Y,	and	the
Operation	that	should	be	applied	to	X	and	Y.	The	operation	is	defined	using	an
enum.	In	the	implementation	of	the	ProvideValue	method,	an	operation	is
applied	to	X	and	Y,	and	the	result	is	returned	(code	file
CustomMarkupExtension/CalculatorExtension.cs):

public	enum	Operation

{

		Add,

		Subtract,

		Multiply,

		Divide

}

	

[MarkupExtensionReturnType(ReturnType	=	typeof(string))]

public	class	CalculatorExtension	:	MarkupExtension

{

		public	double	X	{	get;	set;	}

		public	double	Y	{	get;	set;	}

		public	Operation	Operation	{	get;	set;	}

	

		protected	override	object	ProvideValue()	=>

				(Operation	switch

				{

						Operation.Add	=>	X	+	Y,

						Operation.Subtract	=>	X	-	Y,

						Operation.Multiply	=>	X	*	Y,

						Operation.Divide	=>	X	/	Y,

						_	=>	throw	new	InvalidOperationException()

				}).ToString();

}

Now,	the	Calculator	markup	extension	can	be	used	with	the	XML	attribute
syntax.	Here,	the	markup	extension	is	initialized	for	setting	the	properties.	The
return	string	is	applied	to	the	Text	property	of	a	TextBlock	(code	file
XAMLIntro/CustomMarkupExtension/MainWindow.xaml):

<TextBlock	Text="{local:Calculator	Operation=Add,	X=38,	Y=4}"	/>

Using	the	markup	extension	syntax,	the	name	Extension	is	not	used.	This

postfix	is	automatically	applied.	This	is,	of	course,	different	if	the
CalculatorExtension	class	is	just	used	to	instantiate	it	as	child	of	the	Text
property	and	set	the	properties	of	the	extension	(code	file
XAMLIntro/CustomMarkupExtension/MainWindow.xaml):

<TextBlock>

		<TextBlock.Text>

				<local:CalculatorExtension	Operation="Multiply"	X="7"	Y="6"	

/>

		</TextBlock.Text>

</TextBlock>

When	you	run	the	application,	the	value	42	is	returned	from	both	operations
used.

WORKING	WITH	CONTROLS
Because	of	the	many	controls	available	for	Windows	apps,	it's	good	to	know
some	specific	base	classes	within	the	hierarchy	of	UI	controls.	Knowing	these
makes	it	easier	to	work	with	the	WinUI	controls	and	helps	you	understand	what
you	can	do	with	these	types.

Let's	get	into	the	hierarchy	of	the	UI	classes	with	Windows	apps.

DependencyObject	—This	class	is	on	top	of	the	hierarchy	for	the	Windows
Runtime	XAML	elements.	Every	class	that	derives	from	DependencyObject
can	have	dependency	properties.	You've	already	seen	dependency
properties	with	the	introduction	to	XAML	in	this	chapter.

UIElement	—This	is	the	base	class	for	elements	with	visual	appearance.
This	class	offers	functionality	for	user	interaction,	such	as	pointer	events
(PointerPressed,	PointerMoved,	and	so	on),	key	handling	events
(KeyDown,	KeyUp),	focus	events	(GotFocus,	LostFocus),	pointer	captures
(CapturePointer,	PointerCanceled,	and	so	on),	and	drag	and	drop
(DragOver,	Drop,	and	so	on).	This	class	also	offers	the	Lights	property,	a
special	feature	for	the	fluent	design,	to	highlight	elements	with	a	light
effect.	The	KeyboardAccelerators	property	allows	setting	a	key
combination	for	fast	access	via	the	keyboard.	This	is	often	used	from
menus.

FrameworkElement	—The	class	FrameworkElement	derives	from	UIElement
and	adds	more	features.	Classes	deriving	from	FrameworkElement	can
participate	in	the	layout	system.	The	properties	MinWidth,	MinHeight,

Height,	and	Width	are	defined	by	the	FrameworkElement	class.	Lifetime
events	are	defined	by	FrameworkElement	as	well:	Loaded,	SizeChanged,
and	Unloaded	are	some	of	these	events.	Data	binding	features	are	another
group	of	functionalities	defined	by	the	FrameworkElement	class.	This	class
defines	the	DataContext,	DataContextChanged,	SetBinding,	and
GetBindingExpression	APIs.

Control	—The	class	Control	derives	from	FrameworkElement	and	is	the
base	class	for	UI	controls—for	example,	TextBox,	Hub,	DatePicker,
SearchBox,	UserControl,	and	others.	Controls	typically	have	a	default	style
with	a	ControlTemplate	that	is	assigned	to	the	Template	property.	The
Control	class	defines	overridable	OnXX	methods	for	the	events	defined	by
the	base	class	UIElement.	Some	examples	of	these	methods	are	OnDrop	that
can	be	used	with	drag	and	drop,	OnKeyDown	that	is	invoked	before	the
KeyDown	event	occurs,	and	OnPointerPressed	that	is	invoked	before	the
PointerPressed	event	occurs.	Controls	define	a	TabIndex	;	properties	for
the	foreground,	background,	and	the	border	(Foreground,	Background,
BorderBrush,	BorderThickness);	and	properties	to	enable	it	and	use
keyboard	tabs	to	access	it	(IsTabStop,	TabIndex).

ContentControl	—The	class	ContentControl	derives	from	Control	and
enables	you	to	have	any	content	as	a	child	of	the	control.	Examples	of
ContentControl	are	AppBar,	Frame,	ButtonBase,	GroupItem,	and	ToolTip
controls.	The	ContentControl	defines	the	Content	property	where	any
content	can	be	assigned,	a	ContentTemplate	property	to	assign	a
DataTemplate,	a	ContentTemplateSelector	to	dynamically	assign	a	data
template,	and	the	ContentTransitions	property	for	simple	animations.

ItemsControl	—Contrary	to	the	ContentControl,	which	can	have	only	one
content,	the	ItemsControl	can	view	a	content	list.	While	the
ContentControl	defines	the	Content	property	to	list	its	child	item,	the
ItemsControl	defines	this	with	the	Items	property.	Both	ContentControl
and	ItemsControl	derive	from	the	base	class	Control.	The	ItemsControl
can	display	a	fixed	number	of	items	or	items	that	are	bound	through	a	list.
Controls	that	derive	from	ItemsControl	are	ListView,	GridView,	ListBox,
Pivot,	and	Selector.

Panel	—Another	class	that	can	serve	as	a	container	of	items	is	the	Panel
class.	This	class	derives	from	the	base	class	FrameworkElement.	Panels	are
used	to	position	and	arrange	child	objects.	Examples	of	classes	that	derive
from	Panel	are	Canvas,	Grid,	StackPanel,	VariableSizedWrapGrid,

VirtualizingPanel,	ItemsStackPanel,	ItemsWrapGrid,	and
RelativePanel.	Panel	controls	are	discussed	later	in	the	section
“Implementing	Layout	Panels.”

RangeBase	—This	class	derives	from	the	Control	class	and	is	the	base	class
for	ProgressBar,	ScrollBar,	and	Slider.	RangeBase	defines	the	Value
property	for	the	current	value,	Minimum	and	Maximum	properties,	and	a
ValueChanged	event	handler.

FlyoutBase	—This	class	directly	derives	from	DependencyObject	and
enables	you	to	show	user	interfaces	on	top	of	other	elements—in	other
words,	they	“fly	out.”

NOTE Control	templates	are	covered	in	detail	in	Chapter	31.

Now	that	we've	gone	through	the	main	categories	and	the	hierarchy	of	the	types,
let's	get	into	the	details.

FrameworkElement	-Derived	UI	Elements
Some	elements	aren't	really	controls,	but	they're	still	UI	elements	that	are	classes
that	derive	from	FrameworkElement.	These	classes	don't	allow	a	custom	look	by
specifying	a	template.	The	following	table	presents	the	different	categories	of
these	classes	and	the	description	of	their	functionality:

CLASS DESCRIPTION
Border

Viewbox

ContentPresenter

ItemsPresenter

Presenters	are	classes	that	are	not	interactive,	but	they	still
offer	a	visual	appearance.
The	Border	class	defines	a	border	around	a	single	control
(which	can	be	a	Grid	containing	several	other	controls).
The	Viewbox	enables	you	to	stretch	and	scale	the	child
element.
The	ContentPresenter	is	used	within	a	ControlTemplate.
It	defines	where	the	content	of	the	control	will	be
displayed.
An	ItemsPresenter	is	used	to	define	the	position	of	items
within	an	ItemsControl.	Control	and	item	templates	are
discussed	in	Chapter	31.

TextBlock

RichTextBlock

The	TextBlock	and	RichTextBlock	controls	are	used	to
display	text.	Text	input	is	not	possible	with	these	controls;

they	are	just	used	for	display.	The	TextBlock	control	not
only	allows	assigning	simple	text	but	also	allows	more
complex	text	elements	such	as	paragraphs	and	inline
elements.	The	RichTextBlock	supports	overflow	as	well.
Be	aware	that	the	RichTextBlock	doesn't	support	working
with	rich	text	format	(RTF).	You	need	to	use	the
RichEditBox	instead.

Ellipse

Polygon

Polyline

Path

Rectangle

The	Shape	class	derives	from	FrameworkElement.	Shape
itself	is	a	base	class	for	Ellipse,	Polygon,	Polyline,	Path,
Rectangle,	and	others.	These	classes	are	used	to	draw
vectors	to	the	screen.	These	classes	are	shown	in	Chapter
31.

Panel The	Panel	class	derives	from	FrameworkElement.	Panels
are	used	to	organize	the	UI	elements	on	the	screen.	The
different	panels	available	that	derive	from	the	Panel	class
are	discussed	later	in	this	chapter	in	the	section
“Implementing	Layout	Panels.”

Image The	Image	control	is	used	to	display	images.	This	control
supports	displaying	images	of	these	formats:	JPEG,	PNG,
BMP,	GIF,	TIFF,	JPEG	XR,	ICO,	and	SVG.

ParallaxView The	ParallaxView	is	a	control	that	creates	a	parallax	effect
while	scrolling.

WebView2 The	WebView2	control	uses	the	Chrome-based	Microsoft
Edge	browser	to	display	web	pages	with	the	WinUI
application.	If	the	browser	is	not	installed	on	the	client
system,	it	can	be	distributed	with	the	app	using	the
WebView2	runtime	(see
https://developer.microsoft.com/microsoft-

edge/webview2/).

Presenters
With	the	PresentersPage,	some	of	the	presenters	controls	are	used—	Border
and	Viewbox.	The	border	is	used	to	group	two	TextBox	elements.	Because	the
Border	element	can	contain	only	one	child,	a	StackPanel	is	used	within	the
Border	element.	The	Border	specifies	a	Background,	a	BorderBrush,	and	a
BorderThickness.

https://developer.microsoft.com/microsoft-edge/webview2/

The	two	Viewbox	controls	in	the	following	code	snippet	are	used	to	stretch	a
Button	control.	The	first	Viewbox	makes	a	stretch	of	mode	Fill	to	completely
fill	the	Button	within	the	Viewbox,	whereas	the	second	Viewbox	makes	a	stretch
of	mode	Uniform.	With	Uniform,	the	aspect	ratio	is	maintained	(code	file
ControlsSamples/Views/PresentersPage.xaml):

<Border	Background="LightSeaGreen"	BorderBrush="DarkGreen"	

BorderThickness="12"	

		Margin="12"	Padding="8">

		<StackPanel	Orientation="Vertical">

				<TextBox	Header="Title"	x:Name="Title"	FontSize="34"	/>

				<TextBox	Header="Publisher"	x:Name="Publisher"	FontSize="34"	

/>

		</StackPanel>

</Border>

<Viewbox	Grid.Row="1"	Stretch="Fill"	StretchDirection="Both">

		<Button	Margin="4"	FontSize="14">Button	with	fill	

stretch</Button>

</Viewbox>

<Viewbox	Grid.Row="2"	Stretch="Uniform"	StretchDirection="Both">

		<Button	Margin="4"	FontSize="14">Button	with	uniform	

stretch</Button>

</Viewbox>

Figure	29-3	shows	the	presenters	page	from	the	running	app.	Here	you	can	see
how	the	TextBox	controls	are	surrounded,	and	the	buttons	are	shown	in	the	two
different	Viewbox	configurations.

NOTE Control	-derived	classes	have	an	implicit	border	that	you	can
customize	with	the	BorderThickness	and	BorderBrush	properties.

Control-Derived	Controls
Controls	that	directly	derive	from	the	base	class	Control	belong	to	this	category.
The	following	table	describes	some	of	these	controls:

CONTROL DESCRIPTION
TextBox This	control	is	used	to	display	simple,	unformatted	text.

This	control	can	be	used	for	user	input.	The	Text
property	contains	the	user	input.	PlaceholderText
enables	you	to	give	the	user	information	about	what	to
enter	in	the	input	field.	Usually,	some	information	about

the	input	text	is	shown	nearby.	This	can	be	done	directly
using	the	Header	property.

RichEditBox Contrary	to	the	TextBox	control,	the	RichEditBox	allows
formatted	text,	hyperlinks,	and	images.	The	Text	Object
Model	(TOM)	is	used	from	the	Document	property.	You
can	use	Microsoft	Word	to	create	RTF	files	that	can	be
read	into	the	RichEditBox.

PasswordBox This	control	is	used	to	enter	a	password.	It	has	specific
properties	for	password	input,	such	as	PasswordChar	to
define	the	character	that	should	be	displayed	as	the	user
enters	the	password.	The	password	entered	can	be
retrieved	using	the	Password	property.	This	control	also
has	Header	and	PlaceholderText	properties	similar	to
the	TextBox	control.

ProgressRing This	control	indicates	that	an	operation	is	ongoing.	It's
displayed	as	a	ring-shaped	“spinner.”	Another	control	to
display	an	ongoing	operation	is	the	ProgressBar,	but	this
one	belongs	to	the	range	controls.

DatePicker	
CalendarDatePicker

CalendarView

The	DatePicker	and	CalendarDatePicker	controls	are
used	to	allow	the	user	to	select	a	date.	The	DatePicker	is
useful	for	date	selection	where	the	user	knows	the	date,
and	showing	a	calendar	is	not	helpful.	The
CalendarDatePicker	uses	the	CalendarView	internally.
If	a	calendar	should	be	visible	all	the	time	or	you	need	to
select	multiple	dates,	you	can	use	the	CalendarView.	Be
aware	there's	also	a	DatePickerFlyout	(a	control	that
derives	from	Flyout)	that	allows	the	user	to	select	a	date
in	a	new	opened	window.

TimePicker The	TimePicker	allows	the	user	to	enter	a	time.	As	with
to	the	DatePicker,	you	can	use	a	TimePickerFlyout
with	the	TimePicker.

AppBarSeparator AppBarSeparator	controls	can	be	used	as	separators
within	a	CommandBar.

ColorPicker The	ColorPicker	allows	the	user	to	select	a	color.
Hub	
HubSection

The	Hub	control	allows	grouping	content	in	a	panning
view.	The	content	within	this	control	is	defined	in

multiple	HubSection	controls.	The	Hub	control	is	used
with	many	apps	to	lay	out	the	main	view	of	the	app	with
“Hero”	images.	This	control	is	discussed	later	in	the
section	“Implementing	Navigation.”

UserControl The	UserControl	is	a	control	that	can	be	used	for	reuse,
and	to	simplify	the	XAML	code	with	pages.	User
controls	can	be	added	to	pages,	and	you'll	use	user
controls	in	this	and	the	next	chapters.

Page The	Page	class	derives	from	UserControl,	thus	it	is	also
a	UserControl.	Pages	are	used	to	navigate	within	a
Frame.	Navigation	is	discussed	later	in	the	section
“Implementing	Navigation,”	and	in	Chapter	30,	“Patterns
with	XAML	Apps,”	with	the	MVVM	pattern.

PersonPicture PersonPicture	is	used	to	show	the	avatar	image	of	a
person.	This	control	is	used	with	the	ContactManager
and	Contact	APIs.

RatingControl RatingControl	is	used	to	enter	a	star	rating	by	the	user.
SemanticZoom The	SemanticZoom	control	defines	two	views:	one

zoom-out	view	and	one	zoom-in	view.	This	allows	the
user	to	quickly	navigate	into	a	large	data	set—for
example,	to	display	first	characters	in	the	zoom-out	view.
In	the	zoom-in	view,	the	user	is	positioned	at	the	data
objects	with	the	selected	letter.

SplitView The	SplitView	control	has	a	pane	and	a	content	area.
The	pane	can	be	opened	and	closed.	When	opening	the
pane,	the	content	can	be	either	partially	behind	the	pane
or	moved	to	the	right.	The	opened	pane	can	be	small
(compact)	or	wide.	The	SplitView	is	used	within	the
NavigationView	control.

TwoPaneView The	TwoPaneView	control	helps	with	displays	of	two
areas,	such	as	list	and	details.	With	dual-screen	devices,
the	TwoPaneView	can	split	the	user	interface	cleanly	on
the	two	screens.	See
https://docs.microsoft.com/dual-

screen/introduction	for	dual-screen	devices.
TreeView The	TreeView	control	shows	a	hierarchical	list	of	nested

https://docs.microsoft.com/dual-screen/introduction

items.	See	the	sample	from	Chapter	22,	“Localization,”
that	displays	a	tree	of	nested	cultures	using	the	TreeView
control.

MenuBar	
MenuBarItem

MenuBar	is	a	new	container	to	display	menus	in	a
horizontal	row.	MenuBar	controls	contain	MenuBarItem
controls	that	in	turn	contain	MenuFlyoutItem	controls.

FIGURE	29-3

Using	a	TextBox
The	first	sample	with	Control	-derived	controls	shows	several	TextBox	controls.
With	the	TextBox	class,	you	can	specify	the	InputScope	property	to	a	value	of	a
large	list	of	options	such	as	EmailNameOrAddress,	CurrencyAmountAndSymbol,
or	Formula.	In	case	the	app	is	used	in	tablet	mode	with	an	on-screen	keyboard,
the	keyboard	is	adjusted	to	a	different	layout	and	shows	keys	as	needed	by	the
input	field.	The	last	TextBox	in	the	sample	code	shows	a	multiline	TextBox.	To
allow	the	user	to	press	the	Return	key,	the	AcceptsReturn	property	is	set.	Also,
the	TextWrapping	property	is	set	to	wrap	the	text	if	it	doesn't	fit	on	one	line.	The
height	of	the	TextBox	is	set	to	150.	In	case	the	entered	text	doesn't	fit	with	this
size,	a	scrollbar	is	shown	by	using	the	attached	property

ScrollViewer.VerticalScrollBarVisibility	(code	file
ControlsSamples/Views/TextPage.xaml):

<TextBox	Header="Email"	InputScope="EmailNameOrAddress">

</TextBox>

<TextBox	Header="Currency"	InputScope="CurrencyAmountAndSymbol">

</TextBox>

<TextBox	Header="Alpha	Numeric"	

InputScope="AlphanumericFullWidth"></TextBox>

<TextBox	Header="Formula"	InputScope="Formula"></TextBox>

<TextBox	Header="Month"	InputScope="DateMonthNumber"></TextBox>

<TextBox	Header="Multiline"	AcceptsReturn="True"	

TextWrapping="Wrap"	

		Height="150"	ScrollViewer.VerticalScrollBarVisibility="Auto"	

/>

Figure	29-4	shows	the	result	of	the	multiline	TextBox	with	multiple	lines	that
wrap	and	a	scrollbar.

FIGURE	29-4

Selecting	a	Date
For	selecting	a	date,	multiple	options	are	available.	Let's	look	at	the	different
options	and	at	the	special	features	of	the	CalendarView	control.

With	the	following	code	snippet,	the	CalendarView	is	configured	to	allow
multiple	days	to	be	selected.	The	first	day	of	the	week	is	set	to	Monday,	the
minimum	day	is	set	to	the	bound	property	MinDate,	and	the	events
CalendarViewDayItemChanging	and	SelectedDatesChanged	are	assigned	to
event	handlers	(code	file	ControlsSamples/Views/DateSelectionPage.xaml):

<CalendarView	x:Name="CalendarView1"	Margin="12"	

HorizontalAlignment="Center"			

		SelectionMode="Multiple"	

		FirstDayOfWeek="Monday"

		MinDate="{x:Bind	MinDate,	Mode=OneTime}"

		CalendarViewDayItemChanging="OnDayItemChanging"	

		SelectedDatesChanged="OnDatesChanged"	/>

With	the	code-behind,	the	MinDate	property	is	set	to	a	predefined	day.	The	user
cannot	use	the	calendar	to	go	to	a	day	before	that	(code	file
ControlsSamples/Views/DateSelectionPage.xaml.cs):

public	DateTimeOffset	MinDate	{	get;	}	=	

		DateTimeOffset.Parse("1/1/1965,	new	CultureInfo("en-US"));

With	the	OnDayItemChanging	event	handler,	some	days	should	be	marked
special.	Days	before	today	should	be	blocked	out	from	a	selection,	and	based	on
actual	bookings,	the	day	should	be	marked	with	colored	lines.

To	get	the	bookings,	the	method	GetBookings	is	defined	to	return	sample	data.
With	a	real	app,	you	could	get	the	data	from	a	web	API	or	a	database.	The
GetBookings	method	just	returns	bookings	for	a	number	of	days	from	now	(2,
3,	5…)	and	the	number	of	bookings	in	a	day	(1,	4,	3…)	by	returning	a	tuple
(code	file	ControlsSamples/Views/DateSelectionPage.xaml.cs):

private	IEnumerable<(DateTimeOffset	day,	int	bookings)>	

GetBookings()

{

		int[]	bookingDays	=	{	2,	3,	5,	8,	12,	13,	18,	21,	23,	27	};

		int[]	bookingsPerDay	=	{	1,	4,	3,	6,	4,	5,	1,	3,	1,	1	};

	

		for	(int	i	=	0;	i	<	10;	i++)

		{

				yield	return	

(DateTimeOffset.Now.Date.AddDays(bookingDays[i]),	

						bookingsPerDay[i]);

		}

}	

The	OnDayItemChanging	method	is	invoked	when	the	items	of	the	CalendarView
are	displayed.	Every	displayed	day	invokes	this	method.	The	method
OnDayItemChanging	is	implemented	using	local	functions.	The	main	block	of
this	method	contains	a	switch	statement	to	invoke	different	methods	based	on
the	data	binding	phases.	The	CalendarView	control	supports	multiple	phases	to
allow	adapting	the	user	interface	in	different	iterations.	The	first	phase	is	fast;

after	this	phase,	some	information	can	already	be	displayed	to	the	user.	Every
next	phase	follows	later.	With	later	phases,	information	might	be	retrieved	from
a	web	API,	and	this	information	will	be	updated	as	the	data	is	available.

In	the	implementation	of	OnDayItemChanging,	in	the	first	phase,	the	local
function	RegisterUpdateCallback	is	invoked	to	register	the	next	call	to	the
OnDayItemChanging	event	handler.	In	the	second	phase,	the	dates	are	blacked	out
with	the	local	function	SetBlackoutDates.	In	the	third	phase,	the	bookings	are
retrieved	(code	file	ControlsSamples/Views/DateSelectionPage.xaml.cs):

private	void	OnDayItemChanging(CalendarView	sender,	

		CalendarViewDayItemChangingEventArgs	args)

{

		switch	(args.Phase)

		{

				case	0:

						RegisterUpdateCallback();

						break;

				case	1:

						SetBlackoutDates();

						break;

				case	2:

						SetBookings();

						break;

				default:

						break;

		}

	

		//	local	functions…

}

The	local	function	RegisterUpdateCallback	invokes	the
RegisterUpdateCallback	of	the	CalendarViewDayItemChangingEventArgs
argument	passing	the	event	handler	method,	so	this	method	is	invoked	again
(code	file	ControlsSamples/Views/DateSelectionPage.xaml.cs):

void	RegisterUpdateCallback()	=>	

args.RegisterUpdateCallback(OnDayItemChanging);

The	local	function	SetBlackoutDates	blacks	out	the	dates	before	today,	as	well
as	all	Saturdays	and	Sundays.	The	CalendarViewDayItem	that	is	returned	from
the	args.Item	property	defines	an	IsBlackout	property	(code	file
ControlsSamples/Views/DateSelectionPage.xaml.cs):

async	void	SetBlackoutDates()

{

		RegisterUpdateCallback();

		CalendarViewDayItem	item	=	args.Item;

	

		await	Task.Delay(500);	//	simulate	a	delay	for	an	API	call

		if	(item.Date	<	DateTimeOffset.Now	||	item.Date.DayOfWeek	==	

DayOfWeek.Saturday	||	

						item.Date.DayOfWeek	==	DayOfWeek.Sunday)

		{

				args.Item.IsBlackout	=	true;

		}

}

Finally,	the	SetBookings	method	retrieves	the	information	about	the	bookings.
The	received	date	found	in	the	CalendarViewDayItem	is	checked	if	it	is	also
found	in	the	bookings.	If	it	is,	a	list	of	red	or	green	colors	(depending	on	the
weekday)	is	added	to	the	day	item	by	invoking	SetDensityColors.	Finally,	the
RegisterUpdateCallback	local	function	is	invoked	once	again;	otherwise,	only
the	first	day	shown	would	be	invoked	with	the	third	phase	(code	file
ControlsSamples/Views/DateSelectionPage.xaml.cs):

void	SetBookings()

{

		CalendarViewDayItem	item	=	args.Item;

		await	Task.Delay(3000);	//	simulate	a	delay	for	an	API	call	

		var	bookings	=	GetBookings().ToList();

	

		var	booking	=	bookings.SingleOrDefault(b	=>	b.day.Date	==	

item.Date.Date);

		if	(booking.bookings>	0)

		{

				List<Color>	colors	=	new();

				for	(int	i	=	0;	i	<	booking.bookings;	i++)

				{

						if	(item.Date.DayOfWeek	==	DayOfWeek.Saturday	||	

										item.Date.DayOfWeek	==	DayOfWeek.Sunday)

						{

								colors.Add(Colors.Red);

						}

						else

						{

								colors.Add(Colors.Green);

						}

				}

	

				item.SetDensityColors(colors);

		}

}

When	a	user	selects	a	date,	the	OnDatesChanged	method	is	invoked.	With	this
method,	all	the	dates	selected	are	received	in	the
CalendarViewSelectedDatesChangedEventArgs.	The	selected	dates	are	written
to	the	currentDatesSelected	list,	and	the	deselected	dates	are	removed	from
the	list	again.	Using	a	string.Join,	all	the	selected	dates	are	shown	with	the
MessageDialog	(code	file
ControlsSamples/Views/DateSelectionPage.xaml.cs):

private	List<DateTimeOffset>	currentDatesSelected	=	new	

List<DateTimeOffset>();

	

private	async	void	OnDatesChanged(CalendarView	sender,	

		CalendarViewSelectedDatesChangedEventArgs	args)

{

		currentDatesSelected.AddRange(args.AddedDates);

		args.RemovedDates.ToList().ForEach(date	=>	

				currentDatesSelected.Remove(date));

	

		string	selectedDates	=	string.Join(",	",	

				currentDatesSelected.Select(d	=>	d.ToString("d")));

	

		await	new	MessageDialog($"dates	selected:	

{selectedDates}").ShowAsync();

}

When	you	run	the	app,	you	can	see	the	calendar,	as	shown	in	Figure	29-5;	the
previous	days	as	well	as	Saturday/Sunday	are	blocked,	and	the	information	about
bookings	is	shown	with	color	lines.

When	you	click	the	month	of	the	calendar,	a	complete	year	is	shown.	When	you
click	the	year	on	top,	an	epoch	is	visible	(see	Figure	29-6).	This	makes	it	easy	to
select	dates	far	in	the	future.

FIGURE	29-5

FIGURE	29-6

When	using	a	CalendarDatePicker,	you	don't	have	as	many	features	as	with	the
CalendarView,	but	it	doesn't	occupy	the	space	of	the	screen	unless	the	user
opens	it	to	select	a	date.	A	CalendarDatePicker	defines	the	DateChanged	event;
you	can	select	only	a	single	day	(code	file
ControlsSamples/Views/DateSelectionPage.xaml):

<CalendarDatePicker	x:Name="CalendarDatePicker1"	Grid.Row="0"	

Grid.Column="1"	

		DateChanged="OnDateChanged"	Margin="12"	/>

With	the	OnDateChanged	event	handler,	the
CalendarDatePickerDateChangedEventArgs	object	are	received	that	contain	a
NewDate	property	(code	file	DateSelectionSample/MainPage.xaml.cs):

private	async	void	OnDateChanged(CalendarDatePicker	sender,	

		CalendarDatePickerDateChangedEventArgs	args)

{

		await	new	MessageDialog($"date	changed	to	

{args.NewDate}").ShowAsync();

}

The	XAML	code	for	the	DatePicker	is	similar.	It	doesn't	just	show	a	calendar	to
select	the	date	but	has	a	completely	different	view	(code	file
ControlsSamples/Views/DateSelectionPage.xaml):

<DatePicker	DateChanged="OnDateChanged1"	x:Name="DatePicker1"	

Grid.Row="1"	

		Margin="12"	/>

The	event	handler	for	the	DatePicker	receives	object	and
DatePickerValueChangedEventArgs	arguments	(code	file
ControlsSamples/Views/DateSelectionPage.xaml):

private	async	void	OnDateChanged1(object	sender,	

		DatePickerValueChangedEventArgs	e)

{

		await	new	MessageDialog($"date	changed	to	

{e.NewDate}").ShowAsync();

}

Figure	29-7	shows	the	DatePicker	when	it's	open.	If	the	user	knows	the	date
without	checking	a	calendar	(for	example,	a	birthday),	it	is	a	lot	faster	than
scrolling	through	the	years,	the	months,	and	the	days.

FIGURE	29-7

The	last	option	for	selecting	a	date	is	a	flyout.	Flyouts	can	be	used	with	other
controls.	Here,	a	Button	control	is	used,	and	the	Flyout	property	of	the	button
defines	to	use	the	DatePickerFlyout	:

<Button	Content="Select	a	Date"	Grid.Row="1"	Grid.Column="1"	

Margin="12">

		<Button.Flyout>

				<DatePickerFlyout	x:Name="DatePickerFlyout1"	

DatePicked="OnDatePicked"	/>

		</Button.Flyout>

</Button>

Range	Controls
Range	controls	such	as	ScrollBar,	ProgressBar,	and	Slider	derive	from	the
common	class	RangeBase	,	as	described	in	the	following	table.

CONTROL DESCRIPTION
ScrollBar This	control	contains	a	Thumb	that	enables	the	user	to	select	a

value.	A	scrollbar	can	be	used,	for	example,	if	a	document	doesn't
fit	on	the	screen.	Some	controls	contain	scrollbars	that	are
displayed	if	the	content	is	too	big.

ProgressBar This	control	indicates	the	progress	of	a	lengthy	operation.
Slider This	control	enables	users	to	select	a	range	of	values	by	moving	a

thumb.

Progress	Bar
The	sample	application	shows	two	ProgressBar	controls.	The	second	control
has	the	IsIndeterminate	property	set	to	True.	In	case	you	don't	know	how	long
an	activity	takes,	it's	a	good	idea	to	use	this	property.	If	you	think	you	know	how
long	the	action	takes,	you	can	set	the	current	status	value	in	the	ProgressBar
without	setting	the	IsIndeterminate	mode;	the	default	is	False	(code	file
ControlsSamples/Views/RangeControlsPage.xaml):

<ProgressBar	x:Name="progressBar1"	Grid.Row="0"	Margin="12"	/>

<ProgressBar	IsIndeterminate="True"	Grid.Row="1"	Margin="12"	/>

On	loading	of	the	page,	the	ShowProgress	method	is	invoked.	Here,	the	current
value	of	the	first	ProgressBar	is	set	using	a	DispatcherTimer.	The
DispatcherTimer	is	configured	to	fire	every	second,	and	every	second	the	Value
property	of	the	ProgressBar	gets	incremented	(code	file

ControlsSamples/Views/RangeControlsPage.xaml.cs):

private	void	ShowProgress()

{

		DispatcherTimer	timer	=	new();

		timer.Interval	=	TimeSpan.FromSeconds(1);

		int	i	=	0;

		timer.Tick	+=	(sender,	e)	=>	progressBar1.Value	=	i++	%	100;

		timer.Start();

}

NOTE The	DispatcherTimer	class	is	explained	in	Chapter	17,	“Parallel
Programming.”

When	you	run	the	application,	you	can	see	two	active	ProgressBar	controls.
With	the	first	one,	you	can	see	the	status	with	an	increasing	value,	whereas	the
second	one	shows	progress	with	a	bar	that	continuously	moves	(see	Figure	29-
8).

FIGURE	29-8

Slider
With	the	Slider	control,	you	can	specify	Minimum	and	Maximum	values	and	use
the	Value	property	to	assign	the	current	value.	The	code	sample	uses	a	TextBox
to	display	the	current	value	of	the	slider	(code	file
ControlsSamples/Views/RangeControlsPage.xaml):

<Slider	x:Name="slider"	Minimum="10"	Maximum="140"	Value="60"	

		Grid.Row="2"	Margin="12"	/>

<TextBox	Header="Slider	Value"	IsReadOnly="True"	

		Text="{x:Bind	slider.Value,	Mode=OneWay}"	Grid.Row="3"	

Margin="12"	/>

In	Figure	29-9,	you	can	see	the	Slider	and	the	TextBox	;	notice	how	they
correlate	as	the	TextBox	shows	the	actual	value	of	the	Slider.

FIGURE	29-9

Content	Controls
A	ContentControl	has	a	Content	property	and	allows	adding	any	single	piece	of
content.	Multiple	content	objects	are	not	allowed	as	a	direct	child	in	the	Content
property,	but	you	can	add,	for	example,	a	StackPanel,	which	can	have	multiple
controls	as	children.

CONTROL DESCRIPTION
ScrollViewer ScrollViewer	is	a	ContentControl	that	can	contain	a

single	item	and	offers	horizontal	and	vertical	scrollbars.
You	can	also	use	ScrollViewer	with	attached	properties
as	has	been	shown	previously	with	the
ParallaxViewSample.

Frame The	Frame	control	is	used	for	navigation	between	pages.
This	control	is	discussed	later	in	the	section
“Implementing	Navigation.”

SelectorItem	
ComboBoxItem	
FlipViewItem	
GridViewItem	
ListBoxItem	
ListViewItem	
GroupItemPivotItem

These	controls	are	ContentControl	objects	that	belong
as	items	to	an	ItemsControl.	For	example,	the	ComboBox
control	contains	ComboBoxItem	objects,	the	ListBox
control	contains	ListBoxItem	objects,	and	the	Pivot
control	contains	PivotItem	objects.	GroupItem	objects
are	typically	not	used	directly;	they're	used	when	you	use
an	ItemsControl	-derived	control	with	a	grouping
configuration.

ToolTip The	ToolTip	gives	a	pop-up	window	when	the	user
hovers	over	a	control	to	show	a	tooltip.	Tooltips	can	be
configured	using	the	ToolTipService.ToolTip	attached

property.	The	tooltip	can	be	more	than	text;	it	is	a
ContentControl.

TeachingTip The	TeachingTip	is	meant	to	give	the	user	tips	on	how	to
do	the	work	more	effectively.	By	analyzing	telemetry
information	and	using	machine	learning,	the	application
can	learn	what	the	users	are	doing	and	which	features
they	might	miss	and	should	know	about.	This	control
supports	rich	content.

CommandBar With	the	CommandBar,	you	can	arrange	AppBarButton
controls	and	controls	that	belong	to	the	command
elements	(such	as	AppBarSeparator).	The	CommandBar
offers	some	layout	features	for	these	controls.	With
Windows	8,	the	AppBar	was	used	instead	of	the
CommandBar	—that's	why	the	buttons	have	these	names.
Now	the	CommandBar	derives	from	the	AppBar.	However,
you	can	also	use	other	controls	to	lay	out	your	commands
if	the	layout	from	the	CommandBar	doesn't	fit	your
requirements.

ContentDialog Using	the	ContentDialog	opens	a	dialog	box.	You	can
customize	this	control	with	any	XAML	controls	you	need
for	your	dialog.

SwipeControl The	SwipeControl	allows	contextual	commands	through
touch	interactions—for	example,	to	open	specific	actions
for	items	as	the	user	swipes	to	the	left	or	to	the	right.

NOTE See	the	next	section,	which	includes	a	sample	to	fill	the	content	of	a
ContentControl	—with	a	Button	,	which	itself	is	a	ContentControl	.

Buttons
Button	classes	form	a	hierarchy.	The	ButtonBase	class	derives	from
ContentControl	;	thus,	a	button	has	a	Content	property	and	can	contain	any
single	content.	The	ButtonBase	class	also	defines	a	Command	property;	thus,	all
buttons	can	have	a	command	associated.	The	following	table	compares	the
different	buttons.

CONTROL DESCRIPTION

Button The	Button	class	is	the	most	commonly	used	button.
This	class	derives	from	ButtonBase	(as	all	the	other
buttons	do	as	well).	ButtonBase	is	the	base	class	of	all
buttons.

DropDownButton The	DropDownButton	shows	a	chevron	to	indicate	that	a
menu	can	be	opened.	With	the	content	of	the	button,	a
MenuFlyout	is	usually	used	to	display	menus.

HyperlinkButton The	HyperlinkButton	appears	as	a	link.	You	can	open
web	pages	in	the	browser,	open	other	apps,	or	navigate	to
other	pages.

RepeatButton The	RepeatButton	is	a	button	where	the	Click	event
continuously	fires	while	the	user	presses	the	button.	With
the	normal	Button,	the	Click	event	fires	only	once.

AppBarButton The	AppBarButton	is	used	to	activate	commands	in	the
app.	You	can	add	this	button	to	the	CommandBar	and	use
an	icon	and	a	label	to	display	information	for	the	user.

AppBarToggleButton

CheckBox	
RadioButton

CheckBox,	RadioButton,	and	AppBarToggleButton
derive	from	the	base	class	ToggleButton.	A
ToggleButton	can	have	three	states:	Checked,
Unchecked,	and	Indeterminate	represented	by	bool?.
The	AppBarToggleButton	is	a	toggle	button	for	the
CommandBar.

Replacing	the	Content	of	the	Button
A	button	is	a	ContentControl	and	can	have	any	content.	The	following	sample
adds	a	Grid	control	to	the	button	that	contains	an	Ellipse	and	a	TextBlock.	The
button	also	defines	a	Click	event,	to	demonstrate	it	looks	different,	but	it	acts	the
same	(code	file	ControlsSample/Views/ButtonsPage.xaml):

<Button	Margin="12"	Click="OnButtonClick">

		<Grid>

				<Ellipse	Width="200"	Height="90"	Fill="red"	/>

				<TextBlock	HorizontalAlignment="Center"	

VerticalAlignment="Center"	

						Text="Click	Me!"	FontSize="24"	/>

		</Grid>

</Button>

In	Figure	29-10,	you	can	see	the	new	look	of	the	button.	The	Content	property
replaces	the	foreground,	but	the	button	still	has	the	default	background.

FIGURE	29-10

NOTE To	replace	the	complete	look	of	the	button,	including	the
background,	and	to	make	the	button	something	other	than	a	rectangle,	you
need	to	create	a	ControlTemplate	for	the	button.	How	you	do	this	is
explained	in	Chapter	31.

Linking	with	the	HyperlinkButton
With	the	HyperlinkButton	control,	you	can	easily	activate	other	apps.	You	can
set	the	NavigateUri	property	to	a	URL,	and	clicking	the	button	opens	the	default
browser	to	open	the	web	page.

<HyperlinkButton	NavigateUri="https://csharp.christiannagel.com"	

		Content="C#	Infos"	Grid.Column="1"	

		Style="{StaticResource	TextBlockButtonStyle}"	FontSize="24"	/>

The	HyperlinkButton	by	default	looks	like	a	link	in	the	browser.	With	the
HyperlinkButton,	you	can	either	set	the	NavigateUri	or	define	a	Click	event,
but	you	can't	do	both.	As	an	action	to	a	Click	event,	you	can,	for	example,
programmatically	navigate	to	another	page.	Navigation	is	explained	later	in	the
section	“Implementing	Navigation.”

You	not	only	can	assign	http://	or	https://	values	to	the	NavigateUri
property	but	also	use	ms-appx://	to	activate	other	apps.

Items	Controls
Contrary	to	a	ContentControl,	an	ItemsControl	can	contain	a	list	of	items.
With	an	ItemsControl,	you	can	either	define	items	with	the	Items	property	or
fill	it	using	data	binding	and	the	ItemsSource	property.	You	cannot	use	both.

The	following	table	describes	the	different	Items	controls.

CONTROL DESCRIPTION
ItemsControl The	ItemsControl	is	the	base	class	for	all	other	items

controls,	and	you	can	also	use	it	directly	to	display	a	list	of
items.

Pivot The	Pivot	control	is	a	control	for	creating	a	tab-like	behavior
for	the	application.	Read	the	section	“Implementing
Navigation”	for	more	information	on	this	control.

AutoSuggestBox The	AutoSuggestBox	replaces	the	previous	SearchBox.	With
the	AutoSuggestBox,	the	user	can	enter	text,	and	the	control
offers	auto-completion.

ListBox	
ComboBox	
FlipView

ListBox,	ComboBox,	and	FlipView	are	three	item	controls	that
derive	from	the	base	class	Selector.	Selector	derives	from
ItemsControl	and	adds	the	SelectedItem	and
SelectedValue	properties	to	make	it	possible	to	select	an
item	from	the	collection.	The	ListBox	shows	a	list	the	user
can	select	from.	The	ComboBox	combines	a	TextBox	and	a
drop-down	list	to	allow	the	selection	of	a	list	while	using	less
screen	space.	The	FlipView	control	allows	using	touch
interaction	to	flip	through	a	list	of	items	while	only	one	item
is	shown.

ListView	
GridView

ListView	and	GridView	derive	from	the	base	class
ListViewBase,	which	derives	from	Selector	—so	these	are
the	most	powerful	selectors.	ListViewBase	offers	additional
dragging	and	dropping	of	items	and	reordering	of	items,	adds
a	header	and	a	footer,	and	allows	selecting	multiple	items.	The
ListView	displays	items	vertically	(but	you	can	also	create	a
template	to	have	the	list	horizontally).	The	GridView	displays
items	with	rows	and	columns.

Flyouts
Flyouts	are	used	to	open	a	window	above	other	UI	elements—for	example,	a
context	menu.	All	flyouts	derive	from	the	base	class	FlyoutBase.	The
FlyoutBase	class	defines	a	Placement	property	that	allows	defining	where	the
flyout	should	be	positioned.	It	can	be	centered	in	the	screen	or	positioned	around
the	target	element.	The	following	table	describes	the	flyouts.

CONTROL DESCRIPTION
MenuFlyout The	MenuFlyout	control	is	used	to	display	a	list	of	menu

items.
Flyout The	Flyout	control	can	contain	one	item	that	you	can

customize	with	XAML	elements.
CommandBarFlyout CommandBarFlyout	is	a	specialized	flyout	that	defines	the

layout	for	controls	within	app	bars.

A	different	category	of	flyouts	are	flyouts	of	the	MenuBar	control.
MenuFlyoutItem,	MenuFlyoutSubItem,	and	MenuFlyoutSeparator	derive	from
the	base	class	MenuFlyoutItemBase.

WORKING	WITH	DATA	BINDING
Data	binding	is	an	extremely	important	concept	with	XAML-based	apps.	Data
binding	gets	data	from	.NET	objects	to	the	UI	or	the	other	way	around.	Simple
objects	can	be	bound	to	UI	elements,	a	list	of	objects,	and	XAML	elements.	With
data	binding,	the	target	can	be	any	dependency	property	of	a	XAML	element,
and	every	property	of	a	CLR	object	can	be	the	source.	Because	XAML	elements
also	offer	.NET	properties,	every	XAML	element	can	be	the	source	as	well.
Figure	29-11	shows	the	connection	between	the	source	and	the	target.	The
binding	defines	the	connection.

Binding	supports	several	binding	modes	between	the	target	and	source.	With
one-way	binding,	the	source	information	goes	to	the	target,	but	if	the	user
changes	information	in	the	user	interface,	the	source	is	not	updated.	For	updates
to	the	source,	two-way	binding	is	required.

FIGURE	29-11

The	following	table	shows	the	binding	modes	and	their	requirements:

BINDING
MODE

DESCRIPTION

One-time Binding	goes	from	the	source	to	the	target	and	occurs	only	once
when	the	application	is	started	or	the	data	context	changes.	Here,
you	get	a	snapshot	of	the	data.

One-way Binding	goes	from	the	source	to	the	target.	This	is	useful	for	read-
only	data	because	it	is	not	possible	to	change	the	data	from	the	user
interface.	To	get	updates	to	the	user	interface,	the	source	must
implement	the	interface	INotifyPropertyChanged.

Two-way The	user	can	make	changes	to	the	data	from	the	UI.	Binding	occurs
in	both	directions—from	the	source	to	the	target	and	from	the	target
to	the	source.	The	source	needs	to	implement	read/write	properties
so	that	changes	can	be	updated	from	the	UI	to	the	source.

NOTE WinUI	supports	two	binding	types:	reflection-based	binding	using
the	Binding	markup	extension	and	compiled	binding	using	the	x:Bind
markup	extension.	Be	aware	that	the	defaults	with	the	binding	modes	differ
between	these	binding	types,	so	it's	best	to	always	specify	the	binding	mode.
This	section	has	the	main	focus	on	the	compiled	binding.

Data	binding	involves	many	facets	besides	the	binding	modes.	This	section
provides	binding	to	simple	.NET	objects	and	binding	to	lists.	Using	change
notifications,	the	UI	is	updated	with	changes	in	the	bound	objects.	This	section
also	describes	dynamically	selecting	data	templates.

Let's	start	with	the	DataBindingSamples	sample	application.	The	app	shows	a
list	of	books	and	allows	the	user	to	select	a	book	to	see	the	book	details.

Change	Notification	with	INotifyPropertyChanged
First,	the	model	is	created.	To	get	updates	to	the	user	interface	when	property
values	change,	the	interface	INotifyPropertyChanged	needs	to	be	implemented.
For	reusing	this	implementation,	the	ObservableObject	class	is	created	that
implements	this	interface.	The	interface	defines	the	PropertyChanged	event
handler.	This	event	is	fired	from	the	method	OnPropertyChanged.	The	method
SetProperty	is	used	to	change	a	property	value	and	to	fire	the	PropertyChanged

event.	If	the	value	to	be	set	is	not	different	from	the	current	value,	no	event	is
fired,	and	the	method	just	returns	false.	With	different	values,	the	property	is	set
to	the	new	value,	and	the	PropertyChanged	event	is	fired.	This	method	makes
use	of	the	caller	information	feature	from	C#	using	the	attribute
CallerMemberName.	When	you	define	the	parameter	propertyName	as	an
optional	parameter	with	this	attribute,	the	C#	compiler	passes	the	name	of	the
property	with	this	parameter,	so	it's	not	necessary	to	add	a	hard-coded	string	to
the	code	(code	file	DataBindingSamples/Models/ObservableObject.cs):

public	abstract	class	ObservableObject	:	INotifyPropertyChanged

{

		public	event	PropertyChangedEventHandler?	PropertyChanged;

	

		public	virtual	bool	SetProperty<T>(ref	T	item,	T	value,	

				[CallerMemberName]	string?	propertyName	=	null)

		{

				if	(EqualityComparer<T>.Default.Equals(item,	value))	return	

false;

				item	=	value;			

				OnPropertyChanged(propertyName);

				return	true;

		}

	

		protected	virtual	void	OnPropertyChanged(string	propertyName)	

=>

				PropertyChanged?.Invoke(this,	new	

PropertyChangedEventArgs(propertyName));

}

NOTE Caller	information	is	covered	in	Chapter	10,	“Errors	and
Exceptions.”	The	implementation	of	INotifyPropertyChanged	is	covered	in
more	detail	in	Chapter	30,	“Patterns	with	XAML	Apps.”

The	Book	class	derives	from	the	base	class	ObservableObject	and	implements
the	properties	BookId,	Title,	Publisher,	and	Authors.	The	BookId	property	is
read-only;	Title	and	Publisher	make	use	of	the	change	notification
implementation	from	the	base	class;	and	the	Authors	property	is	a	read-only
property	to	return	a	list	of	authors	(code	file
DataBindingSamples/Models/Book.cs):

public	class	Book	:	ObservableObject

{

		public	Book(int	id,	string	title,	string	publisher,	params	

string[]	authors)

		{

				BookId	=	id;

				_title	=	title;

				_publisher	=	publisher;

				Authors	=	authors;

		}

	

		public	int	BookId	{	get;	}

	

		private	string	_title;

		public	string	Title

		{

				get	=>	_title;

				set	=>	SetProperty(ref	_title,	value);

		}

	

		private	string	__publisher;

		public	string	Publisher

		{

				get	=>	_publisher;

				set	=>	SetProperty(ref	_publisher,	value);

		}

	

		public	IEnumerable<string>	Authors	{	get;	}

	

		public	override	string	ToString()	=>	Title;

}

Creating	a	List	of	Books
The	method	GetSampleBooks	returns	a	list	of	books	that	should	be	shown	using
the	constructor	of	the	Book	class	(code	file
DataBindingSamples/Services/SampleBooksService.cs):

public	class	SampleBooksService

{

		private	List<Book>	_books	=	new()

		{

				new(1,	"Professional	C#	and	.NET	-	2021	Edition",	"Wrox	

Press",	"Christian	Nagel"),

				new(2,	"Professional	C#	7	and	.NET	Core	2",	"Wrox	Press",	

"Christian	Nagel"),

				new(3,	"Professional	C#	6	and	.NET	Core	1.0",	"Wrox	Press",	

"Christian	Nagel"),

				new(4,	"Professional	C#	5.0	and	.NET	4.5.1",	"Wrox	Press",	

"Christian	Nagel",	

						"Jay	Glynn",	"Morgan	Skinner"),

				new(5,	"Enterprise	Services	with	the	.NET	Framework",	"AWL",	

"Christian	Nagel")

		};

		public	IEnumerable<Book>	GetSampleBooks()	=>	_books;

}

Now,	the	BooksService	class	offers	the	methods	RefreshBooks,	GetBook,	and
AddBook,	and	the	property	Books.	This	property	returns	an
ObservableCollection<Book>	object.	ObservableCollection	is	a	generic	class
offering	change	notification	by	implementing	the	interface
INotifyCollectionChanged	(code	file
DataBindingSamples/Services/BooksService.cs):

public	class	BooksService	

{

		private	ObservableCollection<Book>	_books	=	new();

	

		public	void	RefreshBooks()

		{

				_books.Clear();

				SampleBooksService	sampleBooksService	=	new();

				var	books	=	sampleBooksService.GetSampleBooks();

				foreach	(var	book	in	books)

				{

						_books.Add(book);

				}				

		}

	

		public	Book?	GetBook(int	bookId)	=>

				_books.SingleOrDefault(b	=>	b.BookId	==	bookId);

	

		public	void	AddBook(Book	book)	=>	_books.Add(book);

	

		public	ObservableCollection<Book>	Books	=>	_books;

}

List	Binding
Now	you're	ready	to	display	a	list	of	books.	Any	ItemsSource	-derived	control
can	be	used	to	assign	the	ItemsSource	property	to	binding	to	a	list.	The
following	code	snippet	uses	the	ListView	control	to	bind	the	ItemsSource	to	the
Books	property.	With	the	markup	extension	x:Bind,	this	first	name	specified	is
the	source	for	the	binding.	The	Mode	parameter	defines	the	binding	mode.	With

OneWay,	WinUI	makes	use	of	change	notification	to	update	the	user	interface
when	the	source	changes:

<ListView	ItemsSource="{x:Bind	Books,	Mode=OneWay}"	/>

With	the	code-behind	file,	the	Books	property	is	specified	to	reference	the	Books
property	of	the	BooksService	(code	file
DataBindingSamples/MainPage.xaml.cs):

public	sealed	partial	class	MainWindow	:	Window

{

		private	BooksService	_booksService	=	new();

		public	MainPage()

		{

				this.InitializeComponent();

		}

	

		public	ObservableCollection<Book>	Books	=>	

_booksService.Books;

		//…

}

Binding	Events	to	Methods
Without	invoking	the	RefreshBooks	method	from	the	BooksService,	the	list
stays	empty.	With	the	resources,	two	XamlUICommand	s	are	defined	that	specify
labels,	icons,	and	keys.	The	ExecuteRequested	properties	binds	to	the	methods
RefreshBooks	and	AddBooks	that	are	defined	with	the	code-behind	file	(code	file
DataBindingSamples/MainWindow.xaml):

<Grid.Resources>

		<XamlUICommand	x:Name="RefreshBooksCommand"	Label="Refresh"	

Description="Refresh	books"	

				ExecuteRequested="{x:Bind	RefreshBooks}">

				<XamlUICommand.IconSource>

						<SymbolIconSource	Symbol="List"	/>

				</XamlUICommand.IconSource>

				<XamlUICommand.KeyboardAccelerators>

						<KeyboardAccelerator	Key="R"	Modifiers="Control"	/>

				</XamlUICommand.KeyboardAccelerators>

		</XamlUICommand>

		<XamlUICommand	x:Name="AddBookCommand"	Label="Add	Book"	

Description="Add	a	book"	

				ExecuteRequested="{x:Bind	AddBook}">

				<XamlUICommand.IconSource>

						<SymbolIconSource	Symbol="Add"	/>

				</XamlUICommand.IconSource>

				<XamlUICommand.KeyboardAccelerators>

						<KeyboardAccelerator	Key="A"	Modifiers="Control"	/>

				</XamlUICommand.KeyboardAccelerators>												

		</XamlUICommand>

		<!--	…	-->

</Grid.Resources>

The	StandardUICommand	class	defines	a	predefined	set	of	commands,	such	as
Cut,	Copy,	Paste,	Open	Close,	Play,	and	a	few	others.	With	these	commands
you	don't	need	to	declare	your	own	with	XamlUICommand.

For	the	user	interface,	a	CommandBar	is	created	that	lists	two	AppBarButton
controls.	With	the	AppBarButton	controls,	the	Command	property	references
commands	using	the	StaticResource	markup	extension	(code	file
DataBindingSamples/MainWindow.xaml):

<CommandBar	Grid.Row="0"	Grid.Column="0"	Grid.ColumnSpan="2">

		<AppBarButton	Command="{StaticResource	RefreshBooksCommand}"/>

		<AppBarButton	Command="{StaticResource	AddBookCommand}"/>

</CommandBar>

The	AppBarButton	control	defines	Label	and	Icon	properties	and	a	Click	event
handler.	As	the	Command	property	is	specified,	the	values	don't	need	to	be
specified.

Binding	events	to	methods	is	possible	if	the	method	either	has	no	arguments	or
has	arguments	as	specified	by	the	delegate	type	of	the	event.	With	the	following
code	snippet,	the	methods	OnRefreshBooks	and	OnAddBook	are	declared	to	return
void	without	arguments	(code	file	DataBindingSamples/MainWindow.xaml.cs):

public	void	RefreshBooks()	=>	_booksService.RefreshBooks();

	

public	void	AddBook()	=>

		_booksService.AddBook(new	Book(GetNextBookId(),

				$"Professional	C#	and	.NET	-	{GetNextYear()}	Edition",	"Wrox	

Press"));

	

private	int	GetNextBookId()	=>	Books.Select(b	=>	b.BookId).Max()	

+	1;

private	int	_year	=	2021;

private	int	GetNextYear()	=>	_year	+=	3;

NOTE Binding	to	methods	is	possible	only	with	the	x:Bind	markup
extension,	not	with	the	traditional	Binding	markup	extension.

Using	Data	Templates	and	the	Data	Template	Selector
For	creating	a	different	look	of	the	items,	you	can	create	a	DataTemplate.	The
DataTemplate	can	be	referenced	using	the	key	that	is	specified	with	the	x:Key
attribute.	When	you	use	the	x:DataType	attribute,	you	can	use	compiled	binding
within	the	data	template.	Compiled	binding	requires	the	type	it	binds	to	at
compile	time.	To	bind	to	the	Title	property,	the	type	is	defined	with	the	Book
class	(code	file	DataBindingSamples/MainWindow.xaml):

<Page.Resources>

		<!--	…	-->

		<DataTemplate	x:DataType="models:Book"	x:Key="WroxTemplate">

			<Border	Background="Red"	Margin="4"	Padding="4"	

BorderThickness="2"	

					BorderBrush="DarkRed">

					<TextBlock	Text="{x:Bind	Title,	Mode=OneWay}"	

Foreground="White"	

							Width="300"	/>

				</Border>

		</DataTemplate>

		<!--	…	-->

</Page.Resources>

Data	templates	that	should	be	used	for	items	in	an	ItemsControl	can	be
referenced	using	the	ItemTemplate	property	of	an	ItemsControl.	Instead	of	just
using	one	DataTemplate	for	all	the	items	in	the	list,	now	a
DataTemplateSelector	will	be	used	to	choose	the	DataTemplate	dynamically
based	on	the	name	of	the	publisher.

The	BookDataTemplateSelector	derives	from	the	base	class
DataTemplateSelector.	A	data	template	selector	needs	to	override	the	method
SelectTemplateCore	and	return	the	selected	DataTemplate.	With	the
implementation	of	the	BookTemplateSelector,	two	properties	are	specified:	the
WroxTemplate	and	the	DefaultTemplate.	In	the	SelectTemplateCore	method,
Book	objects	are	received.	You	can	use	pattern	matching	using	properties	with
the	switch	expression	so	that	if	the	publisher	is	Wrox	Press,	the	WroxTemplate	is
returned.	In	other	cases,	the	DefaultTemplate	is	returned.	You	can	extend	the
switch	expression	with	more	publishers	(code	file
DataBindingSamples/Utilities/BookTemplateSelector.cs):

public	class	BookTemplateSelector	:	DataTemplateSelector

{

		public	DataTemplate?	WroxTemplate	{	get;	set;	}

		public	DataTemplate?	DefaultTemplate	{	get;	set;	}

	

		protected	override	DataTemplate?	SelectTemplateCore(object	

item)	=>

				item	switch

				{

						Book	{	Publisher:	"Wrox	Press"}	=>	WroxTemplate,

						Book	=>	DefaultTemplate,

						_	=>	null

				};

}

Next,	the	data	template	selector	needs	to	be	instantiated	and	initialized.	You	do
this	in	the	XAML	code.	Here,	the	properties	WroxTemplate	and
DefaultTemplate	are	assigned	to	reference	the	previously	created	DataTemplate
templates	(code	file	DataBindingSamples/MainWindow.xaml):

<Page.Resources>

		<!--	…	-->

		<DataTemplate	x:DataType="models:Book"	x:Key="WroxTemplate">

				<Border	Background="Red"	Margin="4"	Padding="4"	

BorderThickness="2"	

						BorderBrush="DarkRed">

						<TextBlock	Text="{x:Bind	Title,	Mode=OneWay}"	

Foreground="White"		

								Width="300"	/>

				</Border>

		</DataTemplate>

		<DataTemplate	x:DataType="models:Book"	

x:Key="DefaultTemplate">

				<Border	Background="LightBlue"	Margin="4"	Padding="4"	

BorderThickness="2"		

						BorderBrush="DarkBlue">

						<TextBlock	Text="{x:Bind	Title,	Mode=OneWay}"	

Foreground="Black"	

								Width="300"	/>

				</Border>

		</DataTemplate>

		<utils:BookTemplateSelector	x:Key="BookTemplateSelector"	

				WroxTemplate="{StaticResource	WroxTemplate}"	

				DefaultTemplate="{StaticResource	DefaultTemplate}"	/>

</Page.Resources>

To	use	the	BookTemplateSelector	with	the	items	in	the	ListView,	the
ItemTemplateSelector	property	references	the	template	using	the	key	and	the
StaticResource	markup	extension:

<ListView	ItemsSource="{x:Bind	Books,	Mode=OneWay}"	

		ItemTemplateSelector="{StaticResource	BookTemplateSelector}"	

		Grid.Row="1"	/>

Show	Lists	and	Details
To	define	the	user	interface	with	a	list	and	a	detail	view,	you	use	the
TwoPaneView	control.	The	TwoPaneView	defines	Pane1	and	Pane2	properties.	The
content	of	Pane1	is	the	ListView,	and	the	content	of	Pane2	is	the	user	control
that's	defined	next.	Depending	on	the	available	size,	TwoPaneView	defines	a	wide
and	tall	configuration.	As	specified,	with	the	wide	configuration,	the	panes	will
be	shown	left-right;	with	a	tall	configuration,	they	are	shown	top-bottom	(code
file	DataBindingSamples/MainWindow.xaml):

<TwoPaneView	WideModeConfiguration="LeftRight"	

TallModeConfiguration="TopBottom"	

		Grid.Row="1">

		<TwoPaneView.Pane1>

				<!--	ListView	definition	-->

		</TwoPaneView.Pane1>

		<TwoPaneView.Pane2>

				<views:BookUserControl	x:Name="CurrentBook"	Margin="4"	/>

		</TwoPaneView.Pane2>

</TwoPaneView>

Binding	Simple	Objects
Instead	of	just	binding	a	list,	the	single	book	should	be	displayed	in	the	second
pane	of	the	TwoViewPane.	Compiled	binding	is	used	to	bind	to	the	BookId,
Title,	and	Publisher	properties	of	the	Book	property	(code	file
DataBindingSamples/Views/BookUserControl.xaml):

<UserControl

				x:Class="DataBindingSamples.Views.BookUserControl"

				

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

				xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

				xmlns:local="using:DataBindingSamples.Views"

				xmlns:conv="using:DataBindingSamples.Converters"

				xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

				xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"

				mc:Ignorable="d"

				d:DesignHeight="300"

				d:DesignWidth="400">

				<!--	…	-->

				<StackPanel	Orientation="Vertical"	Grid.Row="1">

						<TextBox	Header="BookId"	IsReadOnly="True"	

								Text="{x:Bind	Book.BookId,	Mode=OneWay}"	/>

						<TextBox	Header="Title"	Text="{x:Bind	Book.Title,	

Mode=TwoWay}"	/>

						<TextBox	Header="Publisher"	

								Text="{x:Bind	Book.Publisher,	Mode=TwoWay}"	/>

						<!--	…	-->

				</StackPanel>

		</Grid>

</UserControl>

In	the	code-behind	file,	the	Book	property	is	defined	as	a	dependency	property.
Change	notification	is	needed	for	making	updates	when	the	values	change;	that's
why	a	dependency	property	is	used.	It	would	also	be	possible	to	implement
INotifyPropertyChanged,	but	because	dependency	properties	are	already
available	from	the	base	class	DependencyObject,	dependency	properties	can	be
used	easily	(code	file	DataBindingSamples/Views/BookUserControl.xaml.cs):

public	Book	Book

{

		get	=>	(Book)GetValue(BookProperty);

		set	=>	SetValue(BookProperty,	value);

}

	

public	static	readonly	DependencyProperty	BookProperty	=

		DependencyProperty.Register("Book",	typeof(Book),	

typeof(BookUserControl),	

				new	PropertyMetadata(null));

The	previous	section	showed	the	user	control	being	referenced	in	the	second
pane	of	the	TwoViewPane.	What's	missing	is	the	binding	in	the	ListView	to	show
the	currently	selected	item	in	the	user	control.	As	shown	in	the	following	code
snippet,	with	the	ListView,	the	SelectedItem	property	binds	to	the	Book
property	of	the	user	control.	This	time,	TwoWay	binding	is	needed	to	update	the
UserControl	from	the	ListView	(code	file
DataBindingSamples/MainWindow.xaml):

<ListView	x:Name="BooksList"	ItemsSource="{x:Bind	Books,	

Mode=OneWay}"	

		ItemTemplateSelector="{StaticResource	BookTemplateSelector}"	

		SelectedItem="{x:Bind	CurrentBook.Book,	Mode=TwoWay}"	/>

NOTE It	would	be	also	possible	to	create	the	binding	the	other	way
around—to	bind	the	BookUserControl	to	the	ListView.	This	way,	OneWay
binding	would	be	enough—to	take	the	updated	values	from	the	ListView	to
the	BookUserControl.	However,	here	the	XAML	compiler	complains	because
it	can't	assign	an	object	(coming	from	the	ListView)	to	the	strongly	typed
Book	property	of	the	BookUserControl.	You	could	resolve	this	by	creating	a
value	converter	as	discussed	next.

Value	Conversion
So	far,	the	authors	haven't	been	displayed	in	the	user	control.	The	reason	is	that
the	Authors	property	is	a	list.	You	can	define	an	ItemsControl	in	the	user
control	to	display	the	Authors	property.	However,	to	display	a	simple	comma-
separated	list	of	authors,	it	would	be	okay	to	use	the	TextBlock.	You	just	need	a
converter	to	convert	IEnumerable<string>	—the	type	of	the	Authors	property
to	a	string.

A	value	converter	is	an	implementation	of	the	IValueConverter	interface.	This
interface	defines	the	methods	Convert	and	ConvertBack.	With	two-way	binding,
both	methods	need	to	be	implemented.	Using	one-way	binding,	the	Convert
method	is	enough.	The	class	CollectionToStringConverter	implements	the
Convert	method	by	using	the	string.Join	method	to	create	a	single	string.	A
value	converter	also	receives	an	object	parameter	that	you	can	specify	when
using	the	value	converter.	Here,	this	parameter	is	used	as	a	string	separator	(code
file	DataBindingSamples/Converters/CollectionToStringConverter.cs):

public	class	CollectionToStringConverter	:	IValueConverter

{

		public	object	Convert(object	value,	Type	targetType,	object	

parameter,	

				string	language)

		{

				IEnumerable<string>	names	=	(IEnumerable<string>)value;

				return	string.Join(parameter?.ToString()	??	",	",	names);

		}

	

		public	object	ConvertBack(object	value,	Type	targetType,	

object	parameter,	

				string	language)

		{

				throw	new	NotImplementedException();

		}

}

With	the	user	control,	the	CollectionToStringConverter	is	instantiated	in	the
resources	section	(code	file
DataBindingSamples/Views/BookUserControl.xaml):

<UserControl.Resources>

		<conv:CollectionToStringConverter	

x:Key="CollectionToStringConverter"	/>

</UserControl.Resources>

The	converter	can	now	be	referenced	from	within	the	x:Bind	markup	extension
using	the	Converter	property.	The	ConverterParameter	property	specifies	the
string	separator	that	is	used	within	the	string.Join	method	earlier	(code	file
DataBindingSamples/Views/BookUserControl.xaml):

<TextBox	Header="Authors"	IsReadOnly="True"	

		Text="{x:Bind	Book.Authors,	Mode=OneWay,	

				Converter={StaticResource	CollectionToStringConverter},	

				ConverterParameter=';	'}"	/>

When	you	run	the	app,	the	authors	are	now	displayed,	as	shown	in	Figure	29-12.

FIGURE	29-12

IMPLEMENTING	NAVIGATION
If	your	application	is	composed	of	multiple	pages,	you	need	the	ability	to

navigate	between	these	pages.	There	are	different	application	structures	to
navigate,	such	as	using	a	hamburger	button	(see
https://blog.placeit.net/history-of-the-hamburger-icon/	for	the	origins
and	uses	of	this	icon	with	three	horizontal	bars)	to	navigate	to	different	root
pages	or	to	use	different	tabs	and	replace	tab	items.

If	you	need	to	provide	a	way	for	the	user	to	navigate,	the	heart	of	the	navigation
is	the	Frame	class.	The	Frame	class	enables	the	user	to	navigate	to	specific	pages
using	the	Navigate	method	and	optionally	pass	parameters.	The	Frame	class
keeps	a	stack	of	the	pages	to	which	the	user	has	navigated,	which	makes	it
possible	to	go	back,	go	forward,	limit	the	number	of	pages	in	the	stack,	and
more.

In	addition,	you	have	different	options	for	the	main	navigation	of	your
application.	In	this	section,	you	create	a	Windows	application	and	use	different
pages	to	show	the	features	of	the	Hub,	TabView,	and	NavigationView	controls.
The	sample	application	uses	a	CommandBar	with	AppBarButton	controls	and	a
Frame.	In	the	code-behind	file,	the	Navigate	method	of	the	Frame	class	is
invoked.	The	parameter	of	this	method	requires	the	type	of	the	page	to	navigate
to	(code	file	NavigationControls/MainWindow.xaml.cs):

private	void	OnNavigate(XamlUICommand	sender,	

ExecuteRequestedEventArgs	args)

{

		Type	pageType	=	args.Parameter	switch

		{

				"Hub"	=>	typeof(HubPage),

				"Tab"	=>	typeof(TabViewPage),

				"Navigation"	=>	typeof(NavigationViewPage),

				_	=>	throw	new	InvalidOperationException()

		};

	

		MainFrame.Navigate(pageType);

}

The	Frame	class	keeps	a	stack	of	pages	that	have	been	visited.	The	GoBack
method	makes	it	possible	to	navigate	back	within	this	stack	(if	the	CanGoBack
property	returns	true),	and	the	GoForward	method	enables	you	to	go	forward	one
page	after	a	back	navigation.	The	Frame	class	also	offers	several	events	for
navigation,	such	as	Navigating,	Navigated,	NavigationFailed,	and
NavigationStopped.

The	Page	class	defines	methods	that	can	be	used	on	navigation.	The	method

https://blog.placeit.net/history-of-the-hamburger-icon/

OnNavigatedTo	is	invoked	when	the	page	is	navigated	to.	Within	this	page	you
can	read	how	the	navigation	was	done	(NavigationMode	property).	You	can	also
access	parameters	that	are	passed	with	the	navigation.	The	method
OnNavigatingFrom	is	the	first	method	that	is	invoked	when	you	navigate	away
from	the	page.	Here,	the	navigation	can	be	cancelled.	The	method
OnNavigatedFrom	is	finally	invoked	when	you	navigate	away	from	this	page.
Here,	you	should	do	some	cleanup	of	resources	that	have	been	allocated	with	the
OnNavigatedTo	method.

Let's	get	into	the	functionality	of	the	Hub,	TabView,	and	NavigationView.

Hub
You	can	also	allow	the	user	to	navigate	between	content	within	a	single	page
using	the	Hub	control.	An	example	of	when	you	might	use	this	is	if	you	want	to
show	an	image	as	an	entry	point	(also	known	as	a	hero	image)	for	the	app	and
more	information	is	shown	as	the	user	scrolls.

With	the	Hub	control,	you	can	define	multiple	sections.	Each	section	has	a	header
and	content.	You	can	also	make	the	header	clickable—for	example,	to	navigate
to	a	detail	page.	The	following	code	sample	defines	a	Hub	control	where	you	can
click	the	headers	of	sections	2	and	3.	When	you	click	the	section	header,	the
method	assigned	with	the	SectionHeaderClick	event	of	the	Hub	control	is
invoked.	Each	section	consists	of	a	header	and	some	content.	The	content	of	the
section	is	defined	by	a	DataTemplate	(code	file
NavigationControls/Views/HubPage.xaml):

<Hub	SectionHeaderClick="{x:Bind	OnHeaderClick}">

		<Hub.Header>

				<StackPanel	Orientation="Horizontal">

						<TextBlock>Hub	Header</TextBlock>

						<TextBlock	Text="{x:Bind	Info,	Mode=TwoWay}"	/>

				</StackPanel>

		</Hub.Header>

		<HubSection	Width="400"	Background="LightBlue"	Tag="Section	

1">

				<HubSection.Header>

						<TextBlock>Section	1	Header</TextBlock>

				</HubSection.Header>

				<DataTemplate>

						<TextBlock>Section	1</TextBlock>

				</DataTemplate>

		</HubSection>

		<HubSection	Width="300"	Background="LightGreen"	

IsHeaderInteractive="True"

				Tag="Section	2">

				<HubSection.Header>

						<TextBlock>Section	2	Header</TextBlock>

				</HubSection.Header>

				<DataTemplate>

						<TextBlock>Section	2</TextBlock>

				</DataTemplate>

		</HubSection>

		<HubSection	Width="300"	Background="LightGoldenrodYellow"

				IsHeaderInteractive="True"	Tag="Section	3">

				<HubSection.Header>

						<TextBlock>Section	3	Header</TextBlock>

				</HubSection.Header>

				<DataTemplate>

						<TextBlock>Section	3</TextBlock>

				</DataTemplate>

		</HubSection>

</Hub>

When	you	click	the	header	section,	the	Info	dependency	property	is	assigned	the
value	of	the	Tag	property.	The	Info	property	in	turn	is	bound	within	the	header
of	the	Hub	control	(code	file	NavigationControls/Views/HubPage.xaml.cs):

public	void	OnHeaderClick(object	sender,	

HubSectionHeaderClickEventArgs	e)

{

		Info	=	e.Section.Tag	as	string;

}

	

public	string	Info

{

		get	=>	(string)GetValue(InfoProperty);

		set	=>	SetValue(InfoProperty,	value);

}

	

public	static	readonly	DependencyProperty	InfoProperty	=

		DependencyProperty.Register("Info",	typeof(string),	

typeof(HubPage),

				new	PropertyMetadata(string.Empty));

When	you	run	the	app,	you	can	see	multiple	hub	sections	(see	Figure	29-13)
with	a	See	More	link	in	sections	2	and	3	because	with	these	sections’
IsHeaderInteractive	is	set	to	true.	Of	course,	you	can	create	a	custom	header
template	to	have	a	different	look	for	the	header.

FIGURE	29-13

TabView
The	TabView	control	enables	you	to	show	multiple	tabs,	like	Visual	Studio	does
for	open	files.	You	can	define	the	tabs	statically	or	dynamically.	With	the	next
sample	application,	tabs	will	be	added	dynamically	from	the	C#	code,	and	the
XAML	file	just	defines	a	TabView	without	contained	tabs.	The	methods
OnTabAdd	and	OnTabClose	are	invoked	on	adding	and	closing	tables	by	setting
the	AddTabButtonClick	and	TabCloseRequested	events	(code	file
NavigationControls/Views/TabViewPage.xaml):

<TabView	x:Name="tabView"	AddTabButtonClick="OnAddTab"	

TabCloseRequested="OnTabClose"	/>

With	the	code-behind,	on	loading	of	the	TabViewPage,	three	new	tabs	are	created
by	invoking	the	CreateNewTab	method.	CreateNewTab	creates	a	new
TabViewItem,	a	new	Frame	object	that's	specified	as	the	content	of	the
TabViewItem,	and	it	navigates	to	the	TabPage	using	passing	an	argument	to	the
Navigate	method	that's	used	as	a	parameter	with	the	TabPage.	When	you	add	a
new	tab,	the	OnTabAdd	method	is	invoked,	which	in	turn	creates	a	new	tab	with
CreateNewTab.	OnTabClose	closes	the	tab	(code	file	NavigationControls/
Views/TabViewPage.xaml.cs):

public	sealed	partial	class	TabViewPage	:	Page

{

		public	TabViewPage()

		{

				this.InitializeComponent();

				this.Loaded	+=	OnLoaded;

		}

	

		private	int	_tabNumber	=	0;

		private	void	OnLoaded(object	sender,	RoutedEventArgs	e)

		{

				for	(int	i	=	1;	i	<	4;	i++)

				{

						tabView.TabItems.Add(CreateNewTab(i));

						_tabNumber	=	i;

				}

		}

	

		private	TabViewItem	CreateNewTab(int	index)

		{

				TabViewItem	newItem	=	new()	

				{	

						Header	=	$"Header	{index}",	

						Tag	=	$"Tag{index}",	

						IconSource	=	new	SymbolIconSource()	{	Symbol	=	

Symbol.Document	}	

				};

				Frame	frame	=	new();

				frame.Navigate(typeof(TabPage),	$"Content	{index}");

				newItem.Content	=	frame;

				return	newItem;

		}

	

		private	void	OnTabAdd(TabView	sender,	object	args)

		{

				var	newTabItem	=	CreateNewTab(++_tabNumber);

				tabView.TabItems.Add(newTabItem);

		}

	

		private	void	OnTabClose(TabView	sender,	

TabViewTabCloseRequestedEventArgs	args)

		{

				tabView.TabItems.Remove(args.Tab);

		}

}

With	the	TabPage	class,	the	OnNavigatedTo	method	is	overridden	to	receive	the
parameter	passed	with	the	Parameter	property	of	the	NavigationEventArgs

object	(code	file	NavigationControls/Views/TabPage.xaml.cs):

protected	override	void	OnNavigatedTo(NavigationEventArgs	e)

{

		Text	=	e.Parameter?.ToString()	??	"No	parameter";

}

When	you	run	the	application,	you	can	see	the	TabView	control	with	tabs	that	can
be	dynamically	opened	and	closed	(see	Figure	29-14).

FIGURE	29-14

NavigationView
Windows	10	apps	often	use	the	SplitView	control	with	a	hamburger	button.	The
hamburger	button	is	used	to	open	a	list	of	menus.	The	menus	are	shown	either
just	with	an	icon	or	with	an	icon	and	text	if	more	space	is	available.	For
arranging	the	space	for	the	content	and	the	menus,	the	SplitView	control	comes
into	play.	The	SplitView	offers	space	for	a	pane	and	content	where	the	pane
usually	contains	menu	items.	The	pane	can	have	a	small	and	a	large	size,	which
can	be	configured	depending	on	the	available	screen	sizes.

The	NavigationView	control	combines	the	SplitView,	menus	for	typically
vertical	arrangement,	and	a	hamburger	button	in	one	control.

Let's	get	into	the	features	of	the	NavigationView	and	start	with	the	following
code	snippet.	Figure	29-15	highlights	the	different	parts	of	the	NavigationView.
The	first	part	defined	in	the	NavigationView	is	the	list	of	MenuItems.	This	list
contains	NavigationViewItem	objects.	Each	of	these	items	contains	an	Icon,	a
Content,	and	a	Tag.	The	Tag	can	be	used	programmatically	to	use	this
information	for	navigation.	With	some	of	these	items,	a	predefined	icon	is	used.
The	NavigationViewItem	tagged	with	home	makes	use	of	a	FontIcon	with	the
Unicode	number	E10F.	To	separate	menu	items,	you	can	use	the
NavigationViewItemSeparator.	With	the	NavigationViewItemHeader,	you	can
specify	a	header	content	for	a	group	of	items.	Pay	attention	not	to	cut	this

content	when	the	pane	is	in	compact	mode.	With	the	code	snippet,	the
NavigationViewItemHeader	is	hidden	if	the	pane	is	not	fully	open	(code	file
NavigationControls/Views/NavigationViewPage.xaml):

<NavigationView	x:Name="NavigationView1"	

		Background="{ThemeResource	

ApplicationPageBackgroundThemeBrush}">

		<NavigationView.MenuItems>

				<NavigationViewItem	Content="Home"	Tag="home">

						<NavigationViewItem.Icon>

								<FontIcon	Glyph=""/>
						</NavigationViewItem.Icon>

				</NavigationViewItem>

				<NavigationViewItemSeparator/>

				<NavigationViewItemHeader	Content="Main	Tools"	

						Visibility="{x:Bind	NavigationView1.IsPaneOpen,	

Mode=OneWay}"/>

				<NavigationViewItem	Icon="AllApps"	Content="Apps"	

Tag="apps"/>

				<NavigationViewItem	Icon="Video"	Content="Games"	

Tag="games"/>

				<NavigationViewItem	Icon="Audio"	Content="Music"	

Tag="music"/>

		</NavigationView.MenuItems>

	

		<!--	…	-->

		

</NavigationView>	

FIGURE	29-15

The	AutoSuggestBox	property	of	the	NavigationView	allows	adding	an
AutoSuggestBox	control	to	the	navigation.	This	is	shown	on	top	of	the	menu
items	(code	file	NavigationControls/Views/NavigationViewPage.xaml):

<NavigationView.AutoSuggestBox>

		<AutoSuggestBox	x:Name="autoSuggest"	QueryIcon="Find"/>

</NavigationView.AutoSuggestBox>

With	the	HeaderTemplate,	the	top	of	the	app	can	be	customized.	The	code
snippet	defines	a	header	template	with	a	Grid,	a	TextBlock,	and	a	CommandBar
(code	file	NavigationControls/Views/NavigationViewPage.xaml):

<NavigationView.HeaderTemplate>

		<DataTemplate>

				<Grid	Margin="8,8,0,0">

						<Grid.ColumnDefinitions>

								<ColumnDefinition	Width="Auto"/>

								<ColumnDefinition/>

						</Grid.ColumnDefinitions>

						<TextBlock	Style="{StaticResource	TitleTextBlockStyle}"

								FontSize="28"

								VerticalAlignment="Center"

								Text="Welcome"/>

						<CommandBar	Grid.Column="1"	

								DefaultLabelPosition="Right"

								Background="{ThemeResource	

SystemControlBackgroundAltHighBrush}">

								<AppBarButton	Label="Refresh"	Icon="Refresh"/>

								<AppBarButton	Label="Import"	Icon="Import"/>

						</CommandBar>

				</Grid>

		</DataTemplate>

</NavigationView.HeaderTemplate>

The	PaneFooter	defines	the	lower	part	in	the	pane.	Below	the	footer,	by	default
a	menu	item	for	the	Settings	is	shown;	this	menu,	which	is	used	by	many	apps,	is
included	by	default	(code	file
NavigationControls/Views/NavigationViewPage.xaml):

<NavigationView.PaneFooter>

		<HyperlinkButton	x:Name="MoreInfoBtn"

				Content="More	info"

				Margin="12,0"/>

</NavigationView.PaneFooter>

Finally,	the	content	of	the	NavigationPane	is	covered	by	a	Frame	control.	This
control	is	used	to	navigate	to	pages.	The	NavigationPane	surrounds	the	page
content	(code	file	NavigationControls/Views/NavigationViewPage.xaml):

<Frame	x:Name="ContentFrame"	Margin="24">

		<Frame.ContentTransitions>

				<TransitionCollection>

						<NavigationThemeTransition/>

				</TransitionCollection>

		</Frame.ContentTransitions>

</Frame>

	

IMPLEMENTING	LAYOUT	PANELS

The	NavigationView	control	discussed	in	the	previous	section	is	an	important
control	to	organize	the	layout	of	the	user	interface.	With	many	new	Windows	10
apps,	you	can	see	this	control	used	for	the	main	layout.	There	are	several	other
controls	that	define	a	layout.	This	section	demonstrates	the
VariableSizedWrapGrid	for	arranging	multiple	items	in	a	grid	that
automatically	wraps,	the	RelativePanel	for	arranging	items	relative	to	each
other	or	relative	to	a	parent,	and	adaptive	triggers	for	rearranging	the	layout
depending	on	the	window	size.

The	Canvas	panel	enables	you	to	explicitly	position	controls.	This	panel	is	great
for	arranging	shapes.	This	is	discussed	in	Chapter	31.

StackPanel
If	you	need	to	add	multiple	elements	to	a	control	that	supports	only	one	control,
the	easiest	way	is	to	use	a	StackPanel.	The	StackPanel	is	a	simple	panel	that
shows	one	element	after	the	other.	The	orientation	of	the	StackPanel	can	be
horizontal	or	vertical.

In	the	following	code	snippet,	the	page	contains	a	StackPanel	with	various
controls	organized	vertically.	The	ListBox	within	the	first	ListBoxItem	contains
a	StackPanel	organized	horizontally	(code	file
LayoutSamples/Views/StackPanelPage.xaml):

<StackPanel	Orientation="Vertical">

		<TextBox	Text="TextBox"	/>

		<CheckBox	Content="Checkbox"	/>

		<CheckBox	Content="Checkbox"	/>

		<ListBox>

				<ListBoxItem>

						<StackPanel	Orientation="Horizontal">

								<TextBlock	Text="One	A"	/>

								<TextBlock	Text="One	B"	/>

						</StackPanel>

				</ListBoxItem>

				<ListBoxItem	Content="Two"	/>

		</ListBox>

		<Button	Content="Button"	/>

</StackPanel>

Figure	29-16	shows	the	child	controls	of	the	StackPanel	organized	vertically.

FIGURE	29-16

Grid
The	Grid	is	an	important	panel.	When	you	use	the	Grid,	you	can	arrange	your
controls	with	rows	and	columns.	For	every	column,	you	can	specify	a
ColumnDefinition.	For	every	row,	you	can	specify	a	RowDefinition.	The
following	example	code	lists	two	columns	and	three	rows.	With	each	column
and	row,	you	can	specify	the	width	or	height.	ColumnDefinition	has	a	Width
dependency	property;	RowDefinition	has	a	Height	dependency	property.	You
can	define	the	height	and	width	in	device-independent	pixels,	or	you	can	set	it	to
Auto	to	base	the	size	on	the	content.	The	grid	also	allows	star	sizing,	which
means	the	space	for	the	rows	and	columns	is	calculated	according	to	the
available	space	and	relative	to	other	rows	and	columns.	When	providing	the
available	space	for	a	column,	you	can	set	the	Width	property	to	*.	To	have	the
size	doubled	for	another	column,	you	specify	2	*.	The	sample	code,	which
defines	two	columns	and	three	rows,	uses	star	sizing	for	the	columns	(this	is	the
default);	the	first	row	has	a	fixed	size,	and	the	second	and	third	rows	use	star
sizing.	With	the	height	calculation,	the	available	height	is	reduced	by	the	200
pixels	from	the	first	row.	The	remaining	area	is	divided	between	rows	2	and	3	in

the	relation	1.5:1.

The	grid	contains	several	Rectangle	controls	with	different	colors	to	make	the
cell	sizes	visible.	Because	the	parent	of	these	controls	is	a	grid,	you	can	set	the
attached	properties	Column,	ColumnSpan,	Row,	and	RowSpan	(code	file
LayoutSamples/Views/GridPage.xaml):

<Grid>

		<Grid.ColumnDefinitions>

				<ColumnDefinition	/>

				<ColumnDefinition	/>

		</Grid.ColumnDefinitions>

		<Grid.RowDefinitions>

				<RowDefinition	Height="200"	/>

				<RowDefinition	Height="1.5*"	/>

				<RowDefinition	Height="*"	/>

		</Grid.RowDefinitions>

		<Rectangle	Fill="Blue"	/>

		<Rectangle	Grid.Row="0"	Grid.Column="1"	Fill="Red"	/>

		<Rectangle	Grid.Row="1"	Grid.Column="0"	Grid.ColumnSpan="2"	

Fill="Green"	/>

		<Rectangle	Grid.Row="2"	Grid.Column="0"	Grid.ColumnSpan="2"	

Fill="Yellow"	/>

</Grid>

Figure	29-17	shows	the	outcome	of	arranging	rectangles	in	a	grid.

FIGURE	29-17

VariableSizedWrapGrid
VariableSizedWrapGrid	is	a	wrap	grid	that	automatically	wraps	to	the	next	row
or	column	if	the	size	available	for	the	grid	is	not	large	enough.	The	second
feature	of	this	grid	is	an	allowance	for	items	with	multiple	rows	or	columns;
that's	why	it's	called	variable.

The	following	code	snippet	creates	a	VariableSizedWrappedGrid	with
orientation	Horizontal,	a	maximum	number	of	20	items	in	the	row,	and	rows
and	columns	that	have	a	size	of	50	(code	file
LayoutSamples/Views/VariableSizedWrapGridSample.xaml):

<VariableSizedWrapGrid	x:Name="grid1"	MaximumRowsOrColumns="20"	

ItemHeight="50"

		ItemWidth="50"	Orientation="Horizontal"	/>

The	VariableSizedWrapGrid	is	filled	with	30	Rectangle	and	TextBlock
elements	that	have	random	sizes	and	colors.	Depending	on	the	size,	one	to	three
rows	or	columns	can	be	used	within	the	grid.	The	size	of	the	items	is	set	using
the	attached	properties	VariableSizedWrapGrid.ColumnSpan	and
VariableSizedWrapGrid.RowSpan	(code	file
LayoutSamples/Views/VariableSizedWrapGridSample.xaml.cs):

protected	override	void	OnNavigatedTo(NavigationEventArgs	e)

{

		base.OnNavigatedTo(e);

		Random	r	=	new();

		Grid[]	items	=

				Enumerable.Range(0,	30).Select(i	=>

				{

						byte[]	colorBytes	=	new	byte[3];

						r.NextBytes(colorBytes);

						Rectangle	rect	=	new()

						{

								Height	=	r.Next(40,	150),

								Width	=	r.Next(40,	150),

								Fill	=	new	SolidColorBrush(new	Color

								{

										R	=	colorBytes[0],

										G	=	colorBytes[1],

										B	=	colorBytes[2],

										A	=	255

								})

						};

	

						TextBlock	textBlock	=	new()	

						{

								Text	=	(i	+	1).ToString(),

								HorizontalAlignment	=	HorizontalAlignment.Center,

								VerticalAlignment	=	VerticalAlignment.Center

						};

						Grid	grid	=	new();

						grid.Children.Add(rect);

						grid.Children.Add(textBlock);

						return	grid;

				}).ToArray();

	

				foreach	(var	item	in	items)

				{

						grid1.Children.Add(item);

						Rectangle?	rect	=	item.Children.First()	as	Rectangle;

						if	(rect	is	not	null	&&	rect.Width>	50)

						{

								int	columnSpan	=	((int)rect.Width	/	50)	+	1;

								VariableSizedWrapGrid.SetColumnSpan(item,	columnSpan);

								int	rowSpan	=	((int)rect.Height	/	50)	+	1;

								VariableSizedWrapGrid.SetRowSpan(item,	rowSpan);

						}

				}

When	you	run	the	application,	you	can	see	the	rectangles	and	how	they	wrap	for
different	window	sizes,	as	shown	in	Figure	29-18.

RelativePanel
RelativePanel	is	a	panel	that	allows	one	element	to	be	positioned	in	relation	to
another	element.	If	you've	used	the	Grid	control	with	definitions	for	rows	and
columns	and	you	had	to	insert	a	row,	you	had	to	change	all	elements	that	were
below	the	row	that	was	inserted.	The	reason	is	that	all	rows	and	columns	are
indexed	by	numbers.	This	is	not	an	issue	with	the	RelativePanel,	which	enables
you	to	place	elements	in	relation	to	each	other.

FIGURE	29-18

NOTE Compared	to	the	RelativePanel	,	the	Grid	control	still	has	its
advantages	with	auto,	star,	and	fixed	sizing.

The	following	code	snippet	aligns	several	TextBlock	and	TextBox	controls,	a
Button,	and	a	Rectangle	within	a	RelativePanel.	The	TextBox	elements	are
positioned	to	the	right	of	the	corresponding	TextBlock	elements;	the	Button	is
positioned	relative	to	the	bottom	of	the	panel;	and	the	Rectangle	is	aligned	with
the	top	with	the	first	TextBlock	and	to	the	right	of	the	first	TextBox	(code	file
LayoutSamples/Views/RelativePanelPage.xaml):

<RelativePanel>

		<TextBlock	x:Name="FirstNameLabel"	Text="First	Name"	

Margin="8"	/>

		<TextBox	x:Name="FirstNameText"	

RelativePanel.RightOf="FirstNameLabel"

				Margin="8"	Width="150"	/>

		<TextBlock	x:Name="LastNameLabel"	Text="Last	Name"

				RelativePanel.Below="FirstNameLabel"	Margin="8"	/>

		<TextBox	x:Name="LastNameText"	

RelativePanel.RightOf="LastNameLabel"

				Margin="8"	RelativePanel.Below="FirstNameText"	Width="150"	

/>

		<Button	Content="Save"	

RelativePanel.AlignHorizontalCenterWith="LastNameText"

				RelativePanel.AlignBottomWithPanel="True"	Margin="8"	/>

		<Rectangle	x:Name="Image"	Fill="Violet"	Width="150"	

Height="250"

				RelativePanel.AlignTopWith="FirstNameLabel"

				RelativePanel.RightOf="FirstNameText"	Margin="8"	/>

</RelativePanel>

Figure	29-19	shows	the	alignment	of	the	controls	when	you	run	the	application.

FIGURE	29-19

Adaptive	Triggers
The	RelativePanel	is	a	great	control	for	alignment.	However,	to	support
multiple	screen	sizes	and	rearrange	the	controls	depending	on	the	screen	size,
you	can	use	adaptive	triggers	with	the	RelativePanel	control.	For	example,	on	a
small	screen,	the	TextBox	controls	should	be	arranged	below	the	TextBlock
controls,	but	on	a	larger	screen	the	TextBox	controls	should	be	arranged	to	the
right	of	the	TextBlock	controls.

In	the	following	code,	the	RelativePanel	from	before	is	changed	to	remove	all
RelativePanel	attached	properties	that	should	not	apply	to	all	screen	sizes,	and
an	optional	image	is	added	(code	file
LayoutSamples/Views/AdaptiveRelativePanelPage.xaml):

<RelativePanel	ScrollViewer.VerticalScrollBarVisibility="Auto"	

Margin="16">

		<TextBlock	x:Name="FirstNameLabel"	Text="First	Name"	

Margin="8"	/>

		<TextBox	x:Name="FirstNameText"	Margin="8"	Width="150"	/>

		<TextBlock	x:Name="LastNameLabel"	Text="Last	Name"	Margin="8"	

/>

		<TextBox	x:Name="LastNameText"	Margin="8"	Width="150"	/>

		<Button	Content="Save"	

RelativePanel.AlignBottomWithPanel="True"

				Margin="8"	/>

		<Rectangle	x:Name="Image"	Fill="Violet"	Width="150"	

Height="250"

				Margin="8"	/>

		<Rectangle	x:Name="OptionalImage"	

RelativePanel.AlignRightWithPanel="True"

				Fill="Red"	Width="350"	Height="350"	Margin="8"	/>

</RelativePanel>

When	you	use	an	adaptive	trigger—with	which	the	MinWindowWidth	can	be	set
to	define	when	the	trigger	is	fired—values	for	different	properties	are	set	to
arrange	the	elements	depending	on	the	space	available	for	the	app.	As	the	screen
size	gets	smaller,	the	width	needed	by	the	app	gets	smaller	as	well.	Moving
elements	below	instead	of	beside	reduces	the	width	needed.	Instead,	the	user	can
scroll	down.	With	the	smallest	window	width,	the	optional	image	is	set	to
collapsed	(code	file
LayoutSamples/Views/AdaptiveRelativePanelPage.xaml):

<VisualStateManager.VisualStateGroups>

		<VisualStateGroup>

				<VisualState	x:Name="WideState">

						<VisualState.StateTriggers>

								<AdaptiveTrigger	MinWindowWidth="1024"	/>

						</VisualState.StateTriggers>

						<VisualState.Setters>

								<Setter	Target="FirstNameText.(RelativePanel.RightOf)"

										Value="FirstNameLabel"	/>

								<Setter	Target="LastNameLabel.(RelativePanel.Below)"

										Value="FirstNameLabel"	/>

								<Setter	Target="LastNameText.(RelativePanel.Below)"

										Value="FirstNameText"	/>

								<Setter	Target="LastNameText.(RelativePanel.RightOf)"

										Value="LastNameLabel"	/>

								<Setter	Target="Image.(RelativePanel.AlignTopWith)"

										Value="FirstNameLabel"	/>

								<Setter	Target="Image.(RelativePanel.RightOf)"	

Value="FirstNameText"	/>

						</VisualState.Setters>

				</VisualState>

				<VisualState	x:Name="MediumState">

						<VisualState.StateTriggers>

								<AdaptiveTrigger	MinWindowWidth="720"	/>

						</VisualState.StateTriggers>

						<VisualState.Setters>

								<Setter	Target="FirstNameText.(RelativePanel.RightOf)"

										Value="FirstNameLabel"	/>

								<Setter	Target="LastNameLabel.(RelativePanel.Below)"

										Value="FirstNameLabel"	/>

								<Setter	Target="LastNameText.(RelativePanel.Below)"

										Value="FirstNameText"	/>

								<Setter	Target="LastNameText.(RelativePanel.RightOf)"

										Value="LastNameLabel"/>

								<Setter	Target="Image.(RelativePanel.Below)"	

Value="LastNameText"	/>

								<Setter	Target="Image.

(RelativePanel.AlignHorizontalCenterWith)"

										Value="LastNameText"	/>

						</VisualState.Setters>

				</VisualState>

				<VisualState	x:Name="NarrowState">

						<VisualState.StateTriggers>

								<AdaptiveTrigger	MinWindowWidth="320"	/>

						</VisualState.StateTriggers>

						<VisualState.Setters>

								<Setter	Target="FirstNameText.(RelativePanel.Below)"

										Value="FirstNameLabel"	/>

								<Setter	Target="LastNameLabel.(RelativePanel.Below)"

										Value="FirstNameText"	/>

								<Setter	Target="LastNameText.(RelativePanel.Below)"

										Value="LastNameLabel"/>

								<Setter	Target="Image.(RelativePanel.Below)"	

Value="LastNameText"	/>

								<Setter	Target="OptionalImage.Visibility"	

Value="Collapsed"	/>

						</VisualState.Setters>

				</VisualState>

		</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

When	you	run	the	application,	you'll	see	different	snap	points	as	you	resize	the
application.	The	layout	is	rearranged,	and	controls	move	to	other	positions	or	are
hidden	depending	on	the	available	size.	See	the	Figures	29-20	and	29-21	for
different	layout	results.

FIGURE	29-20

FIGURE	29-21

Deferred	Loading
For	a	faster	UI,	you	can	delay	creation	of	controls	until	they	are	needed.	On
small	devices,	some	controls	might	not	be	needed	at	all,	but	with	larger	screens

and	faster	systems	they	are	needed.	With	previous	versions	of	XAML
applications,	elements	that	have	been	added	to	the	XAML	code	also	have	been
instantiated.	This	is	no	longer	the	case	with	Windows	10.	Here	you	can	defer
loading	of	controls	until	they	are	needed.

You	can	use	deferred	loading	with	adaptive	triggers	to	load	only	some	controls	at
a	later	time.	One	sample	scenario	where	this	is	useful	is	when	you	have	a	smaller
window	that	the	user	can	resize	to	be	larger.	With	the	smaller	window,	some
controls	should	not	be	visible,	but	they	should	be	visible	with	the	bigger	size	of
the	window.	Another	scenario	where	deferred	loading	can	be	useful	is	when
some	parts	of	the	layout	may	take	more	time	to	load.	Instead	of	making	the	user
wait	until	he	sees	the	completely	loaded	layout,	you	can	use	deferred	loading.

To	use	deferred	loading,	you	need	to	add	the	x:Load	attribute	with	a	value	False
to	a	control,	as	shown	in	the	following	code	snippet	with	a	Grid	control.	This
control	also	needs	to	have	a	name	assigned	to	it	(code	file
LayoutSamples/Views/DelayLoadingPage.xaml):

<Grid	x:Load="False"	x:Name="deferGrid">

		<Grid.ColumnDefinitions>

				<ColumnDefinition	/>

				<ColumnDefinition	/>

		</Grid.ColumnDefinitions>

		<Grid.RowDefinitions>

				<RowDefinition	/>

				<RowDefinition	/>

		</Grid.RowDefinitions>

		<Rectangle	Fill="Red"	Grid.Row="0"	Grid.Column="0"	/>

		<Rectangle	Fill="Green"	Grid.Row="0"	Grid.Column="1"	/>

		<Rectangle	Fill="Blue"	Grid.Row="1"	Grid.Column="0"	/>

		<Rectangle	Fill="Yellow"	Grid.Row="1"	Grid.Column="1"/>

</Grid>	

To	make	this	deferred	control	visible,	all	you	need	to	do	is	invoke	the	FindName
method	to	access	the	identifier	of	the	control.	This	not	only	makes	the	control
visible	but	also	loads	the	XAML	tree	of	the	control	before	the	control	is	made
visible	(code	file	LayoutSamples/Views/DelayLoadingPage.xaml.cs):

private	void	OnDeferLoad(object	sender,	RoutedEventArgs	e)

{

		FindName(nameof(deferGrid));

}	

NOTE The	attribute	x:Load	has	an	overhead	of	about	600	bytes,	so	you

should	use	it	only	on	elements	that	need	to	be	hidden.	If	this	attribute	is	used
on	a	container	element,	you	pay	the	overhead	only	once	with	the	element
where	the	attribute	is	applied.

SUMMARY
This	chapter	introduced	many	different	aspects	of	programming	Windows	apps.
You've	seen	the	foundation	of	XAML	and	how	it	extends	XML	with	attached
properties	and	markup	extensions.	You've	seen	a	hierarchy	with	many	controls
offered	with	WinUI	and	learned	about	the	foundations	of	data	binding.

You've	seen	how	to	deal	with	different	screen	sizes,	options	for	laying	out
controls	with	different	panels,	and	the	categories	and	features	of	different
controls.

The	next	chapter	continues	with	XAML-based	apps,	the	MVVM	pattern,
commands,	and	creating	shareable	view	models.

30
Patterns	with	XAML	Apps

WHAT'S	IN	THIS	CHAPTER?

Sharing	code

Creating	models

Creating	repositories

Creating	view	models

Navigation	between	pages

Using	an	event	aggregator

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	4_Apps/Patterns.

The	code	for	this	chapter	contains	these	WinUI	and	library	projects:

BooksApp

BooksLib

GenericViewModels

All	the	projects	have	nullable	reference	types	enabled.

WHY	MVVM?
Dependency	injection,	as	explained	in	Chapter	15,	“Dependency	Injection	and
Configuration,”	provides	an	easy	way	to	create	unit	tests	and	gives	you	a	way	to
build	the	major	functionality	of	your	application	independent	of	a	hosting

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

technology.	You've	seen	this	in	concrete	examples	in	Chapter	25,	“Services,”
where	the	same	functionality	has	been	used	with	ASP.NET	Core	Web	APIs,
gRPC,	and	Azure	Functions.

Dependency	injection	plays	an	important	part	with	XAML-based	applications	as
well.	Windows	and	mobile	applications	give	you	many	options	to	use,	and	you
shouldn't	restrict	your	application	development	to	one	of	these	technologies.
With	XAML,	you	have	older	(WPF,	Silverlight,	Xamarin.Forms,	UWP)	and
newer	(WinUI,	MAUI,	Platform	Uno)	technologies.	Some	older	technologies
still	have	great	support	with	.NET	5,	such	as	WPF.

One	project	to	support	all	Windows	10	platforms	might	not	fit	your	needs.	Can
you	write	a	program	that	supports	Windows	10	only?	Do	you	think	about
supporting	devices	such	as	the	HoloLens	or	the	Xbox?	Windows	10X?	What
about	supporting	Android	and	iOS?	Can	.NET	Multi-platform	App	UI	(MAUI)
support	your	needs?	The	goal	should	be	to	reuse	as	much	code	as	possible	to
support	the	platforms	needed	and	to	have	an	easy	switch	from	one	technology	to
another.

With	XAML-based	applications,	using	dependency	injection	is	helpful.	The
Model-View-ViewModel	(MVVM)	design	pattern	helps	to	separate	the	view	from
the	functionality.	With	the	view	models	you	implement,	you	can	inject	services
similar	to	what	you've	seen	with	the	controllers	with	an	ASP.NET	Core
technology.	The	MVVM	design	pattern	was	invented	by	John	Gossman	of	the
Expression	Blend	team	as	a	great	fit	to	XAML	with	advancements	to	the	Model-
View-Controller	(MVC)	and	Model-View-Presenter	(MVP)	patterns	because	it
uses	data	binding,	a	number-one	feature	of	XAML.

With	XAML-based	applications,	the	XAML	file	and	code-behind	file	are	tightly
coupled	to	each	other.	This	makes	it	hard	to	reuse	the	code-behind	and	also	hard
to	do	unit	testing.	To	solve	this	issue,	the	MVVM	pattern	allows	for	a	better
separation	of	the	code	from	the	user	interface.

In	principle,	the	MVVM	pattern	is	not	that	hard	to	understand.	However,	when
you're	creating	applications	based	on	the	MVVM	pattern,	you	need	to	pay
attention	to	a	lot	more	needs;	several	patterns	come	into	play	for	making
applications	work	and	making	reuse	possible,	including	dependency	injection
mechanisms	for	being	independent	of	the	implementation	and	communication
between	view	models.

All	this	is	covered	in	this	chapter,	and	with	this	information	not	only	can	you	use
the	same	code	with	Windows	apps	and	Windows	desktop	applications,	but	you

can	also	use	it	for	iOS	and	Android	with	the	help	of	Xamarin.Forms	and	.NET
MAUI.	This	chapter	gives	you	a	sample	app	that	covers	all	the	different	aspects
and	patterns	needed	for	a	good	separation	to	support	different	technologies.

DEFINING	THE	MVVM	PATTERN
First,	let's	take	a	look	at	the	MVC	design	pattern	that	is	one	of	the	origins	of	the
MVVM	pattern.	The	Model-View-Controller	pattern	separates	the	model,	the
view,	and	the	controller	(see	Figure	30-1).	The	model	defines	the	data	that	is
shown	in	the	view	as	well	as	the	business	rules	about	how	the	data	can	be
changed	and	manipulated.	The	controller	is	the	manager	between	the	model	and
the	view,	it	updates	the	model,	and	it	sends	data	for	display	to	the	view.	When	a
user	request	comes	in,	the	controller	takes	action,	uses	the	model,	and	updates
the	view.

FIGURE	30-1

NOTE The	MVC	pattern	is	heavily	used	with	ASP.NET	Core	MVC,	which
is	covered	in	Chapter	26,	“Razor	Pages	and	MVC.”

With	the	Model-View-Presenter	pattern	(see	Figure	30-2),	the	user	interacts	with
the	view.	The	presenter	contains	all	the	business	logic	for	the	view.	The	presenter

can	be	decoupled	from	the	view	by	using	an	interface	to	the	view	as	a	contract.
This	allows	you	to	easily	change	the	view	implementation	for	unit	tests.	With
MVP,	the	view	and	model	are	completely	shielded	from	each	other.

FIGURE	30-2

The	main	pattern	used	with	XAML-based	applications	is	the	Model-View-
ViewModel	pattern	(see	Figure	30-3).	This	pattern	takes	advantage	of	the	data-
binding	capabilities	with	XAML.	With	MVVM,	the	user	interacts	with	the	view.
The	view	uses	data	binding	to	access	information	from	the	view	model	and
invokes	commands	in	the	view	model	that	are	bound	in	the	view	as	well.	The
view	model	doesn't	have	a	direct	dependency	to	the	view.	The	view	model	itself
uses	the	model	to	access	data	and	gets	change	information	from	the	model	as
well.

FIGURE	30-3

In	the	following	sections	of	this	chapter,	you	will	see	how	to	use	this	architecture
with	the	application	to	create	views,	view	models,	models,	and	other	patterns
that	are	needed.

NOTE To	reuse	code	with	libraries,	make	sure	to	read	Chapter	14,
“Libraries,	Assemblies,	Packages,	and	NuGet.”

SAMPLE	SOLUTION
The	sample	solution	consists	of	a	WinUI	application	for	showing	and	editing	a
list	of	books.	The	solution	uses	these	projects:

BooksApp—A	WinUI	application	project	for	the	UI	of	a	modern	app.	This
application	contains	the	views	for	the	app	with	XAML	code	and	platform-
specific	implementation	of	services.

BooksLib—A	.NET	5	library	with	models,	view	models,	and	services	to
create,	read,	and	update	books.

GenericViewModels—A	.NET	5	library	with	view	model	base	classes	that
can	be	used	across	different	projects.

This	application	uses	the	NuGet	package	Microsoft.Toolkit.Mvvm,	which	has
core	classes	that	are	employed	in	applications	using	the	MVVM	pattern.	Many
other	MVVM	libraries	are	available	for	you	to	use	as	well,	and	you	can	easily
create	the	core	functionality	needed	for	MVVM	with	your	custom
implementation.	As	we	now	have	an	MVVM	library	from	Microsoft,	this
chapter	makes	use	of	it.

The	user	interface	of	the	application	will	have	two	views:	one	view	to	show	as	a
list	of	books	and	one	view	to	show	book	details.	When	you	select	a	book	from
the	list,	the	detail	is	shown.	It's	also	possible	to	add	and	edit	books.

The	BooksLib	and	GenericViewModels	libraries	can	be	used	by	multiple
applications	with	XAML	code—for	example,	with	WinUI,	Platform	Uno,	and
.NET	MAUI.

MODELS
Let's	start	defining	the	models,	particularly	the	Book	type.	This	is	the	type	that
will	be	shown	and	edited	in	the	UI.	To	support	data	binding,	the	properties	where
values	are	updated	from	the	user	interface	need	a	change	notification
implementation.	The	BookId	property	is	only	shown	but	not	changed,	so	change
notification	is	not	needed	with	this	property.	The	method	SetProperty	is	defined

by	the	base	class	ObservableObject	that	is	defined	in	the	namespace
Microsoft.Toolkit.Mvvm.ComponentModel	in	the	NuGet	package
Microsoft.Toolkit.Mvvm	(code	file	BooksLib/Models/Book.cs):

public	class	Book:	ObservableObject

{

		public	Book(string?	title	=	null,	string?	publisher	=	null,	

int	id	=	0)

		{

				BookId	=	id;

				_title	=	title	??	string.Empty;

				_publisher	=	publisher	??	string.Empty;

		}

	

		public	int	BookId	{	get;	set;	}

	

		private	string	_title;

		public	string	Title

		{

				get	=>		_title;	

				set	=>	SetProperty(ref	_title,	value);

		}

	

		private	string	_publisher;

		public	string	Publisher

		{

				get	=>	_publisher;

				set	=>	SetProperty(ref	_publisher,	value);

		}

	

		public	override	string	ToString()	=>	Title;

}

NOTE The	ObservableObject	class	implements	the	interface
INotifyPropertyChanged	.	This	interface	is	used	with	data	binding	of
XAML-based	applications	to	notify	the	user	interface	that	a	change	occurred
in	the	data	source.	You	need	to	specify	OneWay	or	TwoWay	binding	to	use
INotifyPropertyChanged	from	the	data	sources	with	the	Mode	property	of
the	binding	markup	extension.

Next,	you	need	a	way	to	retrieve,	update,	and	delete	Book	objects.	You	can	read
and	write	books	from	a	database	with	EF	Core	or	call	a	REST	API	or	use	RPC	to
access	a	service.	The	sample	application	just	accesses	books	from	the	memory,
but	you	can	create	an	API	service	and	a	service	class	to	call	this	API	service.	To

make	this	easy,	the	contracts	of	the	repository	pattern	are	specified	using	the
task-based	async	pattern	where	you	can	create	a	different	implementation	using
the	HttpClient	class	as	covered	in	Chapter	25.

With	the	client	application,	it's	best	to	be	independent	of	the	data	store.	For	this,
the	repository	design	pattern	was	defined.	The	repository	pattern	is	a	mediator
between	the	model	and	the	data	access	layer;	it	can	act	as	an	in-memory
collection	of	objects.	It	gives	an	abstraction	of	the	data	access	layer	and	allows
for	easier	unit	tests.

The	generic	interface	IQueryRepository	defines	methods	for	retrieving	one	item
by	ID	or	a	list	of	items	(code	file	BooksLib/Services/IQueryRepository.cs):

public	interface	IQueryRepository<T,	in	TKey>

		where	T:	class

{

		Task<T?>	GetItemAsync(TKey	id);

		Task<IEnumerable<T>>	GetItemsAsync();

}

The	generic	interface	IUpdateRepository	defines	methods	to	add,	update,	and
delete	items	(code	file	BooksLib/Services/IUpdateRepository.cs):

public	interface	IUpdateRepository<T,	in	TKey>

		where	T:	class

{

		Task<T>	AddAsync(T	item);

		Task<T>	UpdateAsync(T	item);

		Task<bool>	DeleteAsync(TKey	id);

}

The	IBooksRepository	interface	makes	the	previous	two	generic	interfaces
concrete	by	defining	the	type	Book	for	the	generic	type	T	(code	file
BooksLib/Services/IBooksRepository.cs):

public	interface	IBooksRepository:	IQueryRepository<Book,	int>,

		IUpdateRepository<Book,	int>

{

}

By	using	these	interfaces,	it's	possible	to	change	the	repository.	Create	a	sample
repository	BooksSampleRepository	that	implements	the	members	of	the
interface	IBooksRepository	and	contains	a	list	of	initial	books	(code	file
BooksLib/Services/BooksSampleRepository.cs):

public	class	BooksSampleRepository:	IBooksRepository

{

		Private	readonly	List<Book>	_books;

		public	BooksSampleRepository()	=>

				_books	=	GetSampleBooks();

	

		private	List<Book>	GetSampleBooks()	=>

				new()

				{

						new("Professional	C#	and	.NET	-	2021	Edition",	"Wrox	

Press",	1),

						new("Professional	C#	7	and	.NET	Core	2",	"Wrox	Press",	2),

						new("Professional	C#	6	and	.NET	Core	1.0",	"Wrox	Press",	

3),

						new("Professional	C#	5.0	and	.NET	4.5.1",	"Wrox	Press",	

4),

						new("Enterprise	Services	with	the	.NET	Framework",	"AWL",	

5)

				};

	

		public	Task<bool>	DeleteAsync(int	id)

		{

				Book?	bookToDelete	=	_books.Find(b	=>	b.BookId	==	id);

				if	(bookToDelete	is	not	null)

				{

						return	Task.FromResult<bool>(_books.Remove(bookToDelete));

				}

				return	Task.FromResult<bool>(false);

		}

	

		public	Task<Book?>	GetItemAsync(int	id)	=>

				Task.FromResult(_books.Find(b	=>	b.BookId	==	id));

	

		public	Task<IEnumerable<Book>>	GetItemsAsync()	=>

				Task.FromResult<IEnumerable<Book>>(_books);

	

		public	Task<Book>	UpdateAsync(Book	item)

		{

				Book	bookToUpdate	=	_books.Single(b	=>	b.BookId	==	

item.BookId);

				int	ix	=	_books.IndexOf(bookToUpdate);

				_books[ix]	=	item;

				return	Task.FromResult(_books[ix]);

		}

	

		public	Task<Book>	AddAsync(Book	item)

		{

				item.BookId	=	_books.Select(b	=>	b.BookId).Max()	+	1;

				_books.Add(item);

				return	Task.FromResult(item);

		}

}

SERVICES
To	get	the	books	from	the	repository,	you	use	a	service,	and	you	can	use	it	across
multiple	view	models	that	access	the	same	data.	Thus,	the	service	is	a	good	place
to	share	data	between	view	models.

The	sample	service	for	the	books	implements	the	generic	interface
IItemsService.	This	interface	defines	the	Items	property	of	a	type
ObservableCollection.	ObservableCollection	implements	the	interface
INotifyCollectionChanged	for	notifications	when	the	collection	changes.	The
interface	IItemsService	also	defines	the	SelectedItem	property	and	change
notification	with	the	event	SelectedItemChanged.	Aside	from	that,	the	methods
RefreshAsync,	AddOrUpdateAsync,	and	DeleteAsync	need	to	be	implemented	by
the	service	class	(code	file	GenericViewModels/Services/IItemsService.cs):

public	interface	IItemsService<T>

{

		Task	RefreshAsync();

	

		Task<T>	AddOrUpdateAsync(T	item);

	

		Task	DeleteAsync(T	item);

	

		ObservableCollection<T>	Items	{	get;	}

	

		T?	SelectedItem	{	get;	set;	}

		event	EventHandler<T>?	SelectedItemChanged;

}

The	class	BooksService	derives	from	the	base	class	ObservableObject	and
implements	the	generic	interface	IItemsService.	The	BooksService	uses	the
previously	created	SampleBooksRepository	but	requires	the	functionality	of	this
class	offered	by	the	IBooksRepository	interface.	The	class	is	injected	via	the
constructor	and	used	on	refreshing	the	books	list,	adding	or	updating	books,	and
deleting	books	(code	file	BooksLib/Services/BooksService.cs):

public	class	BooksService	:	ObservableObject,	

IItemsService<Book>

{					

		Private	readonly	ObservableCollection<Book>	_books	=	new();

		private	readonly	IBooksRepository	_booksRepository;

	

		public	event	EventHandler<Book>?	SelectedItemChanged;

	

		public	BooksService(IBooksRepository	repository)

		{

				_booksRepository	=	repository;

		}

	

		public	ObservableCollection<Book>	Items	=>	_books;

	

		private	Book?	_selectedItem;

		public	Book?	SelectedItem

		{

				get	=>	_selectedItem;

				set

				{

						if	(value	is	not	null	&&	SetProperty(ref	_selectedItem,	

value))

						{

								SelectedItemChanged?.Invoke(this,	_selectedItem);

						}

				}

		}

	

		public	async	Task<Book>	AddOrUpdateAsync(Book	book)

		{

				if	(book.BookId	==	0)

				{

						return	await	_booksRepository.AddAsync(book);

				}

				else

				{

						return	await	_booksRepository.UpdateAsync(book);

				}

		}

	

		public	Task	DeleteAsync(Book	book)	=>

				_booksRepository.DeleteAsync(book.BookId);

	

		public	async	Task	RefreshAsync()

		{

				IEnumerable<Book>	books	=	await	

_booksRepository.GetItemsAsync();

				_books.Clear();

				foreach	(var	book	in	books)

				{

						_books.Add(book);

				}

				SelectedItem	=	Items.FirstOrDefault();

		}

}

Now	that	the	service	functionality	is	in	place,	let's	move	on	to	the	view	models.

VIEW	MODELS
Every	view	or	page	has	a	view	model.	With	the	sample	app,	the	BooksPage	has
the	BooksViewModel	associated.	Later	in	the	sample,	you'll	see	that	user	controls
can	have	their	specific	view	models	as	well,	but	this	is	not	always	necessary.	The
BookDetailPage	has	the	BookDetailViewModel	associated.	It's	a	UI	design
decision	if	the	list	of	books	and	details	can	be	implemented	in	the	same	page.
That's	a	matter	of	the	available	screen	size	of	the	app:	what	can	fit	on	the	screen?
With	the	sample	application,	a	flexible	approach	was	taken.	If	the	size	available
for	the	app	is	large	enough,	the	BooksPage	shows	the	list	and	the	details;	if	the
size	is	not	large	enough,	data	will	be	shown	in	separate	pages	with	navigation
between.

There's	a	one-to-one	mapping	between	page	view	and	view	model.	In	reality,
there's	a	many-to-one	mapping	between	view	and	view	model	because	the	same
view	can	be	implemented	multiple	times	with	different	technologies—WinUI,
WPF,	Platform	Uno,	and	others.	This	makes	it	important	that	the	view	model
doesn't	know	anything	about	the	view,	but	the	view	knows	the	view	model.	The
view	model	is	implemented	in	a	.NET	library,	which	allows	using	it	from	many
technologies.

For	common	functionality	of	view	models,	it	makes	sense	to	create	base	classes.
The	GenericViewModels	library	contains	a	ViewModelBase	class	that	implements
features	for	progress	information	and	for	errors	(code	file
GenericViewModels/ViewModels/ViewModelBase.cs):

public	abstract	class	ViewModelBase	:	ObservableObject

{

		//	functionality	for	progress	information	and	

		//	error	information

}

The	sample	application	shows	a	list	of	books	and	allows	the	user	to	select	a

book.	Here,	it	is	useful	to	define	a	generic	base	class	for	the	view	models	with
the	properties	Items	and	SelectedItem.	The	implementation	of	these	properties
makes	use	of	the	previously	created	service	that	implements	the	interface
IItemsService	(code	file
GenericViewModels/ViewModels/MasterDetailViewModel.cs):

public	abstract	class	MasterDetailViewModel<TItemViewModel,	

TItem>	:	

		ViewModelBase

		where	TItemViewModel	:	IItemViewModel<TItem>

		where	IItem:	class	

{

		private	readonly	IItemsService<TItem>	_itemsService;

	

		public	MasterDetailViewModel(IItemsService<TItem>	

itemsService)

		{

				_itemsService	=	itemsService;

	

				//…

		}

	

		public	ObservableCollection<TItem>	Items	=>	

_itemsService.Items;

	

		protected	TItem?	_selectedItem;

		public	virtual	TItem?	SelectedItem

		{

				get	=>	_itemsService.SelectedItem;

				set

				{

						if	(!EqualityComparer<TItem>.Default.Equals(

								_itemsService.SelectedItem,	value))

						{

								_itemsService.SelectedItem	=	value;

								OnPropertyChanged();

						}

				}

		}

	

		//…

}

To	display	a	single	item	in	detail,	the	base	class	ItemViewModel	defines	an	Item
property	(code	file	GenericViewModels/ViewModels/ItemViewModel.cs):

public	abstract	class	ItemViewModel<T>	:	ViewModelBase,	

IItemViewModel<T>

{

		public	ItemViewModel(T	item)	=>	_item	=	item;

	

		private	T	_item;

		public	virtual	T	Item

		{

				get	=>	_item;

				set	=>	Set(ref	_item,	value);

		}

}

More	complex	than	the	simple	class	ItemViewModel	is	the	view	model	class
EditableItemViewModel.	This	class	extends	ItemViewModel	by	allowing
editing,	and	thus	it	defines	a	read	or	edit	mode.	The	property	IsReadMode	is	just
the	inverse	of	IsEditMode.	The	EditableItemViewModel	makes	use	of	the	same
service	as	the	MasterDetailViewModel	class,	the	service	that	implements	the
interface	IItemsService.	This	way,	the	EditableItemViewModel	and
MasterDetailViewModel	classes	can	share	the	same	items	and	the	same
selection.	The	view	model	class	allows	the	user	to	cancel	the	input.	For	this,	the
item	has	a	copied	version	with	the	EditItem	property	(code	file
GenericViewModels/ViewModels/EditableItemViewModel.cs):

public	abstract	class	EditableItemViewModel<TItem>	:	

ItemViewModel<TItem>,	

		IEditableObject

		where	TItem	:	class

{

		private	readonly	IItemsService<TItem>	_itemsService;

	

		public	EditableItemViewModel(IItemsService<TItem>	

itemsService)

				:	base(itemsService.SelectedItem	??	throw	new	

InvalidOperationException())

		{

				_itemsService	=	itemsService;

	

				PropertyChanged	+=	(sender,	e)	=>

				{

						if	(e.PropertyName	==	nameof(Item))

						{

								OnPropertyChanged(nameof(EditItem));

						}

				};

				//…

		}

	

		//…

		private	bool	_isEditMode;

		public	bool	IsReadMode	=>	!IsEditMode;

		public	bool	IsEditMode

		{

				get	=>	_isEditMode;

				set

				{

						if	(Set(ref	_isEditMode,	value))

						{

								OnPropertyChanged(nameof(IsReadMode));

								//…

						}

				}

		}

	

		private	TItem?	_editItem;

		public	TItem?	EditItem

		{

				get	=>	_editItem	??	Item;

				set	=>	Set(ref	_editItem,	value);

		}

		//…

}

IEditableObject
An	interface	that	defines	methods	to	change	an	object	between	different	edit
states	is	IEditableObject.	This	interface	is	defined	in	the	namespace
System.ComponentModel.	IEditableObject	defines	the	methods	BeginEdit,
CancelEdit,	and	EndEdit.	BeginEdit	is	invoked	to	change	the	item	from	the
read	mode	to	the	edit	mode.	CancelEdit	cancels	the	edit	and	switches	back	to
read	mode.	EndEdit	is	for	a	successful	end	of	the	edit	mode	and,	thus,	needs	to
save	the	data.	The	EditableItemViewModel	class	implements	the	methods	of
this	interface	by	switching	the	edit	mode,	creating	a	copy	of	the	item,	and	saving
the	state.	This	view	model	class	is	a	generic	one	and	doesn't	know	what	should
be	done	for	copying	and	saving	the	item.	Copying	would	be	possible	by	using
binary	serialization.	However,	not	all	objects	support	binary	serialization.
Instead,	the	implementation	is	forwarded	to	the	class	that	derives	from
EditableItemViewModel,	similar	to	the	save	method	OnSaveAsync.	OnSaveAsync
and	CreateCopy	are	defined	as	abstract	methods	and	thus	need	to	be

implemented	by	the	derived	class.	Another	method	is	defined	to	be	invoked	at
the	end	of	CancelEdit	and	EndEdit	:	OnEndEditAsync.	This	method	can	be
implemented	by	a	derived	class,	but	it's	not	necessary	to	do.	That's	why	the
method	is	declared	virtual	with	an	empty	body	(code	file
GenericViewModels/ViewModels/EditableItemViewModel.cs):

public	virtual	void	BeginEdit()

{

		IsEditMode	=	true;

		TItem	itemCopy	=	CreateCopy(Item);

		if	(itemCopy	!=	null)

		{

				EditItem	=	itemCopy;

		}

}

	

public	async	virtual	void	CancelEdit()

{

		IsEditMode	=	false;

		EditItem	=	default;

		await	_itemsService.RefreshAsync();

		await	OnEndEditAsync();

}

	

public	async	virtual	void	EndEdit()

{

		using	var	_	=	StartInProgress();

		await	OnSaveAsync();

		EditItem	=	default;

		IsEditMode	=	false;

		await	_itemsService.RefreshAsync();

		await	OnEndEditAsync();

}

	

public	abstract	Task	OnSaveAsync();

public	abstract	TItem	CreateCopy(TItem	item);

public	virtual	Task	OnEndEditAsync()	=>	Task.CompletedTask;

	

Concrete	View	Model	Implementations
Let's	move	on	to	the	concrete	implementations	of	the	view	models.
BookDetailViewModel	derives	from	EditableItemViewModel	and	specifies	Book
as	the	generic	parameter.	With	the	base	class	already	implementing	the	major
functionality,	this	class	can	be	simple.	It	injects	the	services	for	the	interfaces

IItemsService	and	INavigationSerivce.	In	the	method	OnSaveAsync,	the
request	is	forwarded	to	the	IItemsService.	The	OnSaveAsync	method	also
makes	use	of	the	interfaces	ILogger	and	IMessageService.	In	the	view	model
class,	the	CreateCopy	method	implements	the	creation	of	a	copy	of	the	book.
This	method	is	invoked	by	the	base	class	(code	file
BooksLib/ViewModels/BookDetailViewModel.cs):

public	class	BookDetailViewModel	:	EditableItemViewModel<Book>

{

		private	readonly	IItemsService<Book>	_itemsService;

		private	readonly	INavigationService	_navigationService;

		private	readonly	IMessageService	_messageService;

		private	readonly	ILogger	_logger;

	

		public	BookDetailViewModel(IItemsService<Book>	itemsService,	

				INavigationService	navigationService,	IMessageService	

messageService,	

				ILogger<BookDetailViewModel>	logger)

				:	base(itemsService)

		{

				_itemsService	=	itemsService;

				_navigationService	=	navigationService;

				_messageService	=	messageService;

				_logger	=	logger;

	

				itemsService.SelectedItemChanged	+=	(sender,	book)	=>

				{

						Item	=	book;

				};

		}

	

		public	override	Book	CreateCopy(Book?	item)

		{

				int	id	=	item?.BookId	??	-1;

				string	title	=	item?.Title	??	"enter	a	title";

				string	publisher	=	item?.Publisher	??	"enter	a	publisher";

				return	new	Book(title,	publisher,	id);

		}

	

		public	override	async	Task	OnSaveAsync()

		{

				try

				{

						if	(EditItem	is	null)	return;

						await	_itemsService.AddOrUpdateAsync(EditItem);

				}

				catch	(Exception	ex)

				{

						_logger.LogError("error	{0}	in	{1}",	ex.Message,	

nameof(OnSaveAsync));

						await	_dialogService.ShowMessageAsync("Error	saving	the	

data");

				}

		}

		//…

}

NOTE The	ILogger	interface	is	explained	in	Chapter	16,	“Diagnostics
and	Metrics.”	The	interface	IDialogService	is	discussed	later	in	this
chapter	in	the	section	“Opening	Dialogs	from	View	Models.”

The	class	BooksViewModel	can	be	kept	simple	by	inheriting	the	main
functionality	from	MasterDetailViewModel.	This	class	injects	the
INavigationService	interface	that	will	be	discussed	later,	forwards	the
IItemsService	interface	to	the	base	class,	and	overrides	the	OnAdd	method	that
is	invoked	by	the	base	class	(code	file
BooksLib/ViewModels/BooksViewModel.cs):

public	class	BooksViewModel	:	

MasterDetailViewModel<BookItemViewModel,	Book>

{

		private	readonly	IItemsService<Book>	_booksService;

		private	readonly	INavigationService	_navigationService;

	

		public	BooksViewModel(IItemsService<Book>	booksService,	

				INavigationService	navigationService)

				:	base(booksService)

		{

				_booksService	=	booksService	??	

						throw	new	ArgumentNullException(nameof(booksService));

				_navigationService	=	navigationService	??	

						throw	new	

ArgumentNullException(nameof(navigationService));

				//…

		}

	

		public	override	void	OnAdd()

		{

				Book	newBook	=	new();

				Items.Add(newBook);

				SelectedItem	=	newBook;

		}

	

		//…

}

Commands
The	view	models	offer	commands	that	implement	the	interface	ICommand.
Commands	allow	a	separation	between	the	view	and	the	command	handler
method	via	data	binding.	Commands	also	offer	the	functionality	to	enable	or
disable	the	command.	The	ICommand	interface	defines	the	methods	Execute	and
CanExecute	and	the	event	CanExecuteChanged.

The	class	RelayCommand	that	implements	this	interface	is	implemented	in	the
NuGet	package	Microsoft.Toolkit.Mvvm	in	the	namespace
Microsoft.Toolkit.Mvvm.Input.

The	constructor	of	the	EditableItemViewModel	creates	new	RelayCommand
objects	and	assigns	the	previously	shown	methods	BeginEdit,	CancelEdit,	and
EndEdit	on	execution	of	the	commands.	All	these	commands	also	check	whether
the	command	is	available	by	using	the	IsReadMode	and	IsEditMode	properties.
When	the	IsEditMode	property	changes,	the	CanExecuteChanged	event	of	the
command	is	fired	to	update	the	command	accordingly	(code	file
GenericViewModels/ViewModels/EditableItemViewModel.cs):

public	abstract	class	EditableItemViewModel<TItem>	:	

ItemViewModel<TItem>,	

		IEditableObject

		where	TItem	:	class

{

		private	readonly	IItemsService<TItem>	_itemsService;

	

		public	EditableItemViewModel(IItemsService<TItem>	

itemsService)

		{

				_itemsService	=	itemsService;

				Item	=	_itemsService.SelectedItem;

	

				EditCommand	=	new	RelayCommand(BeginEdit,	()	=>	IsReadMode);

				CancelCommand	=	new	RelayCommand(CancelEdit,	()	=>	

IsEditMode);

				SaveCommand	=	new	RelayCommand(EndEdit,	()	=>	IsEditMode);

		}

	

		public	RelayCommand	EditCommand	{	get;	}

		public	RelayCommand	CancelCommand	{	get;	}

		public	RelayCommand	SaveCommand	{	get;	}

	

		//…

	

		public	bool	IsEditMode

		{

				get	=>	_isEditMode;

				set

				{

						if	(Set(ref	_isEditMode,	value))

						{

								OnPropertyChanged(nameof(IsReadMode));

								CancelCommand.NotifyCanExecuteChanged();

								SaveCommand.NotifyCanExecuteChanged();

								EditCommand.NotifyCanExecuteChanged();

						}

				}

		}

		//…

}

From	the	XAML	code,	the	commands	are	bound	to	the	Command	property	of	a
Button.	This	is	discussed	when	creating	the	views	in	the	section	“Views”	in
more	detail	(code	file	BooksApp/Views/BookDetailUserControl.xaml):

<AppBarButton	Content="Edit"	Icon="Edit"	

		Command="{x:Bind	ViewModel.EditCommand,	Mode=OneTime}"	/>

<AppBarButton	Content="Save"	Icon="Save"	

		Command="{x:Bind	ViewModel.SaveCommand,	Mode=OneTime}"	/>

Services,	View	Models,	and	Dependency	Injection
View	models	and	services	inject	services,	and	view	models	need	to	be	created.
For	this,	you	can	use	a	dependency	injection	container.	The	sample	application
makes	use	of	Microsoft.Extensions.DependencyInjection,	which	is	covered
in	detail	in	Chapter	15.	Microsoft.Toolkit.Mvvm	offers	the	Ioc	class	where	this
container	is	used	by	default.

The	container	is	configured	using	Ioc.Default.ConfigureServices	in	the
RegisterServices	method	of	the	App	class.	RegisterServices	is	invoked	from
the	OnLaunched	method	(code	file	BooksApp/App.xaml.cs):

private	void	RegisterServices()

{

		Ioc.Default.ConfigureServices(

				new	ServiceCollection()

						.AddSingleton<IBooksRepository,	BooksSampleRepository>()

						.AddScoped<BooksViewModel>()

						.AddScoped<BookDetailViewModel>()

						.AddScoped<MainWindowViewModel>()

						.AddSingleton<IItemsService<Book>,	BooksService>()

						.AddSingleton<IDialogService,	WinUIDialogService>()

						.AddSingleton<INavigationService,	WinUINavigationService>

()

						.AddSingleton<WinUIInitializeNavigationService>()

						.AddLogging(builder	=>

						{

								builder.AddDebug();

						}).BuildServiceProvider());

}

Now	the	view	model	needs	to	be	associated	with	the	view,	which	is	done	in	the
BooksPage	by	accessing	the	AppServices	property	of	the	App	class	and	invoking
the	GetService	method	from	the	DI	container.	The	container	then	instantiates
the	view	model	class	with	the	required	services	as	defined	in	the	constructor	of
the	view	model	class.	The	BooksPage	contains	a	user	control	for	the	detail
information	of	the	book	that	needs	a	different	view	model.	This	view	model	is
assigned	by	setting	the	property	ViewModel	of	the	BookDetailUserControl	user
control	(code	file	BooksApp/Views/BooksPage.xaml.cs):

public	sealed	partial	class	BooksPage	:	Page

{

		public	BooksPage()

		{

				this.InitializeComponent();

				BookDetailUC.ViewModel	=	

Ioc.Default.GetRequiredService<BookDetailViewModel>();

		}

	

		public	BooksViewModel	ViewModel	{	get;	}	=	

				Ioc.Default.GetRequiredService<BooksViewModel>();

}

With	the	BookDetailPage,	the	association	to	the	view	model	happens	similarly
(code	file	BooksApp/Views/BookDetailPage.xaml.cs):

public	sealed	partial	class	BookDetailPage	:	Page

{

		public	BookDetailPage()

		{

				this.InitializeComponent();

		}

	

		public	BookDetailViewModel	ViewModel	{	get;	}	=	

				Ioc.Default.GetRequiredService<BookDetailViewModel>();

}

VIEWS
Now	that	you've	been	introduced	to	creating	the	view	models	and	to	connecting
the	views	to	the	view	models,	it's	time	to	get	into	the	views.

The	main	view	of	the	application	is	defined	by	the	MainWindow.	This	window
makes	use	of	the	NavigationView	control	that	was	introduced	in	the	previous
chapter.	Usually,	if	you	have	only	a	small	list	of	items	for	navigation,	you
shouldn't	use	this	UI	control.	However,	the	sample	application	uses	the	control
because	it	is	assumed	the	application	will	grow	to	more	than	eight	times	its
current	size.

The	NavigationView	control	assigns	the	SelectionChanged	event	to	the
OnNavigationSelectionChanged	method	of	the	MainPageViewModel.	The
MainPageViewModel	is	very	different	from	the	other	view	model	types	and	will
be	discussed	later	in	the	section	“Navigating	Between	Pages.”	One
NavigationViewItem	is	defined	to	navigate	to	the	BooksPage	(code	file
BooksApp/MainWindow.xaml):

<NavigationView	IsBackButtonVisible="Collapsed"

		SelectionChanged="{x:Bind	

ViewModel.OnNavigationSelectionChanged,	Mode=OneTime}">

		<NavigationView.MenuItems>

				<NavigationViewItem	Content="Books"	Tag="books">

						<NavigationViewItem.Icon>

								<FontIcon	FontFamily="Segoe	MDL2	Assets"	Glyph=""	/>

						</NavigationViewItem.Icon>

				</NavigationViewItem>

		</NavigationView.MenuItems>

	

		<Frame	x:Name="MainFrame"	Margin="16">

				<Frame.ContentTransitions>

						<TransitionCollection>

								<NavigationThemeTransition/>

						</TransitionCollection>

				</Frame.ContentTransitions>

		</Frame>

</NavigationView>

Figure	30-4	shows	the	NavigationView	of	the	running	app	with	the	navigation
item	set	to	the	BooksPage.

FIGURE	30-4

The	BooksPage	contains	a	ListView	and	binds	the	ItemsSource	to	the
ItemsViewModel	property	of	the	BooksViewModel.	Usually,	you	would	bind	it	to
the	Items	property	of	the	BooksViewModel.	However,	the	display	of	a	single	list
item	is	not	only	used	to	show	the	value	of	the	Book	objects,	but	also	contains
buttons	that	are	bound	to	commands.	To	implement	such	functionality,	another
view	model	can	be	used	for	the	items	(code	file
BooksApp/Views/BooksPage.xaml):

<StackPanel	Orientation="Horizontal"	Grid.Row="1">

		<AppBarButton	Icon="Refresh"	IsCompact="True"

				Command="{x:Bind	ViewModel.RefreshCommand}"			

				Label="Get	Books"/>

		<AppBarButton	Icon="Add"	IsCompact="True"

				Command="{x:Bind	ViewModel.AddCommand}"	

				Label="Add	Book"/>

</StackPanel>

<ListView	ItemTemplate="{StaticResource	BookItemTemplate}"	

Grid.Row="2"	

		ItemsSource="{x:Bind	ViewModel.ItemsViewModels,	Mode=OneWay}"	

		SelectedItem="{x:Bind	ViewModel.SelectedItemViewModel,	

Mode=TwoWay}"	/>

<local:BookDetailUserControl	x:Name="BookDetailUC"	

Visibility="Collapsed"	

		Grid.Column="1"	Grid.RowSpan="2"/>

The	BookDetailPage	just	contains	a	user	control:	the	BookDetailUserControl.
The	BookDetailPage	has	the	BookDetailViewModel	associated,	as	you've	seen
previously.	This	view	model	is	forwarded	to	the	BookDetailUserControl	by
assigning	the	ViewModel	property	of	the	BookDetailPage	to	the	ViewModel
property	of	the	BookDetailUserControl	(code	file
BooksApp/Views/BookDetailPage.xaml):

<Grid	Background="{ThemeResource	

ApplicationPageBackgroundThemeBrush}">

		<views:BookDetailUserControl	ViewModel="{x:Bind	ViewModel,	

Mode=OneTime}"/>

</Grid>

The	dependency	property	of	the	BookDetailUserControl	is	shown	in	the
following	code	snippet.	This	mapping	to	the	view	model	is	then	used	for	data
binding	in	the	XAML	code	(code	file
BooksApp/Views/BookDetailUserControl.xaml.cs):

public	BookDetailViewModel	ViewModel

{

		get	=>	(BookDetailViewModel)GetValue(ViewModelProperty);

		set	=>	SetValue(ViewModelProperty,	value);

}

	

public	static	readonly	DependencyProperty	ViewModelProperty	=

		DependencyProperty.Register("ViewModel",	

typeof(BookDetailViewModel),	

				typeof(BookDetailUserControl),	new	PropertyMetadata(null));

The	user	interface	of	the	BookDetailUserControl	makes	use	of	two	StackPanel
elements.	With	the	first	StackPanel,	the	Command	property	of	the	AppBarButton
controls	is	bound	to	the	EditCommand,	SaveCommand,	and	CancelCommand
commands	defined	in	the	view	model.	The	buttons	will	be	automatically	enabled
or	disabled	depending	on	the	state	of	the	commands.	With	the	second
StackPanel,	TextBox	elements	are	used	to	display	the	Title	and	Publisher
properties	of	the	Book.	For	a	read-only	display,	the	IsReadOnly	property	is
assigned	to	the	IsReadMode	property	of	the	view	model.	When	the	view	model	is
set	to	edit	mode,	the	TextBox	controls	allow	entering	data	(code	file
BooksApp/Views/BookDetailUserControl.xaml):

<StackPanel	Orientation="Horizontal">

		<AppBarButton	Content="Edit"	Icon="Edit"	

				Command="{x:Bind	ViewModel.EditCommand,	Mode=OneTime}"/>

		<AppBarButton	Content="Save"	Icon="Save"	

				Command="{x:Bind	ViewModel.SaveCommand,	Mode=OneTime}"/>

		<AppBarButton	Content="Cancel"	Icon="Cancel"	

				Command="{x:Bind	ViewModel.CancelCommand,	Mode=OneTime}"/>

</StackPanel>

<StackPanel	Orientation="Vertical"	Grid.Row="1">

		<TextBox	Header="Title"	

											IsReadOnly="{x:Bind	ViewModel.IsReadMode,	

Mode=OneWay}"	

											Text="{x:Bind	ViewModel.EditItem.Title,	Mode=TwoWay,		

											UpdateSourceTrigger=PropertyChanged}"	/>

		<TextBox	Header="Publisher"	

											IsReadOnly="{x:Bind	ViewModel.IsReadMode,	

Mode=OneWay}"	

											Text="{x:Bind	ViewModel.EditItem.Publisher,	

Mode=TwoWay,	

											UpdateSourceTrigger=PropertyChanged}"	/>

</StackPanel>

Opening	Dialogs	from	View	Models
Sometimes	it's	necessary	to	show	dialogs	from	actions	within	view	models.	As
the	view	model	is	implemented	in	a	.NET	library,	access	to	the	MessageDialog
class	from	WinUI	is	not	possible	without	adding	references	to	WinUI	packages.
This	would	hinder	using	this	library	from	other	technologies.	You	should	avoid
this	situation	anyway,	because	the	MessageDialog	is	specific	to	UWP	and
WinUI.	With	WPF	you	use	the	MessageBox	class	instead.	With	Xamarin.Forms,
you	use	Page.DisplayAlert.

What	needs	to	be	done	is	to	define	a	contract	that	can	be	used	by	the	view
models	and	services.	This	contract	is	defined	in	the	BooksLib	library	with	the
IMessageService	interface	(code	file
BooksLib/Services/IDialogService.cs):

public	interface	IDialogService

{

		Task	ShowMessageAsync(string	message);

}

In	the	BookDetailViewModel,	the	IDialogService	is	injected	in	the	constructor
and	used	on	the	OnSaveAsync	method.	The	ShowMessageAsync	method	is
invoked	in	the	case	of	an	exception	(code	file
BooksLib/ViewModels/BookDetailViewModel.cs):

public	override	async	Task	OnSaveAsync()

{

		try

		{

				if	(EditItem	is	null)	throw	new	InvalidOperationException();

				await	_itemsService.AddOrUpdateAsync(EditItem);

		}

		catch	(Exception	ex)

		{

				_logger.LogError("error	{0}	in	{1}",	ex.Message,	

nameof(OnSaveAsync));

				await	_messageService.ShowMessageAsync("Error	saving	the	

data");

		}

}

Now	just	a	specific	implementation	for	WinUI	is	needed.	The
ShowMessageAsync	method	is	implemented	using	the	MessageDialog	class.	The
WinUIDialogService	is	implemented	in	the	WinUI	BooksApp;	that's	why	access
to	MessageDialog	is	now	possible	(code	file
BooksApp/Services/WinUIDialogService.cs):

public	class	WinUIDialogService	:	IDialogService

{

		public	async	Task	ShowMessageAsync(string	message)	=>	

				await	new	MessageDialog(message).ShowAsync();

}

With	the	dependency	container	configuration	that	was	discussed	earlier	in	the
section	“Services,	View	Models,	and	Dependency	Injection,”	the
WinUIDialogService	is	configured	to	be	used	when	the	IDialogService
interface	is	requested.	Creating	.NET	MAUI	or	WPF	applications,	different
implementations	need	to	be	created	that	then	need	to	be	configured	with	the	DI
container	of	the	application.	The	library	where	the	IDialogService	contract	is
used	does	not	need	to	have	knowledge	about	the	implementation.

Navigating	Between	Pages
As	with	opening	dialogs,	navigating	between	pages	is	different	among	different
technologies.	With	WinUI,	the	Frame	class	is	used	to	navigate	pages	within	the
app.	With	WPF,	it's	again	a	Frame	class,	but	it's	a	different	one.	With
Xamarin.Forms,	the	NavigationPage	is	used	for	navigation.	How	the	navigation
is	implemented	with	these	technologies	also	differs.	With	UWP,	you	need	a	Type
object	to	navigate	to.	With	Xamarin.Forms,	you	need	an	object	instance	of	the

page.	With	Xamarin.Forms,	the	navigation	methods	are	asynchronous,	whereas
they	are	synchronous	with	WinUI.	For	this,	a	common	contract	is	needed	again.

With	the	sample	application,	navigation	to	a	page	is	needed,	and	you	need	a	way
to	navigate	back.	Also,	the	current	page	needs	to	be	accessed	to	know	whether
navigation	needs	to	be	done.	For	this,	the	interface	INavigationService	is
defined.	This	interface	is	based	on	strings	for	navigation,	which	makes	it
possible	to	create	implementations	for	the	different	platforms	(code	file
GenericViewModels/Services/INavigationService.cs):

public	interface	INavigationService

{

		bool	UseNavigation	{	get;	set;	}

		Task	NavigateToAsync(string	page);

		Task	GoBackAsync();

		string	CurrentPage	{	get;	}

}

The	WinUINavigationService	needs	a	Frame	assigned,	so	it	can	navigate	for
WinUI.	When	you	define	a	property	of	a	Frame,	it's	not	possible	to	access	it
because	from	the	outside,	just	the	INavigationService	interface	is	used.	With
the	INavigationService	interface,	the	Frame	cannot	be	used	to	avoid	a
dependency	on	WinUI.	What	can	be	done	in	such	a	scenario	is	to	create	a	service
specific	for	WinUI	that	will	be	injected	with	the	WinUI	implementation	of	the
INavigationService.	Internally,	when	the	Pages	and	Frame	properties	are
accessed,	this	information	is	taken	from	the	initialization	service,	as	shown	in	the
following	code	snippet	(code	file
BooksApp/Services/WinUINavigationService.cs):

public	class	WinUINavigationService	:	INavigationService

{

		private	readonly	WinUIInitializeNavigationService	

_initializeNavigation;

	

		public	WinUINavigationService(

				WinUIInitializeNavigationService	initializeNavigation)	=>

				_initializeNavigation	=	initializeNavigation;

	

		private	Dictionary<string,	Type>?	_pages;

		private	Dictionary<string,	Type>	Pages	=>	_pages	??=	

_initializeNavigation.Pages;

	

		private	Frame?	_frame;

		private	Frame	Frame	=>	_frame	??=	_initializeNavigation.Frame;

		//…

}

The	implementation	of	the	NavigateToAsync	method	uses	the	Frame	property	to
navigate	to	the	page	(code	file
BooksApp/Services/WinUINavigationService.cs):

public	class	UWPNavigationService	:	INavigationService

{

		//…

		public	Task	NavigateToAsync(string	pageName)

		{

				_currentPage	=	pageName;

				Frame.Navigate(Pages[pageName]);

				return	Task.CompletedTask;

		}

}

The	only	functionality	the	WinUIInitializeNavigationService	offers	is	to
initialize	it	with	a	Frame	and	a	dictionary	of	pages	and	to	retrieve	this
information	(code	file
BooksApp/Services/WinUIInitializeNavigationService.cs):

public	class	WinUIInitializeNavigationService

{

		public	void	Initialize(Frame	frame,	Dictionary<string,	Type>	

pages)

		{

				Frame	=	frame	??	throw	new	

ArgumentNullException(nameof(frame));

				Pages	=	pages	??	throw	new	

ArgumentNullException(nameof(pages));

		}

		private	Frame?	_frame;

		public	Frame	Frame	=>	_frame	??	throw	new	

InvalidOperationException(

				$"{nameof(WinUIInitializeNavigationService)}	not	

initalized");

	

		private	Dictionary<string,	Type>?	_pages;

		public	Dictionary<string,	Type>	Pages	=>	_pages	??	throw	new	

InvalidOperationException(

				$"{nameof(WinUIInitializeNavigationService)}	not	

initalized");}

The	WinUIInitializeNavigationService	can	now	be	initialized	on	a	place
where	the	Frame	is	available.	With	the	WinUI	sample	application,	this	is	in	the

MainWindow.	Within	the	NavigationView	control	specified	earlier,	the	Frame
with	the	name	MainFrame	is	specified.	Now	it	would	be	possible	to	define	the
initialization	within	the	code-behind	file	of	the	MainWindow,	or	in	a	WinUI-
specific	MainPageViewModel.	For	the	sample	application,	the	second	option	was
chosen.

In	the	following	code	snippet,	the	MainWindowViewModel	keeps	a	list	of	pages
for	the	navigation	and	initializes	the	navigation	service	when	the
SetNavigationFrame	is	invoked	(code	file
BooksApp/ViewModels/MainWindowViewModel.cs):

public	class	MainPageViewModel	:	ViewModelBase

{

		private	readonly	Dictionary<string,	Type>	_pages	=	new()

		{

				[PageNames.BooksPage]	=	typeof(BooksPage),

				[PageNames.BookDetailPage]	=	typeof(BookDetailPage)

		};

	

		private	readonly	INavigationService	_navigationService;

		private	readonly	WinUIInitializeNavigationService	

_initializeNavigationService;

		public	MainPageViewModel(INavigationService	navigationService,	

				WinUIInitializeNavigationService	

initializeNavigationService)

		{

				_navigationService	=	navigationService;

				_initializeNavigationService	=	initializeNavigationService;

		}

	

		public	void	SetNavigationFrame(Frame	frame)	=>	

				_initializeNavigationService.Initialize(frame,	_pages);

	

		//…

}

With	this	view	model	in	place,	all	that	needs	to	be	in	the	code-behind	file	of	the
MainWindow	is	the	ViewModel	property	and	the	passing	of	the	MainFrame	to	the
navigation	service	via	invocation	of	the	method	SetNavigationFrame	(code	file
BooksApp/MainWindow.xaml.cs):

public	sealed	partial	class	MainWindow	:	Window

{

		public	MainWindow()

		{

				this.InitializeComponent();

				ViewModel	=	

Ioc.Default.GetRequiredService<MainPageViewModel>();

				ViewModel.SetNavigationFrame(MainFrame);

		}

	

		public	MainPageViewModel	ViewModel	{	get;	}

}

The	first	navigation	to	the	BooksPage	happens	in	the	MainPageViewModel.	The
method	OnNavigationSelectionChanged	is	the	handler	for	the
NavigationSelectionChanged	event	of	the	NavigationView	control.	With	the
Tag	set	to	books,	navigation	to	the	BooksPage	is	done	using
INavigationService	(code	file
BooksApp/ViewModels/MainPageViewModel.cs):

public	class	MainPageViewModel	:	ViewModelBase

{

		//…

		public	void	OnNavigationSelectionChanged(NavigationView	

sender,	

				NavigationViewSelectionChangedEventArgs	args)

		{

				if	(args.SelectedItem	is	NavigationViewItem	navigationItem)

				{

						switch	(navigationItem.Tag)

						{

								case	"books":

										

_navigationService.NavigateToAsync(PageNames.BooksPage);

										break;

								default:

										break;

						}

				}

		}

}

Navigation	from	the	BooksPage	is	done	directly	from	a	shared	view	model.	The
navigation	from	the	BooksPage	to	the	BooksDetailPage	happens	when	a	list
item	is	selected,	and	the	PropertyChanged	event	fires.	Navigation	is	also	done
only	when	the	property	UseNavigation	is	set	to	true.	As	previously	mentioned,
with	WinUI,	when	the	UI	is	large	enough,	navigation	is	not	needed	at	this	place
because	the	detail	information	is	then	shown	side	by	side	with	the	list	(code	file
BooksLib/ViewModels/BooksViewModel.cs):

public	class	BooksViewModel	:	

MasterDetailViewModel<BookItemViewModel,	Book>

{

		private	readonly	IItemsService<Book>	_booksService;

		private	readonly	INavigationService	_navigationService;

	

		public	BooksViewModel(IItemsService<Book>	booksService,	

				INavigationService	navigationService)

				:	base(booksService)

		{

				_booksService	=	booksService	??	

						throw	new	ArgumentNullException(nameof(booksService));

				_navigationService	=	navigationService	??	

						throw	new	

ArgumentNullException(nameof(navigationService));

	

				PropertyChanged	+=	async	(sender,	e)	=>

				{

						if	(UseNavigation	&&	e.PropertyName	==	

nameof(SelectedItem)	&&		

								_navigationService.CurrentPage	==	PageNames.BooksPage)

						{

								await	

_navigationService.NavigateToAsync(PageNames.BookDetailPage);

						}

				};

		}

	

		public	bool	UseNavigation	{	get;	set;	}

		//…

}

To	inform	the	application	about	window	size	changes,	you	can	use	an	event
aggregator	as	discussed	in	the	next	section.

MESSAGING	USING	EVENTS
You	can	pass	information	between	view	models,	views,	and	services	by	using
stateful	services	that	are	configured	with	the	DI	container.	In	such	services,	you
can	also	define	events,	so	a	subscriber	can	register	to	events	while	a	publisher
fires	information.	Instead	of	creating	such	custom	services,	you	can	use	an	event
aggregator	like	the	one	available	with	Microsoft.Toolkit.Mvvm.	With	this
framework,	the	IMessenger	interface	can	be	used	to	publish	and	subscribe
messages.	The	WeakReferenceManager	is	one	of	the	classes	implementing	this

interface.

In	case	the	books	application	is	used	on	a	mobile	device	with	.NET	MAUI,	you
might	always	navigate	between	the	BooksPage	and	the	BookDetailPage	when
clicking	a	book	in	the	list.	On	the	desktop,	instead	of	using	the	BookDetailPage,
a	user	control	for	the	book	details	is	set	to	visible	in	the	BooksPage.	If	the
window	size	of	the	application	is	not	large	enough,	you	can	switch	to	use
navigation	to	pages	instead.	To	inform	anyone	who	is	interested	about	the
window	size,	you	can	use	an	event	aggregator.

For	passing	the	information	about	the	navigation	from	the	main	window	to	the
view	model,	the	NavigationInfoEvent	is	needed.	This	event	information	class
uses	a	Boolean	property	to	define	whether	navigation	should	be	used	(code	file
BooksLib/Events/NavigationMessage.cs):

public	class	NavigationInfo

{

		public	bool	UseNavigation	{	get;	set;	}

}

	

public	class	NavigationMessage	:	

ValueChangedMessage<NavigationInfo>

{

		public	NavigationMessage(NavigationInfo	navigationInfo)

				:	base(navigationInfo)	{		}

}

The	event	is	published	when	the	size	of	the	main	window	changes.	With	the
MainWindow	class,	the	OnSizeChanged	event	handler	is	registered	to	the
SizeChanged	event	of	the	page.	In	the	event	handler,	the
WeakReferenceMessenger	is	accessed	to	send	a	NavigationMessage	(code	file
BooksApp/MainWindow.xaml.cs):

public	sealed	partial	class	MainWindow	:	Window

{

		//…

		private	void	OnSizeChanged(object	sender,	SizeChangedEventArgs	

e)

		{

				double	width	=	args.Size.Width;

				NavigationMessage	navigation	=	new(new()

				{

						UseNavigation	=	width	<	1024

				});

				WeakReferenceMessenger.Default.Send(navigation);		

		}

}

In	places	where	information	about	the	window	event	size	is	needed,	subscription
to	the	event	can	be	done	by	implementing	the	interface	IRecepient<TMessage>.
This	interface	defines	the	Receive	method	to	receive	the	event	information.

WeakReferenceMessenger.Default.Register<NavigationMessage>

(this);

When	you	use	the	Unregister	method,	events	can	be	unsubscribed.	To	avoid
memory	leaks	when	not	unsubscribing,	the	WeakReferenceMessenger	uses
WeakReference	objects.	Microsoft.Toolkit.Mvvm	also	offers	the	faster
StrongReferenceManager,	but	you	need	to	make	sure	to	unsubscribe.

SUMMARY
This	chapter	gave	you	an	architectural	guideline	for	creating	XAML-based
applications	around	the	MVVM	pattern.	You've	seen	the	separation	of	concerns
(SoC)	pattern	by	creating	a	model,	view,	and	view	model.	Besides	that,	you've
seen	implementing	change	notification	with	the	interface
INotifyPropertyChanged,	the	repository	pattern	to	separate	the	data	access
code,	messaging	between	view	models	(that	can	also	be	used	to	communicate
with	views)	by	using	events,	and	dependency	injection	with	an	IoC	container.

The	chapter	also	showed	you	a	library	of	view	models	that	can	be	used	across
applications.	All	this	allows	for	code	sharing	while	still	using	features	of	specific
platforms.	You	can	use	platform-specific	features	with	repository	and	service
implementations,	and	contracts	are	available	with	all	platforms.

The	next	chapter	continues	the	discussion	of	XAML	and	is	about	styles	and
resources.

31
Styling	Windows	Apps

WHAT'S	IN	THIS	CHAPTER?

Styling	Windows	apps

Creating	a	base	drawing	with	shapes	and	geometry

Scaling,	rotating,	and	skewing	with	transformations

Using	brushes	to	fill	backgrounds

Working	with	styles,	templates,	and	resources

Creating	animations

Working	with	the	VisualStateManager

CODE	DOWNLOADS	FOR	THIS	CHAPTER

The	source	code	for	this	chapter	is	available	on	the	book	page	at
www.wiley.com.	Click	the	Downloads	link.	The	code	can	also	be	found	at
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021	in
the	directory	4_Apps/Styles.

The	code	for	this	chapter	is	divided	into	the	following	major	examples:

Shapes

Geometries

Transformations

Brushes

Styles	And	Resources

Templates

Animation

Transitions

http://www.wiley.com
https://github.com/ProfessionalCSharp/ProfessionalCSharp2021

VisualStates

All	the	projects	have	nullable	reference	types	enabled.

STYLING
With	modern	applications,	developers	have	become	a	lot	more	concerned	with
having	good-looking	apps.	When	Windows	Forms	was	the	technology	for
creating	desktop	applications,	the	user	interface	didn't	offer	many	options	for
styling	the	applications.	Controls	had	a	standard	look	that	varied	slightly	based
on	the	operating	system	version	on	which	the	application	was	running,	but	it	was
not	easy	to	define	a	complete	custom	look.

This	changed	with	Windows	Presentation	Foundation	(WPF).	WPF	is	based	on
DirectX	and	thus	offers	vector	graphics	that	allow	easy	resizing	of	windows	and
controls.	Controls	are	completely	customizable	and	can	have	different	looks.
Styling	of	applications	has	become	extremely	important.	An	application	can
have	any	look.	With	a	good	design,	the	user	can	work	with	the	application
without	the	need	to	know	how	to	use	a	Windows	application.	Instead,	the	user
just	needs	to	have	domain	knowledge.	For	example,	the	airport	in	Zurich	created
a	WPF	application	where	buttons	look	like	airplanes.	With	the	button,	the	user
can	get	information	about	the	position	of	the	plane	(the	complete	application
looks	like	the	airport).	Colors	of	the	buttons	can	have	different	meanings	based
on	the	configuration;	they	can	show	either	the	airline	or	on-time/delay
information	of	the	plane.	This	way,	the	user	of	the	app	easily	sees	which	planes
that	are	currently	at	the	airport	have	small	or	big	delays.

Having	different	looks	for	the	app	is	even	more	important	with	modern	Windows
apps.	With	these	apps,	the	device	can	be	used	by	users	who	haven't	used
Windows	applications	before.	With	users	who	are	knowledgeable	of	Windows
applications,	you	should	think	about	helping	these	users	be	more	productive	by
having	the	typical	process	for	how	the	user	works	easily	accessible.

With	its	guidance	on	UI	design	with	the	Fluent	Design	System
(https://www.microsoft.com/design/fluent/),	Microsoft	continuously
evolves	cross-platform	UI	design	for	applications,	including	web,	Windows,
iOS,	Android,	macOS,	and	other	cross-platform	applications.	Many	Microsoft
applications	use	guidance	from	this	design,	and	WinUI	plays	an	important	role
(https://microsoft.github.io/microsoft-ui-xaml/).

https://www.microsoft.com/design/fluent/
https://microsoft.github.io/microsoft-ui-xaml/

This	chapter	starts	with	the	core	elements	of	XAML—shapes	that	enable	you	to
draw	lines,	ellipses,	and	path	elements.	After	that	you're	introduced	to	the
foundation	of	shapes—geometry	elements.	You	can	use	geometry	elements	to
create	fast	vector-based	drawings.

With	transformations,	you	can	scale	and	rotate	any	XAML	element.	With
brushes,	you	can	create	solid	color,	gradient,	or	more	advanced	backgrounds.
You	see	how	to	use	brushes	within	styles	and	place	styles	within	XAML
resources.

Finally,	with	templates	you	can	completely	customize	the	look	of	controls,	and
you	also	learn	how	to	create	animations	in	this	chapter.

SHAPES
Shapes	are	the	core	elements	of	XAML.	With	shapes,	you	can	draw	two-
dimensional	graphics	using	rectangles,	lines,	ellipses,	paths,	polygons,	and
polylines	that	are	represented	by	classes	derived	from	the	abstract	base	class
Shape.	With	WinUI,	shapes	are	defined	in	the	namespace
Microsoft.UI.Xaml.Shapes.

The	following	XAML	example	draws	a	yellow	face	consisting	of	an	ellipse	for
the	face,	two	ellipses	for	the	eyes,	two	ellipses	for	the	pupils	in	the	eyes,	and	a
path	for	the	mouth	(code	file	Shapes/MainWindow.xaml):

<Canvas>

		<Ellipse	Canvas.Left="10"	Canvas.Top="10"	Width="100"	

Height="100"

				Stroke="Blue"	StrokeThickness="4"	Fill="Yellow"	/>

		<Ellipse	Canvas.Left="30"	Canvas.Top="12"	Width="60"	

Height="30">

				<Ellipse.Fill>

						<LinearGradientBrush	StartPoint="0.5,0"	EndPoint="0.5,	1">

								<GradientStop	Offset="0.1"	Color="DarkGreen"	/>

								<GradientStop	Offset="0.7"	Color="Transparent"	/>

						</LinearGradientBrush>

				</Ellipse.Fill>

		</Ellipse>

		<Ellipse	Canvas.Left="30"	Canvas.Top="35"	Width="25"	

Height="20"

				Stroke="Blue"	StrokeThickness="3"	Fill="White"	/>

		<Ellipse	Canvas.Left="40"	Canvas.Top="43"	Width="6"	Height="5"

				Fill="Black"	/>

		<Ellipse	Canvas.Left="65"	Canvas.Top="35"	Width="25"	

Height="20"

				Stroke="Blue"	StrokeThickness="3"	Fill="White"	/>

		<Ellipse	Canvas.Left="75"	Canvas.Top="43"	Width="6"	Height="5"

				Fill="Black"	/>

		<Path	Stroke="Blue"	StrokeThickness="4"	

				Data="M	40,74	Q	57,95	80,74"	/>

</Canvas>

Figure	31-1	shows	the	result	of	the	XAML	code.

FIGURE	31-1

All	these	XAML	elements	can	be	accessed	programmatically—even	if	they	are
buttons	or	shapes,	such	as	lines	or	rectangles.	Setting	the	Name	or	x:Name
property	with	the	Path	element	to	mouth	enables	you	to	access	this	element
programmatically	with	the	variable	name	mouth	:

<Path	Name="mouth"	Stroke="Blue"	StrokeThickness="4"

		Data="M	40,74	Q	57,95	80,74	"	/>	

With	the	next	code	changes,	the	mouth	of	the	face	is	changed	dynamically	from
the	code-behind.	A	button	with	a	click	handler	is	added	where	the	SetMouth
method	is	invoked	(code	file	Shapes/MainWindow.xaml.cs):

private	void	OnChangeShape()	=>	SetMouth();

Using	the	code-behind,	a	geometrical	shape	can	be	created	using	figures	and
segments.	First,	you	create	a	two-dimensional	array	of	six	points	to	define	three
points	for	the	happy	state	and	three	points	for	the	sad	state	(code	file
Shapes/MainWindow.xaml.cs):

private	readonly	Point[,]	_mouthPoints	=	new	Point[2,	3]

{

		{	new(40,	74),	new(57,	95),	new(80,	74)	},

		{	new(40,	82),	new(57,	65),	new(80,	82)	}

};

Next,	you	assign	a	new	PathGeometry	object	to	the	Data	property	of	the	Path.

The	PathGeometry	contains	a	PathFigure	with	the	start	point	defined	(setting
the	StartPoint	property	is	the	same	as	the	letter	M	with	path	markup	syntax
discussed	later	in	the	section	“Geometries	Using	Path	Markup”).	The
PathFigure	contains	a	QuadraticBezierSegment	with	two	Point	objects
assigned	to	the	properties	Point1	and	Point2	(the	same	as	the	letter	Q	with	two
points):

private	bool	_laugh	=	false;

public	void	SetMouth()

{

		int	index	=	_laugh	?	0:	1;

	

		PathFigure	figure	=	new()	{	StartPoint	=	_mouthPoints[index,	

0]	};

		figure.Segments	=	new	PathSegmentCollection();

		QuadraticBezierSegment	segment1	=	new()

		{

				Point1	=	_mouthPoints[index,	1];

				Point2	=	_mouthPoints[index,	2];

		}

	

		figure.Segments.Add(segment1);

		PathGeometry	geometry	=	new();

		geometry.Figures	=	new	PathFigureCollection();

		geometry.Figures.Add(figure);

	

		mouth.Data	=	geometry;

		_laugh	=	!_laugh;

}

Using	segments	and	figures	is	explained	in	more	detail	in	the	next	section.	When
you	run	the	app,	clicking	the	button	switches	between	the	laughing	face	and	the
sad	face.

The	following	table	describes	the	shapes	available	in	the	namespace
Microsoft.Ui.Xaml.Shapes	:

SHAPE
CLASS

DESCRIPTION

Line You	can	draw	a	line	from	the	coordinates	X1,	Y1	to	X2,	Y2.
Rectangle You	draw	a	rectangle	by	specifying	Width	and	Height	for	this	class.
Ellipse You	can	draw	an	ellipse.
Path You	can	draw	a	series	of	lines	and	curves.	The	Data	property	is	a

Geometry	type.	You	can	do	the	drawing	by	using	classes	that	derive
from	the	base	class	Geometry,	or	you	can	use	the	path	markup
syntax	to	define	geometry.

Polygon You	can	draw	a	closed	shape	formed	by	connected	lines.	The
polygon	is	defined	by	a	series	of	Point	objects	assigned	to	the
Points	property.

Polyline Like	the	Polygon	class,	you	can	draw	connected	lines	with
Polyline.	The	difference	is	that	the	polyline	does	not	need	to	be	a
closed	shape.

GEOMETRY
The	previous	sample	showed	that	one	of	the	shapes,	Path,	uses	Geometry	for	its
drawing.	You	can	also	use	Geometry	elements	in	other	places,	such	as	with	a
DrawingBrush.

In	some	ways,	geometry	elements	are	similar	to	shapes.	Just	as	there	are	Line,
Ellipse,	and	Rectangle	shapes,	there	are	also	geometry	elements	for	these
drawings:	LineGeometry,	EllipseGeometry,	and	RectangleGeometry.	There	are
also	big	differences	between	shapes	and	geometries.	A	Shape	is	a
FrameworkElement	that	you	can	use	with	any	class	that	supports	UIElement	as
its	children.	FrameworkElement	derives	from	UIElement.	Shapes	participate	with
the	layout	system	and	render	themselves.	The	Geometry	class	can't	render	itself
and	has	fewer	features	and	less	overhead	than	Shape.	The	Geometry	class
directly	derives	from	DependencyObject.

The	Path	class	uses	Geometry	for	its	drawing.	The	geometry	can	be	set	with	the
Data	property	of	the	Path.	Simple	geometry	elements	that	can	be	set	are
EllipseGeometry	for	drawing	an	ellipse,	LineGeometry	for	drawing	a	line,	and
RectangleGeometry	for	drawing	a	rectangle.

Geometries	Using	Segments
You	can	also	create	geometries	by	using	segments.	The	geometry	class
PathGeometry	uses	segments	for	its	drawing.	The	following	code	snippet	uses
the	BezierSegment	and	LineSegment	elements	to	build	one	red	figure.	Check	the
code	download	for	the	additional	green	figure.	Figure	31-2	shows	both	figures.
The	first	BezierSegment	draws	a	Bézier	curve	between	the	points	70,40,	which
is	the	starting	point	of	the	figure,	and	150,63	with	control	points	90,37	and

130,46.	The	following	LineSegment	uses	the	ending	point	of	the	Bézier	curve
and	draws	a	line	to	120,110	(code	file	Geometries/MainWindow.xaml):

<Path	Canvas.Left="0"	Canvas.Top="0"	Fill="Red"	Stroke="Blue"

		StrokeThickness="2.5">

		<Path.Data>

				<GeometryGroup>

						<PathGeometry>

								<PathGeometry.Figures>

										<PathFigure	StartPoint="70,40"	IsClosed="True">

												<PathFigure.Segments>

														<BezierSegment	Point1="90,37"	Point2="130,46"	

																Point3="150,63"	/>

														<LineSegment	Point="120,110"	/>

														<BezierSegment	Point1="100,95"	Point2="70,90"		

																Point3="45,91"	/>

												</PathFigure.Segments>

										</PathFigure>

								</PathGeometry.Figures>

						</PathGeometry>

				</GeometryGroup>

		</Path.Data>

</Path>	

FIGURE	31-2

Other	than	the	BezierSegment	and	LineSegment	elements,	you	can	use
ArcSegment	to	draw	an	elliptical	arc	between	two	points.	With
PolyLineSegment,	you	can	define	a	set	of	lines,	PolyBezierSegment	consists	of
multiple	Bézier	curves,	QuadraticBezierSegment	creates	a	quadratic	Bézier
curve,	and	PolyQuadraticBezierSegment	consists	of	multiple	quadratic	Bézier
curves.

Geometries	Using	Path	Markup

Earlier	in	this	chapter,	you	saw	a	use	of	path	markup	with	the	Path	shape.	When
you	use	path	markup,	behind	the	scenes	a	speedy	drawing	with	StreamGeometry
gets	created.	XAML	for	WinUI	apps	creates	figures	and	segments.
Programmatically,	you	can	define	a	figure	by	creating	lines,	Bézier	curves,	and
arcs.	With	XAML,	you	can	use	path	markup	syntax.	You	can	use	path	markup
with	the	Data	property	of	the	Path	class.	Special	characters	define	how	the
points	are	connected.	In	the	following	example,	M	marks	the	start	point,	L	is	a
line	command	to	the	point	specified,	and	Z	is	the	close	command	to	close	the
figure.	Figure	31-3	shows	the	result.	The	path	markup	syntax	allows	more
commands	such	as	horizontal	lines	(H),	vertical	lines	(V),	cubic	Bézier	curves	(C),
quadratic	Bézier	curves	(Q),	smooth	cubic	Bézier	curves	(S),	smooth	quadratic
Bézier	curves	(T),	and	elliptical	arcs	(A)	(code	file
Geometries/MainWindow.xaml):

FIGURE	31-3

<Path	Canvas.Left="0"	Canvas.Top="200"	Fill="Yellow"	

Stroke="Blue"

		StrokeThickness="2.5"

		Data="M	120,5	L	128,80	L	220,50	L	160,130	L	190,220	L	100,150

				L	80,230	L	60,140	L0,110	L70,80	Z"	StrokeLineJoin="Round">

</Path>	

TRANSFORMATION
Because	XAML	is	vector-based,	you	can	resize	every	element.	In	the	next
example,	the	vector-based	graphics	are	now	scaled,	rotated,	and	skewed.	Hit
testing	(for	example,	with	mouse	moves	and	mouse	clicks)	works	but	without
any	need	for	manual	position	calculation.

Figure	31-4	shows	a	rectangle	in	several	different	forms.	All	the	rectangles	are
positioned	within	a	StackPanel	element	with	horizontal	orientation	to	have	the

rectangles	one	beside	the	other.	The	first	rectangle	has	its	original	size	and
layout.	The	second	one	is	resized,	the	third	moved,	the	fourth	rotated,	the	fifth
skewed,	the	sixth	transformed	using	a	transformation	group,	and	the	seventh
transformed	using	a	matrix.	The	following	sections	get	into	the	code	samples	of
all	these	options.

FIGURE	31-4

Scaling
Adding	the	ScaleTransform	element	to	the	RenderTransform	property	of	the
Rectangle	element,	as	shown	here,	scales	the	content	of	the	complete	rectangle
by	a	factor	of	0.5	in	the	X	direction	and	0.4	in	the	Y	direction	(code	file
Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="Red"	Margin="20">

		<Rectangle.RenderTransform>

				<ScaleTransform	ScaleX="0.5"	ScaleY="0.4"	/>

		</Rectangle.RenderTransform>

</Rectangle>

You	can	do	more	than	transform	simple	shapes	like	rectangles;	you	can
transform	any	XAML	element	as	XAML	defines	vector	graphics.	In	the
following	code,	the	Canvas	element	with	the	face	shown	earlier	is	put	into	a	user
control	named	SmilingFace,	and	this	user	control	is	shown	first	without
transformation	and	then	resized.	You	can	see	the	result	in	Figure	31-5.

FIGURE	31-5

<local:SmilingFace	/>

<local:SmilingFace>

		<local:SmilingFace.RenderTransform>

				<ScaleTransform	ScaleX="1.6"	ScaleY="0.8"	CenterY="180"	/>

		</local:SmilingFace.RenderTransform>

</local:SmilingFace>	

Translating
For	moving	an	element	in	the	X	or	Y	direction,	you	can	use
TranslateTransform.	In	the	following	snippet,	the	element	moves	to	the	left	by
assigning	-90	to	X,	and	in	the	direction	downward	by	assigning	20	to	Y	(code	file
Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="Green"	Margin="20">

		<Rectangle.RenderTransform>

				<TranslateTransform	X="-90"	Y="20"	/>

		</Rectangle.RenderTransform>

</Rectangle>

Rotating
You	can	rotate	an	element	by	using	RotateTransform.	With	RotateTransform,
you	set	the	angle	of	the	rotation	and	the	center	of	the	rotation	with	CenterX	and
CenterY	(code	file	Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="Orange"	Margin="20">

		<Rectangle.RenderTransform>

				<RotateTransform	Angle="45"	CenterX="10"	CenterY="-80"	/>

		</Rectangle.RenderTransform>

</Rectangle>

Skewing
For	skewing,	you	can	use	the	SkewTransform	element.	With	skewing	you	can
assign	angles	for	the	x-	and	y-axes	(code	file
Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="LightBlue"	Margin="20">

		<Rectangle.RenderTransform>

				<SkewTransform	AngleX="20"	AngleY="30"	CenterX="40"	

CenterY="390"	/>

		</Rectangle.RenderTransform>

</Rectangle>

Transforming	with	Groups	and	Composite	Transforms
An	easy	way	to	do	multiple	transformations	at	once	is	by	using	the
CompositeTransform	and	TransformationGroup	elements.	The
TransformationGroup	element	can	have	SkewTransform,	RotateTransform,
TranslateTransform,	and	ScaleTransform	as	its	children	(code	file
Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="LightGreen"	

Margin="20">

		<Rectangle.RenderTransform>

				<TransformGroup>

						<SkewTransform	AngleX="45"	AngleY="20"	CenterX="-390"	

CenterY="40"	/>

						<RotateTransform	Angle="90"	/>

						<ScaleTransform	ScaleX="0.5"	ScaleY="1.2"	/>

				</TransformGroup>

		</Rectangle.RenderTransform>

</Rectangle>

Instead	of	using	the	TransformGroup	to	combine	multiple	transformations,	you
can	use	the	class	CompositeTransform.	CompositeTransform	defines	properties
to	do	multiple	transformations	at	once—for	example,	ScaleX	and	ScaleY	for
scaling	as	well	as	TranslateX	and	TranslateY	for	moving	an	element.

Transforming	Using	a	Matrix
Another	option	for	defining	multiple	transformations	at	once	is	to	specify	a
matrix.	Here,	you	use	MatrixTransform.	MatrixTransform	defines	a	Matrix
property	that	has	six	values.	Setting	the	values	1,	0,	0,	1,	0,	0	doesn't	change	the
element.	With	the	values	0.5,	1.4,	0.4,	0.5,	–200,	and	0,	the	element	is	resized,
skewed,	and	translated	(code	file	Transformations/MainWindow.xaml):

<Rectangle	Width="120"	Height="60"	Fill="Gold"	Margin="20">

		<Rectangle.RenderTransform>

				<MatrixTransform	Matrix="0.5,	1.4,	0.4,	0.5,	-200,	0"	/>

		</Rectangle.RenderTransform>

</Rectangle>

The	class	MatrixTransform	defines	the	public	fields	M11,	M12,	M21,	M22,
OffsetX,	and	OffsetY	that	are	set	in	that	order	if	a	string	is	assigned	to	the
Matrix	property.	MatrixTransform	implements	an	affine	transformation,	so	only

six	of	the	nine	matrix	members	need	to	be	specified.	The	remaining	matrix
members	have	fixed	values	0,	0,	and	1.	The	M11	and	M22	fields	have	a	default
value	1	and	are	used	to	scale	in	the	X	and	Y	directions.	M12	and	M21	have	a
default	value	0	and	are	used	to	skew	the	control.	OffsetX	and	OffsetY	have	a
default	value	0	and	are	used	to	move	the	control.

BRUSHES
This	section	demonstrates	how	to	use	XAML's	brushes	for	drawing	backgrounds
and	foregrounds.	In	this	section,	you	learn	about	using	solid	color	and	linear
gradient	colors	with	brushes,	you	draw	images	with	brushes,	and	you	use	the
AcrylicBrush.	Figure	31-6	shows	ellipses	and	rectangles	using	different
brushes.	To	easily	see	the	type	of	the	brush,	TextBlock	elements	show	the	type
of	the	brush.

FIGURE	31-6

SolidColorBrush
The	first	button	shown	in	Figure	31-6	uses	the	SolidColorBrush,	which,	as	the
name	suggests,	uses	a	solid	color.	The	complete	area	is	drawn	with	the	same
color.

Using	a	shape,	you	can	define	a	solid	color	by	setting	the	Fill	attribute	to	a
string	that	defines	a	solid	color.	The	string	is	converted	to	a	SolidColorBrush
element	with	the	help	of	the	BrushValueSerializer	(code	file
Brushes/MainWindow.xaml):

<Rectangle	Fill="#FFC9659C"	/>

Of	course,	you	will	get	the	same	effect	by	setting	the	Fill	child	element	and
adding	a	SolidColorBrush	element	as	its	content,	as	shown	in	the	following
code	snippet.	The	first	two	shapes	in	the	application	use	a	hexadecimal	value
(alpha,	red,	green,	and	blue	values)	for	the	solid	background	color	(code	file
Brushes/MainWindow.xaml):

<Ellipse>

		<Ellipse.Fill>

				<SolidColorBrush	Color="#FFC9659C"	/>

		</Ellipse.Fill>

</Ellipse>

Gradient	Brushes
For	a	smooth	color	change,	you	can	use	the	LinearGradientBrush.	This	brush
defines	the	StartPoint	and	EndPoint	properties.	With	these,	you	can	assign
two-dimensional	coordinates	for	the	linear	gradient.	The	default	gradient	is
diagonal	linear	from	0,0	to	1,1,	from	the	upper-left	corner	of	the	object	to	the
lower-right	corner.	By	defining	different	values,	the	gradient	can	take	different
directions.	For	example,	with	a	StartPoint	of	0,0	and	an	EndPoint	of	0,1,	you
get	a	vertical	gradient.	The	StartPoint	value	of	0,0	and	EndPoint	value	of	1,0
creates	a	horizontal	gradient.

With	the	content	of	this	brush,	you	can	define	the	color	values	at	the	specified
offsets	with	the	GradientStop	element.	Between	the	stops,	the	colors	are
smoothed	(code	file	Brushes/MainWindow.xaml):

<Rectangle>

		<Rectangle.Fill>

				<LinearGradientBrush	StartPoint="0,0"	EndPoint="1,1">

						<GradientStop	Offset="0"	Color="LightGreen"	/>

						<GradientStop	Offset="0.4"	Color="Green"	/>

						<GradientStop	Offset="1"	Color="DarkGreen"	/>

				</LinearGradientBrush>

		</Rectangle.Fill>

</Rectangle>

WinUI	also	supports	radial	gradient	brushes	as	shown	with	the	following	ellipse.
With	offsets	from	0	to	1,	the	color	is	smoothed	from	the	center	to	the	outside.	To
change	the	center,	you	can	set	the	property	GradientCenter,	which	has	a	default
value	of	0.5,0.5.	(code	file	Brushes/MainWindow.xaml):

<Ellipse	Grid.Row="3"	Grid.Column="0">

		<Ellipse.Fill>

				<RadialGradientBrush>

						<GradientStop	Offset="0"	Color="LightGreen"	/>

						<GradientStop	Offset="0.4"	Color="Green"	/>

						<GradientStop	Offset="1"	Color="DarkGreen"	/>

				</RadialGradientBrush>

		</Ellipse.Fill>

</Ellipse>

ImageBrush
To	load	an	image	into	a	brush,	you	can	use	the	ImageBrush	element.	With	this
element,	the	image	defined	by	the	ImageSource	property	is	displayed.	The	image
can	be	accessed	from	the	file	system	or	from	a	resource	within	the	assembly.	In
the	code	example,	the	image	is	added	from	the	file	system	(code	file
Brushes/MainWindow.xaml):

<Ellipse>

		<Ellipse.Fill>

				<ImageBrush	ImageSource="msbuild.jpg"	Opacity="0.5"	/>

		</Ellipse.Fill>

</Ellipse>

AcrylicBrush
The	AcrylicBrush	allows	a	transparency	effect	that	lets	other	elements	of	the
app	or	the	host	shine	through.

Try	the	calculator	that	ships	as	part	of	Windows	10.	The	calculator	has	some
slight	transparency	that	lets	other	applications	or	the	wallpaper	image	shine
through	to	the	app.	This	effect	isn't	applied	to	the	main	number	buttons	in	the

calculator,	but	the	other	elements	of	the	calculator	let	the	light	of	the	background
shine	through.
You	assign	AcrylicBrush	to	any	property	where	a	brush	is	needed.	With	the
following	code	snippet,	the	value	for	the	TintOpacity	is	taken	from	the	value	of
a	slider	with	the	application.	This	allows	you	to	see	the	different	effects	of	this
brush	based	on	the	opacity	when	you	move	the	slider	in	the	app.	The	TintColor
property	specifies	the	main	color	of	the	brush.	With	the	BackgroundSource
property,	you	can	select	between	HostBackdrop	or	Backdrop.	When	you	use
Backdrop,	the	colors	from	the	app	itself	shine	through.	This	is	known	as	in-app
acrylic.	Elements	that	are	overlaid	from	the	controls	using	the	brush	shine
through.	With	HostBackdrop,	the	colors	from	below	the	application	are	taken;
this	is	background	acrylic.	Because	acrylic	UI	effects	require	GPU	power,	this
feature	can	shorten	battery	life.	AcrylicBrush	uses	the	solid	color	defined	by	the
FallbackColor	property	when	the	system	runs	low	on	power.	You	also	can
configure	the	property	AlwaysUseFallback	to	always	use	the	fallback	color.	This
setting	can	be	triggered	by	user	configuration	to	enhance	the	battery	lifetime
(code	file	Brushes/MainWindow.xaml):

<Ellipse	Grid.Row="3"	Grid.Column="1">

		<Ellipse.Fill>

				<AcrylicBrush	BackgroundSource="Backdrop"	

TintColor="#FFFF0000"	

						TintOpacity="{x:Bind	acrylicOpacitySlider.Value,	

Mode=OneWay}"	

						FallbackColor="Orange"	/>

		</Ellipse.Fill>

</Ellipse>

Figure	31-6	shows	AcrylicBrush	with	a	current	TintOpacity	setting	of	0.4.	The
ellipse	on	the	top	is	configured	with	Backdrop.	Here,	you	can	see	that	the
background	of	the	rectangle	positioned	underneath	the	ellipse	shines	through.

NOTE When	should	acrylic	brushes	be	used?	Acrylic	adds	texture	and
depth	to	the	application.	In-app	navigation	and	commands	look	impressive
with	acrylic	backgrounds.	However,	the	primary	app	content	should	use
solid	backgrounds.

STYLES	AND	RESOURCES

You	can	define	the	look	and	feel	of	the	XAML	elements	by	setting	properties,
such	as	FontSize	and	Background,	with	the	Button	element	(code	file
StylesAndResources/MainWindow.xaml):

<Button	Width="150"	FontSize="12"	Background="AliceBlue"	

Content="Click	Me!"	/>

Instead	of	defining	the	look	and	feel	with	every	element,	you	can	define	styles
that	are	stored	with	resources.	To	completely	customize	the	look	of	controls,	you
can	use	templates	and	add	them	to	resources.	Templates	are	covered	in	the
section	“Templates.”

Styles
You	can	assign	the	Style	property	of	a	control	to	a	Style	element	that	has
setters	associated	with	it.	A	Setter	element	defines	the	Property	and	Value
properties	to	set	the	specific	properties	and	values	for	the	target	element.	In	the
following	example,	the	Background,	FontSize,	FontWeight,	and	Margin
properties	are	set.	The	Style	is	set	to	the	TargetType	Button	so	that	the
properties	of	the	Button	can	be	directly	accessed	(code	file
StylesAndResources/MainWindow.xaml):

<Button	Width="150"	Content="Click	Me!">

		<Button.Style>

				<Style	TargetType="Button">

						<Setter	Property="Background"	Value="Yellow"	/>

						<Setter	Property="FontSize"	Value="14"	/>

						<Setter	Property="FontWeight"	Value="Bold"	/>

						<Setter	Property="Margin"	Value="4"	/>

				</Style>

		</Button.Style>

</Button>

Setting	the	Style	directly	with	the	Button	element	doesn't	really	help	with	style
sharing.	However,	styles	can	be	put	into	resources.	You	can	use	resources	to
assign	styles	to	specific	elements,	assign	a	style	to	all	elements	of	a	type,	or	use	a
key	for	the	style.	To	assign	a	style	to	all	elements	of	a	type,	use	the	TargetType
property	of	the	Style	and	set	it	to	the	type.	To	define	a	style	that	needs	to	be
referenced,	x:Key	must	be	set	(code	file
StylesAndResources/MainWindow.xaml):

<Grid.Resources>

		<Style	TargetType="Button">

				<Setter	Property="Background"	Value="LemonChiffon"	/>

				<Setter	Property="FontSize"	Value="18"	/>

				<Setter	Property="Margin"	Value="4"	/>

		</Style>

		<Style	x:Key="ButtonStyle1"	TargetType="Button">

				<Setter	Property="Background"	Value="Red"	/>

				<Setter	Property="Foreground"	Value="White"	/>

				<Setter	Property="FontSize"	Value="18"	/>

				<Setter	Property="Margin"	Value="8"	/>

		</Style>

</Grid.Resources>

In	the	sample	application,	the	styles	are	defined	within	the	Grid	control	using	the
Resources	property.

In	the	following	XAML	code,	the	first	button—which	doesn't	have	a	style
defined	with	the	element	properties—gets	the	style	that	is	defined	for	the	Button
type.	With	the	next	button,	the	Style	property	is	set	with	the	StaticResource
markup	extension	to	{StaticResource	ButtonStyle},	whereas	ButtonStyle
specifies	the	key	value	of	the	style	resource	defined	earlier,	so	this	button	has	a
red	background	and	a	white	foreground.	Specifying	settings	directly	with	the
Button	control	overrides	settings	specified	with	the	style	(code	file
StylesAndResources/MainWindow.xaml):

<Button	Width="200"	Content="Default	Button	style"	Margin="8"	/>

<Button	Width="200"	Content="Named	style"

		Style="{StaticResource	ButtonStyle1}"	Margin="8"	/>	

Rather	than	set	the	Background	of	a	button	to	just	a	single	value,	you	can	set	the
value	of	the	Setter	with	a	child	element.	In	case	the	brush	is	needed	multiple
times,	you	can	use	the	StaticResource	markup	extension	directly	from	a
resource.	The	resource	just	needs	to	be	defined	before	it's	used	as	shown	in	the
next	code	snippet.	With	the	BasedOn	property,	a	resource	can	take	all	the	values
from	the	based-on	resource	and	overwrite	the	values	that	should	be	different.
This	code	snippet	defines	the	FancyButtonStyle	that	takes	all	the	settings	from
the	ButtonStyle1	and	just	changes	the	value	for	the	Background	property.	The
brush	for	the	Background	property	is	retrieved	from	the	sources	specified	with
the	key	GreenBrush	(code	file	StylesAndResources/MainWindow.xaml):

<LinearGradientBrush	x:Key="GreenBrush"	StartPoint="0,0"	

EndPoint="0,1">

		<GradientStop	Offset="0.0"	Color="LightCyan"	/>

		<GradientStop	Offset="0.14"	Color="Cyan"	/>

		<GradientStop	Offset="0.7"	Color="DarkCyan"	/>

</LinearGradientBrush>

	

<Style	x:Key="FancyButtonStyle"	TargetType="Button"	

		BasedOn="{StaticResource	ButtonStyle1}">

		<Setter	Property="Background"	Value="{StaticResource	

GreenBrush}"	/>

</Style>

This	button	has	FancyButtonStyle	applied:

<Button	Width="200"	Content="Style	inheritance"	

		Style="{StaticResource	FancyButtonStyle}"	/>

Figure	31-7	shows	the	result	of	all	these	buttons	after	styling.

FIGURE	31-7

Resource	Hierarchies
As	you	have	seen	with	the	styles	sample,	usually	styles	are	stored	within
resources.	The	FrameworkElement	base	class	defines	the	Resourcces	property,
so	every	class	that	derives	from	the	FrameworkElement	base	class	can	specify

resources.

Resources	are	searched	hierarchically.	If	you	define	the	resource	with	the	root
element,	it	applies	to	every	child	element.	If	the	root	element	contains	a	Grid,
the	Grid	contains	a	StackPanel,	and	you	define	the	resource	with	the
StackPanel,	then	the	resource	applies	to	every	control	within	the	StackPanel.	If
the	StackPanel	contains	a	Button	and	you	define	the	resource	just	with	the
Button,	then	this	style	is	valid	only	for	the	Button.

NOTE With	hierarchies,	you	need	to	pay	attention	if	you	use	the
TargetType	without	a	Key	for	styles.	If	you	define	a	resource	with	the	Canvas
element	and	set	the	TargetType	for	the	style	to	apply	to	TextBox	elements,
then	the	style	applies	to	all	TextBox	elements	within	the	Canvas	.	The	style
even	applies	to	TextBox	elements	that	are	contained	in	a	ListBox	when	the
ListBox	is	in	the	Canvas	.

If	you	need	the	same	style	for	more	than	one	window,	page,	or	user	control,	then
you	can	define	the	style	with	the	application.	Creating	a	Windows	app	using
Visual	Studio,	the	file	App.xaml	is	created	for	defining	global	resources	of	the
application.	The	application	styles	are	valid	for	every	page	or	window	of	the
application.	Every	element	can	access	resources	that	are	defined	with	the
application.	If	resources	are	not	found	with	the	parent	window,	then	the	search
for	resources	continues	with	the	Application.	You	can	define	resources	with
resource	dictionaries	in	separate	files	as	shown	with	the	resource
MyGradientBrush	(code	file	StylesAndResources/Styles.xaml):

<ResourceDictionary

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		xmlns:local="using:StylesAndResources">

		<RadialGradientBrush	x:Key="MyGradientBrush"	

x:Name="MyGradientBrush">

				<GradientStop	Offset="0"	Color="White"	/>

				<GradientStop	Offset="0.6"	Color="Orange"	/>

				<GradientStop	Offset="1"	Color="Red"	/>

		</RadialGradientBrush>

</ResourceDictionary>

This	resource	dictionary	is	referenced	by	setting	the	MergedDictionaries
property	of	the	ResourceDictionary,	as	shown	in	the	following	code	snippet.

When	you	reference	the	resource	file	from	the	Application	class,	the	resource	is
available	for	every	XAML	element	in	the	application	(code	file
StylesAndResources/App.xaml):

<Application

		x:Class="StylesAndResources.App"

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

		<Application.Resources>

				<ResourceDictionary>

						<ResourceDictionary.MergedDictionaries>

								<XamlControlsResources	

xmlns="using:Microsoft.UI.Xaml.Controls"	/>

								<ResourceDictionary	Source="Styles.xaml"	/>

						</ResourceDictionary.MergedDictionaries>

				</ResourceDictionary>

		</Application.Resources>

</Application>

Theme	Resources
With	Windows	applications,	default	styles	for	light	and	dark	themes	are
available	that	you	can	change	dynamically.	By	specifying	your	custom	styles,
you	can	define	styles	for	the	different	themes.

Theme	resources	can	be	defined	in	a	resource	dictionary	within	the
ThemeDictionaries	collection.	The	ResourceDictionary	objects	that	are
defined	within	the	ThemeDictionaries	collection	need	to	have	a	key	assigned
that	has	the	name	of	a	theme—either	Light	or	Dark.	The	sample	code	defines	a
button	for	the	light	theme	that	has	a	light	background	and	dark	foreground,	and
for	the	dark	theme	it	defines	a	dark	background	and	light	foreground.	The	key
SampleButtonStyle	for	the	style	is	the	same	within	both	dictionaries	(code	file
StylesAndResources/UseThemesUserControl.xaml):

<ResourceDictionary>

		<ResourceDictionary.ThemeDictionaries>

				<ResourceDictionary	x:Key="Light">

						<Style	TargetType="Button"	x:Key="SampleButtonStyle">

								<Setter	Property="Background"	Value="Yellow"	/>

								<Setter	Property="Foreground"	Value="Black"	/>

						</Style>

				</ResourceDictionary>

	

				<ResourceDictionary	x:Key="Dark">

						<Style	TargetType="Button"	x:Key="SampleButtonStyle">

								<Setter	Property="Background"	Value="Black"	/>

								<Setter	Property="Foreground"	Value="Yellow"	/>

						</Style>

				</ResourceDictionary>

		</ResourceDictionary.ThemeDictionaries>

	</ResourceDictionary>

NOTE With	the	Windows	app	Fluent	XAML	Theme	Editor	(see	Figure	31-
8),	which	you	can	find	in	the	Microsoft	Store,	you	can	easily	create	themes
based	on	your	color	and	border	choices.

FIGURE	31-8

You	can	set	the	default	theme	with	the	RequestedTheme	property	of	a
FrameworkElement	to	change	the	default	theme.	Different	elements	of	a	page	can
request	different	themes.	The	following	code	snippet	changes	the	theme	of	a	grid

on	the	Click	handler	of	a	button	(code	file
StylesAndResources/UseThemesUserControl.xaml.cs):

private	void	OnChangeTheme(object	sender,	RoutedEventArgs	e)

{

		grid1.RequestedTheme	=	grid1.RequestedTheme	==	

ElementTheme.Dark	?

				ElementTheme.Light	:	ElementTheme.Dark;

}

The	RequestedTheme	property	is	defined	in	the	XAML	element	hierarchy.	Every
element	can	override	the	theme	to	be	used	for	itself	and	its	children.	The
following	Grid	element	changes	the	default	theme	for	the	Dark	theme.	This	is
now	the	theme	used	for	the	Grid	and	all	its	children	elements	(code	file
StylesAndResources/UseThemesUserControl.xaml):

<Grid	x:Name="grid1"

		Background="{ThemeResource	

ApplicationPageBackgroundThemeBrush}"

		RequestedTheme="Dark">

		<Button	Style="{ThemeResource	SampleButtonStyle}"	

Click="OnChangeTheme"

				Content="Change	Theme"	s/>

</Grid>

When	you	click	the	button,	the	theme	is	changed	by	setting	the	RequestedTheme
property	of	a	FrameworkElement	(code	file
StylesAndResources/UseThemesUserControl.xaml.cs):

private	void	OnChangeTheme(object	sender,	RoutedEventArgs	e)

{

		grid1.RequestedTheme	=	grid1.RequestedTheme	==	

ElementTheme.Dark	?

				ElementTheme.Light	:	ElementTheme.Dark;

}

NOTE Using	the	ThemeResource	markup	extension	is	useful	only	in	cases
where	the	resource	should	look	different	based	on	the	theme.	If	the	resource
should	look	the	same,	with	all	themes,	keep	using	the	StaticResource
markup	extension.

TEMPLATES

A	XAML	Button	control	can	contain	any	content.	The	content	can	be	simple
text,	but	you	can	also	add	a	Canvas	element,	which	can	contain	shapes;	a	Grid	;
or	a	video.	In	fact,	you	can	do	even	more	than	that	with	a	button!	With	template-
based	XAML	controls,	the	functionality	of	controls	is	completely	separate	from
their	look	and	feel.	A	button	has	a	default	look,	but	you	can	completely
customize	that	look.

Windows	apps	offer	several	template	types	that	derive	from	the	base	class
FrameworkTemplate.

TEMPLATE	TYPE DESCRIPTION
ControlTemplate This	enables	you	to	specify	the	visual	structure	of	a

control	and	override	its	look.
ItemsPanelTemplate For	an	ItemsControl,	you	can	specify	the	layout	of	its

items	by	assigning	an	ItemsPanelTemplate.	Each
ItemsControl	has	a	default	ItemsPanelTemplate.	For
the	MenuItem,	it	is	a	WrapPanel.	The	StatusBar	uses	a
DockPanel,	and	the	ListBox	uses	a
VirtualizingStackPanel.

DataTemplate These	are	useful	for	graphical	representations	of	objects.
When	styling	a	ListBox,	by	default	the	items	of	the
ListBox	are	shown	according	to	the	output	of	the
ToString	method.	By	applying	a	DataTemplate,	you	can
override	this	behavior	and	define	a	custom	presentation
of	the	items.	DataTemplate	s	are	covered	in	Chapter	29,
“Windows	Apps.”

Control	Templates
Earlier	in	this	chapter,	I	described	how	you	can	style	the	properties	of	a	control.
If	setting	simple	properties	of	the	controls	doesn't	give	you	the	look	you	want,
you	can	change	the	Template	property.	With	the	Template	property,	you	can
customize	the	complete	look	of	the	control.	The	next	example	demonstrates
customizing	buttons,	and	later	in	the	chapter	list	views	are	customized	step-by-
step	so	you	can	see	the	intermediate	results	of	the	changes.

You	customize	the	Button	type	in	a	separate	resource	dictionary	file:
ControlTemplates.xaml.	In	the	following	code	sample,	a	style	with	the	key
name	RoundedGelButton	is	defined.	The	style	RoundedGelButton	sets	the
properties	Background,	Height,	Foreground,	and	Margin,	and	the	Template.	The

Template	is	the	most	interesting	aspect	with	this	style.	The	Template	specifies	a
Grid	with	just	one	row	and	one	column.

Inside	this	cell,	you	can	find	an	ellipse	with	the	name	GelBackground.	This
ellipse	has	a	linear	gradient	brush	for	the	stroke.	The	stroke	that	surrounds	the
rectangle	is	very	thin	because	the	StrokeThickness	is	set	to	0.5.

The	second	ellipse,	GelShine,	is	a	small	ellipse	whose	size	is	defined	by	the
Margin	property	and	so	is	visible	within	the	first	ellipse.	The	stroke	is
transparent,	so	there	is	no	line	surrounding	the	ellipse.	This	ellipse	uses	a	linear
gradient	fill	brush,	which	transitions	from	a	light,	partly	transparent	color	to	full
transparency.	This	gives	the	ellipse	a	shimmering	effect.

The	ContentPresenter	is	the	placeholder	for	the	control's	content,	and	it	defines
the	place	where	the	content	should	be	positioned.	In	the	code	that	follows,	the
content	is	placed	in	the	first	row	of	the	Grid,	as	are	the	Ellipse	elements.	The
Content	property	of	the	ContentPresenter	defines	what	the	content	should	be.
The	content	is	set	to	a	TemplateBinding	markup	expression.	TemplateBinding
binds	the	template	parent,	which	is	the	Button	element	in	this	case.
{TemplateBinding	Content}	specifies	that	the	value	of	the	Content	property	of
the	Button	control	should	be	placed	inside	the	placeholder	as	content	(code	file
Templates/Styles/ControlTemplates.xaml):

<ResourceDictionary

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

	

		<Style	x:Key="RoundedGelButton"	TargetType="Button">

				<Setter	Property="Width"	Value="100"	/>

				<Setter	Property="Height"	Value="100"	/>

				<Setter	Property="Foreground"	Value="White"	/>

				<Setter	Property="Template">

						<Setter.Value>

								<ControlTemplate	TargetType="Button">

										<Grid>

												<Ellipse	Name="GelBackground"	StrokeThickness="0.5"	

Fill="Black">

														<Ellipse.Stroke>

																<LinearGradientBrush	StartPoint="0,0"	

EndPoint="0,1">

																		<GradientStop	Offset="0"	Color="#ff7e7e7e"	/>

																		<GradientStop	Offset="1"	Color="Black"	/>

																</LinearGradientBrush>

														</Ellipse.Stroke>

												</Ellipse>

												<Ellipse	Margin="15,5,15,50">

														<Ellipse.Fill>

																<LinearGradientBrush	StartPoint="0,0"	

EndPoint="0,1">

																		<GradientStop	Offset="0"	Color="#aaffffff"	/>

																		<GradientStop	Offset="1"	Color="Transparent"	

/>

																</LinearGradientBrush>

														</Ellipse.Fill>

												</Ellipse>

												<ContentPresenter	Name="GelButtonContent"	

														VerticalAlignment="Center"	

														HorizontalAlignment="Center"	

														Content="{TemplateBinding	Content}"	/>

										</Grid>

								</ControlTemplate>

						</Setter.Value>

				</Setter>

		</Style>

</ResourceDictionary>	

From	the	app.xaml	file,	the	resource	dictionary	is	referenced	as	shown	here
(code	file	Templates/App.xaml):

<Application

		x:Class="Templates.App"

		

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

		xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

		xmlns:local="using:Templates">

		<Application.Resources>

				<ResourceDictionary>

						<ResourceDictionary.MergedDictionaries>

								<XamlControlsResources	

xmlns="using:Microsoft.UI.Xaml.Controls"	/>

								<ResourceDictionary	

Source="Styles/ControlTemplates.xaml"	/>

						</ResourceDictionary.MergedDictionaries>

				</ResourceDictionary>

		</Application.Resources>

</Application>

Now	a	Button	control	can	be	associated	with	the	style.	The	new	look	of	the

button	is	shown	in	Figure	31-9	(code	file
Templates/Views/ButtonTemplatesUsercontrol.xaml):

FIGURE	31-9

<Button	Style="{StaticResource	RoundedGelButton}"	Content="Click	

Me!"	/>	

NOTE The	TemplateBinding	allows	giving	values	to	the	template	that	are
defined	by	the	control.	This	can	be	used	not	only	for	the	content	but	also	for
colors,	stroke	styles,	and	much	more.

Such	a	styled	button	now	looks	very	fancy	on	the	screen,	but	there's	still	a
problem:	there	is	no	action	if	the	button	is	clicked	or	touched	or	if	the	mouse
moves	over	the	button.	This	isn't	the	typical	experience	a	user	has	with	a	button.
However,	there	is	a	solution.	With	a	template-styled	button,	you	must	have
visual	states	or	triggers	that	enable	the	button	to	have	different	looks	in	response
to	mouse	moves	and	mouse	clicks.	First	read	the	section	“Animations”	because
the	VisualStateManager	makes	use	of	animations;	then	read	the	section	“Visual
State	Manager”	to	see	how	the	button	template	is	changed	to	react	to	clicks	and
mouse	moves.

Instead	of	creating	such	a	template	from	scratch,	you	can	select	a	Button	control
either	in	the	XAML	designer	or	in	the	Document	Explorer	and	select	Edit
Template	from	the	context	menu.	Here,	you	can	create	an	empty	template	or
copy	the	predefined	template.	You	use	a	copy	of	the	template	to	take	a	look	at
how	the	predefined	template	looks.

Styling	a	ListView

Changing	the	style	of	a	button	or	a	label	is	a	simple	task,	such	as	changing	the
style	of	an	element	that	contains	a	list	of	elements.	For	example,	how	about
changing	a	ListView?	Again,	this	list	control	has	behavior	and	a	look.	It	can
display	a	list	of	elements,	and	you	can	select	one	or	more	elements	from	the	list.
For	the	behavior,	the	ListView	class	defines	methods,	properties,	and	events.
The	look	of	the	ListView	is	separate	from	its	behavior.	It	has	a	default	look,	but
you	can	change	this	look	by	creating	a	template.

To	fill	a	ListView	with	some	items,	the	class	CountryRepository	returns	a	list
of	a	few	countries	that	will	be	displayed.	Country	is	a	class	with	Name	and
ImagePath	properties	(code	file	Templates/Models/CountryRepository.cs):

public	sealed	class	CountryRepository

{

		private	static	IEnumerable<Country>?	s_countries;

	

		public	IEnumerable<Country>	GetCountries()	=>	s_countries	??=	

new	List<Country>

		{

				new()	{	Name	=	"Austria",	ImagePath	=	"/Images/Austria.bmp"	

},

				new()	{	Name	=	"Germany",	ImagePath	=	"/Images/Germany.bmp"	

},

				new()	{	Name	=	"Norway",	ImagePath	=	"/Images/Norway.bmp"	},

				new()	{	Name	=	"USA",	ImagePath	=	"/Images/USA.bmp"	}

		};

}

Inside	the	code-behind	file	in	the	constructor	of	the	StyledList	class,	a	read-
only	property	Countries	is	created	and	filled	with	the	help	of	the	GetCountries
method	of	the	CountryRepository	(code	file
Templates/Views/StyledListUserControl.xaml.cs):

public	ObservableCollection<Country>	Countries	{	get;	}	=

		new	ObservableCollection<Country>();

	

public	StyledListUserControl()

{

		this.InitializeComponent();

		this.DataContext	=	this;

		var	countries	=	new	CountryRepository().GetCountries();

		foreach	(var	country	in	countries)

		{

				Countries.Add(country);

		}

}

Within	the	XAML	code,	the	ListView	named	countryList1	is	defined.
countryList1	just	uses	the	default	style.	The	property	ItemsSource	is	set	to	the
Binding	markup	extension,	which	is	used	by	data	binding.	From	the	code-
behind,	you	have	seen	that	the	binding	is	done	to	an	array	of	Country	objects.
Figure	31-10	shows	the	default	look	of	the	ListView.	By	default,	only	the	names
of	the	countries	returned	by	the	ToString	method	are	displayed	in	a	simple	list
(code	file	Templates/StyledListUserControl.xaml):

FIGURE	31-10

<Grid>

		<ListView	ItemsSource="{x:Bind	Countries}"	Margin="10"

				x:Name="countryList1"	/>

</Grid>	

The	look	of	the	items	in	the	ListView	can	be	customized	with	a	data	template	as
has	been	shown	in	detail	in	Chapter	29.	The	sample	code	uses	a	data	template
that	binds	a	TextBlock	and	an	Image	element	to	the	Name	and	ImagePath
properties	(code	file	Templates/Styles/ListTemplates.xaml):

<DataTemplate	x:Key="CountryDataTemplate">

		<Border	Margin="4"	BorderThickness="2"	CornerRadius="6"

				BorderBrush="{StaticResource	BorderBrush}"

				Background="{StaticResource	BackgroundBrush">

				<Border.BorderBrush>

				<Grid	Margin="4">

						<Grid.RowDefinitions>

								<RowDefinition	Height="auto"	/>

								<RowDefinition	Height="auto"	/>

						</Grid.RowDefinitions>

						<Image	Source="{Binding	ImagePath,	Mode=OneTime,	

FallbackValue=Name}"	Width="120"	/>

						<TextBlock	Text="{Binding	Name,	Mode=OneTime}"	

Grid.Row="1"	Opacity="0.6"	

								FontSize="16"	VerticalAlignment="Bottom"	

HorizontalAlignment="Right"	Margin="15"	

								FontWeight="Bold"	/>

				</Grid>

		</Border>

</DataTemplate>

Figure	31-11	shows	the	new	look	of	the	ListView.

FIGURE	31-11

Item	Container	Style
Every	item	of	a	ListView	is	placed	into	a	container.	The	container	can	be
customized	with	the	ItemContainerStyle	property	of	the	ListView.	The	item
container	can	define	how	the	container	for	every	item	looks—for	example,	what
foreground	and	background	brushes	should	be	used	when	the	item	is	selected,
pressed,	and	so	on.	For	an	easy	view	of	the	boundaries	of	the	container,	the
Margin	and	Background	properties	are	set	in	the	following	code	snippet.	The
ListViewItemPresenter	then	presents	the	items.	You	can	customize	the	focus
brush,	placeholder	background,	selected	item	foreground	and	background,	and
more	with	the	presenter	(code	file	Templates/Styles/ListTemplates.xaml):

<Style	x:Key="ListViewItemStyle1"	TargetType="ListViewItem">

		<Setter	Property="Background"	Value="Orange"/>

		<Setter	Property="Margin"	Value="5"	/>

		<Setter	Property="Template">

				<Setter.Value>

						<ControlTemplate	TargetType="ListViewItem">

								<ListViewItemPresenter	/>

						</ControlTemplate>

				</Setter.Value>

		</Setter>

</Style>

The	style	is	associated	with	the	ItemContainerStyle	property	of	the	ListView.
Figure	31-12	shows	the	result	of	this	style.	This	figure	gives	a	good	view	of	the
boundaries	of	the	items	container	(code	file
Templates/StyledListUserControl.xaml):

FIGURE	31-12

<ListView	ItemsSource="{Binding	Countries}"	Margin="10"

		ItemContainerStyle="{StaticResource	ListViewItemStyle1}"

		Style="{StaticResource	ListViewStyle1}"	MaxWidth="180"	/>

		

Items	Panel
By	default,	the	ListView	arranges	the	items	vertically.	This	is	not	the	only	way
to	arrange	the	items	with	this	view;	you	can	arrange	them	in	other	ways	as	well,
such	as	horizontally.	Arranging	the	items	in	an	items	control	is	the	responsibility
of	the	items	panel.

The	following	code	snippet	defines	a	resource	for	an	ItemsPanelTemplate,
arranges	the	ItemsStackPanel	horizontally	instead	of	vertically,	and	gives	a
different	background	so	you	can	easily	see	the	boundaries	of	the	items	panel
(code	file	Templates/Styles/ListTemplates.xaml):

<ItemsPanelTemplate	x:Key="ItemsPanelTemplate1">

		<VirtualizingStackPanel	Orientation="Horizontal"	

Background="Yellow"/>

</ItemsPanelTemplate>

The	following	ListView	declaration	uses	the	same	Style	and
ItemContainerStyle	as	before	but	adds	the	resource	for	the	ItemsPanel.	Figure
31-13	shows	the	items	now	arranged	horizontally	(code	file
Templates/StyledListUserControl.xaml):

<ListView	ItemsSource="{Binding	Countries}"	Margin="10"

		ItemContainerStyle="{StaticResource	ListViewItemStyle1}"				

ItemTemplate="{StaticResource	CountryDataTemplate}"	

		ItemsPanel="{StaticResource	ItemsPanelTemplate1}"	/>	

FIGURE	31-13

To	change	the	look	of	the	complete	control,	you	can	also	customize	the	Template
property	of	the	ListView	—for	example,	to	change	the	scrollbar	behavior.	Here,
you	can	create	a	ControlTemplate	for	the	target	type	ListView,	similar	to	what
you've	seen	with	the	customization	of	the	Button	control,	and	configure	a
ScrollViewer.

ANIMATIONS
When	you	use	animations,	you	can	make	a	smooth	transition	between	images	by
using	moving	elements,	color	changes,	transforms,	and	so	on.	XAML	makes	it
easy	to	create	animations.	You	can	animate	the	value	of	most	dependency
properties.	Different	animation	classes	exist	to	animate	the	values	of	different
properties,	depending	on	their	type.

The	most	important	element	of	an	animation	is	the	timeline.	This	element
defines	how	a	value	changes	over	time.	Different	kinds	of	timelines	are	available
for	changing	different	types	of	values.	The	base	class	for	all	timelines	is
Timeline.	To	animate	a	property	of	type	double,	you	can	use	the	class
DoubleAnimation.	The	Int32Animation	is	the	animation	class	for	int	values.
You	use	PointAnimation	to	animate	points	and	ColorAnimation	to	animate
colors.

You	can	combine	multiple	timelines	by	using	the	Storyboard	class.	The
Storyboard	class	itself	is	derived	from	the	base	class	TimelineGroup,	which
derives	from	Timeline.

NOTE To	see	the	animations	without	building	and	running	the
application,	check	the	GIF	files	with	the	downloadable	source	code	or
directly	check	the	links	to	the	GIF	files	with	the	readme	file	of	this	chapter
on	GitHub.

Timeline
A	Timeline	defines	how	a	value	changes	over	time.	The	following	example
animates	the	size	of	an	ellipse.	In	the	code	that	follows,	DoubleAnimation
timelines	change	scaling	and	translation	of	an	ellipse;	ColorAnimation	changes
the	color	of	the	fill	brush.	The	Triggers	property	of	the	Ellipse	class	is	set	to

an	EventTrigger.	The	event	trigger	is	fired	when	the	ellipse	is	loaded.
BeginStoryboard	is	a	trigger	action	that	begins	the	storyboard.	With	the
storyboard,	a	DoubleAnimation	element	is	used	to	animate	the	ScaleX,	ScaleY,
TranslateX,	and	TranslateY	properties	of	the	CompositeTransform	class.	The
animation	changes	the	horizontal	scale	to	5	and	the	vertical	scale	to	3	within	ten
seconds	(code	file	Animation/SimpleAnimationControl.xaml):

<Ellipse	x:Name="ellipse1"	Width="100"	Height="40"

		HorizontalAlignment="Left"	VerticalAlignment="Top">

		<Ellipse.Fill>

				<SolidColorBrush	Color="Green"	/>

		</Ellipse.Fill>

		<Ellipse.RenderTransform>

				<CompositeTransform	ScaleX="1"	ScaleY="1"	TranslateX="0"	

TranslateY="0"	/>

		</Ellipse.RenderTransform>

		<Ellipse.Triggers>

				<EventTrigger>

						<BeginStoryboard>

								<Storyboard	x:Name="MoveResizeStoryboard">

										<DoubleAnimation	Duration="0:0:10"	To="5"

												Storyboard.TargetName="ellipse1"

												Storyboard.TargetProperty=

														"(UIElement.RenderTransform).

(CompositeTransform.ScaleX)"	/>

										<DoubleAnimation	Duration="0:0:10"	To="3"

												Storyboard.TargetName="ellipse1"

												Storyboard.TargetProperty=

														"(UIElement.RenderTransform).

(CompositeTransform.ScaleY)"	/>

										<DoubleAnimation	Duration="0:0:10"	To="400"

												Storyboard.TargetName="ellipse1"

												Storyboard.TargetProperty=

												"(UIElement.RenderTransform).

(CompositeTransform.TranslateX)"	/>

										<DoubleAnimation	Duration="0:0:10"	To="200"

												Storyboard.TargetName="ellipse1"

												Storyboard.TargetProperty=	

														"(UIElement.RenderTransform).

(CompositeTransform.TranslateY)"	/>

										<ColorAnimation	Duration="0:0:10"	To="Red"

												Storyboard.TargetName="ellipse1"

												Storyboard.TargetProperty=

														"(Ellipse.Fill).(SolidColorBrush.Color)"	/>

								</Storyboard>

						</BeginStoryboard>

				</EventTrigger>

		</Ellipse.Triggers>

</Ellipse>

Animations	are	far	more	than	the	typical	window-dressing	animation	that
appears	onscreen	constantly	and	immediately.	You	can	add	animation	to	business
applications	that	make	the	user	interface	feel	more	responsive.	The	look	when	a
cursor	moves	over	a	button	or	when	a	button	is	clicked	is	defined	by	animations.

The	following	table	describes	what	you	can	do	with	a	timeline:

TIMELINE
PROPERTIES

DESCRIPTION

AutoReverse Use	this	property	to	specify	whether	the	value	that	is	animated
should	return,	reversing	the	animation	to	its	original	value
after	the	animation.

SpeedRatio Use	this	property	to	transform	the	speed	at	which	an
animation	moves.	You	can	define	the	relation	to	the	parent.
The	default	value	is	1;	setting	the	ratio	to	a	smaller	value
makes	the	animation	move	slower;	setting	the	value	greater
than	1	makes	it	move	faster.

BeginTime Use	this	to	specify	the	time	span	from	the	start	of	the	trigger
event	until	the	moment	the	animation	starts.	You	can	specify
days,	hours,	minutes,	seconds,	and	fractions	of	seconds.	This
might	not	be	real	time,	depending	on	the	speed	ratio.	For
example,	if	the	speed	ratio	is	set	to	2	and	the	beginning	time	is
set	to	six	seconds,	the	animation	will	start	after	three	seconds.

Duration Use	this	property	to	specify	the	length	of	time	for	one
iteration	of	the	animation.

RepeatBehavior Assigning	a	RepeatBehavior	struct	to	the	RepeatBehavior
property	enables	you	to	define	how	many	times	or	for	how
long	the	animation	should	be	repeated.

FillBehavior This	property	is	important	if	the	parent	timeline	has	a
different	duration.	For	example,	if	the	parent	timeline	is
shorter	than	the	duration	of	the	actual	animation,	setting
FillBehavior	to	Stop	means	that	the	actual	animation	stops.
If	the	parent	timeline	is	longer	than	the	duration	of	the	actual
animation,	HoldEnd	keeps	the	actual	animation	active	before

resetting	it	to	its	original	value	(if	AutoReverse	is	set).

Depending	on	the	type	of	the	Timeline	class,	more	properties	may	be	available.
For	example,	with	DoubleAnimation,	you	can	specify	From	and	To	properties	for
the	start	and	end	of	the	animation.	An	alternative	is	to	specify	the	By	property,
whereby	the	animation	starts	with	the	current	value	of	the	Bound	property	and	is
incremented	by	the	value	specified	by	By.

Easing	Functions
With	the	animations	you've	seen	so	far,	the	value	changes	in	a	linear	way.	In	real
life,	a	move	never	happens	in	a	linear	way.	The	move	could	start	slowly	and
progressively	get	faster	until	reaching	the	highest	speed,	and	then	it	slows	down
before	reaching	the	end.	When	you	let	a	ball	fall	against	the	ground,	the	ball
bounces	a	few	times	before	staying	on	the	ground.	Such	nonlinear	behavior	can
be	created	by	using	easing	functions.

Animation	classes	have	an	EasingFunction	property.	This	property	accepts	an
object	that	derives	from	the	base	class	EasingFunctionBase.	With	this	type,	an
easing	function	object	can	define	how	the	value	should	be	animated	over	time.
Several	easing	functions	are	available	to	create	a	nonlinear	animation.	Examples
include	ExponentialEase,	which	uses	an	exponential	formula	for	animations;
QuadraticEase,	CubicEase,	QuarticEase,	and	QuinticEase,	with	powers	of	2,
3,	4,	or	5;	and	PowerEase,	with	a	power	level	that	is	configurable.	Of	special
interest	are	SineEase,	which	uses	a	sinusoid	curve;	BounceEase,	which	creates	a
bouncing	effect;	and	ElasticEase,	which	resembles	animation	values	of	a	spring
oscillating	back	and	forth.

The	following	code	snippet	adds	the	BounceEase	function	to	the
DoubleAnimation.	Adding	different	ease	functions	results	in	interesting
animation	effects:

<DoubleAnimation	Storyboard.TargetProperty="(Ellipse.Width)"

		Duration="0:0:3"	AutoReverse="True"

		FillBehavior="	RepeatBehavior="Forever"

		From="100"	To="300">

		<DoubleAnimation.EasingFunction>

				<BounceEase	EasingMode="EaseInOut"	/>

		</DoubleAnimation.EasingFunction>

</DoubleAnimation>	

To	see	different	easing	animations	in	action,	the	next	sample	lets	an	ellipse	move
between	two	small	rectangles.	The	Rectangle	and	Ellipse	elements	are	defined

within	a	Canvas,	and	the	ellipse	defines	a	TranslateTransform	transformation
to	move	the	ellipse	(code	file	Animation/EasingFunctions.xaml):

<Canvas	Grid.Row="1">

		<Rectangle	Fill="Blue"	Width="10"	Height="200"	

Canvas.Left="50"

				Canvas.Top="100"	/>

		<Rectangle	Fill="Blue"	Width="10"	Height="200"	

Canvas.Left="550"

				Canvas.Top="100"	/>

		<Ellipse	Fill="Red"	Width="30"	Height="30"	Canvas.Left="60"	

Canvas.Top="185">

				<Ellipse.RenderTransform>

						<TranslateTransform	x:Name="translate1"	X="0"	Y="0"	/>

				</Ellipse.RenderTransform>

		</Ellipse>

</Canvas>

The	user	starts	the	animation	by	clicking	a	button.	Before	clicking	the	button,	the
user	can	select	the	easing	function	from	the	ComboBox	comboEasingFunctions
and	an	EasingMode	enumeration	value	using	radio	buttons.

<StackPanel	Orientation="Horizontal">

		<ComboBox	x:Name="comboEasingFunctions"	Margin="10"	/>

		<Button	Click="OnStartAnimation"	Margin="10">Start</Button>

		<Border	BorderThickness="1"	BorderBrush="Black"	Margin="3">

				<StackPanel	Orientation="Horizontal">

						<RadioButton	x:Name="easingModeIn"	GroupName="EasingMode"	

Content="In"	/>

						<RadioButton	x:Name="easingModeOut"	GroupName="EasingMode"	

								Content="Out"	IsChecked="True"	/>

						<RadioButton	x:Name="easingModeInOut"	

GroupName="EasingMode"

								Content="InOut"	/>

				</StackPanel>

		</Border>

</StackPanel>

The	list	of	easing	functions	that	are	shown	in	the	ComboBox	and	activated	with
the	animation	is	returned	from	the	EasingFunctionModels	property	of	the
EasingFunctionManager.	This	manager	converts	the	easing	function	to	an
EasingFunctionModel	for	display	(code	file
Animation/EasingFunctionsManager.cs):

public	class	EasingFunctionsManager

{

		private	readonly	static	List<EasingFunctionBase>	

s_easingFunctions	=	new()	

		{

				new	BackEase(),

				new	SineEase(),

				new	BounceEase(),

				new	CircleEase(),

				new	CubicEase(),

				new	ElasticEase(),

				new	ExponentialEase(),

				new	PowerEase(),

				new	QuadraticEase(),

				new	QuinticEase()

		};

	

		public	IEnumerable<EasingFunctionModel>	EasingFunctionModels	

=>

				s_easingFunctions.Select(f	=>	new	EasingFunctionModel(f));

}

The	class	EasingFunctionModel	defines	a	ToString	method	that	returns	the
name	of	the	class	that	defines	the	easing	function.	This	name	is	shown	in	the
combo	box	(code	file	Animation/EasingFunctionModel.cs):

public	class	EasingFunctionModel

{

		public	EasingFunctionModel(EasingFunctionBase	easingFunction)	

=>

				EasingFunction	=	easingFunction;

	

		public	EasingFunctionBase	EasingFunction	{	get;	}

	

		public	override	string	ToString()	=>	

EasingFunction.GetType().Name;

}

The	ComboBox	is	filled	in	the	constructor	of	the	code-behind	file	(code	file
Animation/EasingFunctions.xaml.cs):

private	readonly	EasingFunctionsManager	_easingFunctions	=	

new();

private	const	int	AnimationTimeSeconds	=	6;

	

public	EasingFunctions()

{

		InitializeComponent();

		foreach	(var	easingFunctionModel	in	

_easingFunctions.EasingFunctionModels)

		{

				comboEasingFunctions.Items.Add(easingFunctionModel);

		}

}

From	the	user	interface,	not	only	can	you	select	the	type	of	easing	function	that
should	be	used	for	the	animation,	but	you	also	can	select	the	easing	mode.	The
base	class	of	all	easing	functions	(EasingFunctionBase)	defines	the	EasingMode
property	that	can	be	a	value	of	the	EasingMode	enumeration.

Clicking	the	button	to	start	the	animation	invokes	the	OnStartAnimation
method.	This	in	turn	invokes	the	StartAnimation	method.	With	this	method,	a
Storyboard	containing	a	DoubleAnimation	is	created	programmatically.	You've
seen	similar	code	earlier	using	XAML.	The	animation	animates	the	X	property	of
the	translate1	element	(code	file	Animation/EasingFunctionsPage.xaml.cs):

private	void	OnStartAnimation(object	sender,	RoutedEventArgs	e)

{

		if	(comboEasingFunctions.SelectedItem	is	EasingFunctionModel	

easingFunctionModel)

		{

				EasingFunctionBase	easingFunction	=	

easingFunctionModel.EasingFunction;

				easingFunction.EasingMode	=	GetEasingMode();

				StartAnimation(easingFunction);

		}

}

	

private	void	StartAnimation(EasingFunctionBase	easingFunction)

{

		chartControl.Draw(easingFunction);

	

		Storyboard	storyboard	=	new();

		DoubleAnimation	ellipseMove	=	new();

		ellipseMove.EasingFunction	=	easingFunction;

		ellipseMove.Duration	=	new

				Duration(TimeSpan.FromSeconds(AnimationTimeSeconds));

		ellipseMove.From	=	0;

		ellipseMove.To	=	460;

		Storyboard.SetTarget(ellipseMove,	translate1);

		Storyboard.SetTargetProperty(ellipseMove,	"X");

	

		//	start	the	animation	in	0.5	seconds

		ellipseMove.BeginTime	=	TimeSpan.FromSeconds(0.5);

	

		//	keep	the	position	after	the	animation

		ellipseMove.FillBehavior	=	FillBehavior.HoldEnd;

		storyboard.Children.Add(ellipseMove);

		storyBoard.Begin();

}

Now	you	can	run	the	application	and	see	the	ellipse	move	from	the	left	to	the
right	rectangle	in	different	ways—with	different	easing	functions.	With	some	of
the	easing	functions,	such	as	BackEase,	BounceEase,	or	ElasticEase,	the
difference	is	obvious.	The	difference	is	not	as	noticeable	with	some	of	the	other
easing	functions.	To	better	understand	how	the	easing	values	behave,	a	line	chart
is	created	that	shows	a	line	with	the	value	that	is	returned	by	the	easing	function
based	on	time.

To	display	the	line	chart,	you	create	a	user	control	that	defines	a	Canvas	element.
By	default,	the	X	direction	goes	from	left	to	right	and	the	Y	direction	from	top	to
bottom.	To	change	the	Y	direction	to	go	from	bottom	to	top,	you	define	a
transformation	(code	file	Animation/EasingChartControl.xaml):

<Canvas	x:Name="canvas1"	Width="500"	Height="500"	

Background="Yellow">

		<Canvas.RenderTransform>

				<TransformGroup>

						<ScaleTransform	ScaleX="1"	ScaleY="-1"	/>

						<TranslateTransform	X="0"	Y="500"	/>

				</TransformGroup>

		</Canvas.RenderTransform>

</Canvas>	

In	the	code-behind	file,	the	line	chart	is	drawn	using	line	segments.	Line
segments	were	previously	discussed	using	XAML	code	in	this	chapter	in	the
section	“Geometries	Using	Segments.”	Here	you	see	how	they	can	be	used	from
code.	The	Ease	method	of	the	easing	function	returns	a	value	that	is	shown	in	the
y-axis	passing	a	normalized	time	value	that	is	shown	in	the	x-axis	(code	file
Animation/EasingChartControl.xaml.cs):

private	const	double	SamplingInterval	=	0.01;

	

public	void	Draw(EasingFunctionBase	easingFunction)

{

		canvas1.Children.Clear();

		var	pathSegments	=	new	PathSegmentCollection();

		for	(double	i	=	0;	i	<	1;	i	+=	_samplingInterval)

		{

				double	x	=	i	*	canvas1.Width;

				double	y	=	easingFunction.Ease(i)	*	canvas1.Height;

				var	segment	=	new	LineSegment();

				segment.Point	=	new	Point(x,	y);

				pathSegments.Add(segment);

		}

	

		var	p	=	new	Path();

		p.Stroke	=	new	SolidColorBrush(Colors.Black);

		p.StrokeThickness	=	3;

		var	figures	=	new	PathFigureCollection();

		figures.Add(new	PathFigure	{	Segments	=	pathSegments	});

		p.Data	=	new	PathGeometry	{	Figures	=	figures	};

		canvas1.Children.Add(p);

}	

The	Draw	method	of	the	EasingChartControl	is	invoked	on	the	start	of	the
animation	(code	file	Animation/EasingFunctions.xaml.cs):

private	void	StartAnimation(EasingFunctionBase	easingFunction)

{

		//	show	the	chart

		chartControl.Draw(easingFunction);

		//…	

When	you	run	the	application,	you	can	see	in	Figure	31-14	what	it	looks	like	to
use	BounceEase	and	EaseOut.	Run	the	applications	and	check	the	downloadable
.avi	file	for	other	selections.

FIGURE	31-14

Keyframe	Animations
With	ease	functions,	you've	seen	how	animations	can	be	built	in	a	nonlinear
fashion.	If	you	need	one	property	to	animate	through	several	values	for	an
animation,	you	can	use	keyframe	animations.	Like	normal	animations,	keyframe
animations	are	various	animation	types	that	exist	to	animate	properties	of
different	types.

DoubleAnimationUsingKeyFrames	is	the	keyframe	animation	for	double	types.
Other	keyframe	animation	types	are	Int32AnimationUsingKeyFrames,
PointAnimationUsingKeyFrames,	ColorAnimationUsingKeyFrames,
SizeAnimationUsingKeyFrames,	and	ObjectAnimationUsingKeyFrames.

The	following	example	XAML	code	animates	the	position	of	an	ellipse	by
animating	the	X	and	Y	values	of	a	TranslateTransform	element.	The	animation
starts	when	the	ellipse	is	loaded	by	defining	an	EventTrigger	to	RoutedEvent
Ellipse.Loaded.	The	event	trigger	starts	a	Storyboard	with	the
BeginStoryboard	element.	The	Storyboard	contains	two	keyframe	animations
of	type	DoubleAnimationUsingKeyFrame.	A	keyframe	animation	consists	of
frame	elements.	The	first	keyframe	animation	uses	a	LinearKeyFrame,	a
DiscreteDoubleKeyFrame,	and	a	SplineDoubleKeyFrame	;	the	second	animation
is	an	EasingDoubleKeyFrame.	The	LinearDoubleKeyFrame	makes	a	linear
change	of	the	value.	The	KeyTime	property	defines	when	in	the	animation	the
value	of	the	Value	property	should	be	reached.

Here,	the	LinearDoubleKeyFrame	has	three	seconds	to	move	the	property	X	to
the	value	30.	DiscreteDoubleKeyFrame	makes	an	immediate	change	to	the	new
value	after	four	seconds.	SplineDoubleKeyFrame	uses	a	Bézier	curve	whereby
two	control	points	are	specified	by	the	KeySpline	property.
EasingDoubleKeyFrame	is	a	frame	class	that	supports	setting	an	easing	function
such	as	BounceEase	to	control	the	animation	value	(code	file
Animation/KeyFrameAnimationPage.xaml):

<Canvas>

		<Ellipse	Fill="Red"	Canvas.Left="20"	Canvas.Top="20"	

Width="25"	Height="25">

				<Ellipse.RenderTransform>

						<TranslateTransform	X="50"	Y="50"	x:Name="ellipseMove"	/>

				</Ellipse.RenderTransform>

				<Ellipse.Triggers>

						<EventTrigger>

								<BeginStoryboard>

										<Storyboard>

												<DoubleAnimationUsingKeyFrames	

Storyboard.TargetProperty="X"

														Storyboard.TargetName="ellipseMove">

														<LinearDoubleKeyFrame	KeyTime="0:0:2"	Value="30"	

/>

														<DiscreteDoubleKeyFrame	KeyTime="0:0:4"	Value="80"	

/>

														<SplineDoubleKeyFrame	KeySpline="0.5,0.0	0.9,0.0"

																KeyTime="0:0:10"	Value="300"	/>

														<LinearDoubleKeyFrame	KeyTime="0:0:20"	Value="150"	

/>

												</DoubleAnimationUsingKeyFrames>

												<DoubleAnimationUsingKeyFrames	

Storyboard.TargetProperty="Y"

														Storyboard.TargetName="ellipseMove">

														<SplineDoubleKeyFrame	KeySpline="0.5,0.0	0.9,0.0"

																KeyTime="0:0:2"	Value="50"	/>

														<EasingDoubleKeyFrame	KeyTime="0:0:20"	

Value="300">

																<EasingDoubleKeyFrame.EasingFunction>

																		<BounceEase	/>

																</EasingDoubleKeyFrame.EasingFunction>

														</EasingDoubleKeyFrame>

												</DoubleAnimationUsingKeyFrames>

										</Storyboard>

								</BeginStoryboard>

						</EventTrigger>

				</Ellipse.Triggers>

		</Ellipse>

</Canvas>

Transitions
To	make	it	easier	for	you	to	create	animated	user	interfaces,	UWP	apps	define
transitions.	Transitions	make	it	easier	to	create	compelling	apps	without	the	need
to	think	about	what	makes	a	cool	animation.	Transitions	predefine	animations	for
adding,	removing,	and	rearranging	items	in	a	list;	opening	panels;	changing	the
content	of	content	controls;	and	more.

The	following	sample	demonstrates	several	transitions	to	show	them	on	the	left
side	of	a	user	control	versus	the	right	side,	and	it	shows	similar	elements	without
transitions,	which	helps	you	see	the	differences.	Of	course,	you	need	to	start	the

application	to	see	the	difference	because	it	is	hard	to	demonstrate	this	in	a	book.

Reposition	Transition
The	first	example	makes	use	of	the	RepositionThemeTransition	within	the
Transitions	property	of	a	Button	element.	A	transition	always	needs	to	be
defined	within	a	TransitionCollection	because	such	collections	are	never
created	automatically,	and	there's	a	misleading	runtime	error	in	case	you	don't
use	the	TransitionCollection.	The	second	button	doesn't	use	a	transition	(code
file	Transitions/RepositionUserControl.xaml):

<Button	Grid.Row="1"	Click="OnReposition"	Content="Reposition"

		x:Name="buttonReposition"	Margin="10">

		<Button.Transitions>

				<TransitionCollection>

						<RepositionThemeTransition	/>

				</TransitionCollection>

		</Button.Transitions>

</Button>

<Button	Grid.Row="1"	Grid.Column="1"	Click="OnReset"	

Content="Reset"

		x:Name="button2"	Margin="10"	/>	

The	RepositionThemeTransition	is	a	transition	when	a	control	changes	its
position.	In	the	code-behind	file,	when	the	user	clicks	the	button,	the	Margin
property	is	changed,	which	also	changes	the	position	of	the	button.

private	void	OnReposition(object	sender,	RoutedEventArgs	e)

{

		buttonReposition.Margin	=	new	Thickness(100);

		button2.Margin	=	new	Thickness(100);

}

	

private	void	OnReset(object	sender,	RoutedEventArgs	e)

{

		buttonReposition.Margin	=	new	Thickness(10);

		button2.Margin	=	new	Thickness(10);

}

Pane	Transition
The	PopupThemeTransition	and	PaneThemeTransition	are	shown	in	the	next
user	control.	Here,	the	transitions	are	defined	with	the	ChildTransitions
property	of	the	Popup	control	(code	file
Transitions/PaneTransitionUserControl.xaml):

<StackPanel	Orientation="Horizontal"	Grid.Row="2">

		<Popup	x:Name="popup1"	Width="200"	Height="90"	Margin="60">

				<Border	Background="Red"	Width="100"	Height="60">

				</Border>

				<Popup.ChildTransitions>

						<TransitionCollection>

								<PopupThemeTransition	/>

						</TransitionCollection>

				</Popup.ChildTransitions>

		</Popup>

		<Popup	x:Name="popup2"	Width="200"	Height="90"	Margin="60">

				<Border	Background="Red"	Width="100"	Height="60">

				</Border>

				<Popup.ChildTransitions>

						<TransitionCollection>

								<PaneThemeTransition	/>

						</TransitionCollection>

				</Popup.ChildTransitions>

		</Popup>

		<Popup	x:Name="popup3"	Margin="60"	Width="200"	Height="90">

				<Border	Background="Green"	Width="100"	Height="60">

				</Border>

		</Popup>

</StackPanel>

The	code-behind	file	opens	and	closes	the	Popup	controls	by	setting	the	IsOpen
property.	This	in	turn	starts	the	transition	(code	file
Transitions\PaneTransitionUserControl.xaml):

private	void	OnShow(object	sender,	RoutedEventArgs	e)

{

		popup1.IsOpen	=	true;

		popup2.IsOpen	=	true;

		popup3.IsOpen	=	true;

}

	

private	void	OnHide(object	sender,	RoutedEventArgs	e)

{

		popup1.IsOpen	=	false;

		popup2.IsOpen	=	false;

		popup3.IsOpen	=	false;

}

When	you	run	the	application,	you	can	see	that	the	PopupThemeTransition
looks	good	for	opening	Popup	and	Flyout	controls.	The	PaneThemeTransition
opens	the	pop-up	slowly	from	the	right	side.	This	transition	can	also	be
configured	to	open	from	other	sides	by	setting	properties	and	thus	is	best	for

panels,	such	as	the	settings	bar,	that	move	in	from	a	side.

Transitions	for	Items
Adding	and	removing	items	from	an	item's	control	also	defines	a	transition.	The
following	ItemsControl	uses	the	EntranceThemeTransition	and
RepositionThemeTransition.	The	EntranceThemeTransition	is	used	when	an
item	is	added	to	the	collection;	the	RepositionThemeTransition	is	used	when
items	are	rearranged—for	example,	by	removing	an	item	from	the	list	(code	file
Transitions/ListItemsUserControl.xaml):

<ItemsControl	Grid.Row="1"	x:Name="list1">

		<ItemsControl.ItemContainerTransitions>

				<TransitionCollection>

						<EntranceThemeTransition	/>

						<RepositionThemeTransition	/>

				</TransitionCollection>

		</ItemsControl.ItemContainerTransitions>

</ItemsControl>

<ItemsControl	Grid.Row="1"	Grid.Column="1"	x:Name="list2"	/>	

In	the	code-behind	file,	Rectangle	objects	are	added	and	removed	from	the	list
control.	As	one	of	the	ItemsControl	objects	doesn't	have	a	transition	associated,
you	can	easily	see	the	difference	in	behavior	when	you	run	the	application	(code
file	Transitions/ListItemsUserControl.xaml.cs):

private	void	OnAdd(object	sender,	RoutedEventArgs	e)

{

		list1.Items.Add(CreateRectangle());

		list2.Items.Add(CreateRectangle());

}

	

private	Rectangle	CreateRectangle()	=>

		new	Rectangle

		{

				Width	=	90,

				Height	=	40,

				Margin	=	new	Thickness(5),

				Fill	=	new	SolidColorBrush	{	Color	=	Colors.Blue	}

		};

	

private	void	OnRemove(object	sender,	RoutedEventArgs	e)

{

		if	(list1.Items.Count>	0)

		{

				list1.Items.RemoveAt(0);

				list2.Items.RemoveAt(0);

		}

}

NOTE With	these	transitions,	you	get	an	idea	of	how	they	reduce	the	work
needed	to	animate	the	user	interface.	Be	sure	to	check	out	more	transitions
available	with	UWP	apps.	You	can	see	all	the	transitions	by	checking	the
derived	classes	from	Transition	in	the	Microsoft	documentation.

VISUAL	STATE	MANAGER
Earlier	in	this	chapter	in	the	section	“Control	Templates,”	you	saw	how	to	create
control	templates	to	customize	the	look	of	controls.	Something	was	missing
there.	With	the	default	template	of	a	button,	the	button	reacts	to	mouse	moves
and	clicks	and	looks	differently	when	the	mouse	moves	over	the	button	or	the
button	is	clicked.	This	change	in	the	look	of	a	control	is	handled	with	the	help	of
visual	states	and	animations,	controlled	by	the	VisualStateManager.

This	section	examines	changing	the	button	style	to	react	to	mouse	moves	and
clicks,	but	it	also	describes	how	to	create	custom	states	to	deal	with	changes	of	a
complete	page	when	several	controls	should	switch	to	the	disabled	state—for
example,	when	some	background	processing	occurs.

With	a	XAML	control,	visual	states,	state	groups,	and	states	can	be	defined	that
specify	animations	for	a	state.	State	groups	exist	to	allow	having	multiple	states
at	once.	For	one	group,	only	one	state	is	allowed	at	one	time.	However,	another
state	of	another	group	can	be	active	at	the	same	time.	Examples	for	this	are	the
states	and	state	groups	with	a	button.	The	Button	control	defines	the	state	groups
CommonStates	and	FocusStates.	States	defined	with	FocusStates	are	Focused,
Unfocused,	and	PointerFocused.	The	CommonStates	group	defines	the	states
Normal,	Pressed,	Disabled,	and	PointerOver.	With	these	options,	multiple
states	can	be	active	at	the	same	time,	but	there	is	always	only	one	state	active
within	a	state	group.	For	example,	a	button	can	be	in	focus	and	in	the	normal
state.	It	can	also	be	in	focus	and	pressed.	You	can	also	define	custom	states	and
state	groups.

Let's	get	into	concrete	examples.

Predefined	States	with	Control	Templates

The	custom	control	template	created	earlier	to	style	the	Button	control	is	now
enhanced	by	using	visual	states.	An	easy	way	to	do	this	is	by	using	Blend	for
Visual	Studio.	With	Blend,	you	have	a	designer	that	allows	creating	and
customizing	states	and	recording	the	storyboard	to	define	what	should	happen
when	one	state	switches	to	the	other.

NOTE At	the	time	of	this	writing,	Blend	for	Visual	Studio	does	not	have
support	for	WinUI.	If	this	is	still	the	case	when	you	design	your	WinUI
application,	you	can	use	Blend	with	UWP	applications	and	copy	the	style	to
your	WinUI	application.

The	button	template	from	before	is	changed	to	define	visual	states	for	the	states
Pressed,	Disabled,	and	PointerOver.	Within	the	states,	a	Storyboard	defines	a
ColorAnimation	to	change	the	color	of	the	Fill	property	of	an	ellipse	(code	file
VisualStates/MainPage.xaml):

<Style	x:Key="RoundedGelButton"	TargetType="Button">

		<Setter	Property="Width"	Value="100"	/>

		<Setter	Property="Height"	Value="100"	/>

		<Setter	Property="Foreground"	Value="White"	/>

		<Setter	Property="Template">

				<Setter.Value>

						<ControlTemplate	TargetType="Button">

								<Grid>

										<VisualStateManager.VisualStateGroups>

												<VisualStateGroup	x:Name="CommonStates">

														<VisualState	x:Name="Normal"/>

														<VisualState	x:Name="Pressed">

																<Storyboard>

																		<ColorAnimation	Duration="0"	To="#FFC8CE11"

																				Storyboard.TargetProperty=

																						"(Shape.Fill).(SolidColorBrush.Color)"

																				Storyboard.TargetName="GelBackground"	/>

																</Storyboard>

														</VisualState>

														<VisualState	x:Name="Disabled">

																<Storyboard>

																		<ColorAnimation	Duration="0"	To="#FF606066"

																				Storyboard.TargetProperty=

																						"(Shape.Fill).(SolidColorBrush.Color)"

																				Storyboard.TargetName="GelBackground"	/>

																</Storyboard>

														</VisualState>

														<VisualState	x:Name="PointerOver">

																<Storyboard>

																		<ColorAnimation	Duration="0"	To="#FF0F9D3A"

																				Storyboard.TargetProperty=

																						"(Shape.Fill).(SolidColorBrush.Color)"

																				Storyboard.TargetName="GelBackground"	/>

																</Storyboard>

														</VisualState>

												</VisualStateGroup>

										</VisualStateManager.VisualStateGroups>

										<Ellipse	x:Name="GelBackground"	StrokeThickness="0.5"	

Fill="Black">

														<Ellipse.Stroke>

														<LinearGradientBrush	StartPoint="0,0"	

EndPoint="0,1">

																<GradientStop	Offset="0"	Color="#ff7e7e7e"	/>

																<GradientStop	Offset="1"	Color="Black"	/>

														</LinearGradientBrush>

												</Ellipse.Stroke>

										</Ellipse>

										<Ellipse	Margin="15,5,15,50">

												<Ellipse.Fill>

														<LinearGradientBrush	StartPoint="0,0"	

EndPoint="0,1">

																<GradientStop	Offset="0"	Color="#aaffffff"	/>

																<GradientStop	Offset="1"	Color="Transparent"	/>

														</LinearGradientBrush>

												</Ellipse.Fill>

										</Ellipse>

										<ContentPresenter	x:Name="GelButtonContent"

												VerticalAlignment="Center"

												HorizontalAlignment="Center"

												Content="{TemplateBinding	Content}"	/>

								</Grid>

						</ControlTemplate>

				</Setter.Value>

		</Setter>

</Style>

Now	when	you	run	the	application,	you	can	see	the	color	changes	based	on
moving	and	clicking	the	mouse.

Defining	Custom	States
You	can	define	custom	states	by	using	the	VisualStateManager,	custom	state
groups	by	using	VisualStateGroup,	and	states	by	using	VisualState.	The

following	code	snippet	creates	the	Enabled	and	Disabled	states	within	the
CustomStates	group.	The	visual	states	are	defined	within	the	Grid	of	the	main
window.	On	changing	the	state,	the	IsEnabled	property	of	a	Button	element	is
changed	using	a	DiscreteObjectKeyFrame	animation	in	no	time	(code	file
VisualStates/MainPage.xaml):

<VisualStateManager.VisualStateGroups>

		<VisualStateGroup	x:Name="CustomStates">

				<VisualState	x:Name="Enabled"/>

				<VisualState	x:Name="Disabled">

						<Storyboard>

								<ObjectAnimationUsingKeyFrames

										Storyboard.TargetProperty="(Control.IsEnabled)"

										Storyboard.TargetName="button1">

										<DiscreteObjectKeyFrame	KeyTime="0">

												<DiscreteObjectKeyFrame.Value>

														<x:Boolean>False</x:Boolean>

												</DiscreteObjectKeyFrame.Value>

										</DiscreteObjectKeyFrame>

								</ObjectAnimationUsingKeyFrames>

								<!--	another	key	frame	animation	for	button2	-->

						</Storyboard>

				</VisualState>

		</VisualStateGroup>

</VisualStateManager.VisualStateGroups>

Setting	Custom	States
Now	the	states	need	to	be	set.	You	can	do	this	easily	by	invoking	the	GoToState
method	of	the	VisualStateManager	class.	In	the	code-behind	file,	the	OnEnable
and	OnDisable	methods	are	Click	event	handlers	for	two	buttons	in	the	page
(code	file	VisualStates/MainWindow.xaml.cs):

private	void	OnEnable(object	sender,	RoutedEventArgs	e)	=>

		VisualStateManager.GoToState(page1,	"Enabled",	useTransitions:	

true);

	

private	void	OnDisable(object	sender,	RoutedEventArgs	e)	=>

		VisualStateManager.GoToState(page1,	"Disabled",	

useTransitions:	true);

In	a	real	application,	you	can	change	the	state	in	a	similar	manner—for	example,
when	a	network	call	is	invoked—and	the	user	should	not	act	on	some	of	the
controls	within	the	page.	The	user	should	still	be	allowed	to	click	a	cancellation
button.	By	changing	the	state,	you	can	also	show	progress	information.

SUMMARY
In	this	chapter,	you	toured	many	of	the	features	of	styling	Windows	apps.	With
XAML	it	is	easy	to	separate	the	work	of	developers	and	designers.	All	UI
features	can	be	created	with	XAML,	and	the	functionality	can	be	created	by
using	a	code-behind	file.

You	have	seen	many	shapes	and	geometry	elements.	Vector-based	graphics
enable	XAML	elements	to	be	scaled,	skewed,	rotated,	and	translated.

Different	kinds	of	brushes	are	available	for	painting	the	background	and
foreground	of	elements.	You	can	use	not	only	solid	brushes	and	linear	or	radial
gradient	brushes	but	also	acrylic	brushes	that	offer	transparent	effects.

Styling	and	templates	enable	you	to	customize	the	look	of	controls;	with	the
VisualStateManager,	you	can	change	properties	of	XAML	elements
dynamically.	You	can	easily	create	animations	by	animating	a	property	value
from	a	XAML	control.

This	was	the	last	of	the	WinUI	chapters	of	this	book.	At	the	time	of	this	writing,
WinUI	is	still	in	its	early	stages,	and	many	more	features	are	coming.	Check
https://csharp.christiannagel.com	and
https://github.com/ProfessionalCSharp/MoreSamples	for	more	features	of
WinUI	and	for	information	about	how	you	can	use	XAML	with	mobile
applications	running	on	Android	and	iOS	using	.NET	MAUI.

https://csharp.christiannagel.com
https://github.com/ProfessionalCSharp/MoreSamples

INDEX
A

abstract	classes/methods,	101–102

abstract	modifier,	106

Accept	header,	702

access	modifiers,	66,	104–105

ACCOUNT_USERNAME,	413

AcrylicBrush,	908

Action	type,	455

Action<int,	ParallelLoopState>,	445

Action<T>	delegate,	183–184

Action<TLocal>,	446

Activity	class,	428

Activity.Current,	428

ActivitySource,	427–428

ActivitySource.StartActivity	method,	428

adaptive	triggers,	872–874

Add	method,	197–198

AddApplicationInsightsTelemetry	method,	437,	438

AddAuthentication	method,	736

AddAuthorization	method,	563–566

AddAzureAppConfiguration	method,	413,	414,	415

AddBookAsync	method,	589

AddCheck	method,	710

AddCheckAsync	method,	710

AddConfiguration	method,	426

AddDbContext	method,	592–593

AddDistributedMemoryCache	method,	707

AddDocument	method,	204

AddGreetingService	method,	404,	405,	406

AddGrpc	method,	741

AddHealthChecks	method,	709–710

AddHttpClient	method,	555–556

additive	operators,	120

AddJsonFile	method,	409

AddLocalization	method,	659

AddMvcOptions	method,	563–566

AddOpenTelemetry,	427

AddOptions	method,	405

AddParticipant,	478

AddRange	method,	197–198,	589

AddRazorOptions	method,	754

AddRazorPageOptions	method,	754

AddRazorPages	method,	782

AddScoped	method,	403

AddSession	method,	707

AddSingleton	method,	394,	398,	403

AddSource	method,	428

AddToGroupAsync	method,	810–811

AddToOutput	method,	317

AddTransient	method,	394,	398,	403

Aggregate	method,	234,	252–254

aggregate	operators,	252–254

AggregateException,	299

aliases,	namespace,	45

All	operator,	233

AllocHGlobal	method,	366

AllowMultiple	parameter,	310

ambient	transactions,	637–638

AmbientTransactionAsync	method,	637–638

&	operator,	351

Analytics	object,	435

Analytics.SetEnabledAsync(false),	436

Analytics.TrackEvent,	435

AnalyzeType	method,	317

Angular,	689

animations

about,	918

easing	functions,	920–924

keyframe,	925

Timeline	class,	918–920

transitions,	926–928

annotations,	586–587,	663–664

anonymous	methods/types,	76–77,	186–187

Any	operator,	233

anycast,	524

App	class,	822–824

AppBarButton	control,	850,	857

AppBarSeparator	control,	841

AppBarToggleButton	control,	850

AppCenter.Start,	435

AppConfigurationSample:Settings:Config1,	414,	415

Application	Insights,	420,	429,	437–439

application	programming	interface	(API),	586–587,	594–595,	722–723

ApplicationInsights	section,	438

applications

building,	18–19

creating,	16–17

publishing,	20

running,	19–20

startup,	822–824

appsettings.Development.json,	409

appsettings.(environmentname).json,	409,	426

appsettings.json,	426

appsettings.Production.json,	409

appsettings.Staging.json,	409

arabel,	338,	339

ArgumentException,	264

ArgumentNullException,	37–38,	264

ArgumentOutOfRangeException,	264

Array	class

about,	159

copying	arrays,	160

creating	arrays,	159–160

sorting,	160–163

ArrayPool	class,	172,	173,	174,	336

arrays

accessing	elements	of,	155–156

Array	class,	159–163

array	pools,	172–174

BitArray	type,	174–176

changing	content	of,	171–172

copying,	160

creating,	159–160

declaring,	154–155

enumerators,	163–166

immutable,	225

indices,	170–172

initializing,	154–155

jagged,	158

multidimensional,	157

multiple	objects	of	same	type,	154

as	parameters,	163

ranges,	170–172

simple,	154–156

sorting,	160–163

using	reference	types,	156

using	Span	with,	167–170

as	operator,	123

AsEnumerable	operator,	234

AsInputStream	method,	518–519

AsNoTracking	method,	628–629

AsOutputStream	method,	518–519

ASP.NET	Core

about,	333

adding	client-side	content,	694–696

Blazor,	11

creating	custom	middleware,	696–698

creating	web	projects,	689–694

deployment,	711–712

endpoint	routing,	699–700

health	checks,	708–711

integration	testing,	682–684

localization	with,	658–664

MVC,	11,	773–778

Razor	Pages,	11

request	and	response,	700–706

REST	services	with,	715–724

session	state,	706–708

web	technologies,	687–689

AsRandomAccessStream	method,	518–519

assemblies,	378,	379–380

Assembly	class,	318–319

assembly	keyword,	310

Assembly.ExportedTypes	property,	320

Assembly.GetCustomAttributes,	319

Assembly.GetExecutingAssembly	method,	318

Assembly.GetTypes	method,	318

Assembly.Load,	318

Assembly.LoadFrom,	318

assignment	operators,	120,	121

AsStream	method,	518–519

AsStreamForRead	method,	518–519

AsStreamForWrite	method,	518–519

AsTask	extension	method,	305

*	operator,	351

asymmetric	key	algorithms,	567–568

async	keyword,	290,	291,	293,	294,	302–306,	481

async	pattern,	289

async	streams,	300–301

async	void	methods,	297

AsyncCallback	delegate,	289

AsyncFunction	function,	303

asynchronous	GET	requests,	549–550

asynchronous	methods

cancellation	of,	299–300

error	handling	in,	297

handling	exceptions	with,	298

handling	exceptions	with	multiple,	298–299

using	combinators,	295

using	multiple	ones,	295

asynchronous	programming,	289

asynchronous	streams,	609

AsyncSemaphore	class,	483

attributes,	setting	properties	as,	828

AttributeTargets,	310

AttributeTargets.All,	310

attributeText	field,	330

AttributeUsage	attribute,	310

authentication,	563–566,	732–740

authorization,	563–566,	732–740

auto-implemented	properties,	65–66

auto-implemented	read-only	properties,	67

automatic	fall-through,	39

AutoResetEvent,	473

AutoReverse	property,	919

AutoSuggestBox	control,	851

Average	method,	234,	252–254

await	foreach,	301,	460

await	keyword,	289–296,	444

Azure	AD	B2C,	732–740

Azure	app	configuration

creating,	411–412

dynamic	configuration,	414–415

feature	flags,	415–417

introduction	to,	411

production	and	staging	settings	with,	415

use	of	in	development	environment,	412–414

using	Azure	Key	Vault,	417–418

Azure	Application	Insights.	See	Application	Insights

Azure	Cosmos	DB,	639–643

Azure	DevOps	Services,	13

Azure	Front	Door,	802

Azure	Functions,	715,	748–751

Azure	Key	Vault,	410,	417–418,	569–571

Azure	portal,	583

Azure	serverless,	13

Azure	SQL	databases,	583–584

AzureAppConfigurationOptions,	413,	417

AzureAppConfigurationRefreshOptions	parameter,	414

AzureCliCredential,	413

B

backDateTo,	319

Barrier	class,	476–479

BarrierSample,	476

Base	class,	casts	between,	148–149

base	keyword,	calling	base	versions	of	methods,	100–101

BaseType	property,	315

Batch,	as	value	for	GCLatency	Mode,	342

BeginGetResponse	method,	289

BeginScope	method,	421

BeginTime	property,	919

BeginTransactionAsync	method,	636–637

BeginXX	method,	289

BigInteger,	33

big-O	notation,	220–221

binary	files,	reading	and	writing,	505

binary	operators,	127–131

binary	values,	34

BinaryReader	method,	505

BinaryWriter	method,	505

BinderOption	value,	408

BindNonPublicProperties,	408

BitArray	type,	174–176

Blazor

built-in	components,	799–800

cascading	parameters,	797–798

components,	792–800

EventCallback	class,	794–795

templated	components,	798–799

two-way	binding,	796–797

updating	user	interface,	795

Blazor	Server

about,	780

Counter	component,	785–786

creating	web	applications,	782–788

FetchData	component,	786–788

layout,	783–784

navigation,	784–785

startup,	782–783

Blazor	WebAssembly

about,	781,	788–789

injecting	HttpClient	with,	790–791

progressive	web	applications,	791–792

startup,	789

block	scope,	337

blocking	scenarios,	avoidance	of,	305–306

Book	class,	32,	330

Boolean	type,	35

bootstrapping,	MVC,	773

Border	class,	839

Border	Gateway	Protocol	(BGP),	524

bounded	channels,	458

BoundedChannelFullMode	enum,	459

BoundedChannelOptions,	459

boxing,	135,	149

break	statement,	44

breaking	changes,	112–113

broadcast	address,	524

Brotli,	506

BrotliStream,	505–506,	507

brushes,	906–908

buffered	streams,	502–503

builders,	using	with	immutable	collections,	223–224

BuildServiceProvider	method,	394

built-in	components	(Razor),	799–800

Button	class,	833–834,	850

ButtonClick	event,	436

buttons,	850–851

byte	data	type,	122

C

C#	language

about,	25

arrays,	153–176

classes,	59–94

collections,	193–225

command-line	arguments,	27

constants,	28–29

Core,	24–58

delegates,	177–192

errors,	263–287

events,	177–192

exceptions,	263–287

lambdas,	177–192

language	integrated	query,	226–262

managed	memory,	335–373

methods/types	with	top-level	statements,	29–30

.NET	applications	and	tools,	3–23

object-oriented	programming	in,	95–118

operators	and	casts,	119–152

preprocessor	directives,	51–54

programming	guidelines,	54–58

records,	59–94

reflection,	metadata	and	source	generation,	307–334

structs,	59–94

tasks	and	asynchronous	programming,	288–306

top-level	statements,	25–26,	29–30

traits	with,	113–115

tuples,	59–94

unmanaged	memory,	325–373

variable	scope,	27–28

variables,	26

<c>	tag,	49

Calculation	method,	473

CalculationTask	method,	476

Calculator	class,	322,	473,	474,	475

CalculatorLib,	322–323

CalculatorTypeName,	323

CalendarDatePicker	control,	841

CalendarView	control,	841,	843–847

callbacks,	value	changed,	831–832

caller	information,	285–287

CallerWithAsync	method,	293,	294

CallerWithAwaiter	method,	294

CallerWithContinuationTask	method,	294

calling	convention,	361

CallingConvention	property/field,	369

camelCase,	56,	87

Cancel	method,	455

cancellation	framework,	455–458

CancellationToken,	299,	300,	301,	455,	457

CancellationTokenSource,	299,	300,	455,	457

CandidatesClasses	collection,	331

cannot	await	in	the	body	of	a	lock	statement,	481

cascading	parameters,	797–798

case-sensitivity,	25,	56

Cast	operator,	234

casts

between	Base	and	Derived	classes,	148–149

boxing,	149

between	classes,	147–148

multiple,	150–152

unboxing,	149

user-defined,	144–149

catch	blocks,	265–268,	269–271

catch/finally	block,	483

catching	exceptions

about,	265–268

exception	filters,	273

implementing	multiple	catch	blocks,	269–271

from	other	code,	272

performance	and,	268

rethrowing	exceptions,	273–277

System.Exception	properties,	272–273

user-defined	exception	classes,	279–280

Change	method,	461

change	notification,	with	INotifyPropertyChanged	interface,	853–855

ChangeState	method,	464,	466

Channel	class,	458

ChannelReader,	460

channels

async	streaming	with,	460–461

creating	bounded	and	unbounded	channels,	458–459

introduction	to,	458

reading	from	the	channel,	460

writing	to	the	channel,	459–460

Channel<T>	class,	458

ChannelWriter,	459

character	type,	35–36

CharSet	property/field,	370

chats,	creating	using	SignalR,	802–810

ChatViewModel	class,	808

CheckBox	control,	850

checked	operators,	122–123

classes.	See	also	specific	classes

about,	62–63

abstract,	101–102

casts	between,	147–148

compared	with	interfaces,	112

constructors	of	derived,	102–104

inheritance	with,	96–104

mapping	XAMl	elements	to,	826–827

sealed,	102

Transmission	Control	Protocol	(TCP),	533–537

updating	with,	590–591

Clear	method,	168

ClearProviders	method,	424

client	applications,	adding	authentication	to,	738–740

ClientAuthentication	class,	738–739

clients,	SignalR,	804–810

client-side	content,	adding,	694–696

Clone	method,	104,	106,	160

Close	method,	347

closures,	lambda	expressions	and,	188–189

coalescing	operator,	31

<code>	tag,	49

CodeGenerationSample	namespace,	328

Collect	method,	341

collection	initializers,	197

Collection	method,	614–615

collections

about,	154,	194

dictionaries,	211–218

immutable,	222–225

indices	and	ranges	with	custom,	172

interfaces,	194–195

iterating	through,	165–166

linked	lists,	208–209

lists,	195–206

performance,	220–221

read-only,	202

sets,	218–220

sorted	list,	209–211

stacks,	206–208

types,	194–195

ColorPicker	control,	841

ComboBox	control,	852

ComboBoxItem	control,	849

CommandBar	control,	849,	857

CommandBarFlyout	control,	852

command-line	arguments,	27

commands,	view	model,	888–889

comments,	49–51

Common	Language	Runtime	(CLR),	6

communication,	with	pipelines,	530–531

CompareTo	method,	109

compiled	queries,	609–611

compiler	features,	291

Complete	method,	459,	638

Component	Object	Model	(COM),	112

compound	assignment	operators,	121

compound	from,	236–237

compressing	files,	505–508

condition,	42

conditional	compilation,	52

conditional	logical	operators,	120

conditional	operators,	120

conditional	ref	expression,	85

conditional-expression	operator	(?:),	121–122

Config1,	414

configuration

configuration	scores,	408–409

Kestrel	server,	543–544

with	.NET	applications,	406–411

production	and	development	settings,	409–410

reading	strongly	typed	values,	408

sockets,	526

user	secrets,	410–411

using	IConfiguration,	407–408

configuration	files,	405–406

Configuration	property,	406

ConfigurationSampleService	class,	407

Configure	Await	(continueOnCapturedContext	:	false),	294

Configure	method,	404,	415,	544–545,	692,	773

ConfigureAppConfiguration,	413

ConfigureAwait,	303–304

ConfigureFunctionsWorkerDefaults	method,	749

ConfigureKestrel	method,	543–544

ConfigureKeyVault,	417

ConfigureLogging,	424

ConfigureRefresh	method,	414

ConfigureServices	method,	395,	406,	415,	544–545,	692

ConfigureWebHostDefaults	method,	543–544

conflict	handling,	630–635

Connect	method,	414

connection	string,	412

connections,	grouping,	810–814

ConnectionStrings,	407

Console	method,	25,	42

Console	provider,	424,	427

ConsoleApp.exe,	379

Console.ReadLine,	294

Console.WriteLine	method,	109–111,	365

const	keyword,	28–29

constants,	28–29,	62

constraints,	117–118

constructor	initializer,	73

ConstructorInfo	object,	316

constructors

about,	72–73

calling	from	other	constructors,	73

defined,	63

of	derived	classes,	102–104

expression	bodies	with,	73

static,	74

Contains	method,	207,	233

content,	553,	849–850

ContentControl	class,	838

ContentDialog	control,	850

ContentPresenter	class,	839

context,	585–588

continueOnCapturedContext	argument,	303

ContinueWith	method,	294,	452

Control	class,	837–838

control	templates,	913–915,	929–930

control-derived	controls,	840–847

Controller	class,	773–774

controllers,	720–722,	774–775

ControllerX,	397,	398,	399,	400

controls.	See	also	specific	controls

buttons,	850–851

content,	849–850

control-derived,	840–847

flyouts,	852

FrameworkElement	-derived	UI	elements,	838–840

items,	851–852

presenter,	840

range,	847–849

working	with,	837–852

ControlTemplate,	913

conventions,	586–587

conversion	operators,	254–255

Convert	method,	653–654

cookies,	705

Copy	method,	489

CopyTo	method,	500,	506

CopyToOutputDirectory,	405

Count	method,	203,	207,	234,	240–241,	252–254

CountdownEvent,	473,	475

Counter	component	(Blazor),	785–786,	792–793

Create	method,	574

CreateDbContext	method,	601–602

CreateDefault	method,	789

CreateDefaultBuilder	method,	395,	396,	405,	406,	408,	424,	426

CreateHardLink	method,	369,	370,	371

CreateHeading	method,	768–769

CreateInstance	method,	159–160

CreateModel	class,	761

CreateScope	method,	401

CreateServiceBFactory	function,	403

CreateUnbounded	method,	458

Critical	log	level,	421

cross-site	request	forgery,	protecting	against,	579–580

CSS,	688

The	C	Programming	Language	(Kernighan	and	Ritchie),	17

CultureInfo	class,	647,	649–654

cultures,	646–654,	661

curly	braces	({}),	25,	46,	65,	68,	78,	188

current	culture,	647

Current	property,	300

CurrentReadCount,	479

custom	attributes

AttributeUsage	attribute,	310

example	of	(VectorClass	.NET	library),	313–314

example	of	(WhatsNewAttributes),	312–313

as	existing	as	objects,	319

getting	details	about,	319

introduction	to,	308–309

specifying	attribute	parameters,	311

specifying	AttributeUsage	attribute,	310

specifying	optional	attribute	parameters,	311

writing	of,	309–311

custom	factories,	403

custom	route,	759

Customer	class,	338,	339,	340

D

data

appliction	types	for	access	to,	9–10

encrypting,	566–576

passing	between	views,	757

saving,	625–630

data	annotations,	localization	with,	663–664

data	binding

about,	852–853

change	notification	with	INotifyPropertyChanged	interface,	853–855

creating	lists	of	books,	855

events	to	methods,	856–857

list	binding,	856

showing	lists,	858–859

simple	objects,	859–860

using	data	templates,	857–858

using	DataTemplate,	857–858

value	conversion,	860–861

Data	Encryption	Standard	(DES),	567

data	loading,	613–617

data	parallelism,	441,	442

Data	property,	272–273

data	templates,	857–858

database	providers,	583

databases

creating,	588

deleting,	588–589

reading	from,	589–590

scaffolding	models	from,	600–601

writing	to,	589

DataTemplate,	857–858,	913

DataWriter,	517

date	formatting,	648–649

DatePicker	control,	841,	846–847

dates,	selecting,	843–847

DaysOfWeek	enum	type,	81–82

dbcontext	command,	600–601

DbContext	method,	585–586,	592–593,	609–611

DbSet	method,	609

deadlock	scenario,	305

Deadlock1	method,	466,	467

Deadlock2	method,	466,	467

deadlocks,	466–468

Debug	build,	19,	51

Debug	log	level,	421

debug	provider,	424

DeclaredMembers	property,	321

Deconstruct	method,	88–89

deconstructing	tuples,	87

deconstructors,	63

decrement	operator	(--),	121

Default	key,	426

DefaultAzureCredential	class,	413

DefaultIfEmpty	method,	246–249

deferred	loading,	874–875

deferred	query	execution,	LINQ	and,	231–232

#define	directive,	51

deflate	algorithm,	506

DeflateStream,	505–506

DelayAsync	function,	305

delegate	inference,	180

delegate	keyword,	361

delegates

about,	178

Action<T>,	183–184

anonymous	methods,	186–187

declaring,	178–179

Func<T>,	183–184

multicast,	184–186

passing	to	methods,	182–183

using,	179–181

DELETE	request,	723,	729–730

DeleteDuplicateFiles	method,	492–493

DependenceObject	class,	304

dependencies,	675–678,	829–831

dependency	injection	(DI)

configuring	context	with,	587–588

defined,	393

with	interfaces,	109–111

lifetime	of	services,	396–403

singleton	and	transient	service,	398–400

using	custom	factories,	403

using	Host	class,	395–396

using	.NET	DI	container,	393–395

using	scoped	services,	400–402

view	models,	889–890

DependencyObject	class,	837

deployment,	of	web	applications,	711–712

Dequeue	method,	203

dereference	operator,	351

Derived	class,	casts	between,	148–149

deserialization,	512

Deserialize	method,	508

destructors,	63,	344–345,	347–348

Details	method,	773–774

DetectChanges	method,	629

developer	tools,	14–16

DiagnosticCounter	class,	430

DiagnosticCounter	-derived	types,	430–431

diagnostics

Application	Insights,	437–439

logging,	421–429

metrics,	429–434

overview,	420–421

Visual	Studio	App	Center,	434–437

dictionaries

about,	211

example	of,	213–217

initializers,	212

key	type,	212–213

lookups,	217

sorted,	217–218

Dictionary	collection,	221

digit	separators,	34

Digital	Signature	Algorithm	(DSA),	568

Directory	class,	486,	492–493

DirectoryInfo	class,	486–487

discards,	87

DispatcherQueue	object,	304

DispatcherSynchronizationContext,	294

DispatcherTimer,	461,	462

DisplayAllTitles	method,	117–118

DisplayName,	430

DisplayRateTimeScale,	430

DisplaySpan	method,	168

DisplayTree	method,	258–261

DisplayTypeInfo	method,	320

DisplayUnits,	430

Dispose	(bool),	348

Dispose	method,	107–108,	291,	345–348,	397,	402,	483,	498–499

DisposeAsync	method,	300,	346

Distinct	operator,	234

Div	method,	701–702

.	dll	file	extension,	379

DLL	hell,	378

DllImport	attribute,	349,	368,	369–370,	371

DllImportAttribute	class,	369

Dns	class,	524–525

Docker	Desktop,	16

Docker	images,	711–712

document	object	model	(DOM),	513,	688

DocumentManager	class,	204

DontHandle	method,	297

dotnet	add	package	command,	384,	386

dotnet	add	reference	command,	383

dotnet	bootstrapper,	379

dotnet	ConsoleApp.dll,	379

dotnet	counters,	420

dotnet	ef	command,	600–601

dotnet	new	classlib,	381

dotnet	new	command,	20

dotnet	run	command,	19,	27

dotnet	sln	add	command,	383

dotnet	tools,	16–17

dotnet	trace,	420

dotnet-counters,	433

DOTNET_ENVIRONMENT	variable,	409

double	blackslash	(\\),	48

double	keyword,	35

do-while	loop,	43,	428

Down	method,	604

Draw	method,	923–924

DriveInfo	class,	486,	487

DriveNotFoundException,	265

DropDownButton	control,	850

DropNewest,	459

DropWrite,	459

Duration	property,	920

DWORD,	352

dynamic	keyword,	324

dynamic	language	extensions

instantiating	a	type	dynamically,	323

invoking	member	with	dynamic	type,	324–325

invoking	member	with	Reflection	API,	323–324

use	of	for	reflection,	322–325

dynamic	link	libraries	(DLLs),	378

dynamic	programming,	308

dynamic	type,	308,	325

DynamicObject,	308,	325

E

EasingFunction	property,	920–924

ECMAScript,	688–689

EF.Functions,	612

ElapsedMilliseconds,	432

ElementAt	operator,	234

ElementAtOrDefault	operator,	234

#elif	directive,	52

Ellipse	class,	839,	902

Elliptic	Curve	Diffie-Hellman	(ECDH),	568

Elliptic	Curve	DSA	(ECDSA),	568

#else	directive,	52

else	if	statement,	37

Empty	operator,	234

encoding,	576–578

encrypting	data,	566–576

EndGetResponse	method,	289

#endif	directive,	52

EndOfStreamException,	265

endpoint,	412

endpoint	routing,	699–700

#endregion	directive,	53

EndXX	method,	289

engineSize,	337,	338

EnhancedCustomer	class,	338

Enqueue	method,	203

EnsureCreatedAsync	method,	588–589

EnsureSuccessStatusCode	method,	550

Enter	method,	468,	469

EnterGroupCommand	method,	812–813

EnterReadLock,	479

EnterUpgradableReadLock,	479

EnterWriteLock,	479

entities,	LINQ,	227–229

Entity	Framework	Core

about,	10,	583

annotations,	586–587

Azure	Cosmos	DB,	639–643

configuring	context	with	DI	provider,	587–588

conflict	handling,	630–635

conventions,	586–587

creating	Azure	SQL	databases,	583–584

creating	context,	585–586

creating	databases,	588

creating	models,	584–585,	593–600

database	providers,	583

deleting	databases,	588–589

deleting	records,	591–592

fluent	API,	586–587

loading	related	data,	612–617

logging	and	metrics,	592–593

migrations,	601–606

queries,	606–612

reading	from	databases,	589–590

relationships,	617–625

saving	data,	625–630

scaffolding	models	from	databases,	600–601

transactions,	635–638

updating	with	classes,	590–591

updating	with	records,	591

using	with	services,	730–732

writing	to	databases,	589

EntryPoint	property/field,	369

Enum	types,	80–82

Enumerable	class,	233–234,	454

EnumeratorCancellation,	301

enumerators,	163–166

EnvironmentalCredential,	413

equality,	78–79,	139–141

equality	operators,	120

Equals	method,	140–141

EquatableGenerator,	331

#error	directive,	52–53

error	handling.	See	errors	and	exceptions

Error	log	level,	421

Error	method,	432

errors	and	exceptions

caller	information,	285–287

catching	exceptions,	265–278

catching	user-defined	exceptions,	279–280

defining	user-defined	exception	classes,	284–285

exception	filters,	273

handling	errors,	264

handling	exceptions	with	asynchronous	methods,	298

handling	exceptions	with	multiple	asynchronous	methods,	298–299

implementing	multiple	catch	blocks,	269–271

introduction	to,	297

performance	and,	268

predefined	exception	classes,	264–265

rethrowing	exceptions,	273–277

System.Exception	properties,	272–273

throwing	exceptions	from	errors,	550

throwing	ser-defined	exceptions,	281–283

user-defined	exception	classes,	278–285

using	AggregateException	information,	299

escape	sequence,	35–36

event	keyword,	473

event	listener,	191–192

event	publisher,	190–191

Event	Tracing	for	Windows	(ETW),	420

Event	Viewer,	420

event-based	async	pattern,	289

EventCallback	class,	794–795

EventCounter,	430,	432

EventId,	421

EventInfo	object,	316

EventLog	provider,	424

EventNames	class,	435

events

about,	178,	189,	473–476

binding	to	methods,	856–857

defined,	63

event	listener,	191–192

event	publisher,	190–191

messaging	using,	897–898

routed,	832–833

value	changed,	831–832

EventSource	class,	424,	429–430

EventWaitHandle	class,	470

<example>	tag,	49

Except	operator,	234

exception	filters,	273

exception	handling.	See	errors	and	exceptions

Exception	type,	299,	421

<exception>	tag,	49

Exception.InnerException,	299

exceptions.	See	also	errors	and	exceptions

throwing	from	errors,	550

throwing	of,	420

unit	testing	and,	672–673

Exit	method,	468

Exit.SpinLock,	469

ExpandObject	class,	308,	325–327

explicit	conversions,	133–135

explicit	implemented	interfaces,	111–112

explicit	loading,	of	data,	614–615

explicit	Razor	expression,	754

explicit	transactions,	636–637

expression	bodies,	with	constructors,	73

expression	trees,	258–261

expression-bodied	properties/methods,	66–68

eXtensible	Application	Markup	Language	(XAML)

about,	819–821,	826

attached	properties,	833–835

creating	dependency	properties,	830–831

custom	markup	extensions,	836–937

dependency	properties,	829–830

mapping	elements	to	classes,	826–827

markup	extensions,	835–836

messaging	using	events,	897–898

models,	879–882

MVVM	pattern,	876–879

routed	events,	832–833

sample	solution,	879

services,	882–883

setting	properties	as	attributes,	828

using	custom	.NET	classes	with,	827–828

using	properties	as	elements,	829

value	changed	callbacks	and	events,	831–832

view	models,	883–890

views,	891–897

extension	methods,	75–76,	230–231

extern	modifier,	106,	369

external	dependencies,	675–678

F

Factory	property,	449

FeatureSample,	416

FeatureX,	416

FetchData	component	(Blazor),	786–788

FieldInfo	object,	316

Fielding,	Roy,	715

FieldNameAttribute,	309,	310,	311

fields

about,	63–64

defined,	27,	62

mapping	to,	597

readonly,	64

using,	58

FIFO	principle,	202

File	API,	501

File	class,	486–491

FileAccess	enumeration,	496

FileInfo	class,	486–491

FileLoadException,	265

FileMode	enumeration,	496

FileNotFoundException,	265

files

about,	486

accessing	and	modifying	properties	of,	490–491

checking	drive	information,	487

compressing,	505–508

creating,	488–489

defined,	495

iterating,	492–493

JSON	serialization,	509–515

managing	changes	in,	508–509

managing	file	system,	486–492

using	readers/writers,	503–505

using	with	Windows	Runtime,	515–519

zipping,	507–508

FileShare	enumeration,	496

FileStream,	496

FileSystemInfo	class,	486

FileSystemWatcher,	508–509

FileUtility,	371

FillBehavior	property,	920

filter,	234–236

filters,	exception,	273

Finalize	method,	344,	345

finalizers,	344–345

finally	blocks,	265–268,	345,	483

FindAll	method,	200

FindAsync	method,	607

FindIndex	method,	199–200

first	one	wind	scenario,	632–635

First	operator,	234

FirstOrDefault	operator,	234

FirstOrDefaultAsync	method,	607–608

fixed	block,	356–357

FlipView	control,	852

FlipViewItem	control,	849

float	keyword,	35,	144–149

floating-point	types,	34–35

Fluent	API,	417,	586–587,	594–595

Fluent	Design	System,	900

Flyout	control,	852

FlyoutBase	class,	838

flyouts,	852

folders,	creating,	488–489

for	loop,	28,	42–43

foreach	statement,	27,	43–44,	108,	156,	164,	300

form	data,	704–705

formats,	for	strings,	47–48

FormattableString,	47

forward	slash	and	asterisk	(/*),	25

forward	slash	characters	(//),	25

Frame	class,	849,	861–862,	894

FrameworkElement	class,	837,	910

FrameworkElement	-derived	UI	elements,	838–840

FromResult	method,	453

FromSqlInterpolated	method,	609

FullMode	property,	459

FullName	property,	315

Func<int,	ParallelLoopState,	string,	string>B,	446

Func<strings>B,	446

Func<T>	delegate,	183–184

functions,	local,	74–75

Functions	as	a	Service	(FaaS),	13,	748

Func<TLocal>B,	446

future,	450

G

garbage	collection	balancing,	342

garbage	collector	(GC),	336,	340–342,	343,	344,	349,	352,	356,	402

GC.Collect,	341

GCLatencyMode,	342

GCSettings.LatencyMode	property,	342

General	Data	Protection	Regulation	(GDPR),	598

generation	operators,	255–256

Generator	attribute,	328

GeneratorExecutionContext	parameter,	328,	329,	331

GeneratorInitializationContext,	331

generic	methods,	75

generics,	115–118

geometry,	902–903

Get	extension	method,	408

GET	requests,	549–550,	704–705,	723,	725–728,	759,	761,	762

GetArgument	method,	47

GetAsync	method,	290,	549–550,	551

GetAsyncEnumerator	method,	300

GetAwaiter	method,	293,	296

GetBitsFormat	method,	174–176

GetCalculator	method,	323,	324

GetClassSources	method,	332

GetConnectionString	method,	407

GetConstructor(s)	method,	316,	317

GetContent	method,	766

GetCustomAttributes	method,	319

GetDefaultMembers	method,	316

GetDirectories	method,	492–493

GetEncoding	method,	498–499

GetEncryptor	method,	574–575

GetEnumerator	method,	108,	163–164,	166,	657

GetEvent(s)	method,	316

GetField(s)	method,	316

GetFiles	method,	492–493

GetFromJsonAsync	method,	726

GetHashCode	method,	77,	212–213

GetHeaderInfo	method,	545–547

GetHostEntryAsync	method,	539–540

GetHtmlContent	method,	545–547

GetMember(s)	method,	316

GetMethod(s)	method,	316,	317,	323

GetNextTextElement	method,	646

GetNumber	method,	396,	399–400

GetPreamble	method,	499

GetProperties	method,	316

GetProperty	method,	316

GetPublicKey	method,	575–576

GetRequestInfo	method,	546,	700–701

GetRequiredService	method,	394,	395,	399

GetSampleBooks	method,	855

GetSection	method,	406,	407

GetService	method,	395,	403,	890

GetServiceProvider	method,	394,	396

GetSomeData	method,	454

GetSomeDataAsync	method,	454

GetString	method,	662–663

GetStringDemo	method,	671–674

GetSttream	method,	535

GetTextElementEnumerator	method,	646

GetTheRealData	method,	454

GetType	method,	323

GetValue	method,	407,	830,	831,	834

global	assembly	cache,	378

Global	Assembly	Cache	(GAC),	379

Global	Invariant	Mode,	647

global	markets,	645

global	query	filters,	611

globalization,	645

gradient	brushes,	907

Greet	method,	393

Greeting	method,	292,	293

GreetingAsync	method,	292–296

GreetingService	class,	393–395,	404–406

GreetingServiceOptions	class,	404

GreetingValueTaskAsync	method,	296

Grid	panel,	868–869

GridView	control,	852

GridViewItem	control,	849

group	join,	246–249

Group	method,	811

GroupBy	operator,	233,	239–240

GroupChatHub	class,	810–811

GroupChatViewModel	class,	811–814

grouping	connections,	810–814

grouping	queries,	239–242

GroupItemPivotItem	control,	849

GroupJoin	operator,	233,	245–249

groups,	811–814,	905

gRPC	Remote	Procedure	Calls	(gRPC)

about,	715

creating	projects,	740–741

implementing	and	using	services	with,	740–748

implementing	client,	744–746

implementing	service,	742–743

streaming	with,	746–748

GZipStream,	505–506

H

HandleAll	method,	274–275

HandleOnError	method,	298

HandleValidSubmit	method,	799–800

Hardware	Security	Modules	(HSM),	417

HasDefaultSchema	method,	594–595

HasDiscriminator	method,	624–625

HasField	method,	597

hash	algorithms,	567–568

hash	tables.	See	dictionaries

Hash-based	Message	Authentication	Code	(HMAC),	567

HashSet	collection,	221

hat	operator	(^),	indices	and,	170

headers,	passing,	551–553

health	checks,	708–711

Hello,	Windows,	822

HelpLink	property,	272–273

hero	image,	862

hiding	methods,	99–100

hierarchies,	resources,	910–911

Hollywood	Principle,	111

HomeController	class,	393,	394,	395,	404,	774–775

Host	class,	393,	408,	424,	527–528

host	server,	691

HostBuilderContext	parameter,	424

HResult	property,	272–273

HTML,	688,	804–806

HTML	Helpers,	762–763

HtmlEncoder	class,	577

HTTP	headers,	545–547

HTTP	requests,	resilient,	556–557

HTTP	trigger	functions,	adding,	749–751

HttpBuilderContext,	406

HttpClient	class,	290,	421–422,	548–549,	553–554,	729–730,	789–791

HttpClient	factory,	554–557

HttpContent	class,	726

HttpMessageHandler,	customizing	requests	with,	553–554

HttpRequestException,	432

HttpRequestMessage	class,	551

HttpResponseMessage,	290

Hub	control,	841,	862–863

hubs,	802–804,	810–811

HubSection	control,	841

Hungarian	notation,	55

HyperlinkButton	control,	850,	851

I

IApplicationBuilder	interface,	692–693,	696–698

IAsyncDisposable	interface,	300,	345–346

IAsyncEnumerable,	300,	301,	460

IAsyncEnumerator,	300

IAsyncOperation,	293,	305

IAsyncResult	interface,	289

ICancelableOperation,	455

ICollection	interface,	194

ICommand	interface,	888–889

IComparable	interface,	161–163

ICompare	interface,	195

IConfiguration	interface,	406,	407

IConfigurationSection,	406,	407

identifiers,	rules	for,	54

Identity	UI,	777–778

IDesignTimeDbContextFactory,	implementing,	601–602

IDictionary	interface,	195

IDisposable	interface,	107–108,	336,	345–348,	396,	402,	483,	549

IDisposable.Dispose,	348

IDynamicMetaObjectProvider,	325

IEditableObject	view	model,	886

IEEE	754	standard,	34–35

IEnumerable	interface,	108,	194,	300,	447

IEnumerator	interface,	108,	163–164,	300

IEquality	interface,	79

IEqualityComparer	interface,	195

IEquatable	interface,	332,	333

#if	directive,	52

if	statement,	31,	37

IFeatureFilter	interface,	416

IFeatureManager,	416

IFormatProvider	interface,	648–649

IGreetingService,	393,	394,	395,	405

IHostBuilder	method,	395,	424

IItemsService	interface,	882

IList	interface,	194

IList<string>,	476

ILogger	API,	421

ILogger	interface,	110–111,	421,	422,	423,	427,	429,	888

ILoggerBuilder	method,	427

ILoggerFactory,	422

ILoggingBuilder	parameter,	424,	426

ILookup	interface,	195

Image	class,	839

ImageBrush,	907

immutable	arrays,	225

immutable	collections

about,	222–223

types	and	interfaces,	224

using	builders	with,	223–224

using	LINQ	with	immutable	arrays,	225

immutable	types,	77

ImplementEquatable	attribute,	330,	332

implicit	conversions,	132–133

implicit	implemented	interfaces,	111–112

implicit	Razor	expression,	754

implicit	transactions,	635–636

in	parameters,	84

Include	method,	613–614

includeInteractiveCredentials,	413

<includes>	tag,	49

Increment	method,	430,	431

increment	operator	(++),	121

IncrementingEventCounter,	430,	431

IncrementingPollingCounter,	430

Index	method,	773–774

IndexAppSettings	class,	414

indexers	(brackets),	63,	125,	142–143

IndexOf	method,	199–200,	367

indices,	170,	172

indirection	operator,	351

Information	log	level,	421

Information	messages,	426

Infrastructure	as	a	Service	(IaaS),	13

inheritance,	96–104,	106–107

Inherited	parameter,	310

init	method,	446,	447

initialization	of	services,	403–404

InitializeComponent	method,	827

initializers,	dictionaries,	212

init-only	set	accessors,	67

init-only	setter	properties,	156

injecting	services,	761,	790–791

inner	join,	242–245

InnerException	property,	272–273,	299

INotifyCompletion,	293

INotifyPropertyChanged	interface,	333,	462,	830,	853–855

Insert	method,	198

InstrumentationKey,	438

integer	types,	33

integration	tests,	682–684

Interactive,	as	value	for	GCLatencyMode,	342

InteractiveBrowserCredential,	413

interfaces

collection,	194–195

compared	with	classes,	112

default	methods,	112–115

dependency	injection	with,	109–111

explicit	implemented,	111–112

implicit	implemented,	111–112

predefined,	107–109

using,	107–115

Interlocked	class,	430,	468

Interlocked.Increment	class,	396

Intermediate	Language	(IL),	132

internal	access	modifier,	105

Internet	Information	Services	(IIS),	542

interpolating	strings,	46

Intersect	operator,	234

Interval,	462

IntPtr	type	pointer,	366

IntroLocalFunctions	method,	74

INumberService	interface,	396,	397

InvalidOperationException,	265

invariant	culture,	646–647

Invoke	method,	324,	697

InvokeAsync	method,	770,	772

IOptions	interface,	697–698

IOptions	-derived	interfaces,	405

IOptionsSnapshot,	414

IOptions<T>	parameter,	404

IP	address,	521

IPAddress,	523–524

IPHostEntry	class,	524

IQueryRepository	interface,	880

is	operator,	37–38,	123

IsAbstract	property,	315

IsAlive	property,	343

IsArray	property,	315

IsCancellationRequested	property,	455,	457

IsClass	property,	315

IsDevelopment	method,	410

_isDisposed	member,	348

IsEnabled	method,	421,	431

IsEnabledAsync	method,	416

IsEnum	property,	315

IServiceA,	397

IServiceB,	397

IServiceC,	397

IServiceCollection	interface,	399,	404,	406

IServiceProvider	parameter,	403

IServiceScope,	401

ISet	interface,	194,	218–220

IsFaulted	property,	299

IsHeld,	469

IsHeldByCurrent	Thread,	469

IsInterface	property,	315

ISourceGenerator	interface,	328

IsPointer	property,	315

IsPrimitive	property,	315

IsProduction	method,	410

IsPublic	property,	315

IsSealed	property,	315

IsStaging	method,	410

IsSuccessStatusCode	property,	290

ISupportRequiredService,	395

IsValueType	property,	315

ISyntaxReceiver,	331

ItemContainerStyle,	917

items	controls,	851–852

ItemsControl	class,	838,	851

ItemsPanelTemplate,	913,	917–918

ItemsPresenter	class,	839

iterating,	165–166,	492–493

ITypesSymbol,	332

IUpdateRepository	interface,	880–881

IValueConverter	interface,	653–654

IWebHostBuilder,	413

IWebHostEnvironment	interface,	692

J

jagged	arrays,	158

JavaScript,	688–689,	804–806

join	clause,	242–246

Join	operator,	233

JoinMulticastGroup	method,	542

jQuery,	689

JSON,	sending,	706

JSON	reader,	513–514

JSON	serialization,	508–515

JSON	writer,	514–515

JsonDocument	class,	513

jsonSerializer	class,	510–512

Just-In-Time	(JIT)	compiler,	6

K

kernel132.dll,	369

Kernigan,	Brian

The	C	Programming	Language,	17

Kestrel	server,	542–544,	691

key	type,	212–213

keyframe	animations,	925

keywords,	names	and,	57

L

labels,	415

lambda	expressions,	120,	187–189,	304,	414,	449,	465

language,	18,	666–667

Language	Integrated	Query	(LINQ)

about,	113–115,	178,	227

aggregate	operators,	252–254

compound	from,	236–237

conversion	operators,	254–255

deferred	query	extension,	231–232

EF	Core	and,	608

entities,	227–229

expression	trees,	258–261

extension	methods,	230–231

filter,	234–235

filter	with	index,	235–236

generation	operators,	255–256

group	join,	246–249

grouping,	239–240

grouping	with	nested	objects,	241–242

inner	join,	242–245

left	outer	join,	245–246

lists,	227–229

parallel,	256–258

partitioning,	251–252

providers,	261

query,	229–230

set	operations,	249–250

sorting,	237–239

standard	query	operators,	233–256

type	filtering,	236

using	with	immutable	arrays,	225

variables	within	query,	240–241

Zip	method,	250–251

large	object	heap	(LOH),	341,	726

last	one	wins	scenario,	631–632

Last	operator,	234

LastModifiedAttribute,	312,	320,	321

LastOrDefault	operator,	234

layouts

Blazor	Server,	783–784

implementing	panels,	867–875

Razor	Pages,	756–757

lazy	loading,	615–617

LeaveGroupCommand	method,	812–813

left	outer	join,	245–246

libman	command,	695

libraries

creating	and	using,	381–386

creating	.NET	library,	382

DLL	hell,	378–379

dynamic	link	libraries	(DLLs),	378

.NET	Standard,	381–382

NuGet	sources,	384–386

Portable	Class	Library,	381

Razor	Pages,	760

referencing	NuGet	packages,	384

referencing	projects,	383

solution	files,	383

Task	Parallel	Library	(TPL),	289,	450

VectorClass	.NET	library,	312,	313–314

WhatsNewAttributes	.NET	library,	312–313,	319–322

LIFO	principle,	206–208

Lightweight	Solution	Load	feature,	289

Like	method,	612

Line	class,	462,	902

#line	directive,	53

LinearGradientBrush,	907

Link	method,	371

linked	lists,	208–209

LinkedList	class,	208–209,	221

LinkErrors,	371

list	binding,	856

List	class,	195–206

List	collection,	221

<list>	tag,	49

ListBox	control,	852

ListBoxItem	control,	849

listeners,	creating,	528–530

lists

about,	195–196

accessing	elements,	198

adding	elements,	197–198

collection	initializers,	197

creating,	196

inserting	elements,	198

linked,	208–209

LINQ,	227–229

queues,	202–206

read-only	collections,	202

removing	elements,	198–199

searching,	199–200

showing,	858–859

sorted,	209–211

sorting,	200–202

ListView	control,	852,	856,	859–860,	892,	915–917

ListViewItem	control,	849

literals,	for	numbers,	36

LoadAsync	method,	614–615

loading,	deferred,	874–875

local	functions,	74–75

local	variable,	27

LocalFunctionWithClosure	method,	74–75

localization

with	ASP.NET	Core,	658–664

defined,	645

global	markets,	645

resources,	656–658

System.Globalization	namespace,	645–656

with	WINUI,	664–667

lock	keyword,	448,	466,	468,	481

locks	with	await,	481–483

LockWithSemaphore	method,	482,	483,	484

Log	method,	286,	421,	448

LogAsync	method,	561

LogBarrierInformation,	476

LogCritical,	421

LogDebug,	421

LogError,	421,	422

LoggerExtensions	class,	421

logging

configuring,	426–427

configuring	providers,	424–426

filtering,	426

introduction	to,	420,	421–424

metrics	and,	592–593

more	logging	providers,	429

and	tracing	with	OpenTelemetry,	427–429

Logging	configuration,	424

Logging	section,	426

LoggingSample,	427

logical	operators,	120

LogInformation,	421,	422

LogLevel	enum,	421,	426,	427

LogTrace,	421,	422

LogWarning,	421

LogXX	methods,	423

Long-Term	Support	(LTS),	9–10

lookups,	217

loopback	address,	524

loops,	exiting,	44

lower	kebab	casing,	772

LowestBreakIteration	property,	445

LowLatency,	as	value	for	GCLatencyMode,	342

M

M	method,	397,	399

Main	method,	17,	25,	27,	291,	379,	394,	399,	454,	477,	655–656,	753–754

MainWindow	class,	462,	824–825

managed	heap,	338,	341,	365–366

managed	modifier,	361

managed	type	data,	352

ManagedIdentityCredential,	413

ManualResetEvent,	473,	474

ManualResetEventSlim,	473,	474

many-to-many	relationships,	617–619

mapping

definitions,	594–595

to	fields,	597

Windows	Runtime	types	to	.NET	types,	518–519

XAML	elements	to	classes,	826–827

maps.	See	dictionaries

markup	extensions,	835–837

Marshal	class,	366

Marshal.GetLastWin32Error,	370,	371

matrices,	transformation	using,	905–906

Max	method,	84–85,	234,	252–254

member	variable.	See	field

MemberInfo	object,	316

memory,	173,	174,	337

memory	management

accessing	memory	directly	with	pointers,	349–350

basics	of,	336–342

calling	native	Linux	APIs,	371–372

calling	native	windows	APIs,	368–371

casting	between	pointer	types,	353

casting	pointers	to	integer	types,	352–353

destructors	or	finalizers,	344–345

function	pointers,	361–362

garbage	collection,	340–342

IDisposable	and	finalizer	rules,	348–349

IDisposable	and	IAsyncDisposable	interfaces,	345–346

implementing	IDisposable	and	a	destructor,	347–348

platform	invoke	(P/Invoke),	368–373

pointer	arithmetic,	353–354

pointer	example	(PointerPlayground),	357–361

pointer	syntax,	351–352

pointers	to	class	members,	356–357

pointers	to	structs,	355–356

reference	data	types,	338–340

sizeof	operator,	355

span	extension	methods,	367–368

spans	referencing	managed	heap,	365–366

spans	referencing	native	heap,	366–367

spans	referencing	stack,	366

Span<T>B,	365–368

strong	and	weak	references,	342–343

unsafe	code,	349–365

using	library	for	calling	native	APIs,	373

using	pointers	to	optimize	performance,	362–365

using	statement	and	using	declaration,	346–347

value	data	types,	336–338

void	pointers,	353

working	with	unmanaged	resources,	344–349

writing	unsafe	code	with	unsafe	keyword,	350–351

MenuBar	control,	842

MenuBarItem	control,	842

MenuFlyout	control,	852

Message	Digest	Algorithm	5	(MD5),	567

Message	property,	272–273

MessageBox	class,	893–894

MessageDialog,	305

MessagePack	protocol,	809

messaging,	using	events,	897–898

metapackages,	7

MethodInfo	object,	316,	323–324

methods.	See	also	specific	methods

abstract,	101–102

anonymous,	186–187

binding	events	to,	856–857

calling	base	versions	of,	100–101

declaring,	68

defined,	63

expression-bodied,	68

extension,	75–76

generic,	75

hiding,	99–100

interface,	112–115

invoking,	68–69

named	arguments,	70

optional	arguments,	70–71

overloading,	69

passing	delegates	to,	182–183

referencing,	178

sealed,	102

with	top-level	statements,	29–30

using,	57

variable	number	of	arguments,	71–72

virtual,	97–99

metrics

counters,	430–432

EventSource	class,	429–430

introduction	to,	420,	429

logging	and,	592–593

monitoring	of	with	.NET	CLI,	433–434

using	MetricsSampleSource,	432–433

MetricsSample	class,	432

MetricsSampleSource	class,	429,	430

Microosft.AspNetCore.Hosting,	433

Microsoft	Azure,	12–14

Microsoft	identity	platform,	559–560

Microsoft.AppCenter,	435

Microsoft.AppCenter.Analytics,	435

Microsoft.AppCenter.Crashes,	435

Microsoft.ApplicationInsights.AspNetCore,	437

Microsoft-AspNetCore-Server-Kestrel,	433

Microsoft.CodeAnalysis	namespace,	328

Microsoft.CodeAnalysis.CSharp.Workspaces	package,	328

Microsoft.CodeAnalysis.Text	namespace,	328

Microsoft.CSharp.RuntimeBinder	namespace,	323

Microsoft.Extensions.DependencyInjection	namespace,	394

Microsoft.Extensions.Logging	namespace,	421

Microsoft.Extensions.Logging.ApplicationInsights,	429,	437

Microsoft.Extensions.Logging.AzureAppServices,	429

Microsoft.FeatureManagement	namespace,	416

Microsoft.Identity.Client,	560–563

Microsoft.UT.Xaml	namespace,	461

Microsoft.Windows.Sdk	namespace,	368

middleware,	659–660,	696–698

Migrate	method,	606

migrations,	601–606

Min	method,	234,	252–254

Mock	class,	680–682

mocking	library,	678–682

mode,	495

model	binding,	762

ModelBuilder	class,	594–595

models

creating,	584–585,	593–600

defining,	716

scaffolding	from	databases,	600–601

XAML,	879–882

Model-View-Controller	(MVC)

ASP.NET	Core,	773–778

bootstrapping,	773

builder,	563–564

pattern,	11

routing,	773–774

setting	up	services	for,	753

Model-View-View-Model	(MVVM)	pattern,	876–879

modifiers,	104–106

module	initializers,	390–391

module	keyword,	310

ModuleInitializer	attribute,	390

Monitor	class,	468–469,	482

monitor	subcommand,	433

Move	method,	101

MoveBy	method,	100

MoveNext	Async	method,	300

MoveNext	method,	108

MSIX,	820,	822

multicast	delegates,	184–186

multicasts,	541–542

multidimensional	arrays,	157

multiple	casting,	150–152

multiple	tasks,	441,	442,	447,	452,	475,	476,	482,	484

multiple	threads,	441,	442,	463,	465,	471,	473

multiplicative	operators,	120

Multipurpose	Internet	Mail	Extensions	(MIME),	702

Mutex	class,	470–471,	482

Mutex.OpenExisting,	470

MVVM	pattern,	682

MyDependencyObject	class,	830–831

N

Name	property,	315

named	arguments,	70

named	clients,	555–556

nameof	operator,	124–125

Namespace	property,	315

namespaces,	9,	44–45,	56–57

naming	conventions,	for	C#,	55–57

native	function,	368–371

native	heap,	366–367

native	integer	types,	33

Navigate	method,	861–867

navigation,	implementing,	861–867

NavigationView	control,	865–867

negative	numbers,	130–131

nested	objects,	grouping	with,	241–242

.NET	applications	and	tools

about,	3–4,	7

Common	Language	Runtime	(CLR),	6

Compiler	Platform,	6

data	access,	10–11

developer	tools,	14–16

Docker	Desktop,	16

Microsoft	Azure,	12–14

namespaces,	9

.NET	CLI,	14,	16–23

.NET	Core,	3–4,	6–7

.NET	Framework,	3–4,	6

.NET	SDK,	4–5

.NET	Standard,	7–8

NuGet	packages,	8

runtime,	5

services,	12

SignalR,	12

support	length,	9–10

terms,	4

types	and	technologies,	10–14

Visual	Studio	Code,	14

Visual	Studio	Community,	14

Visual	Studio	Enterprise,	15

Visual	Studio	for	Mac,	15

Visual	Studio	Professional,	15

web	applications,	11–12

Windows	apps,	11

Windows	Terminal,	15

WSL	2,	15–16

.NET	classes,	using	custom	with	XAML,	827–828

.NET	CLI,	14,	16–23

.NET	clients,	724–730,	806–810

.NET	Compiler	Platform,	6,	79

.NET	Core

about,	4,	6–7

C#	preprocessor	directives,	51–54

C#	programming	guidelines,	54–58

comments,	49–51

controlling	program	flow,	37–44

fundamentals	of	C#,	25–30

nullable	types,	30–32

organizing	with	namespaces,	44–45

using	predefined	types,	33–36

working	with	strings,	45–49

.NET	Framework,	4,	6,	18

.NET	runtime,	5

.NET	SDK,	4–5

.NET	Standard,	7–8

.NET	types,	mapping	Windows	Runtime	types	to,	518–519

networking

about,	521

HttpClient	class,	548–554

HttpClient	factory,	554–557

sockets,	526–533

using	TCP	classes,	533–537

using	User	Datagram	Protocol	(UDP),	537–542

using	web	servers,	542–547

utility	classes,	521–526

NetworkRequestSampleAsync	method,	422

NetworkService	class,	421,	423,	428,	432

neutral	culture,	646–647

new	keyword,	99–100,	105

NGINX,	542

NoGCRegion,	as	value	for	GCLatencyMode,	342

nominal	records,	77

NotSupportedException,	264

nRacingCars,	337,	338

NuGet	packages

about,	8

as	adding	another	abstraction	layer	to	libraries,	379

with	command	line,	386

creating,	386–389

package	manager,	289,	385,	389,	695

referencing	of,	384

supporting	multiple	platforms,	387–389

with	Visual	Studio,	389–390

NuGet	sources,	384–386

NuGet.Config,	384

null	coalescing	operators,	120

Nullable	configuration,	382

#nullable	directive,	54

nullable	types

about,	133

EF	Core	and,	621

reference	types,	31–32

value	types,	30

null-coalescing	assignment	operator,	126

null-coalescing	operator	(??),	125–126

null-conditional	operator,	31,	126–127

NullReferenceException,	31

number	formatting,	647–648

NumberService,	398,	403

O

OAuth	2.0,	544

Object	class,	36,	139–141,	212–213

object	orientation,	96

object-oriented	programming	(OOP),	in	C#

generics,	115–118

inheritance	with	classes,	96–104

inheritance	with	records,	106–107

modifiers,	104–106

object	orientation,	96

using	interfaces,	107–115

objects

comparing	for	equality,	139–141

multiple,	of	same	type,	154

tracking,	627–629

updating,	629

updating	untracked,	629–630

ObservableObject	class,	880

OfType	method,	233,	236,	625

Ogonek	character,	645

On	method,	808

OnButtonClick	method,	826–827

OnCompleted	method,	293,	294

OnConfiguring	method,	586

OnConnect	method,	808

OnConnectedAsync	method,	811

OnDatesChanged	method,	845–846

OnDayItemChanging	method,	844

OnDisconnectedAsync	method,	811

one-dimensional	arrays.	See	arrays

one-time	binding	mode,	853

OnEventCommand	method,	430

one-way	binding	mode,	853

OnGet	method,	758,	774–775

OnGetResource	method,	665–666

OnInitializeAsync	method,	787

OnMessageReceived	method,	809

OnNavigatedTo	method,	865

OnNavigationSelectionChanged	method,	891–893

OnPost	method,	758,	774–775

OnPropertyChanged	method,	853–855

OnSave	method,	517

OnSaveAsync	method,	887–888

OnSendMessage	method,	808

OnStartAsync	method,	302

OnStartAsyncConfigureAwait	method,	303

OnStartDeadlock	method,	305

OnTabAdd	method,	864–865

OnTabClose	method,	864–865

OnTappedButton	method,	832–833

OnTick,	462

OnTimer	method,	462

OnVisitSyntaxNode	method,	331

Open	Web	Application	Security	Project	(OWASP),	580

OpenAPI,	718–719

OpenID	Connect,	544,	560

OpenReadAsync	method,	516–517

OpenTelemetry,	420,	427–429

OperatingSystem	class,	371

OperationCanceledException,	300,	455

operators

as,	123

about,	120

aggregate,	252–254

binary,	127–131

checked,	122–123

compound	assignment,	121

conditional-expression	(?:),	121–122

conversion,	254–255

defined,	63

generation,	255–256

how	they	work,	136–137

indexer,	125

is,	123

nameof,	124–125

null-coalescing	(??),	125–126

null-coalescing	assignment,	126

null-conditional,	126–127

overloading,	136–139

overloading	with	Vector	type,	137–139

sizeof,	124

typeof,	124

unchecked,	122–123

optional	arguments,	70–71

OrderBy	operator,	233,	237–239

OrderByDescending	operator,	233,	237–239

otherCustomer2	object,	340

out	of	process,	748

out	parameters,	85–86

outputText,	319

OverflowException,	265

Overlaps	method,	367

overloading	operators,	136–139

override	modifier,	106

owned	entities,	621–623

OwnsOne	method,	641

P

Package	Manifest	Editor,	822

PackageReference,	384

Page	control,	841

PageModel	class,	756

PageNavigation	event,	435

pane	transition,	926–927

Panel	class,	838,	839

ParallaxView	class,	839

Parallel	class,	441,	463

Parallel	LINQ	(PLINQ),	256–258,	455,	463

parallel	programming

Barrier	class,	476–479

cancellation	framework,	455–458

channels,	458–461

events,	473–476

Interlocked	class,	468

invoking	multiple	methods	with	Parallel.Invoke	method,	447–448

locks	with	await,	481–483

looping	with	Parallel.For	method,	443–445

looping	with	Parallel.ForEach	method,	447

Monitor	class,	468–469

Mutex	class,	470–471

overview,	441–442

Parallel	class,	442–448

Parallel.For	initialization,	446–447

ReaderWriterLockSlim	class,	479–481

Semaphore	class,	471–473

SpinLock	struct,	469–470

starting	tasks,	448–450

stopping	Parallel.For	early,	445–446

tasks,	448–455

threading	issues,	463–468

timers,	461–463

WaitHandle	class,	470

parallel	queries,	256–257

Parallel.For	method,	442,	443–447,	455–457

Parallel.ForEach	method,	442,	447

Parallel.For<TLocal>	method,	446

Parallel.Invoke,	442,	447–448

ParallelLoopResult,	443

ParallelLoopState,	446,	447

ParallelOptions,	455

<param>	tag,	50

parameters,	163,	187–188

<paramref>	tag,	50

params	keyword,	71

<pars>	tag,	49

ParseCombiningCharacters	method,	646

partial	modifier,	330

partial	types,	92–93

partial	view,	776–777

partitioning,	251–252

Pascal	casing,	55–56

pass	by	reference	types,	60–62

pass	by	value	types,	60–62

PasswordBox	control,	841

Path	class,	486,	488,	839,	902

path	markup,	geometry	using,	903

PathGeometry	class,	902–903

pattern	matching

with	is	operator,	37–38

property	pattern,	91–92

with	switch	statement,	39–40

with	tuples,	89–90

patterns,	with	XAML	apps.	See	eXtensible	Application	Markup	Language
(XAML)

Peek	method,	203,	207

performance,	220–221,	268

<permission>	tag,	50

Person	class,	827–828

PersonPicture	control,	842

pFlags,	351

pHeight,	351

PInvokeSampleLib,	371

pipelines,	communication	with,	530–531

Pivot	control,	851

Platform	as	a	Service	(PaaS),	13

platform	invoke	(P/Invoke),	368–373

pointer	syntax,	351

PointerPlayground,	357–361

pointers,	349–365

pointer-to-integer-type	conversions,	352

PollingCounter,	430,	432

Polygon	class,	839,	902

Polyline	class,	839,	902

polymorphism,	97

Pop	method,	207

Portable	Class	Library,	381

positional	records,	78

POST	request,	579–580,	704–705,	723,	728,	759,	761,	762

PostAsync	method,	551

postfix,	121

#pragma	directive,	53

predefined	exception	classes,	264–265

predefined	interfaces,	107–109

predefined	types

about,	33

BigInteger,	33

binary	values,	34

Boolean	type,	35

character	type,	35–36

digit	separators,	34

floating-point	types,	34–35

integer	types,	33

literals	for	numbers,	36

native	integer	types,	33

object	type,	36

prefix,	121

PrepareUpdateAsync	method,	631–635

preprocessor	directives,	51–54

presenter	controls,	840

pResult,	351

primary	operators,	120

private	access	modifier,	63–64,	105,	370

private	keys,	566

private	protected	access	modifier,	105

Process	method,	766,	768–769

ProcessAsync	method,	766

Program	class,	319

program	flow,	controlling,	37–44

ProgressBar	control,	848

progressive	web	applications	(PWAs),	791–792

ProgressRing	control,	841

Project	Reunion,	821

ProjectReference	element,	383

properties

about,	65–67

access	modifiers	for,	66

attached,	833–835

auto-implemented,	65–66

auto-implemented	read-only,	67

defined,	63

dependency,	829–830

expression-bodied,	66–67

readonly,	66

setting	as	attributes,	828

using,	57

using	as	elements,	829

property	pattern,	91–92

PropertyInfo	object,	316

protected	access	modifier,	104–105

protected	internal	access	modifier,	105

protected	overload,	348

Protobuf,	defining	contracts	with,	741–742

providers,	LINQ,	261

PsacalCase,	87

public	access	modifier,	104–105

public	keys,	566

public	properties/fields,	311

Push	method,	207

PUT	request,	723,	728–729

PutAsJsonAsync	method,	728–729

pWidth,	351

Q

queries

about,	606

asynchronous	streams,	609

basic,	606–608

compiled,	609–611

EF.Functions,	612

global	filters,	611

LINQ,	229–230

raw	SQL,	609

query	parameters,	703–704

QueryParameters	method,	703–704

Queue	collection,	221

queues,	202–206

QuickArray	example,	363–365

R

race	conditions,	464–466

RaceCondition	method,	464,	465

RadioButton	control,	850

random	access,	using	to	streams,	500–502

range	controls,	847–849

Range	method,	234,	255–256

range	operator	(..),	120,	170–171

RangeBase	class,	838

ranges,	48–49,	172

RanToCompletion,	453

RatingControl	control,	842

Razor	code	block,	754–755,	792–800

Razor	Pages

about,	755–756

areas,	760

creating	custom	Tag	Helpers,	765–767

creating	elements	with	Tag	Helpers,	767–770

creating	projects,	753–754

HTML	Helpers,	762–763

injecting	services,	761

layouts,	756–757

libraries,	760

model	binding,	762

passing	data	between	views,	757

rendering	sections,	757–758

returning	results,	761

routing	with	parameters,	758–760

setting	up	services	for,	753

syntax,	754–755

Tag	Helpers,	763–764

validating	user	input,	764–765

view	components,	770–772

Razor	views,	775–777

React,	689

Read	method,	497–498,	502,	513–514

ReadAllSync	method,	460

ReadAsStringAsync	method,	290,	553

ReadAsync	method,	460,	502,	530–531

Reader	property,	458

ReaderMethod,	479

readers,	using,	503–505

ReaderWriterLockSlim	class,	479–481

reading

binary	files,	505

from	databases,	589–590

streams,	498–499

ReadMessageAsync	method,	575–576

ReadOnly,	169

read-only	collections,	202

readonly	fields,	64

readonly	keyword,	29

readonly	Log	field,	429

readonly	properties,	66

ReadOnlySpan<T>,	365

ReadyToRun,	22

receivers,	implementing,	532–533

record	keyword,	61

records

deleting,	591–592

equality	comparison	with,	78–79

immutable	types,	77

inheritance	with,	106–107

nominal,	77

positional,	78

updating	with,	591

Rectangle	class,	839,	902

ref	parameters,	83

ref	struct	keyword,	365

reference,	349

Reference	method,	614–615

reference	types,	31–32,	156

ReferenceEquals	method,	139–141

referencing	methods,	178

reflection

Assembly	class,	318–319

completing	WhatsNewAttributes	example,	319–322

defined,	308

getting	details	about	custom	attributes,	319

getting	details	about	types	defined	in	an	assembly,	318

System.Type	class,	314–316

Type	methods,	316

Type	properties,	315

TypeView	example,	316–318

use	of	dynamic	languages	extensions	for,	322–325

Reflection	API,	323–324

ref-like	types,	365

refreshAll	parameter,	414

#region	directive,	53

RegionInfo	class,	646

regions,	646–649

Register	method,	455,	456

registering	localization	services,	659

RegisterServices	method,	394,	403

RegisterServices.ServiceA,	400

relational	operators,	120

relations,	593–594,	626–627

relationships

many-to-many,	617–619

owned	entities,	621–623

table	per	hierarchy	(TPH),	623–625

table	splitting,	619–621

RelativePanel	panel,	870–872,	872–874

ReleaseMutex	method,	470

reloadOnChange	argument,	409

<remarks>	tag,	50

remote	procedure	calls	(RPC),	12

Remove	method,	591–592

RemoveAt	method,	199

RemoveFromGroupAsync	method,	810–811

RemoveParticipant	method,	476

RemoveRange	method,	199,	591–592

RenderBody	method,	756

rendering	sections,	757–758

RenderSectionAsync	method,	757–758

renting	memory	from	array	pools,	173

Repeat	operator,	234

RepeatBehavior	property,	920

RepeatButton	control,	850

reposition	transition,	926

repository	pattern,	880

Representational	State	Transfer	(REST),	12

_requestDuration	field,	432

request	and	response,	700–706

request	headers,	701–703

RequestStart	method,	431,	432

RequestStop	method,	432

Reset	method,	473

ResourceContext	class,	666–667

ResourceGobbler	class,	345

ResourceLoader	class,	665–666

ResourceManager	class,	657–658,	665,	666

ResourceReader,	657

resources

localization,	656–658

styles	and,	908–913

theme,	911–913

using	with	ASP.NET	Core,	661–663

ResourceWriter,	657

REST	service,	with	ASP.NET	Core,	715–724

Result	property,	294,	451

rethrowing	exceptions,	273–277

return	ref,	84–85

return	statement,	in	lambda	expressions,	188

<returns>	tag,	50

Reverse	method,	233,	367

RFC	4646	language,	646

Richardson,	Leonard,	716

RichEditBox	control,	841

RichTextBlock	class,	839

Rijindael	Advanced	Encryption	Standard	(AES),	568

RIPE	Message	Digest	(RIPEMD),	567

Ritchie,	Dennis

The	C	Programming	Language,	17

Rivest,	Shamir,	Adleman	(RSA),	568

Roslyn,	6

RotateTransform	element,	462

rotating,	transformation	using,	905

routed	events,	832–833

routing,	699–700,	758–760,	773–774

RunAsync	method,	205,	428,	538

Runner	class,	423,	427

RunSynchronously,	450

RunTaskAsync	method,	299

runtime,	.NET,	5

RunUseSemaphoreAsync	method,	482

S

SafeFileHandle,	470

SafeWaitHandle	property,	470

SampleTask	class,	464,	466

satellite	assembly,	656

SaveChanges	method,	598–599

SaveChangesAsync	method,	590–591,	627,	633–635,	635–637

saving	data,	625–630

scaling,	transformation	using,	904

scope,	of	variables,	27–28

scoped	services,	400–402

scripting	libraries,	689

ScrollBar	control,	847

ScrollViewer	control,	849

sealed	classes/methods,	102

sealed	modifier,	106

searching	lists,	199–200

sec-fetch-xx	header,	702–703

Secure	Hash	Algorithm	(SHA),	567

security

about,	559

creating	signatures,	571–573

encrypting	data,	566–576

ensuring	web	security,	576–580

implementing	secure	data	exchange,	573–576

Microsoft.Identity.Client,	560–563

using	authentication/authorization	with	web	apps,	563–566

verifying	signatures,	571–573

verifying	user	information,	559–566

X.509	certificate,	569–571

<see>	tag,	50

<seealso>	tag,	50

segments,	geometry	using,	902–903

Select	method,	233,	415,	500–502

SelectMany	method,	233,	236–237

SelectorItem	control,	849

SelectTemplateCore	method,	858

self-contained	deployment,	5,	21–22

self-contained	type	configuration,	595–597

SemanticZoom	control,	842

Semaphore	class,	470,	471–473,	482

SemaphoreReleaser,	483

SemaphoreSlim,	482,	483

SemaphoreSlim.Semaphore,	471,	472

semicolon	(;),	25,	51,	188

Send	method,	811

SendAndReceiveAsync	method,	532–533

SendAsync	method,	540–541,	554,	739,	803,	809

SensorData,	301

Serialize	method,	510–512

Serilog.Extensions.Logging,	429

ServiceA,	398,	399,	400,	401,	402

ServiceB,	398,	399,	400,	401,	402,	403

ServiceC,	400

ServiceCollection	class,	393,	394,	395,	399,	401

ServiceDescriptor,	398

ServiceLifetime,	398

ServicePointManager	class,	526

ServiceProvider	class,	394,	395,	401

services

about,	12,	715,	751

authentication	with	Azure	AD	B2C,	732–740

authorization	with	Azure	AD	B2C,	732–740

configuring,	734–738

creating,	716–719,	734–738

creating	.NET	clients,	724–730

implementing	and	using	with	GRPC,	740–748

injecting,	761,	793–794

REST	services	with	ASP.NET	Core,	715–724

setting	up	for	Razor	Pages	and	MVC,	753

using	Azure	Functions,	748–751

using	EF	Core	with,	730–732

view	models,	889–890

XAML,	882–883

session	state,	706–708

set	accessors,	init-only,	67

set	operations,	249–250

SetBasePath	method,	409

SetBookings	method,	845

SetCacheExpiration	method,	414

SetHealthy	method,	708–709

SetInt32	method,	707–708

SetLastError	property/field,	370

SetOperations	method,	249–250

SetProperty	method,	853–855,	879–880

sets,	218–220

SetString	method,	707–708

SetupCultures	method,	650–654

SetValue	method,	159–160,	830,	831,	834

shadow	properties,	598–600

shapes,	900–902

share	access,	495

share	target,	822

SharedTokenCacheCredential,	413

shift	operators,	120

shifting	bits,	129–130

ShowAsync	method,	305

ShowAuthenticationResult	method,	563

ShowChanges	method,	634

ShowMembers	local	function,	317

ShowState	method,	627

ShowTimer	method,	795

Signal	method,	475

SignalAndWait	method,	476,	477

SignalR,	12,	715,	801–816

signatures,	creating	and	verifying,	571–573

signed	numbers,	130–131

Silverlight,	4

single	executable,	22

Single	operator,	234

SingleOrDefault	operator,	234

singleton	and	transient	service,	398–400

SingletonAppMutex,	471

sizeof	operator,	124,	355

skewing,	transformation	using,	905

Skip	method,	233,	608

SkipWhile	operator,	233

Slice	method,	172,	365

slices,	creating,	167–168

Slider	control,	848–849

s_logLock,	448

Socket	class,	526–533

sockets

communication	with	pipelines,	530–531

configuring,	526

creating	listeners,	528–530

implementing	receivers,	532–533

TCP	Echo	protocol	sample	using,	526–528

using,	526–533

Software	as	a	Service	(SaaS),	13

SolidColorBrush,	906–907

Solution	Explorer,	389

solution	files,	383

SomeMethod,	348

SomeTypedConfig,	407

Sort	method,	160–163,	200–202,	654–656

sorted	dictionaries,	217–218

sorted	list,	209–211

SortedDictionary	collection,	217–218,	221

SortedList	class,	209–211,	221

SortedSet	collection,	221

source	files,	internal	comments	within,	49

source	generators

documentation	about,	333

Hello	World	source	generator,	328–330

introduction	to,	308,	327–328

using	partial	methods,	330–333

Source	property,	272–273

span,	427

Span	class,	167–170,	336,	365,	366,	367

span1	variable,	365,	366

SpanId,	427

SpanOnTheStack,	366

Span<T>B,	365–368

specific	culture,	646–647

SpeedRatio	property,	919

SpinLock	struct,	469–470

SplitView	control,	842,	865–867

SQL	Database,	13

SQL	injection,	preventing,	578–579

SQL	queries,	raw,	609

Stack	collection,	221

stack	pointer,	337

stackalloc	keyword,	362–363,	366

stack-based	arrays,	362–364

StackOverflowException,	264

StackPanel	panel,	867–868,	892–893

stacks,	206–208,	337,	366

StackTrace	property,	272–273

standard	query	operators,	233–234

StandardUICommand	class,	856–857

Start	method,	435,	690

StartActivity	method,	428

StartListenerAsync	method,	528–530

StartNew	method,	449

Startup	class,	415,	544–545,	788,	803

StateHasChanged	method,	796

statements,	top-level,	17–18

StateObject	class,	464,	465

static	constructors,	74

static	modifier,	64,	74,	105,	319

status	codes,	724

Stopwatch,	431,	432

StoreAsync	method,	517

Stream	API,	10,	501

Stream	class,	496–497,	499–500

streaming,	746–748,	814–816

StreamingHub	class,	814–816

StreamReader	class,	503–504

streams

about,	486

asynchronous,	609

buffered,	502–503

copying,	499–500

getting	information,	496–497

JSON	serialization,	509–515

reading,	498–499

using	random	access	to,	500–502

using	readers/writers,	503–505

using	with	Windows	Runtime,	515–519

working	with,	493–503

writing,	499

StreamWriter	class,	504,	519

string	method,	37,	336

StringBuilder,	46

strings

formats,	47–48

FormattableString,	47

interpolating,	46

ranges	with,	48–49

StringBuilder,	46

verbatim,	48

working	with,	45–49

StringSample	class,	671–674

strongly	typed	view,	775–776

strongReference	variable,	343

StructLayout	attributes,	308

structs,	61,	79–80

structure	scope,	337

Style	property,	908–910

styling

about,	900

animations,	918–928

brushes,	906–908

geometry,	902–903

for	names,	56

resources	and,	908–913

shapes,	900–902

templates,	913–918

transformation,	903–906

visual	state	manager,	928–931

Sum	operator,	234,	252–254

<summary>	tag,	50

support	length,	.NET,	9–10

SupportedOSPlatform	attribute,	370

SupportsWhatsNew	attribute,	320

SupportsWhatsNewAttribute,	312

SuppressFinalize	method,	349

SustainedLowLatency,	as	value	for	GCLatencyMode,	342

SwipeControl	control,	850

switch	expression,	controlling	program	flow,	40–41

switch	statement,	38–39,	39–40

SwitchWithPatternMatching	method,	39–40

symmetric	key	algorithms,	567–568

symmetric	keys,	566

synchronization	context,	249

syntax,	Razor	Pages,	754–755

SyntaxReceiver,	332

SyntaxReceiverCreator	delegate,	331

System	namespace,	290,	297,	317

System.Attribute,	309

System.AttributeUsage	attribute,	310

System.Collection.Generic	namespace,	291

System.Collections.Concurrent	namespace,	481

System.Collections.Generic	namespace,	317,	328

System.Collections.Immutable	namespace,	481

System.CommandLine.DragonFruit,	399

System.ComponentModel	namespace,	370

System.Diagnostics	namespace,	420,	431

System.Diagnostics.Tracing	namespace,	420,	429,	430

System.Exception	properties,	272–273

System.GC.Collect.System.GC,	341

System.GC.SuppressFinalize.GC,	349

System.Globalization	namespace,	645–656

System.IDisposable	interface,	344

System.IO	namespace,	291

System.Linq	namespace,	291,	317

System.Net	namespace,	289,	291

System.Net.Http,	290,	433

System.Reflection	namespace,	317,	318,	323

System.Reflection.Assembly	class,	314,	315

System.Reflection.MethodInfo	object,	316

System.Runtime,	433

System.Runtime.CompilerServices	namespace,	291,	390

System.Runtime.InteropServices	namespace,	366,	369

Systems.Diagnostics,	420

System.Text	namespace,	317,	328

System.Text.Json	namespace,	388

System.Threading	namespace,	291,	299,	431,	461,	473

System.Threading.Channels,	458

System.Threading.Tasks	namespace,	290,	291,	297,	442,	448

System.Threading.Timer,	461

System.Type	methods,	316

System.Type	references,	318

T

t1.OnContinueWith(DoOnSecond),	452

table	per	hierarchy	(TPH),	623–625

table	splitting,	619–621

TabView	control,	864–865

Tag	Helpers,	763–770

Take	method,	233,	608

TakeWhile	operator,	233

target	framework	monikers,	385

Target	property,	343

TargetFrameworks	element,	382,	385

TargetSite	property,	272–273

Task	class,	291,	294,	295,	296,	299,	441,	448–455

Task	Parallel	Library	(TPL),	289,	450

task	parallelism,	441,	442

Task	variable,	295

TaskAwaiter,	293

task-based	async	pattern,	289,	290–291

TaskCanceledException,	457

TaskContinuationOptions,	452

TaskCreation-Option	DetachedFromParent,	453

TaskCreationOptions,	449

TaskCreationOptions.LongRunning,	450

Task.Delay	method,	300,	302,	303,	305,	444

TaskFactory,	448,	449,	452

Task.Factory.CancellationToken,	457

TaskMethod,	448,	449,	450

tasks

about,	178

calling	an	asynchronous	method	for,	292

cancellation	of,	457–458

continuation	tasks,	451–452

continuation	with,	294

creation	of,	292

defined,	448

hierarchies	of,	452–453

introduction	to,	291–292

results	from,	450–451

returning	tasks	from	methods,	453

should	never	be	killed,	299

starting,	448–450

synchronization	context,	294

synchronous	tasks,	450

using	awaiter,	293–294

using	multiple	asynchronous	methods,	295

using	separate	thread,	450

using	thread	pool,	449

using	value	tasks,	296–297

value	tasks,	453–455

waiting	for,	453

Task<TResult>,	451

Task.WhenAll	method,	295,	298

TaskWithResult,	451

Task.Yield	method,	453

TCP	Echo	protocol,	526–528

TcpClient	class,	535–536

TcpListener	class,	534–535

TeachingTip	control,	849

templated	components,	798–799

templates

about,	913

control,	913–915

ItemContainerStyle,	917

ItemsPanelTemplate,	917–918

styling	ListView	control,	915–917

ternary	operator,	121–122

tests/testing

about,	668–669

ASP.NET	Core	integration	testing,	682–684

REST	APIs,	722–723

unit	testing,	669–678

using	mocking	library,	678–682

text	files,	analyzing	encodings,	497–498

TextBlock	control,	302,	839,	860–861

TextBox	control,	436,	841,	843

theInstance,	346

theme	resources,	911–913

ThenBy	operator,	233

ThenByDescending	operator,	233

ThenInclude	method,	613–614

this	keyword,	73,	75–76

Thread	class,	302,	441

thread	pool,	449

Thread.Delay	method,	444

threading,	6,	463–468

three	slashes	(///),	49–51

three-dimensional	arrays,	157

ThrowAfter	method,	297,	298

ThrowIfCancellationRequested	method,	300,	457

ThrowIfCancellationRequired	method,	300

throwing	user-defined	exception	classes,	281–283

Tick	event,	462

Timeline	class,	918–920

TimePicker	control,	841

Timer	object,	461

TimerAngle	property,	462

TimerCallback	delegate,	461

timers,	461–463

TimeSpan,	300

ToArray	method,	234

ToBinaryString	method,	128

ToBuilder	method,	223–224

ToDictionary	method,	234,	768

ToggleNavMenu	method,	785

ToList	operator,	234,	254–255

ToListAsync	method,	589–590

ToLookup	method,	217,	233

ToolTip	control,	849

top-level	statements,	17–18,	25–26,	29–30

ToPointer	method,	366

ToQueryString	method,	590,	592–593

ToString	method,	29–30,	46,	77,	523,	647–648,	648–649

ToTable	method,	620–621

_totalRequestsCounter,	431

Trace	log	level,	421

Trace.Assert	statement,	464

TraceId,	427

tracer,	427

TraceThreadAndTask	method,	292

tracing,	420

TrackEvent	method,	435,	436

tracking	objects,	627–629

traits,	with	C#,	113–115

transactions

ambient,	637–638

explicit,	636–637

implicit,	635–636

transformation

about,	903–904

with	groups	and	composite	transforms,	905

rotating,	905

scaling,	904

skewing,	905

translating,	904

using	matrices,	905–906

transitions,	in	animations,	926–928

translating,	transformation	using,	904

Transmission	Control	Protocol	(TCP),	533–537

TreeView	control,	842

triggers,	adaptive,	872–874

TrimExcess	method,	203

trimming,	22–23

Triple-DES	algorithm,	568

try	blocks,	265–268,	298,	299,	303,	345,	346,	468

try/catch	block,	297,	298,	300

TryCopyTo	method,	168–169

TryEnqueu	method,	304

TryEnter,	469

TryEnterReadLock,	479

TryEnterUpgradableReadLock,	479

TryEnterWriteLock,	479

try/finally,	346,	432

TryGetValue	method,	666–667

TryInvokeMember	method,	325

TryParse	method,	85–86

TrySetMember	method,	325

TryWrite,	459

Tuple	type,	58

tuples

about,	86,	451

declaring,	86–87

deconstructing,	87

initializing,	86–87

pattern	matching	with,	89–90

returning,	88

two-dimensional	arrays,	157

TwoPaneView	control,	842,	858–859

two-way	binding	mode,	796–797,	853

Type	class,	314–315

type	configuration,	self-contained,	595–597

type	conversions,	132–135

type	filtering,	236

type	inference,	26

Type	methods,	315,	316,	317

type	pattern,	37–38

Type	references,	318,	319

type	safety,	132–135

type	testing	operators,	120

typed	clients,	555

typedSymbols	collection,	332

type.GetTypeInfo	()	.	GetCustomAttributes	()	method,	321

TypeInfo	type,	321

typeof	operator,	124,	317

<typeparam>	tag,	50

<typeparamref>	tag,	50

types

anonymous,	76–77

collection,	194–195

creating	and	using,	60

defined,	63

immutable,	77

nullable,	30–32

pass	by	reference,	60–62

pass	by	value,	60–62

with	top-level	statements,	29–30

TypeScript,	688–689

TypeView	example,	316–318

U

UIElement	class,	837

uint,	144–149

unary	operators,	120

unbounded	channels,	458

UnboundedChannelOptions,	458

unboxing,	135,	149

unchecked	operators,	122–123

#undef	directive,	51

UnderlyingSystemType	property,	315

underscore	(_),	34,	54

Unicode	characters,	54

Unicode	issues,	645–646

uniform	resource	identifiers	(URIs),	522

uniform	resource	locators	(URLs),	522

Union	operator,	234

unit	testing

about,	669

code	coverage,	674–675

creating	unit	tests,	669–671

exceptions,	672–673

external	dependencies,	675–678

running	unit	tests,	671

testing	all	code	paths,	671–672,	673–674

Universal	Windows	Platform	(UWP)	apps,	11

unmanaged	modifier,	361

unmanaged	type	data,	352

unsafe	keyword,	350–351,	361

unsigned	numbers,	130–131

Up	method,	604

Update	method,	591

UpdateAsync	method,	631–635

UpdateRecordTrackedAsync	method,	630

UpdateRecordUntrackedAsync	method,	629–630

Uri	class,	522–523

UriBuilder	class,	522–523

usage	conventions,	for	C#,	54–55

Use	method,	697

UseAsyncSemaphore	method,	484

UseAuthorization	method,	736–737

UseAzureAppConfiguration	method,	415

UseEndpoints	method,	699–700

UseMiddleware	method,	698

User	Datagram	Protocol	(UDP)

building	receivers,	537–538

building	UDP	receiver,	537–538

creating	senders,	539–541

creating	UDP	sender,	539–541

using,	537–542

using	multicasts,	541–542

user	information,	verifying,	559–566

user	input,	validating,	764–765

user	interface	(UI)

access	to,	294

blocking	of,	289

calling	await	from,	302

calling	of	event	handler	within,	461

switching	to,	304–305

updating,	796

User-Agent	header,	702

UserControl	control,	841

user-defined	casts,	implementing,	144–149

user-defined	conversions,	143–152

user-defined	exception	classes,	278–285

UseRequestLocalization	method,	659–660

User-Language	header,	702

UseRouting	method,	699–700

user-secrets,	410–411

UseSession	method,	707

UseStaticFiles	method,	695

UseValueTask	method,	296

using	keyword,	45,	107–108,	291,	336,	346–347,	483

UsingEntity	method,	618–619

UsingReflection	method,	323

UsingReflectionWithDynamic	method,	323

utility	classes

about,	521–522

configuring	sockets,	526

Dns	class,	524–525

IPAddress,	523–524

IPHostEntry	class,	524

Uri	class,	522–523

UriBuilder	class,	522–523

V

value	conversion,	860–861

value	types,	30,	83

<value>	tag,	50

values,	changing,	168–169

ValueTask,	296,	453–455

ValueTuple	type,	58,	88

var	keyword,	26

variable	scope,	27–28

variables,	26,	240–241

VariableSizedWrapGrid	panel,	869–870

Vector	type,	operator	overloading	with,	137–139

VectorClass	assembly,	319,	320

VectorClass	.NET	library,	312,	313–314

verbatim	strings,	48

VerifyData	method,	573

view	components,	770–772

view	models,	883–888,	893–894

Viewbox	class,	839

views,	891–897

virtual	address	space,	337

virtual	addressing,	336

virtual	machines,	13

virtual	memory,	337

virtual	method	table	(vtable),	97

virtual	methods,	97–99

virtual	modifier,	105

visual	state	manager,	928–931

Visual	Studio,	289,	389–390,	420,	434–437,	691

Visual	Studio	Code,	14

Visual	Studio	Community,	14

Visual	Studio	Enterprise,	15

Visual	Studio	for	Mac,	15

Visual	Studio	Professional,	15

VisualStateManager,	928–931

VisualStudioCredential,	413

void,	93

W

Wait	method,	305,	444

WaitAll,	453,	470

WaitAny,	470,	474

WaitAsync,	482,	483

WaitHandle	class,	455,	470,	473,	474

WaitingFor-ChildrenToComplete,	453

WaitingReadCount,	479

WaitingUpgradableReadCount,	479

WaitingWriteCount,	479

WaitOne,	470,	473

#warning	directive,	52–53

Warning	log	level,	421

WASM	code,	689

WatchFiles	method,	508–509

WeakReference,	343

WeakReferenceManager	class,	897–898

Web	APIs,	12,	715

web	applications,	11–12,	20–21,	782–788,	791–792

web	security

about,	576

encoding,	576–578

ensuring,	576–580

preventing	SQL	injection,	578–579

protecting	against	cross-site	request	forgery,	579–580

web	servers

about,	542–543

accssing	content,	553

creating	HttpRequestMessage,	551

customizing	requests	with	HttpMessageHandler,	553–554

HTTP	headers,	545–547

HttpClient	class,	548–549

Kestrel	server,	543–544

making	asynchronous	GET	requests,	549–550

passing	headers,	551–553

throwing	exceptions	from	errors,	550

using,	542–557

web	technologies

about,	687–688

CSS,	688

HTML,	688

JavaScript,	688–689

scripting	libraries,	689

TypeScript,	688–689

WebAssembly,	689

WebAssembly,	689,	780–781

WebClient	class,	289

WebHost	class,	690–691

WebHostBuilderContext,	413

WebRequest	class,	289

WebSocket,	12

WebView2	class,	840

WhatsNewAttributes	.NET	library,	312–313,	319–322

WhenAll	method,	295,	453

WhenAny	combinator,	295

Where	method,	233,	261,	608,	612

while	loop,	controlling	program	flow,	43

Win32Exception	class,	370

Windows	App	Editor,	515–517

Windows	apps

about,	11,	819–821

async	with,	302–306

controls,	837–852

data	binding,	852–861

extending	with	groups,	811–814

Hello,	Windows,	822

implementing	layout	panels,	867–875

implementing	navigation,	861–867

MainWindow,	824–825

Package	Manifest	Editor,	822

startup,	822–824

styling	(See	styling)

Windows	Runtime,	821–822

XAML,	826–837

Windows	Communication	Foundation	(WCF),	715

Windows	desktop	apps,	11

Windows	Presentation	Foundation	(WPF),	819–820,	828,	900

Windows	Runtime	(WinRT),	515–519,	821–822

Windows	Terminal,	15

WindowsFormsSynchronizationContext,	294

WindowsNativeMethods	class,	370

WinRTSynchronizationContext,	294

WinUI,	11,	515,	664–667,	820–821,	853

WinUINavigationService,	894–897

with	expressions,	79

WithCancellation	method,	301,	815

Write	method,	499,	506

WriteAsJsonAsync	method,	545,	750

WriteAsync	method,	459,	500–502,	530–531,	746–747

WriteAttributeInfo	method,	321

WriteLine	method,	17,	25,	29–30

WriteMetric	method,	430

write-only	property,	66

Writer	property,	458

WriterMethod,	479

writers,	using,	503–505

WriteSomeDataAsync,	459

WriteSomeDataWithTryWriteAsync	method,	459

writing

binary	files,	505

to	databases,	589

streams,	499

Wrox.ProCSharp.MetricsSample	category,	433

WSL	2,	15–16

X

X.509	certificate,	569–571

Xamarin,	828

XML,	49–51,	508

XXEventCounter	types,	430

XXPollingCounter	types,	430

Y

yield	return	statement,	164–165,	301

yield	statement,	164–166,	300

Z

Zed	Attack	Proxy	(ZAP),	580

Zip	method,	234,	250–251,	477

ZipArchive	class,	505–506,	507–508

zipping	files,	507–508

Copyright	©	2022	by	John	Wiley	&	Sons,	Inc.	All	rights	reserved.

Published	by	John	Wiley	&	Sons,	Inc.,	Hoboken,	New	Jersey.

Published	simultaneously	in	Canada.

ISBN:	978-1-119-79720-3
ISBN:	978-1-119-79722-7	(ebk)
ISBN:	978-1-119-79721-0	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in	any	form	or	by
any	means,	electronic,	mechanical,	photocopying,	recording,	scanning,	or	otherwise,	except	as	permitted
under	Section	107	or	108	of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written
permission	of	the	Publisher,	or	authorization	through	payment	of	the	appropriate	per-copy	fee	to	the
Copyright	Clearance	Center,	Inc.,	222	Rosewood	Drive,	Danvers,	MA	01923,	(978)	750-8400,	fax	(978)
750-4470,	or	on	the	web	at	www.copyright.com.	Requests	to	the	Publisher	for	permission	should	be
addressed	to	the	Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,
(201)	748-6011,	fax	(201)	748-6008,	or	online	at	http://www.wiley.com/go/permission.

Limit	of	Liability/Disclaimer	of	Warranty:	While	the	publisher	and	author	have	used	their	best	efforts	in
preparing	this	book,	they	make	no	representations	or	warranties	with	respect	to	the	accuracy	or
completeness	of	the	contents	of	this	book	and	specifically	disclaim	any	implied	warranties	of
merchantability	or	fitness	for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales
representatives	or	written	sales	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for
your	situation.	You	should	consult	with	a	professional	where	appropriate.	Neither	the	publisher	nor	author
shall	be	liable	for	any	loss	of	profit	or	any	other	commercial	damages,	including	but	not	limited	to	special,
incidental,	consequential,	or	other	damages.

For	general	information	on	our	other	products	and	services	or	for	technical	support,	please	contact	our
Customer	Care	Department	within	the	United	States	at	(800)	762-2974,	outside	the	United	States	at	(317)
572-3993	or	fax	(317)	572-4002.

Wiley	also	publishes	its	books	in	a	variety	of	electronic	formats.	Some	content	that	appears	in	print	may	not
be	available	in	electronic	formats.	For	more	information	about	Wiley	products,	visit	our	web	site	at
www.wiley.com.

Library	of	Congress	Control	Number:	2021939983

Trademarks:	WILEY,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	and	Programmer	to	Programmer,	and	related
trade	dress	are	trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affiliates,	in	the
United	States	and	other	countries,	and	may	not	be	used	without	written	permission.	All	other	trademarks	are
the	property	of	their	respective	owners.	John	Wiley	&	Sons,	Inc.	is	not	associated	with	any	product	or
vendor	mentioned	in	this	book.

Cover	image:	©	Henrik5000/Getty	Images
Cover	design:	Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

This	book	is	dedicated	to	my	family—Angela,
Stephanie,	Matthias,	and	Katharina—I	love	you	all!

ABOUT	THE	AUTHOR

 

CHRISTIAN	NAGEL	is	a	Microsoft	MVP	for	Visual	Studio	and	Development
Technologies	and	has	been	Microsoft	Regional	Director	for	more	than	15	years.
Christian	is	the	founder	of	CN	innovation,	where	he	offers	coaching,	training,
code	reviews,	and	assistance	with	architecting	and	developing	solutions	using
Microsoft	technologies.	He	draws	on	more	than	25	years	of	software
development	experience.

Christian	started	his	computing	career	with	PDP	11	and	VAX/VMS	systems	at
Digital	Equipment	Corporation,	covering	a	variety	of	languages	and	platforms.
Since	2000,	when	.NET	was	just	a	technology	preview,	he	has	been	working
with	various	technologies	to	build	.NET	solutions.	Currently,	he	mainly	coaches
people	on	developing	and	architecting	solutions	based	on	.NET	and	Microsoft
Azure	technologies,	including	Windows	apps,	ASP.NET	Core,	and	.NET	MAUI.
A	big	part	of	his	job	is	helping	companies	move	their	solutions	to	Microsoft
Azure.

Even	after	many	years	in	software	development,	Christian	still	loves	learning
and	using	new	technologies	and	teaching	others	how	to	use	them.	Using	his

profound	knowledge	of	Microsoft	technologies,	he	has	written	numerous	books
and	is	certified	as	a	Microsoft	Certified	Trainer,	Azure	Developer	Associate,
DevOps	Engineer	Expert,	and	Certified	Solution	Developer.	Christian	speaks	at
international	conferences	such	as	Microsoft	Ignite	(previously	named	TechEd),
BASTA!,	and	TechDays.	You	can	contact	Christian	via	his	website	at
www.cninnovation.com,	read	his	blog	at	csharp.christiannagel.com,	and
follow	his	tweets	at	@christiannagel.

ABOUT	THE	TECHNICAL	EDITOR

ROD	STEPHENS	is	a	long-time	developer	and	author	who	has	written	more
than	250	magazine	articles	and	35	books	that	have	been	translated	into	languages
around	the	world.	During	his	career,	Rod	has	worked	on	an	eclectic	assortment
of	applications	in	such	fields	as	telephone	switching,	billing,	repair	dispatching,
tax	processing,	wastewater	treatment,	concert	ticket	sales,	cartography,	and
training	for	professional	football	teams.

Rod's	popular	C#	Helper	website	(www.csharphelper.com)	receives	millions	of
hits	per	year	and	contains	tips,	tricks,	and	example	programs	for	C#
programmers.	His	VB	Helper	website	(www.vb-helper.com)	contains	similar
material	for	Visual	Basic	programmers.

You	can	contact	Rod	at	RodStephens@csharphelper.com	or	RodStephens@vb-

http://www.cninnovation.com
http://csharp.christiannagel.com
http://twitter.com/christiannagel
http://www.csharphelper.com
http://www.vb-helper.com
mailto:RodStephens@csharphelper.com
mailto:RodStephens@vb-helper.com

helper.com.

ACKNOWLEDGMENTS
I	WANT	TO	THANK	Charlotte	Kughen.	For	many	years	and	many	editions	of
this	book,	she	has	made	my	text	so	much	more	readable.	Often,	I	completed
chapters	late	in	the	evening,	when	I	miss	things	as	I	turn	sentences	around.
Charlotte	was	of	enormous	help	in	changing	my	ideas	into	great	readable	text.
Charlotte,	big	thanks	for	your	continued	support	with	these	editions;	I'm	looking
forward	to	working	together	in	the	future	as	well.

Special	thanks	also	go	to	Rod	Stephens,	the	technical	editor	of	this	edition.	Rod
had	great	comments	on	my	source	code	and	induced	some	changes	that	helped
with	the	quality	of	the	source	code.	Rod	is	also	the	author	of	some	great	books,
for	example	Essential	Algorithms:	A	Practical	Approach	to	Computer
Algorithms	Using	Python	and	C#	and	WPF	3d:	Three-Dimensional	Graphics
with	WPF	and	C#.	These	books	can	be	a	great	addition	for	your	C#	bookshelf.

My	thanks	also	go	to	the	complete	team	working	on	the	book.	In	particular,	I
want	to	thank	István	Novak,	technical	editor	of	several	previous	editions	of	this
book.	Now	István	had	the	role	as	technical	proofreader	to	solve	some	final
issues.	I	also	want	to	thank	Kim	Wimpsett,	who	fixed	some	more	text	issues
during	the	production	phase,	and	Barath	Kumar	Rajasekaran,	who	helped	the
flow	during	production.

I	would	also	like	to	thank	all	the	people	working	on	C#	and	.NET,	especially
Mads	Torgersen,	who	has	worked	with	his	team	and	the	community	to	bring	new
features	to	C#;	Richard	Lander	from	the	.NET	Core	team,	with	whom	I	had	great
discussions	on	the	content	and	the	direction	of	the	book;	and	David	Fowler,	who
enhances	.NET	not	only	with	performance	improvements	but	also	usability.
Thanks	go	to	Scott	Hanselman—who	I	have	known	for	many	years	from	our
time	together	as	Microsoft	RDs—for	his	great	ideas	and	continuously	working
with	the	community.	Thanks	go	to	Don	Box,	who	influenced	me	in	the	times
before	.NET	was	available	about	love	and	freedom	(COM	and	XML).

This	edition	of	the	book	was	born	during	the	COVID-19	crisis,	which	changed
the	business	landscape	faster	than	everyone	thought	would	have	been	possible.	I
didn't	have	less	business	during	this	time	as	I	worked	online	from	my	home
office,	but	during	my	career,	I'd	never	had	less	travel.	This	available	time	was
completely	spent	working	on	the	book.	On	the	other	hand,	for	previous	editions
of	this	book,	I	remember	working	many	hours	while	waiting	at	the	airport.	This

time,	I	wrote	the	entire	book	in	my	home	office.	I	want	to	give	a	big	thanks	to
my	wife	and	my	children	for	supporting	my	writing.	You've	been	enormously
helpful	and	understanding	while	I	was	working	on	the	book	for	many	nights,
weekends,	and	without	a	vacation	(not	only	because	of	the	coronavirus	crisis).
Angela,	Stephanie,	Matthias,	and	Katharina—you	are	my	loved	ones.	This
would	not	have	been	possible	without	you.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	TITLE PAGE
	INTRODUCTION
	THE WORLD OF .NET
	THE WORLD OF C#
	WHAT'S NEW IN C#
	WHAT'S NEW IN ASP.NET CORE
	WHAT'S NEW WITH WINDOWS
	WHAT YOU NEED TO WRITE AND RUN C# CODE
	WHAT THIS BOOK COVERS
	CONVENTIONS
	SOURCE CODE
	ERRATA

	PART I: The C# Language
	1 .NET Applications and Tools
	FROM .NET FRAMEWORK TO .NET CORE TO .NET
	.NET TERMS
	.NET SUPPORT LENGTH
	APPLICATION TYPES AND TECHNOLOGIES
	DEVELOPER TOOLS
	USING THE . NET CLI
	SUMMARY

	2 Core C#
	FUNDAMENTALS OF C#
	NULLABLE TYPES
	USING PREDEFINED TYPES
	CONTROLLING PROGRAM FLOW
	ORGANIZATION WITH NAMESPACES
	WORKING WITH STRINGS
	COMMENTS
	C# PREPROCESSOR DIRECTIVES
	C# PROGRAMMING GUIDELINES
	SUMMARY

	3 Classes, Records, Structs, and Tuples
	CREATING AND USING TYPES
	PASS BY VALUE OR BY REFERENCE
	CLASSES
	RECORDS
	STRUCTS
	ENUM TYPES
	REF, IN, AND OUT
	TUPLES
	VALUETUPLE
	DECONSTRUCTION
	PATTERN MATCHING
	PARTIAL TYPES
	SUMMARY

	4 Object-Oriented Programming in C#
	OBJECT ORIENTATION
	INHERITANCE WITH CLASSES
	MODIFIERS
	INHERITANCE WITH RECORDS
	USING INTERFACES
	GENERICS
	SUMMARY

	5 Operators and Casts
	OPERATORS
	USING BINARY OPERATORS
	TYPE SAFETY
	OPERATOR OVERLOADING
	COMPARING OBJECTS FOR EQUALITY
	IMPLEMENTING CUSTOM INDEXERS
	USER-DEFINED CONVERSIONS
	SUMMARY

	6 Arrays
	MULTIPLE OBJECTS OF THE SAME TYPE
	SIMPLE ARRAYS
	MULTIDIMENSIONAL ARRAYS
	JAGGED ARRAYS
	ARRAY CLASS
	ARRAYS AS PARAMETERS
	ENUMERATORS
	USING SPAN WITH ARRAYS
	INDICES AND RANGES
	ARRAY POOLS
	BITARRAY
	SUMMARY

	7 Delegates, Lambdas, and Events
	REFERENCING METHODS
	DELEGATES
	LAMBDA EXPRESSIONS
	EVENTS
	SUMMARY

	8 Collections
	OVERVIEW
	COLLECTION INTERFACES AND TYPES
	LISTS
	STACKS
	LINKED LISTS
	SORTED LIST
	DICTIONARIES
	SETS
	PERFORMANCE
	IMMUTABLE COLLECTIONS
	SUMMARY

	9 Language Integrated Query
	LINQ OVERVIEW
	STANDARD QUERY OPERATORS
	PARALLEL LINQ
	EXPRESSION TREES
	LINQ PROVIDERS
	SUMMARY

	10 Errors and Exceptions
	HANDLING ERRORS
	PREDEFINED EXCEPTION CLASSES
	CATCHING EXCEPTIONS
	USER-DEFINED EXCEPTION CLASSES
	CALLER INFORMATION
	SUMMARY

	11 Tasks and Asynchronous Programming
	WHY ASYNCHRONOUS PROGRAMMING IS IMPORTANT
	TASK-BASED ASYNC PATTERN
	TASKS
	ERROR HANDLING
	CANCELLATION OF ASYNC METHODS
	ASYNC STREAMS
	ASYNC WITH WINDOWS APPS
	SUMMARY

	12 Reflection, Metadata, and Source Generators
	INSPECTING CODE AT RUNTIME AND DYNAMIC PROGRAMMING
	CUSTOM ATTRIBUTES
	USING REFLECTION
	USING DYNAMIC LANGUAGE EXTENSIONS FOR REFLECTION
	EXPANDOOBJECT
	SOURCE GENERATORS
	SUMMARY

	13 Managed and Unmanaged Memory
	MEMORY
	MEMORY MANAGEMENT UNDER THE HOOD
	STRONG AND WEAK REFERENCES
	WORKING WITH UNMANAGED RESOURCES
	UNSAFE CODE
	SPAN<T>
	PLATFORM INVOKE
	SUMMARY

	PART II: Libraries
	14 Libraries, Assemblies, Packages, and NuGet
	THE HELL OF LIBRARIES
	ASSEMBLIES
	CREATING AND USING LIBRARIES
	CREATING NUGET PACKAGES
	MODULE INITIALIZERS
	SUMMARY

	15 Dependency Injection and Configuration
	WHAT IS DEPENDENCY INJECTION?
	USING THE .NET DI CONTAINER
	USING THE HOST CLASS
	LIFETIME OF SERVICES
	INITIALIZATION OF SERVICES USING OPTIONS
	USING CONFIGURATION FILES
	CONFIGURATION WITH .NET APPLICATIONS
	AZURE APP CONFIGURATION
	SUMMARY

	16 Diagnostics and Metrics
	DIAGNOSTICS OVERVIEW
	LOGGING
	METRICS
	ANALYTICS WITH VISUAL STUDIO APP CENTER
	APPLICATION INSIGHTS
	SUMMARY

	17 Parallel Programming
	OVERVIEW
	PARALLEL CLASS
	TASKS
	CANCELLATION FRAMEWORK
	CHANNELS
	TIMERS
	THREADING ISSUES
	INTERLOCKED
	MONITOR
	SPINLOCK
	WAITHANDLE
	MUTEX
	SEMAPHORE
	EVENTS
	BARRIER
	READERWRITERLOCKSLIM
	LOCKS WITH AWAIT
	SUMMARY

	18 Files and Streams
	OVERVIEW
	MANAGING THE FILE SYSTEM
	ITERATING FILES
	WORKING WITH STREAMS
	USING READERS AND WRITERS
	COMPRESSING FILES
	WATCHING FILE CHANGES
	JSON SERIALIZATION
	USING FILES AND STREAMS WITH THE WINDOWS RUNTIME
	SUMMARY

	19 Networking
	OVERVIEW
	WORKING WITH UTILITY CLASSES
	USING SOCKETS
	USING TCP CLASSES
	USING UDP
	USING WEB SERVERS
	THE HTTPCLIENT CLASS
	HTTPCLIENT FACTORY
	SUMMARY

	20 Security
	ELEMENTS OF SECURITY
	VERIFYING USER INFORMATION
	ENCRYPTING DATA
	ENSURING WEB SECURITY
	SUMMARY

	21 Entity Framework Core
	INTRODUCING EF CORE
	CREATING A MODEL
	SCAFFOLDING A MODEL FROM THE DATABASE
	MIGRATIONS
	WORKING WITH QUERIES
	LOADING RELATED DATA
	WORKING WITH RELATIONSHIPS
	SAVING DATA
	CONFLICT HANDLING
	USING TRANSACTIONS
	USING AZURE COSMOS DB
	SUMMARY

	22 Localization
	GLOBAL MARKETS
	NAMESPACE SYSTEM.GLOBALIZATION
	RESOURCES
	LOCALIZATION WITH ASP.NET CORE
	LOCALIZATION WITH WINUI
	SUMMARY

	23 Tests
	OVERVIEW
	UNIT TESTING
	USING A MOCKING LIBRARY
	ASP.NET CORE INTEGRATION TESTING
	SUMMARY

	PART III: Web Applications and Services
	24 ASP.NET Core
	UNDERSTANDING WEB TECHNOLOGIES
	CREATING AN ASP.NET CORE WEB PROJECT
	ADDING CLIENT-SIDE CONTENT
	CREATING CUSTOM MIDDLEWARE
	ENDPOINT ROUTING
	REQUEST AND RESPONSE
	SESSION STATE
	HEALTH CHECKS
	DEPLOYMENT
	SUMMARY

	25 Services
	UNDERSTANDING TODAY'S SERVICES
	REST SERVICES WITH ASP.NET CORE
	CREATING A .NET CLIENT
	USING EF CORE WITH SERVICES
	AUTHENTICATION AND AUTHORIZATION WITH AZURE AD B2C
	IMPLEMENTING AND USING SERVICES WITH GRPC
	USING AZURE FUNCTIONS
	MORE AZURE SERVICES
	SUMMARY

	26 Razor Pages and MVC
	SETTING UP SERVICES FOR RAZOR PAGES AND MVC
	RAZOR PAGES
	ASP.NET CORE MVC
	SUMMARY

	27 Blazor
	BLAZOR SERVER AND BLAZOR WEBASSEMBLY
	CREATING A BLAZOR SERVER WEB APPLICATION
	BLAZOR WEBASSEMBLY
	RAZOR COMPONENTS
	SUMMARY

	28 SignalR
	OVERVIEW
	CREATING A SIMPLE CHAT USING SIGNALR
	GROUPING CONNECTIONS
	STREAMING WITH SIGNALR
	SUMMARY

	PART IV: Apps
	29 Windows Apps
	INTRODUCING WINDOWS APPS
	INTRODUCING XAML
	WORKING WITH CONTROLS
	WORKING WITH DATA BINDING
	IMPLEMENTING NAVIGATION
	IMPLEMENTING LAYOUT PANELS
	SUMMARY

	30 Patterns with XAML Apps
	WHY MVVM?
	DEFINING THE MVVM PATTERN
	SAMPLE SOLUTION
	MODELS
	SERVICES
	VIEW MODELS
	VIEWS
	MESSAGING USING EVENTS
	SUMMARY

	31 Styling Windows Apps
	STYLING
	SHAPES
	GEOMETRY
	TRANSFORMATION
	BRUSHES
	STYLES AND RESOURCES
	TEMPLATES
	ANIMATIONS
	VISUAL STATE MANAGER
	SUMMARY

	INDEX
	COPYRIGHT
	DEDICATION
	ABOUT THE AUTHOR
	ABOUT THE TECHNICAL EDITOR

	ACKNOWLEDGMENTS
	END USER LICENSE AGREEMENT

